Science.gov

Sample records for accurate rotational line

  1. Limited rotational and rovibrational line lists computed with highly accurate quartic force fields and ab initio dipole surfaces.

    PubMed

    Fortenberry, Ryan C; Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2014-02-01

    In this work, computational procedures are employed to compute the rotational and rovibrational spectra and line lists for H2O, CO2, and SO2. Building on the established use of quartic force fields, MP2 and CCSD(T) Dipole Moment Surfaces (DMSs) are computed for each system of study in order to produce line intensities as well as the transition energies. The computed results exhibit a clear correlation to reference data available in the HITRAN database. Additionally, even though CCSD(T) DMSs produce more accurate intensities as compared to experiment, the use of MP2 DMSs results in reliable line lists that are still comparable to experiment. The use of the less computationally costly MP2 method is beneficial in the study of larger systems where use of CCSD(T) would be more costly. PMID:23692860

  2. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  3. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  4. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  5. Minimum impulse transfers to rotate the line of apsides

    NASA Technical Reports Server (NTRS)

    Phong, Connie; Sweetser, Theodore H.

    2005-01-01

    While an optimal scenario for the general two-impulse transfer between coplanar orbits is not known, there are optimal scenarios for various special cases. We consider in-plane rotations of the line of apsides. Numerical comparisons with a trajectory optimization program support the claim that the optimal deltaV required by two impulses is about half that required by a single impulse, regardless of semi-major axes. We observe that this estimate becomes more conservative with larger angles of rotation and eccentricities, and thus also present a more accurate two-impulse rotation deltaV estimator.

  6. Broad-line active galactic nuclei rotate faster than narrow-line ones.

    PubMed

    Kollatschny, Wolfram; Zetzl, Matthias

    2011-02-17

    The super-massive black holes of 10(6)M(⊙) to 10(9)M(⊙) that reside in the nuclei of active galaxies (AGN) are surrounded by a region emitting broad lines, probably associated with an accretion disk. The diameters of the broad-line regions range from a few light-days to more than a hundred light-days, and cannot be resolved spatially. The relative significance of inflow, outflow, rotational or turbulent motions in the broad-line regions as well as their structure (spherical, thin or thick accretion disk) are unknown despite intensive studies over more than thirty years. Here we report a fundamental relation between the observed emission linewidth full-width at half-maximum (FWHM) and the emission line shape FWHM/σ(line) in AGN spectra. From this relation we infer that the predominant motion in the broad-line regions is Keplerian rotation in combination with turbulence. The geometry of the inner region varies systematically with the rotation velocity: it is flattest for the fast-rotating broad-line objects, whereas slow-rotating narrow-line AGN have a more spherical structure. Superimposed is the trend that the line-emitting region becomes geometrically thicker towards the centre within individual galaxies. Knowing the rotational velocities, we can derive the central black-hole masses more accurately; they are two to ten times smaller than has been estimated previously.

  7. Accurate oscillator strengths for interstellar ultraviolet lines of Cl I

    NASA Technical Reports Server (NTRS)

    Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.

    1993-01-01

    Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.

  8. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  9. Accurate in-line CD metrology for nanometer semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Perng, Baw-Ching; Shieh, Jyu-Horng; Jang, S.-M.; Liang, M.-S.; Huang, Renee; Chen, Li-Chien; Hwang, Ruey-Lian; Hsu, Joe; Fong, David

    2006-03-01

    The need for absolute accuracy is increasing as semiconductor-manufacturing technologies advance to sub-65nm nodes, since device sizes are reducing to sub-50nm but offsets ranging from 5nm to 20nm are often encountered. While TEM is well-recognized as the most accurate CD metrology, direct comparison between the TEM data and in-line CD data might be misleading sometimes due to different statistical sampling and interferences from sidewall roughness. In this work we explore the capability of CD-AFM as an accurate in-line CD reference metrology. Being a member of scanning profiling metrology, CD-AFM has the advantages of avoiding e-beam damage and minimum sample damage induced CD changes, in addition to the capability of more statistical sampling than typical cross section metrologies. While AFM has already gained its reputation on the accuracy of depth measurement, not much data was reported on the accuracy of CD-AFM for CD measurement. Our main focus here is to prove the accuracy of CD-AFM and show its measuring capability for semiconductor related materials and patterns. In addition to the typical precision check, we spent an intensive effort on examining the bias performance of this CD metrology, which is defined as the difference between CD-AFM data and the best-known CD value of the prepared samples. We first examine line edge roughness (LER) behavior for line patterns of various materials, including polysilicon, photoresist, and a porous low k material. Based on the LER characteristics of each patterning, a method is proposed to reduce its influence on CD measurement. Application of our method to a VLSI nanoCD standard is then performed, and agreement of less than 1nm bias is achieved between the CD-AFM data and the standard's value. With very careful sample preparations and TEM tool calibration, we also obtained excellent correlation between CD-AFM and TEM for poly-CDs ranging from 70nm to 400nm. CD measurements of poly ADI and low k trenches are also

  10. [Raman Lidar measuring tropospheric temperature profiles with many rotational Raman lines].

    PubMed

    Su, Jia; Zhang, Yin-chao; Hu, Shun-xing; Cao, Kai-fa; Zhao, Pei-tao; Wang, Shao-lin; Xie, Jun

    2008-08-01

    Due to lower tropospheric aerosols, the Rayleigh and vibrational Raman methods can't measure lower tropospheric temperature profiles accurately. By using N2 and O2 molecular pure rotational Raman scattering signals, lower tropospheric temperature profiles can be gained without influence of lower tropospheric aerosols. So we decide to use a pure rotational Raman Lidar to get lower tropospheric temperature profiles. At present, because the most light-splitting systems of pure rotational Raman Lidar measure temperature by gaining a single rotational Raman line, the signal to noise ratio (SNR) of these Lidar systems are very low. So we design a new kind of Lidar light-splitting system which can sum different rotational Raman lines and it can improve SNR And we can find the sensitivity of the temperature of the ratios of multi rotational Raman lines is as same as single rotational Raman line's through theoretical analysis. Moreover, we can obtain the temperature profiles with good SNR fromthis new the system with a normal laser and a small telescope up to several kilometers. At last, with the new light-splitting system, the lower tropospheric temperature profiles are measured from 0.3 km to 5 km altitude. They agree well with radiosonde observations, which demonstrate the results of our rotational Raman lidar are reasonable.

  11. Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.

    PubMed

    Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro

    2016-01-12

    The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy.

  12. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  13. Accurate Visual Heading Estimation at High Rotation Rate Without Oculomotor or Static-Depth Cues

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    It has been claimed that either oculomotor or static depth cues provide the signals about self-rotation necessary approx.-1 deg/s. We tested this hypothesis by simulating self-motion along a curved path with the eyes fixed in the head (plus or minus 16 deg/s of rotation). Curvilinear motion offers two advantages: 1) heading remains constant in retinotopic coordinates, and 2) there is no visual-oculomotor conflict (both actual and simulated eye position remain stationary). We simulated 400 ms of rotation combined with 16 m/s of translation at fixed angles with respect to gaze towards two vertical planes of random dots initially 12 and 24 m away, with a field of view of 45 degrees. Four subjects were asked to fixate a central cross and to respond whether they were translating to the left or right of straight-ahead gaze. From the psychometric curves, heading bias (mean) and precision (semi-interquartile) were derived. The mean bias over 2-5 runs was 3.0, 4.0, -2.0, -0.4 deg for the first author and three naive subjects, respectively (positive indicating towards the rotation direction). The mean precision was 2.0, 1.9, 3.1, 1.6 deg. respectively. The ability of observers to make relatively accurate and precise heading judgments, despite the large rotational flow component, refutes the view that extra-flow-field information is necessary for human visual heading estimation at high rotation rates. Our results support models that process combined translational/rotational flow to estimate heading, but should not be construed to suggest that other cues do not play an important role when they are available to the observer.

  14. In-line rotation sensor based on VCSEL behavior under polarization-rotating optical feedback.

    PubMed

    Ura, Shogo; Shoda, Shinichiro; Nishio, Kenzo; Awatsuji, Yasuhiro

    2011-11-21

    Lasing behavior of a single-transverse-mode vertical-cavity surface-emitting laser (VCSEL) was observed while the polarization direction of an optical feedback was rotated. Optical powers of two polarization modes of a VCSEL showed sinusoidal dependences on the polarization-rotation angle. The power variation was seen when an optical feedback ratio was larger than -20 dB, though the variation depth dropped suddenly as the feedback ratio became smaller than -25 dB. An in-line type rotation sensor utilizing this behavior is proposed. The sensor system was constructed and the detection principle was demonstrated.

  15. Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations

    SciTech Connect

    Den, Takuya S.; Frey, Hans-Martin; Leutwyler, Samuel

    2014-11-21

    The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B{sub 0} = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B{sub 0} value, RR-RCS measurements in a room temperature gas cell give the rotational constants B{sub v} of the five lowest-lying thermally populated vibrationally excited states ν{sub 7/8}, ν{sub 9}, ν{sub 11/12}, ν{sub 13}, and ν{sub 14/15}. Their B{sub v} constants differ from B{sub 0} by between −1.02 MHz and +2.23 MHz. Combining the B{sub 0} with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r{sub e}(C-C) = 1.3866(3) Å and r{sub e}(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r{sub e} bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r{sub g}(C-C)=1.3907(3) Å and r{sub g}(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r{sub g} bond lengths measured in the 1960s.

  16. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  17. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  18. Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR.

    PubMed

    Thompson, Andrew R; Binder, Benjamin P; McCaffrey, Jesse E; Svensson, Bengt; Thomas, David D

    2015-01-01

    While EPR allows for the characterization of protein structure and function due to its exquisite sensitivity to spin label dynamics, orientation, and distance, these measurements are often limited in sensitivity due to the use of labels that are attached via flexible monofunctional bonds, incurring additional disorder and nanosecond dynamics. In this chapter, we present methods for using a bifunctional spin label (BSL) to measure muscle protein structure and dynamics. We demonstrate that bifunctional attachment eliminates nanosecond internal rotation of the spin label, thereby allowing the accurate measurement of protein backbone rotational dynamics, including microsecond-to-millisecond motions by saturation transfer EPR. BSL also allows for accurate determination of helix orientation and disorder in mechanically and magnetically aligned systems, due to the label's stereospecific attachment. Similarly, labeling with a pair of BSL greatly enhances the resolution and accuracy of distance measurements measured by double electron-electron resonance (DEER). Finally, when BSL is applied to a protein with high helical content in an assembly with high orientational order (e.g., muscle fiber or membrane), two-probe DEER experiments can be combined with single-probe EPR experiments on an oriented sample in a process we call BEER, which has the potential for ab initio high-resolution structure determination. PMID:26477249

  19. Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus.

    PubMed

    Park, Seoung Hoon; Kim, Seonjin; Kwon, MinHyuk; Christou, Evangelos A

    2016-03-01

    Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.

  20. On-line phase measuring profilometry for a rotating object

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cao, Yiping; Yang, Xin; Peng, Kuang

    2014-11-01

    On-line phase measuring profilometry (OPMP) for a rotating object is proposed. N frames of circular sinusoidal grating patterns are designed in advance, in which the transmittance along the radial direction is sinusoidal and there is a fixed shifting phase pitch of 2π/N between every adjacent two grating patterns along the radial direction. While the measured object is rotating, the designed grating patterns are projected onto the rotating object by digital light processing and the corresponding deformed patterns caused by the object at different positions are captured by a charge coupled device camera. By pixel matching and rotation transformation with special marks, N frames of the deformed patterns of the object at the same position can be extracted. Hence, the rotating object can be reconstructed by the extracted deformed patterns. The results of computer emulation and experiment show the feasibility and validity of the proposed OPMP. Either the maximum measurement absolute error is 0.118 mm or the maximum root mean square error is 0.077 mm in the measured region of 0 to 25 mm.

  1. Rotating compensator spectroscopic ellipsometry for line-width control

    NASA Astrophysics Data System (ADS)

    Lee, Ha-Young; Bang, Kyoung-Yoon; Lee, Jaeho; Bak, Heungin; Sohn, Young-Soo; An, Ilsin

    2002-07-01

    Rotating compensator spectroscopic ellipsometry (RCSE) was applied to the characterization of line-width in deep UV photoresist films. Variation of line-width in few nm was distinguishable by comparing the features in conventional ellipsometry parameters or the degree of polarization spectra obtainable form RCSE. The variations in the former spectra were caused by the density change in patterned PR films. Meanwhile, the variations in latter spectra wee caused by the surface profile of the film. Once the spectral positions of the features were related to the result of CD- SEM, both spectra could be used to estimate the line-width of patterned PR without in-depth analysis. Further, when uniaxial anisotropy was assumed for the film, the line-width could be roughly deduced in the process of extracting the optical properties of film via an effective medium approximation.

  2. Scattering line polarization in rotating, optically thick disks

    NASA Astrophysics Data System (ADS)

    Milić, I.; Faurobert, M.

    2014-11-01

    Context. To interpret observations of astrophysical disks, it is essential to understand the formation process of the emitted light. If the disk is optically thick, scattering dominated and permeated by a Keplerian velocity field, non-local thermodynamic equilibrium (NLTE) radiative transfer modeling must be done to compute the emergent spectrum from a given disk model. Aims: We investigate NLTE polarized line formation in different simple disk models and aim to demonstrate the importance of both radiative transfer effects and scattering, as well as the effects of velocity fields. Methods: We self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for a two-level atom model by means of Jacobi iteration. We use the short characteristics method of formal solution in two-dimensional axisymmetric media and compute scattering polarization, that is Q/I and U/I line profiles, using the reduced intensity formalism. We account for the presence of Keplerian velocity fields by casting the radiative transfer equation in the observer's frame. Results: Relatively simple (homogeneous and isothermal) disk models show complex intensity profiles that owe their shape to the interplay of multidimensional NLTE radiative transfer and the presence of rotation. The degree of scattering polarization is significantly influenced not only by the inclination of the disk with respect to observer, but also by the optical thickness of the disk and the presence of rotation. Stokes U/I shows double-lobed profiles with amplitude that increases with the disk rotation. Conclusions: Our results suggest that the line profiles, especially the polarized ones, emerging from gaseous disks differ significantly from the profiles predicted by simple approximations. Even in the case of the simple two-level atom model, we obtain line profiles that are diverse in shape, but typically symmetric in Stokes Q and antisymmetric in Stokes U. A clear indicator of disk rotation is

  3. Minimum impulse transfers to rotate the line of apsides

    NASA Technical Reports Server (NTRS)

    Phong, Connie; Sweetser, Theodore H.

    2005-01-01

    Transfer between two coplanar orbits can be accomplished via a single impulse if the two orbits intersect. Optimization of a single-impulse transfer, however, is not possible since the transfer orbit is completely constrained by the initial and final orbits. On the other hand, two-impulse transfers are possible between any two terminal orbits. While optimal scenarios are not known for the general two-impulse case, there are various approximate solutions to many special cases. We consider the problem of an inplane rotation of the line of apsides, leaving the size and shape of the orbit unaffected.

  4. Mechanical Analysis and Hierarchies of Multi-digit Synergies during Accurate Object Rotation

    PubMed Central

    Zhang, Wei; Olafsdottir, Halla B.; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2009-01-01

    We studied the mechanical variables (the grip force and the total moment of force) and multi-digit synergies at two levels (the virtual finger-thumb level, VF-TH, and the individual finger level, IMRL) of a hypothetical control hierarchy during accurate rotation of a hand-held instrumented handle. Synergies were defined as co-varied changes in elemental variables (forces and moments of force) that stabilize the output at a particular level. Indices of multi-digit synergies showed higher values at the hierarchically higher level (VF-TH) for both normal and tangential forces. The moment of force was stabilized at both hierarchical levels during the steady-state phases but not during the movement. The results support the principles of superposition and of mechanical advantage. They also support an earlier hypothesis on an inherent trade-off between synergies at the two hierarchical levels, although the controller showed more subtle and versatile synergic control than the one hypothesized earlier. PMID:19799165

  5. Control Circuitry Using Electronic Emulation of a Synchro Signal for Accurate Control of Position and Rate of Rotation for Shafts

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    1992-01-01

    The invention herein disclosed is a digital circuit which emulates a synchro signal in a synchro-resolver follower system for precise control of shaft position and rotation at very low rotational rates. The subject invention replaces the synchro and drive motor in a synchroresolver follower system with a digital and analog synchro emulation circuit for generating the resolver control signal. The synchro emulation circuit includes amplitude modulation means to provide relatively high frequency resolver excitation signals for accurate resolver response even with very low shaft rotation rates.

  6. Control circuitry using electronic emulation of a synchro signal for accurate control of position and rate of rotation for shafts

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    1991-01-01

    The invention disclosed is a digital circuit which emulates a synchro signal in a synchro-resolver follower system for precise control of shaft position and rotation at very low rotational rates. The invention replaces the synchro and drive motor in a synchro-resolver follower system with a digital and analog synchro emulation circuit for generating the resolver control signal. The synchro emulation circuit includes amplitude modulation means to provide relatively high frequency resolver excitation signals for accurate resolver response even with very low shaft rotation rates.

  7. The rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines

    NASA Astrophysics Data System (ADS)

    Greiner, Bernd; Neugebauer, Joachim

    2013-07-01

    We provide an up-to-date compilation of Euler rotations that model the evolution of the Central and Northern Atlantic Ocean (Table 1). The data basis forms seafloor spreading magnetic anomalies of the Atlantic. We checked the published rotations and selected those that form a consistent model. The increments of the Euler rotations going back in time from magnetic anomaly to magnetic anomaly can be illustrated by chains of points on "drift lines" that are paths of motions from continent to continent. Along these paths, the continents bordering the Atlantic Ocean can be moved back to their Mesozoic position within Pangea. Other figures exhibit the early rifting of the North Atlantic, the drift of Iberia, and the evolution of the Greenland-Ellesmere region. The points on the drift lines do not correspond directly to the lines of magnetic anomalies or their "picks" displayed today symmetrically in the Atlantic Ocean. To acquire correspondence, symmetric "flow lines" are constructed analogous to the spreading procedure. But points on the flow lines constructed by half of the increments partially also deviate from the expected symmetric position and in this way quantify displacements or jumps of the axis of rifting or spreading. Most of the selected rotations are from the excellent analyses of previous work. Essential deviations from published rotations are the M 0 rotations of Eurasia and of the Porcupine unit with respect to North America (EUR-NAM and POR-NAM). They lead to a better coincidence between the back-rotated M 0 magnetic anomalies in the Bay of Biscay on the one side and a change of the first transform motions between Greenland and Svalbard on the other side. Through this explanation, an overlap in Pangea SW of Svalbard is avoided and transform motions instead of strong extension are predicted. Some additional data are needed to complete the model: the earliest part of the path of Iberia to North America (IBA-NAM) up to M 4 is calculated assuming that Iberia

  8. NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES

    SciTech Connect

    Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh

    2013-02-10

    We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

  9. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  10. Accurate Ritz Wavelengths of Parity-forbidden [Co II] and [V II] Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-01

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 × 10-2 s-1 and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  11. ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

    SciTech Connect

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-15

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 Multiplication-Sign 10{sup -2} s{sup -1} and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  12. Cyclotron resonant scattering in gamma-ray bursts - Line strengths and signature of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Wang, J. C. L.; Wasserman, I.

    1992-01-01

    We explain the relative line strengths in gamma-ray bursts in terms of cyclotron resonant scattering. We describe the line signature of neutron star rotation and discuss the possibility that variations seen in the strengths and widths of the lines in GB780325 and GB870303 are due to rotation.

  13. Line Shape Parameters for CO_2 Transitions: Accurate Predictions from Complex Robert-Bonamy Calculations

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Gamache, Robert R.

    2013-06-01

    A model for the prediction of the vibrational dependence of CO_2 half-widths and line shifts for several broadeners, based on a modification of the model proposed by Gamache and Hartmann, is presented. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power p and a reference ro-vibrational transition. Complex Robert-Bonamy calculations were made for 24 bands for lower rotational quantum numbers J'' from 0 to 160 for N_2-, O_2-, air-, and self-collisions with CO_2. In the model a Quantum Coordinate is defined by (c_1 Δν_1 + c_2 Δν_2 + c_3 Δν_3)^p where a linear least-squares fit to the data by the model expression is made. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From these fit data, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO_2 databases to have complete information for the line shape parameters. R. R. Gamache, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer. {{83}} (2004), 119. R. R. Gamache, J. Lamouroux, J. Quant. Spectrosc. Radiat. Transfer. {{117}} (2013), 93.

  14. The impact of gas bulk rotation on the Lyα line

    SciTech Connect

    Garavito-Camargo, Juan N.; Forero-Romero, Jaime E.; Dijkstra, Mark E-mail: je.forero@uniandes.edu.co

    2014-11-10

    We present results of radiative transfer calculations to measure the impact of gas bulk rotation on the morphology of the Lyα emission line in distant galaxies. We model a galaxy as a sphere with an homogeneous mixture of dust and hydrogen at a constant temperature. These spheres undergo solid-body rotation with maximum velocities in the range 0-300 km s{sup –1} and neutral hydrogen optical depths in the range τ{sub H} = 10{sup 5}-10{sup 7}. We consider two types of source distributions in the sphere: central and homogeneous. Our main result is that rotation introduces a dependence of the line morphology with viewing angle and rotational velocity. Observations with a line of sight parallel to the rotation axis yield line morphologies similar to the static case. For lines of sight perpendicular to the rotation axis, both the intensity at the line center and the line width increase with rotational velocity. Along the same line of sight, the line becomes single peaked at rotational velocities close to half the line width in the static case. Notably, we find that rotation does not induce any spatial anisotropy in the integrated line flux, the escape fraction or the average number of scatterings. This is because Lyman scattering through a rotating solid-body proceeds identically to the static case. The only difference is the Doppler shift from the different regions in the sphere that move with respect to the observer. This allows us to derive an analytic approximation for the viewing-angle dependence of the emerging spectrum, as a function of rotational velocity.

  15. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  16. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  17. Bundle block adjustment of airborne three-line array imagery based on rotation angles.

    PubMed

    Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin

    2014-01-01

    In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models. PMID:24811075

  18. Accurate mask registration on tilted lines for 6F2 DRAM manufacturing

    NASA Astrophysics Data System (ADS)

    Roeth, K. D.; Choi, W.; Lee, Y.; Kim, S.; Yim, D.; Laske, F.; Ferber, M.; Daneshpanah, M.; Kwon, E.

    2015-10-01

    193nm immersion lithography is the mainstream production technology for the 22nm half pitch (HP) DRAM manufacturing. Considering multi-patterning as the technology to solve the very low k1 situation in the resolution equation puts extreme pressure on the intra-field overlay, to which mask registration error may be a significant error contributor [3]. The International Technology Roadmap for Semiconductors (ITRS [1]) requests a registration error below 4 nm for each mask of a multi-patterning set forming one layer on the wafer. For mask metrology at the 22nm HP node, maintaining a precision-to-tolerance (P/T) ratio below 0.25 will be very challenging. Mask registration error impacts intra-field wafer overlay directly and has a major impact on wafer yield. DRAM makers moved several years ago to 6F2 (figure 1, [2]) cell design and thus printing tilted lines at 15 or 30 degree. Overlay of contact layer over buried line has to be well controlled. However, measuring mask registration performance accurately on tilted lines was a challenge. KLA Tencor applied the model-based algorithm to enable the accurate registration measurement of tilted lines on the Poly layer as well as the mask-to-mask overlay to the adjacent contact layers. The metrology solution is discussed and measurement results are provided.

  19. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  20. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery

    NASA Astrophysics Data System (ADS)

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  1. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery.

    PubMed

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  2. Signature for rotational to vibrational evolution along the yrast line

    SciTech Connect

    Shen, S. F.; Chen, Y. B.; Tang, B.; Xu, F. R.; Zheng, S. J.; Wen, T. D.

    2007-04-15

    The excitation spectra of nuclei in the regions 150rotational motion. In the present work, however, there is evidence indicating that the nuclei can evolve from rotation to vibration. We have used two simple models to discuss the collective motions of a nucleus for different spin ranges. In addition, in order to get the insight into the rotational-like properties of nuclei, as an example, shape calculations using the total Routhian surfaces (TRS) model have been carried out for positive-parity states in {sup 156}Gd. Also we have shown the result of the nucleus {sup 102}Ru which is given as an example of the reverse transition, i.e., vibration to rotation. The TRS plots reveal that, with increasing spin, the former nucleus becomes slightly soft in {gamma} and {beta} deformations, while the latter one becomes rigid in the {gamma} deformation.

  3. Accurate oscillator strengths for ultraviolet lines of Ar I - Implications for interstellar material

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Beideck, D. J.; Schectman, R. M.; York, D. G.

    1992-01-01

    Analysis of absorption from interstellar Ar I in lightly reddened lines of sight provides information on the warm and hot components of the interstellar medium near the sun. The details of the analysis are limited by the quality of the atomic data. Accurate oscillator strengths for the Ar I lines at 1048 and 1067 A and the astrophysical implications are presented. From lifetimes measured with beam-foil spectroscopy, an f-value for 1048 A of 0.257 +/- 0.013 is obtained. Through the use of a semiempirical formalism for treating singlet-triplet mixing, an oscillator strength of 0.064 +/- 0.003 is derived for 1067 A. Because of the accuracy of the results, the conclusions of York and colleagues from spectra taken with the Copernicus satellite are strengthened. In particular, for interstellar gas in the solar neighborhood, argon has a solar abundance, and the warm, neutral material is not pervasive.

  4. Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4

    NASA Astrophysics Data System (ADS)

    Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.

    2013-06-01

    We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).

  5. Accurate Feeding of Nanoantenna by Singular Optics for Nanoscale Translational and Rotational Displacement Sensing.

    PubMed

    Xi, Zheng; Wei, Lei; Adam, A J L; Urbach, H P; Du, Luping

    2016-09-01

    Identifying subwavelength objects and displacements is of crucial importance in optical nanometrology. We show in this Letter that nanoantennas with subwavelength structures can be excited precisely by incident beams with singularity. This accurate feeding beyond the diffraction limit can lead to dynamic control of the unidirectional scattering in the far field. The combination of the field discontinuity of the incoming singular beam with the rapid phase variation near the antenna leads to remarkable sensitivity of the far-field scattering to the displacement at a scale much smaller than the wavelength. This Letter introduces a far-field deep subwavelength position detection method based on the interaction of singular optics with nanoantennas.

  6. Accurate Feeding of Nanoantenna by Singular Optics for Nanoscale Translational and Rotational Displacement Sensing.

    PubMed

    Xi, Zheng; Wei, Lei; Adam, A J L; Urbach, H P; Du, Luping

    2016-09-01

    Identifying subwavelength objects and displacements is of crucial importance in optical nanometrology. We show in this Letter that nanoantennas with subwavelength structures can be excited precisely by incident beams with singularity. This accurate feeding beyond the diffraction limit can lead to dynamic control of the unidirectional scattering in the far field. The combination of the field discontinuity of the incoming singular beam with the rapid phase variation near the antenna leads to remarkable sensitivity of the far-field scattering to the displacement at a scale much smaller than the wavelength. This Letter introduces a far-field deep subwavelength position detection method based on the interaction of singular optics with nanoantennas. PMID:27661688

  7. Accurate characterization and modeling of transmission lines for GaAs MMIC's

    NASA Astrophysics Data System (ADS)

    Finlay, Hugh J.; Jansen, Rolf H.; Jenkins, John A.; Eddison, Ian G.

    1988-06-01

    The authors discuss computer-aided design (CAD) tools together with high-accuracy microwave measurements to realize improved design data for GaAs monolithic microwave integrated circuits (MMICs). In particular, a combined theoretical and experimental approach to the generation of an accurate design database for transmission lines on GaAs MMICs is presented. The theoretical approach is based on an improved transmission-line theory which is part of the spectral-domain hybrid-mode computer program MCLINE. The benefit of this approach in the design of multidielectric-media transmission lines is described. The program was designed to include loss mechanisms in all dielectric layers and to include conductor and surface roughness loss contributions. As an example, using GaAs ring resonator techniques covering 2 to 24 GHz, accuracies in effective dielectric constant and loss of 1 percent and 15 percent respectively, are presented. By combining theoretical and experimental techniques, a generalized MMIC microstrip design database is outlined.

  8. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  9. The Importance of Accurate Atomic and Molecular Line-lists for Characterizing Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Freedman, R.; Tennyson, J.

    2013-06-01

    Recent advancements in exoplanet observations are placing unprecedented constraints on the physical and chemical properties of exoplanetary atmospheres. Statistically significant constraints have been placed on the abundances of atomic and molecular species, elemental abundance ratios, temperature profiles, energy circulation, presence of hazes/clouds, and non-equilibrium chemistry, in several exoplanetary atmospheres, including gas giants, ice giants, as well as super-Earths, over a wide temperature range. The chemical constraints have also motivated new paradigms for classifying exoplanets and new efforts to constraint their formation conditions. Central to all interpretations of exoplanet spectra, however, is the accuracy of fundamental inputs in the models, primarily, the atomic and molecular opacities, which are derived from laboratory experiments and/or ab initio numerical calculations. In this talk, we will review the state-of-the-art in atomic and molecular line-lists as applied to studies of exoplanetary atmospheres. We will discuss examples where advances in laboratory astrophysics, experimental and computational, have addressed important problems in the area of exoplanetary atmospheres, as well as outstanding questions requiring new experiments and/or theoretical calculations. For example, recent studies are suggesting that high-temperature line-lists of hydrocarbons (CH4, C2H2, HCN, etc.), and several metal hydrides, in addition to refined line-lists of several well-studied molecules, are important to accurately interpret exoplanetary spectra. We will highlight several fundamental questions in the area that require new efforts in laboratory astrophysics. Besides their importance in interpreting observations with current instruments, the refined parameters are also critical in the assessment of future facilities for exoplanet characterization, such as JWST, GMT, etc.

  10. Linear and nonlinear magneto-optical rotation on the narrow strontium intercombination line

    NASA Astrophysics Data System (ADS)

    Pandey, K.; Kwong, C. C.; Pramod, M. S.; Wilkowski, D.

    2016-05-01

    In the presence of an external static magnetic field, an atomic gas becomes optically active, showing magneto-optical rotation. In the saturated regime, the coherences among the excited substates give a nonlinear contribution to the rotation of the light polarization. In contrast with the linear magneto-optical rotation, the nonlinear counterpart is insensitive to Doppler broadening. By varying the temperature of a cold strontium gas, we observe both regimes by driving the J =0 →J =1 transition on the intercombination line. For this narrow transition, the sensitivity to the static magnetic field is typically three orders of magnitude larger than for a standard broad alkali-metal transition.

  11. The Latitudinal Excursion of Coronal Magnetic Field Lines in Response to Differential Rotation: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete

    2006-01-01

    Solar energetic particles, which are believed to originate from corotating interacting regions (CIRS) at low heliographic latitude, were observed by the Ulysses spacecraft even as it passed over the Sun's poles. One interpretation of this result is that high-latitude field lines intercepted by Ulysses connect to low-latitude CIRs at much larger heliocentric distances. The Fisk model explains the latitudinal excursion of magnetic field lines in the solar corona and heliosphere as the inevitable consequence of the interaction of a tilted dipole in a differentially rotating photosphere with rigidly rotating coronal holes. We use a time-dependent three-dimensional magnetohydrodynamic (MHD) algorithm to follow the evolution of a simple model of the solar corona in response to the differential rotation of the photospheric magnetic flux. We examine the changes of the coronal-hole boundaries, the redistribution of the line-of-sight magnetic field, and the precession of field lines in the corona. Our results confirm the basic idea of the Fisk model, that differential rotation leads to changes in the heliographic latitude of magnetic field lines. However, the latitudinal excursion of magnetic field lines in this simple "tilted dipole" model is too small to explain the Ulysses observations. Although coronal holes in our model rotate more rigidly than do photospheric features (in general agreement with observations), they do not rotate strictly rigidly as assumed by Fisk. This basic difference between our model and Fisk's will be explored in the future by considering more realistic magnetic flux distributions, as observed during Ulysses polar excursions.

  12. Determination of Very Rapid Molecular Rotation by Using the Central EPR Line

    PubMed Central

    Kurban, Mark R.

    2014-01-01

    Picosecond rotational correlation times of perdeuterated tempone (PDT) are found in alkane and aromatic liquids by directly using the spectral width of the central electron paramagnetic resonance line. This is done by mathematically eliminating the non-secular spectral density from the spectral parameter equations, thereby removing the need to assume a particular form for it. This is preferable to fitting a constant correction factor to the spectral density, because such a factor does not fit well in the low picosecond range. The electron-nuclear spin dipolar interaction between the probe and solvent is shown to be negligible for the very rapid rotation of PDT in these liquids at the temperatures of the study. The rotational correlation times obtained with the proposed method generally agree to within experimental uncertainty with those determined by using the traditional parameters. Using the middle line width offers greater precision and smoother trends. Previous work with the central line width is discussed, and past discrepancies are explained as possibly resulting from residual inhomogeneous broadening. The rotational correlation time almost forms a common curve across all of the solvents when plotted with respect to isothermal compressibility, which shows the high dependence of rotation on liquid free volume. PMID:23320940

  13. Accurate On-Line Intervention Practices for Efficient Improvement of Reading Skills in Africa

    ERIC Educational Resources Information Center

    Marshall, Minda B.

    2016-01-01

    Lifelong learning is the only way to sustain proficient learning in a rapidly changing world. Knowledge and information are exploding across the globe. We need accurate ways to facilitate the process of drawing external factual information into an internal perceptive advantage from which to interpret and argue new information. Accurate and…

  14. The Radial Velocity Signature and Line Diagnostics Arising from Realistic, Rotating Stellar Plage Models

    NASA Astrophysics Data System (ADS)

    Saar, Steven; Dumusque, Xavier

    2015-08-01

    The radial velocity (RV) signature of starspots has been well-studied and methods to mitigate for them have been developed. The RV signature of magnetic plage is smaller, but more complex (since plage differs from its surroundings more by velocity than intensity) and less well understood. There are reasons however to expect that RV jitter from plage may be important, especially in low to moderate activity stars. We explore the RV effects of stellar plage by taking spatially resolved solar line bisectors in and out of plage at various limb angles to construct semi-empirical stellar intensity profiles profiles of different strengths. These lines are placed on model stars with various plage configurations, rotated, and disk-integrated. The resulting spectra are analyzed to yield the RV and various line and cross-correlation profile diagnostics as a function of rotational phase. We discuss the results and some ideas for mitigating the inferred RV signatures.

  15. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  16. Accurate CO{sub 2} laser frequencies and molecular constants of regular and new hot-band lines

    SciTech Connect

    Chou, Che-Chung; Shy, Jow-Tsong; Maki, A.G.

    1994-12-31

    A new, high-resolution, highly efficient, cw, CO{sub 2} laser oscillating on more than 250 lines including over 40 lines in the new 9 {mu}m hot band has been built at NIST, Boulder. The frequencies of the 9 and 10 {mu}m hot band lines and high J (to J=66) regular band lines of {sup 12}C{sup 16}O{sub 2} , which now fill the gap between the 9 and 10 {mu}m regions, have been locked to saturated fluorescence signals in CO{sub 2}, and measured. New molecular constants and more accurate frequencies of the four common isotopes of CO{sub 2} have been obtained.

  17. Hot chemistry in the diffuse medium: spectral signature in the H2 rotational lines

    NASA Astrophysics Data System (ADS)

    Verstraete, L.; Falgarone, E.; Pineau des Forets, G.; Flower, D.; Puget, J. L.

    1999-03-01

    Most of the diffuse interstellar medium is cold, but it must harbor pockets of hot gas to explain the large observed abundances of molecules like CH+ and HCO+. Because they dissipate locally large amounts of kinetic energy, MHD shocks and coherent vortices in turbulence can drive endothermic chemical reactions or reactions with large activation barriers. We predict the spectroscopic signatures in the H2 rotational lines of MHD shocks and vortices and compare them to those observed with the ISO-SWS along a line of sight through the Galaxy which samples 20 magnitudes of mostly diffuse gas.

  18. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    NASA Technical Reports Server (NTRS)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  19. Line strength variations in gamma-ray bursts GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, C.; Fenimore, E. E.; Murakami, T.; Yoshida, A.; Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One (previously unreported) interval shows a single prominent line feature at about 20 keV; a second, corresponding to the interval reported by Murakami et al. (1988), shows two line features at 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B around 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits of 45-180 sec on the rotation period P.

  20. Ground State Rotational Lines of Doubly Deuterated Ammonia as Tracers of the Physical Conditions and Chemistry of Cold Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Lis, D. C.; Gerin, M.; Roueff, E.; Vastel, C.; Phillips, T. G.

    2006-01-01

    We report the first detection of the NKAKC=111-->000 and 110-->000 ground state rotational lines of o-ND2H at 335.5 and 388.7 GHz, obtained in the Lynds 1689N, Barnard 1, and Lynds 1544 molecular clouds using the Caltech Submillimeter Observatory (CSO). The submillimeter ND2H lines have moderate opacities and simple hyperfine patterns, which allow accurate determination of the excitation temperature, H2 volume density, and molecular column density. Both transitions have high critical densities. The 389 GHz line, in particular, traces molecular material with densities above a few × 106 cm-3. The strong 389 GHz ND2H emission in LDN 1689N implies a high fraction of dense gas in this source, ~30%, as compared to ~15% in B1 and LDN 1544. All these regions are sites of strong molecular depletion and heavy deuteration. Nonaccreting molecules, H+3 and its isotopologues, are difficult to study, but in the sources studied here it appears that ammonia and its isotopologues are not completely frozen out, even in the high density gas. In the well-studied case of LDN 1544, the volume probed by the ND2H emission has densities of ~106-107 cm-3, within the range where the ``complete freezeout'' has been predicted to occur. The critical density of the 389 GHz ND2H line is close to that of the 309 GHz ND3 line. Observations of these two transitions thus provide an accurate measure of the [ND3]/[ND2H] fractionation ratio in the very dense gas. The [ND3]/[ND2H] ratio in LDN 1689N (~3%) appears lower than the values measured in B1 and LDN 1544 (~7%-10%), indicating that different chemical processes may be at work in these environments. The submillimeter lines of deuteroammonia are relatively strong and detectable from good sites, such as Mauna Kea or Chajnantor. Interferometric observations of these lines with the Submillimeter Array (SMA), and subsequently the Atacama Large Millimeter Array (ALMA), will provide new opportunities to study the physics and chemistry of cold, dense ISM

  1. OBSERVATIONAL PROPERTIES OF ROTATIONALLY EXCITED MOLECULAR HYDROGEN IN TRANSLUCENT LINES OF SIGHT

    SciTech Connect

    Jensen, Adam G.; Sonneborn, George; Snow, Theodore P.; Rachford, Brian L. E-mail: George.Sonneborn@nasa.go E-mail: rachf7ac@erau.ed

    2010-03-10

    The Far Ultraviolet Spectroscopic Explorer (FUSE) has allowed precise determinations of the column densities of molecular hydrogen (H{sub 2}) in Galactic lines of sight with a wide range of pathlengths and extinction properties. However, survey studies of lines of sight with greater extinction have been mostly restricted to the low-J states (lower total angular momentum) in which most molecular hydrogen is observed. This paper presents a survey of column densities for the molecular hydrogen in states of greater rotational excitation (J >= 2) in Galactic lines of sight with log N(H{sub 2}) {approx}> 20. This study is comprehensive through the highest excited state detectable in each line of sight. J = 5 is observed in every line of sight, and we detect J = 7 in four lines of sight, J = 8 in one line of sight, and vibrationally excited H{sub 2} in two lines of sight. We compared the apparent b-values and velocity offsets of the higher-J states relative to the dominant low-J states and we found no evidence of any trends that might provide insight into the formation of higher-J H{sub 2}, although these results are the most affected by the limits of the FUSE resolution. We also derive excitation temperatures based on the column densities of the different states. We confirm that at least two distinct temperatures are necessary to adequately describe these lines of sight, and that more temperatures are probably necessary. Total H{sub 2} column density is known to be correlated with other molecules; we explore if correlations vary as a function of J for several molecules, most importantly CH and CH{sup +}. Finally, we briefly discuss interpretations of selected lines of sight by comparing them to models computed using the Meudon PDR code.

  2. ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Al-Refaie, Ahmed F.; Clausen, Sønnik; Fateev, Alexander

    2016-11-01

    Sulphur trioxide (SO3) is a trace species in the atmospheres of the Earth and Venus, as well as being an industrial product and an environmental pollutant. A variational line list for 32S16O3, named UYT2, is presented containing 21 billion vibration-rotation transitions. UYT2 can be used to model infrared spectra of SO3 at wavelengths longwards of 2 μm (ν < 5000 cm-1) for temperatures up to 800 K. Infrared absorption cross-sections recorded at 300 and 500 C are used to validate the UYT2 line list. The intensities in UYT2 are scaled to match the measured cross-sections. The line list is made available in electronic form as supplementary data to this article and at www.exomol.com.

  3. ExoMol molecular line lists - XIV. The rotation-vibration spectrum of hot SO2

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Tennyson, Jonathan; Yurchenko, Sergei N.; Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.; Clausen, Sønnik; Fateev, Alexander

    2016-07-01

    Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion 32S16O2 vibration-rotation transitions computed using an empirically adjusted potential energy surface and an ab initio dipole moment surface. The list gives complete coverage up to 8000 cm-1 (wavelengths longer than 1.25 μm) for temperatures below 2000 K. Infrared absorption cross-sections are recorded at 300 and 500 C are used to validated the resulting ExoAmes line list. The line list is made available in electronic form as supplementary data to this article and at www.exomol.com.

  4. Propagation speed of rotation signals for field lines undergoing magnetic reconnection

    SciTech Connect

    Lapenta, Giovanni; Goldman, Martin; Newman, David; Markidis, Stefano

    2013-10-15

    Reconnection is associated with two bending of the magnetic field lines. Considering the usual plane of a 2D reconnection simulation, the first bending is in-plane and produces the needed topological changes by bringing oppositely directed filed lines in proximity. The second is typical of fast reconnection and is out of plane, leading to the formation of the Hall magnetic field. This second rotation has recently been observed to proceed at superAlfvénic speeds and to carry substantial energy fluxes (Shay et al., Phys. Rev. Lett. 107, 065001 (2011)). We revisit these rotations with a new diagnostics based on dispersing a multitude of virtual probes into a kinetic simulation, akin the approach of multi spacecraft missions. The results of the new diagnostics are compared with the theory of characteristics applied to the two fluid model. The comparison of virtual probes and the method of characteristics confirm the findings relative to the out of plane rotation and uncover the existence of two families of characteristics. Both are observed in the simulation. The early stage of reconnection develops on the slower compressional branch and the later faster phase develops on the faster torsional branch. The superAlfvénic signal is only relevant in the second phase.

  5. Order and chaos in the rotation and revolution of a line segment and a point mass.

    PubMed

    Lindner, John F; Lynn, Jacob; King, Frank W; Logue, Amanda

    2010-03-01

    We study the classical dynamics of two bodies, a massive line segment or slash (/) and a massive point or dot (.), interacting gravitationally. For this slash-dot (/.) body problem, we derive algebraic expressions for the force and torque on the slash, which greatly facilitate analysis. The diverse dynamics include a stable synchronous orbit, generic chaotic orbits, sequences of unstable periodic orbits, spin-stabilized orbits, and spin-orbit coupling that can unbind the slash and dot. The extension of the slash provides an extra degree of freedom that enables the interplay between rotation and revolution. In this way, the slash-dot body problem exhibits some of the richness of the three body problem with only two bodies and serves as a valuable prototype for more realistic systems. Applications include the dynamics of asteroid-moonlet pairs and asteroid rotation and escape rates.

  6. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  7. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis

    PubMed Central

    Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  8. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  9. Line strengths of rovibrational and rotational transitions in the X2 Π ground state of OH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; Sneden, Christopher; Afşar, Melike; Li, Gang; Gordon, Iouli E.

    2016-01-01

    A new line list including positions and absolute transition strengths (in the form of Einstein A values and oscillator strengths) has been produced for the OH ground X2 Π state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v‧ and v ″ up to 13, and J up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute transition strengths are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v = 1 lifetime, experimental μv values, and Δv=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund's case (b) to (a) was made. Partitions sums have been calculated using the new energy levels, for the temperature range 5-6000 K, which extends the previously available (in HITRAN) 70-3000 K range. The resulting absolute transition strengths have been used to calculate O abundances in the Sun, Arcturus, and two red giants in the Galactic open and globular clusters M67 and M71. Literature data based mainly on [O I] lines are available for the Sun and Arcturus, and excellent agreement is found.

  10. Accurate Calculation of Oscillator Strengths for CI II Lines Using Non-orthogonal Wavefunctions

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Non-orthogonal orbitals technique in the multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities for allowed and intercombination lines in Cl II. The relativistic corrections are included through the Breit-Pauli Hamiltonian. The Cl II wave functions show strong term dependence. The non-orthogonal orbitals are used to describe the term dependence of radial functions. Large sets of spectroscopic and correlation functions are chosen to describe adequately strong interactions in the 3s(sup 2)3p(sup 3)nl (sup 3)Po, (sup 1)Po and (sup 3)Do Rydberg series and to properly account for the important correlation and relaxation effects. The length and velocity forms of oscillator strength show good agreement for most transitions. The calculated radiative lifetime for the 3s3p(sup 5) (sup 3)Po state is in good agreement with experiment.

  11. Accurate Characterization of the Peptide Linkage in the Gas Phase: A Joint Quantum-Chemical and Rotational Spectroscopy Study of the Glycine Dipeptide Analogue.

    PubMed

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Largo, Laura; Peña, Isabel; Cabezas, Carlos; Alonso, José Luis

    2014-02-01

    Accurate structures of aminoacids in the gas phase have been obtained by joint microwave and quantum-chemical investigations. However, the structure and conformational behavior of α-aminoacids once incorporated into peptide chains are completely different and have not yet been characterized with the same accuracy. To fill this gap, we present here an accurate characterization of the simplest dipeptide analogue (N-acetyl-glycinamide) involving peptidic bonds. State-of-the-art quantum-chemical computations are complemented by a comprehensive study of the rotational spectrum using a combination of Fourier transform microwave spectroscopy with laser ablation. The coexistence of the C7 and C5 conformers has been proved and energetically as well as spectroscopically characterized. This joint theoretical-experimental investigation demonstrated the feasibility of obtaining accurate structures for flexible small biomolecules, thus paving the route to the elucidation of the inherent behavior of peptides.

  12. Highly Accurate Semi-Empirical IR Line Lists of Asymmetric SO2 Isotopologues: SO18O and SO17O

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D.; Lee, T. J.

    2015-12-01

    Atmosphere models and simulations of Venus, Mars, and Exo-planets will greatly benefit from complete and accurate Infrared spectra data of important molecules such as SO2 and CO2. Currently, high resolution spectra data for SO2 is very limited at 296K and mainly for the primary isotopologue 626. It cannot effectively support the observed data analysis and simulations. Recently we published a semi-empirically refined potential energy surface, denoted Ames-1, and Ames-296K IR line lists for SO2 626 and a few symmetric isotopologues including 646, 636, 666 and 828. The accuracy of line positions is around 0.01 - 0.03 cm-1 for most transitions. For intensities, most deviations are less than 5-15%. Now we have carried out new potential energy surface refinements by including latest experimental data and those of isotopologues. On the newly fitted surface, for the first time we have computed 296K line lists for the two most abundant asymmetric isotopologues, SO2 628 and SO2 627. We will present the spectra simulations of SO2 628 and SO2 627, and compare it with latest high resolution experimental spectroscopy of SO2 628. A composite "natural" line list at 296K is also available with terrestial abundances. These line lists will be available to download at http://huang.seti.org.

  13. Computer program for determining rotational line intensity factors for diatomic molecules

    NASA Technical Reports Server (NTRS)

    Whiting, E. E.

    1973-01-01

    A FORTRAN IV computer program, that provides a new research tool for determining reliable rotational line intensity factors (also known as Honl-London factors), for most electric and magnetic dipole allowed diatomic transitions, is described in detail. This users manual includes instructions for preparing the input data, a program listing, detailed flow charts, and three sample cases. The program is applicable to spin-allowed dipole transitions with either or both states intermediate between Hund's case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions with either or both states intermediate between Hund's case (c) and Hund's case (b) coupling.

  14. CONSTRAINING CHANGES IN THE PROTON-ELECTRON MASS RATIO WITH INVERSION AND ROTATIONAL LINES

    SciTech Connect

    Kanekar, Nissim

    2011-02-10

    We report deep Green Bank Telescope spectroscopy in the redshifted NH{sub 3} (1,1), CS 1-0, and H{sub 2}CO 0{sub 00}-1{sub 01} lines from the z {approx} 0.685 absorber toward B0218+357. The inversion (NH{sub 3}) and rotational (CS, H{sub 2}CO) line frequencies have different dependences on the proton-electron mass ratio {mu}, implying that a comparison between the line redshifts is sensitive to changes in {mu}. A joint three-component fit to the NH{sub 3}, CS, and H{sub 2}CO lines yields [{Delta}{mu}/{mu}] = (-3.5 {+-} 1.2) x 10{sup -7}, from z {approx} 0.685 to today, where the error includes systematic effects from comparing lines from different species and possible frequency-dependent source morphology. Two additional sources of systematic error remain, due to time variability in the source morphology and velocity offsets between nitrogen-bearing and carbon-bearing species. We find no statistically significant ({>=}3{sigma}) evidence for changes in {mu} and obtain the stringent 3{sigma} constraint, [{Delta}{mu}/{mu}] < 3.6 x 10{sup -7}, over 6.2 Gyr; this is the best present limit on temporal changes in {mu} from any technique, and for any look-back time, by a factor {approx}>5.

  15. Order and chaos in the rotation and revolution of two massive line segments.

    PubMed

    Blaikie, Andrew; Saines, Alex D; Schmitthenner, Matthew; Lankford, Maggie; Pasteur, R Drew; Lindner, John F

    2014-04-01

    As a generalization of Newton's two body problem, we explore the dynamics of two massive line segments interacting gravitationally. The extension of each line segment or slash (/) provides extra degrees of freedom that enable the interplay between rotation and revolution in an especially simple example. This slash-slash (//) body problem can thereby elucidate the dynamics of nonspherical space structures, from asteroids to space stations. Fortunately, as we show, Newton's laws imply exact algebraic expressions for the force and torque between the slashes, and this greatly facilitates analysis. The diverse dynamics include a stable synchronous orbit, families of unstable periodic orbits, generic chaotic orbits, and spin-orbit coupling that can unbind the slashes. In particular, retrograde orbits where the slashes spin opposite to their orbits are stable, with regular dynamics and smooth parameter spaces, while prograde orbits are unstable, with chaotic dynamics and fractal parameter spaces. PMID:24827323

  16. Order and chaos in the rotation and revolution of two massive line segments.

    PubMed

    Blaikie, Andrew; Saines, Alex D; Schmitthenner, Matthew; Lankford, Maggie; Pasteur, R Drew; Lindner, John F

    2014-04-01

    As a generalization of Newton's two body problem, we explore the dynamics of two massive line segments interacting gravitationally. The extension of each line segment or slash (/) provides extra degrees of freedom that enable the interplay between rotation and revolution in an especially simple example. This slash-slash (//) body problem can thereby elucidate the dynamics of nonspherical space structures, from asteroids to space stations. Fortunately, as we show, Newton's laws imply exact algebraic expressions for the force and torque between the slashes, and this greatly facilitates analysis. The diverse dynamics include a stable synchronous orbit, families of unstable periodic orbits, generic chaotic orbits, and spin-orbit coupling that can unbind the slashes. In particular, retrograde orbits where the slashes spin opposite to their orbits are stable, with regular dynamics and smooth parameter spaces, while prograde orbits are unstable, with chaotic dynamics and fractal parameter spaces.

  17. High-J Rotational Lines of 13C Isotopologues of HCO^+ Measured by Using Evenson-Type Tunable FIR Spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Mari; Oishi, Ryo; Moriwaki, Yoshiki; Matsushima, Fusakazu; Amano, Takayoshi

    2015-06-01

    Frequencies of high-J rotational lines of HCO^+ and its isotopologues have been measured precisely by using an Evenson-type spectrometer in Toyama. The tunable far-infrared spectrometer (TuFIR in short) is based on synthesizing terahertz radiation from two mid-infrared CO_2 laser lines and one microwave source. Study of the isotopologues containing H or D, 12C, and 16O were reported last year. In the present work, isotopologues of H or D, 13C, and 16O have been studied. The HCO^+ ions are produced by discharging a 13CO, H_2 (or D_2), and Ar mixture in an extended negative glow discharge cell cooled with liquid nitrogen. Because the low-J rotational lines have been investigated by other groups, our present study was focussed mainly to the measurements of higher-J rotational lines. Currently we have observed the lines J + 1 ← J(J=11, 13-21) for H13CO^+, and J + 1 ← J (J=13-18, 20-22, 24-25) for D13CO^+. Molecular contstants for these isotopologues (B, D, H, L) have been modified. From the analysis of the intensity of each rotational line, we estimate the rotational temperature to be as low as 140K. This low temperature makes it difficult to measure yet higher-J lines. Measurement of other isotopogues such as those containing oxygen isotopes is now in preparation.

  18. High rotational CO lines in post-AGB stars and PNe

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Tielens, Alexander G. G. M.; Skinner, C. J.; Haas, Michael R.

    1995-01-01

    A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.

  19. Accurate spectroscopy of polycyclic aromatic compounds: from the rotational spectrum of fluoren-9-one in the millimeter wave region to its infrared spectrum.

    PubMed

    Maris, Assimo; Calabrese, Camilla; Melandri, Sonia; Blanco, Susana

    2015-01-14

    The rotational spectrum of fluoren-9-one, a small oxygenated polycyclic aromatic hydrocarbon, has been recorded and assigned in the 52-74.4 GHz region. The determined small negative value of the inertia defect (-0.3 u Å(2)) has been explained in terms of vibrational-rotational coupling constants calculated at the B3LYP/cc-pVTZ level of theory. Vibrational anharmonic analysis together with second-order vibrational perturbation theory approximation was applied both to fluorenone and its reduced form, fluorene, to predict the mid- and near-infrared spectra. The data presented here give precise indication on the fluorenone ground state structure, allow for an accurate spectral characterization in the millimeter wave and infrared regions, and hopefully will facilitate extensive radio astronomical searches with large radio telescopes.

  20. Accurate spectroscopy of polycyclic aromatic compounds: from the rotational spectrum of fluoren-9-one in the millimeter wave region to its infrared spectrum.

    PubMed

    Maris, Assimo; Calabrese, Camilla; Melandri, Sonia; Blanco, Susana

    2015-01-14

    The rotational spectrum of fluoren-9-one, a small oxygenated polycyclic aromatic hydrocarbon, has been recorded and assigned in the 52-74.4 GHz region. The determined small negative value of the inertia defect (-0.3 u Å(2)) has been explained in terms of vibrational-rotational coupling constants calculated at the B3LYP/cc-pVTZ level of theory. Vibrational anharmonic analysis together with second-order vibrational perturbation theory approximation was applied both to fluorenone and its reduced form, fluorene, to predict the mid- and near-infrared spectra. The data presented here give precise indication on the fluorenone ground state structure, allow for an accurate spectral characterization in the millimeter wave and infrared regions, and hopefully will facilitate extensive radio astronomical searches with large radio telescopes. PMID:25591363

  1. Rotational Sweepback of Magnetic Field Lines in Geometrical Models of Pulsar Radio Emission

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Harding, Alice K.

    2004-01-01

    We study the rotational distortions of the vacuum dipole magnetic field in the context of geometrical models of the radio emission from pulsars. We find that at low altitudes the rotation deflects the local direction of the magnetic field by at most an angle of the order of r(sup 2 sub n), where r(sub n) = r/R(sub lc), r is the radial distance and R(sub lc) is the light cylinder radius. To the lowest (i.e. second) order in r(sub n) this distortion is symmetrical with respect to the plane containing the dipole axis and the rotation axis ((Omega, mu) plane). The lowest order distortion which is asymmetrical with respect to the (Omega, mu) plane is third order in r(sub n). These results confirm the common assumption that the rotational sweepback has negligible effect on the position angle (PA) curve. We show, however, that the influence of the sweep back on the outer boundary of the open field line region (open volume) is a much larger effect, of the order of r(sup 1/2 sub n). The open volume is shifted backwards with respect to the rotation direction by an angle delta(sub o nu) approx. 0.2 sin alpha r(sup 1/2 sub n) where alpha is the dipole inclination with respect to the rotation axis. The associated phase shift of the pulse profile Delta phi(sub o nu) approx. 0.2 r(sup 1/2 sub n) can easily exceed the shift due to combined effects of aberration and propagation time delays (approx. 2r(sub n)). This strongly affects the misalignment of the center of the PA curve and the center of the pulse profile, thereby modifying the delay radius relation. Contrary to intuition, the effect of sweepback dominates over other effects when emission occurs at low altitudes. For r(sub n) < or approx. 3 x 10(exp -3) the shift becomes negative, i.e. the center of the position angle curve precedes the profile center. With the sweepback effect included, the modified delay-radius relation predicts larger emission radii and is in much better agreement with the other methods of determining r

  2. Solar Cycle Variability and Surface Differential Rotation from Ca II K-line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period ~ 11 yr), (b) quasi-periodic variations (periods ~ 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range ~0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  3. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    SciTech Connect

    Scargle, Jeffrey D.; Worden, Simon P.; Keil, Stephen L.

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  4. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  5. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  6. eNAL++: a new and effective off-line correction protocol for rotational setup errors when using a robotic couch.

    PubMed

    Martens, Daan; Luesink, Mark; Huizenga, Henk; Pasma, Kasper L

    2015-01-01

    Cone-beam CTs (CBCTs) installed on a linear accelerator can be used to provide fast and accurate automatic six degrees of freedom (6DoF) vector displacement information of the patient position just prior to radiotherapy. These displacement corrections can be made with 6DoF couches, which are primarily used for patient setup correction during stereotactic treatments. When position corrections are performed daily prior to treatment, the correction is deemed "online". However, the interface between the first generation 6DoF couches and the imaging software is suboptimal. The system requires the user to select manually the patient and type the match result by hand. The introduction of 6DoF setup correction for treatments, other than stereotactic radiotherapy, is hindered by both the high workload associated with the online protocol and the interface issues. For these reasons, we developed software that fully integrates the 6DoF couch with the linear accelerator. To further reduce both the workload and imaging dose, three off-line 6DoF correction protocols were analyzed. While the protocols require significantly less imaging, the analysis assessed their ability to reduce the systematic rotation setup correction. CBCT scans were acquired for 19 patients with intracranial meningioma. The total number of CBCT scans was 856, acquired before and after radiotherapy treatment fractions. The patient positions were corrected online using a 6DoF robotic couch. The effects on the residual rotational setup error for three off-line protocols were simulated. The three protocols used were two known off-line protocols, the no action level (NAL) and the extended no action level (eNAL), and one new off-line protocol (eNAL++). The residual setup errors were compared using the systematic and random components of the total setup error. The reduction of the rotational setup error of these protocols was optimized with respect to the required workload (i.e., number of CBCTs required

  7. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  8. A strategy to rotate the Mars Observer orbit node line to advance the mapping schedule

    NASA Technical Reports Server (NTRS)

    Pernicka, Henry J.; Sweetser, Theodore H.; Roncoli, Ralph B.

    1993-01-01

    The Mars Observer (MO) spacecraft was successfully launched on September 25, 1992 and will arrive at Mars on August 24, 1993. At Mars, the spacecraft will study the planet's surface, atmosphere, and gravitational and magnetic fields. In order to achieve these scientific objectives, MO will be placed in a 2 PM (descending node) sun-synchronous orbit. Upon arrival at Mars, however, the longitude of the descending node will be approximately 15 deg greater than the desired value. The baseline plan requires a 59 day `waiting' period for the correct solar orientation to occur. During this period, 28 days are required for scientific experimentation but the remaining 30.6 days potentially could be eliminated. The strategy developed in this study examined the possibility of using any `excess' Delta-V available at Mars arrival to rotate the node line to the desired value and thus allow mapping to begin earlier. A preliminary analysis completed prior to launch is described that examined the entire launch period including the required Delta-V to perform the needed nodal rotation. A more detailed study performed after launch is also summarized.

  9. In-line polarization rotator based on the quantum-optical analogy.

    PubMed

    Chen, Lei; Qu, Ke-Nan; Shen, Heng; Zhang, Wei-Gang; Chou, Keng C; Liu, Qian; Yan, Tie-Yi; Wang, Biao; Wang, Song

    2016-05-01

    An in-line polarization rotator (PR) is proposed based on the quantum-optical analogy (QOA). The proposed PR possesses an auxiliary E7 liquid crystal (LC) waveguide in the vicinity of the single-mode fiber (SMF) core. Because of the matched core size, the PR demonstrates good compatibility with the established backbone networks which are composed of conventional SMFs. With optimized parameters for the auxiliary waveguide, the PR offers a near 100% polarization conversion efficiency at the 1550 nm band with a bandwidth of ∼30  nm, a length of ∼4625.9  μm with a large tolerance of ∼550  μm, and a tolerance of the input light polarization angle and rotation angle of the E7 LC of ∼π/30 and ∼π/36  rad, respectively. The performance was verified by the full-vector finite-element method. The proposed PR can be easily fabricated based on the existing photonics crystal fiber manufacturing process, making it a potentially inexpensive device for applications in modern communication systems. Moreover, the QOA, compared with the previous supermode-theory design method, allows a designer to consider several waveguides separately. Therefore, various unique characteristics can be met simultaneously which is consistent with the trend of modern fiber design.

  10. Vibration-rotation line strengths of the gas-phase OH radical

    NASA Technical Reports Server (NTRS)

    Podolske, J.

    1983-01-01

    Absorption line strengths have been measured at 295 K for the first time for four vibration-rotation transitions of the OH radical, using a tunable, infrared diode-laser in conjunction with a molecular modulation spectrometer. A periodically varying OH concentration was created by photolysis, using a sinusoidally modulated 2537-A Hg lamp, of a flowing mixture of O3 and H2O contained within a quartz-walled White cell. The modulated absorption owing to the OH radical was subsequently observed by phase-sensitive detection. The absolute modulation amplitude of the OH number density was obtained by numerical simulation of the complete time-dependent photochemical system. The strongest transition measured was at 3407.607 kaysers, with a strength of 3.3 + or - 1.5 x 10 to the -20th per(cm molecule) sq cm.

  11. Collisional broadening of rotational lines in the stimulated Raman pentad Q-branch of CD4

    NASA Technical Reports Server (NTRS)

    Millot, G.; Lavorel, B.; Steinfeld, J. I.

    1992-01-01

    Self- and argon-broadening coefficients are reported for a number of Raman Q-branch transitions in the nu(1) and nu(2) + nu(4) bands of (C-12)D4 at room temperature (296 K). The coefficients display a variation with j and with C exp n (symmetry species A, E, F) that is essentially independent of collision partner and which is similar to the j- and C exp n-dependence found in previous measurements of the IR line-broadening coefficients. The rotationally inelastic collision rates previously measured by Foy et al. (1988) for (C-13)D4 (V4 = 0, 1) in collision with (C-13)D4 or Ar account for only a part of the Raman broadening rate, suggesting possibly significant contributions to the linewidths from efficient V-V transfer or elastic dephasing collisions.

  12. Herschel/HIFI observation of highly excited rotational lines of HNC toward IRC +10 216

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Agúndez, M.; Cernicharo, J.; De Beck, E.; Lombaert, R.; Decin, L.; Kahane, C.; Guélin, M.; Müller, H. S. P.

    2012-06-01

    We report the detection in emission of various highly excited rotational transitions of HNC (J = 6-5 through J = 12-11) toward the carbon-star envelope IRC +10 216 using the HIFI instrument on-board the Herschel Space Observatory. Observations of the J = 1-0 and J = 3-2 lines of HNC with the IRAM 30-m telescope are also presented. The lines observed with HIFI have upper level energies corresponding to temperatures between 90 and 340 degrees Kelvin, and trace a warm and smaller circumstellar region than that seen in the interferometric maps of the J = 1-0 transition, whose emission extends up to a radius of 20''. After a detailed chemical and radiative transfer modeling, we find that the presence of HNC in the circumstellar envelope of IRC +10 216 is consistent with formation from the precursor ion HCNH+, which in turn is produced through several proton transfer reactions which are triggered by cosmic-ray ionization. We also find that the radiative pumping through λ 21 μm photons to the first excited state of the bending mode ν2 plays a crucial role to populate the high-J HNC levels involved in the transitions observed with HIFI. Emission in these high-J rotational transitions of HNC is expected to be strong in regions which are warm and dense and/or have an intense infrared flux at wavelengths around 21 μm. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  13. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    SciTech Connect

    Delahaye, Thibault Rey, Michaël Tyuterev, Vladimir G.; Nikitin, Andrei; Szalay, Péter G.

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  14. Rotational jitter around the observer's line of sight can facilitate visually induced perception of forward self-motion (forward vection).

    PubMed

    Nakamura, Shinji

    2013-01-01

    Previous studies have shown that the addition of jittering motion into a visual inducer facilitates vection. A psychophysical experiment with 12 observers found that the expanding visual inducer, which contained rotational jitter around the observer's line of sight, can induce stronger forward vection than a pure radial expansion without any additional jittering component. The results suggested that angular rotational jitter can facilitate vection without the enhancement of motion parallax, which has been considered one of the critical factors in explaining jitter effects.

  15. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Astrophysics Data System (ADS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-09-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  16. IOS and ECS line coupling calculation for the CO-He system: Influence on the vibration-rotation band shapes

    NASA Astrophysics Data System (ADS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-09-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  17. Cyclotron line strength variations in gamma-ray burst GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, Carlo; Fenimore, Edward E.; Murakami, Toshio; Yoshida, Atsumasa; Lamb, D. Q.; Wang, John C. L.; Loredo, Thomas J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One interval shows a single prominent line feature at about 20 keV; a second, shows two line features at about 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B about 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits P = 45-180 sec on the rotation period P.

  18. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-01-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  19. First Extragalactic Detection of Submillimeter CH Rotational Lines from the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Rangwala, Naseem; Maloney, Philip R.; Glenn, Jason; Wilson, Christine D.; Kamenetzky, Julia; Schirm, Maximilien R. P.; Spinoglio, Luigi; Pereira Santaella, Miguel

    2014-06-01

    We present the first extragalactic detections of several CH rotational transitions in the far-infrared in four nearby galaxies, NGC 1068, Arp 220, M82, and NGC 253, using the Herschel Space Observatory. The CH lines in all four galaxies are a factor of 2-4 brighter than the adjacent HCN and HCO+ J = 6-5 lines (also detected in the same spectra). In the star-formation-dominated galaxies, M82, NGC 253, and Arp 220, the CH/CO abundance ratio is low (~10-5), implying that the CH is primarily arising in diffuse and translucent gas where the chemistry is driven by UV radiation as found in the Milky Way interstellar matter. In NGC 1068, which has a luminous active galactic nucleus (AGN), the CH/CO ratio is an order of magnitude higher, suggesting that CH formation is driven by an X-ray-dominated region (XDR). Our XDR models show that both the CH and CO abundances in NGC 1068 can be explained by an XDR-driven chemistry for gas densities and molecular hydrogen column densities that are well constrained by the CO observations. We conclude that the CH/CO ratio may a good indicator of the presence of AGN in galaxies. We also discuss the feasibility of detecting CH in intermediate- to high-z galaxies with ALMA.

  20. First extragalactic detection of far-infrared CH rotational lines from the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Rangwala, Naseem; Glenn, J.; Wilson, C.; Maloney, P.; Spinoglio, L.; Kamenetzky, J. R.; Schirm, M.; Santaella, M. P.

    2014-01-01

    We present the first extragalactic detections of several CH rotational transitions in the far-infrared (FIR) in four nearby galaxies: NGC 1068, Arp 220, M 82 and NGC 253 using the Herschel Space Observatory. The CH lines in all four galaxies are a factor of 2 - 4 brighter than the corresponding HCN and HCO+ J = 6-5 lines (also detected in the same spectra). In the star formation dominated galaxies, M 82, NGC 253 and Arp 220, the CH/CO abundance ratio is low 1E-5), implying that the CH is primarily arising in diffuse and translucent gas where the chemistry is driven by UV radiation as found in the Milky Way ISM. In NGC 1068, which has a luminous AGN, the CH/CO ratio is an order of magnitude higher suggesting that CH formation is driven by an X-ray dominated region. Our XDR models show that both the CH and CO abundances in NGC 1068 can be explained by an XDR-driven chemistry for gas densities and molecular hydrogen column densities that are well constrained by the CO observations. We conclude that the CH/CO ratio may a good indicator of the presence of AGN in galaxies. We also discuss the feasibility of detecting CH in intermediate- to high-z galaxies with ALMA.

  1. First extragalactic detection of submillimeter CH rotational lines from the Herschel space observatory

    SciTech Connect

    Rangwala, Naseem; Maloney, Philip R.; Glenn, Jason; Kamenetzky, Julia; Wilson, Christine D.; Schirm, Maximilien R. P.; Spinoglio, Luigi; Pereira Santaella, Miguel

    2014-06-20

    We present the first extragalactic detections of several CH rotational transitions in the far-infrared in four nearby galaxies, NGC 1068, Arp 220, M82, and NGC 253, using the Herschel Space Observatory. The CH lines in all four galaxies are a factor of 2-4 brighter than the adjacent HCN and HCO{sup +} J = 6-5 lines (also detected in the same spectra). In the star-formation-dominated galaxies, M82, NGC 253, and Arp 220, the CH/CO abundance ratio is low (∼10{sup –5}), implying that the CH is primarily arising in diffuse and translucent gas where the chemistry is driven by UV radiation as found in the Milky Way interstellar matter. In NGC 1068, which has a luminous active galactic nucleus (AGN), the CH/CO ratio is an order of magnitude higher, suggesting that CH formation is driven by an X-ray-dominated region (XDR). Our XDR models show that both the CH and CO abundances in NGC 1068 can be explained by an XDR-driven chemistry for gas densities and molecular hydrogen column densities that are well constrained by the CO observations. We conclude that the CH/CO ratio may a good indicator of the presence of AGN in galaxies. We also discuss the feasibility of detecting CH in intermediate- to high-z galaxies with ALMA.

  2. THE EFFECT OF STARSPOTS ON ACCURATE RADIUS DETERMINATION OF THE LOW-MASS DOUBLE-LINED ECLIPSING BINARY GU Boo

    SciTech Connect

    Windmiller, G.; Orosz, J. A.; Etzel, P. B. E-mail: orosz@sciences.sdsu.ed

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. Lopez-Morales and Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by Lopez-Morales and Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, Lopez-Morales and Ribas derived masses and radii accurate to {approx_equal}2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of Lopez-Morales and Ribas using models with and without spots. We derived a radius of the primary of 0.6329 +- 0.0026 R{sub sun}, 0.6413 +- 0.0049 R{sub sun}, and 0.6373 +- 0.0029 R{sub sun} from the CCD, photoelectric, and Lopez-Morales and Ribas data, respectively. Each of these measurements agrees with the value reported by Lopez-Morales and Ribas (R{sub 1} = 0.623 +- 0.016 R{sub sun}) at the level of {approx}2%. In addition, the spread in these values is {approx}1%-2% from the mean. For the secondary, we derive radii of 0.6074 +- 0.0035 R{sub sun}, 0.5944 +- 0.0069 R{sub sun}, and 0.5976 +- 0.0059 R{sub sun} from the three respective data sets. The Lopez-Morales and Ribas value is R{sub 2} = 0.620 +- 0.020 R{sub sun}, which is {approx}2%-3% larger than each of the three values we found. The spread in these values is {approx}2% from the mean. The systematic difference between our three determinations of the secondary radius and that of Lopez-Morales and Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations

  3. An On-Line Algorithm for Measuring the Translational and Rotational Velocities of a Table Tennis Ball

    NASA Astrophysics Data System (ADS)

    Liu, Chunfang; Hayakawa, Yoshikazu; Nakashima, Akira

    This paper proposes an on-line method for estimating both translational and rotational velocities of a table tennis ball by using only a few consecutive frames of image data which are sensed by two high speed cameras. In order to estimate the translational velocity, three-dimensional (3D) position of the ball's center at each instant of camera frame is obtained, where the on-line method of reconstructing the 3D position from the two-dimensional (2D) image data of two cameras is proposed without the pattern matching process. The proposed method of estimating the rotational velocity belongs to the image registration methods, where in order to avoid the pattern matching process too, a rotation model of the ball is used to make an estimated image data from an image data sensed at the previous instant of camera frame and then the estimated image data are compared with the image data sensed at the next instant of camera frame to obtain the most plausible rotational velocity by using the least square and the conjugate gradient method. The effectiveness of the proposed method is shown by some experimental results in the case of a ball rotated by a rotation machine as well as in the case of a flying ball shot from a catapult machine.

  4. Experimental and theoretical study of the broadening and shifting of N2H+ rotational lines by helium.

    PubMed

    Buffa, Giovanni; Tarrini, Ottavio; Dore, Luca; Meuwly, Markus

    2010-10-01

    Pressure broadening and pressure shift of N(2)H(+) rotational lines perturbed by collisions with He are studied for the first time using experiment and theory. Results are reported from measurements at 88 K for the rotational transitions j = 3<--2, 4<--3, 5<--4 and 6<--5 with frequencies ranging from 0.28 to 0.56 THz. The agreement between experiment and theoretical data derived from close coupling calculations confirms the reliability of a theoretical framework used for state-to-state transition rates of interest in the interpretation of spectroscopic data from interstellar molecular clouds. The influence of hyperfine effects on shifts and widths of the rotational lines is discussed in detail. Although in principle possible, experiment and theoretical considerations lead to the conclusion that hyperfine effects only play a minor role.

  5. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  6. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  7. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  8. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  9. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  10. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  11. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  12. Lighting the Dark Molecular Gas Using the Mid Infrared H2 Rotational Lines

    NASA Astrophysics Data System (ADS)

    Togi, Aditya; Smith, JD

    2014-06-01

    The knowledge of molecular gas distribution is necessary to understand star formation in galaxies. The molecular gas content of galaxies must be inferred using indirect tracers since H2 which forms a major component of molecular gas in galaxies is not observable under typical conditions of interstellar medium. Physical processes causing enhancement and reduction of these tracers can cause misleading estimates of the molecular gas content in galaxies. We have devised a new method to measure molecular gas mass using quadrupole rotational lines of H2 found in the mid infrared spectra of various types of galaxies. We apply our model to derive the amount of molecular gas even in low metallicity galaxies where indirect tracers are unable to estimate the dark molecular gas mass. Bigiel, F., Leroy, A., Walter, F., et al. 2008, The Astronomical Journal, 136, 2846 (2008) Solomon, P. M., Rivolo, A. R., Barett, J., and Yahil, A. The Astrophysical Journal, 319, 730 (1987) Wolfire, M. G., Hollenbach, D., and McKee, C. F. The Astrophysical Journal, 716, 1191 (2010)

  13. Molecular rotational line profiles from oxygen-rich red giant winds

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.

    1994-01-01

    We have developed a radiative transfer model of the dust and gas envelopes around late-type stars. The gas kinetic temperature for each star is calculated by solving equations of motion and the energy balance simultaneously. The main processes include viscous heating and adiabatic and radiative cooling. Heating is dominated by viscosity as the grains stream outward through the gas, with some contribution in oxygen-rich stars by near-IR pumping of H2O followed by collisional de-excitation in the inner envelope. For O-rich stars, rotational H2O cooling is a dominant mechanism in the middle part of the envelope, with CO cooling being less significant. We have applied our model to three well-studied oxygen-rich red giant stars. The three stars cover a wide range of mass-loss rates, and hence they have different temperature structures. The derived temperature structures are used in calculating CO line profiles for these objects. Comparison of the dust and gas mass-loss rates suggests that mass-loss rates are not constant during the asymptotic giant branch phase. In particular, the results show that the low CO 1-0 antenna temperatures of OH/IR stars reflect an earlier phase of much lower mass-loss rate.

  14. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively. PMID:14719901

  15. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively.

  16. Accurate collision-induced line-coupling parameters for the fundamental band of CO in He - Close coupling and coupled states scattering calculations

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Boissoles, J.; Boulet, C.

    1988-01-01

    The first accurate theoretical values for off-diagonal (i.e., line-coupling) pressure-broadening cross sections are presented. Calculations were done for CO perturbed by He at thermal collision energies using an accurate ab initio potential energy surface. Converged close coupling, i.e., numerically exact values, were obtained for coupling to the R(0) and R(2) lines. These were used to test the coupled states (CS) and infinite order sudden (IOS) approximate scattering methods. CS was found to be of quantitative accuracy (a few percent) and has been used to obtain coupling values for lines to R(10). IOS values are less accurate, but, owing to their simplicity, may nonetheless prove useful as has been recently demonstrated.

  17. Changes in ocular torsion position produced by a single visual line rotating around the line of sight--visual "entrainment" of ocular torsion.

    PubMed

    Mezey, Laura E; Curthoys, Ian S; Burgess, Ann M; Goonetilleke, Samanthi C; MacDougall, Hamish G

    2004-02-01

    A large- or full-field visual stimulus slowly rotating around the naso-occipital axis of an observer causes both eyes to tort, and many of the factors controlling this optokinetic torsional response have been identified. The present study reports that a single line rotating about the line of sight can cause both eyes to tort in the same direction as the stimulus but with a low gain. We have used the term 'entrainment' to describe this torsional response. This paper reports some of the factors associated with entrainment. Video measures of 3-d eye position were recorded while the subject made settings of a simple visual line to subjective visual horizontal (SVH) and vertical (SVV) using the standard method-of-adjustment paradigm. The visual line was composed of 11 light-emitting diodes; the line subtended a visual angle of 19 degrees, and moved at a constant speed of 4.8 degrees /s. Settings were made in an otherwise darkened room, and also in the light. Subjects were required to maintain fixation of the central LED while making settings from starting positions 10 or 20 degrees either side of gravitational horizontal or vertical. We show that entrainment of ocular torsion by the single moving visual line is low in gain but a reliable and repeatable effect and that (1) there are considerable individual differences between subjects but within-subject consistency, (2) all subjects show larger and more consistent torsional entrainment for lines moving to SVH than lines moving to SVV, (3) the strongest entrainment generally occurs within about 10 degrees of the target position, and (4) entrainment is also present in the light, though with slightly reduced gain.

  18. A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liang, Chunlei

    2015-08-01

    This paper presents a simple, efficient, and high-order accurate sliding-mesh interface approach to the spectral difference (SD) method. We demonstrate the approach by solving the two-dimensional compressible Navier-Stokes equations on quadrilateral grids. This approach is an extension of the straight mortar method originally designed for stationary domains [7,8]. Our sliding method creates curved dynamic mortars on sliding-mesh interfaces to couple rotating and stationary domains. On the nonconforming sliding-mesh interfaces, the related variables are first projected from cell faces to mortars to compute common fluxes, and then the common fluxes are projected back from the mortars to the cell faces to ensure conservation. To verify the spatial order of accuracy of the sliding-mesh spectral difference (SSD) method, both inviscid and viscous flow cases are tested. It is shown that the SSD method preserves the high-order accuracy of the SD method. Meanwhile, the SSD method is found to be very efficient in terms of computational cost. This novel sliding-mesh interface method is very suitable for parallel processing with domain decomposition. It can be applied to a wide range of problems, such as the hydrodynamics of marine propellers, the aerodynamics of rotorcraft, wind turbines, and oscillating wing power generators, etc.

  19. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Decin, L.; de Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M.

    2010-11-01

    Context. The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. Aims: We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. Methods: The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. Results: We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4 × 10-8 M⊙ yr-1 up to 8 × 10-5 M⊙ yr-1. For red supergiants they reach

  20. Line Emission from an Accretion Disk Around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.

    1997-01-01

    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.

  1. Line emission from an accretion disk around a rotating black hole: Toward a measurement of frame dragging

    SciTech Connect

    Bromley, B.C. |; Chen, K.; Miller, W.A.

    1997-01-01

    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/c{sup 2}. However, if the inner disk radius extends below this limit, as is possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the {ital Advanced Satellite for Cosmology and Astrophysics} mission from MCG{endash}6-30-15 (Tanaka {ital et al.}) is {approximately}3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/c{sup 2} if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles. {copyright} {ital 1997} {ital The American Astronomical Society}

  2. The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm(-1).

    PubMed

    Campargue, Alain; Kassi, Samir; Pachucki, Krzysztof; Komasa, Jacek

    2012-01-14

    Five very weak transitions-O(2), O(3), O(4), O(5) and Q(5)-of the first overtone band of H(2) are measured by very high sensitivity CW-Cavity Ring Down Spectroscopy (CRDS) between 6900 and 7920 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min)≈ 5 × 10(-11) cm(-1) allowing for the detection of the O(5) transition with an intensity of 1.1 × 10(-30) cm per molecule, the smallest intensity value measured so far for an H(2) absorption line. A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift of the O(2) and O(3) lines was accurately determined from a series of recordings with pressure ranging between 10 and 700 Torr. From an exhaustive review of the literature data, the list of H(2) absorption lines detected so far has been constructed. It includes a total of 39 transitions ranging from the S(0) pure rotational line near 354 cm(-1) up to the S(1) transition of the (5-0) band near 18,908 cm(-1). These experimental values are compared to a highly accurate theoretical line list constructed for pure H(2) at 296 K (0-35,000 cm(-1), intensity cut off of 1 × 10(-34) cm per molecule). The energy levels and transition moments were computed from high level quantum mechanics calculations. The overall agreement between the theoretical and experimental values is found to be very good for the line positions. Some deviations for the intensities of the high overtone bands (V > 2) are discussed in relation with possible pressure effects affecting the retrieved intensity values. We conclude that the hydrogen molecule is probably a unique case in rovibrational spectroscopy for which first principles theory can provide accurate spectroscopic parameters at the level of the performances of the state of the art experimental techniques.

  3. ExoMol molecular line lists - XVI. The rotation-vibration spectrum of hot H2S

    NASA Astrophysics Data System (ADS)

    Azzam, Ala'a. A. A.; Tennyson, Jonathan; Yurchenko, Sergei N.; Naumenko, Olga V.

    2016-08-01

    This work presents the AYT2 line list: a comprehensive list of 115 million 1H232S vibration-rotation transitions computed using an empirically adjusted potential energy surface and an ab initio dipole moment surface. The line list gives complete coverage up to 11 000 cm-1 (wavelengths longer than 0.91 μm) for temperatures up to 2000 K. Room temperature spectra can be simulated up to 20 000 cm-1 (0.5 μm) but the predictions at visible wavelengths are less reliable. AYT2 is made available in electronic form as supplementary data to this paper at www.exomol.com.

  4. An EPR line shape study of anisotropic rotational reorientation and slow tumbling in liquid and frozen jojoba oil

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Al-Rashid, W. A.

    Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.

  5. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  6. Filling in of Fraunhofer and gas-absorption lines in sky spectra as caused by rotational Raman scattering.

    PubMed

    Sioris, C E; Evans, W F

    1999-04-20

    A line-by-line radiative-transfer model to quantify the Ring effect as caused by rotational Raman scattering has been developed for the 310-550-nm spectral interval. The solar zenith angle and the resolution are key input parameters, as is the sky spectrum (excluding inelastic atmospheric scattering), which was modeled with MODTRAN 3.5. The filling in is modeled for ground-based viewing geometry and includes surface reflection and single inelastic scattering. It is shown that O2 contributes half of the filling in of N2. A strong inverse relationship with wavelength is noted in the filling in. A comparison with observations shows moderate agreement. The largest filling in occurs in the Ca II K and H lines.

  7. In-line rotating torque sensor with on-board amplifier

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A rotating torque sensor apparatus and method for measuring small torques comprising a shaft, a platform having a circuit board and a first moment arm attached to the shaft, a rotatable wheel coaxial with the shaft and having a second moment arm spaced apart from the first moment arm with a load cell therebetween for generating an electric signal as the torque is applied to the shaft and transferred through the moment arms to the load cell. The electrical signal is conducted from the load cell to the circuit board for filtering and amplification before being extracted from the torque assembly through a slip ring.

  8. THE INCOMPATIBILITY OF RAPID ROTATION WITH NARROW PHOTOSPHERIC X-RAY LINES IN EXO 0748-676

    SciTech Connect

    Lin Jinrong; Chakrabarty, Deepto; Oezel, Feryal; Psaltis, Dimitrios E-mail: deepto@mit.ed E-mail: dpsaltis@email.arizona.ed

    2010-11-10

    X-ray observations of EXO 0748-676 during thermonuclear bursts revealed a set of narrow ({Delta}{lambda}/{lambda} = 0.018) absorption lines that potentially originate from the stellar photosphere. The identification of these lines with particular atomic transitions led to the measurement of the surface gravitational redshift of the neutron star and to constraints on its mass and radius. However, the recent detection of 552 Hz oscillations at 15% rms amplitude revealed the spin frequency of the neutron star and brought into question the consistency of such a rapid spin with the narrow width of the absorption lines. Here, we calculate the amplitudes of burst oscillations and the width of absorption lines emerging from the surface of a rapidly rotating neutron star for a wide range of model parameters. We show that no combination of neutron star and geometric parameters can simultaneously reproduce the narrowness of the absorption lines, the high amplitude of the oscillations, and the observed flux at the time the oscillations were detected. We, therefore, conclude that the observed absorption lines are unlikely to originate from the surface of this neutron star.

  9. Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Hewett, Robert; Calvet, Nuria

    1994-01-01

    We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.

  10. Pressure broadening of the 2.5 THz H(Cl-35) rotational line by N2 and O2

    NASA Technical Reports Server (NTRS)

    Park, K.; Chance, K. V.; Nolt, I. G.; Radostitz, J. V.; Vanek, M. D.; Jennings, D. A.; Evenson, K. M.

    1991-01-01

    The pressure broadening coefficients of the 2.5 THz rotation line of H(Cl-35) by N2 and O2, for application to the analysis of far infrared spectra obtained in the stratosphere, are reported. The broadening coefficients were measured in absorption at 296 and 201 L using a tunable far infrared spectrometer. Results show that at room temperature the N2 pressure broadening coefficient is 0.0669 +/-0.0021/cm/atm (2sigma), with a temperature coefficient B of 0.58 +/-0.02.

  11. Testing of the line element of special relativity with rotating systems

    NASA Technical Reports Server (NTRS)

    Vargas, Jose G.; Torr, Douglas G.

    1989-01-01

    Experiments with rotating systems are examined from the point of view of a test theory of the Lorentz transformations (LTs), permitting, in principle, the verification of the simultaneity relation. The significance of the experiments involved in the testing of the LTs can be determined using Robertson's test theory (RTT). A revised RTT is discussed, and attention is given to the Ehrenfest paradox in connection with the testing of the LTs.

  12. Toward Accurate Reaction Energetics for Molecular Line Growth at Surface: Quantum Monte Carlo and Density Functional Theory Calculations

    SciTech Connect

    Kanai, Y; Takeuchi, N

    2009-10-14

    We revisit the molecular line growth mechanism of styrene on the hydrogenated Si(001) 2x1 surface. In particular, we investigate the energetics of the radical chain reaction mechanism by means of diffusion quantum Monte Carlo (QMC) and density functional theory (DFT) calculations. For the exchange correlation (XC) functional we use the non-empirical generalized-gradient approximation (GGA) and meta-GGA. We find that the QMC result also predicts the intra dimer-row growth of the molecular line over the inter dimer-row growth, supporting the conclusion based on DFT results. However, the absolute magnitudes of the adsorption and reaction energies, and the heights of the energy barriers differ considerably between the QMC and DFT with the GGA/meta-GGA XC functionals.

  13. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  14. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for ³²S¹⁶O₂ up to 8000 cm⁻¹.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (σ(RMS)) for all J = 0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(-1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm(-1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(-1) with 0.01-0.03 cm(-1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K(a)-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations. PMID:24655184

  15. Effects of open field line plasma on rotating magnetic field current drive in a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Milroy, Richard D.

    2001-06-01

    A numerical model has been used to study the effects that open field line plasma may have on the rotating magnetic field (RMF), when it is applied to a field-reversed configuration (FRC) for current drive. The model is a two-dimensional (r-θ) magnetohydrodynamic computer simulation. The RMF is found to be an extremely good particle pump, continuously sweeping plasma into the FRC from the outer region, and thus evacuating the space near the containment vessel wall. This effect can lead to a very low density near the wall, providing good thermal insulation. However, if there is a plasma source in the open field line region (such as outgassing from the containment vessel wall) capable of maintaining relatively low-density plasma, the RMF may be amplified in this region. While this effect may speed the rate of penetration, it also has a deleterious effect where excessive penetration leads to predictions of an internal structure that rotates slower than the RMF, and chaotic equilibrium.

  16. Finite number of vortices and bending of finite vortex lines in a confined rotating Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Chen, Z. Z.; Ma, Y. L.

    2007-01-01

    The minimal energy configurations of finite Nv-body vortices in a rotating trapped Bose-Einstein condensate is studied analytically by extending the previous work [Y. Castin, R. Dum, Eur. Phys. J. D 7, 399 (1999)], and taking into account the finite size effects on z-direction and the bending of finite vortex lines. The calculation of the energy of the vortices as a function of the rotation frequency of the trap gives number, curvature, configuration of vortices and width of vortex cores self-consistently. The numerical results show that (1) the simplest regular polynomial of the several vortex configurations is energetically favored; while the hexagonal vortex lattice is more stable than square lattice; (2) bending is more stable then straight vortex line along the z-axis for λ<1; (3) the boundary effect is obvious: compared with the estimation made under infinite boundary, the finite size effect leads to a lower vortex density, while the adding vortex bending results in a less higher density because of the expansion. The results are in well agreement with the other authors' ones.

  17. Rotation in Jets from Young Stars: investigating NUV lines with very high Spectral Resolution

    NASA Astrophysics Data System (ADS)

    Bacciotti, Francesca

    2003-07-01

    Optical STIS spectra of the jets from DG Tau, RW Aur, TH 28 and LkHa 231 obtained by us {prop IDs. 7311, 9435} show systematic transverse radial velocity shifts in the region where the flow has just been accelerated and collimated {Bacciotti et al, 2002}, i.e. within about 100 AU from the source. We interpret such shifts as evidence for jet rotation. Whether YSO jets rotate is a fundamental question in star formation because it has been suggested that jets might be the way excess angular momentum is removed from the star/disk system, thereby allowing the star to accrete. In particular it is important to know if observed toroidal velocities are in agreement with predictions of magneto-centrifugal jet launching models. The limited spatial and spectral resolution of STIS in the optical however, only allows one to say qualitatively that the observed rotational velocities are in rough agreement with theory. Moreover only the resolved peripheral regions of the flow can be studied. We are proposing here to exploit the higher spatial and spectral resolution of STIS in the NUV to measure transverse jet velocity profiles.This is a task which can only be undertaken by the HST and which is ideally suited to the STIS. To measure the velocity profiles, we will observe the Mg II doublet at 2800 Angstrom {using the E230M echelle and the 6 X 0.2 slit transverse to the flow}. In comparison to the optical, the NUV affords us double the spatial resolution and we will be able to detect velocity differences across the jet down to 2 km/s. Not only should we be able to determine for the first time the detailed rotational velocity profile across a jet but we also expect to spatially resolve the high velocity axial core of the jet in the NUV. Finally we add that as very few NUV observations of the initial jet beam of YSO jets are available, our datasets should be a valuable contribution to the HST archive.

  18. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  19. Stress rotations and the long-term weakness of the Median Tectonic Line and the Rokko-Awaji Segment

    NASA Astrophysics Data System (ADS)

    Famin, Vincent; Raimbourg, Hugues; Garcia, Sebastian; Bellahsen, Nicolas; Hamada, Yohei; Boullier, Anne-Marie; Fabbri, Olivier; Michon, Laurent; Uchide, Takahiko; Ricci, Tullio; Hirono, Tetsuro; Kawabata, Kuniyo

    2014-10-01

    We used a field analysis of rock deformation microstructures and mesostructures to reconstruct the long-term orientation of stresses around two major active fault systems in Japan, the Median Tectonic Line and the Rokko-Awaji Segment. Our study reveals that the dextral slip of the two fault systems, active since the Plio-Quaternary, was preceded by fault normal extension in the Miocene and sinistral wrenching in the Paleogene. The two fault systems deviated the regional stress field at the kilometer scale in their vicinity during each of the three tectonic regimes. The largest deviation, found in the Plio-Quaternary, is a more fault normal rotation of the maximum horizontal stress to an angle of 79° with the fault strands, suggesting an extremely low shear stress on the Median Tectonic Line and the Rokko-Awaji Segment. Possible causes of this long-term stress perturbation include a nearly total release of shear stress during earthquakes, a low static friction coefficient, or low elastic properties of the fault zones compared with the country rock. Independently of the preferred interpretation, the nearly fault normal orientation of the direction of maximum compression suggests that the mechanical properties of the fault zones are inadequate for the buildup of a pore fluid pressure sufficiently elevated to activate slip. The long-term weakness of the Median Tectonic Line and the Rokko-Awaji Segment may reside in low-friction/low-elasticity materials or dynamic weakening rather than in preearthquake fluid overpressures.

  20. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  1. A model for developing job rotation schedules that eliminate sequential high workloads and minimize between-worker variability in cumulative daily workloads: Application to automotive assembly lines.

    PubMed

    Yoon, Sang-Young; Ko, Jeonghan; Jung, Myung-Chul

    2016-07-01

    The aim of study is to suggest a job rotation schedule by developing a mathematical model in order to reduce cumulative workload from the successive use of the same body region. Workload assessment using rapid entire body assessment (REBA) was performed for the model in three automotive assembly lines of chassis, trim, and finishing to identify which body part exposed to relatively high workloads at workstations. The workloads were incorporated to the model to develop a job rotation schedule. The proposed schedules prevent the exposure to high workloads successively on the same body region and minimized between-worker variance in cumulative daily workload. Whereas some of workers were successively assigned to high workload workstation under no job rotation and serial job rotation. This model would help to reduce the potential for work-related musculoskeletal disorders (WMSDs) without additional cost for engineering work, although it may need more computational time and relative complex job rotation sequences.

  2. A model for developing job rotation schedules that eliminate sequential high workloads and minimize between-worker variability in cumulative daily workloads: Application to automotive assembly lines.

    PubMed

    Yoon, Sang-Young; Ko, Jeonghan; Jung, Myung-Chul

    2016-07-01

    The aim of study is to suggest a job rotation schedule by developing a mathematical model in order to reduce cumulative workload from the successive use of the same body region. Workload assessment using rapid entire body assessment (REBA) was performed for the model in three automotive assembly lines of chassis, trim, and finishing to identify which body part exposed to relatively high workloads at workstations. The workloads were incorporated to the model to develop a job rotation schedule. The proposed schedules prevent the exposure to high workloads successively on the same body region and minimized between-worker variance in cumulative daily workload. Whereas some of workers were successively assigned to high workload workstation under no job rotation and serial job rotation. This model would help to reduce the potential for work-related musculoskeletal disorders (WMSDs) without additional cost for engineering work, although it may need more computational time and relative complex job rotation sequences. PMID:26995031

  3. Rotation of nilotinib and imatinib for first-line treatment of chronic phase chronic myeloid leukemia.

    PubMed

    Gugliotta, Gabriele; Castagnetti, Fausto; Breccia, Massimo; Gozzini, Antonella; Usala, Emilio; Carella, Angelo M; Rege-Cambrin, Giovanna; Martino, Bruno; Abruzzese, Elisabetta; Albano, Francesco; Stagno, Fabio; Luciano, Luigia; D'Adda, Mariella; Bocchia, Monica; Cavazzini, Francesco; Tiribelli, Mario; Lunghi, Monia; Pia Falcone, Antonietta; Musolino, Caterina; Levato, Luciano; Venturi, Claudia; Soverini, Simona; Cavo, Michele; Alimena, Giuliana; Pane, Fabrizio; Martinelli, Giovanni; Saglio, Giuseppe; Rosti, Gianantonio; Baccarani, Michele

    2016-06-01

    The introduction of second-generation tyrosine-kinase inhibitors (TKIs) has generated a lively debate on the choice of first-line TKI in chronic phase, chronic myeloid leukemia (CML). Despite the TKIs have different efficacy and toxicity profiles, the planned use of two TKIs has never been investigated. We report on a phase 2 study that was designed to evaluate efficacy and safety of a treatment alternating nilotinib and imatinib, in newly diagnosed BCR-ABL1 positive, chronic phase, CML patients. One hundred twenty-three patients were enrolled. Median age was 56 years. The probabilities of achieving a complete cytogenetic response, a major molecular response, and a deep molecular response (MR 4.0) by 2 years were 93%, 87%, and 61%, respectively. The 5-year overall survival and progression-free survival were 89%. Response rates and survival are in the range of those reported with nilotinib alone. Moreover, we observed a relatively low rate of cardiovascular adverse events (5%). These data show that the different efficacy and toxicity profiles of TKIs could be favorably exploited by alternating their use. Am. J. Hematol. 91:617-622, 2016. © 2016 Wiley Periodicals, Inc.

  4. PROJECT VeSElkA: ANALYSIS OF BALMER LINE PROFILES OF SLOWLY ROTATING CHEMICALLY PECULIAR STARS

    SciTech Connect

    Khalack, V.; LeBlanc, F.

    2015-07-15

    We present results for the estimation of gravity, effective temperature, and radial velocity of poorly studied chemically peculiar stars recently observed with the spectropolarimeter Echelle SpectroPolarimetric Device for Observations of Stars at the Canada–France–Hawaii Telescope in the frame of the Vertical Stratification of Element Abundances project. The effective temperature and surface gravity values are determined for the very first time for four of the stars from our sample (HD 23878, HD 83373, HD 95608, and HD 164584). Grids of stellar atmosphere models with the corresponding fluxes have been calculated using version 15 of the PHOENIX code for effective temperatures in the range of 5000–15,000 K, for the logarithm of surface gravities in the range of 3.0–4.5 and for the metallicities from −1.0 to +1.5. We used these fluxes to fit the Balmer line profiles employing the code FITSB2 that produces estimates of the effective temperature, gravity, and radial velocity for each star. When possible, our results are compared to those previously published. The physical characteristics of 16 program stars are discussed with the future aim to study the abundance anomalies of chemical species and the possible vertical abundance stratification in their stellar atmosphere.

  5. Rotation of nilotinib and imatinib for first-line treatment of chronic phase chronic myeloid leukemia.

    PubMed

    Gugliotta, Gabriele; Castagnetti, Fausto; Breccia, Massimo; Gozzini, Antonella; Usala, Emilio; Carella, Angelo M; Rege-Cambrin, Giovanna; Martino, Bruno; Abruzzese, Elisabetta; Albano, Francesco; Stagno, Fabio; Luciano, Luigia; D'Adda, Mariella; Bocchia, Monica; Cavazzini, Francesco; Tiribelli, Mario; Lunghi, Monia; Pia Falcone, Antonietta; Musolino, Caterina; Levato, Luciano; Venturi, Claudia; Soverini, Simona; Cavo, Michele; Alimena, Giuliana; Pane, Fabrizio; Martinelli, Giovanni; Saglio, Giuseppe; Rosti, Gianantonio; Baccarani, Michele

    2016-06-01

    The introduction of second-generation tyrosine-kinase inhibitors (TKIs) has generated a lively debate on the choice of first-line TKI in chronic phase, chronic myeloid leukemia (CML). Despite the TKIs have different efficacy and toxicity profiles, the planned use of two TKIs has never been investigated. We report on a phase 2 study that was designed to evaluate efficacy and safety of a treatment alternating nilotinib and imatinib, in newly diagnosed BCR-ABL1 positive, chronic phase, CML patients. One hundred twenty-three patients were enrolled. Median age was 56 years. The probabilities of achieving a complete cytogenetic response, a major molecular response, and a deep molecular response (MR 4.0) by 2 years were 93%, 87%, and 61%, respectively. The 5-year overall survival and progression-free survival were 89%. Response rates and survival are in the range of those reported with nilotinib alone. Moreover, we observed a relatively low rate of cardiovascular adverse events (5%). These data show that the different efficacy and toxicity profiles of TKIs could be favorably exploited by alternating their use. Am. J. Hematol. 91:617-622, 2016. © 2016 Wiley Periodicals, Inc. PMID:26971721

  6. Theory of damped quantum rotation in nuclear magnetic resonance spectra. III. Nuclear permutation symmetry of the line shape equation.

    PubMed

    Szymański, S

    2009-12-28

    The damped quantum rotation (DQR) theory describes manifestations in nuclear magnetic resonance spectra of the coherent and stochastic dynamics of N-fold molecular rotors composed of indistinguishable particles. The standard jump model is only a limiting case of the DQR approach; outside this limit, the stochastic motions of such rotors have no kinematic description. In this paper, completing the previous two of this series, consequences of nuclear permutation symmetry for the properties of the DQR line shape equation are considered. The systems addressed are planar rotors, such as aromatic hydrocarbons' rings, occurring inside of molecular crystals oriented in the magnetic field. Under such conditions, oddfold rotors can have nontrivial permutation symmetries only for peculiar orientations while evenfold ones always retain their intrinsic symmetry element, which is rotation by 180 degrees about the N-fold axis; in specific orientations the latter can gain two additional symmetry elements. It is shown that the symmetry selection rules applicable to the classical rate processes in fluids, once recognized as having two diverse aspects, macroscopic and microscopic, are also rigorously valid for the DQR processes in the solid state. However, formal justification of these rules is different because the DQR equation is based on the Pauli principle, which is ignored in the jump model. For objects like the benzene ring, exploitation of these rules in simulations of spectra using the DQR equation can be of critical significance for the feasibility of the calculations. Examples of such calculations for the proton system of the benzene ring in a general orientation are provided. It is also shown that, because of the intrinsic symmetries of the evenfold rotors, many of the DQR processes, which such rotors can undergo, are unobservable in NMR spectra.

  7. Accurate line shapes from sub-1 cm(-1) resolution sum frequency generation vibrational spectroscopy of α-pinene at room temperature.

    PubMed

    Mifflin, Amanda L; Velarde, Luis; Ho, Junming; Psciuk, Brian T; Negre, Christian F A; Ebben, Carlena J; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin L; Thomson, Regan J; Batista, Victor S; Wang, Hong-Fei; Geiger, Franz M

    2015-02-26

    Despite the importance of terpenes in biology, the environment, and catalysis, their vibrational spectra remain unassigned. Here, we present subwavenumber high-resolution broad-band sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene that reveal 10 peaks in the C-H stretching region at room temperature. The high spectral resolution resulted in spectra with more and better resolved spectral features than those of the Fourier transform infrared, femtosecond stimulated Raman spectra in the bulk condensed phase and those of the conventional BB-SFG and scanning SFG spectroscopy of the same molecule on a surface. Experiment and simulation show the spectral line shapes with HR-BB-SFG to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 ps are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations. Phase-resolved spectra provided their orientational information. We propose the new spectroscopy as an attractive alternative to time domain vibrational spectroscopy or heterodyne detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules at molecular surfaces or interfaces.

  8. At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics.

    PubMed

    Nwankire, Charles E; Donohoe, Gerard G; Zhang, Xin; Siegrist, Jonathan; Somers, Martin; Kurzbuch, Dirk; Monaghan, Ruairi; Kitsara, Maria; Burger, Robert; Hearty, Stephen; Murrell, Julie; Martin, Christopher; Rook, Martha; Barrett, Louise; Daniels, Stephen; McDonagh, Colette; O'Kennedy, Richard; Ducrée, Jens

    2013-06-01

    In this paper we report a centrifugal microfluidic "lab-on-a-disc" system for at-line monitoring of human immunoglobulin G (hIgG) in a typical bioprocess environment. The novelty of this device is the combination of a heterogeneous sandwich immunoassay on a serial siphon-enabled microfluidic disc with automated sequential reagent delivery and surface-confined supercritical angle fluorescence (SAF)-based detection. The device, which is compact, easy-to-use and inexpensive, enables rapid detection of hIgG from a bioprocess sample. This was achieved with, an injection moulded SAF lens that was functionalized with aminopropyltriethoxysilane (APTES) using plasma enhanced chemical vapour deposition (PECVD) for the immobilization of protein A, and a hybrid integration with a microfluidic disc substrate. Advanced flow control, including the time-sequenced release of on-board liquid reagents, was implemented by serial siphoning with ancillary capillary stops. The concentration of surfactant in each assay reagent was optimized to ensure proper functioning of the siphon-based flow control. The entire automated microfluidic assay process is completed in less than 30 min. The developed prototype system was used to accurately measure industrial bioprocess samples that contained 10 mg mL(-1) of hIgG.

  9. Sex differences in mental rotation and line angle judgments are positively associated with gender equality and economic development across 53 nations.

    PubMed

    Lippa, Richard A; Collaer, Marcia L; Peters, Michael

    2010-08-01

    Mental rotation and line angle judgment performance were assessed in more than 90,000 women and 111,000 men from 53 nations. In all nations, men's mean performance exceeded women's on these two visuospatial tasks. Gender equality (as assessed by United Nations indices) and economic development (as assessed by per capita income and life expectancy) were significantly associated, across nations, with larger sex differences, contrary to the predictions of social role theory. For both men and women, across nations, gender equality and economic development were significantly associated with better performance on the two visuospatial tasks. However, these associations were stronger for the mental rotation task than for the line angle judgment task, and they were stronger for men than for women. Results were discussed in terms of evolutionary, social role, and stereotype threat theories of sex differences.

  10. Variability of young stars: Determination of rotational periods of weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region

    NASA Astrophysics Data System (ADS)

    Koeltzsch, A.; Mugrauer, M.; Raetz, St.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Schreyer, K.; Broeg, Ch.; Neuhäuser, R.

    2009-05-01

    We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  11. Transtibial amputee joint rotation moments during straight-line walking and a common turning task with and without a torsion adapter.

    PubMed

    Segal, Ava D; Orendurff, Michael S; Czerniecki, Joseph M; Shofer, Jane B; Klute, Glenn K

    2009-01-01

    Amputees lack movement and control mechanisms at the foot and ankle that result in different strategies for locomotion than nonamputees. The torsion adapter is a prosthetic device designed to minimize shear stress at the residual limb by facilitating rotation in the transverse plane. This study determined if the addition of a torsion adapter alters lower-limb joint rotation moments of transtibial amputees walking in a straight line and turning. Ten transtibial amputees wore either a torsion adapter or a rigid adapter for an acclimation period of 3 weeks in random order. Ten nonamputees were also included for comparison. Kinetics were collected as participants walked in a straight line and around a 1 m-radius circular path at their self-selected turning walking speed. When amputee participants wore the torsion adapter, they demonstrated decreased prosthetic-limb peak internal rotation moments at the inside limb knee and hip compared with when they wore the rigid adapter, which may facilitate changes in orientation by not actively resisting the turn. Nonamputees exhibited larger moments compared with the prosthetic limb for both the amputee participants wearing either the torsion or rigid adapters. No differences were found in the moments for the intact limb between torsion and rigid adapter conditions during turning and for both limbs during straight-line walking.

  12. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  13. Maximum mass-loss rates of line-driven winds of massive stars: The effect of rotation and an application to η Carinae

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Lamers, H. J. G. L. M.; Molenberghs, G.

    2004-05-01

    We investigate the effect of rotation on the maximum mass-loss rate due to an optically-thin radiatively-driven wind according to a formalism which takes into account the possible presence of any instability at the base of the wind that might increase the mass-loss rate. We include the Von Zeipel effect and the oblateness of the star in our calculations. We determine the maximum surface-integrated mass that can be lost from a star by line driving as a function of rotation for a number of relevant stellar models of massive OB stars with luminosities in the range of 5.0< log (L/L⊙)<6.0. We also determine the corresponding maximum loss of angular momentum. We find that rotation increases the maximum mass-loss rate by a moderate factor for stars far from the Eddington limit as long as the ratio of equatorial to critical velocity remains below 0.7. For higher ratios, however, the temperature, flux and Eddington factor distributions change considerably over the stellar surface such that extreme mass loss is induced. Stars close to the Eddington-Gamma limit suffer extreme mass loss already for a low equatorial rotation velocity. We compare the maximum mass-loss rates as a function of rotation velocity with other predicted relations available in the literature which do not take into account possible instabilities at the stellar surface and we find that the inclusion thereof leads to extreme mass loss at much lower rotation rates. We present a scaling law to predict maximum mass-loss rates. Finally, we provide a mass-loss model for the LBV η Carinae that is able to explain the large observed current mass-loss rate of ˜10-3 M⊙ yr-1 but that leads to too low wind velocities compared to those derived from observations.

  14. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  15. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  16. An isotopic-independent highly accurate potential energy surface for CO2 isotopologues and an initial (12)C(16)O2 infrared line list.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Tashkun, Sergey A; Lee, Timothy J

    2012-03-28

    An isotopic-independent, highly accurate potential energy surface (PES) has been determined for CO(2) by refining a purely ab initio PES with selected, purely experimentally determined rovibrational energy levels. The purely ab initio PES is denoted Ames-0, while the refined PES is denoted Ames-1. Detailed tests are performed to demonstrate the spectroscopic accuracy of the Ames-1 PES. It is shown that Ames-1 yields σ(rms) (root-mean-squares error) = 0.0156 cm(-1) for 6873 J = 0-117 (12)C(16)O(2) experimental energy levels, even though less than 500 (12)C(16)O(2) energy levels were included in the refinement procedure. It is also demonstrated that, without any additional refinement, Ames-1 yields very good agreement for isotopologues. Specifically, for the (12)C(16)O(2) and (13)C(16)O(2) isotopologues, spectroscopic constants G(v) computed from Ames-1 are within ±0.01 and 0.02 cm(-1) of reliable experimentally derived values, while for the (16)O(12)C(18)O, (16)O(12)C(17)O, (16)O(13)C(18)O, (16)O(13)C(17)O, (12)C(18)O(2), (17)O(12)C(18)O, (12)C(17)O(2), (13)C(18)O(2), (13)C(17)O(2), (17)O(13)C(18)O, and (14)C(16)O(2) isotopologues, the differences are between ±0.10 and 0.15 cm(-1). To our knowledge, this is the first time a polyatomic PES has been refined using such high J values, and this has led to new challenges in the refinement procedure. An initial high quality, purely ab initio dipole moment surface (DMS) is constructed and used to generate a 296 K line list. For most bands, experimental IR intensities are well reproduced for (12)C(16)O(2) using Ames-1 and the DMS. For more than 80% of the bands, the experimental intensities are reproduced with σ(rms)(ΔI) < 20% or σ(rms)(ΔI∕δ(obs)) < 5. A few exceptions are analyzed and discussed. Directions for future improvements are discussed, though it is concluded that the current Ames-1 and the DMS should be useful in analyzing and assigning high-resolution laboratory or astronomical spectra. PMID:22462861

  17. Quasi-bound complexes in collisions of different linear molecules: Classical trajectory study of their manifestations in rotational relaxation and spectral line broadening

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergey V.

    2016-07-01

    Stable bimolecular complexes (tightly bound dimers) in the gas phase are usually created during third body stabilization of their unstable precursors-quasi-bound complexes (QCs). The latter can arise under the condition that at least one of the colliding partners has an internal degree of freedom. In this article, the principal difference between "orbitings" and QCs is demonstrated in the classical nonreactive scattering picture. Additionally, fractions of QCs in binary collisions of different linear molecules are compared. Also in the article the influence of QCs on rotational R-T relaxation and on vibration-rotational spectral line broadening is discussed. Explicit formulae shedding light on the QCs contribution to the R-T relaxation cross section and the line width and shift are presented. The obtained results emphasize the need for including QCs in every theoretical modeling of spectroscopic manifestation of intermolecular interactions. Besides the topics above, the possible manifestation of non-impact effects in the central regions of spectral lines due to QCs is stated. And finally, special consideration is given to the problem of adequate simulation of QCs formation at different pressures.

  18. Visual perception of axes of head rotation

    PubMed Central

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  19. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3.

    PubMed

    Ma, Q; Boulet, C

    2016-06-14

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II). PMID:27306003

  20. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Boulet, C.

    2016-06-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  1. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  2. The effect of solar flares, coronal mass ejections, and co-rotating interaction regions on the Venusian 557.7 nm oxygen green line

    NASA Astrophysics Data System (ADS)

    Gray, Candace L.; Chanover, Nancy; Slanger, Tom; Molaverdikhani, Karan; Peter, Kerstin; Häusler, Bernd; Tellmann, Silvia; Pätzold, Martin; Witasse, Olivier; Blelly, Pierre-Louis; Collinson, Glyn

    2015-11-01

    The Venusian 557.7nm OI (1S - 1D) (oxygen green line) nightglow emission is known to be highly temporally variable. The reason for this variability is unknown. We propose that the emission is due to electron precipitation from intense solar storms. For my dissertation, I observed the Venusian green line after solar flares, coronal mass ejections (CMEs), and co-rotating interaction regions from December 2010 to April 2015 using the high resolution Astrophysical Research Consortium Echelle Spectrograph on the Apache Point Observatory 3.5-m telescope. Combining these observation with all other published observations, we find that the strongest detections occur after CME impacts and we conclude electron precipitation is required to produce green line emission. We do not detect emission from the 630.0nm OI (1D - 3P) oxygen red line for any observation.In an effort to determine the emitting altitude, thereby constraining the possible emission processes responsible for green line emission, and quantify the electron energy and flux entering the Venusian nightside, we conducted analyses of space-based observations of the Venusian nightglow and ionosphere collected by the Venus Express (VEX) spacecraft. We were unable to detect the green line but confirmed that electron energy and flux increases after CME impacts.In order to determine the effect of storm condition electron precipitation on the Venusian green line, we modeled the Venusian ionosphere using the TRANSCAR model (a 1-D magnetohydrodynamic ionospheric model that simulates auroral emission from electron precipitation) by applying observed electron energies and fluxes. We found that electron energy plays a primary role in producing increased green line emission in the Venusian ionosphere.Based on observation and modeling results, we conclude that the Venusian green line is an auroral-type emission that occurs after solar storms with the largest intensities observed after CMEs. Post-CME electron fluxes and energies

  3. Use of new T-cell-based cell lines expressing two luciferase reporters for accurately evaluating susceptibility to anti-human immunodeficiency virus type 1 drugs.

    PubMed

    Chiba-Mizutani, Tomoko; Miura, Hideka; Matsuda, Masakazu; Matsuda, Zene; Yokomaku, Yoshiyuki; Miyauchi, Kosuke; Nishizawa, Masako; Yamamoto, Naoki; Sugiura, Wataru

    2007-02-01

    Two new T-cell-based reporter cell lines were established to measure human immunodeficiency virus type 1 (HIV-1) infectivity. One cell line naturally expresses CD4 and CXCR4, making it susceptible to X4-tropic viruses, and the other cell line, in which a CCR5 expression vector was introduced, is susceptible to both X4- and R5-tropic viruses. Reporter cells were constructed by transfecting the human T-cell line HPB-Ma, which demonstrates high susceptibility to HIV-1, with genomes expressing two different luciferase reporters, HIV-1 long terminal repeat-driven firefly luciferase and cytomegalovirus promoter-driven renilla luciferase. Upon HIV infection, the cells expressed firefly luciferase at levels that were highly correlated (r2=0.91 to 0.98) with the production of the capsid antigen p24. The cells also constitutively expressed renilla luciferase, which was used to monitor cell numbers and viability. The reliability of the cell lines for two in vitro applications, drug resistance phenotyping and drug screening, was confirmed. As HIV-1 efficiently replicated in these cells, they could be used for multiple-round replication assays as an alternative method to a single-cycle replication protocol. Coefficients of variation for drug susceptibility evaluated with the cell lines ranged from 17 to 41%. The new cell lines were beneficial for evaluating antiretroviral drug resistance. Firefly luciferase gave a wider dynamic range for evaluating virus infectivity, and the introduction of renilla luciferase improved assay reproducibility. The cell lines were also beneficial for screening new antiretroviral agents, as false inhibition caused by the cytotoxicity of test compounds was easily detected by monitoring renilla luciferase activity.

  4. Determinants of image quality of rotational angiography for on-line assessment of frame geometry after transcatheter aortic valve implantation.

    PubMed

    Rodríguez-Olivares, Ramón; El Faquir, Nahid; Rahhab, Zouhair; Maugenest, Anne-Marie; Van Mieghem, Nicolas M; Schultz, Carl; Lauritsch, Guenter; de Jaegere, Peter P T

    2016-07-01

    To study the determinants of image quality of rotational angiography using dedicated research prototype software for motion compensation without rapid ventricular pacing after the implantation of four commercially available catheter-based valves. Prospective observational study including 179 consecutive patients who underwent transcatheter aortic valve implantation (TAVI) with either the Medtronic CoreValve (MCS), Edward-SAPIEN Valve (ESV), Boston Sadra Lotus (BSL) or Saint-Jude Portico Valve (SJP) in whom rotational angiography (R-angio) with motion compensation 3D image reconstruction was performed. Image quality was evaluated from grade 1 (excellent image quality) to grade 5 (strongly degraded). Distinction was made between good (grades 1, 2) and poor image quality (grades 3-5). Clinical (gender, body mass index, Agatston score, heart rate and rhythm, artifacts), procedural (valve type) and technical variables (isocentricity) were related with the image quality assessment. Image quality was good in 128 (72 %) and poor in 51 (28 %) patients. By univariable analysis only valve type (BSL) and the presence of an artefact negatively affected image quality. By multivariate analysis (in which BMI was forced into the model) BSL valve (Odds 3.5, 95 % CI [1.3-9.6], p = 0.02), presence of an artifact (Odds 2.5, 95 % CI [1.2-5.4], p = 0.02) and BMI (Odds 1.1, 95 % CI [1.0-1.2], p = 0.04) were independent predictors of poor image quality. Rotational angiography with motion compensation 3D image reconstruction using a dedicated research prototype software offers good image quality for the evaluation of frame geometry after TAVI in the majority of patients. Valve type, presence of artifacts and higher BMI negatively affect image quality.

  5. Determinants of image quality of rotational angiography for on-line assessment of frame geometry after transcatheter aortic valve implantation.

    PubMed

    Rodríguez-Olivares, Ramón; El Faquir, Nahid; Rahhab, Zouhair; Maugenest, Anne-Marie; Van Mieghem, Nicolas M; Schultz, Carl; Lauritsch, Guenter; de Jaegere, Peter P T

    2016-07-01

    To study the determinants of image quality of rotational angiography using dedicated research prototype software for motion compensation without rapid ventricular pacing after the implantation of four commercially available catheter-based valves. Prospective observational study including 179 consecutive patients who underwent transcatheter aortic valve implantation (TAVI) with either the Medtronic CoreValve (MCS), Edward-SAPIEN Valve (ESV), Boston Sadra Lotus (BSL) or Saint-Jude Portico Valve (SJP) in whom rotational angiography (R-angio) with motion compensation 3D image reconstruction was performed. Image quality was evaluated from grade 1 (excellent image quality) to grade 5 (strongly degraded). Distinction was made between good (grades 1, 2) and poor image quality (grades 3-5). Clinical (gender, body mass index, Agatston score, heart rate and rhythm, artifacts), procedural (valve type) and technical variables (isocentricity) were related with the image quality assessment. Image quality was good in 128 (72 %) and poor in 51 (28 %) patients. By univariable analysis only valve type (BSL) and the presence of an artefact negatively affected image quality. By multivariate analysis (in which BMI was forced into the model) BSL valve (Odds 3.5, 95 % CI [1.3-9.6], p = 0.02), presence of an artifact (Odds 2.5, 95 % CI [1.2-5.4], p = 0.02) and BMI (Odds 1.1, 95 % CI [1.0-1.2], p = 0.04) were independent predictors of poor image quality. Rotational angiography with motion compensation 3D image reconstruction using a dedicated research prototype software offers good image quality for the evaluation of frame geometry after TAVI in the majority of patients. Valve type, presence of artifacts and higher BMI negatively affect image quality. PMID:27139459

  6. Towards automated firearm identification based on high resolution 3D data: rotation-invariant features for multiple line-profile-measurement of firing pin shapes

    NASA Astrophysics Data System (ADS)

    Fischer, Robert; Vielhauer, Claus

    2015-03-01

    Understanding and evaluation of potential evidence, as well as evaluation of automated systems for forensic examinations currently play an important role within the domain of digital crime scene analysis. The application of 3D sensing and pattern recognition systems for automatic extraction and comparison of firearm related tool marks is an evolving field of research within this domain. In this context, the design and evaluation of rotation-invariant features for use on topography data play a particular important role. In this work, we propose and evaluate a 3D imaging system along with two novel features based on topography data and multiple profile-measurement-lines for automatic matching of firing pin shapes. Our test set contains 72 cartridges of three manufactures shot by six different 9mm guns. The entire pattern recognition workflow is addressed. This includes the application of confocal microscopy for data acquisition, preprocessing covers outlier handling, data normalization, as well as necessary segmentation and registration. Feature extraction involves the two introduced features for automatic comparison and matching of 3D firing pin shapes. The introduced features are called `Multiple-Circle-Path' (MCP) and `Multiple-Angle-Path' (MAP). Basically both features are compositions of freely configurable amounts of circular or straight path-lines combined with statistical evaluations. During the first part of evaluation (E1), we examine how well it is possible to differentiate between two 9mm weapons of the same mark and model. During second part (E2), we evaluate the discrimination accuracy regarding the set of six different 9mm guns. During the third part (E3), we evaluate the performance of the features in consideration of different rotation angles. In terms of E1, the best correct classification rate is 100% and in terms of E2 the best result is 86%. The preliminary results for E3 indicate robustness of both features regarding rotation. However, in future

  7. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  8. The role of the Coriolis interaction on vector correlations in molecular predissociation: excitation of isolated rotational lines.

    PubMed

    Kuznetsov, Vladislav V; Shternin, Peter S; Vasyutinskii, Oleg S

    2009-04-01

    We present the full quantum mechanical expressions for the polarization differential cross sections of the photofragments produced in slow predissociation of a parent molecule via isolated rotational branches. Both radial and Coriolis nonadiabatic interactions between the molecular potential energy surfaces have been taken into account. The expressions describe the recoil angle distribution of the photofragments and the distributions of the photofragment angular momentum polarization (orientation and alignment) in terms of the anisotropy parameters of the ranks K=0,1,2. The explicit expressions for the anisotropy parameters are presented and analyzed which contain contributions from different possible photolysis mechanisms including incoherent, or coherent optical excitation of the parent molecule followed by the radial, or Coriolis nonadiabatic transitions to the dissociative states. The obtained expression for the zeroth-rank anisotropy parameter beta is valid for any molecule and for an arbitrary value of the molecular total angular momentum J. The expressions for the orientation (K=1) and alignment (K=2) anisotropy parameters are given in the high-J limit in terms of the generalized dynamical functions which were analyzed for the case of photolysis of linear/diatomic molecules. As shown, the Coriolis nonadiabatic interaction results in several new photolysis mechanisms which can play an important role in the predissociation dynamics.

  9. Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement.

    PubMed

    Zhang, Zhaoxiang; Zhang, Chaoying; Luan, Wenxiu; Li, Xiufeng; Liu, Ying; Luo, Xiliang

    2015-08-12

    A sensitive and rapid on-line immunoassay for the determination of ciguatoxin CTX3C was developed based on a capillary mixing system, which was integrated with capillary electrophoresis (CE) separation and electrochemical (EC) detection. In the sandwich immunoassay system, anti-CTX3C-functionalized magnetic nanoparticles were used as immunosensing probes, and horseradish peroxidase (HRP) and anti-CTX3C antibody were bound onto the surface of gold nanoparticles (AuNPs) and used as recognition elements. Online formation of immunocomplex was realized in capillary inlet end with an external rotating magnetic field. Compared with classical HPLC-MS and ELISA, the assay adopting AuNPs as multienzyme carriers and online sandwich immunoassay format with rotating magnetic field exhibited higher sensitivity and shorter assay time. The linear range of the assay for CTX3C was from 0.6 to 150 ng/L with a correlation coefficient of 0.9948 (n = 2), and the detection limit (S/N = 3) was 0.09 ng/L. The developed assay showed satisfying reproducibility and stability, and it was successfully applied for the quantification of CTX3C in fish samples. PMID:26320955

  10. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  11. The absorption spectrum of D2: ultrasensitive cavity ring down spectroscopy of the (2-0) band near 1.7 μm and accurate ab initio line list up to 24,000 cm(-1).

    PubMed

    Kassi, Samir; Campargue, Alain; Pachucki, Krzysztof; Komasa, Jacek

    2012-05-14

    Eleven very weak electric quadrupole transitions Q(2), Q(1), S(0)-S(8) of the first overtone band of D(2) have been measured by very high sensitivity CW-cavity ring down spectroscopy (CRDS) between 5850 and 6720 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min) ≈ 3 × 10(-11) cm(-1). By averaging a high number of spectra, the noise level was lowered to α(min) ≈ 4 × 10(-12) cm(-1) in order to detect the S(8) transition which is among the weakest transitions ever detected in laboratory experiments (line intensity on the order of 1.8 × 10(-31) cm/molecule at 296 K). A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift and position at zero pressure limit were determined from recordings with pressures ranging between 10 and 750 Torr. A highly accurate theoretical line list was constructed for pure D(2) at 296 K. The intensity threshold was fixed to a value of 1 × 10(-34) cm/molecule at 296 K. The obtained line list is provided as supplementary material. It extends up to 24,000 cm(-1) and includes 201 transitions belonging to ten v-0 cold bands (v = 0-9) and three v-1 hot bands (v = 1-3). The energy levels include the relativistic and quantum electrodynamic corrections as well as the effects of the finite nuclear mass. The quadrupole transition moments are calculated using highly accurate adiabatic wave functions. The CRDS line positions and intensities of the first overtone band are compared to the corresponding calculated values and to previous measurements of the S(0)-S(3) lines. The agreement between the CRDS and theoretical results is found within the claimed experimental uncertainties (on the order of 1 × 10(-3) cm(-1) and 2% for the positions and intensities, respectively) while the previous S(0)-S(3) measurements showed important deviations for the line intensities.

  12. Accurate and practical identification of 20 Fusarium species by seven-locus sequence analysis and reverse line blot hybridization, and an in vitro antifungal susceptibility study.

    PubMed

    Wang, He; Xiao, Meng; Kong, Fanrong; Chen, Sharon; Dou, Hong-Tao; Sorrell, Tania; Li, Ruo-Yu; Xu, Ying-Chun

    2011-05-01

    Eleven reference and 25 clinical isolates of Fusarium were subject to multilocus DNA sequence analysis to determine the species and haplotypes of the fusarial isolates from Beijing and Shandong, China. Seven loci were analyzed: the translation elongation factor 1 alpha gene (EF-1α); the nuclear rRNA internal transcribed spacer (ITS), large subunit (LSU), and intergenic spacer (IGS) regions; the second largest subunit of the RNA polymerase gene (RPB2); the calmodulin gene (CAM); and the mitochondrial small subunit (mtSSU) rRNA gene. We also evaluated an IGS-targeted PCR/reverse line blot (RLB) assay for species/haplotype identification of Fusarium. Twenty Fusarium species and seven species complexes were identified. Of 25 clinical isolates (10 species), the Gibberella (Fusarium) fujikuroi species complex was the commonest (40%) and was followed by the Fusarium solani species complex (FSSC) (36%) and the F. incarnatum-F. equiseti species complex (12%). Six FSSC isolates were identified to the species level as FSSC-3+4, and three as FSSC-5. Twenty-nine IGS, 27 EF-1α, 26 RPB2, 24 CAM, 18 ITS, 19 LSU, and 18 mtSSU haplotypes were identified; 29 were unique, and haplotypes for 24 clinical strains were novel. By parsimony informative character analysis, the IGS locus was the most phylogenetically informative, and the rRNA gene regions were the least. Results by RLB were concordant with multilocus sequence analysis for all isolates. Amphotericin B was the most active drug against all species. Voriconazole MICs were high (>8 μg/ml) for 15 (42%) isolates, including FSSC. Analysis of larger numbers of isolates is required to determine the clinical utility of the seven-locus sequence analysis and RLB assay in species classification of fusaria. PMID:21389150

  13. Vertical Distributions of PH3 in Saturn from Observations of Its 1-0 and 3-2 Rotational Lines

    NASA Technical Reports Server (NTRS)

    Orton, G. S.; Serabyn, E.; Lee, Y. T.

    2000-01-01

    Far-infrared Fourier-transform spectrometer measurements of the 1-0 and 3-2 PH3 transitions in Saturn's disk near 267 and 800 GHz (8.9 and 26.7/cm), respectively, were analyzed simultaneously to derive a global mean profile for the PH3 vertical mixing ratio between 100 and 600 mbar total pressure. The far-infrared spectrum is relatively free from spectral interlopers, suffers minimal absorption or scattering by atmospheric particulates, and contains intrinsically weak PH3 lines that are sensitive to a range of atmospheric depths. The combined spectra are inconsistent with a uniform tropospheric mixing ratio, even with a stratospheric cut-off. They are consistent with a volume mixing ratio of PH3 that drops from 1.2 x 10(exp -5) at 645 mbar pressure to a value of 4.1 x 10(exp -7) at 150 mbar pressure, a decrease that is linear is log abundance vs log pressure. The mixing ratio could drop even more quickly at atmospheric pressures below 150 mbar and still be consistent with the data. The mixing ratio may well remain constant with depth for pressures above 630 mbar. The maximum PH3 mixing ratio in this model is consistent with a [P]/[H] ratio in the deep atmosphere that is about a factor of 10 higher than solar composition. Such a model is consistent with rapid mixing up to the radiative-convective boundary and transport by, for example, vertical waves just above this boundary. In the best fitting model, the eddy diffusion coefficient is approximately 10(exp 4) sq cm near 630 mbar, and it must increase with altitude. The predominant PH3 loss mechanisms are direct photolysis by UV radiation and scavenging by H atoms produced by the photolysis.

  14. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    SciTech Connect

    Huang, Xinchuan E-mail: Timothy.J.Lee@nasa.gov; Schwenke, David W.; Lee, Timothy J. E-mail: Timothy.J.Lee@nasa.gov

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  15. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom

    SciTech Connect

    Esch, Ann van; Clermont, Christian; Devillers, Magali; Iori, Mauro; Huyskens, Dominique P.

    2007-10-15

    For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of

  16. A new primary cleft lip repair technique tailored for Asian patients that combines three surgical concepts: Comparison with rotation--advancement and straight-line methods.

    PubMed

    Funayama, Emi; Yamamoto, Yuhei; Furukawa, Hiroshi; Murao, Naoki; Shichinohe, Ryuji; Hayashi, Toshihiko; Oyama, Akihiko

    2016-01-01

    Various techniques have been described for unilateral cleft lip repair. These may be broadly classified into three types of procedure/concept: the straight-line method (SL; Rose-Thompson effect); rotation-advancement (RA; upper-lip Z-plasty); and the triangular flap method (TA; lower-lip Z-plasty). Based on these procedures, cleft lip repair has evolved in recent decades. The cleft lip repair method in our institution has also undergone several changes. However, we have found that further modifications are needed for Asian patients who have wider philtral dimples and columns than Caucasians, while following the principles of the original techniques mentioned above. Here, we have incorporated the advantages of each procedure and propose a refined hybrid operating technique, seeking a more appropriate procedure for Asian patients. To evaluate our new technique, a comparison study was performed to evaluate RA, SL, and our technique. We have used our new technique to treat 137 consecutive cleft lip cases of all types and degrees of severity, with or without a cleft palate, since 2009. In the time since we adopted the hybrid technique, we have observed improved esthetics of the repaired lip. Our technique demonstrated higher glance impression average scores than RA/SL.

  17. Rotational Line Strengths and Self-Pressure-Broadening Coefficients for the 1.27- m, a 1 g X 3 g , v 0 0 Band of O 2

    NASA Astrophysics Data System (ADS)

    Lafferty, Walter J.; Solodov, Alexander M.; Lugez, Catherine L.; Fraser, Gerald T.

    1998-04-01

    We measured at 296 K the rotational line strengths and pressure-broadening coefficients for the 1.27- m, a 1 g X 3 g , v 0 0 band of O 2 with a Fourier transform infrared spectrometer using an optical path length of 84 m, a spectral resolution of 0.01 cm 1 , and sample pressures between 13 and 104 kPa. The integrated band strength is 7.79(17) 10 6 m 2 Pa 1 7.89(17) 10 5 cm 2 atm 1 , and the Einstein A coefficient for spontaneous emission is 2.237(51) 10 4 s 1 , which corresponds to an upper-state 1 e lifetime of 1.24(3) h. The pressure-broadening coefficients decrease with increasing N and range from 19 to 38 MHz kPa (FWHM). The mean value for the transitions studied is 30.3(21) MHz kPa 0.1024(71) cm 1 atm (FWHM). The Einstein A coefficient determined here is in good agreement with the widely accepted value of 2.58 10 4 s 1 initially obtained by Badger et al . J. Chem. Phys. 43, 4345 (1965) more than 30 years ago. The standard uncertainties given above are one standard deviation.

  18. Erratum: ``The Pure Rotational Line Emission of Ortho-Water Vapor in Comets. I. Radiative Transfer Model'' (ApJ, 615, 531 [2004])

    NASA Astrophysics Data System (ADS)

    Bensch, F.; Bergin, E. A.

    2007-04-01

    transitions, as detailed below. For a given (measured) line intensity, the corrected model gives a water production rate that is larger than quoted in the original paper. Corrected versions of Figures 5 to 9 and Tables 4, 5, and 6 are given here, and the implications for the relevant sections in the paper are discussed (§ 4, Model for the SWAS Observations of C/1999 T1 McNaught-Hartley § 5, Line Predictions for Future Observatories; § 7, Summary). Along with the model results, we correct a typo in Table 4 (Q29=QH2O/1029 s-1 for models M3 and M5 is 0.01). For the SWAS observations of comet C/1999 T1 (McNaught-Hartley) made on 2001 February 2, the corrected model gives a water production rate of QH2O=(5.72+/-0.85)×1028 s-1 for xne=1.0 and QH2O=(7.36+/-1.15)×1028 s-1 for xne=0.2, where xne is the scaling factor for the electron abundance (see § 2.4 of the original paper). For the average of the data observed between 2001 March 1 and 8, the corrected water production rate is QH2O=(1.69+/-0.45)×1028 s-1 (xne=1.0) and QH2O=(1.99+/-0.55)×1028 s-1 (xne=0.2), respectively. This is larger by 10%-57% than the results quoted in the original paper, but is still within 20%-40% of the water-production rates published in F. Bensch et al. ApJ, 615, 531 [2004], where the model by D. Bockelée-Morvan (ApJ, 615, 531 [2004]) is used. The difference of 20%-40% is of the order of the model accuracy due to the uncertainties in the electron abundance (compare the results for xne=1.0 and xne=0.2). However, this residual discrepancy possibly reflects the different numerical codes used to calculate the line excitation and radiation transfer, an accelerated Monte Carlo in ratran vs. an escape probability formalism in the model by D. Bockelée-Morvan (ApJ, 615, 531 [2004]). The low ratio of the expansion velocity over the local line-width, of a factor of 3, is close to the limit where an escape probability formalism can be applied. Systematic differences are therefore expected for the water-rotational

  19. Far-infrared rotational emission by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.

    1981-01-01

    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward.

  20. The Development and Clinical Use of a Beam ON-LINE PET System Mounted on a Rotating Gantry Port in Proton Therapy

    SciTech Connect

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-15

    Purpose: To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). Methods and Materials: In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. Results: The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. Conclusions: The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  1. Rotation and vibration-rotation spectrum of FeH

    SciTech Connect

    Phillips, J.G.; Davis, S.P.

    1988-02-01

    The far-IR rotation and fundamental vibration-rotation spectra of the FeH molecule's 4Delta-4Delta system are calculated. The vibration-rotation band is in the middle of a band in the water spectrum, so that it will have to be searched for from outer space. In the case of the rotation spectrum, the feature to look for is the rotation line at 1411 GHz, which is produced by the transition between the two lowest rotational levels of the lowest (7/2) subband. This feature can be looked for from the ground. 14 references.

  2. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-04-01

    Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

  3. ROTATING GLOBULAR CLUSTERS

    SciTech Connect

    Bianchini, P.; Varri, A. L.; Bertin, G.; Zocchi, A.

    2013-07-20

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  4. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  5. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  6. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  7. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings. PMID:27638070

  8. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  9. Far-infrared rotational emission by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.

    1982-01-01

    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines for an H2 molecule content of at least 10,000/cu cm, temperature in the range 100-3000 K, and J not more than 60 under the assumption that the lines are optically thin. An approximate analytic expression for the emissivities which is valid in this region is obtained. Population inversions in the lower rotational levels occur for densities of molecular H2 around 1000-100,000/cu cm and temperatures T not more than about 50 K provided photon trapping is unimportant. Interstellar shocks observed edge-on are a potential source of weak millimeter-wave CO maser emission.

  10. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  11. Measurements @ Sub-Mm Spectroscopy Laboratory of Bologna: Rotational Spectroscopy Applied to Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina

    2016-06-01

    The physico-chemistry of the Earth's atmosphere has been one of the main subjects of studies over last years. In particular, the composition of the atmosphere is indeed very important to understand chemical processes linked to depletion of stratospheric ozone and greenhouse effect. The vertical concentration profiles of atmospheric gases can be provided by remote sensing measurements, but they require the accurate knowledge of the parameters involved: line positions, transition intensities, pressure-broadened half-widths, pressure-induced frequency shifts and their temperature dependence. In particular, the collisional broadening parameters have a crucial influence on the accuracy of spectra calculations and on reduction of remote sensing data. Rotational spectroscopy, thanks to its intrinsic high resolution, is a powerful tool for providing most of the information mentioned above: accurate or even very accurate rotational transition frequencies, accurate spectroscopic as well as hyperfine parameters, accurate pressure-broadening coefficients and their temperature dependence. With respect to collisional phenomena and line shape analysis studies, by applying the source frequency modulation technique it has been found that rotational spectroscopy may provide very good results: not only this technique does not produce uncontrollable instrumental distortions or broadenings, but also, having an high sensitivity, it is particularly suitable for this kind of investigations. A number of examples will be presented to illustrate the work carried out at the Laboratory of Millimeter/submillimeter-wave Spectroscopy of Bologna in the field of atmospheric studies.

  12. CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf

    NASA Astrophysics Data System (ADS)

    Wende, S.; Reiners, A.; Seifahrt, A.; Bernath, P. F.

    2010-11-01

    Molecular FeH provides a large number of sharp and isolated absorption lines that can be used to measure radial velocity, rotation, or magnetic field strength with high accuracy. Our aim is to provide an FeH atlas for M-type stars in the spectral region from 986 nm to 1077 nm (Wing-Ford band). To identify these lines in CRIRES spectra of the magnetically inactive, slowly rotating, M5.5 dwarf GJ1002, we calculated model spectra for the selected spectral region with theoretical FeH line data. In general this line list agrees with the observed data, but several individual lines differ significantly in position or in line strength. After identification of as many as possible FeH lines, we corrected the line data for position and line strength to provide an accurate atlas of FeH absorption lines for use in high precision spectroscopy of low mass stars. For all lines, we used a Voigt function to obtain their positions and equivalent widths. Identification with theoretical lines was done by hand. For confirmation of the identified lines, we used statistical methods, cross-correlation techniques, and line intensities. Eventually, we were able to identify FeH lines from the (0,0), (1,0), (1,1), (2,1), (2,2), (3,2), and (4,3) vibrational bands in the observed spectra and correct the positions of the lines if necessary. The deviations between theoretical and observed positions follow a normal distribution approximately around zero. In order to empirically correct the line strength, we determined Teff, instrumental broadening (rotational broadening) and a van der Waals enhancement factor for the FeH lines in GJ1002. We also give the scaling factors for the Einstein A values to correct the line strengths. With the identified lines, we derived rotational temperatures from the line intensities for GJ1002. We conclude that FeH lines can be used for a wide variety of applications in astrophysics. With the identified lines it will be possible for example to characterize magnetically

  13. On the possibility of analytical approximation of line forms during random disorders of the resonance frequencies in molecular vibration-rotation spectra for satellite sounding

    NASA Technical Reports Server (NTRS)

    Fomin, V. V.

    1979-01-01

    The generalization spectral line contour concept and formulas for a two component mixture, as well as consequences of the general formula are discussed. The calculation procedure, initial information, calculation results and comparison of calculations with available experimental data, for radiation absorption in three CO2 bands are presented.

  14. Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Yao, Lieming; Zhu, Jianhua; Han, Xiaoyu; Li, Wenzhu

    2012-11-01

    This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A tokamak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutral beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n = 8~7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m · s-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.

  15. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  16. Torsion-rotation intensities in methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John

    Methanol exists in numerous kinds of astronomical objects featuring a wide range of local conditions. The light nature of the molecule coupled with the internal rotation of the methyl group with respect to the hydroxyl group results in a rich, strong spectrum that spans the entire far-infrared region. As a result, any modest size observational window will have a number of strong methanol transitions. This has made it the gas of choice for testing THz receivers and to extract the local physical conditions from observations covering small frequency windows. The latter has caused methanol to be dubbed the Swiss army knife of astrophysics. Methanol has been increasingly used in this capacity and will be used even more for subsequent investigations into the Herschel archive, and with SOFIA and ALMA. Interpreting physical conditions on the basis of a few methanol lines requires that the molecular data, line positions, intensities, and collision rates, be complete, consistent and accurate to a much higher level than previously required for astrophysics. The need for highly reliable data is even more critical for modeling the two classes of widespread maser action and many examples of optical pumping through the torsional bands. Observation of the torsional bands in the infrared will be a unique opportunity to directly connect JWST observations with those of Herschel, SOFIA, and ALMA. The theory for the intensities of torsion-rotation transitions in a molecule featuring a single internally rotating methyl group is well developed after 70 years of research. However, other than a recent very preliminary and not completely satisfactory investigation of a few CH3OH torsional bands, this theory has never been experimentally tested for any C3V internal rotor. More alarming is a set of recent intensity calibrated microwave measurements that showed deviations relative to calculations of up to 50% in some ground state rotational transitions commonly used by astronomers to extract

  17. Rotational level-dependent collisional broadening and line shift of the A2Sigma(+)-X2Pi (1,0) band of OH in hydrogen-air combustion gases

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Allen, M. G.; Davis, S. J.

    1993-01-01

    Measurements of the collisional broadening and line shift of the (1,0) band of the A2Sigma(+)-X2Pi system of OH are reported in atmospheric pressure hydrogen-air combustion gases. The measurements were made using a single-mode, narrow linewidth, frequency-doubled ring dye laser operating near 283 nm. The OH was generated in the combustion gases of a flat flame H2-air burner. Collisional broadening parameters for equilibrium mixtures of H2, O2, H2O, and N2 were obtained spanning a range of fuel/air equivalence ratios from 0.6 to 1.6 and temperatures from 1500 to 2050 K. Measurements were obtained spanning rotational quantum numbers from 4.5 to 16.5. The collision induced frequency shift was determined to be 0.1 that of the collisional broadening.

  18. Einstein coefficients for rotational lines of the (0,0) band of the NO A2sigma(+)-X2Pi system

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Carter, Campbell D.; Laurendeau, Normand M.

    1992-01-01

    A summary of the spectroscopic equations necessary for prediction of the molecular transition energies and the Einstein A and B coefficients for rovibronic lines of the gamma(0,0) band of nitric oxide (NO) is presented. The calculated molecular transition energies are all within 0.57/cm of published experimental values; in addition, over 95 percent of the calculated energies give agreement with measured results within 0.25/cm. Einstein coefficients are calculated from the band A00 value and the known Hoenl-London factors and are tabulated for individual rovibronic transitions in the NO A2sigma(+)-X2Pi(0,0) band.

  19. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  20. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  1. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  2. Rotational jumps of the tyrosine side chain in crystalline enkephalin. /sup 2/H NMR line shapes for aromatic ring motion in solids

    SciTech Connect

    Rice, D.N.; Wittebort, R.J.; Griffin, R.G.; Meirovitch, E.; Stimson, E.R.; Meinwald, Y.C.; Freed, J.H.; Scheraga, H.A.

    1981-12-30

    Deuterium NMR spectra of polycrystalline (tyrosine-3,5-/sup 2/H/sub 2/)(Leu/sup 5/)enkephalin show that the aromatic tyrosyl ring of this pentapeptide is executing 180/sup 0/ flips about the C/sup ..beta../-C/sup ..gamma../ axis in the solid state. Specifically, the axially symmetric powder pattern observed at low temperature collapses to an axially asymmetric pattern with eta approx. = 0.6 at high temperature. Computer simulation of the NMR line shapes, which account for spectral distortions induced by the quadrupole echo technique, indicate that at room temperature the flipping rate is approximately 5 x 10/sup 4/ s/sup -1/ and that it increases to about 10/sup 6/ s/sup -1/ at 101 /sup 0/C.

  3. Modeling rigid magnetically rotated microswimmers: Rotation axes, bistability, and controllability

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Fu, Henry Chien

    2014-12-01

    Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.

  4. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  5. Relativity on Rotated Graph Paper

    NASA Astrophysics Data System (ADS)

    Salgado, Roberto

    2011-11-01

    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called light-clock diamonds) represent ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra.

  6. The Rotational Spectrum of CHF 3 in the Submillimeter-Wave and Far-Infrared Region: Observation of the K = 3 Line Splitting

    NASA Astrophysics Data System (ADS)

    Cazzoli, G.; Cludi, L.; Cotti, G.; Dore, L.; Esposti, C. D.; Bellini, M.; Denatale, P.

    1994-02-01

    The milimeter-wave, submillimeter-wave. and FIR spectra of the ground state of CHF 3 have been observed and analyzed up to J = 78. The resulting spectroscopic constants are: B0/MHz = 10 348.8706(2), D J/kHz= 11.34482(13), D JK/kHz = -18.11765(50), H JJJ/Hz= 0.020069(24), H JJK/Hz = -0.08598(10), H KKJ/Hz 0.11372(27), L J/mHz = -0.669(16) × 10 -4, L JJK/mHz = 0.4953(80) × 10 -3, L JK/mHz = -0.1189(17) × 10 -2, and L JKK/mHz = -0.1115(31) × 10 -2. The splitting of the K = 3 ground state lines has been observed starting from the J = 29 ← 28 transition and the determined values of the splitting constants are h3/Hz = 0.29689(45) ×10 -2 and δ h3/Hz = -0.2054(52) × 10 -7.

  7. Quantum Calculation of Inelastic CO Collisions with H. II. Pure Rotational Quenching of High Rotational Levels

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Song, L.; Yang, B. H.; Groenenboom, G. C.; van der Avoird, A.; Balakrishnan, N.; Forrey, R. C.; Stancil, P. C.

    2015-09-01

    Carbon monoxide is a simple molecule present in many astrophysical environments, and collisional excitation rate coefficients due to the dominant collision partners are necessary to accurately predict spectral line intensities and extract astrophysical parameters. We report new quantum scattering calculations for rotational deexcitation transitions of CO induced by H using the three-dimensional potential energy surface (PES) of Song et al. State-to-state cross sections for collision energies from 10-5 to 15,000 cm-1 and rate coefficients for temperatures ranging from 1 to 3000 K are obtained for CO (v = 0, j) deexcitation from j=1-45 to all lower j‧ levels, where j is the rotational quantum number. Close-coupling and coupled-states calculations were performed in full-dimension for j=1-5, 10, 15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate rate coefficients for all other intermediate rotational states. The current rate coefficients are compared with previous scattering results using earlier PESs. Astrophysical applications of the current results are briefly discussed.

  8. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  9. The effects of local rotation on roll vection induced by globally rotating visual inducer

    PubMed Central

    Nakamura, Shinji

    2015-01-01

    A visual stimulus rotating globally along an observer's line of sight can induce the illusory perception of self-rotation in the opposite direction (roll vection). Psychophysical experiments were conducted to examine the effects of local rotations of visual elements of the stimulus that were manipulated independently of the global rotation. The results indicated that the addition of local rotations inconsistent with the global rotation (assumed to be the primary inducer of roll vection), generally decreased the strength of perceived self-rotation. The uniformity of orientation of the elements composing the global visual pattern and the visual polarities assigned to each visual element, i.e., intrinsic directionality concerning up and down, were observed to function as modulators of the effects of the local rotation. These results suggested that local motion signals arising from independent rotations assigned to each element of a visual object cannot be ignored in the perceptual mechanism underlying roll vection. PMID:26074848

  10. The effects of local rotation on roll vection induced by globally rotating visual inducer.

    PubMed

    Nakamura, Shinji

    2015-01-01

    A visual stimulus rotating globally along an observer's line of sight can induce the illusory perception of self-rotation in the opposite direction (roll vection). Psychophysical experiments were conducted to examine the effects of local rotations of visual elements of the stimulus that were manipulated independently of the global rotation. The results indicated that the addition of local rotations inconsistent with the global rotation (assumed to be the primary inducer of roll vection), generally decreased the strength of perceived self-rotation. The uniformity of orientation of the elements composing the global visual pattern and the visual polarities assigned to each visual element, i.e., intrinsic directionality concerning up and down, were observed to function as modulators of the effects of the local rotation. These results suggested that local motion signals arising from independent rotations assigned to each element of a visual object cannot be ignored in the perceptual mechanism underlying roll vection.

  11. Estimating extragalactic Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.

    2015-03-01

    Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly

  12. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  13. Fine structure in proton radioactivity: An accurate tool to ascertain the breaking of axial symmetry in {sup 145}Tm

    SciTech Connect

    Arumugam, P.; Ferreira, L. S.; Maglione, E.

    2008-10-15

    With a proper formalism for proton emission from triaxially deformed nuclei, we perform exact calculations of decay widths for the decays to ground and first excited 2{sup +} states in the daughter nucleus. Our results for rotational spectrum, decay width and fine structure in the case of the nucleus {sup 145}Tm lead for the first time to an accurate identification of triaxial deformation using proton emission. This work also puts in evidence the advantage of proton emission over the conventional probes to study nuclear structure at the proton drip-line.

  14. Space station rotational equations of motion

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Carroll, S. N.

    1985-01-01

    Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.

  15. Accurate Potential Energy Curves for the Ground Electronic States of NeH^{+} and ArH^{+}

    NASA Astrophysics Data System (ADS)

    Coxon, John A.; Hajigeorgiou, Photos G.

    2013-06-01

    All available microwave and infrared spectroscopic line positions for the ground electronic states of the molecular cations NeH^{+} and ArH^{+} were employed in a direct potential fitting procedure to determine compact analytical potential curves and radial functions describing breakdown of the Born-Oppenheimer approximation. For NeH^{+}, 17 adjustable parameters were required to represent a total of 183 line positions for 4 isotopologues, whereas for ArH^{+}, 23 adjustable parameters were required to represent 440 line positions for 6 isotopologues. The MLR3 potential energy functional form was employed, taking full account of the proper 1/r{^4} limiting long-range dependence of the ion-atom dispersion energy interactions. Accurate vibrational energies, rotational constants and centrifugal distortion constants have been calculated for both diatomic cations.

  16. A room temperature CO2 line list with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergey A.; Perevalov, Valery I.

    2016-07-01

    Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate ab initio dipole moment surface (DMS). The theoretical model developed is used to compute CO2 intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all 12C16O2 transitions below 8000cm-1 and stronger than 10-30 cm/molecule at T = 296 K.

  17. Current status of quantitative rotational spectroscopy for atmospheric research

    NASA Technical Reports Server (NTRS)

    Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois

    2004-01-01

    Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.

  18. A redetermination of the Uranus rotation period

    NASA Technical Reports Server (NTRS)

    Trauger, J. T.; Roesler, F. L.; Muench, G.

    1978-01-01

    The rotation velocity of Uranus has been measured by a comparison of spectroscopic profiles for the 5281.8 A Fraunhofer line reflected from Uranus and the moon. This method yields a rotation velocity which is insensitive to atmospheric seeing conditions. Our value for the equatorial velocity is 3.5 + or - 0.4 km/sec.

  19. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis.

    PubMed

    Berger, R A; Rubash, H E; Seel, M J; Thompson, W H; Crossett, L S

    1993-01-01

    The posterior condylar surfaces of the femur are routinely used as the reference for the rotational orientation of the femoral component during most primary total knee arthroplasties. The purpose of this investigation was to identify a clearly discernible, reproducible secondary anatomic axis useful for determining the rotational orientation of the femoral component when the posterior condylar surfaces cannot be used. Seventy-five embalmed anatomic specimen femurs were studied. A surgical epicondylar axis was defined as the line connecting the lateral epicondylar prominence and the medial sulcus of the medial epicondyle. The posterior condylar angle was measured as the angle between the posterior condylar surfaces and the surgical epicondylar axis. Measurement of the posterior condylar angle referenced from the surgical epicondylar axis yielded a mean posterior condylar angle of 3.5 degrees (+/- 1.2 degrees) of internal rotation for males and a mean posterior condylar angle of 0.3 degree (+/- 1.2 degrees) of internal rotation for females. Thus, rotational alignment of the femoral component can be accurately estimated using the posterior condylar angle. The posterior condylar angle, referenced from the surgical epicondylar axis, provides a visual rotational alignment check during primary arthroplasty and may improve alignment of the femoral component at revision.

  20. Theoretical rotation-vibration spectrum of thioformaldehyde

    SciTech Connect

    Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter

    2013-11-28

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H{sub 2}CS. It covers 41 809 rovibrational levels for states up to J{sub max} = 30 with vibrational band origins up to 5000 cm{sup −1} and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.

  1. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  2. Acoustic streaming flows and sample rotation control

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene

    1998-11-01

    Levitated drops in a gas can be driven into rotation by altering their surrounding convective environment. When these drops are placed in an acoustic resonant chamber, the symmetry characteristics of the steady streaming flows in the vicinity of the drops determine the rotational motion of the freely suspended fluid particles. Using ultrasonic standing waves around 22 kHz and millimeter-size electrostatically levitated drops, we have investigated the correlation between the convective flow characteristics and their rotational behavior. The results show that accurate control of the drop rotation axis and rate can be obtained by carefully modifying the symmetry characteristics of the chamber, and that the dominant mechanism for rotation drive is the drag exerted by the air flow over the drop surface. In addition, we found that the rotational acceleration depends on the drop viscosity, suggesting that this torque is initially strongly influenced by differential flows within the drop itself. [Work sponsored by NASA].

  3. Exomol: Molecular Line Lists for Exoplanet and Other Atmospheres

    NASA Astrophysics Data System (ADS)

    Tennyson, J.; Barber, R. J.; Azzam, A.; Down, M.; Hill, C.; Yurchenko, S. N.

    2011-06-01

    Spectral characterization of astrophysical objects cool enough to form molecules in their atmospheres (cool stars, extrosolar planets and planetary discs) requires considerable amount of fundamental molecular data. The existing molecular line lists (with some exceptions) are however not sufficiently accurate and complete. We present a new (five years) European Union project ExoMol aimed at bridging this gap: ExoMol will generate comprehensive line lists for all molecules likely to be observable in exoplanet atmospheres in the foreseeable future. This is a huge undertaking which will mean providing in excess of 1011 spectral lines for a large variety of molecular species. %Although the calculation of a rotation-vibration line list for molecules %with three atoms is becoming more routine, the issues involved in %calculating such lists for larger species are formidable. %This will also require developing new procedures, particularly to deal with %the larger molecules of interest which, up until now, have been considered %to be beyond the sort of detailed study anticipated here. The physics of molecular absorptions is complex and varies between different classes of absorbers. The project will therefore be divided into following topics (a) diatomic, (b) triatomics, (c) tetratomics, (d) methane and (e) larger molecules. Each of which will require special techniques will be required in each case. The majority of diatomic systems to be tackled are open shell species involving a transition metal atom; the opacity is provided by the transitions between the many low lying electronic states of the system. The calculation of rotation-vibration line lists for closed-shell triatomic systems is now relatively straightforward provided enough care is taken in deriving the potential energy surface. For H_2S calculations are in progress: the unusual properties of the dipole moment will also require careful treatment. Accurate rotation-vibration line lists for hot tetratomic molecules

  4. Stimulated rotational Raman scattering

    NASA Astrophysics Data System (ADS)

    Parazzoli, C. G.; Rafanelli, G. L.; Capps, D. M.; Drutman, C.

    1989-03-01

    The effect of Stimulated Rotational Raman Scattering (SRRS) processes on high energy laser directed energy weapon systems was studied. The program had 3 main objectives; achieving an accurate description of the physical processes involved in SRRS; developing a numerical algorithm to confidently evaluate SRRS-induced losses in the propagation of high energy laser beams in the uplink and downlink segments of the optical trains of various strategic defense system scenarios; and discovering possible methods to eliminate, or at least reduce, the deleterious effects of SRRS on the energy deposition on target. The following topics are discussed: the motivation for the accomplishments of the DOE program; the Semiclassical Theory of Non-Resonant SRRS for Diatomic Homonuclear Molecules; and then the following appendices; Calculation of the Dipole Transition Reduced Matrix Element, Guided Tour of Hughes SRRS Code, Running the Hughes SRRS Code, and Hughes SRRS Code Listing.

  5. Blast waves in rotating media.

    NASA Technical Reports Server (NTRS)

    Rossner, L. F.

    1972-01-01

    The model investigated involves a cylindrically symmetric blast wave generated by an infinitely long line explosion in a cold and homogeneous gas rotating rigidly in its self-gravitational field. It is found that within the context of rotation in a gravitational field a blast wave will not adopt the one-zone form familiar from similarity solutions but, rather, a two-zone form. The inner compression zone arises as a response to the presence of the restoring force, which drives a rarefaction wave into the outer compression zone.

  6. The Solar Twin Planet Search. IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars

    NASA Astrophysics Data System (ADS)

    dos Santos, Leonardo A.; Meléndez, Jorge; do Nascimento, José-Dias; Bedell, Megan; Ramírez, Iván; Bean, Jacob L.; Asplund, Martin; Spina, Lorenzo; Dreizler, Stefan; Alves-Brito, Alan; Casagrande, Luca

    2016-08-01

    Context. It is still unclear how common the Sun is when compared to other similar stars in regards to some of its physical properties, such as rotation. Considering that gyrochronology relations are widely used today to estimate ages of stars in the main sequence, and that the Sun is used to calibrate it, it is crucial to assess whether these procedures are acceptable. Aims: We analyze the rotational velocities, limited by the unknown rotation axis inclination angle, of an unprecedented large sample of solar twins to study the rotational evolution of Sun-like stars, and assess whether the Sun is a typical rotator. Methods: We used high-resolution (R = 115 000) spectra obtained with the HARPS spectrograph and the 3.6 m telescope at La Silla Observatory. The projected rotational velocities for 81 solar twins were estimated by line profile fitting with synthetic spectra. Macroturbulence velocities were inferred from a prescription that accurately reflects their dependence with effective temperature and luminosity of the stars. Results: Our sample of solar twins include some spectroscopic binaries with enhanced rotational velocities, and we do not find any nonspectroscopic binaries with unusually high rotation velocities. We verified that the Sun does not have a peculiar rotation, but the solar twins exhibit rotational velocities that depart from the Skumanich relation. Conclusions: The Sun is a regular rotator when compared to solar twins with a similar age. Additionally, we obtain a rotational braking law that better describes the stars in our sample (v ∝ t-0.6) in contrast to previous, often-used scalings. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 188.C-0265, 183.D-0729, 292.C-5004, 077.C-0364, 072.C-0488, 092.C-0721, 093.C-0409, 183.C-0972, 192.C-0852, 091.C-0936, 089.C-0732, 091.C-0034, 076.C-0155, 185.D-0056, 074.C-0364, 075.C-0332, 089.C-0415, 60.A-9036, 075.C-0202, 192

  7. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  8. Plasma rotation in the PDX tokamak

    SciTech Connect

    Brau, K.; Bitter, M.; Goldston, R.J.; Manos, D.; McGuire, K.; Suckewer, S.

    1983-06-01

    Toroidal and poloidal rotation has been measured in the Poloidal Divertor Experiment (PDX) tokamak in ohmic- and neutral-beam-heated plasmas in a variety of discharge conditions and in both circular and diverted configurations. Rotation velocities were deduced from Doppler shifts of magnetic dipole (M1) lines and lines of optically allowed transitions in the visible and uv regions, from K/sub ..cap alpha../ emission, and also from an array of magnetic pickup loops. Poloidal and toroidal rotation velocities in ohmically heated discharges were unusually less than 3 x 10/sup 5/ cm/sec. Near the plasma edge the toroidal-rotation velocity varies with poloidal angle both before and during neutral-beam injection. No systematic poloidal rotation was observed during neutral-beam injection centered about or displaced 10 cm from the horizontal midplane, which implies that the poloidal damping time tau/sub theta/ < 0.5 tau/sub ii/, consistent with theoretical estimates.

  9. Rotator Cuff Tears

    MedlinePlus

    ... doctors because of a rotator cuff problem. A torn rotator cuff will weaken your shoulder. This means ... or more of the rotator cuff tendons is torn, the tendon no longer fully attaches to the ...

  10. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  11. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65

  12. Exomol: Molecular Line Lists for Exoplanet and Other Atmospheres

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan

    2013-06-01

    Spectral characterization of astrophysical objects cool enough to form molecules in their atmospheres (cool stars, extrosolar planets and planetary discs) requires considerable amounts of fundamental molecular data. The existing molecular line lists (with some exceptions) are generally not sufficiently accurate and complete. The ExoMol project is actively generating comprehensive line lists for all molecules likely to be observable in exoplanet atmospheres in the foreseeable future. This is a huge undertaking which will mean providing in excess of 10^{11} spectral lines for a large variety of molecular species, see Tennyson and Yurchenko (Mon. Not. R. Astron. Soc., 425, 21 (2012)) The physics of molecular absorptions is complex and varies between different classes of absorbers. The project is therefore be divided into following topics (a) diatomic, (b) triatomics, (c) tetratomics, (d) methane and (e) larger molecules. Special techniques are being developed to treat each case. The majority of diatomic systems to be tackled are open shell species involving a transition metal atom; the opacity is provided by the transitions between the many low lying electronic states of the system. The calculation of rotation-vibration line lists for closed-shell triatomic systems is now relatively straightforward provided enough care is taken in deriving the potential energy and dipole surfaces. An H_2S line list is nearing completion and studies on C_3 have started. Accurate rotation-vibration line lists for hot tetratomic molecules such as ammonia (complete), phosphine (nearing completion), acetylene (initial study published), hydrogen peroxide (initial study complete), SO_3 (room temperature line list complete) and formaldehyde, test what is computationally possible at present. An inital line list for hot (1000 K) methane has been completed and is being improved. Work on systems larger than this is just commencing. Data from this project can be accessed at www.exomol.com.

  13. Line strengths and transition dipole moment of the nu2 fundamental band of the methyl radical.

    PubMed

    Stancu, G D; Röpcke, J; Davies, P B

    2005-01-01

    The line strengths of nine Q-branch lines in the nu(2) fundamental band of the methyl radical in its ground electronic state have been measured by diode laser absorption spectroscopy. The vibration-rotation spectrum of methyl was recorded in a microwave discharge in ditertiary butyl peroxide heavily diluted in argon. The absolute concentration of the radical was determined by measuring its kinetic decay when the discharge was extinguished. The translational, rotational, and vibrational temperatures, also required to relate the line strengths to the transition dipole moment, were determined from relative integrated line intensities and from the Doppler widths of the lines after allowing for instrumental factors. The line strengths of the nine Q-branch lines were used to derive a more accurate value of the transition dipole moment of this band, mu(2)=0.215(25) D. Improved accuracy over earlier measurements of mu(2) (derived from line strengths of single lines) was obtained by integrating over the complete line profile instead of measuring the peak absorption and assuming a Doppler linewidth to deduce the concentration. In addition, a more precise value for the rate constant for methyl radical recombination than available earlier was employed. The new value of mu(2) is in very good agreement with high-quality ab initio calculations. Furthermore, the ratio of the transition dipole moments of the nu(2) and nu(3) fundamental bands in the gas phase is now in highly satisfactory agreement with the ratio determined for the condensed phase.

  14. Insights from the rotational braking of solar twins: is the Sun a regular rotator?

    NASA Astrophysics Data System (ADS)

    Dos Santos, Leonardo Augusto; Melendez, Jorge

    2016-06-01

    Although the Sun is widely used as a reference star in astrophysics, it is still unclear how regular it is when compared to other similar stars in regards to some of its physical properties, such as its rotation. We analyze the rotational velocities (limited by the unknown rotation axis inclination angle) of an unprecedented sample of solar twins in order to study how common the Sun is in its rotation. We use high-resolution (R = 115000) spectra obtained with the HARPS spectrograph and ESO’s 3.6 m telescope at La Silla Observatory. The projected rotational velocities for 71 solar twins are estimated through line profile fitting using synthetic spectra. We take into account the macroturbulence velocities in a separate analysis, for they are known to be difficult to disentangle from rotation. Our sample of solar twins include some spectroscopic binaries with enhanced rotational velocities, and we do not find any non-spectroscopic binaries with unusually high rotation velocities. The Sun does not have a peculiar rotation, but the solar twins exhibit rotational velocities that depart from the tried and tested Skumanich’s law. We conclude that the Sun is a regular rotator when compared to solar twins with a similar age, and obtain a rotational braking law that better describes the stars in our sample when compared to previous, often-used scalings.

  15. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells.

    PubMed Central

    Lepock, J R; Cheng, K H; Campbell, S D; Kruuv, J

    1983-01-01

    The correlation time for rotational diffusion (tau R) of 2,2,6,6-tetramethyl-4-piperidone-N-oxide (TEMPONE) in Chinese hamster lung (V79) cells has been measured. For these cells in an isosmotic solution at 20 degrees C, tau R = 4.18 X 10(-11) s, approximately 3.6 times greater than tau R = 1.17 X 10(-11) s in water. The relationship between tau R and viscosity was investigated in a number of glycerol-water (0-50%) and sucrose-water (20-40%) solutions and a constant Stokes-Einstein volume of 44 A3 was found for TEMPONE in solutions of less than 20% glycerol and sucrose. This gives an average shear viscosity (for rotation of a small molecule) of 0.038 poise for the cytoplasm. When nonsecular terms were used in the calculation of tau R, the activation energies for rotation of TEMPONE in the above solutions correlated well with the activation energies for shear viscosity. The viscosity increases as the cell is shrunk in hypertonic solutions. It also increases with decreasing temperature with an activation energy of 3.7 kcal/mol, about the same as the activation energy for the viscosity of pure water. The rotational correlation times were carefully calculated considering inhomogeneous line broadening, non-Lorentzian line shapes, the need for accurate tensor values and nonsecular terms. PMID:6318842

  16. Ultrasound determination of rotator cuff tear repairability

    PubMed Central

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p < 0.0001) and a specificity of 67% (p < 0.0001). The strongest predictors of rotator cuff repairability were tear size (p < 0.001) and age (p = 0.004). Sonographic assessments of tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  17. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  18. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  19. Pressure broadening and line coupling in bending bands of CO2

    NASA Technical Reports Server (NTRS)

    Green, Sheldon

    1989-01-01

    The pressure broadening and line coupling cross sections in the Fano-Ben Reuven theory of line shapes are calculated for bending bands of CO2 in a bath of He atoms. Molecular collision dynamics are simplified by invoking the infinite order sudden (IOS) approximation for molecular rotational and vibrational angular momentum in a manner similar to but not identical with the method developed by Clary and shown to be accurate for CO2-He. Numerical values are obtained using a pairwise additive interaction potential developed by Clary. Predictions are in good accord with data for various infrared bands and pure rotational Raman spectra. It is found that all pressure broadening and state-to-state cross sections depend on only a few dynamical factors (generalized IOS cross sections) and are therefore closely interrelated. Results are used to assess models developed previously to analyze line shapes in this and similar systems.

  20. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  1. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  2. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  3. Accurate Stellar Parameters for Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani; Valenti, Jeff A.

    2015-01-01

    A large impedement to our understanding of planet formation is obtaining a clear picture of planet radii and densities. Although determining precise ratios between planet and stellar host are relatively easy, determining accurate stellar parameters is still a difficult and costly undertaking. High resolution spectral analysis has traditionally yielded precise values for some stellar parameters but stars in common between catalogs from different authors or analyzed using different techniques often show offsets far in excess of their uncertainties. Most analyses now use some external constraint, when available, to break observed degeneracies between surface gravity, effective temperature, and metallicity which can otherwise lead to correlated errors in results. However, these external constraints are impossible to obtain for all stars and can require more costly observations than the initial high resolution spectra. We demonstrate that these discrepencies can be mitigated by use of a larger line list that has carefully tuned atomic line data. We use an iterative modeling technique that does not require external constraints. We compare the surface gravity obtained with our spectral synthesis modeling to asteroseismically determined values for 42 Kepler stars. Our analysis agrees well with only a 0.048 dex offset and an rms scatter of 0.05 dex. Such accurate stellar gravities can reduce the primary source of uncertainty in radii by almost an order of magnitude over unconstrained spectral analysis.

  4. Central Rotations of Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  5. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    SciTech Connect

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.

  6. Rotation of tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2012-05-15

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  7. Shell model for warm rotating nuclei

    SciTech Connect

    Matsuo, M.; Yoshida, K.; Dossing, T.

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  8. Vibrational dependence of pressure induced spectral linewidths and line shifts - Application of the infinite order sudden scattering approximation

    NASA Technical Reports Server (NTRS)

    Green, S.

    1979-01-01

    The infinite order sudden (IOS) approximation to molecular rotation is applied to simplify the theory of linewidths and shifts in vibration-rotation spectra. This approximation is expected to be most accurate for hard, short-range collisions and is therefore complementary to Anderson theory which is best for weak, glancing collisions. The IOS approximation predicts identical linewidths and shifts for P- and R-branch transitions with the same line number. It also predicts zero line shifts for pure rotational spectra. The dependence of linewidths and shifts on vibrational band is seen to be due mainly to variation in diagonal vibrational matrix elements of the intermolecular potential. Calculations are performed for the 0-0, 0-1, and 0-2 bands of CO perturbed by He, using a theoretical interaction potential with no semiempirical or adjustable parameters; results are in satisfactory accord with experimental data.

  9. The fundamental quadrupole band of (N-14)2 - Line positions from high-resolution stratospheric solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Gunson, M. R.; Farmer, C. B.

    1991-01-01

    Accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen (N-14)2 are reported. Improved Dunham coefficients were derived from a simultaneous least squares analysis of these measurements and selected infrared and far infrared data. The new measurements were performed using stratospheric solar occultation spectra recorded with Fourier transform spectrometer instruments, operated at unapodized spectral resolutions of 0.002 and 0.01/cm.

  10. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  11. Rotator cuff problems

    MedlinePlus

    ... rotator cuff is a group of muscles and tendons that attach to the bones of the shoulder ... Rotator cuff tendinitis refers to irritation of these tendons and inflammation of the bursa (a normally smooth ...

  12. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  13. Analysis of the rotational spectrum of methylene (CH2) in its vibronic ground state with an Euler expansion of the Hamiltonian.

    PubMed

    Brünken, Sandra; Müller, Holger S P; Lewen, Frank; Giesen, Thomas F

    2005-10-22

    We present an analysis of a global, field-free data set of the methylene radical CH2 in its X 3B1 vibronic ground state by means of a novel Euler expansion of the Hamiltonian. The data set comprises pure rotational transitions up to 2 THz obtained with microwave accuracies of 30-500 kHz as well as nu2 ground-state combination differences and pure rotational data obtained with infrared accuracies of 0.001-0.010 cm(-1). Highly accurate spectroscopic parameters have been determined. These include rotational, spin-spin, spin-rotation, and electron-spin-nuclear-spin coupling terms along with several centrifugal distortion corrections. The spectroscopic model has been tested and improved by recording newly three weak DeltaN not equalDeltaJ fine-structure components of the N(KaKc)=2(12)-3(03) and 5(05)-4(14) transitions near 434, 454, and 581 GHz. These lines were rather close to the predictions. Overall weighted root mean squares of 1.28 and 0.83 were achieved for fits in which the Euler expansion was used only for the rotational part of the Hamiltonian or for the rotational and spin-spin terms of the Hamiltonian, respectively. The resulting spectroscopic parameters allow for precise frequency predictions of astrophysically important rotational transitions of methylene.

  14. Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Di Teodoro, E. M.; Fraternali, F.; Miller, S. H.

    2016-10-01

    The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z ~ 1, observed in the Hα emission line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3DBarolo, which models the galaxy emission directly in 3D observational space, without the need to extract kinematic maps. This major advantage of this technique is that it is not affected by beam smearing and thus it enables the determination of rotation velocity and intrinsic velocity dispersion, even at low spatial resolution. We find that (1) the rotation curves of these z ~ 1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and (2) the Hα velocity dispersions are low, ranging from 15 to 40 km s-1, which leads to V/σ = 3-10. These characteristics are similar to those of disc galaxies in the local Universe. Finally, we also report no significant evolution of the stellar-mass Tully-Fisher relation. Our results show that disc galaxies are kinematically mature and rotation-dominated at z ~ 1 already. The reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A77

  15. Shell model for warm rotating nuclei

    NASA Astrophysics Data System (ADS)

    Matsuo, M.; Døssing, T.; Vigezzi, E.; Broglia, R. A.; Yoshida, K.

    1997-04-01

    In order to provide a microscopic description of levels and E2 transitions in rapidly rotating nuclei with internal excitation energy up to a few MeV, use is made of a shell model which combines the cranked Nilsson mean-field and the residual surface delta two-body force. The damping of collective rotational motion is investigated in the case of a typical rare-earth nucleus, namely 168Yb. It is found that rotational damping sets in at around 0.8 MeV above the yrast line, and the number of levels which form rotational band structures is thus limited. We predict at a given rotational frequency the existence of about 30 rotational bands of various lengths, in overall agreement with the experimental findings. The onset of the rotational damping proceeds quite gradually as a function of the internal excitation energy. The transition region extends up to around 2 MeV above yrast and it is characterized by the presence of scars of discrete rotational bands which extend over few spin values and stand out among the damped transitions, and by a two-component profile in the Eγ- Eγ correlation. The important role played by the high-multipole components of the two-body residual interaction is emphasized.

  16. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  17. Rotator cuff and subacromial pathology.

    PubMed

    Yablon, Corrie M; Jacobson, Jon A

    2015-07-01

    Both MRI and ultrasound (US) demonstrate equivalent accuracy in the evaluation of the rotator cuff. Both modalities have their advantages, disadvantages, and pitfalls. Radiography is an important complementary modality in that it can demonstrate occult sources of shoulder pain. MRI is recommended for the evaluation of shoulder pain in patients < 40 years of age because labral pathology is frequently identified. However, in patients > 40 years, US should be the first-line modality because the incidence of rotator cuff pathology increases with age. US is useful to guide procedures such as subacromial injection and calcific tendinosis lavage. Radiologists should be knowledgeable of both MRI and US of the shoulder to tailor these examinations to the specific needs of their patients.

  18. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  19. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  20. Quantum unidirectional rotation directly imaged with molecules

    PubMed Central

    Mizuse, Kenta; Kitano, Kenta; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2015-01-01

    A gas-phase molecular ensemble coherently excited to have an oriented rotational angular momentum has recently emerged as an appropriate microscopic system to illustrate quantum mechanical behavior directly linked to classical rotational motion, which has a definite direction. To realize an intuitive visualization of such a unidirectional molecular rotation, we report high-resolution direct imaging of direction-controlled rotational wave packets in nitrogen molecules. The rotational direction was regulated by a pair of time-delayed, polarization-skewed laser pulses, introducing the dynamic chirality to the system. The subsequent spatiotemporal propagation was tracked by a newly developed Coulomb explosion imaging setup. From the observed molecular movie, time-dependent detailed nodal structures, instantaneous alignment, angular dispersion, and fractional revivals of the wave packet are fully characterized while the ensemble keeps rotating in one direction. The present approach, providing an accurate view on unidirectional rotation in quantum regime, will guide more sophisticated molecular manipulations by utilizing its capability in capturing highly structured spatiotemporal evolution of molecular wave packets. PMID:26601205

  1. Quantitative rotating frame relaxometry methods in MRI.

    PubMed

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  3. Rotator Cuff Tear Shape Characterization

    PubMed Central

    Goodwin, David Steven; Kaplan, Daniel James; Fralinger, David; Gyftopoulos, Soterios; Meislin, Robert J.; Jazrawi, Laith M.

    2016-01-01

    Objectives: Proper surgical planning requires accurate and reliable pre-operative patient information. The more comprehensive the data, the more the surgeon can tailor a general surgical technique to an individual patient’s unique anatomy. A previous retrospective study demonstrated that three-dimensional magnetic resonance imaging more accurately characterized rotator cuff tears compared to two-dimensional images when checked against intra-operative pictures. The purpose of this study was to determine if three-dimensional MRI imaging would continue to be more accurate than two-dimensional imaging in a prospective study. Methods: Patients were prospectively included if they had a full-thickness primary rotator cuff tear on pre-operative MRI. Intra-op videos were taken from the posterior and lateral portals, with a grasper fully mobilizing the torn tendon in each view. 7 surgeons then reviewed the videos and independently characterized the shape of the tears into crescent, U-shaped tears, L-shaped tears, or massive tears. This was considered the gold-standard. Two musculoskeletal radiologists reviewed the corresponding MRI studies independently and blind to the arthroscopic findings and characterized the shape on the basis of the tear’s retraction and size 2D MRI. The 3D reconstructions of each cuff tear were reviewed by each radiologist to characterize the shape. Statistical analysis included 95% confidence intervals and fleiss’s kappa. Results: 37 patients were enrolled in the study. Among the 7 surgeons, agreement on cuff tear was 93% ( =.87). The accuracy for differentiating between crescent-shaped, longitudinal, and massive tears using measurements on 2D MRI was 73.4% for reader 1 and 71.2% for reader 2. The accuracy for tear shape characterization into crescent and longitudinal U- or L-shaped using 3D MRI was 92% for reader 1 and 94% for reader 2. When further characterizing the longitudinal tears as massive or not using 3D MRI, both readers had an

  4. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  5. Laboratory rotational ground state transitions of NH3D+ and CF+

    NASA Astrophysics Data System (ADS)

    Stoffels, A.; Kluge, L.; Schlemmer, S.; Brünken, S.

    2016-09-01

    Aims: This paper reports accurate laboratory frequencies of the rotational ground state transitions of two astronomically relevant molecular ions, NH3D+ and CF+. Methods: Spectra in the millimetre-wave band were recorded by the method of rotational state-selective attachment of He atoms to the molecular ions stored and cooled in a cryogenic ion trap held at 4 K. The lowest rotational transition in the A state (ortho state) of NH3D+ (JK = 10-00), and the two hyperfine components of the ground state transition of CF+ (J = 1-0) were measured with a relative precision better than 10-7. Results: For both target ions, the experimental transition frequencies agree with recent observations of the same lines in different astronomical environments. In the case of NH3D+ the high-accuracy laboratory measurements lend support to its tentative identification in the interstellar medium. For CF+ the experimentally determined hyperfine splitting confirms previous quantum-chemical calculations and the intrinsic spectroscopic nature of a double-peaked line profile observed in the J = 1-0 transition towards the Horsehead photon-dominated region (PDR).

  6. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  7. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  8. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  9. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  10. Global Rotation of Non-Rotating Origin

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2001-11-01

    At its 24th General Assembly held at Manchester last year, the IAU has adopted the Celestial Ephemeris Origin (CEO) as a new longitude origin of the celestial coordinate system (Capitaine et al. 2000, IAU 2001). The CEO is the application of Guinot's non-rotating origin (NRO) to the Earth's equator (Guinot 1979, Capitaine et al. 1986, Capitaine 1990). By using the current IAU precession/nutation theory, we integrated the global orbit of CEO. It is a slightly curved zigzag pattern of the amplitude of around 23o moving secularly along the ecliptic. Among its kinematical features, we note that CEO has a large secular component of rotation with respect to the inertial reference frame. The current speed of this global rotation is as large as around -4.15 ''/yr. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north celestial pole. Unfortunately this is a general property of NROs. On the other hand, such secular rotation does not exist for some geometrically-defined longitude origins like K, H, and Σ already discussed in Kovalevsky and McCarthy (1998). We think that the existence of a global secular rotaion means that the CEO, and NROs in general, is not appropriate to be specified as the x-axis of celestial coordinate systems.

  11. Structural tailoring of counter rotation propfans

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth W.; Hopkins, D. A.

    1989-01-01

    The STAT program was designed for the optimization of single rotation, tractor propfan designs. New propfan designs, however, generally consist of two counter rotating propfan rotors. STAT is constructed to contain two levels of analysis. An interior loop, consisting of accurate, efficient approximate analyses, is used to perform the primary propfan optimization. Once an optimum design has been obtained, a series of refined analyses are conducted. These analyses, while too computer time expensive for the optimization loop, are of sufficient accuracy to validate the optimized design. Should the design prove to be unacceptable, provisions are made for recalibration of the approximate analyses, for subsequent reoptimization.

  12. Isomerism of Cyanomethanimine: Accurate Structural, Energetic, and Spectroscopic Characterization.

    PubMed

    Puzzarini, Cristina

    2015-11-25

    The structures, relative stabilities, and rotational and vibrational parameters of the Z-C-, E-C-, and N-cyanomethanimine isomers have been evaluated using state-of-the-art quantum-chemical approaches. Equilibrium geometries have been calculated by means of a composite scheme based on coupled-cluster calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The latter approach is proved to provide molecular structures with an accuracy of 0.001-0.002 Å and 0.05-0.1° for bond lengths and angles, respectively. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled-cluster theory, including up to single, double, triple, and quadruple excitations, and corrected for core-electron correlation and anharmonic zero-point vibrational energy, have been used to accurately determine relative energies and the Z-E isomerization barrier with an accuracy of about 1 kJ/mol. Vibrational and rotational spectroscopic parameters have been investigated by means of hybrid schemes that allow us to obtain rotational constants accurate to about a few megahertz and vibrational frequencies with a mean absolute error of ∼1%. Where available, for all properties considered, a very good agreement with experimental data has been observed.

  13. The Supergranule Super-Rotation Illusion

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Williams, Peter; Cuntz, Manfred

    2006-01-01

    Peculiar aspects of the rotation rate of the supergranules have been noted for over 20 years now. This has culminated in recent reports suggesting that the supergranules have wave-like characteristics and propagate prograde at a rate that exceeds that of the plasma anywhere below the surface. We have simulated supergranules that rotate at a rate that is independent of position or size and find that they appear to rotate at a more rapid rate. This super-rotation of the supergranules is seen in both cross-correlation and Fourier analyses of the Doppler velocity pattern. The amplitude of the rotation excess as a function of-size matches that seen in the Fourier analyses of MDI data. The source of this rotation excess is identified with the effect of projecting velocity signals into the line-of-sight. We conclude that supergranules are merely advected by the flow in the near-surface shear layer and that their apparent super-rotation does not indicate wave-like properties.

  14. Rotating rigid motion in general relativity

    SciTech Connect

    Mason, D.P.; Pooe, C.A.

    1987-11-01

    Kinematic and dynamic expressions are derived for the Lie derivative of vorticity along a particle world line in a rigid motion. It is found that the evolution of vorticity in a rigid motion is governed by the electric part of the Weyl tensor. Necessary and sufficient kinematic and dynamic conditions are established for a rotating rigid motion to be isometric.

  15. Asteroid rotation rates

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Harris, A. W.; Murray, C. D.

    1984-01-01

    A trend of increasing mean rotational frequency with increasing diameter is noted in asteroids with diameters greater than 120 km, irrespective of M-, S-, and C-type asteroid subset and family or nonfamily membership. This trend cannot be accounted for by observational selection. For asteroids with diameters smaller than 120 km mean rotational frequency increases with decreasing diameter, but within this group there is a subset with exceptionally long rotational periods. This marked change in the distribution at 120-km diameter could separate primordial asteroids from their collision products. It is also noted that, for asteroids of a given diameter, M asteroids rotate faster than S asteroids, which in turn rotate faster than C asteroids. For all types, family members rotate faster than nonfamily members.

  16. Mental Rotation of Dynamic, Three-Dimensional Stimuli by 3-Month-Old Infants

    ERIC Educational Resources Information Center

    Moore, David S.; Johnson, Scott P.

    2011-01-01

    Mental rotation involves transforming a mental image of an object so as to accurately predict how the object would look if it were rotated in space. This study examined mental rotation in male and female 3-month-olds, using the stimuli and paradigm developed by Moore and Johnson (2008). Infants were habituated to a video of a three-dimensional…

  17. H{sub 2}-He vibrational line-shape parameters: Measurement and semiclassical calculation

    SciTech Connect

    Forsman, J.W.; Bonamy, J.; Robert, D.; Berger, J.P.; Saint-Loup, R.; Berger, H.

    1995-10-01

    High-resolution inverse Raman spectroscopy has been used to obtain the line shifting and line broadening coefficients of H{sub 2} perturbed by He. Measurements have been made for the {ital Q}-branch transitions ({ital J}=0{r_arrow}5) in a density range of 10 to 20 amagat and from 296 to 995 K. Up to 795 K we have directly deduced from the experimental broadening coefficients the inelastic rotational state-to-state and vibrational dephasing rates. At higher temperatures, owing to the larger number of channels of relaxation which occur, the results have been analyzed using a scaling law. The line shift and broadening coefficients exhibit a square root and a linear dependence on temperature, respectively, and a significant {ital J} dependence. Semiclassical calculations based on an accurate {ital ab} {ital initio} potential lead to line-shape parameters consistent with experiment. They allow a clear understanding of their observed temperature dependence.

  18. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  19. Nuclear rotation in the continuum

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Nazarewicz, W.; Jaganathen, Y.; Michel, N.; Płoszajczak, M.

    2016-01-01

    Background: Atomic nuclei often exhibit collective rotational-like behavior in highly excited states, well above the particle emission threshold. What determines the existence of collective motion in the continuum region is not fully understood. Purpose: In this work, by studying the collective rotation of the positive-parity deformed configurations of the one-neutron halo nucleus 11Be, we assess different mechanisms that stabilize collective behavior beyond the limits of particle stability. Method: To solve a particle-plus-core problem, we employ a nonadiabatic coupled-channel formalism and the Berggren single-particle ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. We study the valence-neutron density in the intrinsic rotor frame to assess the validity of the adiabatic approach as the excitation energy increases. Results: We demonstrate that collective rotation of the ground band of 11Be is stabilized by (i) the fact that the ℓ =0 one-neutron decay channel is closed, and (ii) the angular momentum alignment, which increases the parentage of high-ℓ components at high spins; both effects act in concert to decrease decay widths of ground-state band members. This is not the case for higher-lying states of 11Be, where the ℓ =0 neutron-decay channel is open and often dominates. Conclusion: We demonstrate that long-lived collective states can exist at high excitation energy in weakly bound neutron drip-line nuclei such as 11Be.

  20. A HIGH-RESOLUTION ISOTOPIC STUDY OF THE ROTATIONAL SPECTRUM OF c-C{sub 3}H{sub 2}

    SciTech Connect

    Spezzano, S.; Thaddeus, P.; Gottlieb, C. A.; McCarthy, M. C.; Tamassia, F.; Thorwirth, S. E-mail: cgottlieb@cfa.harvard.edu

    2012-05-01

    The rotational spectra of the normal and seven isotopic species of cyclopropenylidene c-C{sub 3}H{sub 2} have been measured at high spectral resolution by Fourier transform microwave spectroscopy of a supersonic molecular beam between 10 and 43 GHz. Deuterium quadrupole coupling and carbon-13 spin-rotation hyperfine constants were determined in addition to the rotational constants. Quartic and sextic centrifugal distortion constants derived from 28 lines between 150 and 316 GHz of the doubly deuterated species c-C{sub 3}D{sub 2} allow the rotational spectrum to be calculated to 0.5 km s{sup -1} or better in equivalent radial velocity up to 500 GHz. Spectroscopic constants determined from four centimeter-wave and 19 millimeter-wave lines of the normal species c-C{sub 3}H{sub 2}, including 15 with sharp Lamb-dips, allow prediction of the most important astronomical transitions (i.e., those with {Delta}J = 1 and K{sub a} {<=} 3) to 0.05 km s{sup -1} or better at 500 GHz. The doubly deuterated species is a good candidate for detection in cold dark clouds, because deuterium fractionation is high in c-C{sub 3}H{sub 2} and lines of C{sub 3}HD are fairly intense in these sources. An accurate empirical equilibrium structure of c-C{sub 3}H{sub 2}, derived from the experimental rotational constants of normal and isotopic c-C{sub 3}H{sub 2}, corrected for zero-point vibrational effects, is compared with previously reported structures.

  1. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  2. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  3. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  4. Emission Line Variability In The HgMn Star 11 Per

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn Michael; Bohlender, D.; Melendez, M.

    2012-01-01

    High spectral resolution observations of the HgMn star 11 Per (HD 16727, B7p) have revealed temporal variability in weak emission lines of Mn II. The observations were obtained on three epochs (JD 2455549.728, 2455555.800, 2455560.693) with the CFHT ESPaDOnS instrument during December 2010, and were complemented with an earlier epoch (JD 2452514.623) NOT SOFIN observation and a spectrum obtained with the CFHT Gecko instrument (JD 2451420.641, presented in Wahlgren & Hubrig 2000, A&A 362, L13). Lines of Mn II multiplet 13 (6120 - 6135 A) are observed in emission at each epoch, but their observed intensities are not in relative proportion to their respective gf-values. The intrinsically strongest line, the J(lower) = 4 to J(upper) = 5 transition at 6122.434A is observed to be a simple emission line on JD 5549 and JD 5560, while on JD 5555 and the two earliest epochs its appearance is that of a P Cyg profile with absorption component on the red side of the line profile. The similar appearance of Mn II multiplet 11 on JD 5549 and JD 5555, along with the similar appearing spectra at the three other epochs suggest that the variability may be rotationally modulated. For main sequence stars of spectral type B5 to B9, the stellar radius ranges from 7 to 2.5 solar radii, respectively, which along with an upper limit of the rotational velocity (v = vsin(i) = 5 km/s, Wahlgren & Hubrig) leads to the determination of a range in the rotation period of approximately 70 to 25 days. This range is greater than the difference between epochs JD 5549 and JD 5560, where the Mn II lines appear roughly similar. Future high resolution spectral observations obtained at a higher cadence are needed to enable a more accurate determination of the rotation period.

  5. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  6. ExoMol molecular line lists - X. The spectrum of sodium hydride

    NASA Astrophysics Data System (ADS)

    Rivlin, Tom; Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan; Le Roy, Robert J.

    2015-07-01

    Accurate and complete rotational, rotational-vibrational and rotational-vibrational-electronic line lists are calculated for sodium hydride: both the NaH and NaD isotopologues are considered. These line lists cover all ro-vibrational states of the ground (X 1Σ+) and first excited (A 1Σ+) electronic states. The calculations use available spectroscopically-determined potential energy curves and new high-quality, ab initio dipole moment curves. Partition functions for both isotopologues are calculated and the effect of quasi-bound states is considered. The resulting line lists are suitable for temperatures up to about 7000 K and are designed for studies of exoplanet atmospheres, brown dwarfs and cool stars. In particular, the NaH A - X band is found to show a broad absorption feature at about 385 nm which should provide a signature for the molecule. All partition functions, lines and transitions are available as supplementary information to this article and at www.exomol.com.

  7. ExoMol molecular line lists - XI. The spectrum of nitric acid

    NASA Astrophysics Data System (ADS)

    Pavlyuchko, A. I.; Yurchenko, S. N.; Tennyson, Jonathan

    2015-09-01

    Nitric acid is a possible biomarker in the atmospheres of exoplanets. An accurate line list of rotational and rotational-vibrational transitions is computed for nitric acid (HNO3). This line list covers wavelengths longer than 1.42 μm (0-7000 cm-1) and temperatures up to 500 K. The line list is computed using a hybrid variational - perturbation theory and empirically tuned potential energy and dipole surfaces. It comprises almost seven billion transitions involving rotations up to J = 100. Comparisons with spectra from the HITRAN and Pacific Northwest National Laboratory data bases demonstrate the accuracy of our calculations. Synthetic spectra of water-nitric acid mixtures suggest that nitric acid has features at 7.5 and 11.25 μm that are capable of providing a clear signature for HNO3; the feature at 11.25 μm is particularly promising. Partition functions plus full line lists of transitions are made available in an electronic form as supplementary data to the article and at www.exomol.com.

  8. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  9. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  10. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  11. The Weighted Oblimin Rotation.

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano

    2000-01-01

    Demonstrates that the weighting procedure proposed by E. Cureton and S. Mulaik (1975) can be applied to the Direct Oblimin approach of D. Clarkson and R. Jennrich (1988) to provide good results. The rotation method obtained is called Weighted Oblimin. Compared this method to other rotation methods with favorable results. (SLD)

  12. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  13. Serious rotator cuff injuries.

    PubMed

    Jobe, F W

    1983-07-01

    Usually, serious rotator cuff injuries can be operated upon and a high level of performance can be achieved afer surgery. This is not so for the substantial tears seen in baseball pitchers. However, a damaged rotator cuff can be rehabilitated and can recover from the threatened tear without surgery if detected early enough and given the proper treatment.

  14. A robust method for rotation estimation using spherical harmonics representation.

    PubMed

    Althloothi, Salah; Mahoor, Mohammad H; Voyles, Richard M

    2013-06-01

    This paper presents a robust method for 3D object rotation estimation using spherical harmonics representation and the unit quaternion vector. The proposed method provides a closed-form solution for rotation estimation without recurrence relations or searching for point correspondences between two objects. The rotation estimation problem is casted as a minimization problem, which finds the optimum rotation angles between two objects of interest in the frequency domain. The optimum rotation angles are obtained by calculating the unit quaternion vector from a symmetric matrix, which is constructed from the two sets of spherical harmonics coefficients using eigendecomposition technique. Our experimental results on hundreds of 3D objects show that our proposed method is very accurate in rotation estimation, robust to noisy data, missing surface points, and can handle intra-class variability between 3D objects. PMID:23475364

  15. The rotation of the Sun's core.

    NASA Astrophysics Data System (ADS)

    Paterno, L.; Sofia, S.; di Mauro, M. P.

    1996-10-01

    The rotation of the Sun's core, below 0.3Rsun_, is inferred from two independent new results. The first is based on the recent oblateness measurements carried out by the Solar Disk Sextant (SDS) instrument outside the Earth's atmosphere, and the second on the very accurate measurements of rotational splittings of the lowest degree acoustic modes, carried out in the framework of the helioseismic network IRIS. By using the theory of slowly rotating stars applied to a solar standard model, we deduce a set of rotational laws for the innermost layers, which are consistent with both the measured oblateness value and the results of the inversion of helioseismic data. The SDS and IRIS results indicate that the Sun's central regions rotate at a rate in between 1.5 and 2 times the surface equatorial angular velocity. As a result of our analysis, we deduce a quadrupole moment J_2_=2.22x10^-7^, which implies an advance of Mercury's perihelion of 42.98arcsec/c, in agreement with the theory of General Relativity and the measurements of Mercury's orbit by means of planetary radar ranging. However, very recent results obtained by the helioseismic network BISON indicate that core rotation is even slower than the polar surface rotation and therefore imply a completely different scenario than that proposed here. If we assume the intermediate solution of rigid body rotation, an alternate source of the oblateness may be attributed to a magnetic field of the order of 10^5^Gauss in the interior of the Sun.

  16. A computed room temperature line list for phosphine

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0-8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the rotational spectrum. An analysis of the comparison between the theoretical data created and the existing experimental data is performed, and suggestions for future improvements and assignments to the HITRAN database are made.

  17. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  18. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  19. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOEpatents

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  20. Collision Broadening Of Line Spectrum In Sonoluminescence

    SciTech Connect

    Li Chaohui; An Yu

    2008-06-24

    The direct measurement of temperature inside a sonoluminescing bubble as it is at its flashing phase is almost impossible due to the smallness of the bubble and the short duration of the flashing. One may estimate the temperature through fitting the continuum spectrum of sonoluminescence by the black body radiation formula, or fitting the shape of atomic or molecular line spectrum (the different temperature, density and pressure result in the different shape of the line spectrum due to the effect of collision broadening). However, the temperature changes in a huge range at short duration as the bubble flashes, therefore, the observed spectra are some kind of average one, so are those fitted results. To evaluate the instantaneous temperature more accurately, we simulate the processes of the bubble motion and the thermodynamics inside the bubble, in which atomic or molecular line spectra with the collision broadening effect and the continuum spectra contributed from the processes of electron-atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation and radiative attachment of electrons to atoms and molecules are taken into account in calculating the light emission. If both the calculated continuum spectra and the shape of line spectra can well represent the experimental data, we may deduce that the calculation of the temperature, density and pressure is reliable and we indirectly evaluate those quantities inside the bubble. In the present calculation, the line spectra of OH radical at about 310 nm mixing the electron transition with the vibration and rotational bands are considered. The calculation qualitatively consists with the observation, and we expect that with the more precise bubble dynamics model instead of the uniform model employed in the present calculation we may improve the quantitative result.

  1. Accurate masses for dispersion-supported galaxies

    NASA Astrophysics Data System (ADS)

    Wolf, Joe; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj; Geha, Marla; Muñoz, Ricardo R.; Simon, Joshua D.; Avedo, Frank F.

    2010-08-01

    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analysing resolved line-of-sight velocity data for globular clusters, dwarf galaxies and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. We find M1/2 = 3 G-1< σ2los > r1/2 ~= 4 G-1< σ2los > Re, where < σ2los > is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of a mass of approximately 3 × 109 Msolar, assuming a Λ cold dark matter cosmology. The faintest MW dSphs seem to have formed in dark matter haloes that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity between them. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their dynamical I-band mass-to-light ratios ΥI1/2. The ΥI1/2 versus M1/2 relation for dispersion-supported galaxies follows a U shape, with a broad minimum near ΥI1/2 ~= 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ΥI1/2 ~= 3200 for ultra-faint dSphs and a more shallow rise to ΥI1/2 ~= 800 for galaxy cluster spheroids.

  2. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  3. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  4. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  5. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  6. Rotational Doppler effect in x-ray photoionization

    SciTech Connect

    Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2010-11-15

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  7. Ultra-compact photonic crystal based polarization rotator.

    PubMed

    Bayat, Khadijeh; Chaudhuri, Sujeet K; Safavi-Naeini, Safieddin

    2009-04-27

    An asymmetrically loaded photonic crystal based polarization rotator has been introduced, designed and simulated. The polarization rotator structure consists of a single defect line photonic crystal slab waveguide with asymmetrically etched upper layer. To continue the rotation from a given input polarization to the desired output polarization the upper layer is alternated on either side of the defect line, periodically. Coupled mode theory based on semi-vectorial modes and plane wave expansion methods are employed to design the polarization rotator structure around a particular frequency band of interest. The 3D-FDTD simulation results agree with the coupled mode analysis around the region of interest specified during the design. Complete polarization rotation is achieved over the propagation length of 12lambda. For this length, the coupling efficiency higher than 90% is achieved within the normalized frequency band of 0.258-0.262.

  8. The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere

    SciTech Connect

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Terradas, J.; Verth, G.

    2014-06-10

    Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvén wave.

  9. Vega is a rapidly rotating star.

    PubMed

    Peterson, D M; Hummel, C A; Pauls, T A; Armstrong, J T; Benson, J A; Gilbreath, G C; Hindsley, R B; Hutter, D J; Johnston, K J; Mozurkewich, D; Schmitt, H R

    2006-04-13

    Vega, the second brightest star in the northern hemisphere, serves as a primary spectral type standard. Although its spectrum is dominated by broad hydrogen lines, the narrower lines of the heavy elements suggested slow to moderate rotation, giving confidence that the ground-based calibration of its visible spectrum could be safely extrapolated into the ultraviolet and near-infrared (through atmosphere models), where it also serves as the primary photometric calibrator. But there have been problems: the star is too bright compared to its peers and it has unusually shaped absorption line profiles, leading some to suggest that it is a distorted, rapidly rotating star seen pole-on. Here we report optical interferometric observations that show that Vega has the asymmetric brightness distribution of the bright, slightly offset polar axis of a star rotating at 93 per cent of its breakup speed. In addition to explaining the unusual brightness and line shape peculiarities, this result leads to the prediction of an excess of near-infrared emission compared to the visible, in agreement with observations. The large temperature differences predicted across its surface call into question composition determinations, adding uncertainty to Vega's age and opening the possibility that its debris disk could be substantially older than previously thought. PMID:16612375

  10. An articulated statistical shape model for accurate hip joint segmentation.

    PubMed

    Kainmueller, Dagmar; Lamecker, Hans; Zachow, Stefan; Hege, Hans-Christian

    2009-01-01

    In this paper we propose a framework for fully automatic, robust and accurate segmentation of the human pelvis and proximal femur in CT data. We propose a composite statistical shape model of femur and pelvis with a flexible hip joint, for which we extend the common definition of statistical shape models as well as the common strategy for their adaptation. We do not analyze the joint flexibility statistically, but model it explicitly by rotational parameters describing the bent in a ball-and-socket joint. A leave-one-out evaluation on 50 CT volumes shows that image driven adaptation of our composite shape model robustly produces accurate segmentations of both proximal femur and pelvis. As a second contribution, we evaluate a fine grain multi-object segmentation method based on graph optimization. It relies on accurate initializations of femur and pelvis, which our composite shape model can generate. Simultaneous optimization of both femur and pelvis yields more accurate results than separate optimizations of each structure. Shape model adaptation and graph based optimization are embedded in a fully automatic framework. PMID:19964159

  11. What does physical rotation reveal about mental rotation?

    PubMed

    Gardony, Aaron L; Taylor, Holly A; Brunyé, Tad T

    2014-02-01

    In a classic psychological science experiment, Shepard and Metzler (1971) discovered that the time participants took to judge whether two rotated abstract block figures were identical increased monotonically with the figures' relative angular disparity. They posited that participants rotate mental images to achieve a match and that mental rotation recruits motor processes. This interpretation has become central in the literature, but until now, surprisingly few researchers have compared mental and physical rotation. We had participants rotate virtual Shepard and Metzler figures mentally and physically; response time, accuracy, and real-time rotation data were collected. Results suggest that mental and physical rotation processes overlap and also reveal novel conclusions about physical rotation that have implications for mental rotation. Notably, participants did not rotate figures to achieve a match, but rather until they reached an off-axis canonical difference, and rotational strategies markedly differed for judgments of whether the figures were the same or different.

  12. The Rotational Spectra of the Silicon Isotopic Species of SiCC

    NASA Astrophysics Data System (ADS)

    Kokkin, Damian L.; Gottlieb, Carl A.; McCarthy, Michael. C.; Thaddeus, Patrick; Brünken, Sandra

    2009-06-01

    Until this work, the rotational spectra of the silicon isotopic species of SiCC were based almost entirely on astronomical frequencies, because only the fundamental 1_{0,1} - 0_{0,0} transition ^{29}SiC_2 and ^{30}SiC_2 had been measured in the laboratory. We have now derived precise rotational and centrifugal distortion constants from laboratory measurements of 35 transitions of each isotopic species between 140 and 360 GHz with J ≤ 10 and K_a ≤ 8. The rotational spectra calculated with the laboratory measured constants are about two orders of magnitude more accurate than that of He et al., who determined the spectroscopic constants from about 20 lines of ^{29}SiC_2 and of ^{30}SiC_2 in the wide-line source IRC+10216. The new laboratory measurements should aid assignment of the silicon isotopic species of SiCC in the spectral line survey of IRC+10216 with the SMA, and in future observations with ALMA. R. D. Suenram, F. J. Lovas, and K. Matsumura, Astrophys. Journ. Lett. 342, L103 (1989) J. H. He, Dinh-V-Trung, S. Kwok, H. S. P. Müller, Y. Zhang, T. Hasegawa, T. C. Peng, and Y. C. Huang, Astrophys. Journ. Suppl. Ser., 177, 275 (2008). N. A. Patel, K. H. Young, S. Brünken, R. W. Wilson, P. Thaddeus, K. M. Menten, M. Reid, M. C. McCarthy, Dinh-V-Trung, C. A. Gottlieb, and A. Hedden, Astrophys. Journ., in press (2009).

  13. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  14. Rotating mobile launcher

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.

    1977-01-01

    Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.

  15. Stellar Rotation Effects in Polarimetric Microlensing

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe

    2016-07-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.

  16. Accurate evaluation of homogenous and nonhomogeneous gas emissivities

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Lee, K. P.

    1984-01-01

    Spectral transmittance and total band adsorptance of selected infrared bands of carbon dioxide and water vapor are calculated by using the line-by-line and quasi-random band models and these are compared with available experimental results to establish the validity of the quasi-random band model. Various wide-band model correlations are employed to calculate the total band absorptance and total emissivity of these two gases under homogeneous and nonhomogeneous conditions. These results are compared with available experimental results under identical conditions. From these comparisons, it is found that the quasi-random band model can provide quite accurate results and is quite suitable for most atmospheric applications.

  17. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  18. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  19. Rotating superfluid turbulence.

    PubMed

    Tsubota, Makoto; Araki, Tsunehiko; Barenghi, Carlo F

    2003-05-23

    Almost all studies of vortex states in helium II have been concerned with either ordered vortex arrays or disordered vortex tangles. This work numerically studies what happens in the presence of both rotation (which induces order) and thermal counterflow (which induces disorder). We find a new statistically steady state in which the vortex tangle is polarized along the rotational axis. Our results are used to interpret an instability that was discovered experimentally by Swanson et al. [Phys. Rev. Lett. 50, 190 (1983)

  20. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  1. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  2. Rotational rate sensor

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  3. Small scale rotational disorder observed in epitaxial graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Walter, Andrew L.; Bostwick, Aaron; Speck, Florian; Ostler, Markus; Kim, Keun Su; Chang, Young Jun; Moreschini, Luca; Innocenti, Davide; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2013-02-01

    Interest in the use of graphene in electronic devices has motivated an explosion in the study of this remarkable material. The simple, linear, Dirac cone band structure offers a unique possibility to investigate its finer details by angle-resolved photoelectron spectroscopy (ARPES). Indeed, ARPES has been performed on graphene grown on metal substrates but electronic applications require an insulating substrate. Epitaxial graphene grown by the thermal decomposition of silicon carbide (SiC) is an ideal candidate for this due to the large scale, uniform, graphene layers produced. The experimental spectral function of epitaxial graphene on SiC has been extensively studied. However, until now the cause of an anisotropy in the spectral width of the Fermi surface has not been determined. In the current work we show, by comparison of the spectral function to a semi-empirical model, that the anisotropy is due to small scale rotational disorder (˜± 0.15°) of graphene domains in graphene grown on SiC(0001) samples. The complicated shape described by the line-width is accurately reproduced by the semi-empirical model only when rotational disorder is included. While spectra from rare regions of the sample containing only one or two rotational domains is also presented. In addition to the direct benefit in the understanding of graphene's electronic structure this work suggests a mechanism to explain similar variations in related ARPES data.

  4. Rotation Rates of the Giant Planets (Invited)

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Helled, R.; Anderson, J. D.

    2009-12-01

    It has been generally believed that a rotation period could be assigned to each of the giant planets. Accepted values of these periods, till now, are 9h 55m 29s, 10h 39m 22s, 17h 14m 24s, and 16h 06m 36s for Jupiter, Saturn, Uranus, and Neptune, respectively. The rotation period of Jupiter is based on the periodic variations in the planet’s kilometric radiation and magnetic field, periodicities that have been unchanged since the Voyager flybys. The association of these periodicities with Jupiter’s internal rotation period is based on the idea that the radio and magnetic phenomena are tied to the planet’s magnetic field lines anchored deep within Jupiter. The periodic variations of the Saturnian Kilometric Radiation (SKR), unlike those of Jupiter, have not been rock solid, however; the periodicity has changed from 10h 39m 22s at the time of Voyager to 10h 45m 45s at the time of Cassini. Clearly, the SKR period does not represent the internal rotation period of Saturn, and it raises the possibility that the rotation periods of the other giant planets are uncertain. In fact, we must seriously reconsider whether the interiors of the giant planets are in solid body rotation with a single period. Even for Jupiter, the 9h 55m 29s rotation period might represent only the rotation of the region in which the magnetic field is generated. The dynamo region could extend from some unknown inner radius out to about 0.9 Jovian radius. The deeper Jovian interior could be rotating with a different period. A recent attempt to model the interior of Jupiter with new equation of state data concluded that the gravitational coefficients of Jupiter could not be fit unless Jupiter’s internal rotation rate was constant on cylinders parallel to the rotation axis (Militzer, B., W.B. Hubbard, J. Vorberger, I. Tamblyn, and S.A. Bonev, A massive core in Jupiter predicted from first-principles simulations, 2008, ApJ, 688, L45-L48 [doi: 10.1086/594364]). For Saturn, two studies of the

  5. A Line List for Hydrogen Sulfide

    NASA Astrophysics Data System (ADS)

    Azzam, Ala'a. A. A.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    H_2S is being studied as part of the ExoMol project (www.exomol.com) with the aim of producing an accurate and comprehensive list of line positions and intensitiesfor temperatures up to 2000 K. This will provide an important resource for atmospheric modelling of extrasolar planets and cool stars, as well as for the laboratory investigations and pollution studies. A recently computed, variational ro-vibrational hot line list is presented. These computations used the DVR3D and potential energy surface (PES) refined to reproduce the measured data. An ab initio dipole moment surface (DMS) is used for the transitions intensity calculations. Many dipole moment surfaces were constructed at different levels of theory and basis sets, and compared to the available intensity measurements. Our best surface was constructed at over 7000 geometries using CCSD(T)/aug-cc-pV(6+d)Z level of theory with added relativistic and core-electron corrections. The anomalous behavior of H_2S intensities is well-known, and our calculations reproduce this behaviour quantitatively. O With Martin-Drumel and Pirali, we have measured pure rotational transition frequencies of H_2S at room temperature in the 45 to 360 cm^{-1} (1.4 to 10.5 THz) region using a Fourier transform spectrometer located at the AILES beamline of the SOLEIL synchrotron. About 1700 lines were detected belonging to the ground vibrational state of H_{2}^{32}S, H_{2}^{33}S and H_{2}^{34}S. 60% of these lines are recorded and assigned for the first time, sampling levels as high as J = 26 and K_a = 18. Our variational calculations were used to identify 214 rotational lines of H_{2}^{32}S in its first excited bending vibrational state for the first time. J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J. Ramanlal and N. F. Zobov Comput. Phys. Commun.{163}(85), 2004. T. Cours, P. Rosmus, and V. G. Tyuterev J. Chem. Phys. {117}(223), 2002. A. A. A. Azzam, S. N. Yurchenko, J. Tennyson, M. Martin-Drumel and O

  6. Accurate eye center location through invariant isocentric patterns.

    PubMed

    Valenti, Roberto; Gevers, Theo

    2012-09-01

    Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications. Accurate eye center location can be determined using commercial eye-gaze trackers, but additional constraints and expensive hardware make these existing solutions unattractive and impossible to use on standard (i.e., visible wavelength), low-resolution images of eyes. Systems based solely on appearance are proposed in the literature, but their accuracy does not allow us to accurately locate and distinguish eye centers movements in these low-resolution settings. Our aim is to bridge this gap by locating the center of the eye within the area of the pupil on low-resolution images taken from a webcam or a similar device. The proposed method makes use of isophote properties to gain invariance to linear lighting changes (contrast and brightness), to achieve in-plane rotational invariance, and to keep low-computational costs. To further gain scale invariance, the approach is applied to a scale space pyramid. In this paper, we extensively test our approach for its robustness to changes in illumination, head pose, scale, occlusion, and eye rotation. We demonstrate that our system can achieve a significant improvement in accuracy over state-of-the-art techniques for eye center location in standard low-resolution imagery. PMID:22813958

  7. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  8. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  12. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. Ring wormholes via duality rotations

    NASA Astrophysics Data System (ADS)

    Gibbons, Gary W.; Volkov, Mikhail S.

    2016-09-01

    We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy-Voorhees-Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than -c4 / 4 G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  15. Relativity on rotated graph paper

    NASA Astrophysics Data System (ADS)

    Salgado, Roberto B.

    2016-05-01

    We demonstrate a method for constructing spacetime diagrams for special relativity on graph paper that has been rotated by 45°. The diagonal grid lines represent light-flash worldlines in Minkowski spacetime, and the boxes in the grid (called "clock diamonds") represent units of measurement corresponding to the ticks of an inertial observer's light clock. We show that many quantitative results can be read off a spacetime diagram simply by counting boxes, with very little algebra. In particular, we show that the squared interval between two events is equal to the signed area of the parallelogram on the grid (called the "causal diamond") with opposite vertices corresponding to those events. We use the Doppler effect—without explicit use of the Doppler formula—to motivate the method.

  16. Laser Guided Automated Calibrating System for Accurate Bracket Placement

    PubMed Central

    Anitha, A; Kumar, AJ; Mascarenhas, R; Husain, A

    2015-01-01

    Background: The basic premise of preadjusted bracket system is accurate bracket positioning. It is widely recognized that accurate bracket placement is of critical importance in the efficient application of biomechanics and in realizing the full potential of a preadjusted edgewise appliance. Aim: The purpose of this study was to design a calibrating system to accurately detect a point on a plane as well as to determine the accuracy of the Laser Guided Automated Calibrating (LGAC) System. Materials and Methods: To the lowest order of approximation a plane having two parallel lines is used to verify the accuracy of the system. On prescribing the distance of a point from the line, images of the plane are analyzed from controlled angles, calibrated and the point is identified with a laser marker. Results: The image was captured and analyzed using MATLAB ver. 7 software (The MathWorks Inc.). Each pixel in the image corresponded to a distance of 1cm/413 (10 mm/413) = 0.0242 mm (L/P). This implies any variations in distance above 0.024 mm can be measured and acted upon, and sets the highest possible accuracy for this system. Conclusion: A new automated system is introduced having an accuracy of 0.024 mm for accurate bracket placement. PMID:25745575

  17. The rotational spectrum of diethyl ketone.

    PubMed

    Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2011-07-11

    We report on the rotational spectrum of diethyl ketone, C(2)H(5)-C(=O)-C(2)H(5), as observed by Fourier transform microwave spectroscopy under pulsed molecular beam conditions. Almost all lines were split into narrow quartets in a range from 10 kHz up to 2 MHz, arising from the hindered rotation of the two equivalent terminal methyl groups. In a global analysis using the xiam code, which is based on the rho axis method, three rotational constants, five quartic centrifugal distortion constants, the torsional barrier of the terminal methyl groups, and the angles between the principal inertial axes and the internal rotor axes were determined. The methyl torsional barrier was found to be 771.93(27) cm(-1). In total, 199 lines were fitted to a standard deviation of 3.5 kHz. The experimental work was supplemented by quantum chemical calculations. Two-dimensional potential energy surfaces describing the rotation of both ethyl groups against the C=O frame were calculated with the MP2 method as well as the DFT method using the 6-311++G(d,p) basis set and the B3LYP functional, respectively. Combining the experimental and theoretical results, an effective structure with C(2v) symmetry was deduced for the diethyl ketone molecule. Moreover, the torsional barrier of the methyl groups was determined by ab initio methods.

  18. Faraday Rotation Observations of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1998-05-01

    Faraday rotation measures the path integral of the product of electron density and line of sight component of the magnetic field from the observer to a source of linearly polarized radio emission. For our observations, the line of sight passes through the solar corona. These observations were made with the NRAO Very Large Array at frequencies of 1465 and 1635 MHz. Observations at two frequencies can confirm the lambda (2) dependence of position angle rotation characteristic of Faraday rotation. We observed the extended radio source 0036+030 (4C+03.01) on March 28, 1997, when the source was 8.6 Rsun from the center of the Sun. Nearly continuous observations were made over an 11 hour period. Our observations measure an average rotation measure (RM) of about +7 radians/m(2) attributable to the corona. The RM showed slow variations during the observing session, with a total change of about 3 radians/m(2) . This variation is attributed to large scale gradients and static plasma structures in the corona, and is the same for two source components separated by 30 arcseconds (22000 km). We have also detected RM variations on time scales of 15 minutes to one hour, which may be coronal Alfven waves. We measure an rms variation of 0.57 radians/m(2) for such fluctuations, which is comparable to previous reports.

  19. The Rotational Spectrum of Singly and Doubly 13C-SUBSTITUTED Dimethylether

    NASA Astrophysics Data System (ADS)

    Koerber, Monika; Endres, Christian P.; Lewen, Frank; Giesen, Thomas F.; Schlemmer, Stephan; Pohl, Roland; Klein, Axel

    2010-06-01

    Dimethylether (DME) is a nearly prolate asymmetric top with two internal rotors (methyl groups) which undergo periodic large amplitude motions and show a complicated torsional splitting of each rotational energy level. Due to its complex spectrum and its high abundance in hot cores such as Orion KL or Sagittarius B2 at temperatures exceeding 100 K, DME is very prominent in astronomical line surveys and contributes to spectral line confusion of such sources. The interpretation of astronomical observations therefore depends on the knowledge of accurate rest frequencies and reliable intensities. Precise predictions for the ground state of DME's main isotopologue are now available up to 2.1 THz In contrast, very little is known about 13C-substituted DME. Only a few data are available on singly 13C-substituted DME, 12CH_3O13CH_3. However, no data are available on doubly 13C-substituted DME, (13CH_3)_2O, yet. While in (13CH_3)_2O the two internal rotating methyl groups are equivalent and the splitting of rotational energy levels into four substates is comparable to the main isotopologue, singly 13C-substituted DME has two non-equivalent internal rotors resulting in torsional splitting of rotational energy levels into five substates. The purpose of our new laboratory measurements is to extend the knowledge on the astrophysically relevant species 12CH_3O13CH_3. To analyze the complicated spectrum resulting from a 13C-enriched sample of DME, containing all different 13C-substituted species as well as the main isotopologue, also precise data on doubly 13C-substituted DME are inevitable. We performed measurements in the frequency region 35-120 GHz using an all solid state spectrometer. Rotational as well as torsional parameters have been obtained for (13CH_3)_2O as well as 12CH_3O13CH_3 by fitting the assigned transitions to an effective rotational Hamiltonian introduced by Peter Groner. C. Comito et al., Astrophys. J. Suppl. Ser. 156, 127-167 (2005) C. P. Endres et al

  20. General shell model for a rotating pretwisted blade

    NASA Astrophysics Data System (ADS)

    Sun, Jia; Lopez Arteaga, Ines; Kari, Leif

    2013-10-01

    A novel dynamic model for a pretwisted rotating compressor blade mounted at an arbitrary stagger angle using general shell theory and including the rotational velocity is developed to study the eigenfrequencies and damping properties of the pretwisted rotating blade. The strain-displacement relation and constitutive model based on the general (thick) shell theory are applied to bring out the strain energy of the rotating blade. Using Hamilton's principle, the variational form of the total energy is derived in order to obtain the corresponding weak form for the numerical simulation. The model is validated by comparing to the literature results and Ansys results, showing good agreement. Parametric analyses are carried out to study the influence of the rotation velocity, the stagger angle and the radius of the disk on the eigenfrequencies of the pretwisted blade. Proportional damping is included into the proposed model to investigate the influence of rotational velocity on the damping characteristics of the pretwisted rotating blade system. It is shown that, due to inertial and Coriolis effects, damping decreases as the rotation velocity increases for the lower part of the velocity range considered and either decreases or increases depending on the mode order for higher velocities. Furthermore, frequency loci veering as a result of the rotation velocity is observed. The proposed model is an efficient and accurate tool for predicting the dynamic behavior of compressor blades of arbitrary thickness, stagger angle and pretwist, potentially during the early designing stage of turbomachinery.

  1. Conformational Slippage Determines Rotational Frequency in Five-Component Nanorotors.

    PubMed

    Samanta, Soumen K; Rana, Anup; Schmittel, Michael

    2016-02-01

    Several five-component nanorotors ROT-3 that rotate at different rates were prepared by adding phenanthrolines of distinct lateral size as brake blocks to the four-component nanorotor ROT-2. The brake blocks interfere with the 180° rotor causing the rotational frequency to drop from 97 kHz to 5 kHz. The effect of the rotating brake blocks on the rotational frequency in ROT-3 is accurately predicted by a nanomechanical model called "conformational slippage". For quantification, the interaction of the brake blocks with the trajectory of the main rotator is gauged based on the number of interfering vs. non-interfering conformations as computed by PM6.

  2. Acquiring new spatial intuitions: learning to reason about rotations.

    PubMed

    Pani, John R; Chariker, Julia H; Dawson, Thomas E; Johnson, Nathan

    2005-12-01

    There are certain simple rotations of objects that most people cannot reason about accurately. Reliable gaps in the understanding of a fundamental physical domain raise the question of how learning to reason in that domain might proceed. Using virtual reality techniques, this project investigated the nature of learning to reason across the domain of simple rotations. Learning consisted of the acquisition of spatial intuitions: there was encoding of useful spatiotemporal information in specific problem types and a gradual accumulation of this understanding across the domain. This pattern of learning through the accumulation of intuitions is especially interesting for rotational motion, in which an elegant domain-wide kinematics is available to support insightful learning. Individual ability to reason about rotations correlated highly with mastery motivation, skill in fluid reasoning, and skill in reasoning about spatial transformations. Thus, general cognitive advantages aided the understanding of individual rotations without guaranteeing immediate generalization across the domain.

  3. a Solar Eruption Driven by Sunspot Rotation

    NASA Astrophysics Data System (ADS)

    CHEN, Y.; Ruan, G.

    2013-12-01

    We present an observational study of a major solar eruption associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA AR11283. The filament and some overlying coronal arcades were partially rooted in a sunspot, which rotated at an average rate of ˜10 degrees per hour during a period of 6 hours prior to the eruption. Along with the sunspot rotation, significant amounts of magnetic energy ~10^31 erg and helicity 10^41 Mx^2 were transported into the corona. In the 6-hour period, we also found an overall decrease (increase) of the mean photospheric horizontal field strength (magnetic field inclination angle) using the HMI data measured in the region along the polarity inversion line underneath the filament, and a gradual levitation of current density concentrations in the corona according to the NLFFF (NonLinear Force Free Field) extrapolation. These results indicate that the magnetic structure carrying the filament undergoes an overall gradual ascending motion before its final eruption, consistent in general with the observed filament dynamical evolution during the sunspot rotation. The study provides direct evidences of sunspot rotation as a major process twisting, energizing, and destabilizing the coronal filament-flux rope system leading to the eruption.

  4. ionFR: Ionospheric Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brueggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eisloeffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Griessmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Roettgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-03-01

    ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.

  5. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  6. Tubing rotator reduces tubing wear in rod pumped wells

    SciTech Connect

    Graham, M. ); Brown, C. )

    1994-04-04

    Tubing failures are both expensive and time-consuming. The most common failure results from rod cutting, or, erosion of the tubing ID because of continuous, reciprocating contact with the rod string. Installation of tubing rotators has decreased tubing failures in West Texas waterflood sucker-rod pumped wells. Pumping unit movement powers the rotator system, turning the tubing string at about 1 revolution/day. The rotator system has both surface and subsurface components. A reduction gear box attached to the walking beam converts the pumping unit's reciprocating strokes into rotary motion. A drive line transfers this rotary motion to a gear-driven suspension mandrel in the rotating tubing hanger. Near the bottom of the tubing string, a rotating tubing anchor/catcher allows the entire tubing string, including the tail pipe, seating nipple, and gas and mud anchor to rotate. The rotator hanger suspends the weight of the tubing string on a bearing system. One model of the hanger has a load capacity of 135,000 lb. A surface swivel allows rotation below the pumping tee so that the flow lines remain stationary. Also included in the string is a safety shear coupling to prevent over torquing the tubing.

  7. MODELING MOLECULAR HYPERFINE LINE EMISSION

    SciTech Connect

    Keto, Eric; Rybicki, George

    2010-06-20

    In this paper, we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transition rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH{sub 3}, N{sub 2}H{sup +}, and C{sup 17}O. The intensities of these spectral lines can be modeled by numerical techniques such as {Lambda}-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium, distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermal equilibrium (LTE). The second method, the proportional method, approximates the collision rates between the hyperfine levels as fractions of the net rotational rates apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N{sub 2}H{sup +} hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.

  8. Ayty: a New Line-List for Hot Formaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed Faris; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2015-06-01

    The ExoMol [1] project aims at providing spectroscopic data for key molecules that can be used to characterize the atmospheres of exoplanets and cool stars. Formaldehyde (H2CO) is of growing importance in studying and modelling terrestrial atmospheric chemistry and dynamics. It also has relevance in astrophysical phenomena that include interstellar medium abundance, proto-planetary and cometary ice chemistry and masers from extra-galactic sources. However there gaps in currently available absolute intensities and a lack of higher rotational excitations that makes it unfeasible to accurately model high temperature systems such as hot Jupiters. Here we present AYTY [2], a new line list for formaldehyde applicable to temperatures up to 1500 K. AYTY contains almost 10 million states reaching rotational excitations up to J=70 and over 10 billion transitions at up to 10 000 cm-1. The line list was computed using the variational ro-vibrational solver TROVE with a refined ab-initio potential energy surface and dipole moment surface. J.~Tennyson and S.~N. Yurchenko MNRAS, 425:21--33, 2012. A.~F. Al-Refaie, S.~N. Yurchenko, A.~Yachmenev, and J.~Tennyson MNRAS, 2015.

  9. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  10. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  11. Chiral rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  12. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}ȯ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  13. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  14. Mental rotation within linguistic and non-linguistic domains in users of American sign language.

    PubMed

    Emmorey, K; Klima, E; Hickok, G

    1998-09-01

    American sign language (ASL) uses space itself to encode spatial information. Spatial scenes are most often described from the perspective of the person signing (the 'narrator'), such that the viewer must perform what amounts to a 180 degrees mental rotation to correctly comprehend the description. But scenes can also be described, non-canonically, from the viewer's perspective, in which case no rotation is required. Is mental rotation during sign language processing difficult for ASL signers? Are there differences between linguistic and non-linguistic mental rotation? Experiment 1 required subjects to decide whether a signed description matched a room presented on videotape. Deaf ASL signers were more accurate when viewing scenes described from the narrator's perspective (even though rotation is required) than from the viewer's perspective (no rotation required). In Experiment 2, deaf signers and hearing non-signers viewed videotapes of objects appearing briefly and sequentially on a board marked with an entrance. This board either matched an identical board in front of the subject or was rotated 180 degrees. Subjects were asked to place objects on their board in the orientation and location shown on the video, making the appropriate rotation when required. All subjects were significantly less accurate when rotation was required, but ASL signers performed significantly better than hearing non-signers under rotation. ASL signers were also more accurate in remembering object orientation. Signers then viewed a video in which the same scenes were signed from the two perspectives (i.e. rotation required or no rotation required). In contrast to their performance with real objects, signers did not show the typical mental rotation effect. Males outperformed females on the rotation task with objects, but the superiority disappeared in the linguistic condition. We discuss the nature of the ASL mental rotation transformation, and we conclude that habitual use of ASL can

  15. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  16. Rotating quantum states

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2014-06-01

    We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space-time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress-energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space-time geometries.

  17. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  18. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  19. Ergometer calibrator. [for any ergometer utilizing rotating shaft

    NASA Technical Reports Server (NTRS)

    Gause, R. L. (Inventor)

    1975-01-01

    An apparatus is presented for accurately calibrating ergometers so that the work rate produced by the particular ergometer being calibrated is accurate. The apparatus includes a dc motor which is coupled directly to the ergometer for rotating it at various speeds. Positioned on the shaft between the dc motor and the ergometer is a torque sensor and tachometer, which feed signals to a power computer for subsequent recording. A speed controller is utilized with the dc motor.

  20. Theta rotation and serial registration of light microscopical images using a novel camera rotating device.

    PubMed

    Duerstock, Bradley S; Cirillo, John; Rajwa, Bartek

    2010-06-01

    An electromechanical video camera coupler was developed to rotate a light microscope field of view (FOV) in real time without the need to physically rotate the stage or specimen. The device, referred to as the Camera Thetarotator, rotated microscopical views 240 degrees to assist microscopists to orient specimens within the FOV prior to image capture. The Camera Thetarotator eliminated the effort and artifacts created when rotating photomicrographs using conventional graphics software. The Camera Thetarotator could also be used to semimanually register a dataset of histological sections for three-dimensional (3D) reconstruction by superimposing the transparent, real-time FOV to the previously captured section in the series. When compared to Fourier-based software registration, alignment of serial sections using the Camera Thetarotator was more exact, resulting in more accurate 3D reconstructions with no computer-generated null space. When software-based registration was performed after prealigning sections with the Camera Thetarotator, registration was further enhanced. The Camera Thetarotator expanded microscopical viewing and digital photomicrography and provided a novel, accurate registration method for 3D reconstruction. The Camera Thetarotator would also be useful for performing automated microscopical functions necessary for telemicroscopy, high-throughput image acquisition and analysis, and other light microscopy applications.

  1. Issues in the analysis and interpretation of cyclotron lines in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1992-01-01

    The Bayesian approach is discussed to establishing the existence of lines, the importance of observing multiple cyclotron harmonics in determining physical parameters from the lines, and evidence from cyclotron lines of neutron star rotation.

  2. Emission from Pair Instability Supernovae with Rotation

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, Emmanouil; Van Rossum, Daniel R; Whalen, Daniel J.

    2014-08-01

    Pair Instability Supernovae have been suggested as candidates for some Super Luminous Supernovae, like SN 2007bi, and can also be one of the dominant types of explosion occurring in the early Universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating therefore exhibiting a differentevolutionary path due to the effects of rotationally-induced mixing and mass-loss.Proper identification of such events requires rigorous radiation hydrodynamics and non-localthermal equilibrium calculations that capture not only the behavior of the light curve but also the spectral evolution of these events accurately. We present radiation hydrodynamics and local and non-local thermal equilibrium radiation transport calculations for 90-140 Msun rotating pair-instability supernovae covering both the shock break-out and late light curve phases. We find that for a variety of progenitor masses these events are too dim and too red in color to account for so far observed super-luminous supernovae and do not seem to matchother known events, in terms of spectral appearance. We discuss the qualitative differences between different radiation transport treatments and compare our results with previous results from non-rotating pair-instability supernovae.

  3. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  4. Measure Lines

    ERIC Educational Resources Information Center

    Crissman, Sally

    2011-01-01

    One tool for enhancing students' work with data in the science classroom is the measure line. As a coteacher and curriculum developer for The Inquiry Project, the author has seen how measure lines--a number line in which the numbers refer to units of measure--help students not only represent data but also analyze it in ways that generate…

  5. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  6. Anisotropy in rotating drums

    NASA Astrophysics Data System (ADS)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  7. Rotating Saddle Paul Trap.

    ERIC Educational Resources Information Center

    Rueckner, Wolfgang; And Others

    1995-01-01

    Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)

  8. Rotational speed control

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on rotational speed control are presented. The Centrifuge Facility Systems Study - 2.5 m centrifuge is shown. A life sciences centrifuge is scheduled to fly aboard Space Station Freedom. Live animal and plant specimens will be carried on the rotor and compared with microgravity specimens in racks.

  9. Rotational Dynamics with Tracker

    ERIC Educational Resources Information Center

    Eadkhong, T.; Rajsadorn, R.; Jannual, P.; Danworaphong, S.

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia ("I") of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction ("b") for our system. By omitting the effect of such friction, we derive…

  10. Rotator cuff repair

    MedlinePlus

    ... torn rotator cuff is usually successful in relieving pain in the shoulder. The procedure may not always return strength to ... may not fully heal. Stiffness, weakness, and chronic pain may still be ... are not followed. Older patients (over age 65). Smoking.

  11. Rotator Cuff Injuries.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  12. Rotational waves in geodynamics

    NASA Astrophysics Data System (ADS)

    Gerus, Artyom; Vikulin, Alexander

    2015-04-01

    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  13. Rotating Responsibility Reaps Rewards.

    ERIC Educational Resources Information Center

    Wilson, Barbara; Schullery, Nancy

    2000-01-01

    Describes a process used for group assignments in a business communication course which holds all group members accountable by using a structure of rotating responsibility. Discusses selecting assignments and implementing the process, noting how this structure requires equivalent advance preparation from all members and provides opportunities for…

  14. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  15. Troubleshooting rotating equipment

    SciTech Connect

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  16. Rotatable stem and lock

    DOEpatents

    Deveney, J.E.; Sanderson, S.N.

    1981-10-27

    A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  17. Rotatable stem and lock

    DOEpatents

    Deveney, Joseph E.; Sanderson, Stephen N.

    1984-01-01

    A valve stem and lock include a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  18. Arthroscopic Debridement for Irreparable Rotator Cuff Tears

    PubMed Central

    Hawi, N.; Schmiddem, U.; Omar, M.; Stuebig, T.; Krettek, C.; Petri, M.; Meller, R.

    2016-01-01

    Background: Arthroscopic debridement represents a salvage procedure for irreparable rotator cuff tears. It is important to accurately diagnose the patient for irreparable rotator cuff tears. The diagnosis and the therapeutic options must be explained to the patient. It is mandatory that the patient understands the primary goal of the arthroscopic debridement being reduction of pain, not improving strength or function. Methods: The procedure consists of 7 distinct steps to debride the soft tissues and alleviate pain. Results: Even though there is a lack of evidence that this procedure is superior to other therapeutic options, it has shown good results in patients with the main complaint of pain. Conclusion: The results reported in some studies should, however, be interpreted with caution, taking into consideration the substantial structural damage in irreparable defects.

  19. Precise spectroscopic parameters for solar-type stars with moderate-to-high rotation

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S.; Santos, N. C.; Montalto, M.

    2014-07-01

    One of the primary objectives of Gaia is to survey billions stars and build the most precise 3D map of the Milky Way. Automated techniques of spectral analysis are needed to perform a rapid and homogeneous processing of the data to provide precise and accurate stellar parameters, such as for the GAIA-ESO survey. In this context, our recent work is based on the spectral synthesis technique to derive parameters for both slowly and fast rotating stars (Tsantaki et al. 2014). The spectroscopic analysis was performed using the package Spectroscopy Made Easy (SME; Valenti & Piskunov 1996) and a specific methodology to deal with fast rotators (υsini up to 50 km/s). The spectral regions, including the atomic data of all the lines in our analysis are available online in SME readable format http://mariatsantaki.weebly.com;. A comparison between the parameters derived with our methodology and with the iron ionization and excitation method (e.g. Sousa et al. 2008; Tsantaki et al. 2013) shows that both results are on the same scale. Additionally, for fast rotating stars, our results are in good agreement with literature values when comparing to other methods. We are now able to provide parameters for a very wide group of stars: from giants to dwarfs and from slowly to fast rotating stars. Except for galactic studies, stellar parameters are important for the planetary characterization. We provided updated stellar and planetary properties for ten systems. The stellar parameters were compiled in the SWEET-Catalogue (https://www.astro.up.pt/resources/sweet-cat/).

  20. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    SciTech Connect

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin; Sims, Brett; Li, Xaiolin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters and insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite

  1. Dynamical analysis of sea-breeze hodograph rotation in Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, N.; Steyn, D. G.

    2014-12-01

    This study investigates the diurnal evolution of sea-breeze (SB) rotation over an island at the middle latitudes. Earlier research on sea breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anticlockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously studied sea-breeze days, and is shown to capture the circulation on all coasts accurately. Diurnal rotation of wind is examined, and patterns of clockwise and anticlockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with a complex topography and/or coastline.

  2. Dynamical analysis of sea-breeze hodograph rotation in Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, N.; Steyn, D. G.

    2014-09-01

    This study investigates the diurnal evolution of sea-breeze rotation over an island in the mid-latitudes. Earlier research on sea-breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anti-clockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously-studied sea-breeze days and is shown to accurately capture the circulation on all coasts. Diurnal rotation of wind is examined and patterns of clockwise and anti-clockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography, yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with complex topography and/or coastline.

  3. Measuring stellar magnetic fields from high resolution spectroscopy of near-infrared lines

    NASA Astrophysics Data System (ADS)

    Leone, F.; Vacca, W. D.; Stift, M. J.

    2003-10-01

    Zeeman splitting of otherwise degenerate levels provides a straight-forward method of measuring stellar magnetic fields. In the optical, the relative displacements of the Zeeman components are quite small compared to the rotational line broadening, and therefore observations of Zeeman splitting are usually possible only for rather strong magnetic fields in very slowly rotating stars. However, the magnitude of the Zeeman splitting is proportional to the square of the wavelength, whereas rotational line broadening mechanisms are linear in wavelength; therefore, there is a clear advantage in using near-infrared spectral lines to measure surface stellar magnetic fields. We have obtained high resolution (R >= 25 000) spectra in the 15 625-15 665 Å region for two magnetic chemically peculiar stars, viz. HD 176232 and HD 201601, and for the suspected magnetic chemically peculiar star HD 180583, as part of a pilot study aimed at determining the accuracy with which we can measure stellar magnetic fields using the Zeeman splitting of near-infrared lines. We confirm that in principle the magnetic field strength can be estimated from the magnetic intensification of spectral lines, i.e. the increase in equivalent width of a line over the zero-field value. However, due to line blending as well as the dependence of this intensification on abundance and field geometry, accurate estimates of the magnetic field strengths can be obtained only by modelling the line profiles by means of spectral synthesis techniques. Using this approach, we find a 1.4 kG magnetic field modulus in HD 176132 and an upper limit of 0.2 kG in HD 180583. The very weak infrared lines in the spectrum of HD 201601 are consistent with a 3.9 kG field modulus estimated from the splitting of the Fe II 6149.258 Å line seen in an optical spectrum. Finally, we would like to draw attention to the fact that there are no sufficiently detailed and reliable atomic line lists available for the near-infrared region that

  4. 64-line-sensor array: fast imaging system for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Gratt, Sibylle; Nuster, Robert; Wurzinger, Gerhild; Bugl, Markus; Paltauf, Guenther

    2014-03-01

    Three-dimensional photoacoustic tomography with line sensors, which integrate the pressure along their length, has shown to produce accurate images of small animals. To reduce the scanning time and to enable in vivo applications, a detection array is built consisting of 64 piezoelectric line sensors which are arranged on a semi-cylinder. When measuring line integrated pressure signals around the imaging object, the three-dimensional photoacoustic imaging problem is reduced to a set of two-dimensional reconstructions and the measurement setup requires only a single axis of rotation. The shape and size of the array were adapted to the given problem of biomedical imaging and small animal imaging in particular. The length and width of individual line elements had to be chosen in order to take advantage of the favorable line integrating properties, maintaining the requested resolution of the image. For data acquisition the signals from the 64 elements are amplified and multiplexed into a 32 channel digitizer. Single projection images are recorded with two laser pulses within 0.2 seconds, as determined by the laser pulse repetition rate of 10 Hz. Phantom experiments are used for characterization of the line-array. Compared to previous implementations with a single line sensor scanning around an object, with the developed array the data acquisition time can be reduced from about one hour to about one minute.

  5. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  6. ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION

    SciTech Connect

    Lynch, B. J.; Li, Y.; Luhmann, J. G.; Antiochos, S. K.; DeVore, C. R. E-mail: yanli@ssl.berkeley.edu E-mail: spiro.k.antiochos@nasa.gov

    2009-06-01

    Understanding the connection between coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) is one of the most important problems in solar-terrestrial physics. We calculate the rotation of erupting field structures predicted by numerical simulations of CME initiation via the magnetic breakout model. In this model, the initial potential magnetic field has a multipolar topology and the system is driven by imposing a shear flow at the photospheric boundary. Our results yield insight on how to connect solar observations of the orientation of the filament or polarity inversion line (PIL) in the CME source region, the orientation of the CME axis as inferred from coronagraph images, and the ICME flux rope orientation obtained from in situ measurements. We present the results of two numerical simulations that differ only in the direction of the applied shearing motions (i.e., the handedness of the sheared-arcade systems and their resulting CME fields). In both simulations, eruptive flare reconnection occurs underneath the rapidly expanding sheared fields transforming the ejecta fields into three-dimensional flux rope structures. As the erupting flux ropes propagate through the low corona (from 2 to 4 R{sub sun}) the right-handed breakout flux rope rotates clockwise and the left-handed breakout flux rope rotates counterclockwise, in agreement with recent observations of the rotation of erupting filaments. We find that by 3.5 R {sub sun} the average rotation angle between the flux rope axes and the active region PIL is approximately 50 deg. We discuss the implications of these results for predicting, from the observed chirality of the pre-eruption filament and/or other properties of the CME source region, the direction and amount of rotation that magnetic flux rope structures will experience during eruption. We also discuss the implications of our results for CME initiation models.

  7. THE CM-, MM-, AND SUB-MM-WAVE SPECTRUM OF ALLYL ISOCYANIDE AND RADIOASTRONOMICAL OBSERVATIONS IN ORION KL AND THE SgrB2 LINE SURVEYS

    SciTech Connect

    Haykal, I.; Margulès, L.; Huet, T. R.; Motyienko, R. A.; Écija, P.; Cocinero, E. J.; Basterretxea, F.; Fernández, J. A.; Castaño, F.; Guillemin, J. C.; Tercero, B.; Cernicharo, J.

    2013-11-10

    Organic isocyanides have an interesting astrochemistry and some of these molecules have been detected in the interstellar medium (ISM). However, rotational spectral data for this class of compounds are still scarce. We provide laboratory spectra of the four-carbon allyl isocyanide covering the full microwave region, thus allowing a potential astrophysical identification in the ISM. We assigned the rotational spectrum of the two cis (synperiplanar) and gauche (anticlinal) conformations of allyl isocyanide in the centimeter-wave region (4-18 GHz), resolved its {sup 14}N nuclear quadrupole coupling (NQC) hyperfine structure, and extended the measurements into the millimeter and submillimeter-wave (150-900 GHz) ranges for the title compound. Rotational constants for all the monosubstituted {sup 13}C and {sup 15}N isotopologues are additionally provided. Laboratory observations are supplemented with initial radioastronomical observations. Following analysis of an extensive dataset (>11000 rotational transitions), accurate ground-state molecular parameters are reported for the cis and gauche conformations of the molecule, including rotational constants, NQC parameters, and centrifugal distortion terms up to octic contributions. Molecular parameters have also been obtained for the two first excited states of the cis conformation, with a dataset of more than 3300 lines. The isotopic data allowed determining substitution and effective structures for the title compound. We did not detect allyl isocyanide either in the IRAM 30 m line survey of Orion KL or in the PRIMOS survey toward SgrB2. Nevertheless, we provided an upper limit to its column density in Orion KL.

  8. A New Rotation Phenomena of Cells Induced by Homegeneous Electric Field

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Toyomasa; Yagi, Hiroshi

    1990-05-01

    When at least two plant protoplasts are located close to each other under homogeneous electric field, almost all of the cells rotate in the vicinity of its frequency of 10 kHz and specific cells in the vicinity of 10 MHz. The first rotation occurs in the plane constituted by the connecting line between two cells and the applied electric field line. This angular velocity increases with the square of the field strength. On the other hand, the second rotation or new rotation occurs in any plane and its angular velocity complicatedly depends on the field strength. Furthermore, when two cells are arranged in such a way that their connecting line is parallel to the applied field, the second rotation occurs but the first does not. The distinctive feature of the second rotation can be explained by the anisotropic dielectric in the cell due to the shape of its vacuole.

  9. Rotation curves of ultralight BEC dark matter halos with rotation

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Lora-Clavijo, F. D.

    2015-03-01

    We study the rotation curves of ultralight BEC dark matter halos. These halos are long lived solutions of initially rotating BEC fluctuations. In order to study the implications of the rotation characterizing these long-lived configurations we consider the particular case of a boson mass and no self-interaction. We find that these halos successfully fit samples of rotation curves of LSB galaxies.

  10. Wave-driven Rotation in Supersonically Rotating Mirrors

    SciTech Connect

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  11. Improvement of the edge rotation diagnostic spectrum analysis via simulation

    SciTech Connect

    Luo, J.; Zhuang, G. Cheng, Z. F.; Zhang, X. L.; Hou, S. Y.; Cheng, C.

    2014-11-15

    The edge rotation diagnostic (ERD) system has been developed on the Joint Texas Experimental Tokamak to measure the edge toroidal rotation velocity by observing the shifted wavelength of carbon V (C V 227.09 nm). Since the measured spectrum is an integrated result along the viewing line from the plasma core to the edge, a method via simulation has been developed to analyze the ERD spectrum. With the necessary parameters such as C V radiation profile and the ion temperature profile, a local rotation profile at the normalized minor radius of 0.5-1 is obtained.

  12. Improvement of the edge rotation diagnostic spectrum analysis via simulationa)

    NASA Astrophysics Data System (ADS)

    Luo, J.; Zhuang, G.; Cheng, Z. F.; Zhang, X. L.; Hou, S. Y.; Cheng, C.

    2014-11-01

    The edge rotation diagnostic (ERD) system has been developed on the Joint Texas Experimental Tokamak to measure the edge toroidal rotation velocity by observing the shifted wavelength of carbon V (C V 227.09 nm). Since the measured spectrum is an integrated result along the viewing line from the plasma core to the edge, a method via simulation has been developed to analyze the ERD spectrum. With the necessary parameters such as C V radiation profile and the ion temperature profile, a local rotation profile at the normalized minor radius of 0.5-1 is obtained.

  13. Two dimensional symmetric correlation functions of the {hat S} operator and two dimensional Fourier transforms: Considering the line coupling for P and R lines of linear molecules

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-03-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the {hat S} operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  14. Two dimensional symmetric correlation functions of the S-circumflex operator and two dimensional Fourier transforms: Considering the line coupling for P and R lines of linear molecules

    SciTech Connect

    Ma, Q.; Tipping, R. H.

    2014-03-14

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS{sub 1} − S{sub 2} introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the S-circumflex operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C{sub 2}H{sub 2} broadened by N{sub 2}. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  15. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  16. Accurate positioning of long, flexible ARM's (Articulated Robotic Manipulator)

    NASA Technical Reports Server (NTRS)

    Malachowski, Michael J.

    1988-01-01

    An articulated robotic manipulator (ARM) system is being designed for space applications. Work being done on a concept utilizing an infinitely stiff laser beam for position reference is summarized. The laser beam is projected along the segments of the ARM, and the position is sensed by the beam rider modules (BRM) mounted on the distal ends of the segments. The BRM concept is the heart of the system. It utilizes a combination of lateral displacements and rotational and distance measurement sensors. These determine the relative position of the two ends of the segments with respect to each other in six degrees of freedom. The BRM measurement devices contain microprocessor controlled data acquisition and active positioning components. An indirect adaptive controller is used to accurately control the position of the ARM.

  17. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  18. Foliage discrimination using a rotating ladar

    NASA Technical Reports Server (NTRS)

    Castano, A.; Matthies, L.

    2003-01-01

    We present a real time algorithm that detects foliage using range from a rotating laser. Objects not classified as foliage are conservatively labeled as non-driving obstacles. In contrast to related work that uses range statistics to classify objects, we exploit the expected localities and continuities of an obstacle, in both space and time. Also, instead of attempting to find a single accurate discriminating factor for every ladar return, we hypothesize the class of some few returns and then spread the confidence (and classification) to other returns using the locality constraints. The Urbie robot is presently using this algorithm to descriminate drivable grass from obstacles during outdoor autonomous navigation tasks.

  19. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA

    1980-02-12

    A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

  20. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, B.W.; Willenborg, D.L.

    1980-02-12

    A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.

  1. Investigation Jet Rotation in Young Stars via High Resolution UV Spectra

    NASA Astrophysics Data System (ADS)

    Bacciotti, Francesca

    2009-07-01

    In recent years we have successfully harnessed the high resolution of STIS in the optical to reveal asymmetries in Doppler shifts transverse to the flow direction in 8 T Tauri jets {Bacciotti ea 2002; Woitas ea 2005; Coffey ea 2004; 2007}. We interpret the findings, just 100 AU above the disk, as signatures of jet rotation. The significance of these results is considerable. They form the only existing observational indications supporting the theory that jets extract angular momentum from star-disk systems. Furthermore, they hold the potential to discriminate between the main model contenders: X-wind and Disk-wind {Ferreira ea 2006}. Although our results are encouraging, it is evident that we are only marginally resolving the effects of rotation because of the limiting resolution {spatially and spectrally} of STIS in the optical. Therefore, in Cycle 12 we proposed to extend this study into the near-ultraviolet {NUV}, giving double the spatial and spectral resolution {proposal ID 9807}. Unfortunately, only 3 targets in our survey were observed before the failure of STIS {Coffey ea 2007}. Nevertheless, the results were very exciting. Agreement was found between the optical and NUV results in terms of the magnitude and sense of the Doppler shift gradient across the jet. Furthermore, the NUV lines indicated that the observed high velocity gas was launched from about 0.2-0.5 AU, compared to the lower velocity gas traced in optical lines which originates from as far as 2 AU. This puts a strong contraint on MHD launch models, and indeed holds the potential to differentiate between them. Given that the strength of a rotation argument lies in the survey nature of the findings, we need to resume this program in order to see if the same rotation signatures are commonly seen in the NUV, as they are in the optical. Furthermore, the higher spatial and spectral resolution of STIS in the NUV will allow us to more accurately quantify the variation in toroidal velocity as a function

  2. Spectroscopic line parameters of NH3 and PH3 in the far infrared

    NASA Technical Reports Server (NTRS)

    Husson, N.; Goldman, A.; Orton, G.

    1982-01-01

    NH3 and PH3 rotation and rotation-inversion line parameters in the far to medium IR are calculated for remote sounding purposes of planetary atmospheres; 1607 lines of (N-14)H3, 362 lines of (N-15)H3 and 325 lines of PH3 are compiled. The absolute intensity formulation has been reviewed in the case of rotation and rotation-inversion lines of molecules with C(3v) symmetry. The justification for the general agreement between the authors, and comparisons with other published expressions are given.

  3. Spectroscopic parameters for solar-type stars with moderate-to-high rotation. New parameters for ten planet hosts

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S. G.; Santos, N. C.; Montalto, M.; Delgado-Mena, E.; Mortier, A.; Adibekyan, V.; Israelian, G.

    2014-10-01

    Context. Planetary studies demand precise and accurate stellar parameters as input for inferring the planetary properties. Different methods often provide different results that could lead to biases in the planetary parameters. Aims: In this work, we present a refinement of the spectral synthesis technique designed to treat fast rotating stars better. This method is used to derive precise stellar parameters, namely effective temperature, surface gravity, metallicity, and rotational velocity. The procedure is tested for FGK stars with low and moderate-to-high rotation rates. Methods: The spectroscopic analysis is based on the spectral synthesis package Spectroscopy Made Easy (SME), which assumes Kurucz model atmospheres in LTE. The line list where the synthesis is conducted is comprised of iron lines, and the atomic data are derived after solar calibration. Results: The comparison of our stellar parameters shows good agreement with literature values, both for slowly and for fast rotating stars. In addition, our results are on the same scale as the parameters derived from the iron ionization and excitation method presented in our previous works. We present new atmospheric parameters for 10 transiting planet hosts as an update to the SWEET-Cat catalog. We also re-analyze their transit light curves to derive new updated planetary properties. Based on observations collected at the La Silla Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 089.C-0444(A), 088.C-0892(A)) and with the HARPS spectrograph at the 3.6 m telescope (ESO runs ID 072.C-0488(E), 079.C-0127(A)); at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France, with the SOPHIE spectrograph at the 1.93 m telescope and at the Observatoire Midi-Pyrénées (CNRS), France, with the NARVAL spectrograph at the 2 m Bernard Lyot Telescope (Run ID L131N11).Appendix A is available in electronic form at http://www.aanda.org

  4. Slim hole MWD tool accurately measures downhole annular pressure

    SciTech Connect

    Burban, B.; Delahaye, T. )

    1994-02-14

    Measurement-while-drilling of downhole pressure accurately determines annular pressure losses from circulation and drillstring rotation and helps monitor swab and surge pressures during tripping. In early 1993, two slim-hole wells (3.4 in. and 3 in. diameter) were drilled with continuous real-time electromagnetic wave transmission of downhole temperature and annular pressure. The data were obtained during all stages of the drilling operation and proved useful for operations personnel. The use of real-time measurements demonstrated the characteristic hydraulic effects of pressure surges induced by drillstring rotation in the small slim-hole annulus under field conditions. The interest in this information is not restricted to the slim-hole geometry. Monitoring or estimating downhole pressure is a key element for drilling operations. Except in special cases, no real-time measurements of downhole annular pressure during drilling and tripping have been used on an operational basis. The hydraulic effects are significant in conventional-geometry wells (3 1/2-in. drill pipe in a 6-in. hole). This paper describes the tool and the results from the field test.

  5. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  6. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement. PMID:27634258

  7. Gabor feature-based registration: accurate alignment without fiducial markers

    NASA Astrophysics Data System (ADS)

    Parra, Nestor A.; Parra, Carlos A.

    2007-03-01

    Accurate registration of diagnosis and treatment images is a critical factor for the success of radiotherapy. This study presents a feature-based image registration algorithm that uses a branch- and-bound method to search the space of possible transformations, as well as a Hausdorff distance metric to evaluate their quality. This distance is computed in the space of responses to a circular Gabor filter, in which, for each point of interest in both reference and subject images, a vector of complex responses to different Gabor kernels is computed. Each kernel is generated using different frequencies and variances of the Gabor function, which determines correspondent regions in the images to be registered, by virtue of its rotation invariance characteristics. Responses to circular Gabor filters have also been reported in literature as a successful tool for image classification; and in this particular application we utilize them for patient positioning in cranial radiotherapy. For test purposes, we use 2D portal images acquired with an electronic portal imaging device (EPID). Our method presents EPID-EPID registrations errors under 0.2 mm for translations and 0.05 deg for rotations (subpixel accuracy). We are using fiducial marker registration as the ground truth for comparisons. Registration times average 2.70 seconds based on 1400 feature points using a 1.4 GHz processor.

  8. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  9. On the rotating Letelier spacetime

    NASA Astrophysics Data System (ADS)

    Barbosa, D.; Bezerra, V. B.

    2016-11-01

    We construct the solution corresponding to a rotating black hole surrounded by a cloud of strings (Rotating Letelier spacetime) from its nonrotating counterpart (Letelier spacetime) by applying a method of coordinate complexification developed by Newman and Janis.

  10. Quantal radiation from macroscopic rotation

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Plujko, V.

    1988-09-01

    Macroscopic rotation of deformed excited nuclei may under certain conditions be accompanied by radiation of quasi-discrete gamma rays which resemble the cascade of transitions between nuclear rotational states.

  11. Room Temperature Line Lists for CO_2 Isotopologues with AB Initio Computed Intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil; Tennyson, Jonathan; Polyansky, Oleg; Lodi, Lorenzo; Zobov, Nikolay Fedorovich; Tashkun, Sergey; Perevalov, Valery

    2016-06-01

    We report 13 room temperature line lists for all major CO_2 isotopologues, covering 0-8000 wn. These line lists are a response to the need for line intensities of high, preferably sub-percent, accuracy by remote sensing experiments. Our scheme encompasses nuclear motion calculations supported by critical reliability analysis of the generated line intensities. Rotation-vibration wavefunctions and energy levels are computed using DVR3D and a high quality semi-empirical potential energy surface (PES) [1], followed by computation of intensities using a fully ab initio dipole moment surface (DMS). Cross comparison of line lists calculated using pairs of high-quality PES's and DMS's is used to assess imperfections in the PES, which lead to unreliable transition intensities between levels involved in resonance interactions. Four line lists are computed for each isotopologue to quantify sensitivity to minor distortions of the PES/DMS. This provides an estimate of the contribution to the overall line intensity error introduced by the underlying PES. Reliable lines are benchmarked against recent state-of-the-art measurements [2] and HITRAN-2012 supporting the claim that the majority of line intensities for strong bands are predicted with sub-percent accuracy [3]. Accurate line positions are generated using an effective Hamiltonian [4]. We recommend use of these line lists for future remote sensing studies and inclusions in databases. X. Huang, D. W. Schwenke, S. A. Tashkun, T. J. Lee, J. Chem. Phys. 136, 124311, 2012. O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, J. Tennyson, PRL, 114, 243001, 2015. E. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, S. A. Tashkun, V. I. Perevalov, JQSRT, in press and to be submitted. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, J. Lamouroux, JQSRT, 152, 45-73, 2015.

  12. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    NASA Technical Reports Server (NTRS)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.

  13. THE ROTATIONAL SPECTRUM OF HCl{sup +}

    SciTech Connect

    Gupta, H.; Drouin, B. J.; Pearson, J. C.

    2012-06-01

    The rotational spectrum of the radical ion HCl{sup +} has been detected at high resolution in the laboratory, confirming the identification reported in the accompanying Letter by De Luca et al., in diffuse clouds toward W31C and W49N. Three rotational transitions, one in the ground-state {sup 2}{Pi}{sub 3/2} ladder and two in the {sup 2}{Pi}{sub 1/2} ladder (643 cm{sup -1} above ground), were observed in a microwave discharge of He and HCl. Well-resolved chlorine hyperfine structure and {Lambda}-doubling, and the detection of lines of H{sup 37}Cl{sup +} at precisely the expected isotopic shift, provide conclusive evidence for the laboratory identification. Detection of rotational transitions in the {sup 2}{Pi}{sub 1/2} ladder of HCl{sup +} for the first time allows an experimental determination of the individual hyperfine coupling constants of chlorine and yields a precise value of eQq{sub 2}. The spectroscopic constants obtained by fitting a Hamiltonian simultaneously to our data and more than 8000 optical transitions are so precise that they allow us to calculate the frequencies of the {sup 2}{Pi}{sub 3/2} J = 5/2 - 3/2 transition observed in space to within 0.2 km s{sup -1}, and indeed, those of the strongest rotational transitions below 7.5 THz, to better than 1 km s{sup -1}.

  14. Rotation lightcurves of small jovian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Coley, Daniel; Wasserman, Lawrence H.; Sieben, Jennifer

    2015-07-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We present new lightcurve information for 19 Trojans ≲ 30 km in diameter, more than doubling the number of objects in this size range for which some rotation information is known. The minimum densities for objects with complete lightcurves are estimated and are found to be comparable to those measured for cometary nuclei. A significant fraction (∼40%) of this observed small Trojan population rotates slowly (P > 24 h), with measured periods as long as 375 h (Warner, B.D., Stephens, R.D. [2011]. Minor Planet Bull. 38, 110-111). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size. Concerted observations of a large number of Trojans could establish the spin barrier (Warner, B.D., Harris, A.W., Pravec, P. [2009]. Icarus 202, 134-146), making it possible to estimate densities for objects near the critical period.

  15. Rotational spectrum of tryptophan.

    PubMed

    Sanz, M Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, Josè L

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the (14)N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O-H···N hydrogen bond in the side chain and a N-H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  16. Rotatable seal assembly

    DOEpatents

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  17. Rotational spectrum of tryptophan

    SciTech Connect

    Sanz, M. Eugenia Cabezas, Carlos Mata, Santiago Alonso, Josè L.

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  18. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  19. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  20. Rotational Spectrum of Tryptophan

    NASA Astrophysics Data System (ADS)

    Sanz, M. Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, José L.

    2014-06-01

    The rotational spectrum of the natural amino acid tryptophan has been observed using a recently constructed LA-MB-FTMW spectrometer, specifically designed to optimize the detection of heavier molecules at a lower frequency range. Independent analyses of the rotational spectra of individual conformers have conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The experimental values of the 14N nuclear quadrupole coupling constants have been found capital in the discrimination of the conformers. Both observed conformers are stabilized by a O-H\\cdotsN hydrogen bond in the side chain and a N-H\\cdotsπ interaction forming a chain that reinforces the strength of hydrogen bonds through cooperative effects.

  1. Solar Internal Rotation

    NASA Astrophysics Data System (ADS)

    Schou, J.; SOE Internal Rotation Team

    With the flood of high quality helioseismic data from the instruments on the SOHO spacecraft (MDI/VIRGO/GOLF) and ground based instruments (eg. GONG and LOWL) we have been able to get increasingly detailed information on the rotation and other large scale flows in the solar interior. In this talk I will discuss some of the highlights of what we have learned so far and what we may expect to learn in the near future. Among the recent advances have been tighter constraints on the tachocline at the bottom of the convection zone, detection of details in the surface rotation rate similar to the torsional oscillations found in the surface Doppler shift and helioseismic evidence for meridional flows. The MDI project is supported by NASA contract NAG5-3077 at Stanford University.

  2. Earth rotation and geodynamics

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  3. Intestinal Rotation Anomalies.

    PubMed

    Pelayo, Juan Carlos; Lo, Andrea

    2016-07-01

    Intestinal rotation abnormality (IRA) predisposes to lethal midgut volvulus. An understanding of intestinal development illustrates the process of normal intestinal rotation and fixation. An appreciation of the clinical presentation and consequences of missed IRA will enhance clinical suspicion and timely evaluation. Selecting the appropriate imaging modality to diagnose IRA requires an understanding of the benefits and limitations of each. The Ladd's procedure continues to be the appropriate surgical treatment for IRA with or without volvulus. Laparoscopy has emerged as an option for the diagnosis and treatment of IRA. Populations in which IRA is always associated, but a Ladd's procedure rarely required, include patients with congenital diaphragmatic hernia and abdominal wall defects. Prevalence of IRA is higher in children with congenital heart disease and heterotaxy syndrome; asymptomatic patients require multidisciplinary consideration of the risks and benefits of screening for IRA, whether a Ladd's procedure is required, and the timing thereof. [Pediatr Ann. 2016;45(7):e247-e250.]. PMID:27403672

  4. A call for rotators

    NASA Astrophysics Data System (ADS)

    Mountain, Gregory

    “Needed: highly motivated geoscientists willing to slow the pace of their research for 1-2 years while managing federal government support of their discipline. Assured: change of perspective; no change in pay. Contact your National Science Foundation Program Director for details.—No, this isn't an NSF job announcement; this is an open letter to members of the Earth science community from a recently “retired” NSF rotator concerned by the small number of researchers interested in a Washington tour. I learned firsthand the extent to which an individual in this position is entrusted with decision-making powers, and as a result, I believe that each of us in the research community should feel responsible for ensuring that highly qualified people serve as rotators.

  5. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  6. Rotating housing turbine

    DOEpatents

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  7. Chaotic Rotation of Nereid

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The shape and spin of Neptune's outermost satellite Nereid are still unknown. Ground-based photometry indicates large brightness variations, but different observers report very different lightcurve amplitudes and periods. On the contrary, Voyager 2 images spanning 12 days show no evidence of variations greater than 0.1 mag. The latter suggest either that Nereid is nearly spherical, or that it is rotating slowly. We propose that tides have already despun Nereid's rotation to a period of a few weeks, during the time before the capture of Triton when Nereid was closer to Neptune. Since Nereid reached its present orbit, tides have further despun Nereid to a period on the order of a month. For Nereid's orbital eccentricity of 0.75, tidal evolution ceases when the spin period is still approximately 1/8 of the orbital period. Furthermore, the synchronous resonance becomes quite weak for such high eccentricities, along with other low-order spin orbit commensurabilities. In contrast, high-order resonances become very strong particularly the 6:1, 6.5:1, 7:1, 7.5:1, and 8:1 spin states. If Nereid departs by more than approximately 1% from a sphere, however, these resonances overlap, generating chaos. Our simulations show that Nereid is likely to be in chaotic rotation for any spin period longer than about 2 weeks.

  8. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  9. On the Product of Rotations

    ERIC Educational Resources Information Center

    Trenkler, G.; Trenkler, D.

    2008-01-01

    Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…

  10. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  11. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  12. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  13. Rotational alignment of the tibial component in total knee arthroplasty

    PubMed Central

    Graceffa, Angelo; Marcucci, Massimiliano; Baldini, Andrea

    2016-01-01

    Many surgical techniques, correlated to different anatomical landmarks, have been proposed to allow a satisfactory rotational alignment of the tibial component in primary total knee arthroplasty (TKA). Unfortunately, an accurate landmark has not yet been established although many computer models using CT reconstructions and standard radiologic studies have been performed. In this review article, the authors propose a new anatomical rotational reference for a correct positioning of the tibial component during primary TKA; the authors compared the results of their studies with the current literature on rotational alignment references and previously proposed surgical techniques. The authors also analyzed the correlation between classic and newer tibial baseplate designs and different tibial rotational landmarks. PMID:26855939

  14. Rotation of cometary meteoroids

    NASA Astrophysics Data System (ADS)

    Čapek, D.

    2014-08-01

    Aims: The rotation of meteoroids caused by gas drag during the ejection from a cometary nucleus has not been studied yet. The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. Methods: The basic dependence of spin rate on ejection velocity and meteoroid size is determined analytically. A sophisticated numerical model is then applied to meteoroids ejected from the 2P/Encke comet. The meteoroid shapes are approximated by polyhedrons, which have been determined by a 3D laser scanning method of 36 terrestrial rock samples. These samples come from three distinct sets with different origins and characteristics, such as surface roughness or angularity. Two types of gas-meteoroid interactions and three gas ejection models are assumed. The rotational characteristics of ejected meteoroid population are obtained by numerical integration of equations of motion with random initial conditions and random shape selection. Results: It is proved that the results do not depend on a specific set of shape models and that they are applicable to the (unknown) shapes of real meteoroids. A simple relationship between the median of meteoroid spin frequencies bar{f} (Hz), ejection velocities vej (m s-1), and sizes D (m) is determined. For diffuse reflection of gas molecules from meteoroid's surface it reads as bar{f≃ 2× 10-3 v_ej D-0.88}, and for specular reflection of gas molecules from meteoroid's surface it is bar{f≃ 5× 10-3 v_ej D-0.88}. The distribution of spin frequencies is roughly normal on log scale, and it is relatively wide: a 2σ-interval can be described as (0.1, 10)× bar{f}. Most of the meteoroids are non-principal axis rotators. The median angle between angular momentum vector and spin vector is 12°. About 60% of meteoroids rotate in long-axis mode. The distribution of angular momentum vectors is not random. They are concentrated in the perpendicular direction with respect to the gas

  15. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  16. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  17. Rotational spectroscopy of pyridazine and its isotopologs from 235-360 GHz: equilibrium structure and vibrational satellites.

    PubMed

    Esselman, Brian J; Amberger, Brent K; Shutter, Joshua D; Daane, Mitchell A; Stanton, John F; Woods, R Claude; McMahon, Robert J

    2013-12-14

    The rotational spectrum of pyridazine (o-C4H4N2), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-(13)C]-C4H4N2, [4-(13)C]-C4H4N2, and [1-(15)N]-C4H4N2, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (Re) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final Re structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (Ia and Ib for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to be in excellent agreement with ones predicted from coupled-cluster calculations, which proved to be the key

  18. Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites

    SciTech Connect

    Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.; Daane, Mitchell A.; Woods, R. Claude; McMahon, Robert J.; Stanton, John F.

    2013-12-14

    The rotational spectrum of pyridazine (o-C{sub 4}H{sub 4}N{sub 2}), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, [4-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, and [1-{sup 15}N]-C{sub 4}H{sub 4}N{sub 2}, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (R{sub e}) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final R{sub e} structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (I{sub a} and I{sub b} for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to

  19. Rotation and Rotation-Vibration Spectroscopy of the 0+-0- Inversion Doublet in Deuterated Cyanamide

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Kraśnicki, Adam; Jabs, Wolfgang; Herbst, Eric; Winnewisser, Brenda P.; Winnewisser, Manfred

    2013-10-01

    The pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm-1. For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0+ and 0- substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0+ - 0- coupling. A smaller data set, consisting only of pure rotation and rotation-vibration lines observed with microwave techniques was obtained for HDNCN, and additional transitions of this type were also measured for H2NCN. The spectroscopic data for all three isotopic species were fitted with a unified, robust Hamiltonian allowing confident prediction of spectra well into the terahertz frequency region, which is of interest to contemporary radioastronomy. The isotopic dependence of the determined inversion splitting, -E = 16.4964789(8), 32.089173(3), and 49.567770(6) cm-1, for D2NCN, HDNCN, and H2NCN, respectively, is found to be in good agreement with estimates from a simple reduced quartic-quadratic double minimum potential.

  20. Basic principles and recent observations of rotationally sampled wind

    NASA Technical Reports Server (NTRS)

    Connell, James R.

    1995-01-01

    The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.

  1. Onset of rotational damping in superdeformed nuclei

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Matsuo, M.

    1997-02-01

    We discuss damping of the collective rotational motion in A ˜ 150 superdeformed nuclei by means of a shell-model combining the cranked Nilsson mean field and the surface and volume delta two-body residual forces. It is shown that, because of the shell structure associated with the superdeformed mean field, onset energy of the rotational damping becomes Ex ˜ 1.5-3 MeV above the yrast line, with significant variation for different neutron and proton numbers. The mechanism of the shell structure effect is investigated through detailed analysis of level densities in superdeformed nuclei. The variation in onset of damping is associated with variation in the single-particle structure at the Fermi surface.

  2. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  3. Accurate spectral modeling for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gupta, S. K.

    1977-01-01

    Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.

  4. Computed Tomography Analysis of Postsurgery Femoral Component Rotation Based on a Force Sensing Device Method versus Hypothetical Rotational Alignment Based on Anatomical Landmark Methods: A Pilot Study.

    PubMed

    Kreuzer, Stefan W; Pourmoghaddam, Amir; Leffers, Kevin J; Johnson, Clint W; Dettmer, Marius

    2016-01-01

    Rotation of the femoral component is an important aspect of knee arthroplasty, due to its effects on postsurgery knee kinematics and associated functional outcomes. It is still debated which method for establishing rotational alignment is preferable in orthopedic surgery. We compared force sensing based femoral component rotation with traditional anatomic landmark methods to investigate which method is more accurate in terms of alignment to the true transepicondylar axis. Thirty-one patients underwent computer-navigated total knee arthroplasty for osteoarthritis with femoral rotation established via a force sensor. During surgery, three alternative hypothetical femoral rotational alignments were assessed, based on transepicondylar axis, anterior-posterior axis, or the utilization of a posterior condyles referencing jig. Postoperative computed tomography scans were obtained to investigate rotation characteristics. Significant differences in rotation characteristics were found between rotation according to DKB and other methods (P < 0.05). Soft tissue balancing resulted in smaller deviation from anatomical epicondylar axis than any other method. 77% of operated knees were within a range of ±3° of rotation. Only between 48% and 52% of knees would have been rotated appropriately using the other methods. The current results indicate that force sensors may be valuable for establishing correct femoral rotation. PMID:26881086

  5. Novel rotating field probe for inspection of tubes

    SciTech Connect

    Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S.

    2012-05-17

    Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

  6. On the importance of having accurate data for astrophysical modelling

    NASA Astrophysics Data System (ADS)

    Lique, Francois

    2016-06-01

    The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.

  7. IMPROVED LINE DATA FOR THE SWAN SYSTEM {sup 12}C{sup 13}C ISOTOPOLOGUE

    SciTech Connect

    Ram, Ram S.; Brooke, James S. A.; Bernath, Peter F.; Sneden, Christopher; Lucatello, Sara E-mail: rr662@york.ac.uk E-mail: chris@verdi.as.utexas.edu

    2014-03-01

    We present new, accurate predictions for rotational line positions, excitation energies, and transition probabilities of the {sup 12}C{sup 13}C isotopologue Swan d{sup 3}Π-a{sup 3}Π system 0-0, 0–1, 0–2, 1–0, 1–1, 1–2, 2–0, 2–1, and 2–2 vibrational bands. The line positions and energy levels were predicted through new analyses of published laboratory data for the {sup 12}C{sup 13}C lines. Transition probabilities were derived from recent computations of transition dipole moments and related quantities. The {sup 12}C{sup 13}C line data were combined with similar data for {sup 12}C{sub 2,} reported in a companion paper, and applied to produce synthetic spectra of carbon-rich metal-poor stars that have strong C{sub 2} Swan bands. The matches between synthesized and observed spectra were used to estimate band head positions for a few of the {sup 12}C{sup 13}C vibrational bands and to verify that the new computed line data match observed spectra. The much weaker C{sub 2} lines of the bright red giant Arcturus were also synthesized in the band head regions.

  8. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  9. Rotating-Pump Design Code

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Chen, Shu-Cheng; Scheer, Dean D.

    2006-01-01

    Pump Design (PUMPDES) is a computer program for designing a rotating pump for liquid hydrogen, liquid oxygen, liquid nitrogen, water, methane, or ethane. Using realistic properties of these fluids provided by another program called GASPAK, this code performs a station-by-station, mean-line analysis along the pump flow path, obtaining thermodynamic properties of the pumped fluid at each station and evaluating hydraulic losses along the flow path. The variables at each station are obtained under constraints that are consistent with the underlying physical principles. The code evaluates the performance of each stage and the overall pump. In addition, by judiciously choosing the givens and the unknowns, the code can perform a geometric inverse design function: that is, it can compute a pump geometry that yields a closest approximation of given design point. The code contains two major parts: one for an axial-rotor/inducer and one for a multistage centrifugal pump. The inducer and the centrifugal pump are functionally integrated. The code can be used in designing and/or evaluating the inducer/centrifugal-pump combination or the centrifugal pump alone. The code is written in standard Fortran 77.

  10. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  11. Rotational excitation of formaldehyde by hydrogen molecules: ortho-H_2CO at low temperature

    NASA Astrophysics Data System (ADS)

    Troscompt, N.; Faure, A.; Wiesenfeld, L.; Ceccarelli, C.; Valiron, P.

    2009-01-01

    Aims: Rate coefficients for the rotational excitation of the ten lowest levels of ortho-H_2CO by collisions with H2 molecules are computed for kinetic temperatures in the range 5-100 K. Methods: Cross sections are obtained from extensive, fully converged, quantum-mechanical scattering calculations using a highly accurate potential energy surface computed at the CCSD(T) level with a basis set extrapolation procedure. Scattering calculations are carried out for H2 molecules in both para and ortho rotational levels. Results: The present rates are shown to differ significantly from those available in the literature. Moreover, the strength of propensity rules is found to depend on the para/ortho form of H2. Radiative transfer modeling also shows that the new rates have a significant impact on H_2CO emission line fluxes and that they should be adopted in any detailed radiative transfer model of ortho-H_2CO in cold environments (T ⪉ 30 K). This paper is dedicated to the memory of our friend and colleague, Pierre Valiron, who died on 31 August 2008. Table of rate coefficients is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/687

  12. Magnetopause rotational forms

    NASA Technical Reports Server (NTRS)

    Sonnerup, B. U. O.; Ledley, B. G.

    1974-01-01

    Magnetic field data from the Goddard Space Flight Center magnetometer experiment on board Ogo 5 are analyzed by the minimum-variance technique for two magnetopause crossings, believed to provide the best evidence presently available of magnetopause rotational discontinuities. Approximate agreement with predictions from MHD and first-order orbit theory is found, but available low-energy electron data suggest the presence of significant non-MHD effects. The paper also illustrates an improved method for data interval selection, a new magnetopause hodogram representation, and the utility of data simulation.

  13. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  14. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  15. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  16. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  17. An accurate mass and radius measurement for an ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Bergeron, P.; Copperwheat, C. M.; Dhillon, V. S.; Bento, J.; Littlefair, S. P.; Schreiber, M. R.

    2012-11-01

    Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disc of 8-9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii and atmospheric composition. So far, these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions in conjunction with a theoretical mass-radius relation. However, the mass-radius relation remains largely untested, and the derived cooling ages are hence model dependent. Here we report direct measurements of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54-001621.6. We find MWD = 0.529 ± 0.010 M⊙ and RWD = 0.0131 ± 0.0003 R⊙. Our measurements are consistent with the mass-radius relation and we determine a robust cooling age of 9.5 billion years for the 3570 K white dwarf. We find that the mass and radius of the low-mass companion star, Msec = 0.132 ± 0.003 M⊙ and Rsec = 0.165 ± 0.001 R⊙, are in agreement with evolutionary models. We also find evidence that this >9.5 Gyr old M5 star is still active, far beyond the activity lifetime for a star of its spectral type. This is likely caused by the high tidally enforced rotation rate of the star. The companion star is close to filling its Roche lobe and the system will evolve into a cataclysmic variable in only 70 Myr. Our direct measurements demonstrate that this system can be used to calibrate ultracool white dwarf atmospheric models.

  18. Line-Shape Transition of Collision Broadened Lines

    NASA Astrophysics Data System (ADS)

    Harde, H.; Katzenellenbogen, N.; Grischkowsky, D.

    1995-02-01

    Using the newly developed technique of THz time-domain spectroscopy, we have measured the far-wing absorption line profile of the ensemble of collision broadened ground state rotational lines of methylchloride vapor out to more than 200 linewidths from resonance, corresponding to frequency offsets as much as 5× the resonant frequency. On these far wings the measured absorption is approximately an order of magnitude less than that predicted by the van Vleck-Weisskopf theory. Our observations show that at higher frequencies a transition occurs from the regime of the van Vleck-Weisskopf theory to the regime of the Lorentz theory.

  19. Rotational Temperature Measurements in an RF Discharge by Using CO Rotational Emission Spectrum

    NASA Astrophysics Data System (ADS)

    Dinh, T.; Popović, S.; Vušković, L.

    2001-10-01

    Gas temperature is a necessary parameter needed to establish the kinetic model of a gas discharge. In order to verify the possible perturbation and distortion of temperature of the RF discharge to the thermocouple probe, we performed the emission spectroscopy analysis based on the rotational intensity distribution of CO bands to obtain highly accurate discharge temperature measurements. In our experiment, a well defined gas mixture with 95% of CO2 and pressure 4-6 Torr flowed transversely to the applied RF field between two parallel circular stainless steel disks with diameters of 2.54 cm and a discharge gap of 0.4-1.0 cm. The driven RF field had the frequency of 20-40 MHz and the power delivered to discharge was 1-5 W. It was possible in this discharge conditions to use the Angstrom Band (B^1Σ^+-A^1Π e.g. 519.8 nm, 451.0 nm) in the visible emission spectrum of CO to analyze the discharge temperature. The Q branch within B^1Σ^+-A^1Π transition, which corresponds to ΔJ=3D0 and has the most intense distribution profile, was used to identify the rotational quantum numbers. The higher rotational quantum numbers were used during the fitting in order to eliminate the possible overlap with P and R branches. The rotational temperature of the RF discharge in the gas mixture was compared to the temperature measured by thermocouple probe.

  20. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    SciTech Connect

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D.

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  1. A study of rotational velocity distribution of Be stars

    NASA Astrophysics Data System (ADS)

    Sitko, C.; Janot-Pacheco, E.; Emilio, M.

    2014-10-01

    Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. In spite of their high vsin i, rapid rotation alone cannot explain the ejection episodes as most Be stars do not rotate at their critical rotation rates. In this work we present the distribution of vsin i of 261 Be's stars from BeSS (Be Star Spectra) database. We used two techniques, the Fourier method and the FWHM (Full Width at Half Maximum) method. For the analysis we made use of three absorption lines of Helium (4026r A, 4388 Å and 4471 Å). Stars with projected rotational velocities up to 300 km s^{-1} agree with the ones already published in the literature. 84 of our stars do not have the values of rotational velocity published. The majority of our sample are B1/B2 spectral type, whose have the greatest velocities.

  2. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  3. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  4. Revealing cosmic rotation

    NASA Astrophysics Data System (ADS)

    Yadav, Amit P. S.; Shimon, Meir; Keating, Brian G.

    2012-10-01

    Cosmological Birefringence, a rotation of the polarization plane of radiation coming to us from distant astrophysical sources, may reveal parity violation in either the electromagnetic or gravitational sectors of the fundamental interactions in nature. Until only recently this phenomenon could be probed with only radio observations or observations at UV wavelengths. Recently, there is a substantial effort to constrain such nonstandard models using observations of the rotation of the polarization plane of cosmic microwave background (CMB) radiation. This can be done via measurements of the B-modes of the CMB or by measuring its TB and EB correlations which vanish in the standard model. In this paper we show that EB correlations-based estimator is the best for upcoming polarization experiments. The EB-based estimator surpasses other estimators because it has the smallest noise and of all the estimators is least affected by systematics. Current polarimeters are optimized for the detection of B-mode polarization from either primordial gravitational waves or by large-scale structures via gravitational lensing. In the paper we also study the optimization of CMB experiments for the detection of cosmological birefringence, in the presence of instrumental systematics, which by themselves are capable of producing EB correlations, potentially mimicking cosmological birefringence.

  5. Rotating drum filter

    DOEpatents

    Anson, Donald

    1990-01-01

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  6. Digital rotation measurement unit

    DOEpatents

    Sanderson, S.N.

    1983-09-30

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  7. Rotator Cerclage Technique for Partial Rotator Cuff Ruptures

    PubMed Central

    Bozkurt, Murat; Firat, Ahmet; Gursoy, Safa; Akkaya, Mustafa

    2015-01-01

    The frequency of partial rotator cuff tears is gradually increasing because of the advancements in imaging methods and arthroscopy techniques. One of the repair techniques is repair of the partial rotator cuff tear by conversion to a full-thickness tear. Another technique, the transtendon technique, has some practical challenges and risks. We attempted to develop a practical and easy technique with low morbidity to repair partial tears called the rotator cerclage technique. PMID:26900559

  8. Vibrationally and rotationally nonadiabatic calculations on H3+ using coordinate-dependent vibrational and rotational masses

    NASA Astrophysics Data System (ADS)

    Diniz, Leonardo G.; Mohallem, José Rachid; Alijah, Alexander; Pavanello, Michele; Adamowicz, Ludwik; Polyansky, Oleg L.; Tennyson, Jonathan

    2013-09-01

    Using the core-mass approach, we have generated a vibrational-mass surface for the triatomic H3+. The coordinate-dependent masses account for the off-resonance nonadiabatic coupling and permit a very accurate determination of the rovibrational states using a single potential energy surface. The new, high-precision measurements of 12 rovibrational transitions in the ν2 bending fundamental of H3+ by Wu [Phys. Rev. A1050-294710.1103/PhysRevA.88.032507 88, 032507 (2013)] are used to scale this surface empirically and to derive state-dependent vibrational and rotational masses that reproduce the experimental transition energies to 10-3cm-1. Rotational term values for J≤10 are presented for the two lowest vibrational states and equivalent transitions in D3+ considered.

  9. Visualizing rotations and composition of rotations with the Rodrigues vector

    NASA Astrophysics Data System (ADS)

    Valdenebro, Angel G.

    2016-11-01

    The purpose of this paper is to show that the mathematical treatment of three-dimensional rotations can be simplified, and its geometrical understanding improved, using the Rodrigues vector representation. We present a novel geometrical interpretation of the Rodrigues vector. Based on this interpretation and simple geometrical considerations, we derive the Euler-Rodrigues formula, Cayley’s rotation formula and the composition law for finite rotations. The level of this discussion should be suitable for undergraduate physics or engineering courses where rotations are discussed.

  10. Bifurcations of rotating waves in rotating spherical shell convection.

    PubMed

    Feudel, F; Tuckerman, L S; Gellert, M; Seehafer, N

    2015-11-01

    The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.

  11. Purcell's ``rotator'': mechanical rotation at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Dreyfus, R.; Baudry, J.; Stone, H. A.

    2005-09-01

    An object consisting of three spheres, linked like the spokes on a wheel, can undergo a net rotational movement when the relative positions of the spheres proceed through a four-step cycle. This rotational motion is the analogue of the two-hinged swimmer originally proposed by Purcell (1977), which has served as a prototype for mechanical implementations of swimming. We also note that the rotational motion analysed here may be useful in the design of micromachines and has similarities to molecular-scale rotational motors that have been identified recently.

  12. A computer program for a line-by-line calculation of spectra from diatomic molecules and atoms assuming a Voight line profile

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Lyle, G. C.; Whiting, E. E.

    1969-01-01

    Computer program predicts the spectra resulting from electronic transitions of diatomic molecules and atoms in local thermodynamic equilibrium. The program produces a spectrum by accounting for the contribution of each rotational and atomic line considered.

  13. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  14. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  15. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability.

  16. service line analytics in the new era.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-08-01

    To succeed under the value-based business model, hospitals and health systems require effective service line analytics that combine inpatient and outpatient data and that incorporate quality metrics for evaluating clinical operations. When developing a framework for collection, analysis, and dissemination of service line data, healthcare organizations should focus on five key aspects of effective service line analytics: Updated service line definitions. Ability to analyze and trend service line net patient revenues by payment source. Access to accurate service line cost information across multiple dimensions with drill-through capabilities. Ability to redesign key reports based on changing requirements. Clear assignment of accountability. PMID:26548137

  17. Coronal Rotation at Solar Minimum from UV Observations

    NASA Technical Reports Server (NTRS)

    Mancuso, S.

    2008-01-01

    UVCS/SOHO observations have been analyzed to reconstruct intensity time series of the O VI 1032 A and H 11216 A spectral lines at different coronal heliolatitudes from 1.5 to 3.0 solar radii from Sun center. Evidence was found for coronal differential rotation that differs significantly from that of the photospheric plasma. The study of the latitudinal variation shows that the UV corona decelerates toward the photospheric rates from the equator up to the poleward boundary 2 of the midlatitude streamers, reaching a peak of 28.16+/-0.20 days around +30 from the equator at 1.5 solar radii, while a less evident peak is observed in the northern hemisphere. This result suggests a real north-south rotational asymmetry as a consequence of different activity and weak coupling between the magnetic fields of the two hemispheres. The study of the radial rotation profiles shows that the corona is rotating almost rigidly with height.

  18. The Rotational Excitation Temperature of the 6614 DIB Carrier

    NASA Technical Reports Server (NTRS)

    Cami, J.; Salama, F.; Jimenez-Vicente, J.; Galazutdinov, G.; Krelowski, J.

    2004-01-01

    Analysis of high spectral resolution observations of the lambda6614 DIB line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations can only be understood in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is of the order 10-40 K - much lower than the gas kinetic temperature - indicating that for this particular DIB carrier angular momentum buildup is not very efficient. The rotational constant indicates that the carrier of this DIB is smaller than previously assumed:7-22 C atoms, depending on the geometry.

  19. Solving the "Hidden Line" Problem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    David Hedgley Jr., a mathematician at Dryden Flight Research Center, has developed an accurate computer program that considers whether a line in a graphic model of a three dimensional object should or should not be visible. The Hidden Line Computer Code, program automatically removes superfluous lines and permits the computer to display an object from specific viewpoints, just as the human eye would see it. Users include Rowland Institute for Science in Cambridge, MA, several departments of Lockheed Georgia Co., and Nebraska Public Power District (NPPD).

  20. Rotational and rotationless states of weakly bound molecules

    SciTech Connect

    Lemeshko, Mikhail; Friedrich, Bretislav

    2009-05-15

    By making use of the quantization rule of Raab and Friedrich [Phys. Rev. A 78, 022707 (2008)], we derive simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level of a diatomic molecule and the rotational constants of any such levels up to the threshold, and provide a criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend solely on the long-range part of the molecular potential and are applicable to halo molecules.

  1. Torque on a sphere inside a rotating cylinder.

    NASA Technical Reports Server (NTRS)

    Mena, B.; Levinson, E.; Caswell, B.

    1972-01-01

    A circular cylinder of finite dimensions is made to rotate around a sphere fixed in the center of the cylinder. The couple on the sphere is measured over a wide range of rotational speeds for both Newtonian and non-Newtonian fluids. For the Newtonian liquids a comparison of the experimental results is made with Collins' (1955) expansion of the couple as a series in even powers of the angular Reynolds number. For non-Newtonian liquids the apparatus proves to be extremely useful for an accurate determination of the zero shear rate viscosity using only a small amount of fluid.

  2. Experimental and numerical investigation of energy dissipation in elastomeric rotational joint under harmonic loading

    NASA Astrophysics Data System (ADS)

    Jrad, Hanen; Dion, Jean Luc; Renaud, Franck; Tawfiq, Imad; Haddar, Mohamed

    2016-10-01

    This paper focuses on energy losses caused by inner damping and friction in an elastomeric rotational joint. A description of the design of a new experimental device intended to characterize dynamic stiffness in rotational elastomeric joint is presented. An original method based on Lagrange's equations, which allows accurately measuring forces and torques only with accelerometers, is proposed in order to identify dissipated energy in the rotational elastomeric joint. A rheological model developed taking into account dependence of the torque and the angular displacement (rotation). Experimental results and simulations used to quantify the dissipated energy in order to evaluate the damping ratio are presented and discussed.

  3. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  4. Rotation of venus: continuing contradictions.

    PubMed

    Smith, B A

    1967-10-01

    Optical observations of Venus have yielded various values of the rotation period extending from less than one to several hundred days. Radar observations give a retrograde rotation of the solid globe in 244 +/- 2 days. Recent ultraviolet photographs, however, show relatively rapid displacements of clouds in the high atmosphere of Venus which suggest a retrogrode rotation in only 5 days. The two rates seem to be physically incompatible.

  5. Accurate Drawbead Modeling in Stamping Simulations

    NASA Astrophysics Data System (ADS)

    Sester, M.; Burchitz, I.; Saenz de Argandona, E.; Estalayo, F.; Carleer, B.

    2016-08-01

    An adaptive line bead model that continually updates according to the changing conditions during the forming process has been developed. In these calculations, the adaptive line bead's geometry is treated as a 3D object where relevant phenomena like hardening curve, yield surface, through thickness stress effects and contact description are incorporated. The effectiveness of the adaptive drawbead model will be illustrated by an industrial example.

  6. A numerical strategy for modelling rotating stall in core compressors

    NASA Astrophysics Data System (ADS)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary

  7. The Wilson-Bappu effect of the MgII K line - dependence on stellar temperature, activity and metallicity

    NASA Astrophysics Data System (ADS)

    Elgarøy, Øystein; Engvold, Oddbjørn; Lund, Niels

    1999-03-01

    The Wilson-Bappu effect is investigated using accurate absolute magnitudes of 65 stars obtained through early release of data from the Hipparcos satellite together with MgII k line widths determined from high resolution spectra observed with the International Ultraviolet Explorer (IUE) observatory. Stars of spectral classes F, G, K and M and luminosity classes I-V are represented in the sample. Wilson-Bappu relations for the Mg II k line for stars of different temperatures i.e. spectral classes are determined. The relation varies with spectral class and there is a significant scatter of the line widths around the regression lines. The sample contains slowly rotating stars of different activity levels and is suitable for investigations of a possible relation between line width and stellar activity. A difference in behavior between dwarfs and giants (and supergiants) of spectral class K seems to be present. Magnetic activity affects the width of the Mg II k line in dwarfs. Metallicity is found to influence the Mg II k line width in giants and supergiants. Possible interpretations of the new results are briefly discussed.

  8. Rotating black droplet

    NASA Astrophysics Data System (ADS)

    Fischetti, Sebastian; Santos, Jorge E.

    2013-07-01

    We construct the gravitational dual, in the Unruh state, of the "jammed" phase of a CFT at strong coupling and infinite N on a fixed five-dimensional rotating Myers-Perry black hole with equal angular momenta. When the angular momenta are all zero, the solution corresponds to the five-dimensional generalization of the solution first studied in [1]. In the extremal limit, when the angular momenta of the Myers-Perry black hole are maximum, the Unruh, Boulware and Hartle-Hawking states degenerate. We give a detailed analysis of the corresponding holographic stress energy tensor for all values of the angular momenta, finding it to be regular at the horizon in all cases. We compare our results with existent literature on thermal states of free field theories on black hole backgrounds.

  9. Asteroid Ida Rotation Sequence

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  10. PLT rotating pumped limiter

    SciTech Connect

    Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.

    1984-07-01

    A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.

  11. The Rapidly Rotating Sun

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l < 60. The observationally constrained kinetic energy is approximately a thousandth of the theoretical prediction, suggesting the prevalence of an intrinsically different paradigm of turbulence. A fundamental question arises: what mechanism of turbulence transports the heat ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.

  12. Can Appraisers Rate Work Performance Accurately?

    ERIC Educational Resources Information Center

    Hedge, Jerry W.; Laue, Frances J.

    The ability of individuals to make accurate judgments about others is examined and literature on this subject is reviewed. A wide variety of situational factors affects the appraisal of performance. It is generally accepted that the purpose of the appraisal influences the accuracy of the appraiser. The instrumentation, or tools, available to the…

  13. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  14. Biologics in rotator cuff surgery

    PubMed Central

    Schär, Michael O; Rodeo, Scott A

    2014-01-01

    Pathologies of the rotator cuff are by far the most common cause of shoulder dysfunction and pain. Even though reconstruction of the rotator cuff results in improved clinical outcome scores, including decreased pain, several studies report high failure rates. Orthopaedic research has therefore focused on biologically augmenting the rotator cuff reconstruction and improving tendon–bone healing of the rotator cuff. This biological augmentation has included the application of different platelet concentrates containing growth factors, mesenchymal stem cells, scaffolds and a combination of the above. The present review provides an overview over the biological augmentation options based upon current evidence. PMID:27582941

  15. Plasma rotation induced by RF

    SciTech Connect

    Chan, V. S.; Chiu, S. C.; Lin-Liu, Y. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698; Omelchenko, Y. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698

    1999-09-20

    Plasma rotation has many beneficial effects on tokamak operation including stabilization of MHD and microturbulence to improve the beta limit and confinement. Contrary to present-day tokamaks, neutral beams may not be effective in driving rotation in fusion reactors; hence the investigation of radiofrequency (RF) induced plasma rotation is of great interest and potential importance. This paper reviews the experimental results of RF induced rotation and possible physical mechanisms, suggested by theories, to explain the observations. This subject is only in the infancy of its research and many challenging issues remained to be understood and resolved. (c) 1999 American Institute of Physics.

  16. Electronic Control Of Slow Rotations

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.

    1992-01-01

    Digital/analog circuit controls both angular position and speed of rotation of motor shaft with high precision. Locks angular position of motor to phase of rotation-command clock signal at binary submultiple of master clock signal. Circuit or modified version used to control precisely position and velocity of robotic manipulator, to control translation mechanism of crystal-growing furnace, to position hands of mechanical clock, or to control angular position and rate of rotation in any of large variety of rotating mechanisms.

  17. Highly Accurate Quantum-Chemical Calculations for the Interstellar Molecules C_3 and l-C_3H^+

    NASA Astrophysics Data System (ADS)

    Botschwina, Peter; Schröder, Benjamin; Stein, Christopher; Sebald, Peter; Oswald, Rainer

    2014-06-01

    Composite potential energy surfaces with coupled-cluster contributions up to CCSDTQP were constructed for C_3 and l-C_3H^+ and used in the calculation of spectroscopic properties. The use of very large AO basis sets and the consideration of higher-order correlation beyond CCSD(T) is of utmost importance for C_3 in order to arrive at quantitative spectroscopic data. The first detection of l-C_3H^+ in the interstellar medium was reported by Pety et al., who attributed 9 radio lines observed in the horsehead photodissociation region to that species. That assignment was questioned by the recent theoretical work of Huang et al. However, our more accurate calculations are well in support of the original assignment. The calculated ground-state rotational constant is B_0 = 11248 MHz, only 0.03% off from the radio astronomical value of 11244.9512±0.0015 MHz. The ratio of centrifugal distortion constants D_0(exp.)/D_e(theor.) of 1.8 is quite large, but reasonable in comparison with C_3O and C_3. J. Pety, P. Gratier, V. Guzmán, E. Roueff, M. Gerin et al., Astron. Astrophys. 2012, A68, 1-8. X. Huang, R. C. Fortenberry, T. J. Lee, Astrophys. J. Lett. 2013, 768:L25, 1-5. P. Botschwina, R. Oswald, J. Chem. Phys. 2008, 129, 044305

  18. Effective Temperatures of Selected Main-Sequence Stars with the Most Accurate Parameters

    NASA Astrophysics Data System (ADS)

    Soydugan, F.; Eker, Z.; Soydugan, E.; Bilir, S.; Gökçe, E. Y.; Steer, I.; Tüysüz, M.; Šenyüz, T.; Demircan, O.

    2015-07-01

    In this study we investigate the distributions of the properties of detached double-lined binaries (DBs) in the mass-luminosity, mass-radius, and mass-effective temperature diagrams. We have improved the classical mass-luminosity relation based on the database of DBs by Eker et al. (2014a). Based on the accurate observational data available to us we propose a method for improving the effective temperatures of eclipsing binaries with accurate mass and radius determinations.

  19. Inverse Magnus effect on a rotating sphere

    NASA Astrophysics Data System (ADS)

    Kim, Jooha; Park, Hyungmin; Choi, Haecheon; Yoo, Jung Yul

    2011-11-01

    In this study, we investigate the flow characteristics of rotating spheres in the subcritical Reynolds number (Re) regime by measuring the drag and lift forces on the sphere and the two-dimensional velocity in the wake. The experiment is conducted in a wind tunnel at Re = 0 . 6 ×105 - 2 . 6 ×105 and the spin ratio (ratio of surface velocity to the free-stream velocity) of 0 (no spin) - 0.5. The drag coefficient on a stationary sphere remains nearly constant at around 0.52. However, the magnitude of lift coefficient is nearly zero at Re < 2 . 0 ×105 , but rapidly increases to 0.3 and then remains constant with further increasing Reynolds number. On the other hand, with rotation, the lift coefficient shows negative values, called inverse Magnus effect, depending on the magnitudes of the Reynolds number and spin ratio. The velocity field measured from a particle image velocimetry (PIV) indicates that non-zero lift coefficient on a stationary sphere at Re > 2 . 0 ×105 results from the asymmetry of separation line, whereas the inverse Magnus effect for the rotating sphere results from the differences in the boundary-layer growth and separation along the upper and lower sphere surfaces. Supported by the WCU, Converging Research Center and Priority Research Centers Program, NRF, MEST, Korea.

  20. Rotational spectroscopy at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Drouin, Brian J.

    2005-01-01

    Environmental monitoring, atmospheric remote sensing and astrophysical studies promoted by NASA require a strong basis of spectroscopic information. The rotational spectroscopy capabilities at NASAs Jet Propulsion Laboratory (JPL) are currently maintained for the measurement of key mission priorities that enable modeling and retrieval of geophysical data from the atmosphere as well as validation of the space-borne instruments in the Earth Observing System, particularly the Microwave Limb Sounder. Rotational spectra are measured using a variety of spectroscopic techniques including pulsed-beam Fourier transform microwave spectroscopy (at CalTech); millimeter wavelength Stark spectroscopy; millimeter, submillimeter and THz FM spectroscopy; laser sideband spectroscopy and Fourier Transform far-infrared spectroscopy. Remote measurements of atmospheric rotational spectra are made using two limb-sounder instruments in the submillimeter and THz. Recent advances in the direct synthesis of THz radiation that enable more efficient laboratory science will be presented. Software for comprehensive and systematic study of different molecular systems is maintained at JPL, the software is freely available via http://spec.jpl.nasa.gov and is used by our group to create and sustain the JPL spectral line catalog also available online.