Science.gov

Sample records for accurate rotational line

  1. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  2. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  3. Note: Fast, small, accurate 90° rotator for a polarizer.

    PubMed

    Shelton, David P; O'Donnell, William M; Norton, James L

    2011-03-01

    A permanent magnet stepper motor is modified to hold a dichroic polarizer inside the motor. Rotation of the polarizer by 90° ± 0.04° is accomplished within 80 ms. This device is used for measurements of the intensity ratio for two orthogonal linear polarized components of a light beam. The two selected polarizations can be rapidly alternated to allow for signal drift compensation, and the two selected polarizations are accurately orthogonal.

  4. An accurate metric for the spacetime around rotating neutron stars.

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2017-01-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parameterised by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parameterisation of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a 3-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  5. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  6. Accurate rotational constants for linear interstellar carbon chains: achieving experimental accuracy

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Arunan, Elangannan

    2017-01-01

    Linear carbon chain molecular species remain the dominant theme in interstellar chemistry. Their continuous astronomical observation depends on the availability of accurate spectroscopic parameters. Accurate rotational constants are reported for hundreds of molecular species of astrophysical, spectroscopy and chemical interests from the different linear carbon chains; C_{{n}}H, C_{{n}}H-, C_{{n}}N, C_{{n}}N-, C_{{n}}O, C_{{n}}S, HC_{{n}}S, C_{{n}}Si, CH3(CC)_{{n}}H, HC_{{n}}N, DC_{2{n}+1}N, HC_{2{n}}NC, and CH3(C≡C)_{{n}}CN using three to four moments of inertia calculated from the experimental rotational constants coupled with those obtained from the optimized geometries at the Hartree Fock level. The calculated rotational constants are obtained from the corrected moments of inertia at the Hartfree Fock geometries. The calculated rotational constants show accuracy of few kHz below irrespective of the chain length and terminating groups. The obtained accuracy of few kHz places these rotational constants as excellent tools for both astronomical and laboratory detection of these molecular species of astrophysical interest. From the numerous unidentified lines from different astronomical surveys, transitions corresponding to known and new linear carbon chains could be found using these rotational constants. The astrophysical, spectroscopic and chemical implications of these results are discussed.

  7. SPECTRALLY RESOLVED PURE ROTATIONAL LINES OF WATER IN PROTOPLANETARY DISKS

    SciTech Connect

    Pontoppidan, Klaus M.; Salyk, Colette; Blake, Geoffrey A.; Kaeufl, Hans Ulrich

    2010-10-20

    We present ground-based high-resolution N-band spectra ({Delta}v = 15 km s{sup -1}) of pure rotational lines of water vapor in two protoplanetary disks surrounding the pre-main-sequence stars AS 205N and RNO 90, selected based on detections of rotational water lines by the Spitzer InfraRed Spectrograph. Using VISIR on the Very Large Telescope, we spectrally resolve individual lines and show that they have widths of 30-60 km s{sup -1}, consistent with an origin in Keplerian disks at radii of {approx}1 AU. The water lines have similar widths to those of the CO at 4.67 {mu}m, indicating that the mid-infrared water lines trace similar radii. The rotational temperatures of the water are 540 and 600 K in the two disks, respectively. However, the line ratios show evidence of non-LTE excitation, with low-excitation line fluxes being overpredicted by two-dimensional disk LTE models. Due to the limited number of observed lines and the non-LTE line ratios, an accurate measure of the water ortho/para (O/P) ratio is not available, but a best estimate for AS 205N is O/P =4.5 {+-} 1.0, apparently ruling out a low-temperature origin of the water. The spectra demonstrate that high-resolution spectroscopy of rotational water lines is feasible from the ground, and further that ground-based high-resolution spectroscopy is likely to significantly improve our understanding of the inner disk chemistry revealed by recent Spitzer observations.

  8. Accurate free and forced rotational motions of rigid Venus

    NASA Astrophysics Data System (ADS)

    Cottereau, L.; Souchay, J.; Aljbaae, S.

    2010-06-01

    Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.

  9. In-line sensor for accurate rf power measurements

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.

    2005-10-01

    An in-line sensor has been constructed with 50Ω characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  10. In-line sensor for accurate rf power measurements

    SciTech Connect

    Gahan, D.; Hopkins, M.B.

    2005-10-15

    An in-line sensor has been constructed with 50 {omega} characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  11. State-to-state rotational phase coherence effect on the vibration-rotation band shape - An accurate quantum calculation for CO-He

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1989-01-01

    Accurate coupled state calculations of line coupling are performed for infrared lines of carbon monoxide perturbed by helium. Such calculations lead to both real and imaginary line couplings. For the first time, the effect of this imaginary line couplings, connected with state-to-state rotational phase coherences, on infrared band shape, is analyzed. An extension of detailed balance principle to the complex plane is suggested from the present computed off-diagonal cross sections. This allows us to understand the physical mechanism underlying the weak effect of phase coherences on CO-He infrared band shape.

  12. Accurate oscillator strengths for interstellar ultraviolet lines of Cl I

    NASA Technical Reports Server (NTRS)

    Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.

    1993-01-01

    Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.

  13. Accurate determination of membrane dynamics with line-scan FCS.

    PubMed

    Ries, Jonas; Chiantia, Salvatore; Schwille, Petra

    2009-03-04

    Here we present an efficient implementation of line-scan fluorescence correlation spectroscopy (i.e., one-dimensional spatio-temporal image correlation spectroscopy) using a commercial laser scanning microscope, which allows the accurate measurement of diffusion coefficients and concentrations in biological lipid membranes within seconds. Line-scan fluorescence correlation spectroscopy is a calibration-free technique. Therefore, it is insensitive to optical artifacts, saturation, or incorrect positioning of the laser focus. In addition, it is virtually unaffected by photobleaching. Correction schemes for residual inhomogeneities and depletion of fluorophores due to photobleaching extend the applicability of line-scan fluorescence correlation spectroscopy to more demanding systems. This technique enabled us to measure accurate diffusion coefficients and partition coefficients of fluorescent lipids in phase-separating supported bilayers of three commonly used raft-mimicking compositions. Furthermore, we probed the temperature dependence of the diffusion coefficient in several model membranes, and in human embryonic kidney cell membranes not affected by temperature-induced optical aberrations.

  14. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  15. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  16. Accurate in-line CD metrology for nanometer semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Perng, Baw-Ching; Shieh, Jyu-Horng; Jang, S.-M.; Liang, M.-S.; Huang, Renee; Chen, Li-Chien; Hwang, Ruey-Lian; Hsu, Joe; Fong, David

    2006-03-01

    The need for absolute accuracy is increasing as semiconductor-manufacturing technologies advance to sub-65nm nodes, since device sizes are reducing to sub-50nm but offsets ranging from 5nm to 20nm are often encountered. While TEM is well-recognized as the most accurate CD metrology, direct comparison between the TEM data and in-line CD data might be misleading sometimes due to different statistical sampling and interferences from sidewall roughness. In this work we explore the capability of CD-AFM as an accurate in-line CD reference metrology. Being a member of scanning profiling metrology, CD-AFM has the advantages of avoiding e-beam damage and minimum sample damage induced CD changes, in addition to the capability of more statistical sampling than typical cross section metrologies. While AFM has already gained its reputation on the accuracy of depth measurement, not much data was reported on the accuracy of CD-AFM for CD measurement. Our main focus here is to prove the accuracy of CD-AFM and show its measuring capability for semiconductor related materials and patterns. In addition to the typical precision check, we spent an intensive effort on examining the bias performance of this CD metrology, which is defined as the difference between CD-AFM data and the best-known CD value of the prepared samples. We first examine line edge roughness (LER) behavior for line patterns of various materials, including polysilicon, photoresist, and a porous low k material. Based on the LER characteristics of each patterning, a method is proposed to reduce its influence on CD measurement. Application of our method to a VLSI nanoCD standard is then performed, and agreement of less than 1nm bias is achieved between the CD-AFM data and the standard's value. With very careful sample preparations and TEM tool calibration, we also obtained excellent correlation between CD-AFM and TEM for poly-CDs ranging from 70nm to 400nm. CD measurements of poly ADI and low k trenches are also

  17. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves

    NASA Astrophysics Data System (ADS)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M.

    2016-12-01

    We introduce SPARC (Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μm and high-quality rotation curves from previous H i/Hα studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity (V bar/V obs) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ⋆) at [3.6]. Assuming ϒ⋆ ≃ 0.5 M ⊙/L ⊙ (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V bar/V obs varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ⋆ ≃ 0.2 M ⊙/L ⊙ as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ⋆ ≃ 0.7 M ⊙/L ⊙ at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  18. Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.

    PubMed

    Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro

    2016-01-12

    The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy.

  19. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  20. Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations.

    PubMed

    Den, Takuya S; Frey, Hans-Martin; Leutwyler, Samuel

    2014-11-21

    The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.

  1. Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations

    SciTech Connect

    Den, Takuya S.; Frey, Hans-Martin; Leutwyler, Samuel

    2014-11-21

    The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B{sub 0} = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B{sub 0} value, RR-RCS measurements in a room temperature gas cell give the rotational constants B{sub v} of the five lowest-lying thermally populated vibrationally excited states ν{sub 7/8}, ν{sub 9}, ν{sub 11/12}, ν{sub 13}, and ν{sub 14/15}. Their B{sub v} constants differ from B{sub 0} by between −1.02 MHz and +2.23 MHz. Combining the B{sub 0} with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r{sub e}(C-C) = 1.3866(3) Å and r{sub e}(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r{sub e} bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r{sub g}(C-C)=1.3907(3) Å and r{sub g}(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r{sub g} bond lengths measured in the 1960s.

  2. Current Driven Rotating Kink Mode in a Plasma Column with Non-Line-Tied Free End

    SciTech Connect

    Furno, I; Intrator, T P; Ryutov, D D; Abbate, S; Madziwa-Nussinov, T; Light, A; Dorf, L; Lapenta, G

    2006-03-28

    First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. Instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.

  3. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  4. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System

    PubMed Central

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-01-01

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α1 , α2), initial phase angles (ϕ1,ϕ2), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles’ variation are reduced by about 20%–30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved. PMID:28304354

  5. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System.

    PubMed

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-03-17

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α₁ , α₂), initial phase angles (ϕ₁,ϕ₂), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles' variation are reduced by about 20%-30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved.

  6. Computing Highly Accurate Spectroscopic Line Lists that Cover a Large Temperature Range for Characterization of Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Huang, X.; Schwenke, D. W.

    2013-12-01

    Over the last decade, it has become apparent that the most effective approach for determining highly accurate rotational and rovibrational line lists for molecules of interest in planetary atmospheres is through a combination of high-resolution laboratory experiments coupled with state-of-the art ab initio quantum chemistry methods. The approach involves computing the most accurate potential energy surface (PES) possible using state-of-the art electronic structure methods, followed by computing rotational and rovibrational energy levels using an exact variational method to solve the nuclear Schrödinger equation. Then, reliable experimental data from high-resolution experiments is used to refine the ab initio PES in order to improve the accuracy of the computed energy levels and transition energies. From the refinement step, we have been able to achieve an accuracy of approximately 0.015 cm-1 for rovibrational transition energies, and even better for purely rotational transitions. This combined 'experiment / theory' approach allows for determination of essentially a complete line list, with hundreds of millions of transitions, and having the transition energies and intensities be highly accurate. Our group has successfully applied this approach to determine highly accurate line lists for NH3 and CO2 (and isotopologues), and very recently for SO2 and isotopologues. Here I will report our latest results for SO2 including all isotopologues. Comparisons to the available data in HITRAN2012 and other available databases will be shown, though we note that our line lists SO2 are significantly more complete than any other databases. Since it is important to span a large temperature range in order to model the spectral signature of exoplanets, we will also demonstrate how the spectra change on going from low temperatures (100 K) to higher temperatures (500 K).

  7. Accurate transition rates for intercombination lines of singly ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2011-01-01

    The transition energies and rates for the 2s22p2 3P1,2-2s2p3 5S2o and 2s22p3s-2s22p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p3 1,3P1o and 2s22p3s 1,3P1olevels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  8. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  9. Synthetic line profiles of rotationally distorted hot-star winds

    NASA Astrophysics Data System (ADS)

    Harries, Tim J.

    2000-07-01

    A new Monte Carlo stellar wind radiative-transfer code is presented. The code employs a three-dimensional opacity grid, and fully treats polarization and multiple scattering. Either Mie or Rayleigh scattering phase matrices may be used, and the line-transfer is treated by means of the Solobolev approximation. Variance reduction techniques are employed to increase computational efficiency. The results of several tests of the code are reported. It is confirmed that no continuum polarization is produced in the spherically symmetric wind case, and that the line profiles computed match those computed using established radiative-transfer codes. The continuum polarization produced by a latitudinally structured low-density wind is found to be in good agreement with that predicted by the single-scattering analytical treatment of Fox, while in the higher density regime the polarizations are consistent with the multiple-scattering code given by Hillier. Two illustrative applications of the code are described, using the wind parameters of ζ Puppis [O4I(n)f] as the base model. In the first the effect on the line profile of a corotating spiral density enhancement is examined. It is found that the spiral gives line profile variations on the order of 5 per cent, and that it produces an S-wave-like pattern as a function of rotational phase. It is noted that the accelerations described by the spiral wave may mimic those produced by tangentially accelerating wind clumps. The variable polarization produced by the spiral is found to have an amplitude of 0.1 per cent, with two maxima per rotational period in phase with the line emission modulation. The second application investigates the profiles and polarization produced in a clumped wind. Although the parameters of the discrete wind clumps are necessarily arbitrary, it is found that a clumped-wind model reproduces the level of spectroscopic variability found by Eversberg et al. It is shown that the wind emission `bumps' produced in

  10. Variable rotational line broadening in the Be star Achernar

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Baade, D.; Townsend, R. H. D.; Carciofi, A. C.; Štefl, S.

    2013-11-01

    Aims: The main theoretical problem for the formation of a Keplerian disk around Be stars is how angular momentum is supplied from the star to the disk, even more so since Be stars probably rotate somewhat subcritically. For instance, nonradial pulsation may transport angular momentum to the stellar surface until (part of) this excess supports the disk-formation/replenishment. The nearby Be star Achernar is presently building a new disk and offers an excellent opportunity to observe this process from relatively close-up. Methods: Spectra from various sources and epochs are scrutinized to identify the salient stellar parameters characterizing the disk life cycle as defined by Hα emission. The variable strength of the non-radial pulsation is confirmed, but does not affect the other results. Results: For the first time it is demonstrated that the photospheric line width does vary in a Be star, by as much as Δv sini ≲ 35 km s-1. However, unlike assumptions in which a photospheric spin-up accumulates during the diskless phase and then is released into the disk as it is fed, the apparent photospheric spin-up is positively correlated with the appearance of Hα line emission. The photospheric line widths and circumstellar emission increase together, and the apparent stellar rotation declines to the value at quiescence after the Hα line emission becomes undetectable. Based on observations collected at the European Southern Observatory at La Silla and Paranal, Chile, Prog. IDs: 62.H-0319, 64.H-0548, 072.C-0513, 073.C-0784, 074.C-0012, 073.D-0547, 076.C-0431, 077.D-0390, 077.D-0605, and the technical program IDs 60.A-9120 and 60.A-9036.Appendices are available in electronic form at http://www.aanda.org

  11. The rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines

    NASA Astrophysics Data System (ADS)

    Greiner, Bernd; Neugebauer, Joachim

    2013-07-01

    We provide an up-to-date compilation of Euler rotations that model the evolution of the Central and Northern Atlantic Ocean (Table 1). The data basis forms seafloor spreading magnetic anomalies of the Atlantic. We checked the published rotations and selected those that form a consistent model. The increments of the Euler rotations going back in time from magnetic anomaly to magnetic anomaly can be illustrated by chains of points on "drift lines" that are paths of motions from continent to continent. Along these paths, the continents bordering the Atlantic Ocean can be moved back to their Mesozoic position within Pangea. Other figures exhibit the early rifting of the North Atlantic, the drift of Iberia, and the evolution of the Greenland-Ellesmere region. The points on the drift lines do not correspond directly to the lines of magnetic anomalies or their "picks" displayed today symmetrically in the Atlantic Ocean. To acquire correspondence, symmetric "flow lines" are constructed analogous to the spreading procedure. But points on the flow lines constructed by half of the increments partially also deviate from the expected symmetric position and in this way quantify displacements or jumps of the axis of rifting or spreading. Most of the selected rotations are from the excellent analyses of previous work. Essential deviations from published rotations are the M 0 rotations of Eurasia and of the Porcupine unit with respect to North America (EUR-NAM and POR-NAM). They lead to a better coincidence between the back-rotated M 0 magnetic anomalies in the Bay of Biscay on the one side and a change of the first transform motions between Greenland and Svalbard on the other side. Through this explanation, an overlap in Pangea SW of Svalbard is avoided and transform motions instead of strong extension are predicted. Some additional data are needed to complete the model: the earliest part of the path of Iberia to North America (IBA-NAM) up to M 4 is calculated assuming that Iberia

  12. Control circuitry using electronic emulation of a synchro signal for accurate control of position and rate of rotation for shafts

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    1991-01-01

    The invention disclosed is a digital circuit which emulates a synchro signal in a synchro-resolver follower system for precise control of shaft position and rotation at very low rotational rates. The invention replaces the synchro and drive motor in a synchro-resolver follower system with a digital and analog synchro emulation circuit for generating the resolver control signal. The synchro emulation circuit includes amplitude modulation means to provide relatively high frequency resolver excitation signals for accurate resolver response even with very low shaft rotation rates.

  13. Control Circuitry Using Electronic Emulation of a Synchro Signal for Accurate Control of Position and Rate of Rotation for Shafts

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    1992-01-01

    The invention herein disclosed is a digital circuit which emulates a synchro signal in a synchro-resolver follower system for precise control of shaft position and rotation at very low rotational rates. The subject invention replaces the synchro and drive motor in a synchroresolver follower system with a digital and analog synchro emulation circuit for generating the resolver control signal. The synchro emulation circuit includes amplitude modulation means to provide relatively high frequency resolver excitation signals for accurate resolver response even with very low shaft rotation rates.

  14. NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES

    SciTech Connect

    Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh

    2013-02-10

    We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

  15. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  16. ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

    SciTech Connect

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-15

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 Multiplication-Sign 10{sup -2} s{sup -1} and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  17. The impact of gas bulk rotation on the Lyα line

    SciTech Connect

    Garavito-Camargo, Juan N.; Forero-Romero, Jaime E.; Dijkstra, Mark E-mail: je.forero@uniandes.edu.co

    2014-11-10

    We present results of radiative transfer calculations to measure the impact of gas bulk rotation on the morphology of the Lyα emission line in distant galaxies. We model a galaxy as a sphere with an homogeneous mixture of dust and hydrogen at a constant temperature. These spheres undergo solid-body rotation with maximum velocities in the range 0-300 km s{sup –1} and neutral hydrogen optical depths in the range τ{sub H} = 10{sup 5}-10{sup 7}. We consider two types of source distributions in the sphere: central and homogeneous. Our main result is that rotation introduces a dependence of the line morphology with viewing angle and rotational velocity. Observations with a line of sight parallel to the rotation axis yield line morphologies similar to the static case. For lines of sight perpendicular to the rotation axis, both the intensity at the line center and the line width increase with rotational velocity. Along the same line of sight, the line becomes single peaked at rotational velocities close to half the line width in the static case. Notably, we find that rotation does not induce any spatial anisotropy in the integrated line flux, the escape fraction or the average number of scatterings. This is because Lyman scattering through a rotating solid-body proceeds identically to the static case. The only difference is the Doppler shift from the different regions in the sphere that move with respect to the observer. This allows us to derive an analytic approximation for the viewing-angle dependence of the emerging spectrum, as a function of rotational velocity.

  18. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-07-28

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved.

  19. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  20. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    PubMed Central

    Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin

    2014-01-01

    In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models. PMID:24811075

  1. Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Lutnæs, Ola B.; Teale, Andrew M.; Helgaker, Trygve; Tozer, David J.; Ruud, Kenneth; Gauss, Jürgen

    2009-10-01

    An accurate set of benchmark rotational g tensors and magnetizabilities are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster single-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the results obtained is established for the rotational g tensors by careful comparison with experimental data, taking into account zero-point vibrational corrections. After an analysis of the basis sets employed, extrapolation techniques are used to provide estimates of the basis-set-limit quantities, thereby establishing an accurate benchmark data set. The utility of the data set is demonstrated by examining a wide variety of density functionals for the calculation of these properties. None of the density-functional methods are competitive with the CCSD or CCSD(T) methods. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of density-functional calculations constrained to give the same electronic density. The importance of current dependence in exchange-correlation functionals is discussed in light of this comparison.

  2. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  3. Theoretical brightness temperature profiles of atmospheric pure H2 rotational quadrupole lines - Jupiter and Uranus

    NASA Technical Reports Server (NTRS)

    Goorvitch, D.; Chackerian, C., Jr.

    1977-01-01

    With the advent of high-resolution instruments and their use high above most of the telluric water vapor, the hydrogen pure rotational quadrupole lines at 28, 17, and 12 microns from the atmospheres of the outer planets may be observed. Best values for the line strengths, pressure-broadening coefficients, diffusion constants, and pressure shifts for these rotational transitions are calculated. The collisionally narrowed Galatry profile is used to calculate brightness temperature line profiles for these H2 transitions for the outer planets, Jupiter and Uranus. The effects of the H2 rotational-translational continuum and of the NH3 v2 band are also included.

  4. Rapid and Accurate Calculation of a Speed Dependent Spectral Line Shape

    NASA Astrophysics Data System (ADS)

    Beverstock, D. Reed; Weaver, Kendra Letchworth; Benner, D. Chris

    2014-06-01

    Use of the Voigt profile with the Lorentz width allowed to vary with the speed of collision has been hampered by the lack of fast accurate algorithms. Such an algorithm has been written assuming a quadratic dependence of the Lorentz width upon the speed of collision that is accurate to one part in 10 000 and is generally only a factor of four or so slower than the equivalent Voigt calculation with the Letchworth and Benner algorithm. The only exception to the accuracy is far from line center near the Doppler limit when the speed dependent parameter is quite large. At this point the spectral line has fallen by at least 17 orders of magnitude from the line center and is generally insignificant. Gauss-Hermite quadrature of third to seventeenth order, Taylor series expansion about precomputed points and spline interpolation are used in the computation of both the real and imaginary parts for various regions. Kendra L. Letchworth and D. Chris Benner, JQSRT 107 (2007) 173-192. This work was funded by the Jet Propulsion Laboratory and National Science Foundation.

  5. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products.

    PubMed

    Hashmi, Muhammad Ali; Andreassend, Sarah K; Keyzers, Robert A; Lein, Matthias

    2016-09-21

    Despite advances in electronic structure theory the theoretical prediction of spectroscopic properties remains a computational challenge. This is especially true for natural products that exhibit very large conformational freedom and hence need to be sampled over many different accessible conformations. We report a strategy, which is able to predict NMR chemical shifts and more elusive properties like the optical rotation with great precision, through step-wise incremental increases of the conformational degrees of freedom. The application of this method is demonstrated for 3-epi-xestoaminol C, a chiral natural compound with a long, linear alkyl chain of 14 carbon atoms. Experimental NMR and [α]D values are reported to validate the results of the density functional theory calculations.

  6. Accurate Feeding of Nanoantenna by Singular Optics for Nanoscale Translational and Rotational Displacement Sensing

    NASA Astrophysics Data System (ADS)

    Xi, Zheng; Wei, Lei; Adam, A. J. L.; Urbach, H. P.; Du, Luping

    2016-09-01

    Identifying subwavelength objects and displacements is of crucial importance in optical nanometrology. We show in this Letter that nanoantennas with subwavelength structures can be excited precisely by incident beams with singularity. This accurate feeding beyond the diffraction limit can lead to dynamic control of the unidirectional scattering in the far field. The combination of the field discontinuity of the incoming singular beam with the rapid phase variation near the antenna leads to remarkable sensitivity of the far-field scattering to the displacement at a scale much smaller than the wavelength. This Letter introduces a far-field deep subwavelength position detection method based on the interaction of singular optics with nanoantennas.

  7. Accurate oscillator strengths for ultraviolet lines of Ar I - Implications for interstellar material

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Beideck, D. J.; Schectman, R. M.; York, D. G.

    1992-01-01

    Analysis of absorption from interstellar Ar I in lightly reddened lines of sight provides information on the warm and hot components of the interstellar medium near the sun. The details of the analysis are limited by the quality of the atomic data. Accurate oscillator strengths for the Ar I lines at 1048 and 1067 A and the astrophysical implications are presented. From lifetimes measured with beam-foil spectroscopy, an f-value for 1048 A of 0.257 +/- 0.013 is obtained. Through the use of a semiempirical formalism for treating singlet-triplet mixing, an oscillator strength of 0.064 +/- 0.003 is derived for 1067 A. Because of the accuracy of the results, the conclusions of York and colleagues from spectra taken with the Copernicus satellite are strengthened. In particular, for interstellar gas in the solar neighborhood, argon has a solar abundance, and the warm, neutral material is not pervasive.

  8. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems.

    PubMed

    Majda, Andrew J; Grote, Marcus J

    2007-01-23

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria.

  9. An Accurate Simulation Of Thermoforming And Blow-Molding Processes Using The Space Fiber Rotation (SFR) Concept

    NASA Astrophysics Data System (ADS)

    Ghomari, T.; Ayad, R.; Talbi, N.

    2007-05-01

    This work deals with a non-linear formulation of an axisymmetric hyperelastic solid model for thermoforming and blow-molding processes. It's based on a new kinematic concept labeled SFR (Space Fiber Rotation). The SFR-Axi element model uses a kinematic motion of a space linear fiber in order to obtain more accurate displacement field, without increasing the number of nodes. It improves in a significant way the precision of the linear element Q4 indeed. The corresponding numerical results are comparable and even better, in term of time CPU, with those of the 8-nodes higher order element Q8. A hyperelastic behavior law based on Mooney-Rivlin model has been implemented to allow the model better simulations of forming processes hollow plastic bodies. The numerical results, very promising, are given with considering or not the contact between the polymer.

  10. Single R Gene Introgression Lines for Accurate Dissection of the Brassica - Leptosphaeria Pathosystem

    PubMed Central

    Larkan, Nicholas J.; Yu, Fengqun; Lydiate, Derek J.; Rimmer, S. Roger; Borhan, M. Hossein

    2016-01-01

    Seven blackleg resistance (R) genes (Rlm1, Rlm2, Rlm3, Rlm4, LepR1, LepR2 & LepR3) were each introgressed into a common susceptible B. napus doubled-haploid (DH) line through reciprocal back-crossing, producing single-R gene introgression lines (ILs) for use in the pathological and molecular study of Brassica—Leptosphaeria interactions. The genomic positions of the R genes were defined through molecular mapping and analysis with transgenic L. maculans isolates was used to confirm the identity of the introgressed genes where possible. Using L. maculans isolates of contrasting avirulence gene (Avr) profiles, we preformed extensive differential pathology for phenotypic comparison of the ILs to other B. napus varieties, demonstrating the ILs can provide for the accurate assessment of Avr-R gene interactions by avoiding non-Avr dependant alterations to resistance responses which can occur in some commonly used B. napus varieties. Whole-genome SNP-based assessment allowed us to define the donor parent introgressions in each IL and provide a strong basis for comparative molecular dissection of the pathosystem. PMID:27965684

  11. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  12. The diagnostic line: A novel criterion for condition monitoring of rotating machinery.

    PubMed

    Lin, Jinshan; Dou, Chunhong

    2015-11-01

    This study examined scaling properties of an increment series from rotating machinery. Moreover, two fluctuation parameters for the smallest and largest time scales of a scaling range served as a pair of fluctuation parameters to describe system conditions. Therefore, an interesting phenomenon is observed: the data points, each representing a pair of fluctuation parameters, for fault conditions almost form a straight line, while those for normal clearly depart from the straight line. To describe the phenomenon, a novel concept termed the diagnostic line was introduced. Subsequently, properties of the diagnostic line were carefully investigated theoretically and numerically. Consequently, a decisive role of noise in forming the diagnostic line was determined. Accordingly, this study develops a novel criterion for condition monitoring of rotating machinery.

  13. An ab initio HCN/HNC rotational-vibrational line list and opacity function for astronomy

    NASA Astrophysics Data System (ADS)

    Harris, Gregory John

    HCN/HNC is an important molecule which is found throughout the universe. For example HCN/HNC is known to exist in comets, planetary atmospheres and the interstellar medium. HCN is also an important opacity source in carbon rich stars (C-stars). HCN masers have been observed in the circumstellar material around these C-stars and also in galaxies. Jorgensen and co-workers investigated model carbon star atmospheres in which they included HCN as an opacity source. They found that including a HCN opacity function had a remarkable effect: the atmosphere expanded by five times and the pressure of the atmosphere in the surface layers dropped by one or two orders of magnitude. This suggests that a full and detailed treatment of the rotational-vibrational spectrum of HCN/HNC could have a profound effect on the models of carbon stars, this provides the main motivation in this work. The temperatures of the stars in which HCN is an important opacity source Teff = 2000 - 3000 K. If HCN and HNC are in thermodynamic equilibrium it would be expected that HNC as well as HCN are found in significant populations. The transition dipoles of the fundamental bands of HNC are more than twice as strong as their HCN counter parts. These factors mean that both HCN and HNC will be considered, which makes a semiglobal treatment of the [H,C,N] system necessary. In this thesis an ab initio HCN/HNC linelist, from which accurate spectra and opacity functions can be calculated, is computed. Within this thesis I present least squares fits for ab initio semiglobal potential energy, dipole moment, relativistic correction and adiabatic correction surfaces. The potential energy surface (PES) is morphed for HNC geometries of the potential to improve the HNC representation of the surface. The PES and dipole moment surface (DMS) are used to perform quantum mechanical nuclear motion (rotational-vibrational) calculations with the DVR3D suite of codes. Preliminary calculations are made to optimise a ro

  14. The Latitudinal Excursion of Coronal Magnetic Field Lines in Response to Differential Rotation: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete

    2006-01-01

    Solar energetic particles, which are believed to originate from corotating interacting regions (CIRS) at low heliographic latitude, were observed by the Ulysses spacecraft even as it passed over the Sun's poles. One interpretation of this result is that high-latitude field lines intercepted by Ulysses connect to low-latitude CIRs at much larger heliocentric distances. The Fisk model explains the latitudinal excursion of magnetic field lines in the solar corona and heliosphere as the inevitable consequence of the interaction of a tilted dipole in a differentially rotating photosphere with rigidly rotating coronal holes. We use a time-dependent three-dimensional magnetohydrodynamic (MHD) algorithm to follow the evolution of a simple model of the solar corona in response to the differential rotation of the photospheric magnetic flux. We examine the changes of the coronal-hole boundaries, the redistribution of the line-of-sight magnetic field, and the precession of field lines in the corona. Our results confirm the basic idea of the Fisk model, that differential rotation leads to changes in the heliographic latitude of magnetic field lines. However, the latitudinal excursion of magnetic field lines in this simple "tilted dipole" model is too small to explain the Ulysses observations. Although coronal holes in our model rotate more rigidly than do photospheric features (in general agreement with observations), they do not rotate strictly rigidly as assumed by Fisk. This basic difference between our model and Fisk's will be explored in the future by considering more realistic magnetic flux distributions, as observed during Ulysses polar excursions.

  15. Determination of very rapid molecular rotation by using the central electron paramagnetic resonance line.

    PubMed

    Kurban, Mark R

    2013-02-21

    Picosecond rotational correlation times of perdeuterated tempone (PDT) are found in alkane and aromatic liquids by directly using the spectral width of the central electron paramagnetic resonance line. This is done by mathematically eliminating the nonsecular spectral density from the spectral parameter equations, thereby removing the need to assume a particular form for it. This is preferable to fitting a constant correction factor to the spectral density, because such a factor does not fit well in the low picosecond range. The electron-nuclear spin dipolar interaction between the probe and solvent is shown to be negligible for the very rapid rotation of PDT in these liquids at the temperatures of the study. The rotational correlation times obtained with the proposed method generally agree to within experimental uncertainty with those determined by using the traditional parameters. Using the middle line width offers greater precision and smoother trends. Previous work with the central line width is discussed, and past discrepancies are explained as possibly resulting from residual inhomogeneous broadening. The rotational correlation time almost forms a common curve across all of the solvents when plotted with respect to isothermal compressibility, which shows the high dependence of rotation on liquid free volume.

  16. Benchmark studies of the Bending Corrected Rotating Linear Model (BCRLM) reactive scattering code: Implications for accurate quantum calculations

    SciTech Connect

    Hayes, E.F.; Darakjian, Z. . Dept. of Chemistry); Walker, R.B. )

    1990-01-01

    The Bending Corrected Rotating Linear Model (BCRLM), developed by Hayes and Walker, is a simple approximation to the true multidimensional scattering problem for reaction of the type: A + BC {yields} AB + C. While the BCRLM method is simpler than methods designed to obtain accurate three dimensional quantum scattering results, this turns out to be a major advantage in terms of our benchmarking studies. The computer code used to obtain BCRLM scattering results is written for the most part in standard FORTRAN and has been reported to several scalar, vector, and parallel architecture computers including the IBM 3090-600J, the Cray XMP and YMP, the Ardent Titan, IBM RISC System/6000, Convex C-1 and the MIPS 2000. Benchmark results will be reported for each of these machines with an emphasis on comparing the scalar, vector, and parallel performance for the standard code with minimum modifications. Detailed analysis of the mapping of the BCRLM approach onto both shared and distributed memory parallel architecture machines indicates the importance of introducing several key changes in the basic strategy and algorithums used to calculate scattering results. This analysis of the BCRLM approach provides some insights into optimal strategies for mapping three dimensional quantum scattering methods, such as the Parker-Pack method, onto shared or distributed memory parallel computers.

  17. Accurate On-Line Intervention Practices for Efficient Improvement of Reading Skills in Africa

    ERIC Educational Resources Information Center

    Marshall, Minda B.

    2016-01-01

    Lifelong learning is the only way to sustain proficient learning in a rapidly changing world. Knowledge and information are exploding across the globe. We need accurate ways to facilitate the process of drawing external factual information into an internal perceptive advantage from which to interpret and argue new information. Accurate and…

  18. Full-Dimensional Potential Energy and Dipole Moment Surfaces of GeH4 Molecule and Accurate First-Principle Rotationally Resolved Intensity Predictions in the Infrared.

    PubMed

    Nikitin, A V; Rey, M; Rodina, A; Krishna, B M; Tyuterev, Vl G

    2016-11-17

    Nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) of the germane molecule are constructed using extended ab initio CCSD(T) calculations at 19 882 points. PES analytical representation is determined as an expansion in nonlinear symmetry adapted products of orthogonal and internal coordinates involving 340 parameters up to eighth order. Minor empirical refinement of the equilibrium geometry and of four quadratic parameters of the PES computed at the CCSD(T)/aug-cc-pVQZ-DK level of the theory yielded the accuracy below 1 cm(-1) for all experimentally known vibrational band centers of five stable isotopologues of (70)GeH4, (72)GeH4, (73)GeH4, (74)GeH4, and (76)GeH4 up to 8300 cm(-1). The optimized equilibrium bond re = 1.517 594 Å is very close to best ab initio values. Rotational energies up to J = 15 are calculated using potential expansion in normal coordinate tensors with maximum errors of 0.004 and 0.0006 cm(-1) for (74)GeH4 and (76)GeH4. The DMS analytical representation is determined through an expansion in symmetry-adapted products of internal nonlinear coordinates involving 967 parameters up to the sixth order. Vibration-rotation line intensities of five stable germane isotopologues were calculated from purely ab initio DMS using nuclear motion variational calculations with a full account of the tetrahedral symmetry of the molecules. For the first time a good overall agreement of main absorption features with experimental rotationally resolved Pacific Northwest National Laboratory spectra was achieved in the entire range of 700-5300 cm(-1). It was found that very accurate description of state-dependent isotopic shifts is mandatory to correctly describe complex patterns of observed spectra at natural isotopic abundance resulting from the superposition of five stable isotopologues. The data obtained in this work will be made available through the TheoReTS information system.

  19. First identification of pure rotation lines of NH in the infrared solar spectrum

    NASA Technical Reports Server (NTRS)

    Geller, M.; Farmer, C. B.; Norton, R. H.; Sauval, A. J.; Grevesse, N.

    1991-01-01

    Pure rotation lines of NH of the v = 0 level and v = 1 level are detected in high-resolution solar spectra obtained from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experimental observations. It is pointed out that the identification of the lines is favored by the typical appearance of the triplet lines of nearly equal intensities. The observed equivalent widths of these triplet lines are compared with predicted intensities, and it is observed that these widths are systematically larger than the predicted values. It is noted that because these very faint lines are observed in a region where the signal is very low, a systematic error in the measurements of the equivalent widths cannot be ruled out; therefore, the disagreement between the observed and predicted intensities is not considered to be real.

  20. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  1. Solar Differential Rotation in Calcium II K Line Spectra Supported with Spectroheliogram Analysis

    NASA Astrophysics Data System (ADS)

    Behm, Tyler; Keil, S. L.

    2013-07-01

    Two recent papers report on measuring differential rotation in data that views the Sun as a star. Unlike using tracers at different latitudes to measure the differential rotation, disk-integrated light averages over many latitudes and can only work if the features both exist at a dominate latitude that changes with the solar cycle and they persist long enough to affect the measured rotation rate. Bertello, Pevtsov, and Pietarila (2012, ApJ 761, pg 11) use disk-integrated Ca II K-line data from the SOLIS/ISS instrument to show that a change in rotation rate is clearly visible at the beginning of the current solar cycle in the disk-integrated K-line. Scargle, Keil, and Worden (2013, ApJ in press, arXiv:1303.6303) use the Sacramento Peak K-line series to look at the last current and previous three cycles with fairly strong evidence that the differential rotation is visible in cycle 22, but much harder to see in cycles 21 and 23. In order to understand the differences in the three cycles we report on solar differential rotation measurements in both the Sacramento Peak disk-integrated, Ca II K spectral time series (1977-2012) and full-disk, Ca II K spectroheliogram time series (1977-2002) observed at the Evans Solar Facility. The former data set is the same as used by Scargle et al (2013) and averages about 2-3 measurements per week. For the disk-integrated spectra, we use two interpolation schemes to fill in missing days (regression and singular value decomposition with proxy data sets) and use two methods (power spectra and autocorrelation) to find the rotation rates. We find a clear signature of solar differential rotation for solar cycle 21 and 22 and a partial signature for cycle 23. We test this result by measuring differential rotation using the Ca II K spectroheliograms using phase analysis between longitudinal bands. We have also explored the image features that lead to changes in the disk-integrated spectrum's signal-to-noise. The data analyzed in this

  2. Hot chemistry in the diffuse medium: spectral signature in the H2 rotational lines

    NASA Astrophysics Data System (ADS)

    Verstraete, L.; Falgarone, E.; Pineau des Forets, G.; Flower, D.; Puget, J. L.

    1999-03-01

    Most of the diffuse interstellar medium is cold, but it must harbor pockets of hot gas to explain the large observed abundances of molecules like CH+ and HCO+. Because they dissipate locally large amounts of kinetic energy, MHD shocks and coherent vortices in turbulence can drive endothermic chemical reactions or reactions with large activation barriers. We predict the spectroscopic signatures in the H2 rotational lines of MHD shocks and vortices and compare them to those observed with the ISO-SWS along a line of sight through the Galaxy which samples 20 magnitudes of mostly diffuse gas.

  3. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    NASA Technical Reports Server (NTRS)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  4. Line strength variations in gamma-ray bursts GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, C.; Fenimore, E. E.; Murakami, T.; Yoshida, A.; Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One (previously unreported) interval shows a single prominent line feature at about 20 keV; a second, corresponding to the interval reported by Murakami et al. (1988), shows two line features at 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B around 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits of 45-180 sec on the rotation period P.

  5. An Accurate and Complete Empirical Line List for Water Vapor Between 5850 and 7920 CM-1

    NASA Astrophysics Data System (ADS)

    Mikhailenko, Semen; Mondelain, Didier; Kassi, Samir; Campargue, Alain

    2014-06-01

    An empirical line list has been constructed for "natural" water vapor at 296 K in the 5850 - 7920 wn region. It was obtained by gathering separate line lists recently published on the basis of spectra recorded by high sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) of natural water, complemented with literature data for the strongest lines. The list includes 38318 transitions of four major water isotopologues (H_216O, H_218O, H_217O and HD16O) with an intensity cut-off of 1x10-29 cm/molecule at 296 K. The list is made mostly complete over the whole spectral region by including a large number of weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD17O lists in the same region for transitions with intensities larger than 1x10-29 cm/molecule. The HD18O and HD17O lists (1972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40290 transitions) for water including the contribution of the six major isotopologues will be adopted for the next edition of the GEISA database in the region. The advantages and drawbacks of our list are discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. The direct comparison of the CRDS spectra to simulations based on the HITRAN list has revealed some insufficiencies which could easily be corrected: missing HDO lines, duplicated lines, inaccurate line positions or line intensities from variational calculations.

  6. An accurate and complete empirical line list for water vapor between 5850 and 7920 cm-1

    NASA Astrophysics Data System (ADS)

    Mikhailenko, S. N.; Mondelain, D.; Kassi, S.; Campargue, A.

    2014-06-01

    An empirical line list has been constructed for “natural” water vapor at 296 K in the 5850-7920 cm-1 region. It was obtained by gathering separate line lists recently published on the basis of spectra recorded by high sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) of natural water, complemented with literature data for the strongest lines. The list includes 38,318 transitions of four major water isotopologues (H216O, H218O, H217O and HD16O) with an intensity cut-off of 1×10-29 cm/molecule at 296 K. The list is made mostly complete over the whole spectral region by including a large number of weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD17O lists in the same region for transitions with intensities larger than 1×10-29 cm/molecule. The HD18O and HD17O lists (1972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40,290 transitions) for water including the contribution of the six major isotopologues will be adopted for the next edition of the GEISA database in the region. The advantages and drawbacks of our list are discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. The direct comparison of the CRDS spectra to simulations based on the HITRAN list has revealed some insufficiencies which could easily be corrected: missing HDO lines, duplicated lines, inaccurate line positions or line intensities from variational calculations.

  7. Line strength and self-broadening coefficient of the pure rotational S(1) quadrupole line in H2

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; Sirota, J. Marcos

    1994-01-01

    The absolute intensity, S(sub 1), and self-broadening coefficient, gamma(sub L), for H2 S(sub zero)(1) pure rotational line at 17.0348 micrometers (587.032 cm(exp -1)) have been measured for the first time using a tunable diode laser spectrometer with a resolution of approximately 1 x 10(exp -3) cm(exp -1). By fitting a Galatry line shape convolved with a 1 x 10(exp -3) cm(exp -1) Gaussian instrument profile to absorption profiles, for H2 pressures ranging from 0.34 to 1.30 atm, values of s(sub 1) = (7.0 +/- 0.4) x 10(exp -8) cm(exp -2) atm(exp -1) and gamma(sub L) = (1.73 +/- 0.12) x 10(exp -3) cm(exp -1) atm(exp -1) were obtained.

  8. Children Can Accurately Monitor and Control Their Number-Line Estimation Performance

    ERIC Educational Resources Information Center

    Wall, Jenna L.; Thompson, Clarissa A.; Dunlosky, John; Merriman, William E.

    2016-01-01

    Accurate monitoring and control are essential for effective self-regulated learning. These metacognitive abilities may be particularly important for developing math skills, such as when children are deciding whether a math task is difficult or whether they made a mistake on a particular item. The present experiments investigate children's ability…

  9. Intraoperative measurements of femoral anterior tangent (FAT) line for determining the rotational alignment of femoral component of total knee arthroplasty.

    PubMed

    Watanabe, Hiroki; Gejo, Ryuichi; Tokunaga, Ayano; Hirano, Norikazu; Kimura, Tomoatsu

    2013-12-01

    Previously, we reported using CT images that the anterior surface of the femur immediately proximal to the trochlea and its tangent line (femoral anterior tangent line; FAT line) could be used as a good index of the femoral rotation. In this study, we developed a jig that allowed us to measure the FAT line during surgery, and we examine the relation between preoperative and intraoperative measurement values. The results indicated that the average intraoperative measurement value of the 'surgical' FAT line was 9.8° ± 3.2° internally rotated using surgical transepicondylar axis reference. This value significantly correlated to preoperative FAT line/clinical transepicondylar axis angle. These findings demonstrated that FAT line is a useful index for appropriate rotational alignment of femoral component, both before and during TKA.

  10. OBSERVATIONAL PROPERTIES OF ROTATIONALLY EXCITED MOLECULAR HYDROGEN IN TRANSLUCENT LINES OF SIGHT

    SciTech Connect

    Jensen, Adam G.; Sonneborn, George; Snow, Theodore P.; Rachford, Brian L. E-mail: George.Sonneborn@nasa.go E-mail: rachf7ac@erau.ed

    2010-03-10

    The Far Ultraviolet Spectroscopic Explorer (FUSE) has allowed precise determinations of the column densities of molecular hydrogen (H{sub 2}) in Galactic lines of sight with a wide range of pathlengths and extinction properties. However, survey studies of lines of sight with greater extinction have been mostly restricted to the low-J states (lower total angular momentum) in which most molecular hydrogen is observed. This paper presents a survey of column densities for the molecular hydrogen in states of greater rotational excitation (J >= 2) in Galactic lines of sight with log N(H{sub 2}) {approx}> 20. This study is comprehensive through the highest excited state detectable in each line of sight. J = 5 is observed in every line of sight, and we detect J = 7 in four lines of sight, J = 8 in one line of sight, and vibrationally excited H{sub 2} in two lines of sight. We compared the apparent b-values and velocity offsets of the higher-J states relative to the dominant low-J states and we found no evidence of any trends that might provide insight into the formation of higher-J H{sub 2}, although these results are the most affected by the limits of the FUSE resolution. We also derive excitation temperatures based on the column densities of the different states. We confirm that at least two distinct temperatures are necessary to adequately describe these lines of sight, and that more temperatures are probably necessary. Total H{sub 2} column density is known to be correlated with other molecules; we explore if correlations vary as a function of J for several molecules, most importantly CH and CH{sup +}. Finally, we briefly discuss interpretations of selected lines of sight by comparing them to models computed using the Meudon PDR code.

  11. Propagation speed of rotation signals for field lines undergoing magnetic reconnection

    SciTech Connect

    Lapenta, Giovanni; Goldman, Martin; Newman, David; Markidis, Stefano

    2013-10-15

    Reconnection is associated with two bending of the magnetic field lines. Considering the usual plane of a 2D reconnection simulation, the first bending is in-plane and produces the needed topological changes by bringing oppositely directed filed lines in proximity. The second is typical of fast reconnection and is out of plane, leading to the formation of the Hall magnetic field. This second rotation has recently been observed to proceed at superAlfvénic speeds and to carry substantial energy fluxes (Shay et al., Phys. Rev. Lett. 107, 065001 (2011)). We revisit these rotations with a new diagnostics based on dispersing a multitude of virtual probes into a kinetic simulation, akin the approach of multi spacecraft missions. The results of the new diagnostics are compared with the theory of characteristics applied to the two fluid model. The comparison of virtual probes and the method of characteristics confirm the findings relative to the out of plane rotation and uncover the existence of two families of characteristics. Both are observed in the simulation. The early stage of reconnection develops on the slower compressional branch and the later faster phase develops on the faster torsional branch. The superAlfvénic signal is only relevant in the second phase.

  12. ExoMol molecular line lists - XIV. The rotation-vibration spectrum of hot SO2

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Tennyson, Jonathan; Yurchenko, Sergei N.; Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.; Clausen, Sønnik; Fateev, Alexander

    2016-07-01

    Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion 32S16O2 vibration-rotation transitions computed using an empirically adjusted potential energy surface and an ab initio dipole moment surface. The list gives complete coverage up to 8000 cm-1 (wavelengths longer than 1.25 μm) for temperatures below 2000 K. Infrared absorption cross-sections are recorded at 300 and 500 C are used to validated the resulting ExoAmes line list. The line list is made available in electronic form as supplementary data to this article and at www.exomol.com.

  13. ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Al-Refaie, Ahmed F.; Clausen, Sønnik; Fateev, Alexander

    2016-11-01

    Sulphur trioxide (SO3) is a trace species in the atmospheres of the Earth and Venus, as well as being an industrial product and an environmental pollutant. A variational line list for 32S16O3, named UYT2, is presented containing 21 billion vibration-rotation transitions. UYT2 can be used to model infrared spectra of SO3 at wavelengths longwards of 2 μm (ν < 5000 cm-1) for temperatures up to 800 K. Infrared absorption cross-sections recorded at 300 and 500 C are used to validate the UYT2 line list. The intensities in UYT2 are scaled to match the measured cross-sections. The line list is made available in electronic form as supplementary data to this article and at www.exomol.com.

  14. Fast, Accurate and Shift-Varying Line Projections for Iterative Reconstruction Using the GPU

    PubMed Central

    Pratx, Guillem; Chinn, Garry; Olcott, Peter D.; Levin, Craig S.

    2013-01-01

    List-mode processing provides an efficient way to deal with sparse projections in iterative image reconstruction for emission tomography. An issue often reported is the tremendous amount of computation required by such algorithm. Each recorded event requires several back- and forward line projections. We investigated the use of the programmable graphics processing unit (GPU) to accelerate the line-projection operations and implement fully-3D list-mode ordered-subsets expectation-maximization for positron emission tomography (PET). We designed a reconstruction approach that incorporates resolution kernels, which model the spatially-varying physical processes associated with photon emission, transport and detection. Our development is particularly suitable for applications where the projection data is sparse, such as high-resolution, dynamic, and time-of-flight PET reconstruction. The GPU approach runs more than 50 times faster than an equivalent CPU implementation while image quality and accuracy are virtually identical. This paper describes in details how the GPU can be used to accelerate the line projection operations, even when the lines-of-response have arbitrary endpoint locations and shift-varying resolution kernels are used. A quantitative evaluation is included to validate the correctness of this new approach. PMID:19244015

  15. Accurate Intensity Velocity Phase Difference in the Potassium Resonance Line Obtained with VAMOS

    NASA Astrophysics Data System (ADS)

    Magrì, M.; Oliviero, M.; Severino, G.

    2008-01-01

    We present new results about the phase difference between the intensity and velocity fluctuations of the solar photosphere obtained with the Velocity And Magnetic Observations of the Sun (VAMOS) instrument, which uses the magneto-optical filter (MOF) technique. Before this observing run, we applied the calibration method described in Magrì, Oliviero, and Severino ( Solar Phys. 232, 159, 2005) to reduce the instrumental cross-talk which was present in previous VAMOS data. The quality of this calibration, which can be easily applied to any MOF-based instrument, has been confirmed by comparing with the MOF transmission-profile measurements obtained with a diode laser system. Finally, we discuss the new VAMOS phase-difference value in relation to data obtained by other authors in the same potassium spectral line and in other lines that can be used to study nonadiabatic effects of solar global oscillations.

  16. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Astrophysics Data System (ADS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-08-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  17. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  18. Accurate Characterization of the Peptide Linkage in the Gas Phase: a Joint Quantum-Chemical and Rotational Spectroscopy Study of the Glycine Dipeptide Analogue

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Largo, Laura; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Accurate structures of aminoacids in the gas phase have been obtained by joint microwave and quantum-chemical investigations. However, the structure and conformational behavior of α-aminoacids once incorporated into peptide chains are completely different and have not yet been characterized with the same accuracy. To fill this gap, we present here an accurate characterization of the simplest dipeptide analogue (N-acetylglycinamide) involving peptidic bonds. State-of-the-art quantum-chemical computations are complemented by a comprehensive study of the rotational spectrum using a combination of Fourier transform microwave spectroscopy with laser ablation. The coexistence of the C_7 and C_5 conformers has been proved and energetically as well as spectroscopically characterized. This joint theoretical-experimental investigation demonstrated the feasibility of obtaining accurate structures for flexible small biomolecules, thus paving the route to the elucidation of the inherent behavior of peptides.

  19. Computer program for determining rotational line intensity factors for diatomic molecules

    NASA Technical Reports Server (NTRS)

    Whiting, E. E.

    1973-01-01

    A FORTRAN IV computer program, that provides a new research tool for determining reliable rotational line intensity factors (also known as Honl-London factors), for most electric and magnetic dipole allowed diatomic transitions, is described in detail. This users manual includes instructions for preparing the input data, a program listing, detailed flow charts, and three sample cases. The program is applicable to spin-allowed dipole transitions with either or both states intermediate between Hund's case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions with either or both states intermediate between Hund's case (c) and Hund's case (b) coupling.

  20. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.

  1. Highly Accurate Semi-Empirical IR Line Lists of Asymmetric SO2 Isotopologues: SO18O and SO17O

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D.; Lee, T. J.

    2015-12-01

    Atmosphere models and simulations of Venus, Mars, and Exo-planets will greatly benefit from complete and accurate Infrared spectra data of important molecules such as SO2 and CO2. Currently, high resolution spectra data for SO2 is very limited at 296K and mainly for the primary isotopologue 626. It cannot effectively support the observed data analysis and simulations. Recently we published a semi-empirically refined potential energy surface, denoted Ames-1, and Ames-296K IR line lists for SO2 626 and a few symmetric isotopologues including 646, 636, 666 and 828. The accuracy of line positions is around 0.01 - 0.03 cm-1 for most transitions. For intensities, most deviations are less than 5-15%. Now we have carried out new potential energy surface refinements by including latest experimental data and those of isotopologues. On the newly fitted surface, for the first time we have computed 296K line lists for the two most abundant asymmetric isotopologues, SO2 628 and SO2 627. We will present the spectra simulations of SO2 628 and SO2 627, and compare it with latest high resolution experimental spectroscopy of SO2 628. A composite "natural" line list at 296K is also available with terrestial abundances. These line lists will be available to download at http://huang.seti.org.

  2. Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter

    NASA Astrophysics Data System (ADS)

    Hummel, W.; Vrancken, M.

    2000-07-01

    We improve the theory of Horne & Marsh on shear broadening in accretion disks of CVs and adapt it to Be star circumstellar disks. Stellar obscuration and shell absorption are taken into account in detail. It is shown that shell absorption is already present in those emission lines where the central depression does not drop below the stellar continuum. The model profiles are fitted to observed symmetric Hα net emission lines with low equivalent width. The derived disk radii range from Rd = 5.3 R_* to Rd = 18 R_* and the surface emissivity varies as ~ R-m with 1.6 < m < 3.5. The comparison between model profiles of rotational parameter j>(1)/(2) with the optically thick Hα profile of HR 5440 rules out the range of j>(1)/(2). This can be understood by the lack of velocity shear in the outer disk regions. We conclude that Keplerian rotation (j=(1)/(2)) is a valid approximation. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the Observatoire de Haute-Provence (OHP), CNRS, France.

  3. Rotational Sweepback of Magnetic Field Lines in Geometrical Models of Pulsar Radio Emission

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Harding, Alice K.

    2004-01-01

    We study the rotational distortions of the vacuum dipole magnetic field in the context of geometrical models of the radio emission from pulsars. We find that at low altitudes the rotation deflects the local direction of the magnetic field by at most an angle of the order of r(sup 2 sub n), where r(sub n) = r/R(sub lc), r is the radial distance and R(sub lc) is the light cylinder radius. To the lowest (i.e. second) order in r(sub n) this distortion is symmetrical with respect to the plane containing the dipole axis and the rotation axis ((Omega, mu) plane). The lowest order distortion which is asymmetrical with respect to the (Omega, mu) plane is third order in r(sub n). These results confirm the common assumption that the rotational sweepback has negligible effect on the position angle (PA) curve. We show, however, that the influence of the sweep back on the outer boundary of the open field line region (open volume) is a much larger effect, of the order of r(sup 1/2 sub n). The open volume is shifted backwards with respect to the rotation direction by an angle delta(sub o nu) approx. 0.2 sin alpha r(sup 1/2 sub n) where alpha is the dipole inclination with respect to the rotation axis. The associated phase shift of the pulse profile Delta phi(sub o nu) approx. 0.2 r(sup 1/2 sub n) can easily exceed the shift due to combined effects of aberration and propagation time delays (approx. 2r(sub n)). This strongly affects the misalignment of the center of the PA curve and the center of the pulse profile, thereby modifying the delay radius relation. Contrary to intuition, the effect of sweepback dominates over other effects when emission occurs at low altitudes. For r(sub n) < or approx. 3 x 10(exp -3) the shift becomes negative, i.e. the center of the position angle curve precedes the profile center. With the sweepback effect included, the modified delay-radius relation predicts larger emission radii and is in much better agreement with the other methods of determining r

  4. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    SciTech Connect

    Scargle, Jeffrey D.; Worden, Simon P.; Keil, Stephen L.

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  5. Accurate spectroscopy of polycyclic aromatic compounds: from the rotational spectrum of fluoren-9-one in the millimeter wave region to its infrared spectrum.

    PubMed

    Maris, Assimo; Calabrese, Camilla; Melandri, Sonia; Blanco, Susana

    2015-01-14

    The rotational spectrum of fluoren-9-one, a small oxygenated polycyclic aromatic hydrocarbon, has been recorded and assigned in the 52-74.4 GHz region. The determined small negative value of the inertia defect (-0.3 u Å(2)) has been explained in terms of vibrational-rotational coupling constants calculated at the B3LYP/cc-pVTZ level of theory. Vibrational anharmonic analysis together with second-order vibrational perturbation theory approximation was applied both to fluorenone and its reduced form, fluorene, to predict the mid- and near-infrared spectra. The data presented here give precise indication on the fluorenone ground state structure, allow for an accurate spectral characterization in the millimeter wave and infrared regions, and hopefully will facilitate extensive radio astronomical searches with large radio telescopes.

  6. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR⋆

    PubMed Central

    Parikka, A.; Habart, E.; Bernard-Salas, J.; Goicoechea, J. R.; Abergel, A.; Pilleri, P.; Dartois, E.; Joblin, C.; Gerin, M.; Godard, B.

    2016-01-01

    Context The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500–1000 K) in photodissociation regions with high incident FUV radiation field. The excitation may also originate in dense gas (> 105 cm−3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, a tracer of dense and warm gas, and formation pumping contributes to CH+ excitation. Aims Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar in order to establish their physical origin and main formation and excitation mechanisms. Methods We present spatially sampled maps of the CH+ J=3-2 transition at 119.8 µm and the OH Λ-doublet at 84 µm in the Orion Bar over an area of 110″×110″ with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas (high-J CO). We assess the spatial variation of CH+ J=2-1 velocity-resolved line profile at 1669 GHz with Herschel HIFI spectrometer observations. Results The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 µm emission coincides with a bright young object, proplyd

  7. An Empirical Approach to Obtaining Accurate Molecular Rotational Constants for Isotopically-Substituted Species from AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Carroll, P. Brandon; Blake, Geoffrey A.

    2013-06-01

    Recent advances in microwave spectroscopy, namely the development of broadband, chirped-pulse Fourier-transform microwave spectrometers, allow the acquisition of rotational spectra of isotopically-substituted species in natural abundance. The characterization and assignment of these spectra is of particular interest as it applies to astrochemical observations of such species in the interstellar medium. Here, we demonstrate an empirical method for determining rotational constants to aid in the initial assignment of such spectra using a combination of laboratory data and ab initio calculations. The result is an increase in the accuracy of these constants by as much as two orders of magnitude versus those resulting from simple structure optimizations. We have applied this method to a variety of species including diatomic molecules (e.g. HCl), large molecules with internal motion (e.g. CH_3COOH), ions (e.g. HCO^+), clusters (e.g. H_2O\\cdotH_2O), and long carbon chain molecules (e.g. HC_7N). We present the results of these analyses and comment on the applicability of this method to other systems.

  8. Rapid and accurate measurement of left ventricular function with a new second-harmonic fast-rotating transducer and semi-automated border detection.

    PubMed

    Krenning, Boudewijn J; Voormolen, Marco M; van Geuns, Robert-Jan; Vletter, W B; Lancée, Charles T; de Jong, Nico; Ten Cate, Folkert J; van der Steen, Anton F W; Roelandt, Jos R T C

    2006-07-01

    Measurement of left ventricular (LV) volume and function are the most common clinical referral questions to the echocardiography laboratory. A fast, practical, and accurate method would offer important advantages to obtain this important information. To validate a new practical method for rapid measurement of LV volume and function. We developed a continuous fast-rotating transducer, with second-harmonic capabilities, for three-dimensional echocardiography (3DE). Fifteen cardiac patients underwent both 3DE and magnetic resonance imaging (reference method) on the same day. 3DE image acquisition was performed during a 10-second breath-hold with a frame rate of 100 frames/sec and a rotational speed of 6 rotations/sec. The individual images were postprocessed with Matlab software using multibeat data fusion. Subsequently, with these images, 12 datasets per cardiac cycle were reconstructed, each comprising seven equidistant cross-sectional images for analysis in the new TomTec 4DLV analysis software, which uses a semi-automated border detection (ABD) algorithm. The ABD requires an average analysis time of 15 minutes per patient. A strong correlation was found between LV end-diastolic volume (r = 0.99; y = 0.95x - 1.14 ml; SEE = 6.5 ml), LV end-systolic volume (r = 0.96; y = 0.89x + 7.91 ml; SEE = 7.0 ml), and LV ejection fraction (r = 0.93; y = 0.69x + 13.36; SEE = 2.4%). Inter- and intraobserver agreement for all measurements was good. The fast-rotating transducer with new ABD software is a dedicated tool for rapid and accurate analysis of LV volume and function.

  9. Exact vibrational energies of non-rotating H 2O and D 2O using an accurate ab initio potential

    NASA Astrophysics Data System (ADS)

    Bowman, Joel M.; Wierzbicki, Andrzej; Zúñiga, Jose

    1988-09-01

    Variationally exact vibrational energies are reported for non-rotating H 2O and D 2O using the recent CCSDT-1 ab initio potential of Bartlett, Cole, Purvis, Ermler, Hsieh and Shavitt as fit to an SPF quartic force field by Ermler. Twenty vibrational states are calculated for H 2O and D 2O and compared with experimental data. The agreement with experiment is fairly good; however, when the second-order bending force constant is reduced slightly, the agreement with experiment improves significantly. For eighteen states of H 2O the largest error is 15 cm -1 and the average absolute error is 6 cm -1. For eight states of D 2O the largest error is 7 cm -1 and the average absolute error is 4 cm -1.

  10. Performance of phased rotation, conformation and translation function: accurate protein model building with tripeptidic and tetrapeptidic fragments.

    PubMed

    Pavelcík, Frantisek; Václavík, Jirí

    2010-09-01

    The automatic building of protein structures with tripeptidic and tetrapeptidic fragments was investigated. The oligopeptidic conformers were positioned in the electron-density map by a phased rotation, conformation and translation function and refined by a real-space refinement. The number of successfully located fragments lay within the interval 75-95% depending on the resolution and phase quality. The overlaps of partially located fragments were analyzed. The correctly positioned fragments were connected into chains. Chains formed in this way were extended directly into the electron density and a sequence was assigned. In the initial stage of the model building the number of located fragments was between 60% and 95%, but this number could be increased by several cycles of reciprocal-space refinement and automatic model rebuilding. A nearly complete structure can be obtained on the condition that the resolution is reasonable. Computer graphics will only be needed for a final check and small corrections.

  11. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A

    2017-02-14

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of (16)O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm(-1) is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  12. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands

    NASA Astrophysics Data System (ADS)

    Tyuterev, Vladimir G.; Kochanov, Roman V.; Tashkun, Sergey A.

    2017-02-01

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to Δ V = 6. A particular challenge was a correct description of the B-type bands (even Δ V3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μ m range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm-1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  13. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  14. Effect of collisional lines broadening and calibration functions in the pure rotational Raman lidar technique

    NASA Astrophysics Data System (ADS)

    Gerasimov, Vladislav V.; Zuev, Vladimir V.

    2016-10-01

    We present and examine two three-coefficient calibration functions to be used for the tropospheric temperature retrievals via the pure rotational Raman (PRR) lidar technique. These functions are the special cases of the general analytical calibration function in the PRR lidar technique. The general function special cases take into account the collisional (pressure) broadening of all individual atmospheric N2 and O2 PRR lines in varying degrees. We apply these two special cases to real lidar remote sensing data and compare nighttime temperature profiles retrieved using these calibration functions to the profiles retrieved using other known ones. The absolute statistical uncertainties of temperature retrieval are also given in an analytical form. Lidar measurements data, obtained in Tomsk (56.48° N, 85.05° E, Western Siberia, Russia) using the IMCES PRR lidar at λ = 354.67 nm on 1 April 2015, were used for the tropospheric temperature retrievals (3-12 km).

  15. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations.

    PubMed

    Teale, Andrew M; Lutnæs, Ola B; Helgaker, Trygve; Tozer, David J; Gauss, Jürgen

    2013-01-14

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  16. Cyclotron line strength variations in gamma-ray burst GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, Carlo; Fenimore, Edward E.; Murakami, Toshio; Yoshida, Atsumasa; Lamb, D. Q.; Wang, John C. L.; Loredo, Thomas J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One interval shows a single prominent line feature at about 20 keV; a second, shows two line features at about 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B about 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits P = 45-180 sec on the rotation period P.

  17. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-01-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  18. Accurate and economical solution of the pressure-head form of Richards' equation by the method of lines

    NASA Astrophysics Data System (ADS)

    Tocci, Michael D.; Kelley, C. T.; Miller, Cass T.

    The pressure-head form of Richards' equation (RE) is difficult to solve accurately using standard time integration methods. For example, mass balance errors grow as the integration progresses unless very small time steps are taken. Further, RE may be solved for many problems more economically and robustly with variable-size time steps rather than with a constant time-step size, but variable step-size methods applied to date have relied upon empirical approaches to control step size, which do not explicitly control temporal truncation error of the solution. We show how a differential algebrain equation implementation of the method of lines can give solutions to RE that are accurate, have good mass balance properties, explicitly control temporal truncation error, and are more economical than standard approaches for a wide range of solution accuracy. We detail changes to a standard integrator, DASPK, that improves efficiency for the test problems considered, and we advocate the use of this approach for both RE and other problems involving subsurface flow and transport phenomena.

  19. First extragalactic detection of submillimeter CH rotational lines from the Herschel space observatory

    SciTech Connect

    Rangwala, Naseem; Maloney, Philip R.; Glenn, Jason; Kamenetzky, Julia; Wilson, Christine D.; Schirm, Maximilien R. P.; Spinoglio, Luigi; Pereira Santaella, Miguel

    2014-06-20

    We present the first extragalactic detections of several CH rotational transitions in the far-infrared in four nearby galaxies, NGC 1068, Arp 220, M82, and NGC 253, using the Herschel Space Observatory. The CH lines in all four galaxies are a factor of 2-4 brighter than the adjacent HCN and HCO{sup +} J = 6-5 lines (also detected in the same spectra). In the star-formation-dominated galaxies, M82, NGC 253, and Arp 220, the CH/CO abundance ratio is low (∼10{sup –5}), implying that the CH is primarily arising in diffuse and translucent gas where the chemistry is driven by UV radiation as found in the Milky Way interstellar matter. In NGC 1068, which has a luminous active galactic nucleus (AGN), the CH/CO ratio is an order of magnitude higher, suggesting that CH formation is driven by an X-ray-dominated region (XDR). Our XDR models show that both the CH and CO abundances in NGC 1068 can be explained by an XDR-driven chemistry for gas densities and molecular hydrogen column densities that are well constrained by the CO observations. We conclude that the CH/CO ratio may a good indicator of the presence of AGN in galaxies. We also discuss the feasibility of detecting CH in intermediate- to high-z galaxies with ALMA.

  20. An On-Line Algorithm for Measuring the Translational and Rotational Velocities of a Table Tennis Ball

    NASA Astrophysics Data System (ADS)

    Liu, Chunfang; Hayakawa, Yoshikazu; Nakashima, Akira

    This paper proposes an on-line method for estimating both translational and rotational velocities of a table tennis ball by using only a few consecutive frames of image data which are sensed by two high speed cameras. In order to estimate the translational velocity, three-dimensional (3D) position of the ball's center at each instant of camera frame is obtained, where the on-line method of reconstructing the 3D position from the two-dimensional (2D) image data of two cameras is proposed without the pattern matching process. The proposed method of estimating the rotational velocity belongs to the image registration methods, where in order to avoid the pattern matching process too, a rotation model of the ball is used to make an estimated image data from an image data sensed at the previous instant of camera frame and then the estimated image data are compared with the image data sensed at the next instant of camera frame to obtain the most plausible rotational velocity by using the least square and the conjugate gradient method. The effectiveness of the proposed method is shown by some experimental results in the case of a ball rotated by a rotation machine as well as in the case of a flying ball shot from a catapult machine.

  1. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    SciTech Connect

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina; Alonso, José Luis; Gauss, Jürgen

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.

  2. The Effect of Starspots on Accurate Radius Determination of the Low-Mass Double-Lined Eclipsing Binary Gu Boo

    NASA Astrophysics Data System (ADS)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B.

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. López-Morales & Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by López-Morales & Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, López-Morales & Ribas derived masses and radii accurate to sime2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of López-Morales & Ribas using models with and without spots. We derived a radius of the primary of 0.6329 ± 0.0026 R sun, 0.6413 ± 0.0049 R sun, and 0.6373 ± 0.0029 R sun from the CCD, photoelectric, and López-Morales & Ribas data, respectively. Each of these measurements agrees with the value reported by López-Morales & Ribas (R 1 = 0.623 ± 0.016 R sun) at the level of ≈2%. In addition, the spread in these values is ≈1%-2% from the mean. For the secondary, we derive radii of 0.6074 ± 0.0035 R sun, 0.5944 ± 0.0069 R sun, and 0.5976 ± 0.0059 R sun from the three respective data sets. The López-Morales & Ribas value is R 2 = 0.620 ± 0.020 R sun, which is ≈2%-3% larger than each of the three values we found. The spread in these values is ≈2% from the mean. The systematic difference between our three determinations of the secondary radius and that of López-Morales & Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the ≈2% level.

  3. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  4. Lighting the Dark Molecular Gas Using the Mid Infrared H2 Rotational Lines

    NASA Astrophysics Data System (ADS)

    Togi, Aditya; Smith, JD

    2014-06-01

    The knowledge of molecular gas distribution is necessary to understand star formation in galaxies. The molecular gas content of galaxies must be inferred using indirect tracers since H2 which forms a major component of molecular gas in galaxies is not observable under typical conditions of interstellar medium. Physical processes causing enhancement and reduction of these tracers can cause misleading estimates of the molecular gas content in galaxies. We have devised a new method to measure molecular gas mass using quadrupole rotational lines of H2 found in the mid infrared spectra of various types of galaxies. We apply our model to derive the amount of molecular gas even in low metallicity galaxies where indirect tracers are unable to estimate the dark molecular gas mass. Bigiel, F., Leroy, A., Walter, F., et al. 2008, The Astronomical Journal, 136, 2846 (2008) Solomon, P. M., Rivolo, A. R., Barett, J., and Yahil, A. The Astrophysical Journal, 319, 730 (1987) Wolfire, M. G., Hollenbach, D., and McKee, C. F. The Astrophysical Journal, 716, 1191 (2010)

  5. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  6. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  7. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  8. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  9. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  10. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  11. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  12. Changes in ocular torsion position produced by a single visual line rotating around the line of sight--visual "entrainment" of ocular torsion.

    PubMed

    Mezey, Laura E; Curthoys, Ian S; Burgess, Ann M; Goonetilleke, Samanthi C; MacDougall, Hamish G

    2004-02-01

    A large- or full-field visual stimulus slowly rotating around the naso-occipital axis of an observer causes both eyes to tort, and many of the factors controlling this optokinetic torsional response have been identified. The present study reports that a single line rotating about the line of sight can cause both eyes to tort in the same direction as the stimulus but with a low gain. We have used the term 'entrainment' to describe this torsional response. This paper reports some of the factors associated with entrainment. Video measures of 3-d eye position were recorded while the subject made settings of a simple visual line to subjective visual horizontal (SVH) and vertical (SVV) using the standard method-of-adjustment paradigm. The visual line was composed of 11 light-emitting diodes; the line subtended a visual angle of 19 degrees, and moved at a constant speed of 4.8 degrees /s. Settings were made in an otherwise darkened room, and also in the light. Subjects were required to maintain fixation of the central LED while making settings from starting positions 10 or 20 degrees either side of gravitational horizontal or vertical. We show that entrainment of ocular torsion by the single moving visual line is low in gain but a reliable and repeatable effect and that (1) there are considerable individual differences between subjects but within-subject consistency, (2) all subjects show larger and more consistent torsional entrainment for lines moving to SVH than lines moving to SVV, (3) the strongest entrainment generally occurs within about 10 degrees of the target position, and (4) entrainment is also present in the light, though with slightly reduced gain.

  13. A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liang, Chunlei

    2015-08-01

    This paper presents a simple, efficient, and high-order accurate sliding-mesh interface approach to the spectral difference (SD) method. We demonstrate the approach by solving the two-dimensional compressible Navier-Stokes equations on quadrilateral grids. This approach is an extension of the straight mortar method originally designed for stationary domains [7,8]. Our sliding method creates curved dynamic mortars on sliding-mesh interfaces to couple rotating and stationary domains. On the nonconforming sliding-mesh interfaces, the related variables are first projected from cell faces to mortars to compute common fluxes, and then the common fluxes are projected back from the mortars to the cell faces to ensure conservation. To verify the spatial order of accuracy of the sliding-mesh spectral difference (SSD) method, both inviscid and viscous flow cases are tested. It is shown that the SSD method preserves the high-order accuracy of the SD method. Meanwhile, the SSD method is found to be very efficient in terms of computational cost. This novel sliding-mesh interface method is very suitable for parallel processing with domain decomposition. It can be applied to a wide range of problems, such as the hydrodynamics of marine propellers, the aerodynamics of rotorcraft, wind turbines, and oscillating wing power generators, etc.

  14. ExoMol molecular line lists - XVI. The rotation-vibration spectrum of hot H2S

    NASA Astrophysics Data System (ADS)

    Azzam, Ala'a. A. A.; Tennyson, Jonathan; Yurchenko, Sergei N.; Naumenko, Olga V.

    2016-08-01

    This work presents the AYT2 line list: a comprehensive list of 115 million 1H232S vibration-rotation transitions computed using an empirically adjusted potential energy surface and an ab initio dipole moment surface. The line list gives complete coverage up to 11 000 cm-1 (wavelengths longer than 0.91 μm) for temperatures up to 2000 K. Room temperature spectra can be simulated up to 20 000 cm-1 (0.5 μm) but the predictions at visible wavelengths are less reliable. AYT2 is made available in electronic form as supplementary data to this paper at www.exomol.com.

  15. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  16. In-line rotating torque sensor with on-board amplifier

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A rotating torque sensor apparatus and method for measuring small torques comprising a shaft, a platform having a circuit board and a first moment arm attached to the shaft, a rotatable wheel coaxial with the shaft and having a second moment arm spaced apart from the first moment arm with a load cell therebetween for generating an electric signal as the torque is applied to the shaft and transferred through the moment arms to the load cell. The electrical signal is conducted from the load cell to the circuit board for filtering and amplification before being extracted from the torque assembly through a slip ring.

  17. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study.

    PubMed

    Liow, Ming Han Lincoln; Xia, Zhan; Wong, Merng Koon; Tay, Keng Jin; Yeo, Seng Jin; Chin, Pak Lin

    2014-12-01

    Robot-assisted Total Knee Arthroplasty (TKA) improves the accuracy and precision of component implantation and mechanical axis (MA) alignment. Joint-line restoration in robot-assisted TKA is not widely described and joint-line deviation of>5mm results in mid-flexion instability and poor outcomes. We prospectively randomised 60 patients into two groups: 31 patients (robot-assisted), 29 patients (conventional). No MA outliers (>±3° from neutral) or notching was noted in the robot-assisted group as compared with 19.4% (P=0.049) and 10.3% (P=0.238) respectively in the conventional group. The robot-assisted group had 3.23% joint-line outliers (>5mm) as compared to 20.6% in the conventional group (P=0.049). Robot-assisted TKA produces similar short-term clinical outcomes when compared to conventional methods with reduction of MA alignment and joint-line deviation outliers.

  18. Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Hewett, Robert; Calvet, Nuria

    1994-01-01

    We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.

  19. Testing of the line element of special relativity with rotating systems

    NASA Technical Reports Server (NTRS)

    Vargas, Jose G.; Torr, Douglas G.

    1989-01-01

    Experiments with rotating systems are examined from the point of view of a test theory of the Lorentz transformations (LTs), permitting, in principle, the verification of the simultaneity relation. The significance of the experiments involved in the testing of the LTs can be determined using Robertson's test theory (RTT). A revised RTT is discussed, and attention is given to the Ehrenfest paradox in connection with the testing of the LTs.

  20. Highly Accurate Infrared Line Lists of SO2 Isotopologues Computed for Atmospheric Modeling on Venus and Exoplanets

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D.; Lee, T. J.

    2014-12-01

    Last year we reported a semi-empirical 32S16O2 spectroscopic line list (denoted Ames-296K) for its atmospheric characterization in Venus and other Exoplanetary environments. In order to facilitate the Sulfur isotopic ratio and Sulfur chemistry model determination, now we present Ames-296K line lists for both 626 (upgraded) and other 4 symmetric isotopologues: 636, 646, 666 and 828. The line lists are computed on an ab initio potential energy surface refined with most reliable high resolution experimental data, using a high quality CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface. The most valuable part of our approach is to provide "truly reliable" predictions (and alternatives) for those unknown or hard-to-measure/analyze spectra. This strategy has guaranteed the lists are the best available alternative for those wide spectra region missing from spectroscopic databases such as HITRAN and GEISA, where only very limited data exist for 626/646 and no Infrared data at all for 636/666 or other minor isotopologues. Our general line position accuracy up to 5000 cm-1 is 0.01 - 0.02 cm-1 or better. Most transition intensity deviations are less than 5%, compare to experimentally measured quantities. Note that we have solved a convergence issue and further improved the quality and completeness of the main isotopologue 626 list at 296K. We will compare the lists to available models in CDMS/JPL/HITRAN and discuss the future mutually beneficial interactions between theoretical and experimental efforts.

  1. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  2. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for 32S16O2 up to 8000 cm-1

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-03-01

    A purely ab initio potential energy surface (PES) was refined with selected 32S16O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (σRMS) for all J = 0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm-1. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm-1. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%-90%. Our predictions for 34S16O2 band origins, higher energy 32S16O2 band origins and missing 32S16O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict 32/34S16O2 band origins below 5500 cm-1 with 0.01-0.03 cm-1 uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  3. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  4. The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds

    NASA Astrophysics Data System (ADS)

    Gayley, K. G.; Onifer, A. J.

    2003-01-01

    Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.

  5. A model for developing job rotation schedules that eliminate sequential high workloads and minimize between-worker variability in cumulative daily workloads: Application to automotive assembly lines.

    PubMed

    Yoon, Sang-Young; Ko, Jeonghan; Jung, Myung-Chul

    2016-07-01

    The aim of study is to suggest a job rotation schedule by developing a mathematical model in order to reduce cumulative workload from the successive use of the same body region. Workload assessment using rapid entire body assessment (REBA) was performed for the model in three automotive assembly lines of chassis, trim, and finishing to identify which body part exposed to relatively high workloads at workstations. The workloads were incorporated to the model to develop a job rotation schedule. The proposed schedules prevent the exposure to high workloads successively on the same body region and minimized between-worker variance in cumulative daily workload. Whereas some of workers were successively assigned to high workload workstation under no job rotation and serial job rotation. This model would help to reduce the potential for work-related musculoskeletal disorders (WMSDs) without additional cost for engineering work, although it may need more computational time and relative complex job rotation sequences.

  6. Line Shifts in Rotational Spectra of Polyatomic Chiral Molecules Caused by the Parity Violating Electroweak Interaction

    NASA Astrophysics Data System (ADS)

    Stohner, J.; Quack, M.

    2009-06-01

    Are findings in high-energy physics of any importance in molecular spectroscopy ? The answer is clearly `yes'. Energies of enantiomers were considered as exactly equal in an achiral environment, e.g. the gas phase. Today, however, it is well known that this is not valid. The violation of mirror-image symmetry (suggested theoretically and confirmed experimentally in 1956/57) was established in the field of nuclear, high-energy, and atomic physics since then, and it is also the cause for a non-zero energy difference between enantiomers. We expect today that the violation of mirror-image symmetry (parity violation) influences chemistry of chiral molecules as well as their spectroscopy. Progress has been made in the quantitative theoretical prediction of possible spectroscopic signatures of molecular parity violation. The experimental confirmation of parity violation in chiral molecules is, however, still open. Theoretical studies are helpful for the planning and important for a detailed analysis of rovibrational and tunneling spectra of chiral molecules. We report results on frequency shifts in rotational, vibrational and tunneling spectra of some selected chiral molecules which are studied in our group. If time permits, we shall also discuss critically some recent claims of experimental observations of molecular parity violation in condensed phase systems. T. D. Lee, C. N. Yang, Phys. Rev., 104, 254 (1956) C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson, Phys. Rev., 105, 1413 (1957) M. Quack, Angew. Chem. Intl. Ed., 28, 571 (1989) Angew. Chem. Intl. Ed., 41, 4618 (2002) M. Quack, J. Stohner, Chimia, 59, 530 (2005) M. Quack, J. Stohner, M. Willeke, Ann Rev. Phys. Chem. 59, 741 (2008) M. Quack, J. Stohner, Phys. Rev. Lett., 84, 3807 (2000) M. Quack, J. Stohner, J. Chem. Phys., 119, 11228 (2003) J. Stohner, Int. J. Mass Spectrometry 233, 385 (2004) M. Gottselig, M. Quack, J. Stohner, M. Willeke, Int. J. Mass Spectrometry 233, 373 (2004) R. Berger, G

  7. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  8. The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Vlemmings, W. H. T.; Marigo, P.; Sloan, G. C.; Decin, L.; Feast, M. W.; Goldman, S. R.; Justtanont, K.; Kerschbaum, F.; Matsuura, M.; McDonald, I.; Olofsson, H.; Sahai, R.; van Loon, J. Th.; Wood, P. R.; Zijlstra, A. A.; Bernard-Salas, J.; Boyer, M. L.; Guzman-Ramirez, L.; Jones, O. C.; Lagadec, E.; Meixner, M.; Rawlings, M. G.; Srinivasan, S.

    2016-11-01

    Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC). Methods: The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models.

  9. PROJECT VeSElkA: ANALYSIS OF BALMER LINE PROFILES OF SLOWLY ROTATING CHEMICALLY PECULIAR STARS

    SciTech Connect

    Khalack, V.; LeBlanc, F.

    2015-07-15

    We present results for the estimation of gravity, effective temperature, and radial velocity of poorly studied chemically peculiar stars recently observed with the spectropolarimeter Echelle SpectroPolarimetric Device for Observations of Stars at the Canada–France–Hawaii Telescope in the frame of the Vertical Stratification of Element Abundances project. The effective temperature and surface gravity values are determined for the very first time for four of the stars from our sample (HD 23878, HD 83373, HD 95608, and HD 164584). Grids of stellar atmosphere models with the corresponding fluxes have been calculated using version 15 of the PHOENIX code for effective temperatures in the range of 5000–15,000 K, for the logarithm of surface gravities in the range of 3.0–4.5 and for the metallicities from −1.0 to +1.5. We used these fluxes to fit the Balmer line profiles employing the code FITSB2 that produces estimates of the effective temperature, gravity, and radial velocity for each star. When possible, our results are compared to those previously published. The physical characteristics of 16 program stars are discussed with the future aim to study the abundance anomalies of chemical species and the possible vertical abundance stratification in their stellar atmosphere.

  10. Spatial distribution of far-infrared rotationally excited CH+ and OH emission lines in the Orion Bar photodissociation region

    NASA Astrophysics Data System (ADS)

    Parikka, A.; Habart, E.; Bernard-Salas, J.; Goicoechea, J. R.; Abergel, A.; Pilleri, P.; Dartois, E.; Joblin, C.; Gerin, M.; Godard, B.

    2017-02-01

    Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas ( 500-1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation. Aims: Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms. Methods: We present spatially sampled maps of the CH+J = 3-2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas (high-J CO). We assess the spatial variation of the CH+J = 2-1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations. Results: The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides

  11. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations.

    PubMed

    Bocchetta, Patrizia; Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

    2016-01-01

    This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement.

  12. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    PubMed Central

    Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

    2016-01-01

    This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491

  13. At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics.

    PubMed

    Nwankire, Charles E; Donohoe, Gerard G; Zhang, Xin; Siegrist, Jonathan; Somers, Martin; Kurzbuch, Dirk; Monaghan, Ruairi; Kitsara, Maria; Burger, Robert; Hearty, Stephen; Murrell, Julie; Martin, Christopher; Rook, Martha; Barrett, Louise; Daniels, Stephen; McDonagh, Colette; O'Kennedy, Richard; Ducrée, Jens

    2013-06-05

    In this paper we report a centrifugal microfluidic "lab-on-a-disc" system for at-line monitoring of human immunoglobulin G (hIgG) in a typical bioprocess environment. The novelty of this device is the combination of a heterogeneous sandwich immunoassay on a serial siphon-enabled microfluidic disc with automated sequential reagent delivery and surface-confined supercritical angle fluorescence (SAF)-based detection. The device, which is compact, easy-to-use and inexpensive, enables rapid detection of hIgG from a bioprocess sample. This was achieved with, an injection moulded SAF lens that was functionalized with aminopropyltriethoxysilane (APTES) using plasma enhanced chemical vapour deposition (PECVD) for the immobilization of protein A, and a hybrid integration with a microfluidic disc substrate. Advanced flow control, including the time-sequenced release of on-board liquid reagents, was implemented by serial siphoning with ancillary capillary stops. The concentration of surfactant in each assay reagent was optimized to ensure proper functioning of the siphon-based flow control. The entire automated microfluidic assay process is completed in less than 30 min. The developed prototype system was used to accurately measure industrial bioprocess samples that contained 10 mg mL(-1) of hIgG.

  14. Sex differences in mental rotation and line angle judgments are positively associated with gender equality and economic development across 53 nations.

    PubMed

    Lippa, Richard A; Collaer, Marcia L; Peters, Michael

    2010-08-01

    Mental rotation and line angle judgment performance were assessed in more than 90,000 women and 111,000 men from 53 nations. In all nations, men's mean performance exceeded women's on these two visuospatial tasks. Gender equality (as assessed by United Nations indices) and economic development (as assessed by per capita income and life expectancy) were significantly associated, across nations, with larger sex differences, contrary to the predictions of social role theory. For both men and women, across nations, gender equality and economic development were significantly associated with better performance on the two visuospatial tasks. However, these associations were stronger for the mental rotation task than for the line angle judgment task, and they were stronger for men than for women. Results were discussed in terms of evolutionary, social role, and stereotype threat theories of sex differences.

  15. Chiroptical detection during liquid chromatography 7. The rotation angle/absorbance ratio of chiral molecules. Its possible use for on-line analysis during preparative separations of enantiomers.

    PubMed

    Brandl, F; Pustet, N; Mannschreck, A

    2001-02-16

    The rotation angle/absorbance ratios C+ = alpha+/A+ and C- = a-/A-, determined via detection by a polarimeter and a photometer, were checked for the first time with reference to their use for on-line analysis during preparative separations. For this purpose, (+)-, (-)- and (+/-)-carvones were investigated by liquid chromatography (LC) on microcrystalline tribenzoylcellulose. It turned out that the ratios C+ and C- depend only slightly upon concentration (Table 1). Overlapped peaks of enantiomers were successfully submitted to computer deconvolution (e.g. Fig. 2, bottom). A procedure for on-line analysis during preparative LC is proposed.

  16. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor Toward the Supergiant Star VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.

  17. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  18. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  19. The Cosmic Large-Scale Structure in X-rays (CLASSIX) Cluster Survey. I. Probing galaxy cluster magnetic fields with line of sight rotation measures

    NASA Astrophysics Data System (ADS)

    Böhringer, Hans; Chon, Gayoung; Kronberg, Philipp P.

    2016-11-01

    To search for a signature of an intracluster magnetic field, we compare measurements of Faraday rotation of polarised extragalactic radio sources in the line of sight of galaxy clusters with those outside. To this end, we correlated a catalogue of 1383 rotation measures of extragalactic polarised radio sources with galaxy clusters from the CLASSIX survey (combining REFLEX II and NORAS II) detected by their X-ray emission in the ROSAT All-Sky Survey. The survey covers 8.25 ster of the sky at | bII | ≥ 20°. We compared the rotation measures in the line of sight of clusters within their projected radii of r500 with those outside and found a significant excess of the dispersion of the rotation measures in the cluster regions. Since the observed rotation measure is the result of Faraday rotation in several presumably uncorrelated magnetised cells of the intracluster medium, the observations correspond to quantities averaged over several magnetic field directions and strengths. Therefore the interesting quantity is the dispersion or standard deviation of the rotation measure for an ensemble of clusters. In the analysis of the observations we found a standard deviation of the rotation measure inside r500 of about 120 (± 21) rad m-2. This compares to about 56 (± 8) rad m-2 outside. Correcting for the effect of the Galaxy with the mean rotation measure in a region of 10 deg radius in the outskirts of the clusters does not change the outcome quoted above. We show that the most X-ray luminous and thus most massive clusters contribute most to the observed excess rotation measure. Modelling the electron density distribution in the intracluster medium with a self-similar model based on the REXCESS Survey, we found that the dispersion of the rotation measure increases with the column density, and we deduce a magnetic field value of about 2-6 (l/ 10 kpc)- 1/2μG assuming a constant magnetic field strength, where l is the size of the coherently magnetised intracluster medium

  20. Radiometric observations of the 752.033-GHz rotational absorption line of H2O from a laboratory jet. [simulation of rocket plumes

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T.-S.; Fetterman, H. R.; Litvak, M. M.

    1980-01-01

    With the aid of a high-resolution two-stage heterodyne radiometer, spectral absorption measurements of the 752.033 GHz line of water vapor were carried out, using a blackbody continuum as a background radiation source for investigating the absorptive properties of the H2O content of high altitude rocket plumes. To simulate this physical situation in a laboratory environment, a small steam jet was operated within a large high-vacuum chamber, with the H2O jet plume traversing the radiometer line of sight. The experiments verified that this rotational line is optically thick, with excitation temperatures below 100 K, in the downstream part of the plume, as predicted by theoretical modelling.

  1. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  2. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  3. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Boulet, C.

    2016-06-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  4. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3.

    PubMed

    Ma, Q; Boulet, C

    2016-06-14

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  5. Towards automated firearm identification based on high resolution 3D data: rotation-invariant features for multiple line-profile-measurement of firing pin shapes

    NASA Astrophysics Data System (ADS)

    Fischer, Robert; Vielhauer, Claus

    2015-03-01

    Understanding and evaluation of potential evidence, as well as evaluation of automated systems for forensic examinations currently play an important role within the domain of digital crime scene analysis. The application of 3D sensing and pattern recognition systems for automatic extraction and comparison of firearm related tool marks is an evolving field of research within this domain. In this context, the design and evaluation of rotation-invariant features for use on topography data play a particular important role. In this work, we propose and evaluate a 3D imaging system along with two novel features based on topography data and multiple profile-measurement-lines for automatic matching of firing pin shapes. Our test set contains 72 cartridges of three manufactures shot by six different 9mm guns. The entire pattern recognition workflow is addressed. This includes the application of confocal microscopy for data acquisition, preprocessing covers outlier handling, data normalization, as well as necessary segmentation and registration. Feature extraction involves the two introduced features for automatic comparison and matching of 3D firing pin shapes. The introduced features are called `Multiple-Circle-Path' (MCP) and `Multiple-Angle-Path' (MAP). Basically both features are compositions of freely configurable amounts of circular or straight path-lines combined with statistical evaluations. During the first part of evaluation (E1), we examine how well it is possible to differentiate between two 9mm weapons of the same mark and model. During second part (E2), we evaluate the discrimination accuracy regarding the set of six different 9mm guns. During the third part (E3), we evaluate the performance of the features in consideration of different rotation angles. In terms of E1, the best correct classification rate is 100% and in terms of E2 the best result is 86%. The preliminary results for E3 indicate robustness of both features regarding rotation. However, in future

  6. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  7. Observations of 13.5 micron rotation-vibration lines of SiS in IRC +10216

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Keady, J. J.; Jennings, D. E.; Hirsch, K. L.; Wiedemann, G. R.

    1994-01-01

    We report the first observations of the 13.5 micron fundamental band of SiS in the spectrum of the heavily obscured carbon star IRC +10216. The lines are formed in the inner region of the circumstellar envelope where the gas is accerlerating and where the temperature ranges from 800-500 K. We have carried out a detailed model of the observed line profiles. Our observations are best fit by a gradient in the abundance of SiS. We derive an abundance relative to molecular hydrogen of x(SiS) = 4.3 x 10(exp -6) at a distance of twelve stellar radii from the central star rising to x(SiS) = 4.3 x 10(exp -5) at a few stellar radii from the surface of the star.

  8. Observations of 13.5 micron rotation-vibration lines of SiS in IRC +10216

    NASA Astrophysics Data System (ADS)

    Boyle, R. J.; Keady, J. J.; Jennings, D. E.; Hirsch, K. L.; Wiedemann, G. R.

    1994-01-01

    We report the first observations of the 13.5 micron fundamental band of SiS in the spectrum of the heavily obscured carbon star IRC +10216. The lines are formed in the inner region of the circumstellar envelope where the gas is accelerating and where the temperature ranges from 800-500 K. We have carried out a detailed model of the observed line profiles. Our observations are best fit by a gradient in the abundance of SiS. We derive an abundance relative to molecular hydrogen of x(SiS) = 4.3 x 10-6 at a distance of twelve stellar radii from the central star rising to x(SiS) = 4.3 x 10-5 at a few stellar radii from the surface of the star.

  9. The role of the Coriolis interaction on vector correlations in molecular predissociation: excitation of isolated rotational lines.

    PubMed

    Kuznetsov, Vladislav V; Shternin, Peter S; Vasyutinskii, Oleg S

    2009-04-07

    We present the full quantum mechanical expressions for the polarization differential cross sections of the photofragments produced in slow predissociation of a parent molecule via isolated rotational branches. Both radial and Coriolis nonadiabatic interactions between the molecular potential energy surfaces have been taken into account. The expressions describe the recoil angle distribution of the photofragments and the distributions of the photofragment angular momentum polarization (orientation and alignment) in terms of the anisotropy parameters of the ranks K=0,1,2. The explicit expressions for the anisotropy parameters are presented and analyzed which contain contributions from different possible photolysis mechanisms including incoherent, or coherent optical excitation of the parent molecule followed by the radial, or Coriolis nonadiabatic transitions to the dissociative states. The obtained expression for the zeroth-rank anisotropy parameter beta is valid for any molecule and for an arbitrary value of the molecular total angular momentum J. The expressions for the orientation (K=1) and alignment (K=2) anisotropy parameters are given in the high-J limit in terms of the generalized dynamical functions which were analyzed for the case of photolysis of linear/diatomic molecules. As shown, the Coriolis nonadiabatic interaction results in several new photolysis mechanisms which can play an important role in the predissociation dynamics.

  10. Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement.

    PubMed

    Zhang, Zhaoxiang; Zhang, Chaoying; Luan, Wenxiu; Li, Xiufeng; Liu, Ying; Luo, Xiliang

    2015-08-12

    A sensitive and rapid on-line immunoassay for the determination of ciguatoxin CTX3C was developed based on a capillary mixing system, which was integrated with capillary electrophoresis (CE) separation and electrochemical (EC) detection. In the sandwich immunoassay system, anti-CTX3C-functionalized magnetic nanoparticles were used as immunosensing probes, and horseradish peroxidase (HRP) and anti-CTX3C antibody were bound onto the surface of gold nanoparticles (AuNPs) and used as recognition elements. Online formation of immunocomplex was realized in capillary inlet end with an external rotating magnetic field. Compared with classical HPLC-MS and ELISA, the assay adopting AuNPs as multienzyme carriers and online sandwich immunoassay format with rotating magnetic field exhibited higher sensitivity and shorter assay time. The linear range of the assay for CTX3C was from 0.6 to 150 ng/L with a correlation coefficient of 0.9948 (n = 2), and the detection limit (S/N = 3) was 0.09 ng/L. The developed assay showed satisfying reproducibility and stability, and it was successfully applied for the quantification of CTX3C in fish samples.

  11. Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystal

    SciTech Connect

    Hayashi, Kouichi; Nakajima, Kazuo; Fujiwara, Kozo; Nishikata, Susumu

    2008-03-15

    Si and Ge are widely used as analyzing crystals for x-rays. Drastic and accurate shaping of Si or Ge gives significant advance in the x-ray field, although covalently bonded Si or Ge crystals have long been believed to be not deformable to various shapes. Recently, we developed a deformation technique for obtaining strongly and accurately shaped Si or Ge wafers of high crystal quality, and the use of the deformed wafer made it possible to produce fine-focused x-rays. In the present study, we prepared a cylindrical Ge wafer with a radius of curvature of 50 mm, and acquired fluorescent x-rays simultaneously from four elements by combining the cylindrical Ge wafer with a position-sensitive detector. The energy resolution of the x-ray fluorescence spectrum was as good as that obtained using a flat single crystal, and its gain was over 100. The demonstration of the simultaneous acquisition of high-resolution x-ray fluorescence spectra indicated various possibilities of x-ray spectrometry, such as one-shot x-ray spectroscopy and highly efficient wave-dispersive x-ray spectrometers.

  12. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  13. Vertical Distributions of PH3 in Saturn from Observations of Its 1-0 and 3-2 Rotational Lines

    NASA Technical Reports Server (NTRS)

    Orton, G. S.; Serabyn, E.; Lee, Y. T.

    2000-01-01

    Far-infrared Fourier-transform spectrometer measurements of the 1-0 and 3-2 PH3 transitions in Saturn's disk near 267 and 800 GHz (8.9 and 26.7/cm), respectively, were analyzed simultaneously to derive a global mean profile for the PH3 vertical mixing ratio between 100 and 600 mbar total pressure. The far-infrared spectrum is relatively free from spectral interlopers, suffers minimal absorption or scattering by atmospheric particulates, and contains intrinsically weak PH3 lines that are sensitive to a range of atmospheric depths. The combined spectra are inconsistent with a uniform tropospheric mixing ratio, even with a stratospheric cut-off. They are consistent with a volume mixing ratio of PH3 that drops from 1.2 x 10(exp -5) at 645 mbar pressure to a value of 4.1 x 10(exp -7) at 150 mbar pressure, a decrease that is linear is log abundance vs log pressure. The mixing ratio could drop even more quickly at atmospheric pressures below 150 mbar and still be consistent with the data. The mixing ratio may well remain constant with depth for pressures above 630 mbar. The maximum PH3 mixing ratio in this model is consistent with a [P]/[H] ratio in the deep atmosphere that is about a factor of 10 higher than solar composition. Such a model is consistent with rapid mixing up to the radiative-convective boundary and transport by, for example, vertical waves just above this boundary. In the best fitting model, the eddy diffusion coefficient is approximately 10(exp 4) sq cm near 630 mbar, and it must increase with altitude. The predominant PH3 loss mechanisms are direct photolysis by UV radiation and scavenging by H atoms produced by the photolysis.

  14. Accelerometer-Based Navigation Is as Accurate as Optical Computer Navigation in Restoring the Joint Line and Mechanical Axis After Total Knee Arthroplasty: A Prospective Matched Study.

    PubMed

    Goh, Graham Seow-Hng; Liow, Ming Han Lincoln; Lim, Winston Shang-Rong; Tay, Darren Keng-Jin; Yeo, Seng Jin; Tan, Mann Hong

    2016-01-01

    The Zimmer iASSIST system is a novel accelerometer-based navigation system for TKA. 76 patients (76 knees) were prospectively matched for age, BMI, gender, diagnosis, and pre-operative scores, and underwent TKA using the iASSIST (n=38) or optical CAS (n=38). There were no significant differences in clinical outcomes or satisfaction rates at six months post-operatively (P>0.05). Mechanical axis was 1.8±1.3° in the iASSIST cohort versus 2.1±1.6° in the CAS cohort (P=0.543). There were no significant differences in number of outliers for mechanical axis (P=1.000), coronal femoral-component angle (P=0.693), coronal tibial-component angle (P=0.204) or joint line deviation (P=1.000). The duration of surgery was significantly longer in the CAS group (P<0.001), while the added cost of accelerometer-based navigation was approximately $1000 per operation.

  15. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer

    PubMed Central

    Chen, Yao; Quan, Wei; Zou, Sheng; Lu, Yan; Duan, Lihong; Li, Yang; Zhang, Hong; Ding, Ming; Fang, Jiancheng

    2016-01-01

    Atomic co-magnetometers can be utilized for high-precision angular velocity sensing or fundamental physics tests. The sensitivity of a co-magnetometer determines the angle random walk of an angular velocity sensor and the detection limit for a fundamental physics test. A high-sensitivity K-Rb-21Ne co-magnetometer, which is utilized for angular velocity sensing, is presented in this paper. A new type of spin relaxation of Rb atom spins, which can broaden the zero-field magnetic resonance lines of the co-magnetometer, is discovered. Further studies show that the spin relaxation of Rb atoms is caused by a high Rb electron magnetization field. With this discovery, the total relaxation rate of Rb atoms is optimized to improve the sensitivity of the co-magnetometer. Moreover, its sensitivity is optimized by suppressing various noises. Especially, to suppress laser-related noises, the co-magnetometer is designed such that the sensitive axis of the co-magnetometer can be fixed to the direction in which the projection input of the earth’s rotation is 0. This is called a rotating co-magnetometer. A magnetic field sensitivity of 1.0 fT/Hz−1/2@5 Hz, which is equal to an angular velocity sensitivity of 2.1 × 10−8 rad s−1 Hz−1/2@5 Hz, is demonstrated using a spherical vapour cell with a diameter of 14 mm. PMID:27830744

  16. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-(21)Ne co-magnetometer.

    PubMed

    Chen, Yao; Quan, Wei; Zou, Sheng; Lu, Yan; Duan, Lihong; Li, Yang; Zhang, Hong; Ding, Ming; Fang, Jiancheng

    2016-11-10

    Atomic co-magnetometers can be utilized for high-precision angular velocity sensing or fundamental physics tests. The sensitivity of a co-magnetometer determines the angle random walk of an angular velocity sensor and the detection limit for a fundamental physics test. A high-sensitivity K-Rb-(21)Ne co-magnetometer, which is utilized for angular velocity sensing, is presented in this paper. A new type of spin relaxation of Rb atom spins, which can broaden the zero-field magnetic resonance lines of the co-magnetometer, is discovered. Further studies show that the spin relaxation of Rb atoms is caused by a high Rb electron magnetization field. With this discovery, the total relaxation rate of Rb atoms is optimized to improve the sensitivity of the co-magnetometer. Moreover, its sensitivity is optimized by suppressing various noises. Especially, to suppress laser-related noises, the co-magnetometer is designed such that the sensitive axis of the co-magnetometer can be fixed to the direction in which the projection input of the earth's rotation is 0. This is called a rotating co-magnetometer. A magnetic field sensitivity of 1.0 fT/Hz(-1/2)@5 Hz, which is equal to an angular velocity sensitivity of 2.1 × 10(-8) rad s(-1) Hz(-1/2)@5 Hz, is demonstrated using a spherical vapour cell with a diameter of 14 mm.

  17. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Quan, Wei; Zou, Sheng; Lu, Yan; Duan, Lihong; Li, Yang; Zhang, Hong; Ding, Ming; Fang, Jiancheng

    2016-11-01

    Atomic co-magnetometers can be utilized for high-precision angular velocity sensing or fundamental physics tests. The sensitivity of a co-magnetometer determines the angle random walk of an angular velocity sensor and the detection limit for a fundamental physics test. A high-sensitivity K-Rb-21Ne co-magnetometer, which is utilized for angular velocity sensing, is presented in this paper. A new type of spin relaxation of Rb atom spins, which can broaden the zero-field magnetic resonance lines of the co-magnetometer, is discovered. Further studies show that the spin relaxation of Rb atoms is caused by a high Rb electron magnetization field. With this discovery, the total relaxation rate of Rb atoms is optimized to improve the sensitivity of the co-magnetometer. Moreover, its sensitivity is optimized by suppressing various noises. Especially, to suppress laser-related noises, the co-magnetometer is designed such that the sensitive axis of the co-magnetometer can be fixed to the direction in which the projection input of the earth’s rotation is 0. This is called a rotating co-magnetometer. A magnetic field sensitivity of 1.0 fT/Hz‑1/2@5 Hz, which is equal to an angular velocity sensitivity of 2.1 × 10‑8 rad s‑1 Hz‑1/2@5 Hz, is demonstrated using a spherical vapour cell with a diameter of 14 mm.

  18. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom

    SciTech Connect

    Esch, Ann van; Clermont, Christian; Devillers, Magali; Iori, Mauro; Huyskens, Dominique P.

    2007-10-15

    For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of

  19. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    SciTech Connect

    Huang, Xinchuan E-mail: Timothy.J.Lee@nasa.gov; Schwenke, David W.; Lee, Timothy J. E-mail: Timothy.J.Lee@nasa.gov

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  20. Mjollnir Rotational Line Scan Diagnostics.

    DTIC Science & Technology

    1981-05-19

    dramatically. This has been verified independently at Aerospace in recent experiments by Bernard .2 0 Careful tuning with DF could not reduce the power...Kerstetter, J. Mol. Spectry., U, 77 (1970). 14. W.F. Herget, W.E. Deeds, N.M. Gailar, R.J. Lovell , and A.H. Nielsen, J. Opt. Soc. Am., 52, 1113 (1962

  1. Far-infrared rotational emission by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.

    1981-01-01

    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward.

  2. Theoretical and experimental studies of CH3X-Y2 rotational line shapes for atmospheric spectra modelling: application to room-temperature CH3Cl-O2.

    PubMed

    Buldyreva, Jeanna; Guinet, Mickaël; Eliet, Sophie; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2011-12-07

    The case of symmetric tops CH(3)X (X = Br, Cl, F, …) perturbed by non-polar diatoms Y(2) (Y = N(2), O(2), …) is analysed from the viewpoint of theoretical collisional broadening of their rotational lines observed in atmospheric spectra. A semi-classical approach involving an exponential representation of the scattering operator and exact trajectories governed by the isotropic potential is presented. For the first time the active molecule is strictly treated as a symmetric top and the atom-atom interactions are included in the intermolecular potential model. It is shown for the CH(3)Cl-O(2) system that these interactions contribute significantly to the line width for all values of the rotational quantum numbers J and K. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is performed and it is shown that the use of the cumulant average on the rotational states of the perturbing molecule leads to entirely negligible effects for the not very strongly interacting CH(3)Cl-O(2) system. In order to check the theoretical predictions and to extend the scarce experimental data available in the literature to higher values of the rotational quantum numbers, new measurements of room-temperature O(2)-broadened CH(3)Cl rotational lines are carried out by a photomixing continuous-wave terahertz spectrometer. The experimental line widths extracted with a Voigt profile model demonstrate an excellent agreement with theoretical results up to very high J-values (J = 31, 37, 40, 45, 50).

  3. The Development and Clinical Use of a Beam ON-LINE PET System Mounted on a Rotating Gantry Port in Proton Therapy

    SciTech Connect

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-15

    Purpose: To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). Methods and Materials: In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. Results: The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. Conclusions: The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  4. Rotating Connection for Electrical Cables

    NASA Technical Reports Server (NTRS)

    Manges, D. R.

    1986-01-01

    Cable reel provides electrical connections between fixed structure and rotating one. Reel carries power and signal lines while allowing rotating structure to turn up to 360 degrees with respect to fixed structure. Reel replaces sliprings. Can be used to electrically connect arm of robot with body. Reel releases cable to rotating part as it turns and takes up cable as rotating part comes back to its starting position, without tangling, twisting, or kinking.

  5. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  6. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings.

  7. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  8. Left/right neck rotation judgments are affected by age, gender, handedness and image rotation.

    PubMed

    Wallwork, Sarah B; Butler, David S; Fulton, Ian; Stewart, Halton; Darmawan, Igusti; Moseley, G Lorimer

    2013-06-01

    Understanding motor imagery of the hands and feet has led to promising new treatments for neurological and chronic pain disorders. We aimed to extend this line of research to the neck with a view to developing the definitive platform study upon which clinical and experimental studies can be based. In a cross-sectional experiment with a convenience sample, volunteers were shown 40 photographs of a model with their head turned to the left or right. Images were presented in random order and orientation. Participants judged the direction of neck rotation. They also completed a left/right hand judgment task. 1361 pain-free participants volunteered. Mean ± standard deviation response time (RT) for making left/right judgments of neck rotation was 1.621 ± 0.501 s. Median accuracy was 92.5%. RT was related to age, gender, and handedness (p < 0.001). That is, RT increased with age, was greater in females than in males and was greater in left-handers than in right-handers. Accuracy reduced with age (p < 0.001), but was unaffected by gender or handedness. Judgments were more accurate when images showed a neck rotated to the right than when they showed a neck rotated to the left (p < 0.001). The magnitude of image rotation affected both response time and accuracy (p < 0.001). In general, the performance parameters established for left/right limb judgments also apply for left/right neck rotation judgments. The current work establishes the definitive normative values against which clinical and experimental groups can be compared and reveals unpredicted effects of the direction neck rotation and the orientation of the image.

  9. Comparison of Trajectory Models in Calculations of N2-broadened Half-widths and N2-induced Line Shifts for the Rotational Band of H2O-16 and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Lamouroux, J.; Gamache, R. R.; Laraia, A. L.; Ma, Q.; Tipping, R. H.

    2012-01-01

    In this work, Complex Robert-Bonamy calculations of half-widths and line shifts were done for N2-broadening of water for 1639 transitions in the rotational band using two models for the trajectories. The first is a model correct to second order in time, the Robert-Bonamy parabolic approximation. The second is the solution of Hamilton's equations. Both models use the isotropic part of the atom-atom potential to determine the trajectories. The present calculations used an intermolecular potential expanded to 20th order to assure the convergence of the half-widths and line shifts. The aim of the study is to assess if the difference in the half-widths and line shifts determined from the two trajectory models is greater than the accuracy requirements of the spectroscopic and remote sensing communities. The results of the calculations are compared with measurements of the half-widths and line shifts. It is shown that the effects of the trajectory model greatly exceed the needs of current remote sensing measurements and that line shape parameters calculated using trajectories determined by solving Hamilton's equations agree better with measurement.

  10. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  11. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  12. Rotational Energy Levels and Line Intensities for 2S+1Sigma-2S+1Sigma Transitions in an Open-Shell Diatomic Molecule Weakly Bonded to a Closed-Shell Partner.

    PubMed

    Fawzy

    1998-09-01

    This paper concerns rotational energy levels and line intensities for electronic, vibrational, and microwave transitions in an open-shell complex consisting of an open-shell diatomic molecule and a closed-shell partner. The electronic state of the open-shell diatomic fragment is a 2S+1Sigma state, where S >/= 12, the close-shell partner could be a rare gas atom or a diatomic molecule or a planar polyatomic molecule. We are considering a near-rigid rotor model for a nonlinear complex, taking into account thoroughly all effects of the electron spin and the quartic centrifugal distortion correction terms. The total Hamiltonian is expressed as H=Hrot+Hsr+Hss+Hcd+Hsrcd+Hsscd. We have derived all the nonvanishing matrix elements of the Hamiltonian operators in the molecular basis set. The rotational energy levels are calculated by numerical diagonalization of the total Hamiltonian matrix for each J value. The nonvanishing matrix elements of the electric dipole moment operator are derived in the molecular basis set for electronic, vibrational, and microwave transitions within the complex. Expectation values of the quantum numbers and of the parities of the rotational states are derived in the molecular basis set. Relative intensities of the allowed rotational transitions, expectation values of the quantum numbers and the parities are calculated numerically in the space of the eigenvectors obtained from diagonalization of the Hamiltonian matrix. The formalism and the computer program of this paper are considered as extensions to our previous work [W. M. Fawzy and J. T. Hougen, J. Mol. Spectrosc. 137, 154-165 (1989); W. M. Fawzy, J. Mol. Spectrosc. 160, 84-96 (1993)] and are expected to be particularly useful for analyzing and fitting high-resolution spectra of weakly bonded oxygen complexes. A brief discussion of the Hamiltonian operators, the matrix elements, and the computer program is given. Copyright 1998 Academic Press.

  13. Supergranulation rotation

    NASA Astrophysics Data System (ADS)

    Schou, Jesper; Beck, John G.

    2001-01-01

    Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.

  14. Keplerian Rotation of Our Galaxy?

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Młynik, T.

    2017-04-01

    It is common to attribute a flat rotation curve to our Galaxy. However, in a recent paper, Galazutdinov et al. obtained a Keplerian rotation curve for interstellar clouds in the outer parts of the Galaxy. They calculated the distances from equivalent widths of interstellar CaII lines. The radial velocity was also measured on the interstellar CaII absorption line. We verify the results of Galazutdinov et al. based on observations of old open clusters. We propose that the observations of flat and Keplerian rotation curves may be caused by the assumption of circular orbits. The application of formulas derived with the assumption of circular orbits to elliptical ones may mimics the flat rotation curve. The interstellar clouds with cross-sections larger than stars may have almost circular orbits, and the derived rotation curve will be Keplerian.

  15. Measurements @ Sub-Mm Spectroscopy Laboratory of Bologna: Rotational Spectroscopy Applied to Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina

    2016-06-01

    The physico-chemistry of the Earth's atmosphere has been one of the main subjects of studies over last years. In particular, the composition of the atmosphere is indeed very important to understand chemical processes linked to depletion of stratospheric ozone and greenhouse effect. The vertical concentration profiles of atmospheric gases can be provided by remote sensing measurements, but they require the accurate knowledge of the parameters involved: line positions, transition intensities, pressure-broadened half-widths, pressure-induced frequency shifts and their temperature dependence. In particular, the collisional broadening parameters have a crucial influence on the accuracy of spectra calculations and on reduction of remote sensing data. Rotational spectroscopy, thanks to its intrinsic high resolution, is a powerful tool for providing most of the information mentioned above: accurate or even very accurate rotational transition frequencies, accurate spectroscopic as well as hyperfine parameters, accurate pressure-broadening coefficients and their temperature dependence. With respect to collisional phenomena and line shape analysis studies, by applying the source frequency modulation technique it has been found that rotational spectroscopy may provide very good results: not only this technique does not produce uncontrollable instrumental distortions or broadenings, but also, having an high sensitivity, it is particularly suitable for this kind of investigations. A number of examples will be presented to illustrate the work carried out at the Laboratory of Millimeter/submillimeter-wave Spectroscopy of Bologna in the field of atmospheric studies.

  16. The rotation rates of massive stars. How slow are the slow ones?

    NASA Astrophysics Data System (ADS)

    Sundqvist, J. O.; Simón-Díaz, S.; Puls, J.; Markova, N.

    2013-11-01

    Context. Rotation plays a key role in the life cycles of stars with masses above ~8 M⊙. Hence, accurate knowledge of the rotation rates of such massive stars is critical for understanding their properties and for constraining models of their evolution. Aims: This paper investigates the reliability of current methods used to derive projected rotation speeds vsini from line-broadening signatures in the photospheric spectra of massive stars, focusing on stars that are not rapidly rotating. Methods: We use slowly rotating magnetic O-stars with well-determined rotation periods to test the Fourier transform (FT) and goodness-of-fit (GOF) methods typically used to infer projected rotation rates of massive stars. Results: For our two magnetic test stars with measured rotation periods longer than one year, i.e., with vsini ≲ 1 km s-1, we derive vsini ≈ 40-50 km s-1 from both the FT and GOF methods. These severe overestimates are most likely caused by an insufficient treatment of the competing broadening mechanisms referred to as microturbulence and macroturbulence. Conclusions: These findings warn us not to rely uncritically on results from current standard techniques to derive projected rotation speeds of massive stars in the presence of significant additional line broadening, at least when vsini ≲ 50 km s-1. This may, for example, be crucial for i) determining the statistical distribution of observed rotation rates of massive stars; ii) interpreting the evolutionary status and spin-down histories of rotationally braked B-supergiants; and iii) explaining the deficiency of observed O-stars with spectroscopically inferred vsini ≈ 0 km s-1. Further investigations of potential shortcomings of the above techniques are presently under way. Final reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/L10

  17. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  18. On the possibility of analytical approximation of line forms during random disorders of the resonance frequencies in molecular vibration-rotation spectra for satellite sounding

    NASA Technical Reports Server (NTRS)

    Fomin, V. V.

    1979-01-01

    The generalization spectral line contour concept and formulas for a two component mixture, as well as consequences of the general formula are discussed. The calculation procedure, initial information, calculation results and comparison of calculations with available experimental data, for radiation absorption in three CO2 bands are presented.

  19. The gamma 1 and gamma 3 bands of (16)O3: Line positions and intensities

    NASA Technical Reports Server (NTRS)

    Flaud, J.-M.; Camy-Peyret, C.; Devi, V. Malathy; Rinsland, C. P.; Smith, M. A. H.

    1988-01-01

    Using 0.005/cm-resolution Fourier transform spectra of samples of ozone, the gamma 1 and gamma 3 bands of (16)O3 have been reanalyzed to obtain accurate line positions and an extended set of upper state rotational levels (J up to 69, K sub a up to 20). Combined with the available microwave data, these upper state rotational levels were satisfactorily fitted using a Hamiltonian which takes explicitly into account the strong Coriolis interaction affecting the rotational levels of these two interacting states. In addition, 350 relative line intensities were measured from which the rotational expansions of the transition moment operators for the gamma 1 and gamma 3 states have been deduced. Finally, a complete listing of line positions, intensities, and lower state energies of the gamma 1 and gamma 3 bands of (16)O3 has been generated.

  20. Torsion-rotation intensities in methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John

    Methanol exists in numerous kinds of astronomical objects featuring a wide range of local conditions. The light nature of the molecule coupled with the internal rotation of the methyl group with respect to the hydroxyl group results in a rich, strong spectrum that spans the entire far-infrared region. As a result, any modest size observational window will have a number of strong methanol transitions. This has made it the gas of choice for testing THz receivers and to extract the local physical conditions from observations covering small frequency windows. The latter has caused methanol to be dubbed the Swiss army knife of astrophysics. Methanol has been increasingly used in this capacity and will be used even more for subsequent investigations into the Herschel archive, and with SOFIA and ALMA. Interpreting physical conditions on the basis of a few methanol lines requires that the molecular data, line positions, intensities, and collision rates, be complete, consistent and accurate to a much higher level than previously required for astrophysics. The need for highly reliable data is even more critical for modeling the two classes of widespread maser action and many examples of optical pumping through the torsional bands. Observation of the torsional bands in the infrared will be a unique opportunity to directly connect JWST observations with those of Herschel, SOFIA, and ALMA. The theory for the intensities of torsion-rotation transitions in a molecule featuring a single internally rotating methyl group is well developed after 70 years of research. However, other than a recent very preliminary and not completely satisfactory investigation of a few CH3OH torsional bands, this theory has never been experimentally tested for any C3V internal rotor. More alarming is a set of recent intensity calibrated microwave measurements that showed deviations relative to calculations of up to 50% in some ground state rotational transitions commonly used by astronomers to extract

  1. Solar rotation results at Mount Wilson

    NASA Technical Reports Server (NTRS)

    Howard, R.; Adkins, J. M.; Boyden, J. E.; Cragg, T. A.; Gregory, T. S.; Labonte, B. J.; Padilla, S. P.; Webster, L.

    1983-01-01

    Solar rotation results from Doppler velocity measurements made at Mount Wilson over a period of more than 14 years are presented based on a single reduction procedure. The observations were made with the wavelength 5250.2 A line of Fe I, and wavelength shifts of the line were simultaneously recorded. Data from 188 rotations are presented. Measurements of scattered light along with its effect on the measured rotation rate are given.

  2. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  3. Einstein coefficients for rotational lines of the (0,0) band of the NO A2sigma(+)-X2Pi system

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Carter, Campbell D.; Laurendeau, Normand M.

    1992-01-01

    A summary of the spectroscopic equations necessary for prediction of the molecular transition energies and the Einstein A and B coefficients for rovibronic lines of the gamma(0,0) band of nitric oxide (NO) is presented. The calculated molecular transition energies are all within 0.57/cm of published experimental values; in addition, over 95 percent of the calculated energies give agreement with measured results within 0.25/cm. Einstein coefficients are calculated from the band A00 value and the known Hoenl-London factors and are tabulated for individual rovibronic transitions in the NO A2sigma(+)-X2Pi(0,0) band.

  4. Modeling rigid magnetically rotated microswimmers: Rotation axes, bistability, and controllability

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Fu, Henry Chien

    2014-12-01

    Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.

  5. Accurate equilibrium structures for piperidine and cyclohexane.

    PubMed

    Demaison, Jean; Craig, Norman C; Groner, Peter; Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Rudolph, Heinz Dieter

    2015-03-05

    Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.

  6. Relativity on Rotated Graph Paper

    NASA Astrophysics Data System (ADS)

    Salgado, Roberto

    2011-11-01

    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called light-clock diamonds) represent ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra.

  7. The rotational spectra of HD17O and D217O: Experiment and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina; Cazzoli, Gabriele; Gauss, Jürgen

    2012-10-01

    Guided by theoretical predictions, the rotational spectrum of HD17O was recorded and assigned for the first time, while the measurements for D217O were extended up to the THz region. For both isotopic species, a large portion of the rotational spectrum, from 65 GHz (from 200 GHz for the bideuterated isotopologue) up to 1.6 THz, was investigated, thus allowing the accurate determination of the ground-state rotational and centrifugal-distortion constants. Considering that the rotational spectra of water isotopologues are characterized by a very low density of lines and strong centrifugal-distortion effects, the accurate quantum-chemical prediction of the relevant spectroscopic parameters played a crucial role in the line search and assignment as well as in supporting the fitting procedure. In addition to rotational and centrifugal-distortion constants, the knowledge of the oxygen quadrupole-coupling constants was essential, as the corresponding interaction leads to characteristic features (hyperfine structure) that enabled proper line assignments.

  8. Rotating mandrel speeds assembly of plastic inflatables

    NASA Technical Reports Server (NTRS)

    Mac Fadden, J. A.; Stenlund, S. J.; Wendt, A. J.

    1966-01-01

    Rotating mandrel permits the accurate cutting, forming, and sealing of plastic gores for assembly of an inflatable surface of revolution. The gores remain on the mandrel until the final seam is reached. Tolerances are tightly controlled by the mandrel configuration.

  9. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  10. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  11. The Solar Surface Differential Rotation from Disk-Integrated Chromospheric Fluxes

    NASA Astrophysics Data System (ADS)

    Donahue, Robert A.; Keil, Steven L.

    1995-06-01

    Disk-integrated solar chromospheric Ca ii K-line (3933.68 Å) fluxes have been measured almost daily at Sacramento Peak Observatory since 1977. Using observing windows selected to mimic seasonal windows for chromospheric measurements of lower Main-Sequence stars such as those observed by Mount Wilson Observatory's HK Project, we have measured the solar rotation from the modulation of the Ca ii K-line flux. We track the change of rotation period from the decline of cycle 21 through the maximum of cycle 22. This variation in rotation period is shown to behave as expected from the migration of active regions in latitude according to Maunder's ‘butterfly diagram’, including an abrupt change in rotation period at the transition from cycle 21 to cycle 22. These results indicate the successful detection of solar surface differential rotation from disk-integrated observations. We argue that the success of our study compared to previous investigations of the solar surface differential rotation from disk-integrated fluxes lies primarily with the choice of the length of the time-series window. Our selection of 200 days is shorter than in previous studies whose windows are typically on the order of one year. The 200-day window is long enough to permit an accurate determination of the rotation period, yet short enough to avoid complications arising from active region evolution. Thus, measurements of the variation of rotation period in lower Main-Sequence stars, especially those that appear to be correlated with long-term changes in chromospheric activity (i.e., cycles), are probably evidence for stellar surface differential rotation.

  12. Improved Log(gf) Values for Lines of Ti I and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937 (Accurate Transition Probabilities for Ti I)

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J.

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  13. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  14. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis.

    PubMed

    Ren, Yukun; Liu, Weiyu; Liu, Jiangwei; Tao, Ye; Guo, Yongbo; Jiang, Hongyuan

    2016-09-01

    We describe a novel rotating trait of induced-charge electroosmotic slip above a planar metal surface, a phenomenon termed "Rotating induced-charge electro-osmosis" (ROT-ICEO), in the context of a new microfluidic technology for tunable particle rotation or rotational trap. ROT-ICEO has a dynamic flow stagnation line (FSL) that rotates synchronously with a background circularly polarized electric field. We reveal that the rotating FSL of ROT-ICEO gives rise to a net hydrodynamic torque that is responsible for rotating fluids or particles in the direction of the applied rotating electric field either synchronously or asynchronously, the magnitude of which is adjusted by a balance between rotation of FSL and amplitude of angular-direction flow component oscillating at twice the field frequency. Supported by experimental observation, our physical demonstration with ROT-ICEO proves invaluable for the design of flexible electrokinetic framework in modern microfluidic system.

  15. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  16. Temperature measurement by two-line laser-saturated OH fluorescence in flames.

    PubMed

    Lucht, R P; Laurendeau, N M; Sweeney, D W

    1982-10-15

    A technique is proposed and demonstrated for measuring combustion temperatures using two-line laser-saturated fluorescence. The rotational temperature of OH is determined by saturating two different rotational transitions in the (0,0) band of the A(2)Sigma(+)-X(2)II electronic system and detecting fluorescence emission which originates from the laser-pumped upper rotational levels. Temperature is calculated from the ratio of the fluorescence intensities for the two different excitation-emission pairs. The method is demonstrated by measuring temperature profiles in subatmospheric H(2)/O(2)/Ar flat flames. Temperatures measured by two-line saturated fluorescence are compared with temperatures measured by coated thermocouples and OH absorption and with predictions from an elementary chemical kinetics code. The temperatures measured by the two-line fluorescence technique are accurate to 3-5% and exhibit low random error.

  17. Robust integral image rectification framework using perspective transformation supported by statistical line segment clustering.

    PubMed

    Koufogiannis, E T; Sgouros, N P; Sangriotis, M S

    2011-12-01

    In most integral image analysis and processing tasks, accurate knowledge of the internal image structure is required. In this paper we present a robust framework for the accurate rectification of perspectively distorted integral images based on multiple line segment detection. The use of multiple line segments increases the overall fault tolerance of our framework providing strong statistical support for the rectification process. The proposed framework is used for the automatic rectification, metric correction, and rotation of distorted integral images. The performance of our framework is assessed over a number of integral images with varying scene complexity and noise levels.

  18. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  19. Countercurrent chromatography separation of saponins by skeleton type from Ampelozizyphus amazonicus for off-line ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry analysis and characterisation.

    PubMed

    de Souza Figueiredo, Fabiana; Celano, Rita; de Sousa Silva, Danila; das Neves Costa, Fernanda; Hewitson, Peter; Ignatova, Svetlana; Piccinelli, Anna Lisa; Rastrelli, Luca; Guimarães Leitão, Suzana; Guimarães Leitão, Gilda

    2017-01-20

    Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MS(n). Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form.

  20. Rotation Velocities of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Karl, C.; Napiwotzki, R.; Heber, U.; Dreizler, S.; Koester, D.; Reid, I. N.

    White dwarfs are the compact remnants of low and intermediate mass stars (M < 8Msolar). Due to the conservation of angular momentum white dwarfs should be very fast rotators, if a significant fraction of the angular momentum of the progenitor stars were preserved. The existence of sharp NLTE cores of the hydrogen Hα line in high resolution spectra (obtained at the Keck observatory) of DA white dwarfs allowed us to determine (projected) rotational velocities v sin i for white dwarfs. Among those of our targets lying close to the ZZ Ceti instability many show evidence for extra broadening similar to rotation, whereas stars at higher temperatures (and therefore younger ones) rotate more slowly or not at all. Our result based on a large sample is in accordance with previous results presented by Koester et al. (1998). We discuss possible explanations for this astonishing result.

  1. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  2. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  3. The rotation of Uranus

    NASA Technical Reports Server (NTRS)

    Goody, R. M.

    1981-01-01

    A historical review of the use of three independent techniques for measuring the rotational rate is presented. The approaches examined are: (1) using theoretical interior models together with observations of the oblateness and the gravitational moment; (2) studying periodic fluctuations in the brightness; and (3) spectrographically measuring the Doppler shifts (line tilts). Measurements of line tilts obtained using the Kitt Peak National Observation 4 meter telescope with a Cassegrain echelle to high obtain high spectral dispersion and large image are discussed and compared with results obtained by Muench and Hipplelein (1980) and by Hayes and Belton (1977). The possibility of using speckel imaging techniques to detect the motion of features across the disc in the 6091 methane band, and with more suitable image intensifiers, in the 7261 band is considered.

  4. Laboratory Measurement of the Pure Rotational Transitions of HCNH+ and Its Isotopic Species

    NASA Astrophysics Data System (ADS)

    Araki, M.; Ozeki, H.; Saito, S.

    1998-03-01

    The pure rotational transitions of the protonated hydrogen cyanide ion, HCNH+, and its isotopic species, HCND+ and DCND+, were measured in the 107-482 GHz region with a source-modulated microwave spectrometer. The ions were generated in a cell with a magnetically confined DC-glow discharge of HCN and/or DCN. The rotational constant B0 and the centrifugal distortion constant D0 for each ion were precisely determined by a least-squares fitting to the observed spectral lines. The observed rotational transition frequencies by laboratory spectroscopy and the predicted ones are accurate to about 30-40 kHz and are useful as rest frequencies for astronomical searches of HCNH+ and HCND+.

  5. Current status of quantitative rotational spectroscopy for atmospheric research

    NASA Technical Reports Server (NTRS)

    Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois

    2004-01-01

    Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.

  6. Incompressible fluid flows in rapidly rotating cavities

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre

    The subject of incompressible fluid flows in rapidly rotating cavities, relevant to the dynamics of the Earth's outer core, is addressed here by means of numerical modeling. We recall in the introduction what makes this topic fascinating and challenging, and emphasize the need for new, more flexible numerical approaches in line with the evolution of today's parallel computers. Relying upon recent advances in numerical analysis, we first introduce in chapter 2 a spectral element model of the axisymmetric Navier-Stokes equation, in a rotating reference frame. Comparisons with analytical or published numerical solutions are made for various test problems, which highlight the spectral convergence properties and adaptivity of the approach. In chapter 3, we couple this axisymmetric kernel with a Fourier expansion in longitude in order to describe the dynamics of three-dimensional convection flows. Again, several reference problems are studied. In the specific case of a rotating fluid undergoing thermal convection, this so-called Fourier-spectral element method (FSEM) proves to be as accurate as standard pseudo-spectral techniques. Having this numerical tool anchored on solid grounds, we study in chapter 4 fluid flows driven by thermal convection and precession at the same time. A new topic in the vast field of fluid mechanics, convecto-precessing flows are of particular importance for the Earth's core, and the equations governing their evolution are derived in detail. We solve these using the FSEM; results seem to indicate that to first order, thermal convection and precession ignore each other. We discuss the relevance of these calculations for the Earth's core and outline directions for future related research.

  7. In-line rotating capacitive torque sensor

    SciTech Connect

    Kronberg, J.W.

    1991-12-31

    This invention is comprised of a proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring, the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

  8. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  9. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    NASA Astrophysics Data System (ADS)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  10. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  11. A High-resolution Isotopic Study of the Rotational Spectrum of c-C3H2

    NASA Astrophysics Data System (ADS)

    Spezzano, S.; Tamassia, F.; Thorwirth, S.; Thaddeus, P.; Gottlieb, C. A.; McCarthy, M. C.

    2012-05-01

    The rotational spectra of the normal and seven isotopic species of cyclopropenylidene c-C3H2 have been measured at high spectral resolution by Fourier transform microwave spectroscopy of a supersonic molecular beam between 10 and 43 GHz. Deuterium quadrupole coupling and carbon-13 spin-rotation hyperfine constants were determined in addition to the rotational constants. Quartic and sextic centrifugal distortion constants derived from 28 lines between 150 and 316 GHz of the doubly deuterated species c-C3D2 allow the rotational spectrum to be calculated to 0.5 km s-1 or better in equivalent radial velocity up to 500 GHz. Spectroscopic constants determined from four centimeter-wave and 19 millimeter-wave lines of the normal species c-C3H2, including 15 with sharp Lamb-dips, allow prediction of the most important astronomical transitions (i.e., those with ΔJ = 1 and Ka <= 3) to 0.05 km s-1 or better at 500 GHz. The doubly deuterated species is a good candidate for detection in cold dark clouds, because deuterium fractionation is high in c-C3H2 and lines of C3HD are fairly intense in these sources. An accurate empirical equilibrium structure of c-C3H2, derived from the experimental rotational constants of normal and isotopic c-C3H2, corrected for zero-point vibrational effects, is compared with previously reported structures.

  12. Optical rotation sensors

    NASA Astrophysics Data System (ADS)

    Rotge, J. R.; Simmons, B. J.; Kroncke, G. T.; Stech, D. J.

    1986-05-01

    Research efforts were concentrated on passive ring laser rotation sensor technology. Initial efforts were performed on supportive projects, e.g., laser stabilization, followed by a 0.62 sq m passive resonant ring laser gyro (PRRLG), leading to the development of a 60 sq m system mounted on the pneumatically supported isolation test platform (Iso-Pad) at FJSRL. Numerous sub-system tasks and a feasibility 0.62 sq m PRRLG were completed, supporting projections of very high resolution performance by a large 60 sq m PRRLG. The expected performance of the large PRRLG, on the order of 10 to the minus 10th power ERU (earth rate units), would provide an accurate error model applicable to Air Force operational ring laser gyros, a new source of geophysical data, e.g., earth wobble and variations in earth rotation, a proven design concept applicable to Air Force sensor needs as reference to MX instruments tests, and relativity experiments. This report documents the many accomplishments leading to, and the status of the large PRRLG at the date of the PRRLG stop order, November 1985.

  13. The Solar Twin Planet Search. IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars

    NASA Astrophysics Data System (ADS)

    dos Santos, Leonardo A.; Meléndez, Jorge; do Nascimento, José-Dias; Bedell, Megan; Ramírez, Iván; Bean, Jacob L.; Asplund, Martin; Spina, Lorenzo; Dreizler, Stefan; Alves-Brito, Alan; Casagrande, Luca

    2016-08-01

    Context. It is still unclear how common the Sun is when compared to other similar stars in regards to some of its physical properties, such as rotation. Considering that gyrochronology relations are widely used today to estimate ages of stars in the main sequence, and that the Sun is used to calibrate it, it is crucial to assess whether these procedures are acceptable. Aims: We analyze the rotational velocities, limited by the unknown rotation axis inclination angle, of an unprecedented large sample of solar twins to study the rotational evolution of Sun-like stars, and assess whether the Sun is a typical rotator. Methods: We used high-resolution (R = 115 000) spectra obtained with the HARPS spectrograph and the 3.6 m telescope at La Silla Observatory. The projected rotational velocities for 81 solar twins were estimated by line profile fitting with synthetic spectra. Macroturbulence velocities were inferred from a prescription that accurately reflects their dependence with effective temperature and luminosity of the stars. Results: Our sample of solar twins include some spectroscopic binaries with enhanced rotational velocities, and we do not find any nonspectroscopic binaries with unusually high rotation velocities. We verified that the Sun does not have a peculiar rotation, but the solar twins exhibit rotational velocities that depart from the Skumanich relation. Conclusions: The Sun is a regular rotator when compared to solar twins with a similar age. Additionally, we obtain a rotational braking law that better describes the stars in our sample (v ∝ t-0.6) in contrast to previous, often-used scalings. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 188.C-0265, 183.D-0729, 292.C-5004, 077.C-0364, 072.C-0488, 092.C-0721, 093.C-0409, 183.C-0972, 192.C-0852, 091.C-0936, 089.C-0732, 091.C-0034, 076.C-0155, 185.D-0056, 074.C-0364, 075.C-0332, 089.C-0415, 60.A-9036, 075.C-0202, 192

  14. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65

  15. Fluid slip ring transfers coolant to rotating equipment

    NASA Technical Reports Server (NTRS)

    Mains, D. K.

    1971-01-01

    Rotating fluid coupler, consisting of rotor and housing made of aluminum, that is concentric with electrical slip-ring assembly, transfers cooling fluid to instrumentation undergoing environmental tests on rotating platform. Rotating fluid coupler permits unlimited platform revolutions and eliminates danger of lines being pulled loose from supplies.

  16. Rotational studies of late-type stars. III - Rotation among BY Draconis stars

    NASA Astrophysics Data System (ADS)

    Vogt, S. S.; Penrod, G. D.; Soderblom, D. R.

    1983-06-01

    High-resolution line profiles have been obtained and v sin i's measured for 17 K and M dwarfs. All BY Draconis stars (whether single or in binaries) rotate more rapidly than other K and M dwarfs, reinforcing previous suggestions that rapid rotation (≥5 km s-1) is the underlying cause of the BY Draconis syndrome.

  17. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells.

    PubMed Central

    Lepock, J R; Cheng, K H; Campbell, S D; Kruuv, J

    1983-01-01

    The correlation time for rotational diffusion (tau R) of 2,2,6,6-tetramethyl-4-piperidone-N-oxide (TEMPONE) in Chinese hamster lung (V79) cells has been measured. For these cells in an isosmotic solution at 20 degrees C, tau R = 4.18 X 10(-11) s, approximately 3.6 times greater than tau R = 1.17 X 10(-11) s in water. The relationship between tau R and viscosity was investigated in a number of glycerol-water (0-50%) and sucrose-water (20-40%) solutions and a constant Stokes-Einstein volume of 44 A3 was found for TEMPONE in solutions of less than 20% glycerol and sucrose. This gives an average shear viscosity (for rotation of a small molecule) of 0.038 poise for the cytoplasm. When nonsecular terms were used in the calculation of tau R, the activation energies for rotation of TEMPONE in the above solutions correlated well with the activation energies for shear viscosity. The viscosity increases as the cell is shrunk in hypertonic solutions. It also increases with decreasing temperature with an activation energy of 3.7 kcal/mol, about the same as the activation energy for the viscosity of pure water. The rotational correlation times were carefully calculated considering inhomogeneous line broadening, non-Lorentzian line shapes, the need for accurate tensor values and nonsecular terms. PMID:6318842

  18. Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Bailleux, S.; Cernicharo, J.

    2017-01-01

    Context. Of the two structural isomers of CH3O, methoxy is the only radical whose astronomical detection has been reported through the observation of several rotational lines at 2 and 3 mm wavelengths. Although the hydroxymethyl radical, CH2OH, is known to be thermodynamically the most stable (by 3300 cm-1), it has so far eluded rotational spectroscopy presumably because of its high chemical reactivity. Aims: Recent high-resolution ( 10 MHz) sub-Doppler rovibrationally resolved infrared spectra of CH2OH (symmetric CH stretching a-type band) provided accurate ground vibrational state rotational constants, thus reviving the quest for its millimeter-wave spectrum in laboratory and subsequently in space. Methods: The search and assignment of the rotational spectrum of this fundamental species were guided by our quantum chemical calculations and by using rotational constants derived from high-resolution IR data. The hydroxymethyl radical was produced by hydrogen abstraction from methanol by atomic chlorine. Results: Ninety-six b-type rotational transitions between the v = 0 and v = 1 tunnelling sublevels involving 25 fine-structure components of Q branches (with Ka = 1 ← 0) and 4 fine-structure components of R branches (assigned to Ka = 0 ← 1) were measured below 402 GHz. Hyperfine structure alternations due to the two identical methylenic hydrogens were observed and analysed based on the symmetry and parity of the rotational levels. A global fit including infrared and millimeter-wave lines has been conducted using Pickett's reduced axis system Hamiltonian. The recorded transitions (odd ΔKa) did not allow us to evaluate the Coriolis tunnelling interaction term. The comparison of the experimentally determined constants for both tunnelling levels with their computed values secures the long-awaited first detection of the rotational-tunnelling spectrum of this radical. In particular, a tunnelling rate of 139.73 ± 0.10 MHz (4.6609(32) × 10-3 cm-1) was obtained along

  19. Pressure broadening calculations for OH in collisions with argon: Rotational, vibrational, and electronic transitions

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-03-01

    Collisional parameters describing both the pressure-induced broadening and shifting of isolated lines in the spectrum of the hydroxyl radical in collisions with argon have been determined through quantum scattering calculations using accurate potential energy surfaces describing the OH(X2 Π , A2Σ+)-Ar interactions. These calculations have been carried for pure rotational, vibrational, and electronic transitions. The calculated pressure broadening coefficients are in good agreement with the available measurements in the microwave, infrared, and ultraviolet spectral regions. Computed pressure broadening coefficients as a function of temperature are reported for these three types of transitions.

  20. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  1. Fourier analysis for rotating-element ellipsometers.

    PubMed

    Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo

    2011-01-15

    We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.

  2. Evaluation of Distal Femoral Rotational Alignment with Spiral CT Scan before Total Knee Arthroplasty (A Study in Iranian population)

    PubMed Central

    Jabalameli, Mahmoud; Moradi, Amin; Bagherifard, Abolfazl; Radi, Mehran; Mokhtari, Tahmineh

    2016-01-01

    Background: Evaluating the landmarks for rotation of the distal femur is a challenge for orthopedic surgeons. Although the posterior femoral condyle axis is a good landmark for surgeons, the surgical transepicondylar axis may be a better option with the help of preoperative CT scanning. The purpose of this study was to ascertain relationships among the axes’ guiding distal femur rotational alignment in preoperative CT scans of Iranian patients who were candidates for total knee arthroplasty and the effects of age, gender, and knee alignment on these relationships. Methods: One hundred and eight cases who were admitted to two university hospitals for total knee arthroplasty were included in this study. The rotation of the distal femur was evaluated using single axial CT images through the femoral epicondyle. Four lines were drawn digitally in this view: anatomical and surgical transepicondylar axes, posterior condylar axis and the Whiteside anteroposterior line. The alignment of the extremity was evaluated in the standing alignment view. Then the angles were measured along these lines and their relationship was evaluated. Results: The mean angle between the anatomical transepicondylar axis and posterior condylar axis and between the surgical transepicondylar axis and posterior condylar axis were 5.9 ± 1.6 degrees and 1.6±1.7 degrees respectively. The mean angle between the Whiteside’s anteroposterior line and the line perpendicular to the posterior condylar axis was 3.7±2.1 degrees. Significant differences existed between the two genders in these relationships. No significant correlation between the age of patients and angles of the distal femur was detected. The anatomical surgical transepicondylar axis was in 4.3 degrees external rotation in relation to the surgical transepicondylar axis. Conclusion: Preoperative CT scanning can help accurately determine rotational landmarks of the distal femur. If one of the reference axes cannot be determined, other

  3. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    SciTech Connect

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.

  4. Central Rotations of Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  5. Shell model for warm rotating nuclei

    SciTech Connect

    Matsuo, M.; Yoshida, K.; Dossing, T.

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  6. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  7. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  8. Shear rotation numbers

    NASA Astrophysics Data System (ADS)

    Doeff, E.; Misiurewicz, M.

    1997-11-01

    This paper presents results on rotation numbers for orientation-preserving torus homeomorphisms homotopic to a Dehn twist. Rotation numbers and the rotation set for such homeomorphisms have been defined and initially investigated by the first author in a previous paper. Here we prove that each rotation number 0951-7715/10/6/017/img5 in the interior of the rotation set is realized by some compact invariant set, and that there is an ergodic measure on that set with mean rotation number 0951-7715/10/6/017/img5. It is also proved that the function which assigns its rotation set to such a homeomorphism is continuous. Finally, a counterexample is presented that shows that rational extremal points of the shear rotation set do not necessarily correspond to any periodic orbits.

  9. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  10. Rotator cuff exercises

    MedlinePlus

    ... to these tendons may result in: Rotator cuff tendinitis, which is irritation and swelling of these tendons ... Brien MJ, Leggin BG, Williams GR. Rotator cuff tendinopathies and tears: surgery and therapy. In: Skirven TM, ...

  11. Shaft-Rotation Detector

    NASA Technical Reports Server (NTRS)

    Randall, Richard L.

    1990-01-01

    Signal-processing subsystem generates signal indicative of rotation of shaft from output of accelerometer mounted on housing of bearing supporting shaft. Output of subsystem binary signal at frequency of rotation of shaft. Part of assembly of electronic equipment measuring vibrations in rotating machinery. Accelerometer mounted in such way sensitive to vibrations of shaft perpendicular to axis. Output of accelerometer includes noise and components of vibration at frequencies higher than rotational frequency of shaft.

  12. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  13. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  14. nu-2 band of H2 O-16 - Line strengths and transition frequencies

    NASA Technical Reports Server (NTRS)

    Toth, Robert A.

    1991-01-01

    High-resolution spectra of H2 O-16 were recorded with a Fourier-transform spectrometer covering transitions in the (010)-(000) band from 1066 to 2582/cm. The measured line frequencies were used along with additional data taken from studies at microwave and far-infrared frequencies in an analysis to obtain rotational energies of levels in the (000) and (010) states. Measurements of the line strengths were fitted by least squares to a model in which the dipole moment matrix elements were represented by as many as 19 expansion coefficients. The results produced computed line strength values that are in excellent agreement, on the average, with the 874 experimental transitions included in the analysis. These results provide a more accurate representation of the line positions and strengths for the (010)-(000) band than are currently available on the HITRAN absorption line parameter compilation.

  15. Using Transmission Spectroscopy to Determine the Rotation Rate of HD 189733b

    NASA Astrophysics Data System (ADS)

    Flowers, Erin Elise; Rauscher, Emily; Kempton, Eliza; Brogi, Matteo

    2017-01-01

    It is essential to determine atmospheric dynamics of exoplanets in order to gain a complete understanding of their characteristics, such as their chemical composition, radiative transfer processes, and, eventually, their habitability. One of the main observables used to study an exoplanet atmosphere is its transmission spectrum, the shape and intensity of which are inherently entwined with atmospheric and planetary dynamics. We are particularly interested in how the transmission spectrum can be used to determine the rotation rate of hot Jupiters (closely-orbiting, Jupiter-sized exoplanets, which are expected to be tidally locked) by fitting high resolution observed spectra to models. These high-resolution spectra (R ~ 105) detect atmospheric and planetary motions on order of kilometers per second, and we have developed a model that generates transmission spectra of a similar resolution. We begin with a 3D General Circulation Model that (for a given rotation rate) self-consistently models atmospheric and planetary motion by solving a combination of meteorology and radiative transfer equations. The result is a three-dimensional map of the temperature, pressure, and wind speed at several thousand points within our three-dimensional model atmosphere. The atmospheric output is then interpreted by our transmission spectrum code to calculate the widths, Doppler shifts, and intensities of the spectral lines for given chemical concentrations. By accurately modeling the high resolution spectra using twelve different rotation rates, under two different chemical composition regimes, and fitting them to the observed spectra, we can more tightly constrain the rotation rate of our planet of interest, HD 189733b. In a previous study, its rotation rate was determined within a confidence interval of 1.5σ, and we aim to improve upon this measurement by comparing this more accurate model to higher resolution observations.

  16. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  17. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  18. Visualizing molecular unidirectional rotation

    NASA Astrophysics Data System (ADS)

    Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-07-01

    We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.

  19. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  20. Rotationally resolved IR spectroscopy of hexamethylenetetramine (HMT) C6N4H12

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Carrasco, N.; Dartois, E.

    2014-01-01

    Context. Hexamethylenetetramine (HMT) appears to be a potential constituent of several objects in space, including comets or Titan's atmosphere and, as an organic residue of ice irradiation in the laboratory, it may be present in the interstellar medium. Aims: We performed a laboratory study of rotationally resolved intense IR bands of HMT to provide accurate line positions and synthetic spectra to be used for potential astronomical detections. Methods: We used synchrotron-based high-resolution Fourier transform infrared spectroscopy to record the experimental data. A formalism and programs dedicated to the assignment, analysis, and simulation of absorption spectra of tetrahedral molecules were used to exploit the spectra. Results: Infrared spectra of gas phase HMT were recorded and accurate wavenumbers and molecular parameters for four intense bands located in the 1000-1500 cm-1 spectral range suitable for astronomical searches were derived.

  1. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  2. Differential rotation in rapidly rotating early-type stars. I. Motivations for combined spectroscopic and interferometric studies

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Delaa, O.; Stee, P.; Mourard, D.; Cidale, L.; Martayan, C.; Georgy, C.; Ekström, S.

    2011-02-01

    Context. Since the external regions of the envelopes of rapidly rotating early-type stars are unstable to convection, a coupling may exist between the convection and the internal rotation. Aims: We explore what can be learned from spectroscopic and interferometric observations about the properties of the rotation law in the external layers of these objects. Methods: Using simple relations between the entropy and specific rotational quantities, some of which are found to be efficient at accounting for the solar differential rotation in the convective region, we derived analytical solutions that represent possible differential rotations in the envelope of early-type stars. A surface latitudinal differential rotation may not only be an external imprint of the inner rotation, but induces changes in the stellar geometry, the gravitational darkening, the aspect of spectral line profiles, and the emitted spectral energy distribution. Results: By studying the equation of the surface of stars with non-conservative rotation laws, we conclude that objects undergo geometrical deformations that are a function of the latitudinal differential rotation able to be scrutinized both spectroscopically and by interferometry. The combination of Fourier analysis of spectral lines with model atmospheres provides independent estimates of the surface latitudinal differential rotation and the inclination angle. Models of stars at different evolutionary stages rotating with internal conservative rotation laws were calculated to show that the Roche approximation can be safely used to account for the gravitational potential. The surface temperature gradient in rapid rotators induce an acceleration to the surface angular velocity. Although a non-zero differential rotation parameter may indicate that the rotation is neither rigid nor shellular underneath the stellar surface, still further information, perhaps non-radial pulsations, is needed to determine its characteristics as a function of depth

  3. Electric Vector Rotations of π/2 in Polarized Circumstellar SiO Maser Emission

    NASA Astrophysics Data System (ADS)

    Kemball, A. J.; Diamond, P. J.; Richter, L.; Gonidakis, I.; Xue, R.

    2011-12-01

    This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately π/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes {I, Q, U, V} properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle θ between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile ml (θ) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile mc (θ).

  4. The pure rotational spectrum of the ScO (X2Σ+) radical

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Min, J.; Ziurys, L. M.

    2017-01-01

    The rotational spectrum of ScO (X2Σ+) has been measured in the gas phase in the frequency range 30-493 GHz using a combination of Fourier transform microwave/millimeter-wave (FTM/mmW) and submillimeter direct absorption methods. This work is the first pure rotational study of this radical. Both the ground vibrational and v = 1 states were observed. ScO was created from the reaction of metal vapor, produced either by a laser ablation source or a Broida-type oven, and N2O, in the former case heavily diluted in argon. Extensive hyperfine structure was observed in the FTM/mmW data, although the spin-rotation splitting was found to be small (∼3 MHz). In the mm-wave spectra, however, the fine and hyperfine structure was blended together, resulting in broad, single lines for a given transition N + 1 ← N. The data were analyzed in a combined fit using the very accurate hyperfine measurements of Childs and Steimle (1988), employing a Hund's case b Hamiltonian, and an improved set of rotational and centrifugal distortion constants were determined. These measurements improve the accuracy of predicted frequencies for astronomical searches by 14-18 MHz, or 16-20 km/s, in the 1 mm region - a difference of half to a full linewidth for certain interstellar sources. This work also demonstrates the capabilities of the FTM/mmW spectrometer at 61 GHz.

  5. ELECTRIC VECTOR ROTATIONS OF {pi}/2 IN POLARIZED CIRCUMSTELLAR SiO MASER EMISSION

    SciTech Connect

    Kemball, A. J.; Xue, R.; Diamond, P. J.; Gonidakis, I.; Richter, L.

    2011-12-10

    This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately {pi}/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes (I, Q, U, V) properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle {theta} between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile m{sub l} ({theta}) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile m{sub c} ({theta}).

  6. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  7. Laboratory rotational ground state transitions of NH3D+ and CF+

    NASA Astrophysics Data System (ADS)

    Stoffels, A.; Kluge, L.; Schlemmer, S.; Brünken, S.

    2016-09-01

    Aims: This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods: Spectra in the millimetre-wave band were recorded by the method of rotational state-selective attachment of He atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH3D+ (JK = 10-00), and the two hyperfine components of the ground state transition of CF+ (J = 1-0) were measured with a relative precision better than 10-7. Results: For both target ions, the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH3D+ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF+ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations and the intrinsic spectroscopic nature of a double-peaked line profile observed in the J = 1-0 transition towards the Horsehead photon-dominated region (PDR).

  8. Cylindrical rotating triboelectric nanogenerator.

    PubMed

    Bai, Peng; Zhu, Guang; Liu, Ying; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Ma, Jusheng; Zhang, Gong; Wang, Zhong Lin

    2013-07-23

    We demonstrate a cylindrical rotating triboelectric nanogenerator (TENG) based on sliding electrification for harvesting mechanical energy from rotational motion. The rotating TENG is based on a core-shell structure that is made of distinctly different triboelectric materials with alternative strip structures on the surface. The charge transfer is strengthened with the formation of polymer nanoparticles on surfaces. During coaxial rotation, a contact-induced electrification and the relative sliding between the contact surfaces of the core and the shell result in an "in-plane" lateral polarization, which drives the flow of electrons in the external load. A power density of 36.9 W/m(2) (short-circuit current of 90 μA and open-circuit voltage of 410 V) has been achieved by a rotating TENG with 8 strip units at a linear rotational velocity of 1.33 m/s (a rotation rate of 1000 r/min). The output can be further enhanced by integrating more strip units and/or applying larger linear rotational velocity. This rotating TENG can be used as a direct power source to drive small electronics, such as LED bulbs. This study proves the possibility to harvest mechanical energy by TENGs from rotational motion, demonstrating its potential for harvesting the flow energy of air or water for applications such as self-powered environmental sensors and wildlife tracking devices.

  9. Field-Line Dispersal and the Death of Lyapunov Exponents

    NASA Astrophysics Data System (ADS)

    Ragot, B. R.

    2008-12-01

    Turbulent magnetic field lines have long been thought to be diverging from each other (or converging towards each other) at exponential rates known as Lyapunov exponents. It is now shown that in a turbulent magnetized plasma, subexponential divergence (convergence) and diffusive twist better characterize the dispersal of magnetic field lines than do the usual Lyapunov exponents or exponentiation rates. Pairs of nearby magnetic field lines diverge (converge) sub-exponentially rather than exponentially, and as soon as they diverge (converge) by a significant amount, they also experience substantial twist or rotation relative to each other. More distant magnetic field lines follow the same dynamics of twist and sub-exponential divergence (convergence), though at a slower rate. It is also found that on a very broad range of separation length scales, the statistics of the field-line separations are log-normal rather than Gaussian. Most importantly, the field-line dispersal can now be evaluated quantitatively and accurately. These results will be presented and some implications for the dispersal and mixing of solar wind magnetic field lines and particles will be discussed.

  10. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  11. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  12. Fast Fossil Rotation of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  13. Structural tailoring of counter rotation propfans

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth W.; Hopkins, D. A.

    1989-01-01

    The STAT program was designed for the optimization of single rotation, tractor propfan designs. New propfan designs, however, generally consist of two counter rotating propfan rotors. STAT is constructed to contain two levels of analysis. An interior loop, consisting of accurate, efficient approximate analyses, is used to perform the primary propfan optimization. Once an optimum design has been obtained, a series of refined analyses are conducted. These analyses, while too computer time expensive for the optimization loop, are of sufficient accuracy to validate the optimized design. Should the design prove to be unacceptable, provisions are made for recalibration of the approximate analyses, for subsequent reoptimization.

  14. Rotating cooloing flows

    NASA Technical Reports Server (NTRS)

    Kley, Wilhelm; Mathews, William G.

    1995-01-01

    We describe the evolution of the hot interstellar medium in a large, slowly rotating elliptical galaxy. Although the rotation assumed is a small fraction of the circular velocity, in accordance with recent observations, it is sufficient to have a profound influence on the X-ray emission and cooling geometry of the interstellar gas. The hot gas cools into a disk that extends out to approximately 10 kpc. The cool, dusty disks observed in the majority of elliptical galaxies may arise naturally from internal cooling rather than from mergers with gas-rich companions. As a result of angular momentum conservation in the cooling flow, the soft X-ray isophotes are quite noticeably flatter than those of the stellar image. The gas temperature is higer along the rotation axis. The rotational velocity of the gas several kiloparcsecs above the central disk far exceeds the local stellar rotation and approaches the local circular velocity as it flows toward the galactic core. The detailed appearance of the X-ray image and velocity field of the X-ray gas provide information about the global rotational properties of giant ellipticals at radii too distant for optical observations. The overall pattern of rotation in these galaxies retains information about the origin of ellipticals, particularly of their merging history. In ellipticals having radio jets, if the jets are aligned with the rotation axis of the inner cooling flow, rotation within the jet could be sustained by the rotating environment. Since most large ellipticals have modest rotation, the X-ray observations at low spatial resolution, when interpreted with spherical theoretical models, give the impression that hot gas undergoes localized cooling to very low temperatures many kiloparcsecs from the galactic core. We suggest that such apparent cooling can result in a natural way as gas cools onto a rotating disk.

  15. Rotating rigid motion in general relativity

    SciTech Connect

    Mason, D.P.; Pooe, C.A.

    1987-11-01

    Kinematic and dynamic expressions are derived for the Lie derivative of vorticity along a particle world line in a rigid motion. It is found that the evolution of vorticity in a rigid motion is governed by the electric part of the Weyl tensor. Necessary and sufficient kinematic and dynamic conditions are established for a rotating rigid motion to be isometric.

  16. Mental Rotation of Dynamic, Three-Dimensional Stimuli by 3-Month-Old Infants

    ERIC Educational Resources Information Center

    Moore, David S.; Johnson, Scott P.

    2011-01-01

    Mental rotation involves transforming a mental image of an object so as to accurately predict how the object would look if it were rotated in space. This study examined mental rotation in male and female 3-month-olds, using the stimuli and paradigm developed by Moore and Johnson (2008). Infants were habituated to a video of a three-dimensional…

  17. Adaptation to rotating artificial gravity environments.

    PubMed

    Lackner, James R; DiZio, Paul A

    2003-01-01

    A series of pioneering experiments on adaptation to rotating artificial gravity environments was conducted in the 1960s. The results of these experiments led to the general belief that humans with normal vestibular function would not be able to adapt to rotating environments with angular velocities above 3 or 4 rpm. By contrast, our recent work has shown that sensory-motor adaptation to 10 rpm can be achieved relatively easily and quickly if subjects make the same movement repeatedly. This repetition allows the nervous system to gauge how the Coriolis forces generated by movements in a rotating reference frame are deflecting movement paths and endpoints and to institute corrective adaptations. Independent mechanisms appear to underlie restoration of straight movement paths and of accurate movement endpoints. Control of head movements involves adaptation of vestibulo-collic and vestibulo-spinal mechanisms as well as adaptation to motor control of the head as an inertial mass. The vestibular adaptation has a long time constant and the motor adaptation a short one. Surprisingly, Coriolis forces generated by natural turning and reaching movements in our normal environment are typically larger than those elicited in rotating artificial gravity environments. They are not recognized as such because self-generated Coriolis forces during voluntary trunk rotation are perceptually transparent. After adaptation to a rotating environment is complete, the Coriolis forces generated by movements within it also become transparent and are not felt although they are still present.

  18. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  19. Diamagnetism of rotating plasma

    SciTech Connect

    Young, W. C.; Hassam, A. B.; Romero-Talamas, C. A.; Ellis, R. F.; Teodorescu, C.

    2011-11-15

    Diamagnetism and magnetic measurements of a supersonically rotating plasma in a shaped magnetic field demonstrate confinement of plasma pressure along the magnetic field resulting from centrifugal force. The Grad-Shafranov equation of ideal magnetohydrodynamic force balance, including supersonic rotation, is solved to confirm that the predicted angular velocity is in agreement with spectroscopic measurements of the Doppler shifts.

  20. Wideband rotating junctions

    NASA Astrophysics Data System (ADS)

    Pochernyaev, V. N.

    1993-06-01

    Rotating junctions of coaxial-waveguide and waveguide type with a traveling wave coefficient exceeding 0.8 in a wide frequency range are considered. The design of these junctions is based on a method of the theory of electrodynamic circuits. Numerical results are obtained for rotating junctions of partially filled rectangular waveguide type and their particular cases.

  1. The Weighted Oblimin Rotation.

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano

    2000-01-01

    Demonstrates that the weighting procedure proposed by E. Cureton and S. Mulaik (1975) can be applied to the Direct Oblimin approach of D. Clarkson and R. Jennrich (1988) to provide good results. The rotation method obtained is called Weighted Oblimin. Compared this method to other rotation methods with favorable results. (SLD)

  2. SMAP Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  3. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  4. Rotational Spectrum and Internal Rotation Barrier of 1-Chloro-1,1-difluoroethane

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; López, Juan C.; Blanco, Susana; Guarnieri, Antonio

    1997-03-01

    The rotational spectra of 1-chloro-1,1-difluoroethane (HCFC-142b) has been investigated in the frequency region 8-115 GHz with Stark, waveguide Fourier transform (FTMW), and millimeter-wave spectrometers. Assignments in large frequency regions with the corresponding frequency measurements have been made for the ground andv18= 1 (CH3torsion) vibrational states of the35Cl isotopomer and for the ground state of the37Cl species. Accurate rotational, quartic centrifugal distortion, and quadrupole coupling constants have been determined from global fits considering all these states. SmallA-Einternal rotation splittings have been observed for thev18= 1 vibrational state using FTMW spectroscopy. The barrier height for the internal rotation of the methyl group has been determined to be 3751 (4) cal mol-1, in disagreement with the previous microwave value of 4400 (100) cal mol-1reported by G. Graner and C. Thomas [J. Chem. Phys.49,4160-4167 (1968)].

  5. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  6. The rotation of the Sun's core.

    NASA Astrophysics Data System (ADS)

    Paterno, L.; Sofia, S.; di Mauro, M. P.

    1996-10-01

    The rotation of the Sun's core, below 0.3Rsun_, is inferred from two independent new results. The first is based on the recent oblateness measurements carried out by the Solar Disk Sextant (SDS) instrument outside the Earth's atmosphere, and the second on the very accurate measurements of rotational splittings of the lowest degree acoustic modes, carried out in the framework of the helioseismic network IRIS. By using the theory of slowly rotating stars applied to a solar standard model, we deduce a set of rotational laws for the innermost layers, which are consistent with both the measured oblateness value and the results of the inversion of helioseismic data. The SDS and IRIS results indicate that the Sun's central regions rotate at a rate in between 1.5 and 2 times the surface equatorial angular velocity. As a result of our analysis, we deduce a quadrupole moment J_2_=2.22x10^-7^, which implies an advance of Mercury's perihelion of 42.98arcsec/c, in agreement with the theory of General Relativity and the measurements of Mercury's orbit by means of planetary radar ranging. However, very recent results obtained by the helioseismic network BISON indicate that core rotation is even slower than the polar surface rotation and therefore imply a completely different scenario than that proposed here. If we assume the intermediate solution of rigid body rotation, an alternate source of the oblateness may be attributed to a magnetic field of the order of 10^5^Gauss in the interior of the Sun.

  7. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  8. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  9. Rotation periods of exoplanet host stars

    NASA Astrophysics Data System (ADS)

    Simpson, E. K.; Baliunas, S. L.; Henry, G. W.; Watson, C. A.

    2010-11-01

    The stellar rotation periods of 10 exoplanet host stars have been determined using newly analysed CaII H&K flux records from the Mount Wilson Observatory and Strömgren b, y photometric measurements from Tennessee State University's automatic photometric telescopes at the Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 +/- 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of 14 exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.

  10. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  11. Rotation and macroturbulence in bright giants

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1986-11-01

    Spectral line profiles of 35 F, G, and K bright giants were analyzed to obtain rotation rates, v sin i, and macroturbulence dispersion. This sample indicates that rotation rates of cool class II giants is less than 11 km/s, in contrast with some recent periodicity measurements. Macroturbulence dispersion generally increases with effective temperature, but the range of values at a given effective temperature is much larger than seen for lower luminosity classes; this is interpreted in terms of red-giant and blue-loop evolution. No evidence is found for angular momentum dissipation on the first crossing of the H-R diagram. 57 references.

  12. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  13. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  14. Method for Design Rotation

    DTIC Science & Technology

    1993-08-01

    desirability of a rotation as a function of the set of planar angles. Criteria for the symmetry of the design (such as the same set of factor levels for...P is -1. Hence there is no theoretical problem in obtaining rotations of a design; there are only the practical questions Why rotate a design? And...star points, which can be represented in a shorthand notation by the permutations of (±1,0, "’" , 0), and (c) factorial points, which are a two- level

  15. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  16. Rotational Doppler effect in x-ray photoionization

    SciTech Connect

    Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2010-11-15

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  17. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOEpatents

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  18. Collision Broadening Of Line Spectrum In Sonoluminescence

    SciTech Connect

    Li Chaohui; An Yu

    2008-06-24

    The direct measurement of temperature inside a sonoluminescing bubble as it is at its flashing phase is almost impossible due to the smallness of the bubble and the short duration of the flashing. One may estimate the temperature through fitting the continuum spectrum of sonoluminescence by the black body radiation formula, or fitting the shape of atomic or molecular line spectrum (the different temperature, density and pressure result in the different shape of the line spectrum due to the effect of collision broadening). However, the temperature changes in a huge range at short duration as the bubble flashes, therefore, the observed spectra are some kind of average one, so are those fitted results. To evaluate the instantaneous temperature more accurately, we simulate the processes of the bubble motion and the thermodynamics inside the bubble, in which atomic or molecular line spectra with the collision broadening effect and the continuum spectra contributed from the processes of electron-atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation and radiative attachment of electrons to atoms and molecules are taken into account in calculating the light emission. If both the calculated continuum spectra and the shape of line spectra can well represent the experimental data, we may deduce that the calculation of the temperature, density and pressure is reliable and we indirectly evaluate those quantities inside the bubble. In the present calculation, the line spectra of OH radical at about 310 nm mixing the electron transition with the vibration and rotational bands are considered. The calculation qualitatively consists with the observation, and we expect that with the more precise bubble dynamics model instead of the uniform model employed in the present calculation we may improve the quantitative result.

  19. The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere

    SciTech Connect

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Terradas, J.; Verth, G.

    2014-06-10

    Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvén wave.

  20. Rotating mobile launcher

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.

    1977-01-01

    Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.

  1. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  2. Rotator Cuff Injuries

    MedlinePlus

    ... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...

  3. Rotator cuff problems

    MedlinePlus

    Miller RH III, Azar FM, Throckmorton TW. Shoulder and elbow injuries. In: Canale ST, Beaty JH, eds. ... Krishnan SG. Rotator cuff and impingement lesions. In: Miller MD, Thompson SR, eds. DeLee and Drez's Orthopaedic ...

  4. Rotator cuff repair - slideshow

    MedlinePlus

    ... presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  5. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  6. Rotationally resolved infrared spectroscopy of adamantane

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.

  7. Rotator cuff injuries.

    PubMed

    Crusher, R H

    2000-07-01

    Different types of rotator cuff injuries frequently present to Accident and Emergency departments and minor injury units but can be difficult to differentiate clinically. This brief case study describes the examination and diagnosis of related shoulder injuries, specifically rotator cuff tears/disruption and calcifying supraspinatus tendinitis. The relevant anatomy and current therapies for these injuries is also discussed to enable the emergency nurse practitioner to have a greater understanding of the theory surrounding their diagnosis and treatments.

  8. Rotational rate sensor

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  9. Rotational spectrum of phenylglycinol

    NASA Astrophysics Data System (ADS)

    Simão, Alcides; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2014-11-01

    Solid samples of phenylglycinol were vaporized by laser ablation and investigated through rotational spectroscopy in a supersonic expansion using two different techniques: chirped pulse Fourier transform microwave spectroscopy and narrow band molecular beam Fourier transform microwave spectroscopy. One conformer, bearing an O-H···N and an N-H···π intramolecular hydrogen bonds, could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically.

  10. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  11. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  12. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  13. Accurate and Robust Attitude Estimation Using MEMS Gyroscopes and a Monocular Camera

    NASA Astrophysics Data System (ADS)

    Kobori, Norimasa; Deguchi, Daisuke; Takahashi, Tomokazu; Ide, Ichiro; Murase, Hiroshi

    In order to estimate accurate rotations of mobile robots and vehicle, we propose a hybrid system which combines a low-cost monocular camera with gyro sensors. Gyro sensors have drift errors that accumulate over time. On the other hand, a camera cannot obtain the rotation continuously in the case where feature points cannot be extracted from images, although the accuracy is better than gyro sensors. To solve these problems we propose a method for combining these sensors based on Extended Kalman Filter. The errors of the gyro sensors are corrected by referring to the rotations obtained from the camera. In addition, by using the reliability judgment of camera rotations and devising the state value of the Extended Kalman Filter, even when the rotation is not continuously observable from the camera, the proposed method shows a good performance. Experimental results showed the effectiveness of the proposed method.

  14. Stellar Rotation Effects in Polarimetric Microlensing

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe

    2016-07-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.

  15. Rotational Spectrum of Sarin

    NASA Astrophysics Data System (ADS)

    Walker, A. R. Hight; Suenram, R. D.; Samuels, Alan; Jensen, James; Ellzy, Michael W.; Lochner, J. Michael; Zeroka, Daniel

    2001-05-01

    As part of an effort to examine the possibility of using molecular-beam Fourier-transform microwave spectroscopy to unambiguously detect and monitor chemical warfare agents, we report the first observation and assignment of the rotational spectrum of the nerve agent Sarin (GB) (Methylphosphonofluoridic acid 1-methyl-ethyl ester, CAS #107-44-8) at frequencies between 10 and 22 GHz. Only one of the two low-energy conformers of this organophosphorus compound (C4H10FO2P) was observed in the rotationally cold (Trot<2 K) molecular beam. The experimental asymmetric-rotor ground-state rotational constants of this conformer are A=2874.0710(9) MHz, B=1168.5776(4) MHz, C=1056.3363(4) MHz (Type A standard uncertainties are given, i.e., 1σ), as obtained from a least-squares analysis of 74 a-, b-, and c-type rotational transitions. Several of the transitions are split into doublets due to the internal rotation of the methyl group attached to the phosphorus. The three-fold-symmetry barrier to internal rotation estimated from these splittings is 677.0(4) cm-1. Ab initio electronic structure calculations using Hartree-Fock, density functional, and Moller-Plesset perturbation theories have also been made. The structure of the lowest-energy conformer determined from a structural optimization at the MP2/6-311G** level of theory is consistent with our experimental findings.

  16. Small scale rotational disorder observed in epitaxial graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Walter, Andrew L.; Bostwick, Aaron; Speck, Florian; Ostler, Markus; Kim, Keun Su; Chang, Young Jun; Moreschini, Luca; Innocenti, Davide; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2013-02-01

    Interest in the use of graphene in electronic devices has motivated an explosion in the study of this remarkable material. The simple, linear, Dirac cone band structure offers a unique possibility to investigate its finer details by angle-resolved photoelectron spectroscopy (ARPES). Indeed, ARPES has been performed on graphene grown on metal substrates but electronic applications require an insulating substrate. Epitaxial graphene grown by the thermal decomposition of silicon carbide (SiC) is an ideal candidate for this due to the large scale, uniform, graphene layers produced. The experimental spectral function of epitaxial graphene on SiC has been extensively studied. However, until now the cause of an anisotropy in the spectral width of the Fermi surface has not been determined. In the current work we show, by comparison of the spectral function to a semi-empirical model, that the anisotropy is due to small scale rotational disorder (˜± 0.15°) of graphene domains in graphene grown on SiC(0001) samples. The complicated shape described by the line-width is accurately reproduced by the semi-empirical model only when rotational disorder is included. While spectra from rare regions of the sample containing only one or two rotational domains is also presented. In addition to the direct benefit in the understanding of graphene's electronic structure this work suggests a mechanism to explain similar variations in related ARPES data.

  17. Excited Rotational States in Doped {4} He Clusters: a Diffusion Monte Carlo Analysis

    NASA Astrophysics Data System (ADS)

    Coccia, Emanuele

    2017-03-01

    We report an extension of diffusion Monte Carlo (DMC) to the calculation of the molecular rotational energies by means of the generalized, symmetry-adapted, imaginary-time correlation functions (SAITCFs) originally introduced in the reptation quantum Monte Carlo (RQMC) framework (Škrbić in J Phys Chem A 111:12749, 2007). We studied the a-type and b-type rotational lines of the CO(4 He)N clusters with N= 1-8 that correlate, in the dimer limit, with the end-over-end and free-rotor transitions. We compare the SAITCF-DMC results with accurate DVR (for the dimer case), RQMC and other DMC data, and with reference experimental findings (Surin in Phys Rev Lett 101:233401, 2008). A good agreement is generally found, but a systematic underestimation of the SAITCF-DMC rotational energies of the b-type series is observed. Sources of inaccuracy in our theoretical approach and in the computational protocol are discussed and analyzed in detail.

  18. Ring wormholes via duality rotations

    NASA Astrophysics Data System (ADS)

    Gibbons, Gary W.; Volkov, Mikhail S.

    2016-09-01

    We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy-Voorhees-Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than -c4 / 4 G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  19. Relativity on rotated graph paper

    NASA Astrophysics Data System (ADS)

    Salgado, Roberto B.

    2016-05-01

    We demonstrate a method for constructing spacetime diagrams for special relativity on graph paper that has been rotated by 45°. The diagonal grid lines represent light-flash worldlines in Minkowski spacetime, and the boxes in the grid (called "clock diamonds") represent units of measurement corresponding to the ticks of an inertial observer's light clock. We show that many quantitative results can be read off a spacetime diagram simply by counting boxes, with very little algebra. In particular, we show that the squared interval between two events is equal to the signed area of the parallelogram on the grid (called the "causal diamond") with opposite vertices corresponding to those events. We use the Doppler effect—without explicit use of the Doppler formula—to motivate the method.

  20. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  1. Accurate upper body rehabilitation system using kinect.

    PubMed

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  2. Unusual Slowly Rotating Brown Dwarfs Discovered through Precision Spitzer Photometry

    NASA Astrophysics Data System (ADS)

    Heinze, Aren; Metchev, S.

    2014-01-01

    Many brown dwarfs exhibit low-amplitude rotationally modulated variability due to photospheric inhomogeneities caused by condensate clouds in their atmospheres. The Spitzer Space Telescope 'Weather on Other Worlds' (WoW) project has monitored 44 brown dwarfs at unprecedented photometric precision from space. We present one of several important new results from WoW: the discovery of brown dwarfs with unexpectedly slow rotation periods. While most brown dwarfs have periods of 2-12 hours, we have identified two with well-constrained periods of 13±1 and >20 hours, respectively, and 2 others that show more tentative evidence of longer than 20-hour periods. By serving as almost non-rotating standards, these objects will allow more accurate calibration of spectroscopic measurements of brown dwarfs' projected rotational velocities. The existence of such slowly-rotating objects also constrains models of brown dwarf formation and angular momentum evolution.

  3. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  4. Accurate calculations of bound rovibrational states for argon trimer

    NASA Astrophysics Data System (ADS)

    Brandon, Drew; Poirier, Bill

    2014-07-01

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10-3 cm-1 or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature—and only for the lowest-lying rotational excitations.

  5. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  6. Vibrational-rotational spectra of 13CS and global multi-isotopologue analysis

    NASA Astrophysics Data System (ADS)

    Uehara, Hiromichi; Horiai, Koui; Sakamoto, Yukihiro

    2015-07-01

    In total, 626 vibrational-rotational spectral lines of the Δv = 1 transitions of 13C32S up to band v = 5-4 have been measured with a Fourier-transform spectrometer at resolution 0.010 cm-1. To calibrate accurately the spectral lines, a separate observation of the vibrational-rotational bands of 12C32S was made with simultaneous recording of the N2O spectrum in absorption, to serve as wavenumber standards, with dual sample cells at resolution 0.008 cm-1. The spectral wavenumbers of 12C32S in turn become calibration standards. All present vibrational-rotational spectra of 13C32S and 12C32S, the reported vibrational-rotational spectra of 12C32S, 12C33S, 12C34S, and 13C32S, and the reported rotational spectra of 12C32S, 12C33S, 12C34S, 12C36S, 13C32S, 13C33S and 13C34S were subjected to a global multi-isotopologue analysis, which reduced them to molecular parameters in a single set. The wavenumbers of 3974 spectral lines, in total, comprising data of seven isotopologues were fitted with 22 isotopically invariant, traditional molecular parameters in a single set. As the normalized standard deviation is 1.38, the obtained fit is satisfactory. To facilitate the calculation of spectral wavenumbers, the values of the Dunham coefficients of 42 Yij for each of 12C32S, 12C33S, 12C34S, 12C36S, 13C32S, 13C33S, 13C34S, 13C36S, 14C32S, 14C33S, 14C34S and 14C36S, of which the spectra of the latter five isotopologues are not yet reported, were back-calculated with uncertainties using the evaluated 22 molecular parameters. The physical significance of the conventional treatments of the adiabatic and nonadiabatic corrections for Δ01C and Δ01S is discussed.

  7. Tkachenko waves in rotating superfluid helium

    SciTech Connect

    Andereck, C.D.; Chalupa, J.; Glaberson, W.I.

    1980-01-07

    The resonant response of a stack of disks driven into torsional oscillation within a container of rotating superfluid helium has been observed. It is shown that the oscillation modes excited are related to Tkachenko waves, that is, vortex displacement waves in the vortex array propagating in a direction transverse to the vortex lines. In particular, the resonances occur at peaks in the vortex wave density of states.

  8. Rotational spectrum of 13C chloromethanes

    NASA Astrophysics Data System (ADS)

    Kania, Patrik; Stříteská, Lucie Nová; Šimečková, Marie; Musil, Peter; Kolesniková, Lucie; Koubek, Jindřich; Urban, Štěpán

    2008-11-01

    Rotational spectra of 13 carbon chloromethane isotopologues 13CH 335Cl and 13CH 337Cl with resolved hyperfine structures were measured in the spectral region from 50 GHz to 275 GHz. An estimated uncertainty of individual well developed lines was better than 5 kHz. Ground state molecular parameters B, DJ, DJK, HJ, HJK, HKJ, eQq, and CN were derived. Determination mainly of the hyperfine constants is significantly better than in previous studies.

  9. STRUCTURE OF UNIFORMLY ROTATING STARS

    SciTech Connect

    Deupree, Robert G.

    2011-07-10

    Zero-age main-sequence models of uniformly rotating stars have been computed for 10 masses between 1.625 and 8 M{sub sun} and for 21 rotation rates from zero to nearly critical rotation. The surface shape is used to distinguish rotation rather than the surface equatorial velocity or the rotation rate. Using the surface shape is close, but not quite equivalent, to using the ratio of the rotation rate to the critical rotation rate. Using constant shape as the rotation variable means that it and the mass are separable, something that is not true for either the rotation rate or surface equatorial velocity. Thus, a number of properties, including the ratio of the effective temperature anywhere on the surface to the equatorial temperature, are nearly independent of the mass of the model, as long as the rotation rate changes in such a way as to keep the surface shape constant.

  10. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  11. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  12. Chiral rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  18. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  19. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  20. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  1. Room temperature line lists for CO2 symmetric isotopologues with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.

    2017-03-01

    Remote sensing experiments require high-accuracy, preferably sub-percent, line intensities and in response to this need we present computed room temperature line lists for six symmetric isotopologues of carbon dioxide: 13C16O2, 14C16O2, 12C17O2, 12C18O2, 13C17O2 and 13C18O2, covering the range 0-8000 cm-1. Our calculation scheme is based on variational nuclear motion calculations and on a reliability analysis of the generated line intensities. Rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). Four line lists are computed for each isotopologue to quantify sensitivity to minor distortions of the PES/DMS. Reliable lines are benchmarked against recent state-of-the-art measurements and against the HITRAN2012 database, supporting the claim that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian. We recommend the use of these line lists for future remote sensing studies and their inclusion in databases.

  2. Sub-Doppler millimetre-wave spectroscopy of DBS and HBS: accurate values of nuclear electric and magnetic hyperfine structure constants.

    PubMed

    Bizzocchi, Luca; Esposti, Claudio Degli; Dore, Luca

    2008-02-07

    The unstable thioborine molecule and its deuterated variant have been produced by a high-temperature reaction between hydrogen sulfide and crystalline boron at 1100 degrees C in a flow system. Five rotational transitions from J = 2 <-- 1, to J = 6 <-- 5 have been recorded with sub-Doppler resolution for the vibrational ground state of H10/11BS and D10/11BS using the Lamb-dip technique. The hyperfine structure due to the electric quadrupole interaction of deuterium nucleus has been resolved yielding the first experimental determination of the deuterium quadrupole coupling constant in thioborine, which is 0.1403(75) MHz in D11 BS and 0.1360(38) MHz in D10BS. Fairly accurate values of 10/11B spin-rotation coupling constants and of the hydrogen-boron spin-spin coupling constants have also been determined. Additionally, the hyperfine structure of the rotational lines for the nu2 = 1 excited state has been investigated, thus obtaining information on the asymmetry of the electric field gradient at the B nucleus in the bending state.

  3. Mental rotation within linguistic and non-linguistic domains in users of American sign language.

    PubMed

    Emmorey, K; Klima, E; Hickok, G

    1998-09-01

    American sign language (ASL) uses space itself to encode spatial information. Spatial scenes are most often described from the perspective of the person signing (the 'narrator'), such that the viewer must perform what amounts to a 180 degrees mental rotation to correctly comprehend the description. But scenes can also be described, non-canonically, from the viewer's perspective, in which case no rotation is required. Is mental rotation during sign language processing difficult for ASL signers? Are there differences between linguistic and non-linguistic mental rotation? Experiment 1 required subjects to decide whether a signed description matched a room presented on videotape. Deaf ASL signers were more accurate when viewing scenes described from the narrator's perspective (even though rotation is required) than from the viewer's perspective (no rotation required). In Experiment 2, deaf signers and hearing non-signers viewed videotapes of objects appearing briefly and sequentially on a board marked with an entrance. This board either matched an identical board in front of the subject or was rotated 180 degrees. Subjects were asked to place objects on their board in the orientation and location shown on the video, making the appropriate rotation when required. All subjects were significantly less accurate when rotation was required, but ASL signers performed significantly better than hearing non-signers under rotation. ASL signers were also more accurate in remembering object orientation. Signers then viewed a video in which the same scenes were signed from the two perspectives (i.e. rotation required or no rotation required). In contrast to their performance with real objects, signers did not show the typical mental rotation effect. Males outperformed females on the rotation task with objects, but the superiority disappeared in the linguistic condition. We discuss the nature of the ASL mental rotation transformation, and we conclude that habitual use of ASL can

  4. MODELING MOLECULAR HYPERFINE LINE EMISSION

    SciTech Connect

    Keto, Eric; Rybicki, George

    2010-06-20

    In this paper, we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transition rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH{sub 3}, N{sub 2}H{sup +}, and C{sup 17}O. The intensities of these spectral lines can be modeled by numerical techniques such as {Lambda}-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium, distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermal equilibrium (LTE). The second method, the proportional method, approximates the collision rates between the hyperfine levels as fractions of the net rotational rates apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N{sub 2}H{sup +} hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.

  5. Effect of rotation on a rotating hot-wire sensor

    NASA Technical Reports Server (NTRS)

    Hah, C.; Lakshminarayana, B.

    1978-01-01

    An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).

  6. Analysis of the terahertz rotational spectrum of the three mono-13C ethyl cyanides (13C-CH3CH2CN)

    NASA Astrophysics Data System (ADS)

    Richard, C.; Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2012-07-01

    Context. Millimeter- and submillimeter-wave spectra of regions such as the Orion molecular cloud show many rotational-torsional lines that are caused by the emission of complex organic molecules (COM). Previous laboratory investigations have been conducted for three isotopologues of ethyl cyanide up to 360 GHz, and subsequently, several hundred lines of the three isotopologues have been detected in Orion IRc2 using the IRAM 30 m radiotelescope. Aims: In this survey we present the analysis based on a Watson Hamiltonian for an asymmetric one-top rotor of the 13C-substituted ethyl cyanide 13CH3CH2CN, CH313CH2CN and CH3CH213CN in the frequency range 480-650 GHz and 780-990 GHz. Methods: The rotational spectra of the three species were measured with a submillimeter spectrometer (50-990 GHz) using solid-state sources. Results: A new set of spectroscopic parameters was determined from a least-squares fit procedure for each isotopologue. These parameters permit a new accurate prediction of rotational lines suitable for an astrophysical detection in the submillimeter wave range. Full Tables B.1-B.3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/543/A135

  7. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  8. Rotationally Actuated Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  9. Rotating Science Classrooms.

    ERIC Educational Resources Information Center

    Hogg, Loretta A.

    1980-01-01

    Described is a science classroom program with centralized materials, and assistance and workshops for teachers. Classroom materials on one of five topics rotate every six weeks among five schools. Teachers plan specific units to match the arrival of the materials in their schools. (Author/DS)

  10. Rotational Dynamics with Tracker

    ERIC Educational Resources Information Center

    Eadkhong, T.; Rajsadorn, R.; Jannual, P.; Danworaphong, S.

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia ("I") of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction ("b") for our system. By omitting the effect of such friction, we derive…

  11. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  12. Anisotropy in rotating drums

    NASA Astrophysics Data System (ADS)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  13. Rotating Saddle Paul Trap.

    ERIC Educational Resources Information Center

    Rueckner, Wolfgang; And Others

    1995-01-01

    Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)

  14. Rotatable stem and lock

    DOEpatents

    Deveney, Joseph E.; Sanderson, Stephen N.

    1984-01-01

    A valve stem and lock include a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  15. Rotatable stem and lock

    DOEpatents

    Deveney, J.E.; Sanderson, S.N.

    1981-10-27

    A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  16. Rotator Cuff Injuries.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  17. NEA rotations and binaries

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Harris, A. W.; Warner, B. D.

    2007-05-01

    Of nearly 3900 near-Earth asteroids known in June 2006, 325 have got estimated rotation periods. NEAs with sizes down to 10 meters have been sampled. Observed spin distribution shows a major changing point around D=200 m. Larger NEAs show a barrier against spin rates >11 d-1 (period P~2.2 h) that shifts to slower rates with increasing equatorial elongation. The spin barrier is interpreted as a critical spin rate for bodies held together by self-gravitation only, suggesting that NEAs larger than 200 m are mostly strenghtless bodies (i.e., with zero tensile strength), so called `rubble piles'. The barrier disappears at D<200 m where most objects rotate too fast to be held together by self-gravitation only, so a non-zero cohesion is implied in the smaller NEAs. The distribution of NEA spin rates in the `rubble pile' range (D>0.2 km) is non-Maxwellian, suggesting that other mechanisms than just collisions worked there. There is a pile up in front of the barrier (P of 2-3 h). It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is seen at P>30 h. The spin-down mechanism has no clear lower limit on spin rate; periods as long as tens of days occur. Most NEAs appear to be in basic spin states with rotation around the principal axis. Excited rotations are present among and actually dominate in slow rotators with damping timescales >4.5 byr. A few tumblers observed among fast rotating coherent objects consistently appear to be more rigid or younger than the larger, rubble-pile tumblers. An abundant population of binary systems among NEAs has been found. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 +/-4%. Primaries of the binary systems concentrate at fast spin rates (periods 2-3 h) and low amplitudes, i.e., they lie just below the spin barrier. The total angular momentum content in the binary systems suggests that they formed at the critical spin rate, and that little or no angular

  18. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  19. Fourier-Bessel rotational invariant eigenimages.

    PubMed

    Zhao, Zhizhen; Singer, Amit

    2013-05-01

    We present an efficient and accurate algorithm for principal component analysis (PCA) of a large set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid, in the Fourier-Bessel basis for the disk. Because the images are essentially band limited in the Fourier domain, we use a sampling criterion to truncate the Fourier-Bessel expansion such that the maximum amount of information is preserved without the effect of aliasing. The constructed covariance matrix is invariant to rotation and reflection and has a special block diagonal structure. PCA is efficiently done for each block separately. This Fourier-Bessel-based PCA detects more meaningful eigenimages and has improved denoising capability compared to traditional PCA for a finite number of noisy images.

  20. Geometric calibration of rotational kaleidoscopic instrument

    NASA Astrophysics Data System (ADS)

    Havran, Vlastimil; Němcová, Šárka; Čáp, Jiří; Hošek, Jan; Bittner, Jiří; Macúchová, Karolina

    2016-11-01

    The measurement of spatially varying surface reflectance is required for faithful reproduction of real world to allow for predictive look of computer generated images. One such proposed method uses a rotational kaleidoscopic imaging, where illumination and imaging paths are realized by subimages on kaleidoscopic mirrors and illumination is carried out by a DLP projector. We describe a novel geometric calibration method for a rotational kaleidoscope that is necessary to get aligned and accurate data from measurement. The calibration has two stages. The first stage mechanically adjusts the camera, the projector, and the autocollimator against the kaleidoscope mirrors. The second stage is based on the software. By random perturbation of camera and projector in corresponding mathematical model of the kaleidoscope we estimate better real positions of camera and projector in a physical setup, comparing the computed images from the software simulator and the acquired images from the physical setup.

  1. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  2. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  3. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  4. Dynamical analysis of sea-breeze hodograph rotation in Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, N.; Steyn, D. G.

    2014-09-01

    This study investigates the diurnal evolution of sea-breeze rotation over an island in the mid-latitudes. Earlier research on sea-breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anti-clockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously-studied sea-breeze days and is shown to accurately capture the circulation on all coasts. Diurnal rotation of wind is examined and patterns of clockwise and anti-clockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography, yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with complex topography and/or coastline.

  5. A Dynamical Analysis of Sea Breeze Hodograph Rotation on Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, Nadya; Steyn, Douw

    2014-05-01

    We investigate the dynamics of diurnal sea-breeze rotation over coastal Sardinia using realistic and idealized model runs and historical observations. Earlier research on sea-breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anticlockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously-studied sea-breeze days. WRF accurately captures the sea breeze circulation on all coasts, as depicted in station data. Diurnal rotation of wind is examined and patterns of clockwise and anti-clockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island of similar dimensions and latitude to Sardinia, but with dramatically simplified topography. Dynamical analysis of the idealized runs reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with complex topography and/or coastline.

  6. Dynamical analysis of sea-breeze hodograph rotation in Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, N.; Steyn, D. G.

    2014-12-01

    This study investigates the diurnal evolution of sea-breeze (SB) rotation over an island at the middle latitudes. Earlier research on sea breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anticlockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously studied sea-breeze days, and is shown to capture the circulation on all coasts accurately. Diurnal rotation of wind is examined, and patterns of clockwise and anticlockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with a complex topography and/or coastline.

  7. Precise spectroscopic parameters for solar-type stars with moderate-to-high rotation

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S.; Santos, N. C.; Montalto, M.

    2014-07-01

    One of the primary objectives of Gaia is to survey billions stars and build the most precise 3D map of the Milky Way. Automated techniques of spectral analysis are needed to perform a rapid and homogeneous processing of the data to provide precise and accurate stellar parameters, such as for the GAIA-ESO survey. In this context, our recent work is based on the spectral synthesis technique to derive parameters for both slowly and fast rotating stars (Tsantaki et al. 2014). The spectroscopic analysis was performed using the package Spectroscopy Made Easy (SME; Valenti & Piskunov 1996) and a specific methodology to deal with fast rotators (υsini up to 50 km/s). The spectral regions, including the atomic data of all the lines in our analysis are available online in SME readable format http://mariatsantaki.weebly.com;. A comparison between the parameters derived with our methodology and with the iron ionization and excitation method (e.g. Sousa et al. 2008; Tsantaki et al. 2013) shows that both results are on the same scale. Additionally, for fast rotating stars, our results are in good agreement with literature values when comparing to other methods. We are now able to provide parameters for a very wide group of stars: from giants to dwarfs and from slowly to fast rotating stars. Except for galactic studies, stellar parameters are important for the planetary characterization. We provided updated stellar and planetary properties for ten systems. The stellar parameters were compiled in the SWEET-Catalogue (https://www.astro.up.pt/resources/sweet-cat/).

  8. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    SciTech Connect

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin; Sims, Brett; Li, Xaiolin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters and insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite

  9. Issues in the analysis and interpretation of cyclotron lines in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1992-01-01

    The Bayesian approach is discussed to establishing the existence of lines, the importance of observing multiple cyclotron harmonics in determining physical parameters from the lines, and evidence from cyclotron lines of neutron star rotation.

  10. Investigation of rotation at the plasma edge in TCABR

    NASA Astrophysics Data System (ADS)

    Severo, J. H. F.; Ronchi, G.; Galvao, R. M. O.; Nascimento, I. C.; Guimaraes-Filho, Z. O.; Kuznetsov, Yu. K.; Nave, M. F. F.; Oliveira, A. M.; do Nascimento, F.; Tendler, M.

    2015-09-01

    This paper summarizes experimental results from recent studies on intrinsic rotation at the plasma edge of the TCABR tokamak. These results were obtained after upgrading the number of channels of the rotation diagnostic to three. The measurements were carried out in the collisional (Pfirsch-Schluter) regime and the rotation profiles of the ions were obtained from the Doppler shifts of the impurity carbon lines, CIII (464.74 nm), and CVI (529.06 nm). Results on the correlation between toroidal rotation at the plasma edge and direction of gas injection are also presented. They indicate that the direction of gas injection has a small effect on rotation; the velocity of the background neutral hydrogen is affected by direct momentum transfer from the injected gas (also hydrogen), while the carbon ions' velocity is affected by inward radial friction force between the injected gas atoms and ions, increasing their velocity in the opposite sense of the plasma current.

  11. ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION

    SciTech Connect

    Lynch, B. J.; Li, Y.; Luhmann, J. G.; Antiochos, S. K.; DeVore, C. R. E-mail: yanli@ssl.berkeley.edu E-mail: spiro.k.antiochos@nasa.gov

    2009-06-01

    Understanding the connection between coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) is one of the most important problems in solar-terrestrial physics. We calculate the rotation of erupting field structures predicted by numerical simulations of CME initiation via the magnetic breakout model. In this model, the initial potential magnetic field has a multipolar topology and the system is driven by imposing a shear flow at the photospheric boundary. Our results yield insight on how to connect solar observations of the orientation of the filament or polarity inversion line (PIL) in the CME source region, the orientation of the CME axis as inferred from coronagraph images, and the ICME flux rope orientation obtained from in situ measurements. We present the results of two numerical simulations that differ only in the direction of the applied shearing motions (i.e., the handedness of the sheared-arcade systems and their resulting CME fields). In both simulations, eruptive flare reconnection occurs underneath the rapidly expanding sheared fields transforming the ejecta fields into three-dimensional flux rope structures. As the erupting flux ropes propagate through the low corona (from 2 to 4 R{sub sun}) the right-handed breakout flux rope rotates clockwise and the left-handed breakout flux rope rotates counterclockwise, in agreement with recent observations of the rotation of erupting filaments. We find that by 3.5 R {sub sun} the average rotation angle between the flux rope axes and the active region PIL is approximately 50 deg. We discuss the implications of these results for predicting, from the observed chirality of the pre-eruption filament and/or other properties of the CME source region, the direction and amount of rotation that magnetic flux rope structures will experience during eruption. We also discuss the implications of our results for CME initiation models.

  12. Wave-driven Rotation in Supersonically Rotating Mirrors

    SciTech Connect

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  13. Optimized dynamic rotation with wedges.

    PubMed

    Rosen, I I; Morrill, S M; Lane, R G

    1992-01-01

    Dynamic rotation is a computer-controlled therapy technique utilizing an automated multileaf collimator in which the radiation beam shape changes dynamically as the treatment machine rotates about the patient so that at each instant the beam shape matches the projected shape of the target volume. In simple dynamic rotation, the dose rate remains constant during rotation. For optimized dynamic rotation, the dose rate is varied as a function of gantry angle. Optimum dose rate at each gantry angle is computed by linear programming. Wedges can be included in the optimized dynamic rotation therapy by using additional rotations. Simple and optimized dynamic rotation treatment plans, with and without wedges, for a pancreatic tumor have been compared using optimization cost function values, normal tissue complication probabilities, and positive difference statistic values. For planning purposes, a continuous rotation is approximated by static beams at a number of gantry angles equally spaced about the patient. In theory, the quality of optimized treatment planning solutions should improve as the number of static beams increases. The addition of wedges should further improve dose distributions. For the case studied, no significant improvements were seen for more than 36 beam angles. Open and wedged optimized dynamic rotations were better than simple dynamic rotation, but wedged optimized dynamic rotation showed no definitive improvement over open beam optimized dynamic rotation.

  14. ExoMol molecular line lists XIX: high-accuracy computed hot line lists for H218O and H217O

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yurchenko, Sergei N.; Ovsyannikov, Roman I.; Zobov, Nikolai F.

    2017-04-01

    Hot line lists for two isotopologues of water, H218O and H217O, are presented. The calculations employ newly constructed potential energy surfaces (PES), which take advantage of a novel method for using the large set of experimental energy levels for H216O to give high-quality predictions for H218O and H217O. This procedure greatly extends the energy range for which a PES can be accurately determined, allowing an accurate prediction of higher lying energy levels than are currently known from direct laboratory measurements. This PES is combined with a high-accuracy, ab initio dipole moment surface of water in the computation of all energy levels, transition frequencies and associated Einstein A coefficients for states with rotational excitation up to J = 50 and energies up to 30 000 cm-1. The resulting HotWat78 line lists complement the well-used BT2 H216O line list. Full line lists are made available online as Supporting Information and at www.exomol.com.

  15. Acquiring New Spatial Intuitions: Learning to Reason about Rotations

    ERIC Educational Resources Information Center

    Pani, John R.; Chariker, Julia H.; Dawson, Thomas E.; Johnson, Nathan

    2005-01-01

    There are certain simple rotations of objects that most people cannot reason about accurately. Reliable gaps in the understanding of a fundamental physical domain raise the question of how learning to reason in that domain might proceed. Using virtual reality techniques, this project investigated the nature of learning to reason across the domain…

  16. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  17. Improvement of the edge rotation diagnostic spectrum analysis via simulation

    SciTech Connect

    Luo, J.; Zhuang, G. Cheng, Z. F.; Zhang, X. L.; Hou, S. Y.; Cheng, C.

    2014-11-15

    The edge rotation diagnostic (ERD) system has been developed on the Joint Texas Experimental Tokamak to measure the edge toroidal rotation velocity by observing the shifted wavelength of carbon V (C V 227.09 nm). Since the measured spectrum is an integrated result along the viewing line from the plasma core to the edge, a method via simulation has been developed to analyze the ERD spectrum. With the necessary parameters such as C V radiation profile and the ion temperature profile, a local rotation profile at the normalized minor radius of 0.5-1 is obtained.

  18. Foliage discrimination using a rotating ladar

    NASA Technical Reports Server (NTRS)

    Castano, A.; Matthies, L.

    2003-01-01

    We present a real time algorithm that detects foliage using range from a rotating laser. Objects not classified as foliage are conservatively labeled as non-driving obstacles. In contrast to related work that uses range statistics to classify objects, we exploit the expected localities and continuities of an obstacle, in both space and time. Also, instead of attempting to find a single accurate discriminating factor for every ladar return, we hypothesize the class of some few returns and then spread the confidence (and classification) to other returns using the locality constraints. The Urbie robot is presently using this algorithm to descriminate drivable grass from obstacles during outdoor autonomous navigation tasks.

  19. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, B.W.; Willenborg, D.L.

    1980-02-12

    A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.

  20. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA

    1980-02-12

    A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

  1. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  2. Rotation-induced nonlinear wavepackets in internal waves

    NASA Astrophysics Data System (ADS)

    Whitfield, A. J.; Johnson, E. R.

    2014-05-01

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  3. Correction for inhomogeneous line broadening in spin labels, II

    NASA Astrophysics Data System (ADS)

    Bales, Barney L.

    Our methods to correct for inhomogeneous line broadening in the EPR of nitroxide spin labels are extended. Previously, knowledge of the hyperfine pattern of the nuclei responsible for the inhomogeneous broadening was necessary in order to carry out the corrections. This normally meant that either a separate NMR experiment or EPR spectral simulation was needed. Here a very simple method is developed, based upon measurement of four points on the experimental EPR spectrum itself, that allows one to carry out the correction procedure with precision rivaling that attained using NMR or spectral simulation. Two associated problems are solved: (1) the EPR signal strength is estimated without the need to carry out double integrations and (2) linewidth ratios, important in calculating rotational correlation times, are corrected. In all cases except one, the corrections are effected from the four measured points using only a hand-held programmable calculator. Experimental examples illustrate the methods and show them to be amazingly accurate.

  4. Electronic excitation of H{sub 2} by {ital e}{sup +} impact using adiabatic nuclear rotation model

    SciTech Connect

    Mukherjee, T.; Ghosh, A.S.

    1996-06-01

    The adiabatic nuclear rotation (ANR) model has been employed to obtain rotational excitation cross sections for electronically elastic and electronic excitation processes in {ital e}{sup +}-H{sub 2} scattering. The present results are compared with the more accurate laboratory-frame rotational close-coupling approximation (LFCCA) predictions. The electronically inelastic rotational excitation results using the ANR model differ from the corresponding LFCCA results near the electronic excitation threshold energies. {copyright} {ital 1996 The American Physical Society.}

  5. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  6. A call for rotators

    NASA Astrophysics Data System (ADS)

    Mountain, Gregory

    “Needed: highly motivated geoscientists willing to slow the pace of their research for 1-2 years while managing federal government support of their discipline. Assured: change of perspective; no change in pay. Contact your National Science Foundation Program Director for details.—No, this isn't an NSF job announcement; this is an open letter to members of the Earth science community from a recently “retired” NSF rotator concerned by the small number of researchers interested in a Washington tour. I learned firsthand the extent to which an individual in this position is entrusted with decision-making powers, and as a result, I believe that each of us in the research community should feel responsible for ensuring that highly qualified people serve as rotators.

  7. Rotatable seal assembly

    DOEpatents

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  8. Rotational spectrum of tryptophan

    NASA Astrophysics Data System (ADS)

    Sanz, M. Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, Josè L.

    2014-05-01

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the 14N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O-H...N hydrogen bond in the side chain and a N-H...π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  9. Rotational spectrum of tryptophan

    SciTech Connect

    Sanz, M. Eugenia Cabezas, Carlos Mata, Santiago Alonso, Josè L.

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  10. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  11. 64-line-sensor array: fast imaging system for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Gratt, Sibylle; Nuster, Robert; Wurzinger, Gerhild; Bugl, Markus; Paltauf, Guenther

    2014-03-01

    Three-dimensional photoacoustic tomography with line sensors, which integrate the pressure along their length, has shown to produce accurate images of small animals. To reduce the scanning time and to enable in vivo applications, a detection array is built consisting of 64 piezoelectric line sensors which are arranged on a semi-cylinder. When measuring line integrated pressure signals around the imaging object, the three-dimensional photoacoustic imaging problem is reduced to a set of two-dimensional reconstructions and the measurement setup requires only a single axis of rotation. The shape and size of the array were adapted to the given problem of biomedical imaging and small animal imaging in particular. The length and width of individual line elements had to be chosen in order to take advantage of the favorable line integrating properties, maintaining the requested resolution of the image. For data acquisition the signals from the 64 elements are amplified and multiplexed into a 32 channel digitizer. Single projection images are recorded with two laser pulses within 0.2 seconds, as determined by the laser pulse repetition rate of 10 Hz. Phantom experiments are used for characterization of the line-array. Compared to previous implementations with a single line sensor scanning around an object, with the developed array the data acquisition time can be reduced from about one hour to about one minute.

  12. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  13. On rotational conical flow

    NASA Technical Reports Server (NTRS)

    Ferrari, Carlo

    1952-01-01

    Some general properties of isoenergetic rotational conical fields are determined. For such fields, provided the physical parameters of the fluid flow are known on a conical reference surface, it being understood that they satisfy certain imposed conditions, it is shown how to construct the hodographs in the various meridional semiplanes, as the envelope of either the tangents to the hodographs or of the osculatory circles.

  14. Rotating housing turbine

    DOEpatents

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  15. Rotation lightcurves of small jovian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Coley, Daniel; Wasserman, Lawrence H.; Sieben, Jennifer

    2015-07-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We present new lightcurve information for 19 Trojans ≲ 30 km in diameter, more than doubling the number of objects in this size range for which some rotation information is known. The minimum densities for objects with complete lightcurves are estimated and are found to be comparable to those measured for cometary nuclei. A significant fraction (∼40%) of this observed small Trojan population rotates slowly (P > 24 h), with measured periods as long as 375 h (Warner, B.D., Stephens, R.D. [2011]. Minor Planet Bull. 38, 110-111). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size. Concerted observations of a large number of Trojans could establish the spin barrier (Warner, B.D., Harris, A.W., Pravec, P. [2009]. Icarus 202, 134-146), making it possible to estimate densities for objects near the critical period.

  16. THE ROTATIONAL SPECTRUM OF HCl{sup +}

    SciTech Connect

    Gupta, H.; Drouin, B. J.; Pearson, J. C.

    2012-06-01

    The rotational spectrum of the radical ion HCl{sup +} has been detected at high resolution in the laboratory, confirming the identification reported in the accompanying Letter by De Luca et al., in diffuse clouds toward W31C and W49N. Three rotational transitions, one in the ground-state {sup 2}{Pi}{sub 3/2} ladder and two in the {sup 2}{Pi}{sub 1/2} ladder (643 cm{sup -1} above ground), were observed in a microwave discharge of He and HCl. Well-resolved chlorine hyperfine structure and {Lambda}-doubling, and the detection of lines of H{sup 37}Cl{sup +} at precisely the expected isotopic shift, provide conclusive evidence for the laboratory identification. Detection of rotational transitions in the {sup 2}{Pi}{sub 1/2} ladder of HCl{sup +} for the first time allows an experimental determination of the individual hyperfine coupling constants of chlorine and yields a precise value of eQq{sub 2}. The spectroscopic constants obtained by fitting a Hamiltonian simultaneously to our data and more than 8000 optical transitions are so precise that they allow us to calculate the frequencies of the {sup 2}{Pi}{sub 3/2} J = 5/2 - 3/2 transition observed in space to within 0.2 km s{sup -1}, and indeed, those of the strongest rotational transitions below 7.5 THz, to better than 1 km s{sup -1}.

  17. Faraday rotation measure synthesis of UGC 10288

    NASA Astrophysics Data System (ADS)

    Kamieneski, Patrick; Wang, Q. Daniel; Pare, Dylan; Sullivan, Kendall

    2017-01-01

    Faraday rotation measure synthesis is a powerful tool that has been employed in the past decade when studying line-of-sight magnetic fields of galactic and extragalactic sources. Rotation measures, which are sensitive to the strength and direction of fields in an intervening medium between the source and observer, were classically determined by assuming a single, uniform Faraday-rotating medium. Rotation measure synthesis, on the other hand, is a more robust method that allows for probing a more complicated scenario. We will outline results from a study of magnetic field structure in the disk and halo of edge-on galaxy UGC 10288, using 6 cm and 20 cm observations from CHANG-ES (Continuum Halos in Nearby Galaxies - an EVLA Survey). The presence of a strongly polarized complex background source situated perpendicular to the foreground disk allows for an investigation of the disk-halo magnetic fields of UGC 10288. In particular, we present evidence of magnetic field reversals above the plane of the disk. This finding is not easily explained solely by the prevailing α-Ω dynamo mechanism. Rather, a field reversal may be indicative of different parities of the poloidal field components for the individual disk and halo mechanisms.

  18. THE CM-, MM-, AND SUB-MM-WAVE SPECTRUM OF ALLYL ISOCYANIDE AND RADIOASTRONOMICAL OBSERVATIONS IN ORION KL AND THE SgrB2 LINE SURVEYS

    SciTech Connect

    Haykal, I.; Margulès, L.; Huet, T. R.; Motyienko, R. A.; Écija, P.; Cocinero, E. J.; Basterretxea, F.; Fernández, J. A.; Castaño, F.; Guillemin, J. C.; Tercero, B.; Cernicharo, J.

    2013-11-10

    Organic isocyanides have an interesting astrochemistry and some of these molecules have been detected in the interstellar medium (ISM). However, rotational spectral data for this class of compounds are still scarce. We provide laboratory spectra of the four-carbon allyl isocyanide covering the full microwave region, thus allowing a potential astrophysical identification in the ISM. We assigned the rotational spectrum of the two cis (synperiplanar) and gauche (anticlinal) conformations of allyl isocyanide in the centimeter-wave region (4-18 GHz), resolved its {sup 14}N nuclear quadrupole coupling (NQC) hyperfine structure, and extended the measurements into the millimeter and submillimeter-wave (150-900 GHz) ranges for the title compound. Rotational constants for all the monosubstituted {sup 13}C and {sup 15}N isotopologues are additionally provided. Laboratory observations are supplemented with initial radioastronomical observations. Following analysis of an extensive dataset (>11000 rotational transitions), accurate ground-state molecular parameters are reported for the cis and gauche conformations of the molecule, including rotational constants, NQC parameters, and centrifugal distortion terms up to octic contributions. Molecular parameters have also been obtained for the two first excited states of the cis conformation, with a dataset of more than 3300 lines. The isotopic data allowed determining substitution and effective structures for the title compound. We did not detect allyl isocyanide either in the IRAM 30 m line survey of Orion KL or in the PRIMOS survey toward SgrB2. Nevertheless, we provided an upper limit to its column density in Orion KL.

  19. Rotating black hole hair

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Kubizňák, David; Wills, Danielle

    2013-06-01

    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that such a system displays much richer phenomenology than its static Schwarzschild or Reissner-Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is conical with respect to a local co-rotating frame, not with respect to the static frame at infinity.

  20. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  1. Snakes and spin rotators

    SciTech Connect

    Lee, S.Y.

    1990-06-18

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10{sup {minus}4} will be significant. 2 refs., 5 figs.

  2. OH "Rotational" Temperatures

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Matsiev, D.

    2015-12-01

    It is customary to determine temperatures in the mesosphere and MLT by using Boltzmann plots based on the distributions of the lowest rotational levels in the bands of the OH Meinel system, assuming that populations in these levels are in LTE with the kinetic temperature. The higher rotational levels are clearly not in LTE, and using sky spectra from the large telescopes (Keck, VLT) has now shown that this assumption is invalid even for low rotational levels [Cosby and Slanger, 2007; Noll et al. 2014]. The apparent temperatures derived from such Boltzmann plots show an upward trend with increasing OH vibrational level, from v = 2 to v = 9, with reproducible structure such that there is always a peak at v = 8. Over this range of vibrational levels, the "temperature" increase with increasing altitude is on the order of 15-20 K. At the same time, the modeled kinetic temperature is decreasing, as the OH layer lies below the mesopause, and rocket/satellite measurements indicate that the highest levels have the highest altitude. Since this technique of kinetic temperature assessment has been in use for many years, it is important to realize that the procedure is flawed, most likely due to the details of the relaxation processes of OH(v).

  3. Nearshore Modeling using Rotational Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Kennedy, A. B.; Zhang, Y.

    2012-12-01

    There is a strong tradeoff between accuracy and efficiency in phase-resolving modeling of nearshore waves and currents: Boussinesq-type equations are relatively efficient but lack details of interior velocities and are limited in their range of wavenumbers, while full Navier-Stokes solvers are quite accurate but are slow enough to limit their application to small regions. Here, we present details of a new higher order Boussinesq model which includes rotational motions as part of its derivation, and allows for better representations of surf zone properties while retaining reasonable computational cost. Asymptotic rearrangement techniques allow improvement of wave properties up to very large water depths. A novel absorbing-generating sponge layer allows the simple and accurate generation of both linear and nonlinear regular or irregular waves while simultaneously absorbing outgoing waves. We present breaking and nonbreaking examples of nearshore wave transformation, setup and current generation for a variety of tests.

  4. Spectroscopic parameters for solar-type stars with moderate-to-high rotation. New parameters for ten planet hosts

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S. G.; Santos, N. C.; Montalto, M.; Delgado-Mena, E.; Mortier, A.; Adibekyan, V.; Israelian, G.

    2014-10-01

    Context. Planetary studies demand precise and accurate stellar parameters as input for inferring the planetary properties. Different methods often provide different results that could lead to biases in the planetary parameters. Aims: In this work, we present a refinement of the spectral synthesis technique designed to treat fast rotating stars better. This method is used to derive precise stellar parameters, namely effective temperature, surface gravity, metallicity, and rotational velocity. The procedure is tested for FGK stars with low and moderate-to-high rotation rates. Methods: The spectroscopic analysis is based on the spectral synthesis package Spectroscopy Made Easy (SME), which assumes Kurucz model atmospheres in LTE. The line list where the synthesis is conducted is comprised of iron lines, and the atomic data are derived after solar calibration. Results: The comparison of our stellar parameters shows good agreement with literature values, both for slowly and for fast rotating stars. In addition, our results are on the same scale as the parameters derived from the iron ionization and excitation method presented in our previous works. We present new atmospheric parameters for 10 transiting planet hosts as an update to the SWEET-Cat catalog. We also re-analyze their transit light curves to derive new updated planetary properties. Based on observations collected at the La Silla Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 089.C-0444(A), 088.C-0892(A)) and with the HARPS spectrograph at the 3.6 m telescope (ESO runs ID 072.C-0488(E), 079.C-0127(A)); at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France, with the SOPHIE spectrograph at the 1.93 m telescope and at the Observatoire Midi-Pyrénées (CNRS), France, with the NARVAL spectrograph at the 2 m Bernard Lyot Telescope (Run ID L131N11).Appendix A is available in electronic form at http://www.aanda.org

  5. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  6. The rotation of the earth

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.

    1991-01-01

    Earth rotation studies are reviewed for the 1987-1990 time period. It is noted that the emphasis in these studies has shifted from improvements in the observational techniques to interpreting and gaining greater understanding of the variations of the earth rotations. There have been progressive improvements in the accuracy and the temporal resolution of earth rotation measurements.

  7. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  8. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  9. On the Product of Rotations

    ERIC Educational Resources Information Center

    Trenkler, G.; Trenkler, D.

    2008-01-01

    Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…

  10. Differentially Rotating White Dwarfs I: Regimes of Internal Rotation

    NASA Astrophysics Data System (ADS)

    Ghosh, Pranab; Wheeler, J. Craig

    2017-01-01

    Most viable models of Type Ia supernovae (SNe Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SNe Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super-Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly uniform rotation and strongly differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri ≤slant 0.1, we find both the low-viscosity Zahn regime with a nonmonotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin–Helmholtz viscosity alone yields differential rotation. Large values of Ri ≫ 1 produce a regime of nearly uniform rotation for which the baroclinic viscosity is of intermediate value and scales as {σ }3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  11. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  12. Two dimensional symmetric correlation functions of the S-circumflex operator and two dimensional Fourier transforms: Considering the line coupling for P and R lines of linear molecules

    SciTech Connect

    Ma, Q.; Tipping, R. H.

    2014-03-14

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS{sub 1} − S{sub 2} introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the S-circumflex operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C{sub 2}H{sub 2} broadened by N{sub 2}. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  13. A systematic study of the inner rotation curves of galaxies observed as part of the GASS and COLD GASS surveys

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Huang, Mei-Ling; Moran, Sean; Heckman, Timothy M.

    2015-07-01

    We present a systematic analysis of the rotation curves of 187 galaxies with stellar masses greater than 1010 M⊙, with atomic gas masses from the GALEX Arecibo Sloan Survey (GASS) and with follow-up long-slit spectroscopy from the MMT. Our analysis focuses on stellar rotation curves derived by fitting stellar template spectra to the galaxy spectra binned along the slit. In this way, we are able to obtain accurate rotation velocity measurements for a factor of 2 more galaxies than possible with the Hα line. Galaxies with high atomic gas mass fractions are the most dark-matter-dominated galaxies in our sample and have dark matter halo density profiles that are to first order well described by Navarro-Frenk-White profiles with an average concentration parameter of 10. The inner slopes of the rotation curves correlate more strongly with stellar population age than with galaxy mass or structural parameters. At fixed stellar mass, the rotation curves of more actively star-forming galaxies have steeper inner slopes than less actively star-forming galaxies. The ratio between the galaxy specific angular momentum and the total specific angular momentum of its dark matter halo, Rj, correlates strongly with galaxy mass, structure and gas content. Low-mass, disc-dominated galaxies with atomic gas mass fractions greater than 20 per cent have median values of Rj of around 1, but massive, bulge-dominated galaxies have Rj = 0.2-0.3. We argue that these trends can be understood in a picture where gas inflows triggered by disc instabilities lead to the formation of passive, bulge-dominated galaxies with low specific angular momentum.

  14. High order accurate finite difference schemes based on symmetry preservation

    NASA Astrophysics Data System (ADS)

    Ozbenli, Ersin; Vedula, Prakash

    2016-11-01

    A new algorithm for development of high order accurate finite difference schemes for numerical solution of partial differential equations using Lie symmetries is presented. Considering applicable symmetry groups (such as those relevant to space/time translations, Galilean transformation, scaling, rotation and projection) of a partial differential equation, invariant numerical schemes are constructed based on the notions of moving frames and modified equations. Several strategies for construction of invariant numerical schemes with a desired order of accuracy are analyzed. Performance of the proposed algorithm is demonstrated using analysis of one-dimensional partial differential equations, such as linear advection diffusion equations inviscid Burgers equation and viscous Burgers equation, as our test cases. Through numerical simulations based on these examples, the expected improvement in accuracy of invariant numerical schemes (up to fourth order) is demonstrated. Advantages due to implementation and enhanced computational efficiency inherent in our proposed algorithm are presented. Extension of the basic framework to multidimensional partial differential equations is also discussed.

  15. Internal rotation effects in the pulsed jet rotational spectrum of the trifluoromethane carbon dioxide dimer

    NASA Astrophysics Data System (ADS)

    Serafin, Michal M.; Peebles, Rebecca A.; Peebles, Sean A.

    2008-07-01

    The rotational spectrum of the normal isotopic species of the HCF 3-CO 2 weakly bound complex has been measured by Fourier-transform microwave (FTMW) spectroscopy. All transitions are split into A and E states by internal rotation of the trifluoromethane subunit. A global fit of these states gives rotational constants that are consistent with a structure predicted by an MP2/6-311++G(2d,2p) ab initio calculation in which the axes of the monomers are coplanar, with the hydrogen atom of the trifluoromethane angled toward one of the oxygen atoms of the CO 2. Measured dipole moment components ( μa = 0.431(6) D, μb = 0, μc = 1.436(6) D, μtotal = 1.499(6) D) confirm the ab initio prediction of an ac plane of symmetry; however, the very near-prolate nature of the complex ( κ = -0.997), combined with the relatively high barrier to internal rotation (˜30 cm -1) leads to asymmetry splittings and internal rotation splittings of similar magnitude, resulting in the observation of dipole forbidden b-type E-state transitions in addition to the expected a- and c-type lines. Although this effect has been observed previously in several monomer spectra, this appears to be one of few examples for a weakly bound complex.

  16. Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites

    SciTech Connect

    Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.; Daane, Mitchell A.; Woods, R. Claude; McMahon, Robert J.; Stanton, John F.

    2013-12-14

    The rotational spectrum of pyridazine (o-C{sub 4}H{sub 4}N{sub 2}), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, [4-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, and [1-{sup 15}N]-C{sub 4}H{sub 4}N{sub 2}, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (R{sub e}) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final R{sub e} structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (I{sub a} and I{sub b} for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to

  17. Rotational spectroscopy of pyridazine and its isotopologs from 235-360 GHz: Equilibrium structure and vibrational satellites

    NASA Astrophysics Data System (ADS)

    Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.; Daane, Mitchell A.; Stanton, John F.; Woods, R. Claude; McMahon, Robert J.

    2013-12-01

    The rotational spectrum of pyridazine (o-C4H4N2), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-13C]-C4H4N2, [4-13C]-C4H4N2, and [1-15N]-C4H4N2, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (Re) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final Re structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (Ia and Ib for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to be in excellent agreement with ones predicted from coupled-cluster calculations, which proved to be the key to

  18. Molecular dynamic simulations of N2-broadened methane line shapes and comparison with experiments

    NASA Astrophysics Data System (ADS)

    Le, Tuong; Doménech, José-Luis; Lepère, Muriel; Tran, Ha

    2017-03-01

    Absorption spectra of methane transitions broadened by nitrogen have been calculated for the first time using classical molecular dynamic simulations. For that, the time evolution of the auto-correlation function of the dipole moment vector, assumed along a C-H axis, was computed using an accurate site-site intermolecular potential for CH4-N2. Quaternion coordinates were used to treat the rotation of the molecules. A requantization procedure was applied to the classical rotation and spectra were then derived as the Fourier-Laplace transform of the auto-correlation function. These computed spectra were compared with experimental ones recorded with a tunable diode laser and a difference-frequency laser spectrometer. Specifically, nine isolated methane lines broadened by nitrogen, belonging to various vibrational bands and having rotational quantum numbers J from 0 to 9, were measured at room temperature and at several pressures from 20 to 945 mbar. Comparisons between measured and calculated spectra were made through their fits using the Voigt profile. The results show that ab initio calculated spectra reproduce with very high fidelity non-Voigt effects on the measurements and that classical molecular dynamic simulations can be used to predict spectral shapes of isolated lines of methane perturbed by nitrogen.

  19. Basic principles and recent observations of rotationally sampled wind

    NASA Technical Reports Server (NTRS)

    Connell, James R.

    1995-01-01

    The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.

  20. Room Temperature Line Lists for CO_2 Isotopologues with AB Initio Computed Intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil; Tennyson, Jonathan; Polyansky, Oleg; Lodi, Lorenzo; Zobov, Nikolay Fedorovich; Tashkun, Sergey; Perevalov, Valery

    2016-06-01

    We report 13 room temperature line lists for all major CO_2 isotopologues, covering 0-8000 wn. These line lists are a response to the need for line intensities of high, preferably sub-percent, accuracy by remote sensing experiments. Our scheme encompasses nuclear motion calculations supported by critical reliability analysis of the generated line intensities. Rotation-vibration wavefunctions and energy levels are computed using DVR3D and a high quality semi-empirical potential energy surface (PES) [1], followed by computation of intensities using a fully ab initio dipole moment surface (DMS). Cross comparison of line lists calculated using pairs of high-quality PES's and DMS's is used to assess imperfections in the PES, which lead to unreliable transition intensities between levels involved in resonance interactions. Four line lists are computed for each isotopologue to quantify sensitivity to minor distortions of the PES/DMS. This provides an estimate of the contribution to the overall line intensity error introduced by the underlying PES. Reliable lines are benchmarked against recent state-of-the-art measurements [2] and HITRAN-2012 supporting the claim that the majority of line intensities for strong bands are predicted with sub-percent accuracy [3]. Accurate line positions are generated using an effective Hamiltonian [4]. We recommend use of these line lists for future remote sensing studies and inclusions in databases. X. Huang, D. W. Schwenke, S. A. Tashkun, T. J. Lee, J. Chem. Phys. 136, 124311, 2012. O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, J. Tennyson, PRL, 114, 243001, 2015. E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, S. A. Tashkun, V. I. Perevalov, JQSRT, in press and to be submitted. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, J. Lamouroux, JQSRT, 152, 45-73, 2015.

  1. Rotating Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Scase, M. M.; Baldwin, K. A.; Hill, R. J. A.

    2017-02-01

    The effect of rotation upon the classical Rayleigh-Taylor instability is investigated. We consider a two-layer system with an axis of rotation that is perpendicular to the interface between the layers. In general, we find that a wave mode's growth rate may be reduced by rotation. We further show that in some cases, unstable axisymmetric wave modes may be stabilized by rotating the system above a critical rotation rate associated with the mode's wavelength, the Atwood number, and the flow's aspect ratio.

  2. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  3. Accurate measurement of the helical twisting power of chiral dopants

    NASA Astrophysics Data System (ADS)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  4. Accurate ampacity determination: Temperature-Sag Model for operational real time ratings

    SciTech Connect

    Seppa, T.O.

    1995-07-01

    This report presents a method for determining transmission line ratings based on the relationship between the conductor`s temperature and its sag. The method is based on the Ruling Span principle and the use of transmission line tension monitoring systems. The report also presents a method of accurately calibrating the final sag of the conductor and determining the actual Ruling Span length of the line sections between deadend structures. Main error sources for two other real time methods are also examined.

  5. Regimes of Internal Rotation in Differentially Rotating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Ghosh, Pranab

    2017-01-01

    Most viable models of Type Ia supernovae (SN Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri < 0.1, we find both the low-viscosity Zahn regime with a non-monotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin-Helmholtz viscosity alone yields differential rotation. Large values of Ri >> 1 produce a regime of nearly-uniform rotation for which the baroclinic viscosity is of intermediate value and scales as σ3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  6. Rotating-Pump Design Code

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Chen, Shu-Cheng; Scheer, Dean D.

    2006-01-01

    Pump Design (PUMPDES) is a computer program for designing a rotating pump for liquid hydrogen, liquid oxygen, liquid nitrogen, water, methane, or ethane. Using realistic properties of these fluids provided by another program called GASPAK, this code performs a station-by-station, mean-line analysis along the pump flow path, obtaining thermodynamic properties of the pumped fluid at each station and evaluating hydraulic losses along the flow path. The variables at each station are obtained under constraints that are consistent with the underlying physical principles. The code evaluates the performance of each stage and the overall pump. In addition, by judiciously choosing the givens and the unknowns, the code can perform a geometric inverse design function: that is, it can compute a pump geometry that yields a closest approximation of given design point. The code contains two major parts: one for an axial-rotor/inducer and one for a multistage centrifugal pump. The inducer and the centrifugal pump are functionally integrated. The code can be used in designing and/or evaluating the inducer/centrifugal-pump combination or the centrifugal pump alone. The code is written in standard Fortran 77.

  7. Structure in the Rotation Measure Sky

    NASA Astrophysics Data System (ADS)

    Stil, J. M.; Taylor, A. R.; Sunstrum, C.

    2011-01-01

    An analysis of structure in rotation measure (RM) across the sky based on the RM catalog of Taylor et al. is presented. Several resolved RM structures are identified with structure in the local interstellar medium, including radio loops I, II, and III, the Gum nebula, and the Orion-Eridanus superbubble. Structure functions (SFs) of RM are presented for selected areas, and maps of SF amplitude and slope across the sky are compared with Hα intensity and diffuse polarized intensity. RM variance on an angular scale of 1° is correlated with length of the line of sight through the Galaxy, with a contribution from local structures. The slope of the SFs is less concentrated to the Galactic plane and less correlated with length of the line of sight through the Galaxy, suggesting a more local origin for RM structure on angular scales ~10°. The RM variance is a factor of ~2 higher toward the South Galactic Pole than toward the North Galactic Pole, reflecting a more wide-spread asymmetry between the northern and southern Galactic hemispheres. Depolarization of diffuse Galactic synchrotron emission at latitudes <30° can be explained largely by Faraday dispersion related to small-scale variance in RM, but the errors allow a significant contribution from differential Faraday rotation along the line of sight.

  8. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  9. Rotational isomerism of vinylmethyltelluride

    SciTech Connect

    Keiko, V.V.; Sinegovskaya, L.M.; Gusarova, N.K.; Tatarinova, A.A.; Kalinina, N.A.; Trofimov, B.A.

    1987-08-10

    In the IR spectrum of solutions of vinylmethyltelluride in n-heptane the doublet form of the valence oscillation band of the double bond is due to rotational isomerism. By analyzing the temperature dependence of the doublet shape, the low-frequency component of the doublet was identified as the s-cis-rotamer. The differences in the enthalpies (4.6 +/- 0.2 kJ/mole) and entropies (-11.1 +/- 0.3 e.u.) of the vinylmethyltelluride rotamers have been calculated and it has been shown that the p,..pi..-conjugation in its molecule is weaker by a factor of 2 than in vinylmethylsulfide.

  10. Correcting ionospheric Faraday rotation for ASKAP

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Shane; Gaensler, Bryan; Landecker, Tom L.; Willis, Tony

    2012-10-01

    Next-generation polarisation surveys, such as the POSSUM survey on ASKAP, aim to measure weak, statistical, cosmological effects associated with weak magnetic fields, and so will require unprecedented accuracy and stability for measuring polarisation vectors and their Faraday rotation measures (RMs). Ionospheric Faraday rotation (IFR) corrupts polarization observations and cannot be ignored at mid to low frequencies. In aperture-synthesis polarimetry IFR rotates individual visibilities and leads to a loss of coherence and accuracy of polarization angle determination. Through the POSSUM survey science team we have been involved in developing detailed ionospheric prediction software (POSSUM memos #10a,b) that will be used to correct the observed visibilities on ASKAP before imaging to obtain sufficiently accurate polarization and RM data. To provide a stringent test of this software, we propose a continuous 24 hr observing block using the 1.1-3.1 GHz band to monitor the variations caused by the time-variable ionosphere in the polarization angle and RM of a strongly polarized calibrator source, PKS B1903-802. We request a total of 96 hrs (4 x 24 hrs) to monitor the changes in the ionosphere every 3 to 6 months until BETA/ASKAP-12 is taking reliable polarization data.

  11. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  12. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  13. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  14. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  15. Rotational Alignment of Femoral Component for Minimal Medial Collateral Ligament Release in Total Knee Arthroplasty

    PubMed Central

    Chon, Je Gyun; Jung, Jae Yong; Kim, Tae In; Jang, Seong Won

    2011-01-01

    Purpose We attempted to determine the degree of rotation of the femoral component to achieve an ideal rectangular flexion gap with minimal medial collateral ligament (MCL) release using a modified measured technique. Materials and Methods Group I consisted of 60 osteoarthritis patients (72 cases) who underwent total knee arthroplasty (TKA) with minimal MCL release and Group II consisted of 48 patients without osteoarthritis (61 cases). We performed computed tomography (CT) scanning of the knee with 90 degree flexion in all of the patients and analyzed the angles between the distal femur landmarks and the tibial mechanical axis using a Picture Archiving Communication system. External rotation of the femoral component from the Whiteside line and posterior condylar line was measured in group I who underwent TKA with minimum MCL release. The variance in the mediolateral flexion gap according to the degree of rotation was also measured using an Auto-Computer Aided Design program. Results The CT scans showed that the Whiteside line, posterior condylar line, and transepicondylar line was more internally rotated on average from the longitudinal axis of tibia by 4.12°, 5.54°, and 4.64°, respectively, in group I compared to group II. In group I, the femoral component was inserted with an average external rotation of 5.6° from the posterior condylar line and with an average external rotation of 2.0° from the Whiteside line with minimal MCL release. From the measurements of the femoral component size and the variance in the degree of rotation using an Auto-CAD program, it was found that the change in the mediolateral flexion gap was greater when the rotation angle was greater and it was greater when the size of femoral component was larger at the same rotation angle. Conclusions The average rotation angle of the femoral component to achieve an ideal rectangular flexion gap with minimal MCL release in TKA was an external rotation of 5.6° from the posterior condylar line

  16. Rotating drum filter

    DOEpatents

    Anson, Donald

    1990-01-01

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  17. Digital rotation measurement unit

    DOEpatents

    Sanderson, S.N.

    1983-09-30

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  18. Rotating Wheel Wake

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  19. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  20. A study of rotational velocity distribution of Be stars

    NASA Astrophysics Data System (ADS)

    Sitko, C.; Janot-Pacheco, E.; Emilio, M.

    2014-10-01

    Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. In spite of their high vsin i, rapid rotation alone cannot explain the ejection episodes as most Be stars do not rotate at their critical rotation rates. In this work we present the distribution of vsin i of 261 Be's stars from BeSS (Be Star Spectra) database. We used two techniques, the Fourier method and the FWHM (Full Width at Half Maximum) method. For the analysis we made use of three absorption lines of Helium (4026r A, 4388 Å and 4471 Å). Stars with projected rotational velocities up to 300 km s^{-1} agree with the ones already published in the literature. 84 of our stars do not have the values of rotational velocity published. The majority of our sample are B1/B2 spectral type, whose have the greatest velocities.

  1. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    SciTech Connect

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D.

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  2. Plasma Rotation Control Experiment in a Strongly Diverging Magnetic Field

    NASA Astrophysics Data System (ADS)

    Terasaka, Kenichiro; Furuta, Kanshi; Yoshimura, Shinji; Aramaki, Mitsutoshi; Tanaka, Masayoshi Y.

    2016-10-01

    It has been recognized that the plasma rotation affects the plasma flow structure along the magnetic field line. However, the effect of plasma rotation on structure formation in a strongly diverging magnetic field with magnetized electrons and unmagnetized ions has not been fully understood, so far. Understanding the flow structure formation in an ion-unmagnetized plasma is essential to control ion streamline detachment from the magnetic field line and also necessary to study the astrophysical phenomena in laboratory. In order to clarify the effect of plasma rotation in a diverging magnetic field, we have performed the plasma rotation control experiment in the HYPER-II device at Kyushu Univ., Japan. A set of cylindrical electrode was utilized to control the radial electric field, and the profile of azimuthal E × B rotation has been changed. We present the experimental results on the electron density pileup and the flow reversal appeared in the rotating plasma. This study was supported by JSPS KAKENHI Grant Number 16K05633.

  3. Probing the Rosette Nebula stellar bubble with Faraday rotation

    NASA Astrophysics Data System (ADS)

    Savage, Allison Hainline

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m-2. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m-2, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  4. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  5. IMPROVED LINE DATA FOR THE SWAN SYSTEM {sup 12}C{sup 13}C ISOTOPOLOGUE

    SciTech Connect

    Ram, Ram S.; Brooke, James S. A.; Bernath, Peter F.; Sneden, Christopher; Lucatello, Sara E-mail: rr662@york.ac.uk E-mail: chris@verdi.as.utexas.edu

    2014-03-01

    We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the {sup 12}C{sup 13}C isotopologue Swan d{sup 3}Π-a{sup 3}Π system 0-0, 0–1, 0–2, 1–0, 1–1, 1–2, 2–0, 2–1, and 2–2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the {sup 12}C{sup 13}C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The {sup 12}C{sup 13}C line data were combined with similar data for {sup 12}C{sub 2,} reported in a companion paper, and applied to produce synthetic spectra of carbon-rich metal-poor stars that have strong C{sub 2} Swan bands. The matches between synthesized and observed spectra were used to estimate band head positions for a few of the {sup 12}C{sup 13}C vibrational bands and to verify that the new computed line data match observed spectra. The much weaker C{sub 2} lines of the bright red giant Arcturus were also synthesized in the band head regions.

  6. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  7. Accurate spectral modeling for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gupta, S. K.

    1977-01-01

    Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.

  8. Bifurcations of rotating waves in rotating spherical shell convection.

    PubMed

    Feudel, F; Tuckerman, L S; Gellert, M; Seehafer, N

    2015-11-01

    The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.

  9. Visualizing rotations and composition of rotations with the Rodrigues vector

    NASA Astrophysics Data System (ADS)

    Valdenebro, Angel G.

    2016-11-01

    The purpose of this paper is to show that the mathematical treatment of three-dimensional rotations can be simplified, and its geometrical understanding improved, using the Rodrigues vector representation. We present a novel geometrical interpretation of the Rodrigues vector. Based on this interpretation and simple geometrical considerations, we derive the Euler-Rodrigues formula, Cayley’s rotation formula and the composition law for finite rotations. The level of this discussion should be suitable for undergraduate physics or engineering courses where rotations are discussed.

  10. Turbulent Convection under the Influence of Rotation: Sustaining a Strong Differential Rotation

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha; Toomre, Juri

    2002-05-01

    clarified the roles played by Reynolds stresses and the meridional circulation in this process. We have found that the Reynolds stresses are crucial in transporting angular momentum toward the equator. The effects of baroclinicity (thermal wind) have been found to have a modest role in the resulting mean zonal flows. The simulations have produced differential rotation profiles within the bulk of the convection zone that make reasonable contact with ones inferred from helioseismic inversions, namely, possessing a fast equator, an angular velocity difference of about 30% from equator to pole, and some constancy along radial lines at midlatitudes. Future studies must address the implications of the tachocline at the base of the convection zone, and the near-surface shear layer, on that differential rotation.

  11. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  12. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  13. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  14. Observation of rotating nuclear molecules and determination of their lifetimes

    NASA Astrophysics Data System (ADS)

    Comas, V.; Heinz, S.; Hofmann, S.; Ackermann, D.; Heredia, J.; Heßberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R.

    2012-12-01

    Long-living rotating nuclear molecules (or "dinuclear systems") have been observed at the velocity filter SHIP at GSI in reactions of 64Ni + 207Pb at Coulomb barrier energies. The rotation was directly revealed by the velocity spectra of deep inelastic target-like transfer products which are formed during the lifetime of the nuclear molecule and emitted after its breakup. The corresponding rotation angles were about 180 degree pointing to long nuclear interaction times or lifetimes of the system, respectively. We deduced the lifetimes from the lines in the velocity spectra originating from two different rotation angles. Further, the unambiguous correlation of a certain transfer product with its individual velocity spectrum allowed us to study the lifetimes as a function of the number of transferred protons.

  15. Coronal Rotation at Solar Minimum from UV Observations

    NASA Technical Reports Server (NTRS)

    Mancuso, S.

    2008-01-01

    UVCS/SOHO observations have been analyzed to reconstruct intensity time series of the O VI 1032 A and H 11216 A spectral lines at different coronal heliolatitudes from 1.5 to 3.0 solar radii from Sun center. Evidence was found for coronal differential rotation that differs significantly from that of the photospheric plasma. The study of the latitudinal variation shows that the UV corona decelerates toward the photospheric rates from the equator up to the poleward boundary 2 of the midlatitude streamers, reaching a peak of 28.16+/-0.20 days around +30 from the equator at 1.5 solar radii, while a less evident peak is observed in the northern hemisphere. This result suggests a real north-south rotational asymmetry as a consequence of different activity and weak coupling between the magnetic fields of the two hemispheres. The study of the radial rotation profiles shows that the corona is rotating almost rigidly with height.

  16. The Rotational Excitation Temperature of the 6614 DIB Carrier

    NASA Technical Reports Server (NTRS)

    Cami, J.; Salama, F.; Jimenez-Vicente, J.; Galazutdinov, G.; Krelowski, J.

    2004-01-01

    Analysis of high spectral resolution observations of the lambda6614 DIB line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations can only be understood in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is of the order 10-40 K - much lower than the gas kinetic temperature - indicating that for this particular DIB carrier angular momentum buildup is not very efficient. The rotational constant indicates that the carrier of this DIB is smaller than previously assumed:7-22 C atoms, depending on the geometry.

  17. Generation of whistler waves by a rotating magnetic field source

    SciTech Connect

    Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Gigliotti, A.; Pribyl, P.; Vincena, S.

    2010-01-15

    The paper discusses the generation of polarized whistler waves radiated from a rotating magnetic field source created via a novel phased orthogonal two loop antenna. The results of linear three-dimensional electron magnetohydrodynamics simulations along with experiments on the generation whistler waves by the rotating magnetic field source performed in the large plasma device are presented. Comparison of the experimental results with the simulations and linear wave properties shows good agreement. The whistler wave dispersion relation with nonzero transverse wave number and the wave structure generated by the rotating magnetic field source are also discussed. The phase velocity of the whistler waves was found to be in good agreement with the theoretical dispersion relation. The exponential decay rate of the whistler wave propagating along the ambient magnetic field is determined by Coulomb collisions. In collisionless case the rotating magnetic field source was found to be a very efficient radiation source for transferring energy along the ambient magnetic field lines.

  18. World lines.

    PubMed

    Waser, Jürgen; Fuchs, Raphael; Ribicić, Hrvoje; Schindler, Benjamin; Blöschl, Günther; Gröller, Eduard

    2010-01-01

    In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas, decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting, the data domain is extended to a set of alternative worlds where only one outcome will actually happen. World Lines integrate simulation, visualization and computational steering into a single unified system that is capable of dealing with the extended solution space. World Lines represent simulation runs as causally connected tracks that share a common time axis. This setup enables users to interfere and add new information quickly. A World Line is introduced as a visual combination of user events and their effects in order to present a possible future. To quickly find the most attractive outcome, we suggest World Lines as the governing component in a system of multiple linked views and a simulation component. World Lines employ linking and brushing to enable comparative visual analysis of multiple simulations in linked views. Analysis results can be mapped to various visual variables that World Lines provide in order to highlight the most compelling solutions. To demonstrate this technique we present a flooding scenario and show the usefulness of the integrated approach to support informed decision making.

  19. Rotational and rotationless states of weakly bound molecules

    SciTech Connect

    Lemeshko, Mikhail; Friedrich, Bretislav

    2009-05-15

    By making use of the quantization rule of Raab and Friedrich [Phys. Rev. A 78, 022707 (2008)], we derive simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level of a diatomic molecule and the rotational constants of any such levels up to the threshold, and provide a criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend solely on the long-range part of the molecular potential and are applicable to halo molecules.

  20. Torque on a sphere inside a rotating cylinder.

    NASA Technical Reports Server (NTRS)

    Mena, B.; Levinson, E.; Caswell, B.

    1972-01-01

    A circular cylinder of finite dimensions is made to rotate around a sphere fixed in the center of the cylinder. The couple on the sphere is measured over a wide range of rotational speeds for both Newtonian and non-Newtonian fluids. For the Newtonian liquids a comparison of the experimental results is made with Collins' (1955) expansion of the couple as a series in even powers of the angular Reynolds number. For non-Newtonian liquids the apparatus proves to be extremely useful for an accurate determination of the zero shear rate viscosity using only a small amount of fluid.

  1. The link between mental rotation ability and basic numerical representations

    PubMed Central

    Thompson, Jacqueline M.; Nuerk, Hans-Christoph; Moeller, Korbinian; Cohen Kadosh, Roi

    2013-01-01

    Mental rotation and number representation have both been studied widely, but although mental rotation has been linked to higher-level mathematical skills, to date it has not been shown whether mental rotation ability is linked to the most basic mental representation and processing of numbers. To investigate the possible connection between mental rotation abilities and numerical representation, 43 participants completed four tasks: 1) a standard pen-and-paper mental rotation task; 2) a multi-digit number magnitude comparison task assessing the compatibility effect, which indicates separate processing of decade and unit digits; 3) a number-line mapping task, which measures precision of number magnitude representation; and 4) a random number generation task, which yields measures both of executive control and of spatial number representations. Results show that mental rotation ability correlated significantly with both size of the compatibility effect and with number mapping accuracy, but not with any measures from the random number generation task. Together, these results suggest that higher mental rotation abilities are linked to more developed number representation, and also provide further evidence for the connection between spatial and numerical abilities. PMID:23933002

  2. Experimental and numerical investigation of energy dissipation in elastomeric rotational joint under harmonic loading

    NASA Astrophysics Data System (ADS)

    Jrad, Hanen; Dion, Jean Luc; Renaud, Franck; Tawfiq, Imad; Haddar, Mohamed

    2016-10-01

    This paper focuses on energy losses caused by inner damping and friction in an elastomeric rotational joint. A description of the design of a new experimental device intended to characterize dynamic stiffness in rotational elastomeric joint is presented. An original method based on Lagrange's equations, which allows accurately measuring forces and torques only with accelerometers, is proposed in order to identify dissipated energy in the rotational elastomeric joint. A rheological model developed taking into account dependence of the torque and the angular displacement (rotation). Experimental results and simulations used to quantify the dissipated energy in order to evaluate the damping ratio are presented and discussed.

  3. Rotational scanning atomic force microscopy.

    PubMed

    Ulčinas, A; Vaitekonis, Š

    2017-03-10

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  4. Torque Simulator for Rotating Systems

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1982-01-01

    New torque brake simulates varying levels of friction in bearings of rotating body. Rolling-tail torque brake uses magnetic force to produce friction between rotating part and stationary part. Simulator electronics produce positive or negative feedback signal, depending on direction of rotation. New system allows for first time in-depth study of effects of tail-fin spin rates on pitch-, yaw-, and roll-control characteristics.

  5. Internal rotation of the sun

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Dziembowski, W. A.; Goode, P. R.; Gough, D. O.; Harvey, J. W.; Leibacher, J. W.

    1984-01-01

    The frequency difference between prograde and retrograde sectoral solar oscillations is analyzed to determine the rotation rate of the solar interior, assuming no latitudinal dependence. Much of the solar interior rotates slightly less rapidly than the surface, while the innermost part apparently rotates more rapidly. The resulting solar gravitational quadrupole moment is J2 = (1.7 + or - 0.4) x 10 to the -7th and provides a negligible contribution to current planetary tests of Einstein's theory of general relativity.

  6. Rotational scanning atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ulčinas, A.; Vaitekonis, Š.

    2017-03-01

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  7. Rotating Detonation Engine Operation (Preprint)

    DTIC Science & Technology

    2012-01-01

    MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State

  8. Uniformly Rotating Single Substance Bodies

    NASA Astrophysics Data System (ADS)

    Leonard, Charles Michael Leo

    This dissertation explicitly and in detail solves the extended rotator problem in the uncharged relativistic classical cases of most physical interest. It shows that no plausible relativistic solutions exist in the literature of the extended rotator and that the point rotator solutions sometimes ballyhooed are not to be taken seriously. Explicit energy speedratio functions, angular momentum speedratio functions, Hamiltonian, Lagrangian, and other important characteristic functions of the state of uniform rotation of the extended body are detailed. This dissertation does not retreat to an 'analysis' of just the point rotator --which so many others have done and done incorrectly, or at best misleadingly, by hiding implausible assumptions in manifestly covariant formats. Assumptions in the model are not hidden but are brought out and analyzed as to their relevance for highlighting the core of the uniform rotation physics. Neither does the author hide any ignorance of the internal holding field for the rotator. Formulae for the characteristic Minimum Holding Field are explicitly given and their relativistic relevance is shown. The demonstration that such fields can be ignored in the energy and angular momentum expressions is completely detailed. The explicit Stress-Energy Tensor for the entire closed rotator system is given with all that entails as to the inescapability of the results from out of that mathematics. The generality of the finiteness of the extreme relativistic rotational limit is detailed and explained with its stark essential contrast to the infinite limit in the case of extreme relativistic translation of a body. The rotator is shown to possess a rich mathematical structure. Many elegant interconnection formulae are found as well as new Hamiltonian formulae --sometimes of considerable complexity. Exact rotator formulae as well as graphs, tables, and even interesting approximations are provided. New nonlinear differential equations are discovered and

  9. PLT rotating pumped limiter

    SciTech Connect

    Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.

    1984-07-01

    A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.

  10. Asteroid Ida Rotation Sequence

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  11. The Rapidly Rotating Sun

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l < 60. The observationally constrained kinetic energy is approximately a thousandth of the theoretical prediction, suggesting the prevalence of an intrinsically different paradigm of turbulence. A fundamental question arises: what mechanism of turbulence transports the heat ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.

  12. Rotating Gravity Gradiometer Study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1976-01-01

    The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.

  13. Rotating gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1982-01-01

    Two rotating gravity gradiometer (RGG) sensors, along with all the external electronics needed to operate them, and the fixtures and special test equipment needed to fill and align the bearings, were assembled in a laboratory, and inspected. The thermal noise threshold of the RGG can be lowered by replacing a damping resistor in the first stage electronics by an active artificial resistor that generates less random voltage noise per unit bandwidth than the Johnson noise from the resistor it replaces. The artificial resistor circuit consists of an operational amplifier, three resistors, and a small DC to DC floating power supply. These are small enough to be retrofitted to the present circuit boards inside the RGG rotor in place of the 3 Megohm resistor. Using the artificial resistor, the thermal noise of the RGG-2 sensor can be lowered from 0.3 Eotvos to 0.15 Eotvos for a 10 sec integration time.

  14. Rotation Curves of Galaxies

    NASA Astrophysics Data System (ADS)

    Kalnajs, Agris J.

    One can obtain a fairly good understanding of the relation between axially symmetric mass distributions and the rotation curves they produce without resorting to calculations. However it does require a break with tradition. The first step consists of replacing quantities such as surface density, volume density, and circular velocity with the mass in a ring, mass in a spherical shell, and the square of the circular velocity, or more precisely with 2 pi G r mu(r), 4 pi G r^2 rho(r), and Vc^2 (r). These three quantities all have the same dimensions, and are related to each other by scale-free linear operators. The second step consists of introducing ln(r) as the coordinate. On the log scale the scale-free operators becomes the more familiar convolution operations. Convolutions are easily handled by Fourier techniques and a surface density can be converted into a rotation curve or volume density in a small fraction of a second. A simple plot of 2 pi G r mu(r) as a function of ln(r) reveals the relative contributions of different radii to Vc^2(r). Such a plot also constitutes a sanity test for the fitting of various laws to photometric data. There are numerous examples in the literature of excellent fits to the tails that lack data or are poor fits around the maximum of 2 pi G r mu(r). I will discuss some exact relations between the above three quantities as well as some empirical observations such as the near equality of the maxima of 2 pi G r mu(r) and Vc^2 (r) curves for flat mass distributions.

  15. Plasma rotation induced by RF

    SciTech Connect

    Chan, V. S.; Chiu, S. C.; Lin-Liu, Y. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698; Omelchenko, Y. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698

    1999-09-20

    Plasma rotation has many beneficial effects on tokamak operation including stabilization of MHD and microturbulence to improve the beta limit and confinement. Contrary to present-day tokamaks, neutral beams may not be effective in driving rotation in fusion reactors; hence the investigation of radiofrequency (RF) induced plasma rotation is of great interest and potential importance. This paper reviews the experimental results of RF induced rotation and possible physical mechanisms, suggested by theories, to explain the observations. This subject is only in the infancy of its research and many challenging issues remained to be understood and resolved. (c) 1999 American Institute of Physics.

  16. Single-pulse broad-band rotational CARS thermometry of cold N2 gas

    NASA Technical Reports Server (NTRS)

    Chang, R. K.; Murphy, D. V.

    1981-01-01

    Coherent anti Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 was employed to measure the instantaneous (10 nsec) rotational temperature of the gas at room temperature and below. An entire rotational CARS spectrum was generated by a single laser pulse using a broad bandwidth dye laser and was recorded on an optical multichannel analyzer. A best fit temperature obtained for individual experimental spectra by comparison with calculated spectra. Good agreement between CARS temperatures and thermocouple temperatures was observed.

  17. Variations in the Solar Coronal Rotation with Altitude - Revisited

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Trivedi, Rupal; Sharma, Som Kumar; Vats, Hari Om

    2017-04-01

    Here we report an in-depth reanalysis of an article by Vats et al. ( Astrophys. J. 548, L87, 2001) that was based on measurements of differential rotation with altitude as a function of observing frequencies (as lower and higher frequencies indicate higher and lower heights, respectively) in the solar corona. The radial differential rotation of the solar corona is estimated from daily measurements of the disc-integrated solar radio flux at 11 frequencies: 275, 405, 670, 810, 925, 1080, 1215, 1350, 1620, 1755, and 2800 MHz. We use the same data as were used in Vats et al. (2001), but instead of the twelfth maxima of autocorrelograms used there, we use the first secondary maximum to derive the synodic rotation period. We estimate synodic rotation by Gaussian fit of the first secondary maximum. Vats et al. (2001) reported that the sidereal rotation period increases with increasing frequency. The variation found by them was from 23.6 to 24.15 days in this frequency range, with a difference of only 0.55 days. The present study finds that the sidereal rotation period increases with decreasing frequency. The variation range is from 24.4 to 22.5 days, and the difference is about three times larger (1.9 days). However, both studies give a similar rotation period at 925 MHz. In Vats et al. (2001) the Pearson's factor with trend line was 0.86, whereas present analysis obtained a {˜} 0.97 Pearson's factor with the trend line. Our study shows that the solar corona rotates more slowly at higher altitudes, which contradicts the findings reported in Vats et al. (2001).

  18. Submicron omega-shaped plasmonic polarization rotator

    NASA Astrophysics Data System (ADS)

    Andrawis, Robert R.; Swillam, Mohamed A.; Soliman, Ezzeldin A.

    2014-10-01

    In this paper, a novel compact plasmonic polarization converter is proposed. This rotator is based on conversion between even and odd modes of the coupled nanostrip plasmonic transmission line. The even and odd modes of that line have vertical and horizontal polarization, respectively. The proposed structure is capable of transferring the optical field from the substrate to the surface of the chip. This energy transfer between the surface and the substrate can be utilized for multilevel optical routing in plasmonic circuits. The device is optimized using a genetic algorithm for optimal performance at the optical telecommunication range of 1.55 μm. The cross-coupling is minimized over a wide wavelength range. The results are confirmed using full-wave electromagnetic simulation. The study includes a sensitivity analysis of the device’s response to perturbation in its main parameters. This novel device is appropriate for various applications in telecommunications and biomedical sensing.

  19. A numerical strategy for modelling rotating stall in core compressors

    NASA Astrophysics Data System (ADS)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary

  20. Time-series Doppler images and surface differential rotation of the effectively single, rapidly rotating K-giant KU Pegasi

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Künstler, A.; Strassmeier, K. G.; Carroll, T. A.; Weber, M.; Kriskovics, L.; Oláh, K.; Vida, K.; Granzer, T.

    2016-11-01

    Context. According to most stellar dynamo theories, differential rotation (DR) plays a crucial role in the generation of toroidal magnetic fields. Numerical models predict surface differential rotation to be anti-solar for rapidly rotating giant stars, i.e. their surface angular velocity could increase with stellar latitude. However, surface differential rotation has been derived only for a handful of individual giant stars to date. Aims: The spotted surface of the K-giant KU Pegasi is investigated in order to detect its time evolution and to quantify the surface differential rotation. Methods: We present 11 Doppler images from spectroscopic data collected with the robotic telescope STELLA between 2006 and 2011. All maps are obtained with the surface reconstruction code iMap. Differential rotation is extracted from these images by detecting systematic (latitude-dependent) spot displacements. We apply a cross-correlation technique to find the best differential rotation law. Results: The surface of KU Peg shows cool spots at all latitudes and one persistent warm spot at high latitude. A small cool polar spot exists for most but not all of the epochs. Re-identification of spots in at least two consecutive maps is mostly possible only at middle and high latitudes and thus restricts the differential-rotation determination mainly to these latitudes. Our cross-correlation analysis reveals solar-like differential rotation with a surface shear of α = + 0.040 ± 0.006, i.e., approximately five times weaker than on the Sun. We also derive a more accurate and consistent set of stellar parameters for KU Peg including a small Li abundance of ten times less than solar. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  1. Midplane Faraday rotation: A tokamak densitometer

    NASA Astrophysics Data System (ADS)

    Jobes, F. C.

    1995-01-01

    The density in a tokamak can be determined by measuring the Faraday rotation of a laser directed tangent to the toroidal field. If there is a horizontal array of such beams, then ne(R) can be readily obtained with a simple Abel inversion about the center line of the tokamak. For a large machine, such as ITER, TPX, or JT-60, a 10.6 μm laser would be appropriate. If the machine operated at a full field of 10-50 T m and a peak density of 2.5×1020/m3, the rotation angle would be quite large—about 15°-75° per pass. An elegant measurement system can be made up from a single laser beam diffracted off a moving grating to form a fan of ˜10 probe beams. With the addition of a few optical components to the system, the return beams can be recombined and sent to a single detector. In the detector there is a separate frequency component for both the right and left hand component of each ray. These can be separated electronically to provide a reference and probe signal for each ray; the difference in phase between the two signals is twice the Faraday rotation angle.

  2. Rotational band structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Poves, A.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Richard, A. L.; Rissanen, J.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈20 neon, sodium, and magnesium isotopes that make up what is commonly called the "island of inversion." However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I =6+ produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA (γ -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.

  3. Inverse Magnus effect on a rotating sphere

    NASA Astrophysics Data System (ADS)

    Kim, Jooha; Park, Hyungmin; Choi, Haecheon; Yoo, Jung Yul

    2011-11-01

    In this study, we investigate the flow characteristics of rotating spheres in the subcritical Reynolds number (Re) regime by measuring the drag and lift forces on the sphere and the two-dimensional velocity in the wake. The experiment is conducted in a wind tunnel at Re = 0 . 6 ×105 - 2 . 6 ×105 and the spin ratio (ratio of surface velocity to the free-stream velocity) of 0 (no spin) - 0.5. The drag coefficient on a stationary sphere remains nearly constant at around 0.52. However, the magnitude of lift coefficient is nearly zero at Re < 2 . 0 ×105 , but rapidly increases to 0.3 and then remains constant with further increasing Reynolds number. On the other hand, with rotation, the lift coefficient shows negative values, called inverse Magnus effect, depending on the magnitudes of the Reynolds number and spin ratio. The velocity field measured from a particle image velocimetry (PIV) indicates that non-zero lift coefficient on a stationary sphere at Re > 2 . 0 ×105 results from the asymmetry of separation line, whereas the inverse Magnus effect for the rotating sphere results from the differences in the boundary-layer growth and separation along the upper and lower sphere surfaces. Supported by the WCU, Converging Research Center and Priority Research Centers Program, NRF, MEST, Korea.

  4. Rotational Band Structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, Heather; NSCL E11029 Collaboration Team

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N =20 neon, sodium, and magnesium isotopes that make up what is commonly called the ``Island of Inversion''. However, rotational band structures, a characteristic fingerprint of a rigid non-spherical shape, have yet to be observed. We report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I = 6+, produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ-ray tracking detector array, GRETINA. Large-scale shell model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked shell model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results. This material is based upon work supported by the U.S. DOE, Office of Science, NP Office under Contract No. DE-AC02-05CH11231 (LBNL). GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL was supported by NSF.

  5. Image Rotation Does Not Rotate Smooth Eye Movements

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S. (Technical Monitor)

    1997-01-01

    Subjects viewing a drifting noise pattern make reflexive smooth eye movements in the direction of motion, which follow rapid changes in movement direction. These responses are unaffected by rotations of the pattern, suggesting that there is no coupling between visually sensed rotation and the direction of ocular following.

  6. The role of practice and strategy in mental rotation training: transfer and maintenance effects.

    PubMed

    Meneghetti, Chiara; Cardillo, Ramona; Mammarella, Irene C; Caviola, Sara; Borella, Erika

    2017-03-01

    Research in the domain of spatial abilities is now focusing on whether spatial abilities can be trained, and whether this can produce gains and maintenance effects in other, untrained skills. The aim of the present study was to assess the benefit and maintenance effects of two types of mental rotation training, one based on mental rotation practice alone, the other combining mental rotation practice with the use of a spatial (rotation) strategy. Seventy-two females took part in the study: 24 practiced with a rotation task that involved comparing pairs of 3D objects [the mental rotation (MR) group], 24 were taught to use the rotation strategy while practicing with the rotation task [the strategy + mental rotation (S + MR) group], and 24 were involved in parallel non-spatial activities (the active control group). Transfer effects were sought on both untrained spatial tasks (testing object rotation and perspective taking) and fluid ability tasks; self-reported strategy use was also examined. Our results showed short-term benefits and maintenance effects in the MR and the S + MR groups in terms of their accuracy in both the MR tasks considered (a 3D same/different task, and the Mental Rotations Test). The S + MR group was more accurate at follow-up than at post-test in both MR tasks, and reported using the rotation strategy in association with the tasks; this group was also more accurate at follow-up than at pre-test in the perspective-taking and fluid intelligence tasks. These findings are discussed from the spatial cognition standpoint and with reference to the (rotation) training literature.

  7. Measurement of human rotation behavior for psychological and neuropsychological investigations.

    PubMed

    Leuenberger, Kaspar; Hofmann, Reto; Brugger, Peter; Gassert, Roger

    2015-12-01

    The investigation of rotation behavior in human beings enjoys a longstanding and enduring interest in laterality research. While in animal studies the issue of accurately measuring the number of rotations has been solved and is widely applied in practice, it is still challenging to assess the rotation behavior of humans in daily life. We propose a robust method to assess human rotation behavior based on recordings from a miniature inertial measurement unit that can be worn unobtrusively on a belt. We investigate the effect of different combinations of low-cost sensors-including accelerometers, gyroscopes, and magnetometers-on rotation measurement accuracy, propose a simple calibration procedure, and validate the method on data from a predefined path through and around buildings. Results suggest that a rotation estimation based on the fusion of accelerometer, gyroscope, and magnetometer measurements outperforms methods based solely on earth magnetic field measurements, as proposed in previous studies, by a drop in error rate of up to 32 %. We further show that magnetometer signals do not significantly contribute to measurement accuracy in short-term measurements, and could thus be omitted for improved robustness in environments with magnetic field disturbances. Results also suggest that our simple calibration procedure can compete with more complex approaches and reduce the error rate of the proposed algorithm by up to 38 %.

  8. Experimental Approach and Diagnostics for the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Bergerson, W.; Fiksel, G.; Forest, C. B.; Hannum, D.; Kendrick, R.; Sarff, J. S.

    2002-11-01

    A new screw pinch experiment is under construction to study stabilization of the resistive wall mode (RWM) using differentially rotating shells. The experiment consists of a magnetized cylindrical plasma column surrounded by two concentric copper shells, the outer rotating with respect to a stationary inner shell. An ideal kink unstable with a stationary shell boundary can theoretically be stabilized with sufficient differential rotation of the double shell geometry. Flexible control of the current density and safety factor profiles is provided by a plasma gun array, which also sources the plasma. The key RWM diagnostic is a 2D array of radial magnetic field sensors on the outer surface of in the inner copper shell, designed with sub-Gauss sensitivity. The array is constructed using flexible printed circuit film technology to provide simple installation and accurate alignment. Magnetic sensors inside the inner shell will be used to discriminate the slowing growing RWM from possible resistive (e.g., tearing) instabilities. The first phase experiment will examine the RWM for a variety of conditions without the second rotating shell, followed by the addition of the rotating shell and re-examination of the RWM behavior. A third phase experiment where the rotating copper shell is replaced by a flowing liquid sodium shell is under design. This work is supported by US DoE DE-FG02-00ER54603.

  9. Surface dimpling on rotating work piece using rotation cutting tool

    DOEpatents

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  10. Accurate quartic and sextic centrifugal distortion constants of CH3CP

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Cludi, L.; Degli Esposti, C.

    2003-03-01

    1-Phosphapropyne has been produced in the gas phase by pyrolysis of a mixture of ethane and phosphorus trichloride. The ground state rotational spectra of the most abundant isotopomer and of the isotopic variants 13CH3CP and CH313CP have been investigated in the millimeter and submillimeter wave regions obtaining very accurate values of the quartic centrifugal distortion constants DJ and DJK and of the sextic distortion constants HJK and HKJ.

  11. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability.

  12. Solving the "Hidden Line" Problem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    David Hedgley Jr., a mathematician at Dryden Flight Research Center, has developed an accurate computer program that considers whether a line in a graphic model of a three dimensional object should or should not be visible. The Hidden Line Computer Code, program automatically removes superfluous lines and permits the computer to display an object from specific viewpoints, just as the human eye would see it. Users include Rowland Institute for Science in Cambridge, MA, several departments of Lockheed Georgia Co., and Nebraska Public Power District (NPPD).

  13. NMR Determination of the Rotational Barrier in N,N-Dimethylacetamide

    ERIC Educational Resources Information Center

    Gasparro, Francis P.; Kolodny, Nancy H.

    1977-01-01

    Describes a physical chemistry experiment that uses dynamic nuclear magnetic resonance spectroscopy to determine the barrier to rotation in N,N-dimethylacetamide by measuring changes in line shapes as a function of temperature. (MLH)

  14. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  15. Vibrational-rotational spectra of GaF and global multi-isotopologue analysis

    NASA Astrophysics Data System (ADS)

    Uehara, Hiromichi; Horiai, Koui; Katsuie, Shunsuke

    2016-07-01

    In total, 521 vibrational-rotational spectral lines of the Δv = 1 transitions of 69GaF and 71GaF up to bands v = 5-4 and 4-3, respectively, were recorded in emission with a Fourier-transform spectrometer at unapodized resolution 0.010 cm-1 in range 625-660 cm-1. The response of a HgCdTe detector enforced the lower limit, 625 cm-1. To calibrate accurately the spectral lines, the absorption spectrum of CO2 was simultaneously recorded, using dual sample cells, to serve as wavenumber standards. A set of 782 spectral lines comprising all present vibrational-rotational spectra of 69GaF and 71GaF, the reported laser-diode measurements of the Δv = 1 band sequence and the reported rotational spectra was subjected to a global multi-isotopologue analysis through fitting with 11 isotopically invariant, irreducible molecular parameters in a single set. Normalized standard deviation 1.093 indicates a satisfactory fit. For the effects of the breakdown of the Born-Oppenheimer approximation on GaF, the values of non-Born-Oppenheimer parameters ΔBGa, ΔωGa and r1qGa(=r1qF) are experimentally determined for the first time. To facilitate the calculations or predictions of spectral frequencies, the values of the Dunham coefficients of 24 Yij and 81 band parameters for both 69GaF and 71GaF were back-calculated with uncertainties using the 11 evaluated molecular parameters. To date, various types of effective Be, re, ωe, and k have been reported for GaF. Because, in the present work, Dunham coefficients Yij are algebraically expressed with the genuine Be, ωe, ai (i = 1, …) and the non-Born-Oppenheimer correction parameters, the exact expressions for the physical significance of effective quantities are derivable. The various effective quantities of Be, re, ωe and k calculated with these expressions for the physical significance and the determined values of the fitted parameters of GaF agree satisfactorily with the reported values. The physical significance of the conventional

  16. Three dimensional dynamics of rotating structures under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak

    2015-12-01

    This paper presents the spectral-Tchebychev (ST) technique for solution of three dimensional (3D) dynamics of rotating structures. In particular, structures that exhibit coupled dynamic response require a 3D modeling approach to capture their dynamic behavior. Rotational motions further complicate this behavior, inducing coriolis, centrifugal softening, and (nonlinear) stress-stiffening effects. Therefore, a 3D solution approach is needed to accurately capture the rotational dynamics. The presented 3D-ST technique provides a fast-converging and precise solution approach for rotational dynamics of structures with complex geometries and mixed boundary conditions. Specifically, unlike finite elements techniques, the presented technique uses a series expansion approach considering distributed-parameter system equations: The integral boundary value problem for rotating structures is discretized using the spectral-Tchebychev approach. To simplify the domain of the structures, cross-sectional and rotational transformations are applied to problems with curved cross-section and pretwisted geometry. The nonlinear terms included in the integral boundary value problem are linearized around an equilibrium solution using the quasi-static method. As a result, mass, damping, and stiffness matrices, as well as a forcing vector, are obtained for a given rotating structure. Several case studies are then performed to demonstrate the application and effectiveness of the 3D-ST solution. For each problem, the natural frequencies and modes shapes from the 3D-ST solution are compared to those from the literature (when available) and to those from a commercial finite elements software. The case studies include rotating/spinning parallelepipeds under free and mixed boundary conditions, and a cantilevered pretwisted beam (i.e., rotating blade) with an airfoil geometry rotating on a hub. It is seen that the natural frequencies and mode shapes from the 3D-ST technique differ from those from the

  17. Spatially homogeneous rotating world models.

    NASA Technical Reports Server (NTRS)

    Ozsvath, I.

    1971-01-01

    The mathematical problem encountered when looking for the simplest expanding and rotating model of the universe without the compactness condition for the space sections is formulated. The Lagrangian function is derived for four different rotating universes simultaneously. These models correspond in a certain sense to Godel's (1950) ?symmetric case.'

  18. KEPLER RAPIDLY ROTATING GIANT STARS

    SciTech Connect

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  19. Rotation of the planet mercury.

    PubMed

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  20. Rotational joint for prosthetic leg

    NASA Technical Reports Server (NTRS)

    Jones, W. C.; Owens, L. J.

    1977-01-01

    Device is installed in standard 30 millimeter tubing used for lower leg prosthetics. Unit allows proper rotation (about 3 degrees) of foot relative to the hip, during normal walking or running. Limited rotational movement with restoring force results in a more natural gait.

  1. Quantum Chemistry Meets Rotational Spectroscopy for Astrochemistry: Increasing Molecular Complexity

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina

    2016-06-01

    For many years, scientists suspected that the interstellar medium was too hostile for organic species and that only a few simple molecules could be formed under such extreme conditions. However, the detection of approximately 180 molecules in interstellar or circumstellar environments in recent decades has changed this view dramatically. A rich chemistry has emerged, and relatively complex molecules such as C60 and C70 are formed. Recently, researchers have also detected complex organic and potentially prebiotic molecules, such as amino acids, in meteorites and in other space environments. Those discoveries have further stimulated the debate on the origin of the building blocks of life in the universe. Rotational spectroscopy plays a crucial role in the investigation of planetary atmosphere and the interstellar medium. Increasingly these astrochemical investigations are assisted by quantum-mechanical calculations of structures as well as spectroscopic and thermodynamic properties to guide and support observations, line assignments, and data analysis in these new and chemically complicated situations. However, it has proved challenging to extend accurate quantum-chemical computational approaches to larger systems because of the unfavorable scaling with the number of degrees of freedom (both electronic and nuclear). In this contribution, it is demonstrated that it is now possible to compute physicochemical properties of building blocks of biomolecules with an accuracy rivaling that of the most sophisticated experimental techniques. We analyze the spectroscopic properties of representative building blocks of DNA bases (uracil and thiouracil), of proteins (glycine and glycine dipeptide analogue), and also of PAH (phenalenyl radical and cation). V. Barone, M. Biczysko, C. Puzzarini 2015, Acc. Chem. Res., 48, 1413

  2. Advances in Rotational Seismic Measurements

    SciTech Connect

    Pierson, Robert; Laughlin, Darren; Brune, Robert

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  3. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  4. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  5. Line Coupling in Atmospheric Spectra

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.

    1996-01-01

    The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.

  6. Vibration-rotation double resonance effects in symmetrical top molecules.

    NASA Technical Reports Server (NTRS)

    Marantz, H.; Frenkel, L.; Sullivan, T.

    1971-01-01

    Rotational transitions in symmetrical top molecules in the wavelength regions of 1-3 mm are sufficiently strong to be observed directly on an oscilloscope. Changes in the vibrational level populations induced by laser radiations affect the intensity of the rotational transitions. Observation of the microwave lines under the influence of chopped laser radiation shows a variety of interesting and potentially informative effects. At pressures above a few tenths of a torr the effect of laser radiation is to reduce the microwave response. This is true for all microwave lines at all those laser frequencies which are absorbed by the gas, and this effect is roughly proportional to the absorption coefficient. The rise and decay times of this effect increase with pressure and the the linear dimensions of the absorption cell. At low pressures the microwave response may increase, decrease, or remain unaffected depending on the observed microwave transitions and the specific laser line applied to the gas.

  7. Modeling of the interleaved hysteresis loop in the measurements of rotational core losses

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Pillay, Pragasen

    2016-01-01

    The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl-Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

  8. Magnetostrophic Rotating Magnetoconvection

    NASA Astrophysics Data System (ADS)

    King, Eric; Aurnou, Jonathan

    2016-11-01

    Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.

  9. Simulating rotational grazing management.

    PubMed

    Cros, M J; Duru, M; Garcia, F; Martin-Clouaire, R

    2001-09-01

    Dairy systems predominantly based on rotational grazing are notoriously hard to manage. In order to ensure profitability, this type of production requires quite good organisation, planning, and operating capability on the part of the farmer. A simulation-based decision support system, called SEPATOU, has been developed for this purpose. At the core of the decision support approach lies an explicit and rigorous modelling of the management strategy that underlies a dairy farmer's decision-making behaviour (real or hypothetical). The SEPATOU system is a discrete-event simulator that reproduces the day-to-day dynamics of the farmer's decision process and the response of the controlled biophysical system for which models of grass growth, animal consumption, and milk production are used. SEPATOU provides the means to evaluate and compare tentative strategies by simulating their application throughout the production season under different hypothetical weather conditions. The relative worth of a strategy can be assessed by analysing the effects on the biophysical system and their variability across the representative range of possible conditions that is considered. The activities to be managed concern the type and amount of conserved feed, where to fertilise and how much, the choice of fields to harvest, and most importantly, which field to graze next. Typically, SEPATOU is designed to be used by extension services and farming system scientists. It is implemented in C++ and is currently undergoing a validation process with the intended users.

  10. Accurate invariant pattern recognition for perspective camera model

    NASA Astrophysics Data System (ADS)

    Serikova, Mariya G.; Pantyushina, Ekaterina N.; Zyuzin, Vadim V.; Korotaev, Valery V.; Rodrigues, Joel J. P. C.

    2015-05-01

    In this work we present a pattern recognition method based on geometry analysis of a flat pattern. The method provides reliable detection of the pattern in the case when significant perspective deformation is present in the image. The method is based on the fact that collinearity of the lines remains unchanged under perspective transformation. So the recognition feature is the presence of two lines, containing four points each. Eight points form two squares for convenience of applying corner detection algorithms. The method is suitable for automatic pattern detection in a dense environment of false objects. In this work we test the proposed method for statistics of detection and algorithm's performance. For estimation of pattern detection quality we performed image simulation process with random size and spatial frequency of background clutter while both translational (range varied from 200 mm to 1500 mm) and rotational (up to 60°) deformations in given pattern position were added. Simulated measuring system included a camera (4000x4000 sensor with 25 mm lens) and a flat pattern. Tests showed that the proposed method demonstrates no more than 1% recognition error when number of false targets is up to 40.

  11. Accurate characterization of the stellar and orbital parameters of the exoplanetary system WASP-33 b from orbital dynamics

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2016-01-01

    By using the most recently published Doppler tomography measurements and accurate theoretical modelling of the oblateness-driven orbital precessions, we tightly constrain some of the physical and orbital parameters of the planetary system hosted by the fast rotating star WASP-33. In particular, the measurements of the orbital inclination ip to the plane of the sky and of the sky-projected spin-orbit misalignment λ at two epochs about six years apart allowed for the determination of the longitude of the ascending node Ω and of the orbital inclination I to the apparent equatorial plane at the same epochs. As a consequence, average rates of change dot{Ω }_exp, dot{I}_exp of this two orbital elements, accurate to a ≈10-2 deg yr-1 level, were calculated as well. By comparing them to general theoretical expressions dot{Ω }_{J_2}, dot{I}_{J_2} for their precessions induced by an oblate star whose symmetry axis is arbitrarily oriented, we were able to determine the angle i⋆ between the line of sight the star's spin {S}^{star } and its first even zonal harmonic J_2^{star } obtaining i^{star } = {142}^{+10}_{-11} deg, J_2^{star } = 2.1^{+0.8}_{-0.5}times; 10^{-4}. As a by-product, the angle between {S}^{star } and the orbital angular momentum L is as large as about ψ ≈ 100 ° psi; ^{2008} = 99^{+5}_{-4} deg, ψ ^{{2014}} = 103^{+5}_{-4} deg and changes at a rate dot{ψ }= 0.{7}^{+1.5}_{-1.6} deg {yr}^{-1}. The predicted general relativistic Lense-Thirring precessions, of the order of ≈10-3deg yr-1, are, at present, about one order of magnitude below the measurability threshold.

  12. Differential rotation in rapidly rotating F-stars

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Schmitt, J. H. M. M.

    2003-12-01

    We obtained high quality spectra of 135 stars of spectral types F and later and derived ``overall'' broadening functions in selected wavelength regions utilizing a Least Squares Deconvolution (LSD) procedure. Precision values of the projected rotational velocity v \\sini were derived from the first zero of the Fourier transformed profiles and the shapes of the profiles were analyzed for effects of differential rotation. The broadening profiles of 70 stars rotating faster than v \\sini = 45 km s-1 show no indications of multiplicity nor of spottedness. In those profiles we used the ratio of the first two zeros of the Fourier transform q_2/q_1 to search for deviations from rigid rotation. In the vast majority the profiles were found to be consistent with rigid rotation. Five stars were found to have flat profiles probably due to cool polar caps, in three stars cuspy profiles were found. Two out of those three cases may be due to extremely rapid rotation seen pole on, only in one case (v \\sini = 52 km s-1) is solar-like differential rotation the most plausible explanation for the observed profile. These results indicate that the strength of differential rotation diminishes in stars rotating as rapidly as v \\sini >~ 50 km s-1. Table A.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/813 Based on observations collected at the European Southern Observatory, La Silla, 69.D-0015(B).

  13. Individual differences in mental rotation: piecemeal versus holistic processing.

    PubMed

    Khooshabeh, Peter; Hegarty, Mary; Shipley, Thomas F

    2013-01-01

    Two experiments tested the hypothesis that imagery ability and figural complexity interact to affect the choice of mental rotation strategies. Participants performed the Shepard and Metzler (1971) mental rotation task. On half of the trials, the 3-D figures were manipulated to create "fragmented" figures, with some cubes missing. Good imagers were less accurate and had longer response times on fragmented figures than on complete figures. Poor imagers performed similarly on fragmented and complete figures. These results suggest that good imagers use holistic mental rotation strategies by default, but switch to alternative strategies depending on task demands, whereas poor imagers are less flexible and use piecemeal strategies regardless of the task demands.

  14. General-relativistic rotation laws in rotating fluid bodies

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Malec, Edward

    2015-06-01

    We formulate new general-relativistic extensions of Newtonian rotation laws for self-gravitating stationary fluids. They have been used to rederive, in the first post-Newtonian approximation, the well-known geometric dragging of frames. We derive two other general-relativistic weak-field effects within rotating tori: the recently discovered dynamic antidragging and a new effect that measures the deviation from the Keplerian motion and/or the contribution of the fluids self-gravity. One can use the rotation laws to study the uniqueness and the convergence of the post-Newtonian approximations as well as the existence of the post-Newtonian limits.

  15. Improved prediction of parachute line sail during lines-first deployment

    SciTech Connect

    Purvis, J.W.

    1984-04-01

    A numerical deployment simulation with the capability to predict line sail is presented. A finite element approach is used in which both canopy and suspension lines are modeled as flexible, distributed-mass structures connected to a finite-mass forebody. Translation and rotation of both the forebody and the deployment bag are determined from three-degree-of-freedom flight mechanics equations. The model includes all aspects of the deployment problem, such as suspension line aerodynamics, line ties, and canopy/deployment bag friction. The model has been verified by comparison with experimental data and used to investigate proposed solutions for a system with a line sail problem.

  16. Rotational Properties of Jupiter Trojan 1173 Anchises

    NASA Astrophysics Data System (ADS)

    Chatelain, Joseph; Henry, Todd; French, Linda; Trilling, David

    2015-11-01

    Anchises (1173) is a large Trojan asteroid librating about Jupiter’s L5 Lagrange point. Here we examine its rotational and lightcurve properties by way of data collected over a 3.5 year observing campaign. The length of the campaign means that data were gathered for more than a quarter of Anchises' full orbital revolution which allows for accurate determinations of pole orientation and bulk shape properties for the asteroid that can then be compared to results of previous work (i.e. French 1987, Horner et al. 2012). In addition to light curves, photometric data taken during this campaign could potentially detect color differences between hemispheres as the viewing geometry changes over time. Understanding these details about a prominent member of the Jupiter Trojans may help us better understand the history of this fascinating and important group of asteroids.

  17. Black holes surrounded by uniformly rotating rings

    NASA Astrophysics Data System (ADS)

    Ansorg, Marcus; Petroff, David

    2005-07-01

    Highly accurate numerical solutions to the problem of black holes surrounded by uniformly rotating rings in axially symmetric, stationary spacetimes are presented. The numerical methods developed to handle the problem are discussed in some detail. Related Newtonian problems are described and numerical results provided, which show that configurations can reach an inner mass-shedding limit as the mass of the central object increases. Exemplary results for the full relativistic problem for rings of constant density are given and the deformation of the event horizon due to the presence of the ring is demonstrated. Finally, we provide an example of a system for which the angular momentum of the central black hole divided by the square of its mass exceeds one (Jc/M2c>1).

  18. Effects of Faraday Rotation Observed in Filter Magnetograph Data

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.; Adams, Mitzi L.; Smith, J. E.; West, Edward A.

    1999-01-01

    In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple sunspot observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the sunspot's field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.

  19. The Comparison of Spectroscopic Measurements of the Solar Rotation

    NASA Astrophysics Data System (ADS)

    Jejčič, S.; Čadež, A.

    We studied the velocity field on the surface of the Sun measured by the Doppler shift of Fraunhofer Sodium lines Na-D_{2} at 5891.583 Å, Na-D_{1} at 5897.557 Å and Nickel line Ni I at 5894.505 Å. All the spectroscopic measurements were done at Ljubljana observatory on September 9, 10, 13 and 14 1999 using double monochromator DFS-12. The calibration was done through five telluric water lines in the vicinity of Sodium lines. With respect to telluric water lines Fraunhofer lines were analysed and through their Doppler velocity we determined the velocity field on the surface of the Sun. The data were fitted to the rotation model to determine the average solar angular (sidereal) coefficients, the average gravitational redshift velocity and the average parameters of the systematic limb shift for each line separately. Solar rotation coefficients determined by our measurements are compared with those of Howard and Harvey, Snodgrass and Ulrich, and Wittmann.

  20. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…