Science.gov

Sample records for accurate scoring functions

  1. BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes

    PubMed Central

    2015-01-01

    Background Accurately predicting the binding affinities of large sets of protein-ligand complexes is a key challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with which it predicts the affinity of a ligand candidate for a protein's binding site has a significant bearing on the accuracy of virtual screening. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited predictive power has been a major roadblock toward cost-effective drug discovery. Therefore, in this work, we present novel SFs employing a large ensemble of neural networks (NN) in conjunction with a diverse set of physicochemical and geometrical features characterizing protein-ligand complexes to predict binding affinity. Results We assess the scoring accuracies of two new ensemble NN SFs based on bagging (BgN-Score) and boosting (BsN-Score), as well as those of conventional SFs in the context of the 2007 PDBbind benchmark that encompasses a diverse set of high-quality protein families. We find that BgN-Score and BsN-Score have more than 25% better Pearson's correlation coefficient (0.804 and 0.816 vs. 0.644) between predicted and measured binding affinities compared to that achieved by a state-of-the-art conventional SF. In addition, these ensemble NN SFs are also at least 19% more accurate (0.804 and 0.816 vs. 0.675) than SFs based on a single neural network that has been traditionally used in drug discovery applications. We further find that ensemble models based on NNs surpass SFs based on the decision-tree ensemble technique Random Forests. Conclusions Ensemble neural networks SFs, BgN-Score and BsN-Score, are the most accurate in predicting binding affinity of protein-ligand complexes among the considered SFs. Moreover, their accuracies are even higher

  2. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy.

    PubMed

    Bai, Fang; Liao, Sha; Gu, Junfeng; Jiang, Hualiang; Wang, Xicheng; Li, Honglin

    2015-04-27

    Metalloproteins, particularly zinc metalloproteins, are promising therapeutic targets, and recent efforts have focused on the identification of potent and selective inhibitors of these proteins. However, the ability of current drug discovery and design technologies, such as molecular docking and molecular dynamics simulations, to probe metal-ligand interactions remains limited because of their complicated coordination geometries and rough treatment in current force fields. Herein we introduce a robust, multiobjective optimization algorithm-driven metalloprotein-specific docking program named MpSDock, which runs on a scheme similar to consensus scoring consisting of a force-field-based scoring function and a knowledge-based scoring function. For this purpose, in this study, an effective knowledge-based zinc metalloprotein-specific scoring function based on the inverse Boltzmann law was designed and optimized using a dynamic sampling and iteration optimization strategy. This optimization strategy can dynamically sample and regenerate decoy poses used in each iteration step of refining the scoring function, thus dramatically improving both the effectiveness of the exploration of the binding conformational space and the sensitivity of the ranking of the native binding poses. To validate the zinc metalloprotein-specific scoring function and its special built-in docking program, denoted MpSDockZn, an extensive comparison was performed against six universal, popular docking programs: Glide XP mode, Glide SP mode, Gold, AutoDock, AutoDock4Zn, and EADock DSS. The zinc metalloprotein-specific knowledge-based scoring function exhibited prominent performance in accurately describing the geometries and interactions of the coordination bonds between the zinc ions and chelating agents of the ligands. In addition, MpSDockZn had a competitive ability to sample and identify native binding poses with a higher success rate than the other six docking programs. PMID:25746437

  3. Classification of current scoring functions.

    PubMed

    Liu, Jie; Wang, Renxiao

    2015-03-23

    Scoring functions are a class of computational methods widely applied in structure-based drug design for evaluating protein-ligand interactions. Dozens of scoring functions have been published since the early 1990s. In literature, scoring functions are typically classified as force-field-based, empirical, and knowledge-based. This classification scheme has been quoted for more than a decade and is still repeatedly quoted by some recent publications. Unfortunately, it does not reflect the recent progress in this field. Besides, the naming convention used for describing different types of scoring functions has been somewhat jumbled in literature, which could be confusing for newcomers to this field. Here, we express our viewpoint on an up-to-date classification scheme and appropriate naming convention for current scoring functions. We propose that they can be classified into physics-based methods, empirical scoring functions, knowledge-based potentials, and descriptor-based scoring functions. We also outline the major difference and connections between different categories of scoring functions. PMID:25647463

  4. Examining Guidelines for Developing Accurate Proficiency Level Scores

    ERIC Educational Resources Information Center

    Ercikan, Kadriye

    2006-01-01

    One attempt to make scores from large-scale assessments more interpretable has been to provide proficiency level scores to describe the meaning of student performance on tests. This study has examined the accuracy of Ercikan and Julian's (2002) guidelines for developing proficiency level scores and the classification accuracy of proficiency level…

  5. Scoring functions--the first 100 years.

    PubMed

    Tame, Jeremy R H

    2005-06-01

    The use of simple linear mathematical models to estimate chemical properties is not a new idea. Albert Einstein used very simple 'gravity-like' forces to explain the capillarity of different liquids in 1900-1901. Today such models are used in more complicated situations, and a great many have been developed to analyse interactions between proteins and their ligands. This is not surprising, since proteins are too complicated to model accurately without lengthy numerical analysis, and simple models often do at least as good a job in predicting binding constants as much more computationally expensive methods. One hundred years after Einstein's 'miraculous year' in which he transformed physics, it is instructive to recall some of his even earlier work. As approximations, 'scoring functions' are excellent, but it is dangerous to read too much into them. A few cautionary tales are presented for the beginner to the field of ligand affinity prediction by linear models. PMID:16231202

  6. Phosphorylation-Specific MS/MS Scoring for Rapid and Accurate Phosphoproteome Analysis

    PubMed Central

    Payne, Samuel H.; Yau, Margaret; Smolka, Marcus B.; Tanner, Stephen; Zhou, Huilin; Bafna, Vineet

    2008-01-01

    The promise of mass spectrometry as a tool for probing signal-transduction is predicated on reliable identification of post-translational modifications. Phosphorylations are key mediators of cellular signaling, yet are hard to detect, partly because of unusual fragmentation patterns of phosphopeptides. In addition to being accurate, MS/MS identification software must be robust and efficient to deal with increasingly large spectral data sets. Here, we present a new scoring function for the Inspect software for phosphorylated peptide tandem mass spectra for ion-trap instruments, without the need for manual validation. The scoring function was modeled by learning fragmentation patterns from 7677 validated phosphopeptide spectra. We compare our algorithm against SEQUEST and X!Tandem on testing and training data sets. At a 1% false positive rate, Inspect identified the greatest total number of phosphorylated spectra, 13% more than SEQUEST and 39% more than X!Tandem. Spectra identified by Inspect tended to score better in several spectral quality measures. Furthermore, Inspect runs much faster than either SEQUEST or X!Tandem, making desktop phosphoproteomics feasible. Finally, we used our new models to reanalyze a corpus of 423 000 LTQ spectra acquired for a phosphoproteome analysis of Saccharomyces cerevisiae DNA damage and repair pathways and discovered 43% more phosphopeptides than the previous study. PMID:18563926

  7. Accurate density functional thermochemistry for larger molecules.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-06-20

    Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).

  8. Scoring functions for prediction of protein-ligand interactions.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin

    2013-01-01

    The scoring functions for protein-ligand interactions plays central roles in computational drug design, virtual screening of chemical libraries for new lead identification, and prediction of possible binding targets of small chemical molecules. An ideal scoring function for protein-ligand interactions is expected to be able to recognize the native binding pose of a ligand on the protein surface among decoy poses, and to accurately predict the binding affinity (or binding free energy) so that the active molecules can be discriminated from the non-active ones. Due to the empirical nature of most, if not all, scoring functions for protein-ligand interactions, the general applicability of empirical scoring functions, especially to domains far outside training sets, is a major concern. In this review article, we will explore the foundations of different classes of scoring functions, their possible limitations, and their suitable application domains. We also provide assessments of several scoring functions on weakly-interacting protein-ligand complexes, which will be useful information in computational fragment-based drug design or virtual screening. PMID:23016847

  9. Threshold adjusted calcium scoring using CT is less susceptible to cardiac motion and more accurate.

    PubMed

    Groen, J M; Dijkstra, H; Greuter, M J W; Oudkerk, M

    2009-02-01

    The purpose of this paper is to investigate calcium scoring on computed tomography (CT) using an adjusted threshold depending on the maximum Hounsfield value within the calcification (HU(peak)). The volume of 19 calcifications was retrospectively determined on 64-slice multidetector CT and dual source CT (DSCT) at different thresholds and the threshold associated with the physical volume was determined. In addition, approximately 10 000 computer simulations were done simulating the same process for calcifications with mixed density. Using these data a relation between the HU(peak) and the threshold could be established. Hereafter, this relation was assessed by scanning six calcifications in a phantom at 40-110 beats per minute using DSCT. The influence of motion was determined and the measured calcium scores were compared to the physical volumes and mass. A positive linear correlation was found between the scoring threshold and the HU(peak) of the calcifications both for the phantom measurements as for the computer simulations. Using this relation the individual threshold for each calcification could be calculated. Calcium scores of the moving calcifications determined with an adjusted threshold were approximately 30% less susceptible to cardiac motion compared to standard calcium scoring. Furthermore, these scores approximated the physical volume and mass at least 10% better than the standard calcium scores. The threshold in calcium scoring should be adjusted for each individual calcification based on the HU(peak) of the calcification. Calcium scoring using an adjusted threshold is less susceptible to cardiac motion and more accurate compared to the physical values. PMID:19291982

  10. Missing gene identification using functional coherence scores

    PubMed Central

    Chitale, Meghana; Khan, Ishita K.; Kihara, Daisuke

    2016-01-01

    Reconstructing metabolic and signaling pathways is an effective way of interpreting a genome sequence. A challenge in a pathway reconstruction is that often genes in a pathway cannot be easily found, reflecting current imperfect information of the target organism. In this work, we developed a new method for finding missing genes, which integrates multiple features, including gene expression, phylogenetic profile, and function association scores. Particularly, for considering function association between candidate genes and neighboring proteins to the target missing gene in the network, we used Co-occurrence Association Score (CAS) and PubMed Association Score (PAS), which are designed for capturing functional coherence of proteins. We showed that adding CAS and PAS substantially improve the accuracy of identifying missing genes in the yeast enzyme-enzyme network compared to the cases when only the conventional features, gene expression, phylogenetic profile, were used. Finally, it was also demonstrated that the accuracy improves by considering indirect neighbors to the target enzyme position in the network using a proper network-topology-based weighting scheme. PMID:27552989

  11. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening

    PubMed Central

    Villarreal, Marcos A.

    2016-01-01

    Autodock Vina is a very popular, and highly cited, open source docking program. Here we present a scoring function which we call Vinardo (Vina RaDii Optimized). Vinardo is based on Vina, and was trained through a novel approach, on state of the art datasets. We show that the traditional approach to train empirical scoring functions, using linear regression to optimize the correlation of predicted and experimental binding affinities, does not result in a function with optimal docking capabilities. On the other hand, a combination of scoring, minimization, and re-docking on carefully curated training datasets allowed us to develop a simplified scoring function with optimum docking performance. This article provides an overview of the development of the Vinardo scoring function, highlights its differences with Vina, and compares the performance of the two scoring functions in scoring, docking and virtual screening applications. Vinardo outperforms Vina in all tests performed, for all datasets analyzed. The Vinardo scoring function is available as an option within Smina, a fork of Vina, which is freely available under the GNU Public License v2.0 from http://smina.sf.net. Precompiled binaries, source code, documentation and a tutorial for using Smina to run the Vinardo scoring function are available at the same address. PMID:27171006

  12. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

    PubMed Central

    Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng

    2015-01-01

    The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958

  13. Are Medical Students Assigning Proper Global Assessment of Functioning Scores?

    ERIC Educational Resources Information Center

    Warsi, Mustafa K.; Sattar, S. Pirzada; Din, Amad U.; Petty, Frederick; Padala, Prasad R.

    2007-01-01

    Objective: This article seeks to determine whether medical students can estimate the appropriate score for the Global Assessment of Functioning (GAF) compared with psychiatry residents and staff psychiatrists. The authors hypothesized that medical students' estimations of GAF scores for patients in clinical vignettes would differ from those…

  14. Validity and Reliability of Scores Obtained on Multiple-Choice Questions: Why Functioning Distractors Matter

    ERIC Educational Resources Information Center

    Ali, Syed Haris; Carr, Patrick A.; Ruit, Kenneth G.

    2016-01-01

    Plausible distractors are important for accurate measurement of knowledge via multiple-choice questions (MCQs). This study demonstrates the impact of higher distractor functioning on validity and reliability of scores obtained on MCQs. Freeresponse (FR) and MCQ versions of a neurohistology practice exam were given to four cohorts of Year 1 medical…

  15. Scoring functions for fragment-based drug discovery.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin

    2015-01-01

    Fragment-based drug design represents a challenge for computational drug design because almost inevitably fragments will be weak binders to the biomolecular targets of a specific disease, and the performances of the scoring functions for weak binders are usually poorer than those for the stronger binders. This protocol describes how to predict the binding modes and binding affinities of fragments towards their binding partner with our refined AutoDock scoring function incorporating a quantum chemical charge model, namely, the restrained electrostatic potential (RESP) model. This scoring function was calibrated by robust regression analysis and has been demonstrated to perform well for general classes of protein-ligand interactions and for weak binders (with root-mean square of error of about 2.1 kcal/mol). PMID:25709036

  16. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. PMID:24524947

  17. Pain threshold correlates with functional scores in osteoarthritis patients

    PubMed Central

    Kuni, Benita; Wang, Haili; Rickert, Markus; Ewerbeck, Volker; Schiltenwolf, Marcus

    2015-01-01

    Background and purpose Pain sensitization may be one of the reasons for persistent pain after technically successful joint replacement. We analyzed how pain sensitization, as measured by quantitative sensory testing, relates preoperatively to joint function in patients with osteoarthritis (OA) scheduled for joint replacement. Patients and methods We included 50 patients with knee OA and 49 with hip OA who were scheduled for joint replacement, and 15 control participants. Hip/knee scores, thermal and pressure detection, and pain thresholds were examined. Results Median pressure pain thresholds were lower in patients than in control subjects: 4.0 (range: 0–10) vs. 7.8 (4–10) (p = 0.003) for the affected knee; 4.5 (2–10) vs. 6.8 (4–10) (p = 0.03) for the affected hip. Lower pressure pain threshold values were found at the affected joint in 26 of the 50 patients with knee OA and in 17 of the 49 patients with hip OA. The American Knee Society score 1 and 2, the Oxford knee score, and functional questionnaire of Hannover for osteoarthritis score correlated with the pressure pain thresholds in patients with knee OA. Also, Harris hip score and the functional questionnaire of Hannover for osteoarthritis score correlated with the cold detection threshold in patients with hip OA. Interpretation Quantitative sensory testing appeared to identify patients with sensory changes indicative of mechanisms of central sensitization. These patients may require additional pain treatment in order to profit fully from surgery. There were correlations between the clinical scores and the level of sensitization. PMID:25323797

  18. Psychometric analysis of the Functional Independence Score in Haemophilia (FISH).

    PubMed

    Poonnoose, P M; Thomas, R; Keshava, S N; Cherian, R S; Padankatti, S; Pazani, D; Kavitha, M L; Devadarasini, M; Bhattacharji, S; Viswabandya, A; John, J A; Macaden, A S; Mathews, V; Srivastava, A

    2007-09-01

    Joint morbidity in haemophilia has traditionally been measured using clinical and radiological scores. There have been no reliable, validated tools for the assessment of functional independence in persons with haemophilia till recently. The Functional Independence Score in Haemophilia (FISH) has been developed as a performance based assessment tool to address this need. The FISH is designed to measure the patient's independence in performing activities of daily living (grooming and eating, bathing and dressing), transfers (chair and floor), and mobility (walking, step climbing and running). On assessment of its psychometric properties in 63 patients with haemophilia (mean age 14 years), FISH was found to have good internal consistency (Cronbach's alpha of 0.85). It had moderate correlation with the World Federation of Hemophilia clinical score (r = -0.61), and a correlation with the Pettersson score of -0.38. It had good correlation with other self-rated functional scores, such as the Stanford Health Assessment Questionnaire (r = -0.75); the Western Ontario and McMaster Universities Osteoarthritis Index (r = -0.66) and the Haemophilia Activities List (HAL) (r = -0.66). It had good reliability with a pooled intra class correlation of 0.98. On assessing responsiveness following treatment of flexion deformities of the knee in 12 patients, the FISH showed significant changes in the score with a standardized responsiveness mean of -1.93. In conclusion, the FISH was found to be a reliable and valid tool with good internal consistency and responsiveness to therapy, for the assessment of functional independence in persons with haemophilia. PMID:17880453

  19. Molecular adsorption at Pt(111). How accurate are DFT functionals?

    PubMed

    Gautier, Sarah; Steinmann, Stephan N; Michel, Carine; Fleurat-Lessard, Paul; Sautet, Philippe

    2015-11-21

    Molecular chemisorption at a metal surface is a key step for many processes, such as catalysis, electrochemistry, surface treatment, tribology and friction. Modeling with density functional theory is largely used on these systems. From a detailed comparison with accurate micro-calorimetric data on ten systems (involving ethylene, cyclohexene, benzene, naphthalene, CO, O2, H2, methane, ethane), we study the accuracy, for chemisorption on Pt(111), of five exchange-correlation functionals including one generalized gradient approximation functional (PBE) and four functionals that take into account van der Waals interactions (optPBE-vdW, optB86b-vdW, BEEF-vdW, PBE-dDsC). If the functionals used provide very similar geometries and electronic structures, as shown by projected density of states, they give strikingly different results for the adsorption energy of molecules on Pt(111). Among the set of chemisorption data, the lowest mean absolute deviations (MAD) are obtained with the optPBE-vdW and PBE-dDsC functionals (∼0.2 eV) while PBE and optB86b-vdW give twice larger MAD (∼0.45 eV). BEEF-vdW is intermediate with a MAD of 0.33 eV. For laterally π-bound unsaturated hydrocarbons (cyclohexene, benzene, naphthalene) the PBE and the BEEF-vdW functionals are severally under-bound, while optPBE-vdW and PBE-dDsC provide a good match with experiments. Hence both the incorporation of van der Waals dispersive forces and the choice of the exchange functional have a key influence on the chemisorption energy. Vertically bound ethylidyne and CO are in contrast over-bound with all functionals, the best agreement being obtained with BEEF-vdW. None of the selected functionals hence provides a universally accurate treatment of chemisorption energies. PMID:26455444

  20. A new scoring function for top-down spectral deconvolution

    DOE PAGESBeta

    Kou, Qiang; Wu, Si; Liu, Xiaowen

    2014-12-18

    Background: Top-down mass spectrometry plays an important role in intact protein identification and characterization. Top-down mass spectra are more complex than bottom-up mass spectra because they often contain many isotopomer envelopes from highly charged ions, which may overlap with one another. As a result, spectral deconvolution, which converts a complex top-down mass spectrum into a monoisotopic mass list, is a key step in top-down spectral interpretation. Results: In this paper, we propose a new scoring function, L-score, for evaluating isotopomer envelopes. By combining L-score with MS-Deconv, a new software tool, MS-Deconv+, was developed for top-down spectral deconvolution. Experimental results showedmore » that MS-Deconv+ outperformed existing software tools in top-down spectral deconvolution. Conclusions: L-score shows high discriminative ability in identification of isotopomer envelopes. Using L-score, MS-Deconv+ reports many correct monoisotopic masses missed by other software tools, which are valuable for proteoform identification and characterization.« less

  1. A new scoring function for top-down spectral deconvolution

    SciTech Connect

    Kou, Qiang; Wu, Si; Liu, Xiaowen

    2014-12-18

    Background: Top-down mass spectrometry plays an important role in intact protein identification and characterization. Top-down mass spectra are more complex than bottom-up mass spectra because they often contain many isotopomer envelopes from highly charged ions, which may overlap with one another. As a result, spectral deconvolution, which converts a complex top-down mass spectrum into a monoisotopic mass list, is a key step in top-down spectral interpretation. Results: In this paper, we propose a new scoring function, L-score, for evaluating isotopomer envelopes. By combining L-score with MS-Deconv, a new software tool, MS-Deconv+, was developed for top-down spectral deconvolution. Experimental results showed that MS-Deconv+ outperformed existing software tools in top-down spectral deconvolution. Conclusions: L-score shows high discriminative ability in identification of isotopomer envelopes. Using L-score, MS-Deconv+ reports many correct monoisotopic masses missed by other software tools, which are valuable for proteoform identification and characterization.

  2. RAId_aPS: MS/MS analysis with multiple scoring functions and spectrum-specific statistics.

    PubMed

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2010-01-01

    Statistically meaningful comparison/combination of peptide identification results from various search methods is impeded by the lack of a universal statistical standard. Providing an E-value calibration protocol, we demonstrated earlier the feasibility of translating either the score or heuristic E-value reported by any method into the textbook-defined E-value, which may serve as the universal statistical standard. This protocol, although robust, may lose spectrum-specific statistics and might require a new calibration when changes in experimental setup occur. To mitigate these issues, we developed a new MS/MS search tool, RAId_aPS, that is able to provide spectrum-specific-values for additive scoring functions. Given a selection of scoring functions out of RAId score, K-score, Hyperscore and XCorr, RAId_aPS generates the corresponding score histograms of all possible peptides using dynamic programming. Using these score histograms to assign E-values enables a calibration-free protocol for accurate significance assignment for each scoring function. RAId_aPS features four different modes: (i) compute the total number of possible peptides for a given molecular mass range, (ii) generate the score histogram given a MS/MS spectrum and a scoring function, (iii) reassign E-values for a list of candidate peptides given a MS/MS spectrum and the scoring functions chosen, and (iv) perform database searches using selected scoring functions. In modes (iii) and (iv), RAId_aPS is also capable of combining results from different scoring functions using spectrum-specific statistics. The web link is http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid_aps/index.html. Relevant binaries for Linux, Windows, and Mac OS X are available from the same page. PMID:21103371

  3. RAId_aPS: MS/MS Analysis with Multiple Scoring Functions and Spectrum-Specific Statistics

    PubMed Central

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2010-01-01

    Statistically meaningful comparison/combination of peptide identification results from various search methods is impeded by the lack of a universal statistical standard. Providing an -value calibration protocol, we demonstrated earlier the feasibility of translating either the score or heuristic -value reported by any method into the textbook-defined -value, which may serve as the universal statistical standard. This protocol, although robust, may lose spectrum-specific statistics and might require a new calibration when changes in experimental setup occur. To mitigate these issues, we developed a new MS/MS search tool, RAId_aPS, that is able to provide spectrum-specific -values for additive scoring functions. Given a selection of scoring functions out of RAId score, K-score, Hyperscore and XCorr, RAId_aPS generates the corresponding score histograms of all possible peptides using dynamic programming. Using these score histograms to assign -values enables a calibration-free protocol for accurate significance assignment for each scoring function. RAId_aPS features four different modes: (i) compute the total number of possible peptides for a given molecular mass range, (ii) generate the score histogram given a MS/MS spectrum and a scoring function, (iii) reassign -values for a list of candidate peptides given a MS/MS spectrum and the scoring functions chosen, and (iv) perform database searches using selected scoring functions. In modes (iii) and (iv), RAId_aPS is also capable of combining results from different scoring functions using spectrum-specific statistics. The web link is http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid_aps/index.html. Relevant binaries for Linux, Windows, and Mac OS X are available from the same page. PMID:21103371

  4. Inertia based functional scoring of the shoulder in clinical practice.

    PubMed

    Körver, R J P; Heyligers, I C; Samijo, S K; Grimm, B

    2014-02-01

    Shoulder-related dysfunction is the second most common musculoskeletal disorder and is responsible for an increasing burden on health-care systems. Commonly used clinical outcome scores suffer from subjectivity, pain dominance and a ceiling effect. Objective functional measurement has been identified as a relevant issue in clinical rehabilitation. In recognition of this goal simple techniques for routine clinical application have been investigated with some success. Inertia based motion analysis (IMA) is a new generation of objective outcome assessment tool; it can produce objective movement parameters while being fast, cheap and easy to operate. This study investigates if a simple IMA shoulder test is suitable as a functional outcome measure for routine clinical follow-up. We measured 100 healthy subjects and 50 patients with confirmed unilateral shoulder pathology. Two motion tasks were performed on both shoulders and two simple motion parameters based on angular rate and acceleration were calculated. Patients were also assessed by the disability of arm, shoulder and hand (DASH) and the simple shoulder test. IMA produced high intra- (ICC = 0.94) and inter-assessor reliability (ICC = 0.90). Asymmetry was >3 times higher in patients than in healthy controls (p < 0.01). Healthy and pathological subjects could be distinguished with high diagnostic sensitivity (>84.0%) and specificity (>81.0%). There was a weak correlation between the IMA shoulder score and the clinical questionnaires (Pearson R < 0.25), as it may add an objective functional dimension to outcome assessment. The fast assessment (t < 5 min) of a simple motion task makes it workable for routine clinical follow-up. The IMA shoulder test adds objective information on functional capacity to the clinical scores and may help the physician in his decision-making, follow-up of treatment, effect of training and possibly lead to the development of new therapeutic interventions. PMID:24398361

  5. Fast and accurate Coulomb calculation with Gaussian functions.

    PubMed

    Füsti-Molnár, László; Kong, Jing

    2005-02-15

    Coulomb interaction is one of the major time-consuming components in a density functional theory (DFT) calculation. In the last decade, dramatic progresses have been made to improve the efficiency of Coulomb calculation, including continuous fast multipole method (CFMM) and J-engine method, all developed first inside Q-Chem. The most recent development is the advent of Fourier transform Coulomb method developed by Fusti-Molnar and Pulay, and an improved version of the method has been recently implemented in Q-Chem. It replaces the least efficient part of the previous Coulomb methods with an accurate numerical integration scheme that scales in O(N2) instead of O(N4) with the basis size. The result is a much smaller slope in the linear scaling with respect to the molecular size and we will demonstrate through a series of benchmark calculations that it speeds up the calculation of Coulomb energy by several folds over the efficient existing code, i.e., the combination of CFMM and J-engine, without loss of accuracy. Furthermore, we will show that it is complementary to the latter and together the three methods offer the best performance for Coulomb part of DFT calculations, making the DFT calculations affordable for very large systems involving thousands of basis functions. PMID:15743222

  6. Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression

    PubMed Central

    Yang, Zhen; Zhong, Shenghua; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2014-01-01

    Cerebellar ataxia is a progressive neuro-degenerative disease that has multiple genetic versions, each with a characteristic pattern of anatomical degeneration that yields distinctive motor and cognitive problems. Studying this pattern of degeneration can help with the diagnosis of disease subtypes, evaluation of disease stage, and treatment planning. In this work, we propose a learning framework using MR image data for discriminating a set of cerebellar ataxia types and predicting a disease related functional score. We address the difficulty in analyzing high-dimensional image data with limited training subjects by: 1) training weak classifiers/regressors on a set of image subdomains separately, and combining the weak classifier/regressor outputs to make the decision; 2) perturbing the image subdomain to increase the training samples; 3) using a deep learning technique called the stacked auto-encoder to develop highly representative feature vectors of the input data. Experiments show that our approach can reliably classify between one of four categories (healthy control and three types of ataxia), and predict the functional staging score for ataxia. PMID:25553339

  7. Reformulating the entropic contribution in molecular docking scoring functions.

    PubMed

    Procacci, Piero

    2016-07-15

    We have derived, in the context of the Rigid Rotor Harmonic Approximation (RRHO), a general mass and Planck's constant h independent expression for the dissociation free energy in ligand-receptor systems, featuring a systematically (anti-binding) additive negative entropic term depending on readily available ligand-receptor quantities. The proposed RRHO expression allows to straightforwardly compute the absolute standard dissociation free energy without resorting to expensive normal mode analysis or other dynamical matrix-based techniques for evaluating the entropic contribution, hence providing an effective scoring function for assessing docking poses with no adjustable parameters. Our RRHO formula was tested on a set of 55 ligand-receptor systems obtaining correlation coefficients and unsigned mean errors comparable to or better than those obtained with computationally demanding techniques for the dissociation entropy assessment. The proposed compact reformulation of the RRHO entropy term could constitute the basis for new and more effective scoring functions in molecular docking-based high-throughput virtual screening for drug discovery. © 2016 Wiley Periodicals, Inc. PMID:27231844

  8. Accurate ionization potential of semiconductors from efficient density functional calculations

    NASA Astrophysics Data System (ADS)

    Ye, Lin-Hui

    2016-07-01

    Despite its huge successes in total-energy-related applications, the Kohn-Sham scheme of density functional theory cannot get reliable single-particle excitation energies for solids. In particular, it has not been able to calculate the ionization potential (IP), one of the most important material parameters, for semiconductors. We illustrate that an approximate exact-exchange optimized effective potential (EXX-OEP), the Becke-Johnson exchange, can be used to largely solve this long-standing problem. For a group of 17 semiconductors, we have obtained the IPs to an accuracy similar to that of the much more sophisticated G W approximation (GWA), with the computational cost of only local-density approximation/generalized gradient approximation. The EXX-OEP, therefore, is likely as useful for solids as for finite systems. For solid surfaces, the asymptotic behavior of the vx c has effects similar to those of finite systems which, when neglected, typically cause the semiconductor IPs to be underestimated. This may partially explain why standard GWA systematically underestimates the IPs and why using the same GWA procedures has not been able to get an accurate IP and band gap at the same time.

  9. On the Variance of the Optimal Alignments Score for Binary Random Words and an Asymmetric Scoring Function

    NASA Astrophysics Data System (ADS)

    Houdré, Christian; Matzinger, Heinrich

    2016-08-01

    We investigate the order of the variance of the optimal alignments (OA) score of two independent iid binary random words having the same length. The letters are equiprobable, but the scoring function is such that one letter has a larger score than the other. In this setting, we prove that the order of variance is linear in the common length. OAs constitute a generalization of longest common subsequences, they can be represented as optimal paths in a two-dimensional last passage percolation setting with dependent weights.

  10. Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity

    PubMed Central

    Yan, Zhiqiang; Wang, Jin

    2013-01-01

    Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions. PMID:24098651

  11. Mental Test Performance as a Function of Various Scoring Cutoffs

    ERIC Educational Resources Information Center

    Quereshi, M. Y.; Veeser, William R.

    1970-01-01

    Investigates the influence of various scoring cutoffs on mental test performance as measured by the Michell General Ability Test (MGAT) and develops a rationale for selecting the optimum cutoff based on raw scores, internal consistency, stability, parallel-form reliability and concurrent validity estimates. (MB)

  12. Survival outcomes scores (SOFT, BAR, and Pedi-SOFT) are accurate in predicting post-liver transplant survival in adolescents.

    PubMed

    Conjeevaram Selvakumar, Praveen Kumar; Maksimak, Brian; Hanouneh, Ibrahim; Youssef, Dalia H; Lopez, Rocio; Alkhouri, Naim

    2016-09-01

    SOFT and BAR scores utilize recipient, donor, and graft factors to predict the 3-month survival after LT in adults (≥18 years). Recently, Pedi-SOFT score was developed to predict 3-month survival after LT in young children (≤12 years). These scoring systems have not been studied in adolescent patients (13-17 years). We evaluated the accuracy of these scoring systems in predicting the 3-month post-LT survival in adolescents through a retrospective analysis of data from UNOS of patients aged 13-17 years who received LT between 03/01/2002 and 12/31/2012. Recipients of combined organ transplants, donation after cardiac death, or living donor graft were excluded. A total of 711 adolescent LT recipients were included with a mean age of 15.2±1.4 years. A total of 100 patients died post-LT including 33 within 3 months. SOFT, BAR, and Pedi-SOFT scores were all found to be good predictors of 3-month post-transplant survival outcome with areas under the ROC curve of 0.81, 0.80, and 0.81, respectively. All three scores provided good accuracy for predicting 3-month survival post-LT in adolescents and may help clinical decision making to optimize survival rate and organ utilization. PMID:27478012

  13. Exponentially accurate approximations to piece-wise smooth periodic functions

    NASA Technical Reports Server (NTRS)

    Greer, James; Banerjee, Saheb

    1995-01-01

    A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.

  14. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go

    PubMed Central

    Moitessier, N; Englebienne, P; Lee, D; Lawandi, J; Corbeil, C R

    2008-01-01

    Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and scoring methods, with exhaustive lists of these. We next discuss reported comparative studies, outlining criteria for their interpretation. In the final section, we describe some of the remaining developments that would potentially lead to a universally applicable docking/scoring method. PMID:18037925

  15. Composite scores for executive function items: demographic heterogeneity and relationships with quantitative magnetic resonance imaging.

    PubMed

    Crane, Paul K; Narasimhalu, Kaavya; Gibbons, Laura E; Pedraza, Otto; Mehta, Kala M; Tang, Yuxiao; Manly, Jennifer J; Reed, Bruce R; Mungas, Dan M

    2008-09-01

    Accurate neuropsychological assessment of older individuals from heterogeneous backgrounds is a major challenge. Education, ethnicity, language, and age are associated with scale level differences in test scores, but item level bias might contribute to these differences. We evaluated several strategies for dealing with item and scale level demographic influences on a measure of executive abilities defined by working memory and fluency tasks. We determined the impact of differential item functioning (DIF). We compared composite scoring strategies on the basis of their relationships with volumetric magnetic resonance imaging (MRI) measures of brain structure. Participants were 791 Hispanic, white, and African American older adults. DIF had a salient impact on test scores for 9% of the sample. MRI data were available on a subset of 153 participants. Validity in comparison with structural MRI was higher after scale level adjustment for education, ethnicity/language, and gender, but item level adjustment did not have a major impact on validity. Age adjustment at the scale level had a negative impact on relationships with MRI, most likely because age adjustment removes variance related to age-associated diseases. PMID:18764970

  16. Age-Related Differences and Heterogeneity in Executive Functions: Analysis of NAB Executive Functions Module Scores.

    PubMed

    Buczylowska, Dorota; Petermann, Franz

    2016-05-01

    Normative data from the German adaptation of the Neuropsychological Assessment Battery were used to examine age-related differences in 6 executive function tasks. A multivariate analysis of variance was employed to investigate the differences in performance in 484 participants aged 18-99 years. The coefficient of variation was calculated to compare the heterogeneity of scores between 10 age groups. Analyses showed an increase in the dispersion of scores with age, varying from 7% to 289%, in all subtests. Furthermore, age-dependent heterogeneity appeared to be associated with age-dependent decline because the subtests with the greatest increase in dispersion (i.e., Mazes, Planning, and Categories) also exhibited the greatest decrease in mean scores. In contrast, scores for the subtests Letter Fluency, Word Generation, and Judgment had the lowest increase in dispersion with the lowest decrease in mean scores. Consequently, the results presented here show a pattern of age-related differences in executive functioning that is consistent with the concept of crystallized and fluid intelligence. PMID:26953227

  17. Race-specific genetic risk score is more accurate than nonrace-specific genetic risk score for predicting prostate cancer and high-grade diseases

    PubMed Central

    Na, Rong; Ye, Dingwei; Qi, Jun; Liu, Fang; Lin, Xiaoling; Helfand, Brian T; Brendler, Charles B; Conran, Carly; Gong, Jian; Wu, Yishuo; Gao, Xu; Chen, Yaqing; Zheng, S Lilly; Mo, Zengnan; Ding, Qiang; Sun, Yinghao; Xu, Jianfeng

    2016-01-01

    Genetic risk score (GRS) based on disease risk-associated single nucleotide polymorphisms (SNPs) is an informative tool that can be used to provide inherited information for specific diseases in addition to family history. However, it is still unknown whether only SNPs that are implicated in a specific racial group should be used when calculating GRSs. The objective of this study is to compare the performance of race-specific GRS and nonrace-specific GRS for predicting prostate cancer (PCa) among 1338 patients underwent prostate biopsy in Shanghai, China. A race-specific GRS was calculated with seven PCa risk-associated SNPs implicated in East Asians (GRS7), and a nonrace-specific GRS was calculated based on 76 PCa risk-associated SNPs implicated in at least one racial group (GRS76). The means of GRS7 and GRS76 were 1.19 and 1.85, respectively, in the study population. Higher GRS7 and GRS76 were independent predictors for PCa and high-grade PCa in univariate and multivariate analyses. GRS7 had a better area under the receiver-operating curve (AUC) than GRS76 for discriminating PCa (0.602 vs 0.573) and high-grade PCa (0.603 vs 0.575) but did not reach statistical significance. GRS7 had a better (up to 13% at different cutoffs) positive predictive value (PPV) than GRS76. In conclusion, a race-specific GRS is more robust and has a better performance when predicting PCa in East Asian men than a GRS calculated using SNPs that are not shown to be associated with East Asians. PMID:27140652

  18. Race-specific genetic risk score is more accurate than nonrace-specific genetic risk score for predicting prostate cancer and high-grade diseases.

    PubMed

    Na, Rong; Ye, Dingwei; Qi, Jun; Liu, Fang; Lin, Xiaoling; Helfand, Brian T; Brendler, Charles B; Conran, Carly; Gong, Jian; Wu, Yishuo; Gao, Xu; Chen, Yaqing; Zheng, S Lilly; Mo, Zengnan; Ding, Qiang; Sun, Yinghao; Xu, Jianfeng

    2016-01-01

    Genetic risk score (GRS) based on disease risk-associated single nucleotide polymorphisms (SNPs) is an informative tool that can be used to provide inherited information for specific diseases in addition to family history. However, it is still unknown whether only SNPs that are implicated in a specific racial group should be used when calculating GRSs. The objective of this study is to compare the performance of race-specific GRS and nonrace-specific GRS for predicting prostate cancer (PCa) among 1338 patients underwent prostate biopsy in Shanghai, China. A race-specific GRS was calculated with seven PCa risk-associated SNPs implicated in East Asians (GRS7), and a nonrace-specific GRS was calculated based on 76 PCa risk-associated SNPs implicated in at least one racial group (GRS76). The means of GRS7 and GRS76 were 1.19 and 1.85, respectively, in the study population. Higher GRS7 and GRS76 were independent predictors for PCa and high-grade PCa in univariate and multivariate analyses. GRS7 had a better area under the receiver-operating curve (AUC) than GRS76 for discriminating PCa (0.602 vs 0.573) and high-grade PCa (0.603 vs 0.575) but did not reach statistical significance. GRS7 had a better (up to 13% at different cutoffs) positive predictive value (PPV) than GRS76. In conclusion, a race-specific GRS is more robust and has a better performance when predicting PCa in East Asian men than a GRS calculated using SNPs that are not shown to be associated with East Asians. PMID:27140652

  19. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  20. An Accurate Density Functional from Exchange-Correlation Hole

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang

    The exchange-correlation hole is most fundamentally important in the development and understanding of density functional theory (DFT). However, due to the nonlocal nature of the exchange-correlation hole, development of DFT from the underlying hole presents a great challenge, and the works along this direction are limited. Here I will discuss a novel nonempirical DFT based on a semilocal hole, which is obtained from the density matrix expansion. Extensive tests on molecules and solids show that this functional can achieve remarkable accuracy for wide-ranging properties in condensed matter physics and quantum chemistry. This work was supported by NSF under Grant No. CHE-1261918.

  1. Post-docking virtual screening of diverse binding pockets: comparative study using DOCK, AMMOS, X-Score and FRED scoring functions.

    PubMed

    Pencheva, Tania; Soumana, Oumarou Samna; Pajeva, Ilza; Miteva, Maria A

    2010-06-01

    Most of the benchmark studies on docking-scoring methods reported in the last decade conclude that no single scoring function performs well across different protein targets. In this study a comparison of thirteen commonly used force field and empirical scoring functions as implemented in DOCK, AMMOS, X-Score and FRED is carried out on five proteins with diverse binding pockets. The performance is analyzed in relation to the physicochemical properties of the binding sites. The solvation effects are considered via the Generalized Born/Surface Area (GBSA) solvation method for one of the assessed scoring functions. We examined the ability of these scoring functions to discriminate between active and inactive compounds over receptor-based focused libraries. Our results demonstrated that the employed here empirical scoring functions were more appropriate for the pocket of predominant hydrophobic nature while the force field scoring functions performed better on the mixed or polar pockets. PMID:20227800

  2. Accurate and fast DFT calculations with the AM05 functional

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.

    2008-03-01

    The AM05 functional [1] has the same excellent performance for solids as the hybrid density functionals tested in Paier et. al. (J. Chem. Phys 124, 154709 (2006); ibid 125, 249901 (2006)). This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. While hybrid functionals are computationally expensive, preveting them from being used in large systems and/or long molecular dynamics simulations, the AM05 functional is on a regular semi-local GGA form with corresponding computational cost. The performance of AM05 is even superior to an `informed choice' between LDA and PBE. By comparing data from different electronic-structure codes we have determined that the numerical errors in this study are equal to or smaller than corresponding experimental uncertainties. Results for other systems will also be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. [1] R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).

  3. A scoring function based on solvation thermodynamics for protein structure prediction

    PubMed Central

    Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru

    2012-01-01

    We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed.

  4. A Mixed QM/MM Scoring Function to Predict Protein-Ligand Binding Affinity.

    PubMed

    Hayik, Seth A; Dunbrack, Roland; Merz, Kenneth M

    2010-09-01

    Computational methods for predicting protein-ligand binding free energy continue to be popular as a potential cost-cutting method in the drug discovery process. However, accurate predictions are often difficult to make as estimates must be made for certain electronic and entropic terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated, treating the remaining atoms as a fixed charge background for the active site. Such a semi-empirical QM/MM scoring function has been implemented in AMBER using DivCon and tested on a set of 23 metalloprotein-ligand complexes, where QM/MM methods provide a particular advantage in the modeling of the metal ion. The binding affinity of this set of proteins can be calculated with an R(2) of 0.64 and a standard deviation of 1.88 kcal/mol without fitting and 0.71 and a standard deviation of 1.69 kcal/mol with fitted weighting of the individual scoring terms. In this study we explore using various methods to calculate terms in the binding free energy equation, including entropy estimates and minimization standards. From these studies we found that using the rotational bond estimate to ligand entropy results in a reasonable R(2) of 0.63 without fitting. We also found that using the ESCF energy of the proteins without minimization resulted in an R(2) of 0.57, when using the rotatable bond entropy estimate. PMID:21221417

  5. The Geriatric Functional Score Scale: A Preliminary Report on a Useful Tool for Assessing the Elderly.

    ERIC Educational Resources Information Center

    Lowe, Shari; Durrell, Kelly

    1988-01-01

    The Geriatric Function Score Scale was developed for the elderly. It is an objective tool that examines physical, cognitive, and motivational components of functioning. Results of a preliminary study revealed that the score patients received was able to discriminate the level of placement they would need upon hospital discharge. (Author/CH)

  6. A New Scoring Function for Molecular Docking Based on AutoDock and AutoDock Vina.

    PubMed

    Tanchuk, Vsevolod Yu; Tanin, Volodymyr O; Vovk, Andriy I; Poda, Gennady

    2015-01-01

    Molecular docking of small molecules in the protein binding sites is the most widely used computational technique in modern structure-based drug discovery. Although accurate prediction of binding modes of small molecules can be achieved in most cases, estimation of their binding affinities remains mediocre at best. As an attempt to improve the correlation between the inhibitory constants, pKi, and scoring, we created a new, hybrid scoring function. The new function is a linear combination of the terms of the scoring functions of AutoDock and AutoDock Vina. It was trained on 2,412 protein-ligand complexes from the PDBbind database (www.pdbbind.org.cn, version 2012) and validated on a set of 313 complexes released in the 2013 version as a test set. The new function was included in a modified version of AutoDock. The hybrid scoring function showed a statistically significant improvement in both training and test sets in terms of correlation with and root mean square and mean absolute errors in prediction of pKi values. It was also tested on the CSAR 2014 Benchmark Exercise dataset (team T) and produced reasonably good results. PMID:26302746

  7. Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks.

    PubMed

    Yan, Chengfei; Grinter, Sam Z; Merideth, Benjamin Ryan; Ma, Zhiwei; Zou, Xiaoqin

    2016-06-27

    In this study, we developed two iterative knowledge-based scoring functions, ITScore_pdbbind(rigid) and ITScore_pdbbind(flex), using rigid decoy structures and flexible decoy structures, respectively, that were generated from the protein-ligand complexes in the refined set of PDBbind 2012. These two scoring functions were evaluated using the 2013 and 2014 CSAR benchmarks. The results were compared with the results of two other scoring functions, the Vina scoring function and ITScore, the scoring function that we previously developed from rigid decoy structures for a smaller set of protein-ligand complexes. A graph-based method was developed to evaluate the root-mean-square deviation between two conformations of the same ligand with different atom names and orders due to different file preparations, and the program is freely available. Our study showed that the two new scoring functions developed from the larger training set yielded significantly improved performance in binding mode predictions. For binding affinity predictions, all four scoring functions showed protein-dependent performance. We suggest the development of protein-family-dependent scoring functions for accurate binding affinity prediction. PMID:26389744

  8. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors.

    PubMed

    Dobeš, Petr; Fanfrlík, Jindřich; Rezáč, Jan; Otyepka, Michal; Hobza, Pavel

    2011-03-01

    A semiempirical quantum mechanical PM6-DH2 method accurately covering the dispersion interaction and H-bonding was used to score fifteen structurally diverse CDK2 inhibitors. The geometries of all the complexes were taken from the X-ray structures and were reoptimised by the PM6-DH2 method in continuum water. The total scoring function was constructed as an estimate of the binding free energy, i.e., as a sum of the interaction enthalpy, interaction entropy and the corrections for the inhibitor desolvation and deformation energies. The applied scoring function contains a clear thermodynamical terms and does not involve any adjustable empirical parameter. The best correlations with the experimental inhibition constants (ln K (i)) were found for bare interaction enthalpy (r (2) = 0.87) and interaction enthalpy corrected for ligand desolvation and deformation energies (r (2) = 0.77); when the entropic term was considered, however, the correlation becomes worse but still acceptable (r (2) = 0.52). The resulting correlation based on the PM6-DH2 scoring function is better than previously published function based on various docking/scoring, SAR studies or advanced QM/MM approach, however, the robustness is limited by number of available experimental data used in the correlation. Since a very similar correlation between the experimental and theoretical results was found also for a different system of the HIV-1 protease, the suggested scoring function based on the PM6-DH2 method seems to be applicable in drug design, even if diverse protein-ligand complexes have to be ranked. PMID:21286784

  9. IQ Scores among Homeless Older Adolescents: Characteristics of Intellectual Performance and Associations with Psychosocial Functioning.

    ERIC Educational Resources Information Center

    Rohde, Paul; Noell, John; Ochs, Linda

    1999-01-01

    Study showed IQ scores of homeless adolescents (N=50) were comparable to population means, and unrelated to the duration of homelessness. Higher scores were significantly correlated with only a minority of the measures of psychosocial functioning, including less self-reported depression, lower reported delinquency, and less self-control in…

  10. Functional Independence Score in Haemophilia: a new performance-based instrument to measure disability.

    PubMed

    Poonnoose, P M; Manigandan, C; Thomas, R; Shyamkumar, N K; Kavitha, M L; Bhattacharji, S; Srivastava, A

    2005-11-01

    Morbidity in haemophilia has been described predominantly in terms of musculoskeletal dysfunction and assessed by the clinical and radiological joint scores. These scores document changes in a particular joint, but do not reflect the impact of these changes on the individual in terms of his overall musculoskeletal function. Several self-assessment instruments have been used to measure musculoskeletal function but none have been specifically validated for use in haemophilia. In order to objectively assess musculoskeletal function of patients with haemophilia, we developed Functional Independence Score in Hemophilia (FISH), a performance-based instrument. FISH measures the patient's independence in performing seven activities under three categories: self-care (grooming and eating, bathing and dressing), transfers (chair and floor) and mobility (walking and step climbing). Each function is graded from 1 to 4 depending on the amount of assistance needed in performing the function. We evaluated 35 patients who were over 10 years old and had had at least three major bleeds per year. All subjects were scored for clinical (World Federation of Hemophilia, WFH score) and radiological changes (Pettersson's score). Functional independence of the patient was assessed using the Stanford Health Assessment Questionnaire (HAQ) and the FISH. Correlation of the FISH score was modest with both the WFH clinical score (r = -0.68) and the radiological score (r = -0.44). While there was good correlation between FISH and HAQ (r = -0.90), FISH had better internal consistency than HAQ (Cronbach's alpha 0.83 vs. 0.66). FISH appears to be a promising disease-specific instrument for assessing overall musculoskeletal function in haemophilia. It requires evaluation in different patient populations. PMID:16236109

  11. dMM-PBSA: A New HADDOCK Scoring Function for Protein-Peptide Docking

    PubMed Central

    Spiliotopoulos, Dimitrios; Kastritis, Panagiotis L.; Melquiond, Adrien S. J.; Bonvin, Alexandre M. J. J.; Musco, Giovanna; Rocchia, Walter; Spitaleri, Andrea

    2016-01-01

    Molecular-docking programs coupled with suitable scoring functions are now established and very useful tools enabling computational chemists to rapidly screen large chemical databases and thereby to identify promising candidate compounds for further experimental processing. In a broader scenario, predicting binding affinity is one of the most critical and challenging components of computer-aided structure-based drug design. The development of a molecular docking scoring function which in principle could combine both features, namely ranking putative poses and predicting complex affinity, would be of paramount importance. Here, we systematically investigated the performance of the MM-PBSA approach, using two different Poisson–Boltzmann solvers (APBS and DelPhi), in the currently rising field of protein-peptide interactions (PPIs), identifying the correct binding conformations of 19 different protein-peptide complexes and predicting their binding free energies. First, we scored the decoy structures from HADDOCK calculation via the MM-PBSA approach in order to assess the capability of retrieving near-native poses in the best-scoring clusters and of evaluating the corresponding free energies of binding. MM-PBSA behaves well in finding the poses corresponding to the lowest binding free energy, however the built-in HADDOCK score shows a better performance. In order to improve the MM-PBSA-based scoring function, we dampened the MM-PBSA solvation and coulombic terms by 0.2, as proposed in the HADDOCK score and LIE approaches. The new dampened MM-PBSA (dMM-PBSA) outperforms the original MM-PBSA and ranks the decoys structures as the HADDOCK score does. Second, we found a good correlation between the dMM-PBSA and HADDOCK scores for the near-native clusters of each system and the experimental binding energies, respectively. Therefore, we propose a new scoring function, dMM-PBSA, to be used together with the built-in HADDOCK score in the context of protein-peptide docking

  12. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina.

    PubMed

    Tanchuk, Vsevolod Yu; Tanin, Volodymyr O; Vovk, Andriy I; Poda, Gennady

    2016-04-01

    Automated docking is one of the most important tools for structure-based drug design that allows prediction of ligand binding poses and also provides an estimate of how well small molecules fit in the binding site of a protein. A new scoring function based on AutoDock and AutoDock Vina has been introduced. The new hybrid scoring function is a linear combination of the two scoring function components derived from a multiple linear regression fitting procedure. The scoring function was built on a training set of 2412 protein-ligand complexes from pdbbind database (www.pdbbind.org.cn, version 2012). A test set of 313 complexes that appeared in the 2013 version was used for validation purposes. The new hybrid scoring function performed better than the original functions, both on training and test sets of protein-ligand complexes, as measured by the non-parametric Pearson correlation coefficient, R, mean absolute error (MAE), and root-mean-square error (RMSE) between the experimental binding affinities and the docking scores. The function also gave one of the best results among more than 20 scoring functions tested on the core set of the pdbbind database. The new AutoDock hybrid scoring function will be implemented in modified version of AutoDock. PMID:26643167

  13. Total hip arthroplasty outcomes assessment using functional and radiographic scores to compare canine systems.

    PubMed

    Iwata, D; Broun, H C; Black, A P; Preston, C A; Anderson, G I

    2008-01-01

    A retrospective multi-centre study was carried out in order to compare outcomes between cemented and uncemented total hip arthoplasties (THA). A quantitative orthopaedic outcome assessment scoring system was devised in order to relate functional outcome to a numerical score, to allow comparison between treatments and amongst centres. The system combined a radiographic score and a clinical score. Lower scores reflect better outcomes than higher scores. Consecutive cases of THA were included from two specialist practices between July 2002 and December 2005. The study included 46 THA patients (22 uncemented THA followed for 8.3 +/- 4.7M and 24 cemented THA for 26.0 +/- 15.7M) with a mean age of 4.4 +/- 3.3 years at surgery. Multi-variable linear and logistical regression analyses were performed with adjustments for age at surgery, surgeon, follow-up time, uni- versus bilateral disease, gender and body weight. The differences between treatment groups in terms of functional scores or total scores were not significant (p > 0.05). Radiographic scores were different between treatment groups. However, these scores were usually assessed within two months of surgery and proved unreliable predictors of functional outcome (p > 0.05). The findings reflect relatively short-term follow-up, especially for the uncemented group, and do not include clinician-derived measures, such as goniometry and thigh circumference. Longer-term follow-up for the radiographic assessments is essential. A prospective study including the clinician-derived outcomes needs to be performed in order to validate the outcome instrument in its modified form. PMID:18536848

  14. IQ scores among homeless older adolescents: characteristics of intellectual performance and associations with psychosocial functioning.

    PubMed

    Rohde, P; Noell, J; Ochs, L

    1999-06-01

    Intellectual performance and the associations of IQ with the quality of psychosocial functioning were studied in a sample of homeless older adolescents. Fifty homeless older adolescents (ages 16-21) completed the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and a questionnaire assessing psychosocial functioning and sexual risk factors. The WAIS-R scores were comparable to population means, with performance IQ scores tending to be higher than verbal IQ scores. The IQ was unrelated to the duration of homelessness. Higher IQ scores were significantly correlated with only a minority of the measures of psychosocial functioning, including less self-reported depression and lower reported delinquency, but also less self-control in high-risk sexual situations, less perceived peer support for safer sex, and a higher perceived likelihood of acquiring HIV. PMID:10462423

  15. Accurate definition of brain regions position through the functional landmark approach.

    PubMed

    Thirion, Bertrand; Varoquaux, Gaël; Poline, Jean-Baptiste

    2010-01-01

    In many application of functional Magnetic Resonance Imaging (fMRI), including clinical or pharmacological studies, the definition of the location of the functional activity between subjects is crucial. While current acquisition and normalization procedures improve the accuracy of the functional signal localization, it is also important to ensure that functional foci detection yields accurate results, and reflects between-subject variability. Here we introduce a fast functional landmark detection procedure, that explicitly models the spatial variability of activation foci in the observed population. We compare this detection approach to standard statistical maps peak extraction procedures: we show that it yields more accurate results on simulations, and more reproducible results on a large cohort of subjects. These results demonstrate that explicit functional landmark modeling approaches are more effective than standard statistical mapping for brain functional focus detection. PMID:20879321

  16. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals. PMID:27563956

  17. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang

    2016-08-01

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  18. Localization of binding sites in protein structures by optimization of a composite scoring function.

    PubMed

    Rossi, Andrea; Marti-Renom, Marc A; Sali, Andrej

    2006-10-01

    The rise in the number of functionally uncharacterized protein structures is increasing the demand for structure-based methods for functional annotation. Here, we describe a method for predicting the location of a binding site of a given type on a target protein structure. The method begins by constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on the protein surface. The scoring function is a weighted linear combination of the z-scores of various properties of protein structure and sequence, including amino acid residue conservation, compactness, protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set of previously identified instances of the binding-site type on known protein structures. The scoring function can easily incorporate different types of information useful in localization, thus increasing the applicability and accuracy of the approach. To test the method, 1008 known protein structures were split into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various nucleotides, binding sites were correctly identified in 55%-73% of the cases. The method is completely automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics setting. PMID:16963645

  19. Localization of binding sites in protein structures by optimization of a composite scoring function

    PubMed Central

    Rossi, Andrea; Marti-Renom, Marc A.; Sali, Andrej

    2006-01-01

    The rise in the number of functionally uncharacterized protein structures is increasing the demand for structure-based methods for functional annotation. Here, we describe a method for predicting the location of a binding site of a given type on a target protein structure. The method begins by constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on the protein surface. The scoring function is a weighted linear combination of the z-scores of various properties of protein structure and sequence, including amino acid residue conservation, compactness, protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set of previously identified instances of the binding-site type on known protein structures. The scoring function can easily incorporate different types of information useful in localization, thus increasing the applicability and accuracy of the approach. To test the method, 1008 known protein structures were split into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various nucleotides, binding sites were correctly identified in 55%–73% of the cases. The method is completely automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics setting. PMID:16963645

  20. Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young

    2015-07-01

    This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.

  1. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions. PMID:22371207

  2. In Lumbar Fusion Patients, How Does Establishing a Comfort Function Goal Preoperatively Impact Postoperative Pain Scores?

    PubMed

    Hennessy, Winnie; Wagner, Elizabeth; Dumas, Bonnie P; Handley, Patricia

    2015-12-01

    The purpose of this feasibility study was to determine the impact of establishing a comfort function goal preoperatively on postoperative pain scores and opiate requirements in lumbar fusion patients. A comfort function goal is defined as the pain score identified by the patient describing the level of pain tolerance to participate in healing activities such as deep breathing, ambulation and participation in activities of daily living. The design was prospective, nonrandomized, intervention group (n = 30) compared with retrospective chart review as control group (n = 30). Sample included patients scheduled for routine lumbar fusion in an urban southeastern hospital. The study intervention established a comfort function goal during a routine preoperative patient education class. No significant difference in pain score or opiate requirement was found for these data. However, a fundamental clinical question arose surrounding opiate requirements and dosing management. In our hospital, the norm for postoperative pain management is to categorize pain scores as mild (1-3), moderate (4-6), and severe (7-10) pain. Physician orders commonly use this differential to order opiate dose ranges. In this sample, the mean pain score for the intervention group at home is 5.8 and the mean comfort function goal is 4.9. Based on normative categories of pain scores, if a patient's baseline of tolerable pain is 4.9, this has potential impact on clinician responses to managing pain, as 4.9-5.8 is, for this patient, perhaps a mild range of pain, not moderate. If a patient reports a pain score of 7, and their norm is 5.8, the delta is only 1.2. Does this imply that the patient is experiencing mild or severe pain? Does the nurse deliver a dose of pain medication that is in the mild or severe dose range? PMID:26293197

  3. More accurate fitting of {sup 125}I and {sup 103}Pd radial dose functions

    SciTech Connect

    Taylor, R. E. P.; Rogers, D. W. O.

    2008-09-15

    In this study an improved functional form for fitting the radial dose functions, g(r), of {sup 125}I and {sup 103}Pd brachytherapy seeds is presented. The new function is capable of accurately fitting radial dose functions over ranges as large as 0.05 cm{<=}r{<=}10 cm for {sup 125}I seeds and 0.10 cm{<=}r{<=}10 cm for {sup 103}Pd seeds. The average discrepancies between fit and calculated data are less than 0.5% over the full range of fit and maximum discrepancies are 2% or less. The fitting function is also capable of accounting for the sharp increase in g(r) (upturn) seen for some sources for r<0.1 cm. This upturn has previously been attributed to the breakdown of the approximation of the sources as a line, however, in this study we demonstrate that another contributing factor is the 4.5 keV characteristic x-rays emitted from the Ti seed casing. Radial dose functions are calculated for 18 {sup 125}I seeds and 9 {sup 103}Pd seeds using the EGSnrc Monte Carlo user-code BrachyDose. Fitting coefficients of the new function are tabulated for all 27 seeds. Extrapolation characteristics of the function are also investigated. The new functional form is an improvement over currently used fitting functions with its main strength being the ability to accurately fit the rapidly varying radial dose function at small distances. The new function is an excellent candidate for fitting the radial dose function of all {sup 103}Pd and {sup 125}I brachytherapy seeds and will increase the accuracy of dose distributions calculated around brachytherapy seeds using the TG-43 protocol over a wider range of data. More accurate values of g(r) for r<0.5 cm may be particularly important in the treatment of ocular melanoma.

  4. Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.

    PubMed

    Sharma, Ashok K; Gupta, Ankit; Kumar, Sanjiv; Dhakan, Darshan B; Sharma, Vineet K

    2015-07-01

    Functional annotation of the gigantic metagenomic data is one of the major time-consuming and computationally demanding tasks, which is currently a bottleneck for the efficient analysis. The commonly used homology-based methods to functionally annotate and classify proteins are extremely slow. Therefore, to achieve faster and accurate functional annotation, we have developed an orthology-based functional classifier 'Woods' by using a combination of machine learning and similarity-based approaches. Woods displayed a precision of 98.79% on independent genomic dataset, 96.66% on simulated metagenomic dataset and >97% on two real metagenomic datasets. In addition, it performed >87 times faster than BLAST on the two real metagenomic datasets. Woods can be used as a highly efficient and accurate classifier with high-throughput capability which facilitates its usability on large metagenomic datasets. PMID:25863333

  5. Function-specific virtual screening for GPCR ligands using a combined scoring method

    PubMed Central

    Kooistra, Albert J.; Vischer, Henry F.; McNaught-Flores, Daniel; Leurs, Rob; de Esch, Iwan J. P.; de Graaf, Chris

    2016-01-01

    The ability of scoring functions to correctly select and rank docking poses of small molecules in protein binding sites is highly target dependent, which presents a challenge for structure-based drug discovery. Here we describe a virtual screening method that combines an energy-based docking scoring function with a molecular interaction fingerprint (IFP) to identify new ligands based on G protein-coupled receptor (GPCR) crystal structures. The consensus scoring method is prospectively evaluated by: 1) the discovery of chemically novel, fragment-like, high affinity histamine H1 receptor (H1R) antagonists/inverse agonists, 2) the selective structure-based identification of ß2-adrenoceptor (ß2R) agonists, and 3) the experimental validation and comparison of the combined and individual scoring approaches. Systematic retrospective virtual screening simulations allowed the definition of scoring cut-offs for the identification of H1R and ß2R ligands and the selection of an optimal ß-adrenoceptor crystal structure for the discrimination between ß2R agonists and antagonists. The consensus approach resulted in the experimental validation of 53% of the ß2R and 73% of the H1R virtual screening hits with up to nanomolar affinities and potencies. The selective identification of ß2R agonists shows the possibilities of structure-based prediction of GPCR ligand function by integrating protein-ligand binding mode information. PMID:27339552

  6. Artefacts and biases affecting the evaluation of scoring functions on decoy sets for protein structure prediction

    PubMed Central

    Handl, Julia; Knowles, Joshua; Lovell, Simon C.

    2009-01-01

    Motivation: Decoy datasets, consisting of a solved protein structure and numerous alternative native-like structures, are in common use for the evaluation of scoring functions in protein structure prediction. Several pitfalls with the use of these datasets have been identified in the literature, as well as useful guidelines for generating more effective decoy datasets. We contribute to this ongoing discussion an empirical assessment of several decoy datasets commonly used in experimental studies. Results: We find that artefacts and sampling issues in the large majority of these data make it trivial to discriminate the native structure. This underlines that evaluation based on the rank/z-score of the native is a weak test of scoring function performance. Moreover, sampling biases present in the way decoy sets are generated or used can strongly affect other types of evaluation measures such as the correlation between score and root mean squared deviation (RMSD) to the native. We demonstrate how, depending on type of bias and evaluation context, sampling biases may lead to both over- or under-estimation of the quality of scoring terms, functions or methods. Availability: Links to the software and data used in this study are available at http://dbkgroup.org/handl/decoy_sets. Contact: simon.lovell@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19297350

  7. Function-specific virtual screening for GPCR ligands using a combined scoring method.

    PubMed

    Kooistra, Albert J; Vischer, Henry F; McNaught-Flores, Daniel; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2016-01-01

    The ability of scoring functions to correctly select and rank docking poses of small molecules in protein binding sites is highly target dependent, which presents a challenge for structure-based drug discovery. Here we describe a virtual screening method that combines an energy-based docking scoring function with a molecular interaction fingerprint (IFP) to identify new ligands based on G protein-coupled receptor (GPCR) crystal structures. The consensus scoring method is prospectively evaluated by: 1) the discovery of chemically novel, fragment-like, high affinity histamine H1 receptor (H1R) antagonists/inverse agonists, 2) the selective structure-based identification of ß2-adrenoceptor (ß2R) agonists, and 3) the experimental validation and comparison of the combined and individual scoring approaches. Systematic retrospective virtual screening simulations allowed the definition of scoring cut-offs for the identification of H1R and ß2R ligands and the selection of an optimal ß-adrenoceptor crystal structure for the discrimination between ß2R agonists and antagonists. The consensus approach resulted in the experimental validation of 53% of the ß2R and 73% of the H1R virtual screening hits with up to nanomolar affinities and potencies. The selective identification of ß2R agonists shows the possibilities of structure-based prediction of GPCR ligand function by integrating protein-ligand binding mode information. PMID:27339552

  8. Physiologic Dysfunction Scores and Cognitive Function Test Performance in United States Adults

    PubMed Central

    Kobrosly, Roni W; Seplaki, Christopher L; Jones, Courtney M; van Wijngaarden, Edwin

    2013-01-01

    Objective To investigate the relationship between a measure of cumulative physiologic dysfunction and specific domains of cognitive function. Methods We examined a summary score measuring physiological dysfunction, a multisystem measure of the body’s ability to effectively adapt to physical and psychological demands, in relation to cognitive function deficits in a population of 4511 adults aged 20 to 59 who participated in the third National Health and Nutrition Examination Survey (1988–1994). Measures of cognitive function comprised three domains: working memory, visuomotor speed, and perceptual-motor speed. ‘Physiologic dysfunction’ scores summarizing measures of cardiovascular, immunologic, kidney, and liver function were explored. We used multiple linear regression models to estimate associations between cognitive function measures and physiological dysfunction scores, adjusting for socioeconomic factors, test conditions, and self-reported health factors. Results We noted a dose-response relationship between physiologic dysfunction and working memory (coefficient = 0.207, 95% CI = (0.066, 0.348), p < 0.0001) that persisted after adjustment for all covariates (p = 0.03). We did not observe any significant relationships between dysfunction scores and visuomotor (p = 0.37) or perceptual-motor ability (p = 0.33). Conclusions Our findings suggest that multisystem physiologic dysfunction is associated with working memory. Future longitudinal studies are needed to clarify the underlying mechanisms and explore the persistency of this association into later life. We suggest that such studies should incorporate physiologic data, neuroendocrine parameters, and a wide range of specific cognitive domains. PMID:22155941

  9. Computing exact p-values for a cross-correlation shotgun proteomics score function.

    PubMed

    Howbert, J Jeffry; Noble, William Stafford

    2014-09-01

    The core of every protein mass spectrometry analysis pipeline is a function that assesses the quality of a match between an observed spectrum and a candidate peptide. We describe a procedure for computing exact p-values for the oldest and still widely used score function, SEQUEST XCorr. The procedure uses dynamic programming to enumerate efficiently the full distribution of scores for all possible peptides whose masses are close to that of the spectrum precursor mass. Ranking identified spectra by p-value rather than XCorr significantly reduces variance because of spectrum-specific effects on the score. In combination with the Percolator postprocessor, the XCorr p-value yields more spectrum and peptide identifications at a fixed false discovery rate than Mascot, X!Tandem, Comet, and MS-GF+ across a variety of data sets. PMID:24895379

  10. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  11. A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies

    PubMed Central

    2014-01-01

    We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is relatively accurate at predicting the electrostatic component of the HFE without correction but requires a modification of the nonpolar contribution that originates in the formation of the cavity created by the solute in water. We use a free energy functional with the Ng scaling of the direct correlation function [Ng, K. C. J. Chem. Phys.1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for applications in drug design. PMID:24634616

  12. A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies.

    PubMed

    Truchon, Jean-François; Pettitt, B Montgomery; Labute, Paul

    2014-03-11

    We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is relatively accurate at predicting the electrostatic component of the HFE without correction but requires a modification of the nonpolar contribution that originates in the formation of the cavity created by the solute in water. We use a free energy functional with the Ng scaling of the direct correlation function [Ng, K. C. J. Chem. Phys. 1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for applications in drug design. PMID:24634616

  13. Functional independence measure scores of patients with hemiplegia followed up at home and in university hospitals

    PubMed Central

    Aydin, Teoman; Taspinar, Ozgür; Kepekci, Muge; Keskin, Yasar; Erten, Berna; Gunel, Mehtap; Gok, Murat; Bektas, Erdem; Sarac, Muzaffer; Mutluer, Ahmet Serdar

    2016-01-01

    [Purpose] Our purpose was to create awareness among of social rehabilitation at the university and in local governments, to identify gaps in social rehabilitation, and to increase the effectiveness of social rehabilitation. [Subjects and Methods] This study included stroke patients undergoing physical rehabilitation from the stroke outpatient clinic (43 patients) and the Istanbul Metropolitan Municipality Home Care Service (101 patients); face-to-face interviews were conducted to collect patient information regarding nutritional status. In addition, baseline functional independence measure (FIM) scores at baseline and during three months of follow-up were also compared. [Results] The average FIM motor scores at three months did not differ significantly between the home and hospital treatment groups. However, there were significant differences in baseline FIM motor and cognitive scores and three-month follow-up scores as well as average FIM total baseline scores between groups. In addition, month-to-month analysis of changes in FIM values between the two groups also revealed significant differences. [Conclusion] The results of our study were concordant with those of previous studies of stroke patients receiving rehabilitation, in demonstrating improved patient functional and cognitive capacity. PMID:27065223

  14. Quantitative Structure-Property Relationship Modeling of Electronic Properties of Graphene Using Atomic Radial Distribution Function Scores.

    PubMed

    Fernandez, Michael; Shi, Hongqing; Barnard, Amanda S

    2015-12-28

    The intrinsic relationships between nanoscale features and electronic properties of nanomaterials remain poorly investigated. In this work, electronic properties of 622 computationally optimized graphene structures were mapped to their structures using partial-least-squares regression and radial distributions function (RDF) scores. Quantitative structure-property relationship (QSPR) models were calibrated with 70% of a virtual data set of 622 passivated and nonpassivated graphenes, and we predicted the properties of the remaining 30% of the structures. The analysis of the optimum QSPR models revealed that the most relevant RDF scores appear at interatomic distances in the range of 2.0 to 10.0 Å for the energy of the Fermi level and the electron affinity, while the electronic band gap and the ionization potential correlate to RDF scores in a wider range from 3.0 to 30.0 Å. The predictions were more accurate for the energy of the Fermi level and the ionization potential, with more than 83% of explained data variance, while the electron affinity exhibits a value of ∼80% and the energy of the band gap a lower 70%. QSPR models have tremendous potential to rapidly identify hypothetical nanomaterials with desired electronic properties that could be experimentally prepared in the near future. PMID:26619798

  15. Logistic Discriminant Function Analysis for DIF Identification of Polytomously Scored Items.

    ERIC Educational Resources Information Center

    Miller, Timothy R.; Spray, Judith A.

    1993-01-01

    Presents logistic discriminant analysis as a means of detecting differential item functioning (DIF) in items that are polytomously scored. Provides examples of DIF detection using a 27-item mathematics test with 1,977 examinees. The proposed method is simpler and more practical than polytomous extensions of the logistic regression DIF procedure.…

  16. Recall Scores of Old and Young People as a Function of Registration Intervals

    ERIC Educational Resources Information Center

    Hulicka, Irene M.; Wheeler, Douglas

    1976-01-01

    Subjects, 24 old and 24 young people, were given one learning trial on paired associate lists under four temporal conditions. Recall scores of elderly subjects but not young subjects improved significantly as a function of the registration interval. Results suggest with advanced age more time is required for information processing. (Author)

  17. Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set.

    PubMed

    Li, Yan; Liu, Zhihai; Li, Jie; Han, Li; Liu, Jie; Zhao, Zhixiong; Wang, Renxiao

    2014-06-23

    Scoring functions are often applied in combination with molecular docking methods to predict ligand binding poses and ligand binding affinities or to identify active compounds through virtual screening. An objective benchmark for assessing the performance of current scoring functions is expected to provide practical guidance for the users to make smart choices among available methods. It can also elucidate the common weakness in current methods for future improvements. The primary goal of our comparative assessment of scoring functions (CASF) project is to provide a high-standard, publicly accessible benchmark of this type. Our latest study, i.e., CASF-2013, evaluated 20 popular scoring functions on an updated set of protein-ligand complexes. This data set was selected out of 8302 protein-ligand complexes recorded in the PDBbind database (version 2013) through a fairly complicated process. Sample selection was made by considering the quality of complex structures as well as binding data. Finally, qualified complexes were clustered by 90% similarity in protein sequences. Three representative complexes were chosen from each cluster to control sample redundancy. The final outcome, namely, the PDBbind core set (version 2013), consists of 195 protein-ligand complexes in 65 clusters with binding constants spanning nearly 10 orders of magnitude. In this data set, 82% of the ligand molecules are "druglike" and 78% of the protein molecules are validated or potential drug targets. Correlation between binding constants and several key properties of ligands are discussed. Methods and results of the scoring function evaluation will be described in a companion work in this issue (doi: 10.1021/ci500081m ). PMID:24716849

  18. The development and validation of a questionnaire for rotator cuff disorders: The Functional Shoulder Score

    PubMed Central

    Ibrahim, Edward F; Petrou, Charalambos; Galanos, Antonis

    2015-01-01

    Background The purpose of the present study was to validate the Functional Shoulder Score (FSS), a new patient-reported outcome score specifically designed to evaluate patients with rotator cuff disorders. Methods One hundred and nineteen patients were assessed using two shoulder scoring systems [the FSS and the Constant–Murley Score (CMS)] at 3 weeks pre- and 6 months post-arthroscopic rotator cuff surgery. The reliability, validity, responsiveness and interpretability of the FSS were evaluated. Results Reliability analysis (test–retest) showed an intraclass correlation coefficient value of 0.96 [95% confidence interval (CI) = 0.92 to 0.98]. Internal consistency analysis revealed a Cronbach's alpha coefficient of 0.93. The Pearson correlation coefficient FSS-CMS was 0.782 pre-operatively and 0.737 postoperatively (p < 0.0005). There was a statistically significant increase in FSS scores postoperatively, an effect size of 3.06 and standardized response mean of 2.80. The value for minimal detectable change was ±8.38 scale points (based on a 90% CI) and the minimal clinically important difference for improvement was 24.7 ± 5.4 points. Conclusions The FSS is a patient-reported outcome measure that can easily be incorporated into clinical practice, providing a quick, reliable, valid and practical measure for rotator cuff problems. The questionnaire is highly sensitive to clinical change.

  19. An accurate Fortran code for computing hydrogenic continuum wave functions at a wide range of parameters

    NASA Astrophysics Data System (ADS)

    Peng, Liang-You; Gong, Qihuang

    2010-12-01

    The accurate computations of hydrogenic continuum wave functions are very important in many branches of physics such as electron-atom collisions, cold atom physics, and atomic ionization in strong laser fields, etc. Although there already exist various algorithms and codes, most of them are only reliable in a certain ranges of parameters. In some practical applications, accurate continuum wave functions need to be calculated at extremely low energies, large radial distances and/or large angular momentum number. Here we provide such a code, which can generate accurate hydrogenic continuum wave functions and corresponding Coulomb phase shifts at a wide range of parameters. Without any essential restrict to angular momentum number, the present code is able to give reliable results at the electron energy range [10,10] eV for radial distances of [10,10] a.u. We also find the present code is very efficient, which should find numerous applications in many fields such as strong field physics. Program summaryProgram title: HContinuumGautchi Catalogue identifier: AEHD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1233 No. of bytes in distributed program, including test data, etc.: 7405 Distribution format: tar.gz Programming language: Fortran90 in fixed format Computer: AMD Processors Operating system: Linux RAM: 20 MBytes Classification: 2.7, 4.5 Nature of problem: The accurate computation of atomic continuum wave functions is very important in many research fields such as strong field physics and cold atom physics. Although there have already existed various algorithms and codes, most of them can only be applicable and reliable in a certain range of parameters. We present here an accurate FORTRAN program for

  20. A Combined Pulmonary Function and Emphysema Score Prognostic Index for Staging in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Boutou, Afroditi K.; Nair, Arjun; Douraghi-Zadeh, Dariush; Sandhu, Ranbir; Hansell, David M.; Wells, Athol U.; Polkey, Michael I.; Hopkinson, Nicholas S.

    2014-01-01

    Introduction Chronic Obstructive Pulmonary Disease (COPD) is characterized by high morbidity and mortality. Lung computed tomography parameters, individually or as part of a composite index, may provide more prognostic information than pulmonary function tests alone. Aim To investigate the prognostic value of emphysema score and pulmonary artery measurements compared with lung function parameters in COPD and construct a prognostic index using a contingent staging approach. Material-Methods Predictors of mortality were assessed in COPD outpatients whose lung computed tomography, spirometry, lung volumes and gas transfer data were collected prospectively in a clinical database. Univariate and multivariate Cox proportional hazard analysis models with bootstrap techniques were used. Results 169 patients were included (59.8% male, 61.1 years old; Forced Expiratory Volume in 1 second % predicted: 40.5±19.2). 20.1% died; mean survival was 115.4 months. Age (HR = 1.098, 95% Cl = 1.04–1.252) and emphysema score (HR = 1.034, 95% CI = 1.007–1.07) were the only independent predictors of mortality. Pulmonary artery dimensions were not associated with survival. An emphysema score of 55% was chosen as the optimal threshold and 30% and 65% as suboptimals. Where emphysema score was between 30% and 65% (intermediate risk) the optimal lung volume threshold, a functional residual capacity of 210% predicted, was applied. This contingent staging approach separated patients with an intermediate risk based on emphysema score alone into high risk (Functional Residual Capacity ≥210% predicted) or low risk (Functional Residual Capacity <210% predicted). This approach was more discriminatory for survival (HR = 3.123; 95% CI = 1.094–10.412) than either individual component alone. Conclusion Although to an extent limited by the small sample size, this preliminary study indicates that the composite Emphysema score-Functional Residual Capacity index might provide

  1. Tests of executive functioning predict scores on the MacAndrew Alcoholism Scale.

    PubMed

    Deckel, A W

    1999-02-01

    1. Previous work reported that tests of executive functioning (EF) predict the risk of alcoholism in subject populations selected for a "high density" of a family history of alcoholism and/or the presence of sociopathic traits. The current experiment examined the ability of EF tests to predict the risk of alcoholism, as measured by the MacAndrew Alcoholism Scale (MAC), in outpatient subjects referred to a general neuropsychological testing service. 2. Sixty-eight male and female subjects referred for neuropsychological testing were assessed for their past drinking histories and administered the Wisconsin Card Sorting Test, the Wechsler Adult Intelligence Scale-Revised, the Trails (Part B) Test, and the MAC. Principal Components analysis (PCA) reduced the number of EF tests to two measures, including one that loaded on the WCST, and one that loaded on the Similarities, Picture Arrangement, and Trails tests. Multiple hierarchical regression first removed the variance from demographic variables, alcohol consumption, and verbal (i.e., Vocabulary) and non-verbal (i.e., Block Design) IQ, and then entered the executive functioning factors into the prediction of the MAC. 3. Seventy-six percent of the subjects were classified as either light, infrequent, or non-drinkers on the Quantity-Frequency-Variability scale. The factor derived from the WCST on PCA significantly added to the prediction of risk on the MAC (p = .0063), as did scores on Block Design (p = .033). Relatively more impaired scores on the WCST factor and Block Design were predictive of higher scores on the MAC. The other factors were not associated with MAC scores. 4. These results support the hypothesis that decrements in EF are associated with risk factors for alcoholism, even in populations where the density of alcoholic behaviors are not unusually high. When taken in conjunction with other findings, these results implicate EF test scores, and prefrontal brain functioning, in the neurobiology of the risk for

  2. Clinical effect of Kudiezi injection on renal function based on propensity score.

    PubMed

    Zhang, Zhao-kang; Yang, Wei; Liu, Huan; Zeng, Xian-bin; Zhuang, Yan; Xie, Yan-ming

    2015-07-01

    To explore the effect of Kudiezi injection on renal function in the real world, in order to provide the basis for the clinical medication safety. Patient aged between 18-80 were selected from 18 large hospitals information system (HIS) databases established by clinical research institute for basic traditional Chinese medicine of China academy of Chinese medical sciences. The patients who were treated with Kudiezi injection (24 225 cases) were defined as the exposed group, whereas those who were not treated with Kudiezi injection (14,191 cases) were defined as the non-exposed group. The propensity score method was used to balance the confounding factors. Classic logistic regression, GBM weighted propensity score logistic regression, GBM propensity score weighted logistic regression with covariate and sensitivity analysis were adopted to study the effect of Kudiezi injection on renal function. The results showed no significant difference in the possibility in abnormality in serum creatinine (Scr) (P = 0.940, 0.679, 0.834) and urea nitrogen (BUN) (P = 0, 0.045, 0.164) between both groups. Therefore, the existing data indicated no damage of Kudiezi injection on renal function. Because this study is a retrospective study based on the real world, there may be unknown confounding factors and potential bias. Therefore, further studies shall be conducted to monitor whether Kudiezi injection causes damage on renal function, in order to ensure the clinical medication safety. PMID:26697696

  3. Effect of Mindfulness Meditation on Perceived Stress Scores and Autonomic Function Tests of Pregnant Indian Women

    PubMed Central

    Jain, Reena; Kohli, Sangeeta; Batra, Swaraj

    2016-01-01

    Introduction Various pregnancy complications like hypertension, preeclampsia have been strongly correlated with maternal stress. One of the connecting links between pregnancy complications and maternal stress is mind-body intervention which can be part of Complementary and Alternative Medicine (CAM). Biologic measures of stress during pregnancy may get reduced by such interventions. Aim To evaluate the effect of Mindfulness meditation on perceived stress scores and autonomic function tests of pregnant Indian women. Materials and Methods Pregnant Indian women of 12 weeks gestation were randomised to two treatment groups: Test group with Mindfulness meditation and control group with their usual obstetric care. The effect of Mindfulness meditation on perceived stress scores and cardiac sympathetic functions and parasympathetic functions (Heart rate variation with respiration, lying to standing ratio, standing to lying ratio and respiratory rate) were evaluated on pregnant Indian women. Results There was a significant decrease in perceived stress scores, a significant decrease of blood pressure response to cold pressor test and a significant increase in heart rate variability in the test group (p< 0.05, significant) which indicates that mindfulness meditation is a powerful modulator of the sympathetic nervous system and can thereby reduce the day-to-day perceived stress in pregnant women. Conclusion The results of this study suggest that mindfulness meditation improves parasympathetic functions in pregnant women and is a powerful modulator of the sympathetic nervous system during pregnancy. PMID:27190795

  4. Scores on the Safe Functional Motion Test Are Associated with Prevalent Fractures and Fall History

    PubMed Central

    Recknor, Chris P.; Grant, Stephanie L.; Recknor, Julie C.

    2013-01-01

    ABSTRACT Purpose: The Safe Functional Motion test (SFM) was developed to measure observed body mechanics and functional motion associated with spine load, balance, strength, and flexibility during everyday tasks to profile modifiable risks for osteoporotic fracture. This cross-sectional study evaluated the associations between SFM score and history of vertebral compression fracture (VCF), hip fracture, and injurious falls, all established predictors of future risk. Method: An osteoporosis clinic database was queried for adults with an initial SFM score and corresponding data for prevalent VCF and/or hip fracture, femoral neck bone mineral density (fnBMD), and history of injurious fall (n=847). Multiple logistic regressions, adjusted for age, gender, and fnBMD (and injurious falls in the prevalent fracture analyses), were used to determine whether associations exist between SFM score and prevalent VCF, prevalent hip fracture, and history of injurious fall. Results: SFM score was associated with prevalent VCF (odds ratio [OR]=0.89; 95% CI, 0.79–0.99; p=0.036), prevalent hip fracture (OR=0.77; 95% CI, 0.65–0.92; p=0.004), and history of injurious fall (OR=0.80; 95% CI, 0.70–0.93; p=0.003) after adjusting for other important covariates. Conclusions: Adults with higher SFM scores (“safer motion” during performance of everyday tasks) were less likely to have a history of fracture or injurious fall. Further study is warranted to evaluate the predictive value of this tool. PMID:24381386

  5. An interval-valued intuitionistic fuzzy TOPSIS method based on an improved score function.

    PubMed

    Bai, Zhi-yong

    2013-01-01

    This paper proposes an improved score function for the effective ranking order of interval-valued intuitionistic fuzzy sets (IVIFSs) and an interval-valued intuitionistic fuzzy TOPSIS method based on the score function to solve multicriteria decision-making problems in which all the preference information provided by decision-makers is expressed as interval-valued intuitionistic fuzzy decision matrices where each of the elements is characterized by IVIFS value and the information about criterion weights is known. We apply the proposed score function to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s) can be selected in the decision-making process. Finally, two illustrative examples for multicriteria fuzzy decision-making problems of alternatives are used as a demonstration of the applications and the effectiveness of the proposed decision-making method. PMID:24459449

  6. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury.

    PubMed

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-09-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  7. Using Dielectric Properties to Design Nonempirical Hybrid Functionals for Accurate Electronic Structure

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    2015-03-01

    Building upon a recently proposed self-consistent hybrid (sc-hybrid) functional, where the optimal dielectric screening is included self-consistently, we propose an improved form by incorporating range-separation of the exchange part. We discuss the choice of the non-empirical parameters defining range separation, and we present results for condensed media including semiconductors, amorphous insulators, and molecular crystals. We find that the range-separated sc-hybrid functional further improves upon the electronic gaps obtained with full-range sc-hybrids, thus providing an accurate functional for high throughput band gap engineering. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and ARL Grant Number W911NF-12-2-0023.

  8. Phase-function normalization for accurate analysis of ultrafast collimated radiative transfer.

    PubMed

    Hunter, Brian; Guo, Zhixiong

    2012-04-20

    The scattering of radiation from collimated irradiation is accurately treated via normalization of phase function. This approach is applicable to any numerical method with directional discretization. In this study it is applied to the transient discrete-ordinates method for ultrafast collimated radiative transfer analysis in turbid media. A technique recently developed by the authors, which conserves a phase-function asymmetry factor as well as scattered energy for the Henyey-Greenstein phase function in steady-state diffuse radiative transfer analysis, is applied to the general Legendre scattering phase function in ultrafast collimated radiative transfer. Heat flux profiles in a model tissue cylinder are generated for various phase functions and compared to those generated when normalization of the collimated phase function is neglected. Energy deposition in the medium is also investigated. Lack of conservation of scattered energy and the asymmetry factor for the collimated scattering phase function causes overpredictions in both heat flux and energy deposition for highly anisotropic scattering media. In addition, a discussion is presented to clarify the time-dependent formulation of divergence of radiative heat flux. PMID:22534933

  9. Do Bond Functions Help for the Calculation of Accurate Bond Energies?

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    1998-01-01

    The bond energies of 8 chemically bound diatomics are computed using several basis sets with and without bond functions (BF). The bond energies obtained using the aug-pVnZ+BF basis sets (with a correction for basis set superposition error, BSSE) tend to be slightly smaller that the results obtained using the aug-pV(n+I)Z basis sets, but slightly larger than the BSSE corrected aug-pV(n+I)Z results. The aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield reasonable estimates of bond energies, but, in most cases, these results cannot be considered highly accurate. Extrapolation of the results obtained with basis sets including bond functions appears to be inferior to the results obtained by extrapolation using atom-centered basis sets. Therefore bond functions do not appear to offer a path for obtaining highly accurate results for chemically bound systems at a lower computational cost than atom centered basis sets.

  10. Identifying Possible Sources of Differential Functioning Using Differential Bundle Functioning with Polytomously Scored Data

    ERIC Educational Resources Information Center

    McCarty, F. A.; Oshima, T. C.; Raju, Nambury S.

    2007-01-01

    Oshima, Raju, Flowers, and Slinde (1998) described procedures for identifying sources of differential functioning for dichotomous data using differential bundle functioning (DBF) derived from the differential functioning of items and test (DFIT) framework (Raju, van der Linden, & Fleer, 1995). The purpose of this study was to extend the procedures…

  11. Negative emotions affect postoperative scores for evaluating functional knee recovery and quality of life after total knee replacement.

    PubMed

    Qi, A; Lin, C; Zhou, A; Du, J; Jia, X; Sun, L; Zhang, G; Zhang, L; Liu, M

    2016-01-01

    This study aimed to determine whether psychological factors affect health-related quality of life (HRQL) and recovery of knee function in total knee replacement (TKR) patients. A total of 119 TKR patients (male: 38; female: 81) completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), State Trait Anxiety Inventory (STAI), Eysenck Personality Questionnaire-revised (EPQR-S), Knee Society Score (KSS), and HRQL (SF-36). At 1 and 6 months after surgery, anxiety, depression, and KSS scores in TKR patients were significantly better compared with those preoperatively (P<0.05). SF-36 scores at the sixth month after surgery were significantly improved compared with preoperative scores (P<0.001). Preoperative Physical Component Summary Scale (PCS) and Mental Component Summary Scale (MCS) scores were negatively associated with extraversion (E score) (B=-0.986 and -0.967, respectively, both P<0.05). Postoperative PCS and State Anxiety Inventory (SAI) scores were negatively associated with neuroticism (N score; B=-0.137 and -0.991, respectively, both P<0.05). Postoperative MCS, SAI, Trait Anxiety Inventory (TAI), and BAI scores were also negatively associated with the N score (B=-0.367, -0.107, -0.281, and -0.851, respectively, all P<0.05). The KSS function score at the sixth month after surgery was negatively associated with TAI and N scores (B=-0.315 and -0.532, respectively, both P<0.05), but positively associated with the E score (B=0.215, P<0.05). The postoperative KSS joint score was positively associated with postoperative PCS (B=0.356, P<0.05). In conclusion, for TKR patients, the scores used for evaluating recovery of knee function and HRQL after 6 months are inversely associated with the presence of negative emotions. PMID:26577843

  12. Negative emotions affect postoperative scores for evaluating functional knee recovery and quality of life after total knee replacement

    PubMed Central

    Qi, A.; Lin, C.; Zhou, A.; Du, J.; Jia, X.; Sun, L.; Zhang, G.; Zhang, L.; Liu, M.

    2015-01-01

    This study aimed to determine whether psychological factors affect health-related quality of life (HRQL) and recovery of knee function in total knee replacement (TKR) patients. A total of 119 TKR patients (male: 38; female: 81) completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), State Trait Anxiety Inventory (STAI), Eysenck Personality Questionnaire-revised (EPQR-S), Knee Society Score (KSS), and HRQL (SF-36). At 1 and 6 months after surgery, anxiety, depression, and KSS scores in TKR patients were significantly better compared with those preoperatively (P<0.05). SF-36 scores at the sixth month after surgery were significantly improved compared with preoperative scores (P<0.001). Preoperative Physical Component Summary Scale (PCS) and Mental Component Summary Scale (MCS) scores were negatively associated with extraversion (E score) (B=-0.986 and -0.967, respectively, both P<0.05). Postoperative PCS and State Anxiety Inventory (SAI) scores were negatively associated with neuroticism (N score; B=-0.137 and -0.991, respectively, both P<0.05). Postoperative MCS, SAI, Trait Anxiety Inventory (TAI), and BAI scores were also negatively associated with the N score (B=-0.367, -0.107, -0.281, and -0.851, respectively, all P<0.05). The KSS function score at the sixth month after surgery was negatively associated with TAI and N scores (B=-0.315 and -0.532, respectively, both P<0.05), but positively associated with the E score (B=0.215, P<0.05). The postoperative KSS joint score was positively associated with postoperative PCS (B=0.356, P<0.05). In conclusion, for TKR patients, the scores used for evaluating recovery of knee function and HRQL after 6 months are inversely associated with the presence of negative emotions. PMID:26577843

  13. Reliability of clinician scoring of the functional movement screen to assess movement patterns.

    PubMed

    Stobierski, Lisa M; Fayson, Shirleeah D; Minthorn, Lindsay M; Valovich McLeod, Tamara C; Welch, Cailee E

    2015-05-01

    Clinical Scenario: Injuries are inevitable in the physically active population. As a part of preventive medicine, health care professionals often seek clinical tools that can be used in real time to identify factors that may predispose individuals to these injuries. The Functional Movement Screen (FMS), a clinical tool consisting of 7 individual tasks, has been reported as useful in identifying individuals in various populations that may be susceptible to musculoskeletal injuries. If factors that may predispose physically active individuals to injury could be identified before participation, clinicians may be able to develop a training plan based on FMS scores, which could potentially decrease the likelihood of injury and overall time missed from physical activities. However, in order for a screening tool to be used clinically, it must demonstrate acceptable reliability. Focused Clinical Question: Are clinicians reliable at scoring the FMS, in real time, to assess movement patterns of physically active individuals? PMID:25054658

  14. Prediction of individual clinical scores in patients with Parkinson's disease using resting-state functional magnetic resonance imaging.

    PubMed

    Hou, YanBing; Luo, ChunYan; Yang, Jing; Ou, RuWei; Song, Wei; Wei, QianQian; Cao, Bei; Zhao, Bi; Wu, Ying; Shang, Hui-Fang; Gong, QiYong

    2016-07-15

    Neuroimaging holds the promise that it may one day aid the clinical assessment. However, the vast majority of studies using resting-state functional magnetic resonance imaging (fMRI) have reported average differences between Parkinson's disease (PD) patients and healthy controls, which do not permit inferences at the level of individuals. This study was to develop a model for the prediction of PD illness severity ratings from individual fMRI brain scan. The resting-state fMRI scans were obtained from 84 patients with PD and the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) scores were obtained before scanning. The RVR method was used to predict clinical scores (UPDRS-III) from fMRI scans. The application of RVR to whole-brain resting-state fMRI data allowed prediction of UPDRS-III scores with statistically significant accuracy (correlation=0.35, P-value=0.001; mean sum of squares=222.17, P-value=0.002). This prediction was informed strongly by negative weight areas including prefrontal lobe and medial occipital lobe, and positive weight areas including medial parietal lobe. It was suggested that fMRI scans contained sufficient information about neurobiological change in patients with PD to permit accurate prediction about illness severity, on an individual subject basis. Our results provided preliminary evidence, as proof-of-concept, to support that fMRI might be possible to be a clinically useful quantitative assessment aid in PD at individual level. This may enable clinicians to target those uncooperative patients and machines to replace human for a more efficient use of health care resources. PMID:27288771

  15. Reliable Spectroscopic Constants for CCH-, NH2- and Their Isotopomers from an Accurate Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Schwenke, David W.; Chaban, Galina M.

    2005-01-01

    Accurate quartic force fields have been determined for the CCH- and NH2- molecular anions using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T). Very large one-particle basis sets have been used including diffuse functions and up through g-type functions. Correlation of the nitrogen and carbon core electrons has been included, as well as other "small" effects, such as the diagonal Born-Oppenheimer correction, and basis set extrapolation, and corrections for higher-order correlation effects and scalar relativistic effects. Fundamental vibrational frequencies have been computed using standard second-order perturbation theory as well as variational methods. Comparison with the available experimental data is presented and discussed. The implications of our research for the astronomical observation of molecular anions will be discussed.

  16. Screened exchange hybrid density functional for accurate and efficient structures and interaction energies.

    PubMed

    Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan

    2016-06-21

    We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results. PMID:27240749

  17. Functional Limitations in Thiamine Deficiency Neuropathy: FIM Score Improvement With Treatment.

    PubMed

    Norio, Ohkoshi; Tsuneo, Fujita; Akito, Hayashi

    2006-03-01

    We studied the functional limitations of the activities of daily living and the effect of treatment on 8 patients with thiamine deficiency neuropathy. Functional activities of daily living were evaluated using the functional independence measure whose scores were obtained before and after high-dose vitamin B1 therapy. In the pretreatment evaluation, the lowest mean score was that of in locomotion (stairs), followed by locomotion (walk-wheelchair), transfers (tub-shower), bathing, dressing the lower body, toileting, transfers (bed-chair-wheelchair), and transfers (toilet), in that order. This tendency was also observed after treatment. The most remarkable therapeutic efficacy was observed in locomotion (walk-wheelchair), followed by transfers (tub-shower), locomotion (stairs), dressing the lower body, and toileting, in that order. Every action reflects the motor ability of the lower extremities. Thiamine deficiency neuropathy should be assessed routinely not only by medical evaluation of clinical symptoms or laboratory studies but also by functional evaluation that reflects each patient's disability. PMID:19078794

  18. Relationship Between Functional Knee Joint Position Sense and Functional Performance Scores Following Anterior Cruciate Ligament Reconstruction (Pilot Study)

    PubMed Central

    Kafa, Nihan; Ataoglu, Muhammed Baybars; Hazar, Zeynep; Citaker, Seyit; Ozer, Mustafa

    2014-01-01

    Objectives: The aim of this study was to assess the relationship between functional knee joint position sense (JPS) and functional performance following ACL reconstruction Methods: Seven male patients (mean age=32,66 ±6,47) who had undergone ACL reconstruction and 10 male healthy control subjects participated in the study. Knee joint position sense was evaluated by reproduction of 20° knee flexion angle in weight-bearing position with single and bilateral limb movement into flexion and extension. The deviations in the angle were recorded and compared to both noninjured side and healthy controls’. Functional performance was evaluated with Single Leg Hop Test in both injured and non-injured sides. The scores were also compared with healthy controls and non-injured sides. Relationship between measured values was tested with Spearman Correlation Analysis. Results: There was no significant difference in knee joint position sense in functional position between the operated and uninjured knees of patients or between patients and healthy controls (p>0,05). However, there is significant difference in Single Leg Hop test scores between operated and non-operated or between patients and healthy controls (p=0,037; p<0,05). There was no significant correlation between Single Leg Hop test scores and knee joint position sense (p>0,05). Conclusion: There was no evidence of impaired joint position sense in weight-bearing positions in subjects with ACL reconstruction but there was a decrease in functional performance. This decrease in functional performance may depend on the other parameters except proprioceptive deficits.

  19. Predicting Functional Independence Measure Scores During Rehabilitation with Wearable Inertial Sensors

    PubMed Central

    Sprint, Gina; Cook, Diane J.; Weeks, Douglas L.; Borisov, Vladimir

    2016-01-01

    Evaluating patient progress and making discharge decisions regarding inpatient medical rehabilitation rely upon standard clinical assessments administered by trained clinicians. Wearable inertial sensors can offer more objective measures of patient movement and progress. We undertook a study to investigate the contribution of wearable sensor data to predict discharge functional independence measure (FIM) scores for 20 patients at an inpatient rehabilitation facility. The FIM utilizes a 7-point ordinal scale to measure patient independence while performing several activities of daily living, such as walking, grooming, and bathing. Wearable inertial sensor data were collected from ecological ambulatory tasks at two time points mid-stay during inpatient rehabilitation. Machine learning algorithms were trained with sensor-derived features and clinical information obtained from medical records at admission to the inpatient facility. While models trained only with clinical features predicted discharge scores well, we were able to achieve an even higher level of prediction accuracy when also including the wearable sensor-derived features. Correlations as high as 0.97 for leave-one-out cross validation predicting discharge FIM motor scores are reported. PMID:27054054

  20. Macleaya cordata Extract Decreased Diarrhea Score and Enhanced Intestinal Barrier Function in Growing Piglets

    PubMed Central

    Fang, Jun; Martínez, Yordan; Bin, Peng; Duraipandiyan, Veeramuthu; Yin, Yulong

    2016-01-01

    Macleaya cordata extract is of great scientific and practical interest to researchers, due to its antimicrobial and anti-inflammatory responses within experimental animals. This study was designed to determine the diarrhea score and innate immunity of growing piglets after they had received Macleaya cordata extract supplements. A total of 240 growing pigs were randomly assigned to one of three dietary treatments, with 8 replicates per treatment and 10 piglets per replicate. All pigs received a basal diet containing similar amounts of nutrients. The three treatments were a control (no additive), an antibiotic (200 mg/kg colistin), and the Macleaya cordata extract supplement group (40 mg/kg Macleaya cordata extract). The diarrhea score was calculated after D 28. The jejunal samples were obtained from five piglets selected randomly from each treatment on D 28. In comparison with the control group, the dietary Macleaya cordata extract and colistin group demonstrated a substantially decreased diarrhea score. The introduction of Macleaya cordata extract supplements to the diet significantly increased volumes of ZO-1 and claudin-1, particularly in comparison with the pigs in the control group (P < 0.05). The findings indicate that Macleaya cordata extract does enhance intestinal barrier function in growing piglets and that it could be used as a viable substitute for antibiotics. PMID:27525260

  1. Empirical scoring functions for advanced protein-ligand docking with PLANTS.

    PubMed

    Korb, Oliver; Stützle, Thomas; Exner, Thomas E

    2009-01-01

    In this paper we present two empirical scoring functions, PLANTS(CHEMPLP) and PLANTS(PLP), designed for our docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization (ACO). They are related, regarding their functional form, to parts of already published scoring functions and force fields. The parametrization procedure described here was able to identify several parameter settings showing an excellent performance for the task of pose prediction on two test sets comprising 298 complexes in total. Up to 87% of the complexes of the Astex diverse set and 77% of the CCDC/Astex clean listnc (noncovalently bound complexes of the clean list) could be reproduced with root-mean-square deviations of less than 2 A with respect to the experimentally determined structures. A comparison with the state-of-the-art docking tool GOLD clearly shows that this is, especially for the druglike Astex diverse set, an improvement in pose prediction performance. Additionally, optimized parameter settings for the search algorithm were identified, which can be used to balance pose prediction reliability and search speed. PMID:19125657

  2. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    PubMed

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  3. Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data.

    PubMed

    Schütt, Heiko H; Harmeling, Stefan; Macke, Jakob H; Wichmann, Felix A

    2016-05-01

    The psychometric function describes how an experimental variable, such as stimulus strength, influences the behaviour of an observer. Estimation of psychometric functions from experimental data plays a central role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences. Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the behaviour of observers. Here we extend the standard binomial model which is typically used for psychometric function estimation to a beta-binomial model. We show that the use of the beta-binomial model makes it possible to determine accurate credible intervals even in data which exhibit substantial overdispersion. This goes beyond classical measures for overdispersion-goodness-of-fit-which can detect overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian inference methods for estimating the posterior distribution of the parameters of the psychometric function. Unlike previous Bayesian psychometric inference methods our software implementation-psignifit 4-performs numerical integration of the posterior within automatically determined bounds. This avoids the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive numerical tests show the validity of the approach and we discuss implications of overdispersion for experimental design. A comprehensive MATLAB toolbox implementing the method is freely available; a python implementation providing the basic capabilities is also available. PMID:27013261

  4. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  5. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGESBeta

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  6. Modelling the Constraints of Spatial Environment in Fauna Movement Simulations: Comparison of a Boundaries Accurate Function and a Cost Function

    NASA Astrophysics Data System (ADS)

    Jolivet, L.; Cohen, M.; Ruas, A.

    2015-08-01

    Landscape influences fauna movement at different levels, from habitat selection to choices of movements' direction. Our goal is to provide a development frame in order to test simulation functions for animal's movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influences are identified depending on landscape elements and on animal species. Knowledge were gathered from ecologists, literature and observation datasets. Second, we analysed the description of animal movement recorded with GPS at fine scale, corresponding to high temporal frequency and good location accuracy. Analysing this type of data provides information on the relation between landscape features and movements. We implemented an agent-based simulation approach to calculate potential trajectories constrained by the spatial environment and individual's behaviour. We tested two functions that consider space differently: one function takes into account the geometry and the types of landscape elements and one cost function sums up the spatial surroundings of an individual. Results highlight the fact that the cost function exaggerates the distances travelled by an individual and simplifies movement patterns. The geometry accurate function represents a good bottom-up approach for discovering interesting areas or obstacles for movements.

  7. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions.

    PubMed

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH(+) ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations. PMID:24697449

  8. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions

    NASA Astrophysics Data System (ADS)

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-01

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH+ ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  9. CT densitovolumetry in children with obliterative bronchiolitis: correlation with clinical scores and pulmonary function test results*,**

    PubMed Central

    Mocelin, Helena; Bueno, Gilberto; Irion, Klaus; Marchiori, Edson; Sarria, Edgar; Watte, Guilherme; Hochhegger, Bruno

    2013-01-01

    OBJECTIVE: To determine whether air trapping (expressed as the percentage of air trapping relative to total lung volume [AT%]) correlates with clinical and functional parameters in children with obliterative bronchiolitis (OB). METHODS: CT scans of 19 children with OB were post-processed for AT% quantification with the use of a fixed threshold of −950 HU (AT%950) and of thresholds selected with the aid of density masks (AT%DM). Patients were divided into three groups by AT% severity. We examined AT% correlations with oxygen saturation (SO2) at rest, six-minute walk distance (6MWD), minimum SO2 during the six-minute walk test (6MWT_SO2), FVC, FEV1, FEV1/FVC, and clinical parameters. RESULTS: The 6MWD was longer in the patients with larger normal lung volumes (r = 0.53). We found that AT%950 showed significant correlations (before and after the exclusion of outliers, respectively) with the clinical score (r = 0.72; 0.80), FVC (r = 0.24; 0.59), FEV1 (r = −0.58; −0.67), and FEV1/FVC (r = −0.53; r = −0.62), as did AT%DM with the clinical score (r = 0.58; r = 0.63), SO2 at rest (r = −0.40; r = −0.61), 6MWT_SO2 (r = −0.24; r = −0.55), FVC (r = −0.44; r = −0.80), FEV1 (r = −0.65; r = −0.71), and FEV1/FVC (r = −0.41; r = −0.52). CONCLUSIONS: Our results show that AT% correlates significantly with clinical scores and pulmonary function test results in children with OB. PMID:24473764

  10. Upper Extremity Functional Evaluation by Fugl-Meyer Assessment Scoring Using Depth-Sensing Camera in Hemiplegic Stroke Patients

    PubMed Central

    Baek, Dongyoub; Bang, Hyunwoo; Paik, Nam-Jong

    2016-01-01

    Virtual home-based rehabilitation is an emerging area in stroke rehabilitation. Functional assessment tools are essential to monitor recovery and provide current function-based rehabilitation. We developed the Fugl-Meyer Assessment (FMA) tool using Kinect (Microsoft, USA) and validated it for hemiplegic stroke patients. Forty-one patients with hemiplegic stroke were enrolled. Thirteen of 33 items were selected for upper extremity motor FMA. One occupational therapist assessed the motor FMA while recording upper extremity motion with Kinect. FMA score was calculated using principal component analysis and artificial neural network learning from the saved motion data. The degree of jerky motion was also transformed to jerky scores. Prediction accuracy for each of the 13 items and correlations between real FMA scores and scores using Kinect were analyzed. Prediction accuracies ranged from 65% to 87% in each item and exceeded 70% for 9 items. Correlations were high for the summed score for the 13 items between real FMA scores and scores obtained using Kinect (Pearson’s correlation coefficient = 0.873, P<0.0001) and those between total upper extremity scores (66 in full score) and scores using Kinect (26 in full score) (Pearson’s correlation coefficient = 0.799, P<0.0001). Log transformed jerky scores were significantly higher in the hemiplegic side (1.81 ± 0.76) compared to non-hemiplegic side (1.21 ± 0.43) and showed significant negative correlations with Brunnstrom stage (3 to 6; Spearman correlation coefficient = -0.387, P = 0.046). FMA using Kinect is a valid way to assess upper extremity function and can provide additional results for movement quality in stroke patients. This may be useful in the setting of unsupervised home-based rehabilitation. PMID:27367518

  11. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement.

    PubMed

    Borbulevych, Oleg; Martin, Roger I; Tickle, Ian J; Westerhoff, Lance M

    2016-04-01

    Gaining an understanding of the protein-ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  12. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement

    PubMed Central

    Borbulevych, Oleg; Martin, Roger I.; Tickle, Ian J.; Westerhoff, Lance M.

    2016-01-01

    Gaining an understanding of the protein–ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  13. Model for end-stage liver disease-Na score or Maddrey discrimination function index, which score is best?

    PubMed Central

    Amieva-Balmori, Mercedes; Mejia-Loza, Scherezada María Isabel; Ramos-González, Roberto; Zamarripa-Dorsey, Felipe; García-Ruiz, Eli; Pérez y López, Nuria; Juárez-Valdés, Eumir I; López-Luria, Adriana; Remes-Troche, José María

    2015-01-01

    AIM: To compare the ability of model for end-stage liver disease (MELD)-Na and Maddrey discrimination function index (DFI) to predict mortality at 30 and 90 d in patients with alcoholic hepatitis (AH). METHODS: We prospectively assessed 52 patients with AH. Demographic, clinical and laboratory parameters were obtained. MELD-Na and Maddrey DFI were calculated on admission. Short-term mortality was assessed at 30 and 90 d. Receiver operating characteristic curve analysis was performed. RESULTS: Thirty-day and 90-d mortality was 44% and 58%, respectively. In the univariate analysis, sodium levels was associated with mortality at 30 and 90 d (P = 0.001 and P = 0.03). Child stage, encephalopathy, ascites, or types of treatment were not associated with mortality. MELD-Na was the only predictive factor for mortality at 90 d. For 30-d mortality area under the curve (AUC) was 0.763 (95%CI: 0.63-0.89) for Maddrey DFI and 0.784 for MELD-Na (95%CI: 0.65-0.91, P = 0.82). For 90-d mortality AUC was 0.685 (95%CI: 0.54-0.83) for Maddrey DFI and 0.8710 for MELD-Na (95%CI: 0.76-0.97, P = 0.041). CONCLUSION: AH is associated with high short-term mortality. Our results show that MELD-Na is a more valuable model than DFI to predict short-term mortality. PMID:26301054

  14. Patellar resurfacing in total knee arthroplasty: functional outcome differs with different outcome scores

    PubMed Central

    Aunan, Eirik; Næss, Grethe; Clarke-Jenssen, John; Sandvik, Leiv; Kibsgård, Thomas Johan

    2016-01-01

    Background and purpose — Recent research on outcomes after total knee arthroplasty (TKA) has raised the question of the ability of traditional outcome measures to distinguish between treatments. We compared functional outcomes in patients undergoing TKA with and without patellar resurfacing, using the knee injury and osteoarthritis outcome score (KOOS) as the primary outcome and 3 traditional outcome measures as secondary outcomes. Patients and methods — 129 knees in 115 patients (mean age 70 (42–82) years; 67 female) were evaluated in this single-center, randomized, double-blind study. Data were recorded preoperatively, at 1 year, and at 3 years, and were assessed using repeated-measures mixed models. Results — The mean subscores for the KOOS after surgery were statistically significantly in favor of patellar resurfacing: sport/recreation, knee-related quality of life, pain, and symptoms. No statistically significant differences between the groups were observed with the Knee Society clinical rating system, with the Oxford knee score, and with visual analog scale (VAS) for patient satisfaction. Interpretation — In the present study, the KOOS—but no other outcome measure used—indicated that patellar resurfacing may be beneficial in TKA. PMID:26540368

  15. Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications

    SciTech Connect

    Hatt, Mathieu; Cheze le Rest, Catherine; Descourt, Patrice; Dekker, Andre; De Ruysscher, Dirk; Oellers, Michel; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris

    2010-05-01

    Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may facilitate dose painting for dosimetry optimization. Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homogeneous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomogeneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and heterogeneous activity distributions were used to assess the algorithm's accuracy. Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold (T{sub bckg}) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% +- 8% on the simulated tumors, whereas binary-only implementation led to errors of 15% +- 11%. T{sub bckg} and FCM led to mean errors of 20% +- 12% and 17% +- 14%, respectively. 3-FLAB also led to more robust estimation of the maximum diameters of tumors with histology measurements, with <6% standard deviation, whereas binary FLAB, T{sub bckg} and FCM lead to 10%, 12%, and 13%, respectively. Conclusion: These encouraging results warrant further investigation in future studies that will investigate the impact of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation.

  16. Accurate Astrometry and Photometry of Saturated and Coronagraphic Point Spread Functions

    SciTech Connect

    Marois, C; Lafreniere, D; Macintosh, B; Doyon, R

    2006-02-07

    For ground-based adaptive optics point source imaging, differential atmospheric refraction and flexure introduce a small drift of the point spread function (PSF) with time, and seeing and sky transmission variations modify the PSF flux. These effects need to be corrected to properly combine the images and obtain optimal signal-to-noise ratios, accurate relative astrometry and photometry of detected companions as well as precise detection limits. Usually, one can easily correct for these effects by using the PSF core, but this is impossible when high dynamic range observing techniques are used, like coronagraphy with a non-transmissive occulting mask, or if the stellar PSF core is saturated. We present a new technique that can solve these issues by using off-axis satellite PSFs produced by a periodic amplitude or phase mask conjugated to a pupil plane. It will be shown that these satellite PSFs track precisely the PSF position, its Strehl ratio and its intensity and can thus be used to register and to flux normalize the PSF. This approach can be easily implemented in existing adaptive optics instruments and should be considered for future extreme adaptive optics coronagraph instruments and in high-contrast imaging space observatories.

  17. Accurate calculation and modeling of the adiabatic connection in density functional theory

    NASA Astrophysics Data System (ADS)

    Teale, A. M.; Coriani, S.; Helgaker, T.

    2010-04-01

    AC. When parametrized in terms of the same input data, the AC-CI model offers improved performance over the corresponding AC-D model, which is shown to be the lowest-order contribution to the AC-CI model. The utility of the accurately calculated AC curves for the analysis of standard density functionals is demonstrated for the BLYP exchange-correlation functional and the interaction-strength-interpolation (ISI) model AC integrand. From the results of this analysis, we investigate the performance of our proposed two-parameter AC-D and AC-CI models when a simple density functional for the AC at infinite interaction strength is employed in place of information at the fully interacting point. The resulting two-parameter correlation functionals offer a qualitatively correct behavior of the AC integrand with much improved accuracy over previous attempts. The AC integrands in the present work are recommended as a basis for further work, generating functionals that avoid spurious error cancellations between exchange and correlation energies and give good accuracy for the range of densities and types of correlation contained in the systems studied here.

  18. Clinical Correlates of Hachinski Ischemic Score and Vascular Factors in Cognitive Function of Elderly

    PubMed Central

    Kim, Youn Ho

    2014-01-01

    The aim of this study is to investigate the relationship between Hachinski ischemic score (HIS) and vascular factors as well as between HIS and the cognitive function in elderly community. Demographic characteristics, such as sex, age, education, history of drinking and smoking, family history of dementia and stroke, diabetes mellitus, hypertension, hyperlipidemia, cardiovascular disease, stroke, and dementia, were surveyed. Neurological examination was administered to every subject and HIS was checked by a neurologist. From a total of 392 participants aged 65 and over in a rural community, 348 completed the survey and were finally enrolled. Among the vascular factors, history of hypertension (P = 0.008), history of stroke (P < 0.001), family history of dementia (P = 0.01), and history of cardiac diseases (P = 0.012) showed a significant relationship with HIS. In the cognitive function tests, both Korean version of the Mini-Mental State Examination and the Clinical Dementia Rating (Global and Sum of Boxes) had a significant relationship with HIS. Our study suggested HIS may have an association with some vascular factors and cognitive scales in community dwelling elderly. In this study, the HIS seemed to contribute to the evaluation of the quantity of vascular factors and to the prediction of status of cognitive function. PMID:25247189

  19. On a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of arc tangent function.

    PubMed

    Chen, Qiang; Yang, Bicheng

    2016-01-01

    By means of weight functions and Hermite-Hadamard's inequality, and introducing a discrete interval variable, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of arc tangent function and a best possible constant factor is given, which is an extension of a published result. The equivalent forms and the operator expressions are also considered. PMID:27563512

  20. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. PMID:24675610

  1. Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

    PubMed Central

    Badran, Yasser Ali; Abdelaziz, Alsayed Saad; Shehab, Mohamed Ahmed; Mohamed, Hazem Abdelsabour Dief; Emara, Absel-Aziz Ali; Elnabtity, Ali Mohamed Ali; Ghanem, Maged Mohammed; ELHelaly, Hesham Abdel Azim

    2016-01-01

    Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies. PMID:27141192

  2. Reliability and Construct Validity of Scores on the Behavioral Competence Inventory: A Measure of Adaptive Functioning.

    ERIC Educational Resources Information Center

    Jarjoura, David; Hartman-Stein, Paula; Speight, Joan; Reuter, Jeanette

    1999-01-01

    Examined the reliability and construct validity in an older adult population (n=149 older adults and their informants) of scores on the Behavioral Competence Inventory (BCI) (P. Hartman-Stein). Results indicate that scores on the BCI's seven scales show adequate internal consistencies and represent seven overlapping but distinct constructs in this…

  3. Neural-Network Scoring Functions Identify Structurally Novel Estrogen-Receptor Ligands.

    PubMed

    Durrant, Jacob D; Carlson, Kathryn E; Martin, Teresa A; Offutt, Tavina L; Mayne, Christopher G; Katzenellenbogen, John A; Amaro, Rommie E

    2015-09-28

    The magnitude of the investment required to bring a drug to the market hinders medical progress, requiring hundreds of millions of dollars and years of research and development. Any innovation that improves the efficiency of the drug-discovery process has the potential to accelerate the delivery of new treatments to countless patients in need. "Virtual screening," wherein molecules are first tested in silico in order to prioritize compounds for subsequent experimental testing, is one such innovation. Although the traditional scoring functions used in virtual screens have proven useful, improved accuracy requires novel approaches. In the current work, we use the estrogen receptor to demonstrate that neural networks are adept at identifying structurally novel small molecules that bind to a selected drug target, ultimately allowing experimentalists to test fewer compounds in the earliest stages of lead identification while obtaining higher hit rates. We describe 39 novel estrogen-receptor ligands identified in silico with experimentally determined Ki values ranging from 460 nM to 20 μM, presented here for the first time. PMID:26286148

  4. A non-empirical, parameter-free, hybrid functional for accurate calculations of optoelectronic properties of finite systems

    NASA Astrophysics Data System (ADS)

    Brawand, Nicholas; Vörös, Márton; Govoni, Marco; Galli, Giulia

    The accurate prediction of optoelectronic properties of molecules and solids is a persisting challenge for current density functional theory (DFT) based methods. We propose a hybrid functional where the mixing fraction of exact and local exchange is determined by a non-empirical, system dependent function. This functional yields ionization potentials, fundamental and optical gaps of many, diverse systems in excellent agreement with experiments, including organic and inorganic molecules and nanocrystals. We further demonstrate that the newly defined hybrid functional gives the correct alignment between the energy level of the exemplary TTF-TCNQ donor-acceptor system. DOE-BES: DE-FG02-06ER46262.

  5. Protein Alpha Shape (PAS) Dock: a new gaussian-based score function suitable for docking in homology modelled protein structures.

    PubMed

    Tøndel, Kristin; Anderssen, Endre; Drabløs, Finn

    2006-03-01

    Protein Alpha Shape (PAS) Dock is a new empirical score function suitable for virtual library screening using homology modelled protein structures. Here, the score function is used in combination with the geometry search method Tabu search. A description of the protein binding site is generated using gaussian property fields like in Protein Alpha Shape Similarity Analysis (PASSA). Gaussian property fields are also used to describe the ligand properties. The overlap between the receptor and ligand hydrophilicity and lipophilicity fields is maximised, while minimising steric clashes. Gaussian functions introduce a smoothing of the property fields. This makes the score function robust against small structural variations, and therefore suitable for use with homology models. This also makes it less critical to include protein flexibility in the docking calculations. We use a fast and simplified version of the score function in the geometry search, while a more detailed version is used for the final prediction of the binding free energies. This use of a two-level scoring makes PAS-Dock computationally efficient, and well suited for virtual screening. The PAS-Dock score function is trained on 218 X-ray structures of protein- ligand complexes with experimental binding affinities. The performance of PAS-Dock is compared to two other docking methods, AutoDock and MOE-Dock, with respect to both accuracy and computational efficiency. According to this study, PAS-Dock is more computationally efficient than both AutoDock and MOE-Dock, and gives a better prediction of the free energies of binding. PAS-Dock is also more robust against structural variations than AutoDock. PMID:16652207

  6. A physics-based scoring function for protein structural decoys: Dynamic testing on targets of CASP-ROLL

    NASA Astrophysics Data System (ADS)

    Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; García, Yamila; Puris, Amilkar; Bello, Rafael; Green, James; Sotomayor-Torres, Clivia M.

    2014-08-01

    Most successful structure prediction strategies use knowledge-based functions for global optimization, in spite of their intrinsic limited potential to create new folds, while physics-based approaches are often employed only during structure refinement steps. We here propose a physics-based scoring potential intended to perform global searches of the conformational space. We introduce a dynamic test to evaluate the discrimination power of our function, and compare it with predictions of targets from the CASP-ROLL competition. Results demonstrate that this dynamic test is able to generate 3D models which outrank 59% (according GDT_TS score) of models generated with ab initio structure prediction servers.

  7. Development of a functional scoring system for rheumatoid arthritis patients with cervical myelopathy.

    PubMed Central

    Casey, A T; Bland, J M; Crockard, H A

    1996-01-01

    OBJECTIVE: To be able to measure disability objectively in rheumatoid arthritis complicated by cervical myelopathy. METHODS: The responses to the Stanford health assessment questionnaire disability index were recorded from 250 consecutive patients (group 1) referred to our unit for spinal surgery. Using principal components analysis the questionnaire was reduced from 20 questions to 10 questions. In the second part of the study, the results of the questionnaire for those patients undergoing surgery from the original group of 250 patients were analysed with respect to outcome. RESULTS: The reduction in the number of questions results in no significant loss of information, reliability (internal consistency Cronbach's alpha = 0.968) or sensitivity. The new scale, the myelopathy disability index, measures only one dimension (Eigen value 6.97) and may be more finely tuned to the measurement of disability in these myelopathic patients. When administered to the 194 patients undergoing cervical spine (group 2) surgery the myelopathy disability index was an accurate predictor of neurological and functional outcome, as well as survival following surgery (P < 0.0001). CONCLUSIONS: The myelopathy disability index provides a much needed objective and reliable means of assessing disability in patients with rheumatoid involvement of the cervical spine and also in predicting outcome following surgical intervention. It also provides information for both the patient and surgeon alike, on what to realistically expect from surgery. Its adoption should facilitate comparisons between different forms of surgical intervention. PMID:9014584

  8. APACHE II Score, Rather Than Cardiac Function, May Predict Poor Prognosis in Patients With Stress-Induced Cardiomyopathy

    PubMed Central

    Joe, Byung-Hyun; Jo, Uk; Kim, Hyun-Soo; Park, Chang-Bum; Hwang, Hui-Jeong; Sohn, Il-Suk; Jin, Eun-Sun; Cho, Jin-Man; Park, Jeong-Hwan

    2012-01-01

    While the disease course of stress-induced cardiomyopathy (SIC) is usually benign, it can be fatal. The prognostic factors to predict poorer outcome are not well established, however. We analyzed the Acute Physiology And Chronic Health Evaluation (APACHE) II score to assess its value for predicting poor prognosis in patients with SIC. Thirty-seven consecutive patients with SIC were followed prospectively during their hospitalization. Clinical factors, including APACHE II score, coronary angiogram, echocardiography and cardiac enzymes at presentation were analyzed. Of the 37 patients, 27 patients (73%) were women. The mean age was 66.1 ± 15.6 yr, and the most common presentation was chest pain (38%). Initial echocardiographic left ventricular ejection fraction (EF) was 42.5% ± 9.3%, and the wall motion score index (WMSI) was 1.9 ± 0.3. Six patients (16%) expired during the follow-up period of hospitalization. Based on the analysis of characteristics and clinical factors, the only predictable variable in prognosis was APACHE II score. The patients with APACHE II score greater than 20 had tendency to expire than the others (P = 0.001). Based on present study, APACHE II score more than 20, rather than cardiac function, is associated with mortality in patients with SIC. PMID:22219614

  9. Objective Functional Assessment After a Head Injury Using Movement and Activity in Physical Space Scores: A Case Report

    PubMed Central

    Farnsworth, James L.; McElhiney, Danielle; David, Shannon; Sinha, Gaurav; Ragan, Brian G.

    2014-01-01

    Objective: To describe the potential benefit of using a global positioning system (GPS) and accelerometry as an objective functional-activity measure after concussion by creating Movement and Activity in Physical Space (MAPS) scores. Background: A 21-year-old female soccer player suffered a blow to the back of the head from an opponent's shoulder during an away match. No athletic trainer was present. She played the remainder of the match and reported to the athletic training facility the next day for evaluation. Differential Diagnosis: Concussion. Treatment: The athlete was removed from all athletic activities. Her symptoms were monitored based on the Zurich guidelines. She was also instructed to wear an accelerometer on her hip and to carry an on-person GPS receiver at all times for 10 days. Her total symptom scores for the 4 symptomatic days were 82, 39, 49, and 36. Her mean MAPS functional score for symptomatic days 3 through 5 was 900.9 and for asymptomatic days 6 through 11 was 2734.9. Uniqueness: We monitored the patient's function during the concussion-recovery process using an on-person GPS receiver and accelerometer to calculate personalized MAPS scores. This novel approach to measuring function after injury may provide a useful complementary tool to help with return-to-play decisions. Conclusions: An on-person GPS receiver and accelerometer were used to observe the patient's physical activity in a free-living environment, allowing for an objective measure of function during recovery. Her MAPS scores were low while she was symptomatic and increased as she became asymptomatic. We saw the expected inverse relationship between symptoms and function. In situations where accuracy of reported symptoms may be a concern, this measure may provide a way to verify the validity of, or raise doubts about, self-reported symptoms. PMID:24840582

  10. The Mantel-Haenszel Method for Detecting Differential Item Functioning in Dichotomously Scored Items: A Multilevel Approach

    ERIC Educational Resources Information Center

    MacInnes, Jann Marie Wise

    2009-01-01

    Multilevel data often exist in educational studies. The focus of this study is to consider differential item functioning (DIF) for dichotomous items from a multilevel perspective. One of the most often used methods for detecting DIF in dichotomously scored items is the Mantel-Haenszel log odds-ratio. However, the Mantel-Haenszel reduces the…

  11. A new class of atomic basis functions for accurate electronic structure calculations of molecules

    NASA Astrophysics Data System (ADS)

    Laikov, Dimitri N.

    2005-11-01

    A new general approach is developed for obtaining systematic sequences of atomic single-particle basis sets for use in correlated electronic structure calculations of molecules. All the constituent functions are defined as the solutions of variational problems and are of three types: a minimal Hartree-Fock set, additional functions to represent low-lying excited configurations, and general functions for describing electron correlation. The latter are determined to minimize a functional derived from the closed-shell second-order correlation energy expression. Generally-contracted Gaussian expansions are developed to approximate these general functions in the non-relativistic case and within a scalar-relativistic approximation.

  12. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    PubMed

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  13. Splitting statistical potentials into meaningful scoring functions: Testing the prediction of near-native structures from decoy conformations

    PubMed Central

    2009-01-01

    Background Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both. Results Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors. Conclusion We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations. PMID:19917096

  14. Discriminate protein decoys from native by using a scoring function based on ubiquitous Phi and Psi angles computed for all atom.

    PubMed

    Mishra, Avdesh; Iqbal, Sumaiya; Hoque, Md Tamjidul

    2016-06-01

    The success of solving the protein folding and structure prediction problems in molecular and structural biology relies on an accurate energy function. With the rapid advancement in the computational biology and bioinformatics fields, there is a growing need of solving unknown fold and structure faster and thus an accurate energy function is indispensable. To address this need, we develop a new potential function, namely 3DIGARS3.0, which is a linearly weighted combination of 3DIGARS, mined accessible surface area (ASA) and ubiquitously computed Phi (uPhi) and Psi (uPsi) energies - optimized by a Genetic Algorithm (GA). We use a dataset of 4332 protein-structures to generate uPhi and uPsi based score libraries to be used within the core 3DIGARS method. The optimized weight of each component is obtained by applying Genetic Algorithm based optimization on three challenging decoy sets. The improved 3DIGARS3.0 outperformed state-of-the-art methods significantly based on a set of independent test datasets. PMID:27029514

  15. Applicability of Density Functional Theory in Reproducing Accurate Vibrational Spectra of Surface Bound Species

    SciTech Connect

    Matanovic, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando; Henson, Neil J.

    2014-10-05

    The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of 22.62 and 21.1% for the NAN stretching and RhAH stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the RhAH and NAN stretching modes from the bulk phonons and by solving one- and two-dimensional Schr€odinger equation associated with the RhAH, RhAN, and NAN potential energy we calculated the anharmonic correction for NAN and RhAH stretching modes as 231 cm21 and 277 cm21 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments.

  16. Applicability of density functional theory in reproducing accurate vibrational spectra of surface bound species.

    PubMed

    Matanović, Ivana; Atanassov, Plamen; Kiefer, Boris; Garzon, Fernando H; Henson, Neil J

    2014-10-01

    The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of -2.62 and -1.1% for the N-N stretching and Rh-H stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the Rh-H and N-N stretching modes from the bulk phonons and by solving one- and two-dimensional Schrödinger equation associated with the Rh-H, Rh-N, and N-N potential energy we calculated the anharmonic correction for N-N and Rh-H stretching modes as -31 cm(-1) and -77 cm(-1) at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments. PMID:25164265

  17. New density functional parameterizations to accurate calculations of electric field gradient variations among compounds.

    PubMed

    Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade

    2015-10-30

    This research provides a performance investigation of density functional theory and also proposes new functional parameterizations to deal with electric field gradient (EFG) calculations at nuclear positions. The entire procedure is conducted within the four-component formalism. First, we noticed that traditional hybrid and long-range corrected functionals are more efficient in the description of EFG variations for a set of elements (indium, antimony, iodine, lutetium, and hafnium) among linear molecules. Thus, we selected the PBE0, B3LYP, and CAM-B3LYP functionals and promoted a reoptimization of their parameters for a better description of these EFG changes. The PBE0q variant developed here showed an overall promising performance in a validation test conducted with potassium, iodine, copper, and gold. In general, the correlation coefficients found in linear regressions between experimental nuclear quadrupole coupling constants and calculated EFGs are improved while the systematic EFG errors also decrease as a result of this reparameterization. PMID:26284820

  18. The Balthazar Scales of Adaptive Behavior. Measures of Program Development for the Severely and Profoundly Mentally Retarded. Section 1. Skills of Functional Independence. Part Three: Program Scoring Form.

    ERIC Educational Resources Information Center

    Balthazar, Earl E.

    The scoring form for functional independence skills for the mentally retarded includes a section for recording subjects' demographic characteristics as well as tests used, date administered, and raw score. Other sections provide for a brief description of the program being used, an item scoring sheet for the Eating Scales (dependent feeding,…

  19. Accurate and efficient calculation of discrete correlation functions and power spectra

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Liu, J. M.; Zhu, W. D.

    2015-07-01

    Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate

  20. A simple and accurate grading system for orthoiodohippurate renal scans in the assessment of post-transplant renal function

    SciTech Connect

    Zaki, S.K.; Bretan, P.N.; Go, R.T.; Rehm, P.K.; Streem, S.B.; Novick, A.C. )

    1990-06-01

    Orthoiodohippurate renal scanning has proved to be a reliable, noninvasive method for the evaluation and followup of renal allograft function. However, a standardized system for grading renal function with this test is not available. We propose a simple grading system to distinguish the different functional phases of hippurate scanning in renal transplant recipients. This grading system was studied in 138 patients who were evaluated 1 week after renal transplantation. There was a significant correlation between the isotope renographic functional grade and clinical correlates of allograft function such as the serum creatinine level (p = 0.0001), blood urea nitrogen level (p = 0.0001), urine output (p = 0.005) and need for hemodialysis (p = 0.007). We recommend this grading system as a simple and accurate method to interpret orthoiodohippurate renal scans in the evaluation and followup of renal allograft recipients.

  1. An extended set of yeast-based functional assays accurately identifies human disease mutations.

    PubMed

    Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E; Vidal, Marc; Andrews, Brenda J; Boone, Charles; Dolinski, Kara; Roth, Frederick P

    2016-05-01

    We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778

  2. An extended set of yeast-based functional assays accurately identifies human disease mutations

    PubMed Central

    Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.

    2016-01-01

    We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778

  3. Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections.

    PubMed

    Calbo, Joaquín; Ortí, Enrique; Sancho-García, Juan C; Aragó, Juan

    2015-03-10

    In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems. PMID:26579747

  4. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  5. Effects of a Story Map on Accelerated Reader Postreading Test Scores in Students with High-Functioning Autism

    ERIC Educational Resources Information Center

    Stringfield, Suzanne Griggs; Luscre, Deanna; Gast, David L.

    2011-01-01

    In this study, three elementary-aged boys with high-functioning autism (HFA) were taught to use a graphic organizer called a Story Map as a postreading tool during language arts instruction. Students learned to accurately complete the Story Map. The effect of the intervention on story recall was assessed within the context of a multiple-baseline…

  6. A method for the accurate and smooth approximation of standard thermodynamic functions

    NASA Astrophysics Data System (ADS)

    Coufal, O.

    2013-01-01

    A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are

  7. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.; Lomakina, Ekaterina I.

    2009-08-01

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  8. Can Neuromotor Functioning Predict Stanford-Binet IQ Scores and Piagetian Cognitive Task Performance?

    ERIC Educational Resources Information Center

    Tomes, Ruth; Heilbuth, Lynne

    Studies comparing neuromotor and mental functioning of normal and disabled populations have shown that lower cognitive functioning is significantly related to lower motor functioning for retarded or disabled children but not for normal children. In an effort to further examine the relationship between these two functions, a study was conducted of…

  9. Effects of Ankle–Foot Orthoses on Functional Recovery after Stroke: A Propensity Score Analysis Based on Japan Rehabilitation Database

    PubMed Central

    2015-01-01

    Objectives The purpose of the present study was to investigate potential effects of ankle–foot orthoses (AFOs) on the functional recovery of post-acute stroke patients following rehabilitation. Subjects and Methods This study is a retrospective cohort study. Participants were in-hospital stroke patients registered in the Japan Rehabilitation Database between 2005 and 2012. A total of 1862 patients were eligible after applying exclusion criteria. Propensity score analysis was applied to adjust for potential bias and to create two comparable groups. An additional subset analysis focused on Functional Independence Measure (FIM) scores on admission. Results In this sample, 30.7% of 1863 eligible patients were prescribed AFOs. Propensity score matched analysis showed that patients with AFOs had significantly higher scores than those without them for discharge FIM (mean: 91.3 vs 85.8; p=0.02), FIM gain (mean: 28.9 vs 23.5; p<0.001), and FIM efficiency (mean: 0.27 vs 0.22; p<0.001). Inverse probability weighting analysis showed similar results. In the subset analysis, patients with AFOs had significantly higher discharge FIM compared with those without them in the low admission FIM subgroup only. In addition, patients with AFOs performed independent exercise more than those without them (p<0.001). Conclusions These data suggest that stroke survivors may have better functional recovery if they are prescribed an AFO than if they are not prescribed an AFO. The use of AFOs is considered to be a feasible option to improve functional recovery of stroke rehabilitation patients. PMID:25837720

  10. Psychometric Functions for Shortened Administrations of a Speech Recognition Approach Using Tri-Word Presentations and Phonemic Scoring

    ERIC Educational Resources Information Center

    Gelfand, Stanley A.; Gelfand, Jessica T.

    2012-01-01

    Method: Complete psychometric functions for phoneme and word recognition scores at 8 signal-to-noise ratios from -15 dB to 20 dB were generated for the first 10, 20, and 25, as well as all 50, three-word presentations of the Tri-Word or Computer Assisted Speech Recognition Assessment (CASRA) Test (Gelfand, 1998) based on the results of 12…

  11. Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method

    NASA Astrophysics Data System (ADS)

    Małolepsza, Edyta; Witek, Henryk A.; Morokuma, Keiji

    2005-09-01

    An optimization technique for enhancing the quality of repulsive two-body potentials of the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented and tested. The new, optimized potentials allow for significant improvement of calculated harmonic vibrational frequencies. Mean absolute deviation from experiment computed for a group of 14 hydrocarbons is reduced from 59.0 to 33.2 cm -1 and maximal absolute deviation, from 436.2 to 140.4 cm -1. A drawback of the new family of potentials is a lower quality of reproduced geometrical and energetic parameters.

  12. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation

    PubMed Central

    Zhang, Gang; Mendez, Blanca Lopez; Sedgwick, Garry G.; Nilsson, Jakob

    2016-01-01

    The BubR1/Bub3 complex is an important regulator of chromosome segregation as it facilitates proper kinetochore–microtubule interactions and is also an essential component of the spindle assembly checkpoint (SAC). Whether BubR1/Bub3 localization to kinetochores in human cells stimulates SAC signalling or only contributes to kinetochore–microtubule interactions is debated. Here we show that two distinct pools of BubR1/Bub3 exist at kinetochores and we uncouple these with defined BubR1/Bub3 mutants to address their function. The major kinetochore pool of BubR1/Bub3 is dependent on direct Bub1/Bub3 binding and is required for chromosome alignment but not for the SAC. A distinct pool of BubR1/Bub3 localizes by directly binding to phosphorylated MELT repeats on the outer kinetochore protein KNL1. When we prevent the direct binding of BubR1/Bub3 to KNL1 the checkpoint is weakened because BubR1/Bub3 is not incorporated into checkpoint complexes efficiently. In conclusion, kinetochore localization supports both known functions of BubR1/Bub3. PMID:27457023

  13. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions.

    PubMed

    Chon, K H; Cohen, R J; Holstein-Rathlou, N H

    1997-01-01

    A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise. PMID:9236985

  14. Functional cerebral distance and the effect of emotional music on spatial rotation scores in undergraduate women and men.

    PubMed

    Bertsch, Sharon; Knee, H Donald; Webb, Jeffrey L

    2011-02-01

    The influence of listening to music on subsequent spatial rotation scores has a controversial history. The effect is unreliable, seeming to depend on several as yet unexplored factors. Using a large sample (167 women, 160 men; M age = 18.9 yr.), two related variables were investigated: participants' sex and the emotion conveyed by the music. Participants listened to 90 sec. of music that portrayed emotions of approach (happiness), or withdrawal (anger), or heard no music at all. They then performed a two-dimensional spatial rotation task. No significant difference was found in spatial rotation scores between groups exposed to music and those who were not. However, a significant interaction was found based on the sex of the participants and the emotion portrayed in the music they heard. Women's scores increased (relative to a no-music condition) only after hearing withdrawal-based music, while men's scores increased only after listening to the approach-based music. These changes were explained using the theory of functional cerebral distance. PMID:21526586

  15. Estimation method of point spread function based on Kalman filter for accurately evaluating real optical properties of photonic crystal fibers.

    PubMed

    Shen, Yan; Lou, Shuqin; Wang, Xin

    2014-03-20

    The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters. PMID:24663461

  16. Training Compliance Control Yields Improvements in Drawing as a Function of Beery Scores

    PubMed Central

    Snapp-Childs, Winona; Flatters, Ian; Fath, Aaron; Mon-Williams, Mark; Bingham, Geoffrey P.

    2014-01-01

    Many children have difficulty producing movements well enough to improve in sensori-motor learning. Previously, we developed a training method that supports active movement generation to allow improvement at a 3D tracing task requiring good compliance control. Here, we tested 7–8 year old children from several 2nd grade classrooms to determine whether 3D tracing performance could be predicted using the Beery VMI. We also examined whether 3D tracing training lead to improvements in drawing. Baseline testing included Beery, a drawing task on a tablet computer, and 3D tracing. We found that baseline performance in 3D tracing and drawing co-varied with the visual perception (VP) component of the Beery. Differences in 3D tracing between children scoring low versus high on the Beery VP replicated differences previously found between children with and without motor impairments, as did post-training performance that eliminated these differences. Drawing improved as a result of training in the 3D tracing task. The training method improved drawing and reduced differences predicted by Beery scores. PMID:24651280

  17. Learning score function parameters for improved spectrum identification in tandem mass spectrometry experiments

    PubMed Central

    Spivak, Marina; Bereman, Michael S.; MacCoss, Michael J.; Noble, William Stafford

    2012-01-01

    The identification of proteins from spectra derived from a tandem mass spectrometry experiment involves several challenges: matching each observed spectrum to a peptide sequence, ranking the resulting collection of peptide-spectrum matches, assigning statistical confidence estimates to the matches, and identifying the proteins. The present work addresses algorithms to rank peptide-spectrum matches. Many of these algorithms, such as PeptideProphet, IDPicker, or Q-ranker, follow similar methodology that includes representing peptide-spectrum matches as feature vectors and using optimization techniques to rank them. We propose a richer and more flexible feature set representation that is based on the parametrization of the SEQUEST XCorr score and that can be used by all of these algorithms. This extended feature set allows a more effective ranking of the peptide-spectrum matches based on the target-decoy strategy, in comparison to a baseline feature set devoid of these XCorr-based features. Ranking using the extended feature set gives 10–40% improvement in the number of distinct peptide identifications relative to a range of q-value thresholds. While this work is inspired by the model of the theoretical spectrum and the similarity measure between spectra used specifically by SEQUEST, the method itself can be applied to the output of any database search. Further, our approach can be trivially extended beyond XCorr to any linear operator that can serve as similarity score between experimental spectra and peptide sequences. PMID:22866926

  18. Accurate hydrogen bond energies within the density functional tight binding method.

    PubMed

    Domínguez, A; Niehaus, T A; Frauenheim, T

    2015-04-01

    The density-functional-based tight-binding (DFTB) approach has been recently extended by incorporating one-center exchange-like terms in the expansion of the multicenter integrals. This goes beyond the Mulliken approximation and leads to a scheme which treats in a self-consistent way the fluctuations of the whole dual density matrix and not only its diagonal elements (Mulliken charges). To date, only the performance of this new formalism to reproduce excited-state properties has been assessed (Domínguez et al. J. Chem. Theory Comput., 2013, 9, 4901-4914). Here we study the effect of our corrections on the computation of hydrogen bond energies for water clusters and water-containing systems. The limitations of traditional DFTB to reproduce hydrogen bonds has been acknowledged often. We compare our results for a set of 22 small water clusters and water-containing systems as well as for five water hexadecamers to those obtained with the DFTB3 method. Additionally, we combine our extension with a third-order energy expansion in the charge fluctuations. Our results show that the new formalisms significantly improve upon original DFTB. PMID:25763597

  19. Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization

    PubMed Central

    Marelli, Damián; Baumgartner, Robert; Majdak, Piotr

    2015-01-01

    Head-related transfer functions (HRTFs) describe the acoustic filtering of incoming sounds by the human morphology and are essential for listeners to localize sound sources in virtual auditory displays. Since rendering complex virtual scenes is computationally demanding, we propose four algorithms for efficiently representing HRTFs in subbands, i.e., as an analysis filterbank (FB) followed by a transfer matrix and a synthesis FB. All four algorithms use sparse approximation procedures to minimize the computational complexity while maintaining perceptually relevant HRTF properties. The first two algorithms separately optimize the complexity of the transfer matrix associated to each HRTF for fixed FBs. The other two algorithms jointly optimize the FBs and transfer matrices for complete HRTF sets by two variants. The first variant aims at minimizing the complexity of the transfer matrices, while the second one does it for the FBs. Numerical experiments investigate the latency-complexity trade-off and show that the proposed methods offer significant computational savings when compared with other available approaches. Psychoacoustic localization experiments were modeled and conducted to find a reasonable approximation tolerance so that no significant localization performance degradation was introduced by the subband representation. PMID:26681930

  20. Towards an accurate specific reaction parameter density functional for water dissociation on Ni(111): RPBE versus PW91.

    PubMed

    Jiang, Bin; Guo, Hua

    2016-08-01

    In search for an accurate description of the dissociative chemisorption of water on the Ni(111) surface, we report a new nine-dimensional potential energy surface (PES) based on a large number of density functional theory points using the RPBE functional. Seven-dimensional quantum dynamical calculations have been carried out on the RPBE PES, followed by site averaging and lattice effect corrections, yielding sticking probabilities that are compared with both the previous theoretical results based on a PW91 PES and experiment. It is shown that the RPBE functional increases the reaction barrier, but has otherwise a minor impact on the PES topography. Better agreement with experimental results is obtained with the new PES, but the agreement is still not quantitative. Possible sources of the remaining discrepancies are discussed. PMID:27436348

  1. An improved PMF scoring function for universally predicting the interactions of a ligand with protein, DNA, and RNA.

    PubMed

    Zhao, Xiaoyu; Liu, Xiaofeng; Wang, Yuanyuan; Chen, Zhi; Kang, Ling; Zhang, Hailei; Luo, Xiaomin; Zhu, Weiliang; Chen, Kaixian; Li, Honglin; Wang, Xicheng; Jiang, Hualiang

    2008-07-01

    An improved potential mean force (PMF) scoring function, named KScore, has been developed by using 23 redefined ligand atom types and 17 protein atom types, as well as 28 newly introduced atom types for nucleic acids (DNA and RNA). Metal ions and water molecules embedded in the binding sites of receptors are considered explicitly by two newly defined atom types. The individual potential terms were devised on the basis of the high-resolution crystal and NMR structures of 2,422 protein-ligand complexes, 300 DNA-ligand complexes, and 97 RNA-ligand complexes. The optimized atom pairwise distances and minima of the potentials overcome some of the disadvantages and ambiguities of current PMF potentials; thus, they more reasonably explain the atomic interaction between receptors and ligands. KScore was validated against five test sets of protein-ligand complexes and two sets of nucleic-acid-ligand complexes. The results showed acceptable correlations between KScore scores and experimentally determined binding affinities (log K i's or binding free energies). In particular, KScore can be used to rank the binding of ligands with metalloproteins; the linear correlation coefficient ( R) for the test set is 0.65. In addition to reasonably ranking protein-ligand interactions, KScore also yielded good results for scoring DNA/RNA--ligand interactions; the linear correlation coefficients for DNA-ligand and RNA-ligand complexes are 0.68 and 0.81, respectively. Moreover, KScore can appropriately reproduce the experimental structures of ligand-receptor complexes. Thus, KScore is an appropriate scoring function for universally ranking the interactions of ligands with protein, DNA, and RNA. PMID:18553962

  2. A rapid method to score stream reaches based on the overall performance of their main ecological functions.

    PubMed

    Rowe, David K; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K; Maxted, John; Moore, Stephen

    2009-06-01

    A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types. PMID:19434446

  3. A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism

    PubMed Central

    Carayol, Jérôme; Schellenberg, Gerard D.; Dombroski, Beth; Amiet, Claire; Génin, Bérengère; Fontaine, Karine; Rousseau, Francis; Vazart, Céline; Cohen, David; Frazier, Thomas W.; Hardan, Antonio Y.; Dawson, Geraldine; Rio Frio, Thomas

    2014-01-01

    Autism spectrum disorders (ASD) are highly heritable complex neurodevelopmental disorders with a 4:1 male: female ratio. Common genetic variation could explain 40–60% of the variance in liability to autism. Because of their small effect, genome-wide association studies (GWASs) have only identified a small number of individual single-nucleotide polymorphisms (SNPs). To increase the power of GWASs in complex disorders, methods like convergent functional genomics (CFG) have emerged to extract true association signals from noise and to identify and prioritize genes from SNPs using a scoring strategy combining statistics and functional genomics. We adapted and applied this approach to analyze data from a GWAS performed on families with multiple children affected with autism from Autism Speaks Autism Genetic Resource Exchange (AGRE). We identified a set of 133 candidate markers that were localized in or close to genes with functional relevance in ASD from a discovery population (545 multiplex families); a gender specific genetic score (GS) based on these common variants explained 1% (P = 0.01 in males) and 5% (P = 8.7 × 10−7 in females) of genetic variance in an independent sample of multiplex families. Overall, our work demonstrates that prioritization of GWAS data based on functional genomics identified common variants associated with autism and provided additional support for a common polygenic background in autism. PMID:24600472

  4. Application of the 4D Fingerprint Method with a Robust Scoring Function for Scaffold-Hopping and Drug Repurposing Strategies

    PubMed Central

    2015-01-01

    Two factors contribute to the inefficiency associated with screening pharmaceutical library collections as a means of identifying new drugs: [1] the limited success of virtual screening (VS) methods in identifying new scaffolds; [2] the limited accuracy of computational methods in predicting off-target effects. We recently introduced a 3D shape-based similarity algorithm of the SABRE program, which encodes a consensus molecular shape pattern of a set of active ligands into a 4D fingerprint descriptor. Here, we report a mathematical model for shape similarity comparisons and ligand database filtering using this 4D fingerprint method and benchmarked the scoring function HWK (Hamza–Wei–Korotkov), using the 81 targets of the DEKOIS database. Subsequently, we applied our combined 4D fingerprint and HWK scoring function VS approach in scaffold-hopping and drug repurposing using the National Cancer Institute (NCI) and Food and Drug Administration (FDA) databases, and we identified new inhibitors with different scaffolds of MycP1 protease from the mycobacterial ESX-1 secretion system. Experimental evaluation of nine compounds from the NCI database and three from the FDA database displayed IC50 values ranging from 70 to 100 μM against MycP1 and possessed high structural diversity, which provides departure points for further structure–activity relationship (SAR) optimization. In addition, this study demonstrates that the combination of our 4D fingerprint algorithm and the HWK scoring function may provide a means for identifying repurposed drugs for the treatment of infectious diseases and may be used in the drug-target profile strategy. PMID:25229183

  5. Application of the 4D fingerprint method with a robust scoring function for scaffold-hopping and drug repurposing strategies.

    PubMed

    Hamza, Adel; Wagner, Jonathan M; Wei, Ning-Ning; Kwiatkowski, Stefan; Zhan, Chang-Guo; Watt, David S; Korotkov, Konstantin V

    2014-10-27

    Two factors contribute to the inefficiency associated with screening pharmaceutical library collections as a means of identifying new drugs: [1] the limited success of virtual screening (VS) methods in identifying new scaffolds; [2] the limited accuracy of computational methods in predicting off-target effects. We recently introduced a 3D shape-based similarity algorithm of the SABRE program, which encodes a consensus molecular shape pattern of a set of active ligands into a 4D fingerprint descriptor. Here, we report a mathematical model for shape similarity comparisons and ligand database filtering using this 4D fingerprint method and benchmarked the scoring function HWK (Hamza-Wei-Korotkov), using the 81 targets of the DEKOIS database. Subsequently, we applied our combined 4D fingerprint and HWK scoring function VS approach in scaffold-hopping and drug repurposing using the National Cancer Institute (NCI) and Food and Drug Administration (FDA) databases, and we identified new inhibitors with different scaffolds of MycP1 protease from the mycobacterial ESX-1 secretion system. Experimental evaluation of nine compounds from the NCI database and three from the FDA database displayed IC50 values ranging from 70 to 100 μM against MycP1 and possessed high structural diversity, which provides departure points for further structure-activity relationship (SAR) optimization. In addition, this study demonstrates that the combination of our 4D fingerprint algorithm and the HWK scoring function may provide a means for identifying repurposed drugs for the treatment of infectious diseases and may be used in the drug-target profile strategy. PMID:25229183

  6. Validation of the BETA-2 Score: An Improved Tool to Estimate Beta Cell Function After Clinical Islet Transplantation Using a Single Fasting Blood Sample.

    PubMed

    Forbes, S; Oram, R A; Smith, A; Lam, A; Olateju, T; Imes, S; Malcolm, A J; Shapiro, A M J; Senior, P A

    2016-09-01

    The beta score, a composite measure of beta cell function after islet transplantation, has limited sensitivity because of its categorical nature and requires a mixed-meal tolerance test (MMTT). We developed a novel score based on a single fasting blood sample. The BETA-2 score used stepwise forward linear regression incorporating glucose (in millimoles per liter), C-peptide (in nanomoles per liter), hemoglobin A1c (as a percentage) and insulin dose (U/kg per day) as continuous variables from the original beta score data set (n = 183 MMTTs). Primary and secondary analyses assessed the score's ability to detect glucose intolerance (90-min MMTT glucose ≥8 mmol/L) and insulin independence, respectively. A validation cohort of islet transplant recipients (n = 114 MMTTs) examined 12 mo after transplantation was used to compare the score's ability to detect these outcomes. The BETA-2 score was expressed as follows (range 0-42): [Formula: see text] A score <20 and ≥15 detected glucose intolerance and insulin independence, respectively, with >82% sensitivity and specificity. The BETA-2 score demonstrated greater discrimination than the beta score for these outcomes (p < 0.05). Using a fasting blood sample, the BETA-2 score estimates graft function as a continuous variable and shows greater discrimination of glucose intolerance and insulin independence after transplantation versus the beta score, allowing frequent assessments of graft function. Studies examining its utility to track long-term graft function are required. PMID:27017888

  7. Effect of Incorporating Adaptive Functioning Scores on the Prevalence of Intellectual Disability

    ERIC Educational Resources Information Center

    Obi, Obianuju; Braun, Kim Van Naarden; Baio, Jon; Drews-Botsch, Carolyn; Devine, Owen; Yeargin-Allsopp, Marshalyn

    2011-01-01

    Surveillance and epidemiologic research on intellectual disability often do not incorporate adaptive functioning (AF) data. Exclusion of AF data leads to overestimation of the prevalence of intellectual disability, the extent of which is not known. In this study, the authors evaluated the effect of incorporating AF data on overall intellectual…

  8. Contrast Sensitivity Function Scores, Choices of Illuminated Stand Magnifiers, and Reading

    ERIC Educational Resources Information Center

    Gerritsen, Bryan

    2010-01-01

    Far too often, professionals focus almost solely on individuals' needs for magnification level for reading. Visual acuities are measured and decisions are made for low vision devices largely on the basis of acuity levels. Contrast sensitivity function is often overlooked as a critical need for and predictor of the selection and preference for low…

  9. CARBOHYDRATE NUTRITION AND MANURE SCORING. PART II: TOOLS FOR MONITORING RUMEN FUNCTION IN DAIRY CATTLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper rumen function is essential to support the profitable lactation performance and health of dairy cattle. Excellent cow performance includes high yields of milk and milk components, but encompasses more elements: efficient conversion of consumed nutrients to milk, appropriate maintenance and r...

  10. Net and Global Differential Item Functioning in PISA Polytomously Scored Science Items: Application of the Differential Step Functioning Framework

    ERIC Educational Resources Information Center

    Akour, Mutasem; Sabah, Saed; Hammouri, Hind

    2015-01-01

    The purpose of this study was to apply two types of Differential Item Functioning (DIF), net and global DIF, as well as the framework of Differential Step Functioning (DSF) to real testing data to investigate measurement invariance related to test language. Data from the Program for International Student Assessment (PISA)-2006 polytomously scored…

  11. [A comparative study of clinical score and lung function tests in the classification of asthma by severity of disease].

    PubMed

    Nakaie, C M; Rozov, T; Manissadjian, A

    1998-01-01

    Fifty nine asthmatic children and adolescents, clinically stable, aged 6 to 15 years, 37 boys and 22 girls, from Instituto da Criança do Hospital das Clínicas da FMUSP, were studied from September to November, 1994. The patients were classified by the clinical score of the International Consensus for Asthma Diagnosis and Management. They performed baseline spirometry and peak expiratory flow rates (PEFR), before and after bronchodilator, and measured PEFR three times a day (6 pm, at bedtime and on waking), for one day, at home. Five PEF measurements were made serially and the best readings were considered. Variability of PFE was calculated for 24 hours, as assessed by maximal amplitude. The results were summited to statistical analysis of the Laboratorio de Informática Médica da Faculdade de Medicina da USP. The results of PEFR and it's variability were compared to spirometry, (functional score, FEV1-forced expiratory volume in the first second) and to the clinical score of the International Consensus for Asthma Diagnosis and Management. In case of disagreement between the clinical parameters, the more severe one was chosen. The clinical score classified 20.3% of our patients as mild obstruction, 49.2% as moderate and 30.5% as severely compromised. According to FEV1, 58% of patients were classified as normal while the PEFR and its variability classified as normal 76% and 71%. The PEFR and it's variability in 24 hours, correlated with the VEF1, as gold standard, showed good specificity, 91% and 76% respectively and low sensibility, 44% and 32%. It was detected a low level of agreement between FEV1, PEFR and it's variability in 24 hours, in the clinical severity classification of asthma. The results of this study showed that FEV1 and PEFR had a low level of agreement in the clinical severity classification of asthma and when they were correlated to the clinical score of the International Consensus, they both presented low sensitivity. PMID:9699357

  12. AutoShim: empirically corrected scoring functions for quantitative docking with a crystal structure and IC50 training data.

    PubMed

    Martin, Eric J; Sullivan, David C

    2008-04-01

    It has been notoriously difficult to develop general all-purpose scoring functions for high-throughput docking that correlate with measured binding affinity. As a practical alternative, AutoShim uses the program Magnet to add point-pharmacophore like "shims" to the binding site of each protein target. The pharmacophore shims are weighted by partial least-squares (PLS) regression, adjusting the all-purpose scoring function to reproduce IC 50 data, much as the shims in an NMR magnet are weighted to optimize the field for a better spectrum. This dramatically improves the affinity predictions on 25% of the compounds held out at random. An iterative procedure chooses the best pose during the process of shim parametrization. This method reproducibly converges to a consistent solution, regardless of starting pose, in just 2-4 iterations, so these robust models do not overtrain. Sets of complex multifeature shims, generated by a recursive partitioning method, give the best activity predictions, but these are difficult to interpret when designing new compounds. Sets of simpler single-point pharmacophores still predict affinity reasonably well and clearly indicate the molecular interactions producing effective binding. The pharmacophore requirements are very reproducible, irrespective of the compound sets used for parametrization, lending confidence to the predictions and interpretations. The automated procedure does require a training set of experimental compounds but otherwise adds little extra time over conventional docking. PMID:18380449

  13. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    SciTech Connect

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  14. Accurate potential energy curve of the LiH{sup +} molecule calculated with explicitly correlated Gaussian functions

    SciTech Connect

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  15. Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa

    NASA Astrophysics Data System (ADS)

    Zhao, P. W.; Song, L. S.; Sun, B.; Geissel, H.; Meng, J.

    2012-12-01

    The covariant density functional theory with the point-coupling interaction PC-PK1 is compared with new and accurate experimental masses in the element range from 50 to 91. The experimental data are from a mass measurement performed with the storage ring mass spectrometry at Gesellschaft für Schwerionenforschung (GSI) [Chen , Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2012.03.002 882, 71 (2012)]. Although the microscopic theory contains only 11 parameters, it agrees well with the experimental data. The comparison is characterized by a rms deviation of 0.859 MeV. For even-even nuclei, the theory agrees within about 600 keV. Larger deviations are observed in this comparison for the odd-A and odd-odd nuclei. Improvements and possible reasons for the deviations are discussed in this contribution as well.

  16. A new approach based on embedding Green's functions into fixed-point iterations for highly accurate solution to Troesch's problem

    NASA Astrophysics Data System (ADS)

    Kafri, H. Q.; Khuri, S. A.; Sayfy, A.

    2016-03-01

    In this paper, a novel approach is introduced for the solution of the non-linear Troesch's boundary value problem. The underlying strategy is based on Green's functions and fixed-point iterations, including Picard's and Krasnoselskii-Mann's schemes. The resulting numerical solutions are compared with both the analytical solutions and numerical solutions that exist in the literature. Convergence of the iterative schemes is proved via manipulation of the contraction principle. It is observed that the method handles the boundary layer very efficiently, reduces lengthy calculations, provides rapid convergence, and yields accurate results particularly for large eigenvalues. Indeed, to our knowledge, this is the first time that this problem is solved successfully for very large eigenvalues, actually the rate of convergence increases as the magnitude of the eigenvalues increases.

  17. The gated integration technique for the accurate measurement of the autocorrelation function of speckle intensities scattered from random phase screens

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Cheng, Chuanfu; Teng, Shuyun; Chen, Xiaoyi; Xu, Zhizhan

    2007-09-01

    A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, m. The average analog of the m samplings output by the Boxcar enhances the signal-to-noise ratio by √{m}, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/√{m}. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique.

  18. A preliminary investigation into the relationship between functional movement screen scores and athletic physical performance in female team sport athletes.

    PubMed

    Lockie, Rg; Schultz, Ab; Callaghan, Sj; Jordan, Ca; Luczo, Tm; Jeffriess, Md

    2015-03-01

    There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step [HS]; in-line lunge [ILL]; shoulder mobility; active straight-leg raise [ASLR]; trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach [flexibility]; 20-m sprint [linear speed]; 505 with turns from each leg; modified T-test with movement to left and right [change-of-direction speed]; bilateral and unilateral vertical and standing broad jumps; lateral jumps [leg power]). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman's correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes. PMID:25729149

  19. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions.

    PubMed

    Shityakov, Sergey; Förster, Carola

    2014-01-01

    P-glycoprotein (P-gp) is an ATP (adenosine triphosphate)-binding cassette transporter that causes multidrug resistance of various chemotherapeutic substances by active efflux from mammalian cells. P-gp plays a pivotal role in limiting drug absorption and distribution in different organs, including the intestines and brain. Thus, the prediction of P-gp-drug interactions is of vital importance in assessing drug pharmacokinetic and pharmacodynamic properties. To find the strongest P-gp blockers, we performed an in silico structure-based screening of P-gp inhibitor library (1,300 molecules) by the gradient optimization method, using polynomial empirical scoring (POLSCORE) functions. We report a strong correlation (r (2)=0.80, F=16.27, n=6, P<0.0157) of inhibition constants (Kiexp or pKiexp; experimental Ki or negative decimal logarithm of Kiexp) converted from experimental IC50 (half maximal inhibitory concentration) values with POLSCORE-predicted constants (KiPOLSCORE or pKiPOLSCORE), using a linear regression fitting technique. The hydrophobic interactions between P-gp and selected drug substances were detected as the main forces responsible for the inhibition effect. The results showed that this scoring technique might be useful in the virtual screening and filtering of databases of drug-like compounds at the early stage of drug development processes. PMID:24711707

  20. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules.

    PubMed

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-01-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules. PMID:27385551

  1. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    PubMed Central

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-01-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules. PMID:27385551

  2. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    NASA Astrophysics Data System (ADS)

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-07-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.

  3. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions

    PubMed Central

    Shityakov, Sergey; Förster, Carola

    2014-01-01

    P-glycoprotein (P-gp) is an ATP (adenosine triphosphate)-binding cassette transporter that causes multidrug resistance of various chemotherapeutic substances by active efflux from mammalian cells. P-gp plays a pivotal role in limiting drug absorption and distribution in different organs, including the intestines and brain. Thus, the prediction of P-gp–drug interactions is of vital importance in assessing drug pharmacokinetic and pharmacodynamic properties. To find the strongest P-gp blockers, we performed an in silico structure-based screening of P-gp inhibitor library (1,300 molecules) by the gradient optimization method, using polynomial empirical scoring (POLSCORE) functions. We report a strong correlation (r2=0.80, F=16.27, n=6, P<0.0157) of inhibition constants (Kiexp or pKiexp; experimental Ki or negative decimal logarithm of Kiexp) converted from experimental IC50 (half maximal inhibitory concentration) values with POLSCORE-predicted constants (KiPOLSCORE or pKiPOLSCORE), using a linear regression fitting technique. The hydrophobic interactions between P-gp and selected drug substances were detected as the main forces responsible for the inhibition effect. The results showed that this scoring technique might be useful in the virtual screening and filtering of databases of drug-like compounds at the early stage of drug development processes. PMID:24711707

  4. The index of orthognathic functional treatment need accurately prioritises those patients already selected for orthognathic surgery within the NHS.

    PubMed

    Shah, Rupal; Breeze, John; Chand, Mohit; Stockton, Peter

    2016-06-01

    The index of orthognathic functional treatment need (IOFTN) is a newly-proposed system to help to prioritise patients for orthognathic treatment. The five categories are similar to those used in orthodontics, but include additional parameters such as sleep apnoea and facial asymmetry. The aim of this audit was to validate the index and find out the potential future implications, should such a system ever be adopted by commissioners. We calculated the IOFTN category of 100 consecutive patients who had orthognathic surgery between 2010-14 using clinical notes, photographs, study models, and radiographs, and determined the number in categories 4 or 5, analogous to the current indications for orthodontic treatment within the NHS. Sufficient clinical information was available to categorise 59/100 patients, and 56 of the 59 (95%) were in either category 4 or 5. All three of the remaining patients (in categories 1-3) who were operated on were treated because of the anticipated favourable impact on their quality of life. The IOFTN has been proposed for use in future commissioning of orthognathic services within the NHS, and this study has confirmed its efficacy in prioritising treatment accurately, with 95% of patients being in categories 4 or 5. We recommend that the orthognathic treatment index be adapted to include additional psychosocial assessment so that patients who fall into the lower functional categories are not automatically excluded from this potentially life-changing treatment. PMID:26935212

  5. Apgar score

    MedlinePlus

    ... the baby's: Breathing effort Heart rate Muscle tone Reflexes Skin color Each category is scored with 0, ... scores 2 for muscle tone. Grimace response or reflex irritability is a term describing response to stimulation, ...

  6. NPPD: A Protein-Protein Docking Scoring Function Based on Dyadic Differences in Networks of Hydrophobic and Hydrophilic Amino Acid Residues

    PubMed Central

    Shih, Edward S. C.; Hwang, Ming-Jing

    2015-01-01

    Protein-protein docking (PPD) predictions usually rely on the use of a scoring function to rank docking models generated by exhaustive sampling. To rank good models higher than bad ones, a large number of scoring functions have been developed and evaluated, but the methods used for the computation of PPD predictions remain largely unsatisfactory. Here, we report a network-based PPD scoring function, the NPPD, in which the network consists of two types of network nodes, one for hydrophobic and the other for hydrophilic amino acid residues, and the nodes are connected when the residues they represent are within a certain contact distance. We showed that network parameters that compute dyadic interactions and those that compute heterophilic interactions of the amino acid networks thus constructed allowed NPPD to perform well in a benchmark evaluation of 115 PPD scoring functions, most of which, unlike NPPD, are based on some sort of protein-protein interaction energy. We also showed that NPPD was highly complementary to these energy-based scoring functions, suggesting that the combined use of conventional scoring functions and NPPD might significantly improve the accuracy of current PPD predictions. PMID:25811640

  7. Accurate PSF-matched photometry and photometric redshifts for the extreme deep field with the Chebyshev-Fourier functions

    NASA Astrophysics Data System (ADS)

    Jiménez-Teja, Y.; Benítez, N.; Molino, A.; Fernandes, C. A. C.

    2015-10-01

    Photometric redshifts, which have become the cornerstone of several of the largest astronomical surveys like PanStarrs, DES, J-PAS and LSST, require precise measurements of galaxy photometry in different bands using a consistent physical aperture. This is not trivial, due to the variation in the shape and width of the point spread function (PSF) introduced by wavelength differences, instrument positions and atmospheric conditions. Current methods to correct for this effect rely on a detailed knowledge of PSF characteristics as a function of the survey coordinates, which can be difficult due to the relative paucity of stars tracking the PSF behaviour. Here we show that it is possible to measure accurate, consistent multicolour photometry without knowing the shape of the PSF. The Chebyshev-Fourier functions (CHEFs) can fit the observed profile of each object and produce high signal-to-noise integrated flux measurements unaffected by the PSF. These total fluxes, which encompass all the galaxy populations, are much more useful for galaxy evolution studies than aperture photometry. We compare the total magnitudes and colours obtained using our software to traditional photometry with SEXTRACTOR, using real data from the COSMOS survey and the Hubble Ultra-Deep Field (HUDF). We also apply the CHEF technique to the recently published eXtreme Deep Field (XDF) and compare the results to those from COLORPRO on the HUDF. We produce a photometric catalogue with 35 732 sources (10 823 with signal-to-noise ratio ≥5), reaching a photometric redshift precision of 2 per cent due to the extraordinary depth and wavelength coverage of the eXtreme Deep Field images.

  8. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins

    PubMed Central

    2015-01-01

    Background Molecular docking is a widely-employed method in structure-based drug design. An essential component of molecular docking programs is a scoring function (SF) that can be used to identify the most stable binding pose of a ligand, when bound to a receptor protein, from among a large set of candidate poses. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited docking power (or ability to successfully identify the correct pose) has been a major impediment to cost-effective drug discovery. Therefore, in this work, we explore a range of novel SFs employing different machine-learning (ML) approaches in conjunction with physicochemical and geometrical features characterizing protein-ligand complexes to predict the native or near-native pose of a ligand docked to a receptor protein's binding site. We assess the docking accuracies of these new ML SFs as well as those of conventional SFs in the context of the 2007 PDBbind benchmark dataset on both diverse and homogeneous (protein-family-specific) test sets. Further, we perform a systematic analysis of the performance of the proposed SFs in identifying native poses of ligands that are docked to novel protein targets. Results and conclusion We find that the best performing ML SF has a success rate of 80% in identifying poses that are within 1 Å root-mean-square deviation from the native poses of 65 different protein families. This is in comparison to a success rate of only 70% achieved by the best conventional SF, ASP, employed in the commercial docking software GOLD. In addition, the proposed ML SFs perform better on novel proteins that they were never trained on before. We also observed steady gains in the performance of these scoring functions as the training set size and number of features were increased by considering more protein-ligand complexes and/or more computationally-generated poses for each complex. PMID:25916860

  9. Performance of the Framingham and SCORE cardiovascular risk prediction functions in a non-diabetic population of a Spanish health care centre: a validation study

    PubMed Central

    Barroso, Lourdes Cañón; Muro, Eloísa Cruces; Herrera, Natalio Díaz; Ochoa, Gerardo Fernández; Hueros, Juan Ignacio Calvo; Buitrago, Francisco

    2010-01-01

    Objective To analyse the 10-year performance of the original Framingham coronary risk function and of the SCORE cardiovascular death risk function in a non-diabetic population of 40–65 years of age served by a Spanish healthcare centre. Also, to estimate the percentage of patients who are candidates for antihypertensive and lipid-lowering therapy. Design Longitudinal, observational study of a retrospective cohort followed up for 10 years. Setting Primary care health centre. Patients A total of 608 non-diabetic patients of 40–65 years of age (mean 52.8 years, 56.7% women), without evidence of cardiovascular disease were studied. Main outcome measures Coronary risk at 10 years from the time of their recruitment, using the tables based on the original Framingham function, and of their 10-year risk of fatal cardiovascular disease using the SCORE tables. Results The actual incidence rates of coronary and fatal cardiovascular events were 7.9% and 1.5%, respectively. The original Framingham equation over-predicted risk by 64%, while SCORE function over-predicted risk by 40%, but the SCORE model performed better than the Framingham one for discrimination and calibration statistics. The original Framingham function classified 18.3% of the population as high risk and SCORE 9.2%. The proportions of patients who would be candidates for lipid-lowering therapy were 31.0% and 23.8% according to the original Framingham and SCORE functions, respectively, and 36.8% and 31.2% for antihypertensive therapy. Conclusion The SCORE function showed better values than the original Framingham function for each of the discrimination and calibration statistics. The original Framingham function selected a greater percentage of candidates for antihypertensive and lipid-lowering therapy. PMID:20873973

  10. Accurate and Efficient Calculation of van der Waals Interactions Within Density Functional Theory by Local Atomic Potential Approach

    SciTech Connect

    Sun, Y. Y.; Kim, Y. H.; Lee, K.; Zhang, S. B.

    2008-01-01

    Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.

  11. The intra- and inter-assessor reliability of measurement of functional outcome by lameness scoring in horses.

    PubMed

    Fuller, Catherine J; Bladon, Bruce M; Driver, Adam J; Barr, Alistair R S

    2006-03-01

    The objective of this study was to assess the reliability of lameness scoring in horses. One veterinary surgeon examined nineteen lame horses on four occasions. Gait was recorded by camcorder, and scored from 0 to 10 ranging from sound to non-weight bearing lameness. A global score of overall change in lameness during the study was also determined for each horse. To measure intra-assessor reliability of the scoring systems, one veterinary surgeon scored videotapes of the horses' gaits on two occasions. To measure inter-assessor reliability, three veterinary surgeons viewed the videotapes, assigning individual lameness scores plus global scores to each horse. Reliability of individual lameness scoring was good intra-assessor, but only just within our acceptable limit inter-assessor. However, global scoring of change in lameness throughout the study was found to be reliable overall. Since clinician scoring is commonly used to assess lameness in horses, this is an important finding, fundamental to future clinical studies. PMID:16490710

  12. Study Protocol - Accurate assessment of kidney function in Indigenous Australians: aims and methods of the eGFR Study

    PubMed Central

    2010-01-01

    Background There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians. Methods/Design A cross-sectional study of Indigenous Australian adults (target n = 600, 50% male) across 4 sites: Top End, Northern Territory; Central Australia; Far North Queensland and Western Australia. The reference measure of glomerular filtration rate was the plasma disappearance rate of iohexol over 4 hours. We will compare the accuracy of the following glomerular filtration rate measures with the reference measure: Modification of Diet in Renal Disease 4-variable formula, Chronic Kidney Disease Epidemiology Collaboration equation, Cockcroft-Gault formula and cystatin C- derived estimates. Detailed assessment of body build and composition was performed using anthropometric measurements, skinfold thicknesses, bioelectrical impedance and a sub-study used dual-energy X-ray absorptiometry. A

  13. Scored Discussions.

    ERIC Educational Resources Information Center

    Zola, John

    1992-01-01

    Suggests a classroom strategy to help students learn to analyze and discuss significant issues from history and current policy debates. Describes scored discussions in which small groups of students receive points for participation. Provides an example of a discussion on gold mining. Includes an agenda. Explores uses of scored discussions and…

  14. Scoring Package

    National Institute of Standards and Technology Data Gateway

    NIST Scoring Package (PC database for purchase)   The NIST Scoring Package (Special Database 1) is a reference implementation of the draft Standard Method for Evaluating the Performance of Systems Intended to Recognize Hand-printed Characters from Image Data Scanned from Forms.

  15. Graduate Student WAIS-III Scoring Accuracy Is a Function of Full Scale IQ and Complexity of Examiner Tasks

    ERIC Educational Resources Information Center

    Hopwood, Christopher J.; Richard, David C. S.

    2005-01-01

    Research on the Wechsler Adult Intelligence Scale-Revised and Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) suggests that practicing clinical psychologists and graduate students make item-level scoring errors that affect IQ, index, and subtest scores. Studies have been limited in that Full-Scale IQ (FSIQ) and examiner administration,…

  16. Clinical risk scores to guide perioperative management.

    PubMed

    Barnett, Sarah; Moonesinghe, Suneetha Ramani

    2011-08-01

    Perioperative morbidity is associated with reduced long term survival. Comorbid disease, cardiovascular illness, and functional capacity can predispose patients to adverse surgical outcomes. Accurate risk stratification would facilitate informed patient consent and identify those individuals who may benefit from specific perioperative interventions. The ideal clinical risk scoring system would be objective, accurate, economical, simple to perform, based entirely on information available preoperatively, and suitable for patients undergoing both elective and emergency surgery. The POSSUM (Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity) scoring systems are the most widely validated perioperative risk predictors currently utilised; however, their inclusion of intra- and postoperative variables precludes validation for preoperative risk prediction. The Charlson Index has the advantage of consisting exclusively of preoperative variables; however, its validity varies in different patient cohorts. Risk models predicting cardiac morbidity have been extensively studied, despite the relatively uncommon occurrence of postoperative cardiac events. Probably the most widely used cardiac risk score is the Lee Revised Cardiac Risk Index, although it has limited validity in some patient populations and for non-cardiac outcomes. Bespoke clinical scoring systems responding to dynamic changes in population characteristics over time, such as those developed by the American College of Surgeons National Surgical Quality Improvement Program, are more precise, but require considerable resources to implement. The combination of objective clinical variables with information from novel techniques such as cardiopulmonary exercise testing and biomarker assays, may improve the predictive precision of clinical risk scores used to guide perioperative management. PMID:21257993

  17. A useful scoring system for the prediction and management of delayed graft function following kidney transplantation from cadaveric donors.

    PubMed

    Chapal, Marion; Le Borgne, Florent; Legendre, Christophe; Kreis, Henri; Mourad, Georges; Garrigue, Valérie; Morelon, Emmanuel; Buron, Fanny; Rostaing, Lionel; Kamar, Nassim; Kessler, Michèle; Ladrière, Marc; Soulillou, Jean-Paul; Launay, Katy; Daguin, Pascal; Offredo, Lucile; Giral, Magali; Foucher, Yohann

    2014-12-01

    Delayed graft function (DGF) is a common complication in kidney transplantation and is known to be correlated with short- and long-term graft outcomes. Here we explored the possibility of developing a simple tool that could predict with good confidence the occurrence of DGF and could be helpful in current clinical practice. We built a score, tentatively called DGFS, from a French multicenter and prospective cohort of 1844 adult recipients of deceased donor kidneys collected since 2007, and computerized in the Données Informatisées et VAlidées en Transplantation databank. Only five explicative variables (cold ischemia time, donor age, donor serum creatinine, recipient body mass index, and induction therapy) contributed significantly to the DGF prediction. These were associated with a good predictive capacity (area under the ROC curve at 0.73). The DGFS calculation is facilitated by an application available on smartphones, tablets, or computers at www.divat.fr/en/online-calculators/dgfs. The DGFS should allow the simple classification of patients according to their DGF risk at the time of transplantation, and thus allow tailored-specific management or therapeutic strategies. PMID:24897036

  18. Introducing folding stability into the score function for computational design of RNA-binding peptides boosts the probability of success.

    PubMed

    Xiao, Xingqing; Agris, Paul F; Hall, Carol K

    2016-05-01

    A computational strategy that integrates our peptide search algorithm with atomistic molecular dynamics simulation was used to design rational peptide drugs that recognize and bind to the anticodon stem and loop domain (ASL(Lys3) ) of human tRNAUUULys3 for the purpose of interrupting HIV replication. The score function of the search algorithm was improved by adding a peptide stability term weighted by an adjustable factor λ to the peptide binding free energy. The five best peptide sequences associated with five different values of λ were determined using the search algorithm and then input in atomistic simulations to examine the stability of the peptides' folded conformations and their ability to bind to ASL(Lys3) . Simulation results demonstrated that setting an intermediate value of λ achieves a good balance between optimizing the peptide's binding ability and stabilizing its folded conformation during the sequence evolution process, and hence leads to optimal binding to the target ASL(Lys3) . Thus, addition of a peptide stability term significantly improves the success rate for our peptide design search. Proteins 2016; 84:700-711. © 2016 Wiley Periodicals, Inc. PMID:26914059

  19. Accurate dipole polarizabilities for water clusters n=2-12 at the coupled-cluster level of theory and benchmarking of various density functionals.

    SciTech Connect

    Hammond, J.; Govind, N.; Kowalski, K.; Autschbach, J.; Xantheas, S.; PNNL; Univ. of Buffalo

    2009-12-07

    The static dipole polarizabilities of water clusters (2 {le} N {le} 12) are determined at the coupled-cluster level of theory (CCSD). For the dipole polarizability of the water monomer it was determined that the role of the basis set is more important than that of electron correlation and that the basis set augmentation converges with two sets of diffuse functions. The CCSD results are used to benchmark a variety of density functionals while the performance of several families of basis sets (Dunning, Pople, and Sadlej) in producing accurate values for the polarizabilities was also examined. The Sadlej family of basis sets was found to produce accurate results when compared to the ones obtained with the much larger Dunning basis sets. It was furthermore determined that the PBE0 density functional with the aug-cc-pVDZ basis set produces overall remarkably accurate polarizabilities at a moderate computational cost.

  20. Two Simple and Efficient Algorithms to Compute the SP-Score Objective Function of a Multiple Sequence Alignment

    PubMed Central

    Ranwez, Vincent

    2016-01-01

    Background Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Results Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement. PMID:27505054

  1. A Comparison of Methods for Estimating Conditional Item Score Differences in Differential Item Functioning (DIF) Assessments. Research Report. ETS RR-10-15

    ERIC Educational Resources Information Center

    Moses, Tim; Miao, Jing; Dorans, Neil

    2010-01-01

    This study compared the accuracies of four differential item functioning (DIF) estimation methods, where each method makes use of only one of the following: raw data, logistic regression, loglinear models, or kernel smoothing. The major focus was on the estimation strategies' potential for estimating score-level, conditional DIF. A secondary focus…

  2. Number Right and Elimination Score as a Function of Item Arrangement, Knowledge of Arrangement, and Test Anxiety.

    ERIC Educational Resources Information Center

    Plake, Barbara S.; And Others

    Number right and elimination scores were analyzed on a 48-item college level mathematics test that was assembled from pretest data in three forms by varying the item orderings: easy-hard, uniform, or random. Half of the forms contained information explaining the item arrangement and suggesting strategies for taking the test. Several anxiety…

  3. Test Score Measurement Error, Short-Term Knowledge, and Lagged Dependent Variables in Models of the Education Production Function

    ERIC Educational Resources Information Center

    Stacy, Brian; Lockwood, J. R.; McCaffrey, Daniel

    2012-01-01

    Researchers and policymakers are interested in the causal effects of educational inputs on student achievement. Unfortunately, it is not possible to directly observe student learning, so test score data is often used as an approximate measure. To measure their achievement at a given point in time (e.g., in the spring of the school year) students…

  4. Polytomous Differential Item Functioning and Violations of Ordering of the Expected Latent Trait by the Raw Score

    ERIC Educational Resources Information Center

    DeMars, Christine E.

    2008-01-01

    The graded response (GR) and generalized partial credit (GPC) models do not imply that examinees ordered by raw observed score will necessarily be ordered on the expected value of the latent trait (OEL). Factors were manipulated to assess whether increased violations of OEL also produced increased Type I error rates in differential item…

  5. Surgical Release of the First Extensor Compartment for Refractory de Quervain's Tenosynovitis: Surgical Findings and Functional Evaluation Using DASH Scores

    PubMed Central

    Lee, Hyun-Joo; Kim, Poong-Taek; Aminata, Iman Widya; Hong, Han-Pyo; Yoon, Jong-Pil

    2014-01-01

    Background Few studies have evaluated surgical outcomes in patients with refractory de Quervain's disease using validated outcome measures. We assessed the clinical outcomes of dorsal release of the first extensor compartment for the treatment of de Quervain's disease using the disabilities of the arm, shoulder and hand (DASH) score. Methods From October 2003 to May 2009, we retrospectively evaluated 33 patients (3 men and 30 women) who underwent surgical treatment for de Quervain's disease. All patients had a positive Finkelstein test and localized tenderness over the first dorsal compartment. All operations were performed under local anesthesia. A 2-cm-long transverse skin incision was made over the first extensor compartment and the dorsal retinaculum covering the extensor pollicis brevis was incised longitudinally. Preoperative and postoperative clinical evaluation included the use of DASH score, Finkelstein test, and visual analogue scale (VAS) score. Results In 18 patients (55%), the extensor pollicis brevis tendon compartment was separated from the abductor pollicis longus compartment. Eight patients had intracompartmental ganglia in the extensor pollicis brevis subcompartment. All patients except one had negative sign on Finkelstein test at the last follow-up. The average VAS score decreased from 7.42 preoperatively to 1.33 postoperatively (p < 0.05), and DASH score was improved from 53.2 to 3.45 (p < 0.05). There were no postoperative complications such as subluxation of the tendon of the first dorsal compartment or injury to the sensory branch of the radial nerve. Conclusions Intracompartment ganglia and the separate septum of extensor pollicis brevis are often related to de Quervain's disease. The release of the first extensor compartment for refractory de Quervain's disease resulted in good clinical outcomes with minimal morbidity. PMID:25436064

  6. A High-Accurate and High-Efficient Monte Carlo Code by Improved Molière Functions with Ionization

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Takao; Okei, Kazuhide

    2003-07-01

    Although the Molière theory of multiple Coulomb scattering is less accue rate in tracing solid angles than the Goudsmit and Saunderson theory due to the small angle approximation, it still acts very important roles in developments of high-efficient simulation codes of relativistic charged particles like cosmic-ray particles. Molière expansion is well explained by the physical model, that is the e normal distribution attributing to the high-frequent moderate scatterings and subsequent correction terms attributing to the additive large-angle scatterings. Based on these physical concepts, we have improved a high-accurate and highefficient Monte Carlo code taking account of ionization loss.

  7. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals.

    PubMed

    Gallandi, Lukas; Marom, Noa; Rinke, Patrick; Körzdörfer, Thomas

    2016-02-01

    The performance of non-empirically tuned long-range corrected hybrid functionals for the prediction of vertical ionization potentials (IPs) and electron affinities (EAs) is assessed for a set of 24 organic acceptor molecules. Basis set-extrapolated coupled cluster singles, doubles, and perturbative triples [CCSD(T)] calculations serve as a reference for this study. Compared to standard exchange-correlation functionals, tuned long-range corrected hybrid functionals produce highly reliable results for vertical IPs and EAs, yielding mean absolute errors on par with computationally more demanding GW calculations. In particular, it is demonstrated that long-range corrected hybrid functionals serve as ideal starting points for non-self-consistent GW calculations. PMID:26731340

  8. Accurate description of torsion potentials in conjugated polymers using density functionals with reduced self-interaction error

    SciTech Connect

    Sutton, Christopher; Gray, Matthew T.; Brunsfeld, Max; Parrish, Robert M.; Sherrill, C. David; Sears, John S.; Brédas, Jean-Luc E-mail: thomas.koerzdoerfer@uni-potsdam.de; Körzdörfer, Thomas E-mail: thomas.koerzdoerfer@uni-potsdam.de

    2014-02-07

    We investigate the torsion potentials in two prototypical π-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains.

  9. Improved Accuracy in RNA-Protein Rigid Body Docking by Incorporating Force Field for Molecular Dynamics Simulation into the Scoring Function.

    PubMed

    Iwakiri, Junichi; Hamada, Michiaki; Asai, Kiyoshi; Kameda, Tomoshi

    2016-09-13

    RNA-protein interactions play fundamental roles in many biological processes. To understand these interactions, it is necessary to know the three-dimensional structures of RNA-protein complexes. However, determining the tertiary structure of these complexes is often difficult, suggesting that an accurate rigid body docking for RNA-protein complexes is needed. In general, the rigid body docking process is divided into two steps: generating candidate structures from the individual RNA and protein structures and then narrowing down the candidates. In this study, we focus on the former problem to improve the prediction accuracy in RNA-protein docking. Our method is based on the integration of physicochemical information about RNA into ZDOCK, which is known as one of the most successful computer programs for protein-protein docking. Because recent studies showed the current force field for molecular dynamics simulation of protein and nucleic acids is quite accurate, we modeled the physicochemical information about RNA by force fields such as AMBER and CHARMM. A comprehensive benchmark of RNA-protein docking, using three recently developed data sets, reveals the remarkable prediction accuracy of the proposed method compared with existing programs for docking: the highest success rate is 34.7% for the predicted structure of the RNA-protein complex with the best score and 79.2% for 3,600 predicted ones. Three full atomistic force fields for RNA (AMBER94, AMBER99, and CHARMM22) produced almost the same accurate result, which showed current force fields for nucleic acids are quite accurate. In addition, we found that the electrostatic interaction and the representation of shape complementary between protein and RNA plays the important roles for accurate prediction of the native structures of RNA-protein complexes. PMID:27494732

  10. Significance of erection hardness score as a diagnostic tool to assess erectile function recovery in Japanese men after robot-assisted radical prostatectomy.

    PubMed

    Miyake, Hideaki; Miyazaki, Akira; Yao, Akihisa; Hinata, Nobuyuki; Fujisawa, Masato

    2016-09-01

    The objective of this study was to characterize time-dependent recovery of erectile function in Japanese patients following robot-assisted radical prostatectomy (RARP) using the erection hardness score (EHS). This study prospectively included 170 Japanese patients with localized prostate cancer (PC) undergoing RARP without neoadjuvant hormonal therapy. The erectile function of each patient was assessed based on the International Index of Erectile Function-5 (IIEF-5) and EHS at the baseline and on every visit to an outpatient clinic after RARP. In this series, potency was defined as the ability to have an erection sufficient for intercourse, corresponding to EHS ≥3, while patients with EHS ≥2 were regarded as those with erectile function. Of these 170 patients, 20 and 75 underwent bilateral and unilateral nerve-sparing procedures, respectively; however, non-nerve-sparing procedures were performed in the remaining 75. A proportional increase in the IIEF-5 score according to EHS was noted at 24 months after RARP. At 6, 12 and 24 months after RARP, the recovery rates of erectile function were 11.9, 21.7 and 35.8 %, respectively, while those of potency were 3.8, 9.8 and 13.7 %, respectively. Of several factors examined, the age, preoperative IIEF-5 score and nerve-sparing procedure were identified as independent predictors of erectile function recovery. These findings suggest that favorable erectile function recovery could not be achieved in Japanese PC patients even after the introduction of RARP; therefore, it might be preferable for such a cohort to use EHS rather than IIEF-5 as an assessment tool for the postoperative recovery of erectile function. PMID:26994775

  11. Toward Accurate Reaction Energetics for Molecular Line Growth at Surface: Quantum Monte Carlo and Density Functional Theory Calculations

    SciTech Connect

    Kanai, Y; Takeuchi, N

    2009-10-14

    We revisit the molecular line growth mechanism of styrene on the hydrogenated Si(001) 2x1 surface. In particular, we investigate the energetics of the radical chain reaction mechanism by means of diffusion quantum Monte Carlo (QMC) and density functional theory (DFT) calculations. For the exchange correlation (XC) functional we use the non-empirical generalized-gradient approximation (GGA) and meta-GGA. We find that the QMC result also predicts the intra dimer-row growth of the molecular line over the inter dimer-row growth, supporting the conclusion based on DFT results. However, the absolute magnitudes of the adsorption and reaction energies, and the heights of the energy barriers differ considerably between the QMC and DFT with the GGA/meta-GGA XC functionals.

  12. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    PubMed

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. PMID:27114055

  13. On the use of spring baseflow recession for a more accurate parameterization of aquifer transit time distribution functions

    NASA Astrophysics Data System (ADS)

    Farlin, J.; Maloszewski, P.

    2012-12-01

    Baseflow recession analysis and groundwater dating have up to now developed as two distinct branches of hydrogeology and were used to solve entirely different problems. We show that by combining two classical models, namely Boussinesq's Equation describing spring baseflow recession and the exponential piston-flow model used in groundwater dating studies, the parameters describing the transit time distribution of an aquifer can be in some cases estimated to a far more accurate degree than with the latter alone. Under the assumption that the aquifer basis is sub-horizontal, the mean residence time of water in the saturated zone can be estimated from spring baseflow recession. This provides an independent estimate of groundwater residence time that can refine those obtained from tritium measurements. This approach is demonstrated in a case study predicting atrazine concentration trend in a series of springs draining the fractured-rock aquifer known as the Luxembourg Sandstone. A transport model calibrated on tritium measurements alone predicted different times to trend reversal following the nationwide ban on atrazine in 2005 with different rates of decrease. For some of the springs, the best agreement between observed and predicted time of trend reversal was reached for the model calibrated using both tritium measurements and the recession of spring discharge during the dry season. The agreement between predicted and observed values was however poorer for the springs displaying the most gentle recessions, possibly indicating the stronger influence of continuous groundwater recharge during the dry period.

  14. On the use of spring baseflow recession for a more accurate parameterization of aquifer transit time distribution functions

    NASA Astrophysics Data System (ADS)

    Farlin, J.; Maloszewski, P.

    2013-05-01

    Baseflow recession analysis and groundwater dating have up to now developed as two distinct branches of hydrogeology and have been used to solve entirely different problems. We show that by combining two classical models, namely the Boussinesq equation describing spring baseflow recession, and the exponential piston-flow model used in groundwater dating studies, the parameters describing the transit time distribution of an aquifer can be in some cases estimated to a far more accurate degree than with the latter alone. Under the assumption that the aquifer basis is sub-horizontal, the mean transit time of water in the saturated zone can be estimated from spring baseflow recession. This provides an independent estimate of groundwater transit time that can refine those obtained from tritium measurements. The approach is illustrated in a case study predicting atrazine concentration trend in a series of springs draining the fractured-rock aquifer known as the Luxembourg Sandstone. A transport model calibrated on tritium measurements alone predicted different times to trend reversal following the nationwide ban on atrazine in 2005 with different rates of decrease. For some of the springs, the actual time of trend reversal and the rate of change agreed extremely well with the model calibrated using both tritium measurements and the recession of spring discharge during the dry season. The agreement between predicted and observed values was however poorer for the springs displaying the most gentle recessions, possibly indicating a stronger influence of continuous groundwater recharge during the summer months.

  15. Automated Essay Scoring

    ERIC Educational Resources Information Center

    Dikli, Semire

    2006-01-01

    The impacts of computers on writing have been widely studied for three decades. Even basic computers functions, i.e. word processing, have been of great assistance to writers in modifying their essays. The research on Automated Essay Scoring (AES) has revealed that computers have the capacity to function as a more effective cognitive tool (Attali,…

  16. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments

    PubMed Central

    Allen, Joseph G.; MacNaughton, Piers; Satish, Usha; Santanam, Suresh; Vallarino, Jose; Spengler, John D.

    2015-01-01

    Background: The indoor built environment plays a critical role in our overall well-being because of both the amount of time we spend indoors (~90%) and the ability of buildings to positively or negatively influence our health. The advent of sustainable design or green building strategies reinvigorated questions regarding the specific factors in buildings that lead to optimized conditions for health and productivity. Objective: We simulated indoor environmental quality (IEQ) conditions in “Green” and “Conventional” buildings and evaluated the impacts on an objective measure of human performance: higher-order cognitive function. Methods: Twenty-four participants spent 6 full work days (0900–1700 hours) in an environmentally controlled office space, blinded to test conditions. On different days, they were exposed to IEQ conditions representative of Conventional [high concentrations of volatile organic compounds (VOCs)] and Green (low concentrations of VOCs) office buildings in the United States. Additional conditions simulated a Green building with a high outdoor air ventilation rate (labeled Green+) and artificially elevated carbon dioxide (CO2) levels independent of ventilation. Results: On average, cognitive scores were 61% higher on the Green building day and 101% higher on the two Green+ building days than on the Conventional building day (p < 0.0001). VOCs and CO2 were independently associated with cognitive scores. Conclusions: Cognitive function scores were significantly better under Green+ building conditions than in the Conventional building conditions for all nine functional domains. These findings have wide-ranging implications because this study was designed to reflect conditions that are commonly encountered every day in many indoor environments. Citation: Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. 2016. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound

  17. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Wang, Mingjun; Wang, Huilin; Tan, Hao; Zhang, Ziding; Webb, Geoffrey I.; Song, Jiangning

    2014-07-01

    Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms, identification of substrates and specific acetylation sites is crucial. Experimental identification is often time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a high-throughput manner to generate relatively precise predictions. Here we develop a method termed as SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine sequence-derived and functional features with two-step feature selection. Feature importance analysis indicates functional features, applied for lysine acetylation site prediction for the first time, significantly improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and identify many high-confidence putative substrates that are not previously identified. The results along with the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and facilitate hypothesis-driven experimental design and validation.

  18. How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?

    PubMed

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2008-12-12

    The local energy defined by Hpsi/psi must be equal to the exact energy E at any coordinate of an atom or molecule, as long as the psi under consideration is exact. The discrepancy from E of this quantity is a stringent test of the accuracy of the calculated wave function. The H-square error for a normalized psi, defined by sigma2 identical with psi|(H-E)2|psi, is also a severe test of the accuracy. Using these quantities, we have examined the accuracy of our wave function of a helium atom calculated using the free complement method that was developed to solve the Schrödinger equation. Together with the variational upper bound, the lower bound of the exact energy calculated using a modified Temple's formula ensured the definitely correct value of the helium fixed-nucleus ground state energy to be -2.903,724,377,034,119,598,311,159,245, 194,4 a.u., which is correct to 32 digits. PMID:19113607

  19. Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. IV. Discrete variable representation (DVR) basis functions and the analysis of accurate results for F+H2

    NASA Astrophysics Data System (ADS)

    Bačić, Z.; Kress, J. D.; Parker, G. A.; Pack, R. T.

    1990-02-01

    Accurate 3D coupled channel calculations for total angular momentum J=0 for the reaction F+H2→HF+H using a realistic potential energy surface are analyzed. The reactive scattering is formulated using the hyperspherical (APH) coordinates of Pack and Parker. The adiabatic basis functions are generated quite efficiently using the discrete variable representation method. Reaction probabilities for relative collision energies of up to 17.4 kcal/mol are presented. To aid in the interpretation of the resonances and quantum structure observed in the calculated reaction probabilities, we analyze the phases of the S matrix transition elements, Argand diagrams, time delays and eigenlifetimes of the collision lifetime matrix. Collinear (1D) and reduced dimensional 3D bending corrected rotating linear model (BCRLM) calculations are presented and compared with the accurate 3D calculations.

  20. Neutrophil Gelatinase Associated Lipocalin Is an Early and Accurate Biomarker of Graft Function and Tissue Regeneration in Kidney Transplantation from Extended Criteria Donors

    PubMed Central

    Cantaluppi, Vincenzo; Dellepiane, Sergio; Tamagnone, Michela; Medica, Davide; Figliolini, Federico; Messina, Maria; Manzione, Ana Maria; Gai, Massimo; Tognarelli, Giuliana; Ranghino, Andrea; Dolla, Caterina; Ferrario, Silvia; Tetta, Ciro; Segoloni, Giuseppe Paolo; Camussi, Giovanni; Biancone, Luigi

    2015-01-01

    Background Delayed graft function (DGF) is an early complication of kidney transplantation (KT) associated with increased risk of early loss of graft function. DGF increases using kidneys from extended criteria donors (ECD). NGAL is a 25KDa protein proposed as biomarker of acute kidney injury. The aim of this study was to investigate the role of NGAL as an early and accurate indicator of DGF and Tacrolimus (Tac) toxicity and as a mediator of tissue regeneration in KT from ECD. Methods We evaluated plasma levels of NGAL in 50 KT patients from ECD in the first 4 days after surgery or after Tac introduction. Results Plasma levels of NGAL at day 1 were significantly higher in DGF group. In the non DGF group, NGAL discriminated between slow or immediate graft function and decreased more rapidly than serum creatinine. NGAL increased after Tac introduction, suggesting a role as marker of drug toxicity. In vitro, hypoxia and Tac induced NGAL release from tubular epithelial cells (TEC) favoring an autocrine loop that sustains proliferation and inhibits apoptosis (decrease of caspases and Bax/Bcl-2 ratio). Conclusions NGAL is an early and accurate biomarker of graft function in KT from ECD favoring TEC regeneration after ischemic and nephrotoxic injury. PMID:26125566

  1. Return of functional mobility after an open tibial fracture: a sensor-based longitudinal cohort study using the Hamlyn Mobility Score.

    PubMed

    Kwasnicki, R M; Hettiaratchy, S; Okogbaa, J; Lo, B; Yang, G-Z; Darzi, A

    2015-08-01

    In this study we quantified and characterised the return of functional mobility following open tibial fracture using the Hamlyn Mobility Score. A total of 20 patients who had undergone reconstruction following this fracture were reviewed at three-month intervals for one year. An ear-worn movement sensor was used to assess their mobility and gait. The Hamlyn Mobility Score and its constituent kinematic features were calculated longitudinally, allowing analysis of mobility during recovery and between patients with varying grades of fracture. The mean score improved throughout the study period. Patients with more severe fractures recovered at a slower rate; those with a grade I Gustilo-Anderson fracture completing most of their recovery within three months, those with a grade II fracture within six months and those with a grade III fracture within nine months. Analysis of gait showed that the quality of walking continued to improve up to 12 months post-operatively, whereas the capacity to walk, as measured by the six-minute walking test, plateaued after six months. Late complications occurred in two patients, in whom the trajectory of recovery deviated by > 0.5 standard deviations below that of the remaining patients. This is the first objective, longitudinal assessment of functional recovery in patients with an open tibial fracture, providing some clarification of the differences in prognosis and recovery associated with different grades of fracture. PMID:26224831

  2. Comparative study of exchange-correlation functionals for accurate predictions of structural and magnetic properties of multiferroic oxides

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew J.

    2016-05-01

    We systematically compare predictions of various exchange correlation functionals for the structural and magnetic properties of perovskite Sr1 -xBaxMnO3 (0 ≤x ≤1 )—a representative class of multiferroic oxides. The local spin density approximation (LSDA) and spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof parametrization (sPBE) make substantial different predictions for ferroelectric atomic distortions, tetragonality, and ground state magnetic ordering. Neither approximation quantitatively reproduces all the measured structural and magnetic properties of perovskite Sr0.5Ba0.5MnO3 . The spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof revised for solids parametrization (sPBEsol) and the charge-only Perdew-Burke-Ernzerhof parametrized generalized gradient approximation with Hubbard U and Hund's J extensions both provide overall better agreement with measured structural and magnetic properties of Sr0.5Ba0.5MnO3 , compared to LSDA and sPBE. Using these two methods, we find that different from previous predictions, perovskite BaMnO3 has large Mn off-center displacements and is close to a ferromagnetic-to-antiferromagnetic phase boundary, making it a promising candidate to induce effective giant magnetoelectric effects and to achieve cross-field control of polarization and magnetism.

  3. An accurate cluster selection function for the J-PAS narrow-band wide-field survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Dupke, R.; Cypriano, E.; Lima-Neto, G.; López-Sanjuan, C.; Varela, J.; Alcaniz, J. S.; Broadhurst, T.; Cenarro, A. J.; Devi, N. Chandrachani; Díaz-García, L. A.; Fernandes, C. A. C.; Hernández-Monteagudo, C.; Mei, S.; Mendes de Oliveira, C.; Molino, A.; Oteo, I.; Schoenell, W.; Sodré, L.; Viironen, K.; Marín-Franch, A.

    2016-03-01

    The impending Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS) will be the first wide-field survey of ≳ 8500 deg2 to reach the `stage IV' category. Because of the redshift resolution afforded by 54 narrow-band filters, J-PAS is particularly suitable for cluster detection in the range z<1. The photometric redshift dispersion is estimated to be only ˜0.003 with few outliers ≲4 per cent for galaxies brighter than i ˜ 23 AB, because of the sensitivity of narrow band imaging to absorption and emission lines. Here, we evaluate the cluster selection function for J-PAS using N-body+semi-analytical realistic mock catalogues. We optimally detect clusters from this simulation with the Bayesian Cluster Finder, and we assess the completeness and purity of cluster detection against the mock data. The minimum halo mass threshold we find for detections of galaxy clusters and groups with both >80 per cent completeness and purity is Mh ˜ 5 × 1013 M⊙ up to z ˜ 0.7. We also model the optical observable, M^{*}_CL-halo mass relation, finding a non-evolution with redshift and main scatter of σ _{M^{*}_CL | M_h}˜ 0.14 dex down to a factor 2 lower in mass than other planned broad-band stage IV surveys, at least. For the Mh ˜ 1 × 1014 M⊙ Planck mass limit, J-PAS will arrive up to z ˜ 0.85 with a σ _{M^{*}_CL | M_h}˜ 0.12 dex. Therefore, J-PAS will provide the largest sample of clusters and groups up to z ˜ 0.8 with a mass calibration accuracy comparable to X-ray data.

  4. The route to MBxNyCz molecular wheels: II. Results using accurate functionals and basis sets

    NASA Astrophysics Data System (ADS)

    Güthler, A.; Mukhopadhyay, S.; Pandey, R.; Boustani, I.

    2014-04-01

    Applying ab initio quantum chemical methods, molecular wheels composed of metal and light atoms were investigated. High quality basis sets 6-31G*, TZPV, and cc-pVTZ as well as exchange and non-local correlation functionals B3LYP, BP86 and B3P86 were used. The ground-state energy and structures of cyclic planar and pyramidal clusters TiBn (for n = 3-10) were computed. In addition, the relative stability and electronic structures of molecular wheels TiBxNyCz (for x, y, z = 0-10) and MBnC10-n (for n = 2 to 5 and M = Sc to Zn) were determined. This paper sustains a follow-up study to the previous one of Boustani and Pandey [Solid State Sci. 14 (2012) 1591], in which the calculations were carried out at the HF-SCF/STO3G/6-31G level of theory to determine the initial stability and properties. The results show that there is a competition between the 2D planar and the 3D pyramidal TiBn clusters (for n = 3-8). Different isomers of TiB10 clusters were also studied and a structural transition of 3D-isomer into 2D-wheel is presented. Substitution boron in TiB10 by carbon or/and nitrogen atoms enhances the stability and leads toward the most stable wheel TiB3C7. Furthermore, the computations show that Sc, Ti and V at the center of the molecular wheels are energetically favored over other transition metal atoms of the first row.

  5. Differences between Mothers' and Fathers' Ratings of Family Functioning with the Family Assessment Device: The Validity of Combined Parent Scores

    ERIC Educational Resources Information Center

    Cooke, Dawson; Marais, Ida; Cavanagh, Robert; Kendall, Garth; Priddis, Lynn

    2015-01-01

    The psychometric properties of the General Functioning subscale of the McMaster Family Assessment Device were examined using the Rasch Model (N = 237 couples). Mothers' and fathers' ratings of the General Functioning subscale of the McMaster Family Assessment Device are recommended, provided these are analyzed separately. More than a quarter of…

  6. Toward Fast and Accurate Evaluation of Charge On-Site Energies and Transfer Integrals in Supramolecular Architectures Using Linear Constrained Density Functional Theory (CDFT)-Based Methods.

    PubMed

    Ratcliff, Laura E; Grisanti, Luca; Genovese, Luigi; Deutsch, Thierry; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang; Beljonne, David; Cornil, Jérôme

    2015-05-12

    A fast and accurate scheme has been developed to evaluate two key molecular parameters (on-site energies and transfer integrals) that govern charge transport in organic supramolecular architecture devices. The scheme is based on a constrained density functional theory (CDFT) approach implemented in the linear-scaling BigDFT code that exploits a wavelet basis set. The method has been applied to model disordered structures generated by force-field simulations. The role of the environment on the transport parameters has been taken into account by building large clusters around the active molecules involved in the charge transfer. PMID:26574411

  7. The Youth Throwing Score

    PubMed Central

    Ahmad, Christopher S.; Padaki, Ajay S.; Noticewala, Manish Suresh; Makhni, Eric Chugh; Popkin, Charles Aaron

    2016-01-01

    Objectives: Epidemic levels of shoulder and elbow injuries have been reported in youth and adolescent baseball players. Despite the concerning frequency of these injuries, no instrument has been validated to assess upper extremity injury in this patient population. The purpose of this study was to validate an upper extremity assessment tool specifically designed for youth baseball players. We hypothesize this tool will be reliable, responsive and valid. Methods: The Youth Throwing Score (YTS) was constructed by a multidisciplinary healthcare provider team in addition to baseball coaches as a tool to assess upper extremity injury in 10 to 18 year old baseball players. The instrument was comprised of a demographics section and a 14 item assessment of pain, fatigue and psychosocial health. The 14 items were scored from 1 to 5 and weighted equally, with higher scores reflecting fewer symptoms and less functional disability. The psychometric properties, including the test-retest reliability, internal consistency, and responsiveness were calculated. Additionally, the Pearson correlation coefficient to 4 validated outcomes was determined. Results: A pilot form of the instrument was administered to 25 players to assess comprehension and mean item importance. Pilot analysis resulted in none of the 14 items receiving less than a 3 out of 5 mean athlete importance rating and the final instrument read at a Flesch-Kincaid level of 4.1, appropriate for patients age 9 and older. A total of 223 players completed the Youth Throwing Score, with an average player age of 14.3 ± 2.7 years old. The players self-assigned injury status, resulting in an average survey score of 59.7 ± 8.4 for the 148 players ‘playing without pain,’ 42.0 ± 11.5 for the 60 players ‘playing with pain,’ and 40.4 ± 10.5 for the 15 players ‘not playing due to pain.’ Players playing without pain scored significantly higher than those playing with pain (p < .001). The scoring tiers of the Youth

  8. Scoring from Contests

    PubMed Central

    Penn, Elizabeth Maggie

    2014-01-01

    This article presents a new model for scoring alternatives from “contest” outcomes. The model is a generalization of the method of paired comparison to accommodate comparisons between arbitrarily sized sets of alternatives in which outcomes are any division of a fixed prize. Our approach is also applicable to contests between varying quantities of alternatives. We prove that under a reasonable condition on the comparability of alternatives, there exists a unique collection of scores that produces accurate estimates of the overall performance of each alternative and satisfies a well-known axiom regarding choice probabilities. We apply the method to several problems in which varying choice sets and continuous outcomes may create problems for standard scoring methods. These problems include measuring centrality in network data and the scoring of political candidates via a “feeling thermometer.” In the latter case, we also use the method to uncover and solve a potential difficulty with common methods of rescaling thermometer data to account for issues of interpersonal comparability. PMID:24748759

  9. On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation

    PubMed Central

    2014-01-01

    Background Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. Results The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt. Conclusions Sequence similarity core dissection with regard to fold-critical and other contributions systematically suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between aquaporins and formate/nitrite transporters that, so far, was only

  10. The near-equivalence of five species of spectrally-accurate radial basis functions (RBFs): Asymptotic approximations to the RBF cardinal functions on a uniform, unbounded grid

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2011-02-01

    Radial basis function (RBF) interpolants have become popular in computer graphics, neural networks and for solving partial differential equations in many fields of science and engineering. In this article, we compare five different species of RBFs: Gaussians, hyperbolic secant (sech's), inverse quadratics, multiquadrics and inverse multiquadrics. We show that the corresponding cardinal functions for a uniform, unbounded grid are all approximated by the same function: C(X) ∼ (1/(ρ)) sin (πX)/sinh (πX/ρ) for some constant ρ(α) which depends on the inverse width parameter (“shape parameter”) α of the RBF and also on the RBF species. The error in this approximation is exponentially small in 1/α for sech's and inverse quadratics and exponentially small in 1/α2 for Gaussians; the error is proportional to α4 for multiquadrics and inverse multiquadrics. The error in all cases is small even for α ∼ O(1). These results generalize to higher dimensions. The Gaussian RBF cardinal functions in any number of dimensions d are, without approximation, the tensor product of one dimensional Gaussian cardinal functions: Cd(x1,x2…,xd)=∏j=1dC(xj). For other RBF species, we show that the two-dimensional cardinal functions are well approximated by the products of one-dimensional cardinal functions; again the error goes to zero as α → 0. The near-identity of the cardinal functions implies that all five species of RBF interpolants are (almost) the same, despite the great differences in the RBF ϕ's themselves.

  11. Parent-Youth Rating Concordance for Hair Pulling Variables, Functional Impairment, and Anxiety Scale Scores in Trichotillomania

    ERIC Educational Resources Information Center

    Keuthen, Nancy J.; Flessner, Christopher A.; Woods, Douglas W.; Franklin, Martin E.; Piacentini, John A.; Khanna, Muniya; Moore, Phoebe; Cashin, Susan

    2008-01-01

    Knowledge of cross-informant rating concordance is critical for the assessment of child and adolescent problems in clinical and research settings. We explored parent-youth rating concordance for hair pulling variables, functional impairment, and anxiety symptoms in a sample of child and adolescent hair pullers (n = 133) satisfying conservative…

  12. Continuous Glucose Monitoring after Islet Transplantation in Type 1 Diabetes: An Excellent Graft Function (β-Score Greater Than 7) Is Required to Abrogate Hyperglycemia, Whereas a Minimal Function Is Necessary to Suppress Severe Hypoglycemia (β-Score Greater Than 3)

    PubMed Central

    Raverdy, Violeta; Balavoine, Anne-Sophie; Defrance, Frédérique; Caiazzo, Robert; Arnalsteen, Laurent; Gmyr, Valéry; Hazzan, Marc; Noël, Christian; Kerr-Conte, Julie; Pattou, Francois

    2012-01-01

    Context: For the last 10 yr, continuous glucose monitoring (CGM) has brought up new insights into the accuracy of blood glucose analysis. Objective: Our objective was to determine how islet graft function was able to influence the various components of dysglycemia after islet transplantation (IT). Design and Setting: We conducted a single-arm open-labeled study with a 3-yr follow-up in a referral center (ClinicalTrial.gov identifiers NCT00446264 and NCT01123187). Patients: Twenty-three consecutive patients with type 1 diabetes (14 islet alone, nine islet after kidney) received IT within 3 months using the Edmonton protocol. Intervention: Intervention included 72-h CGM before and 3, 6, 9, 12, 24, and 36 months after transplantation. Main Outcome Measure: Graft function was estimated via β-score, a previously validated index (range 0–8) based on treatment requirements, C-peptide, blood glucose, and glycated hemoglobin. Results: At the 3-yr visit, graft function persisted in 19 patients (82%), and 10 (43%) remained insulin independent. Glycated hemoglobin decreased in the whole cohort from 8.3% (7.3–9.0%) at baseline to 6.7% (5.9–7.7%) at 3 yr [median (interquartile range), P < 0.01]. Mean glucose, glucose sd, and time spent with glycemia above 10 mmol/liter (hyperglycemia) and below 3 mmol/liter (hypoglycemia) were significantly lower after IT (P < 0.05 vs. baseline). The four CGM outcomes were related to β-score (P < 0.001). However, partial function (β-score >3) was sufficient to abrogate hypoglycemia; suboptimal function (β-score >5) was necessary to significantly improve mean glucose, glucose sd, and hyperglycemia; and optimal functionscore >7) was necessary to normalize them. Conclusion: The four components of dysglycemia were not equally affected by the degree of islet graft function, which could have important implications for future development of β-cell replacement. A β-score above 3 dramatically reduced the occurrence of hypoglycemia. PMID

  13. Type 2 Diabetes, Diabetes Genetic Score and Risk of Decreased Renal Function and Albuminuria: A Mendelian Randomization Study

    PubMed Central

    Xu, Min; Bi, Yufang; Huang, Ya; Xie, Lan; Hao, Mingli; Zhao, Zhiyun; Xu, Yu; Lu, Jieli; Chen, Yuhong; Sun, Yimin; Qi, Lu; Wang, Weiqing; Ning, Guang

    2016-01-01

    Background Type 2 diabetes (T2D) is a risk factor for dysregulation of glomerular filtration rate (GFR) and albuminuria. However, whether the association is causal remains unestablished. Research Design and Methods We performed a Mendelian Randomization (MR) analysis in 11,502 participants aged 40 and above, from a well-defined community in Shanghai during 2011–2013, to explore the causal association between T2D and decreased estimated GFR (eGFR) and increased urinary albumin-to-creatinine ratio (uACR). We genotyped 34 established T2D common variants in East Asians, and created a T2D-genetic risk score (GRS). We defined decreased eGFR as eGFR < 90 ml/min/1.73 m2 and increased uACR as uACR ≥ 30 mg/g. We used the T2D_GRS as the instrumental variable (IV) to quantify the causal effect of T2D on decreased eGFR and increased uACR. Results Each 1-standard deviation (SD, 3.90 points) increment in T2D_GRS was associated with decreased eGFR: odds ratio (OR) = 1.18 (95% confidence interval [CI]: 1.01, 1.30). In the MR analysis, we demonstrated a causal relationship between genetically determined T2D and decreased eGFR (OR = 1.47, 95% CI: 1.15, 1.88, P = 0.0003). When grouping the genetic loci according to their relations with either insulin secretion (IS) or insulin resistance (IR), we found both IS_GRS and IR_GRS were significantly related to decreased eGFR (both P < 0.02). In addition, T2D_GRS and IS_GRS were significantly associated with Log-uACR (both P = 0.04). Conclusion Our results provide novel evidence for a causal association between T2D and decreased eGFR by using MR approach in a Chinese population. PMID:27211558

  14. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  15. Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions

    NASA Astrophysics Data System (ADS)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc

    2015-09-01

    Many techniques have been developed in the past in order to compute positron lifetimes in materials from first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper that we have reached this goal by developing the two-component density functional theory within the projector augmented-wave (PAW) method in the open-source code abinit. This tool offers the accuracy of the all-electron methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters. Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their compounds.

  16. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Teale, Andrew M.; Lutnæs, Ola B.; Helgaker, Trygve; Tozer, David J.; Gauss, Jürgen

    2013-01-01

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], 10.1063/1.3242081, it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  17. Ab initio calculations of accurate dissociation energy and analytic potential energy function for the second excited state B1Π of 7LiH

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Liu, Yu-Fang; Sun, Jin-Feng; Zhu, Zun-Lue; Yang, Xiang-Dong

    2006-12-01

    The reasonable dissociation limit of the second excited singlet state B1Π of 7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B1Π state are calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. The whole potential energy curve for the B1Π state is obtained over the internuclear distance ranging from about 0.10 nm to 0.54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B1Π state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B1Π state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.

  18. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    SciTech Connect

    Doherty, Kimberly R. Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  19. The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation

    PubMed Central

    Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.; Grover, Ginni; Agrawal, Anurag; Piestun, Rafael; Moerner, W. E.

    2014-01-01

    Single-molecule-based super-resolution fluorescence microscopy has recently been developed to surpass the diffraction limit by roughly an order of magnitude. These methods depend on the ability to precisely and accurately measure the position of a single-molecule emitter, typically by fitting its emission pattern to a symmetric estimator (e.g. centroid or 2D Gaussian). However, single-molecule emission patterns are not isotropic, and depend highly on the orientation of the molecule’s transition dipole moment, as well as its z-position. Failure to account for this fact can result in localization errors on the order of tens of nm for in-focus images, and ~50–200 nm for molecules at modest defocus. The latter range becomes especially important for three-dimensional (3D) single-molecule super-resolution techniques, which typically employ depths-of-field of up to ~2 μm. To address this issue we report the simultaneous measurement of precise and accurate 3D single-molecule position and 3D dipole orientation using the Double-Helix Point Spread Function (DH-PSF) microscope. We are thus able to significantly improve dipole-induced position errors, reducing standard deviations in lateral localization from ~2x worse than photon-limited precision (48 nm vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation we are able to improve from a lateral standard deviation of 116 nm (~4x worse than the precision, 28 nm) to 34 nm (within 6 nm). PMID:24817798

  20. Cross-cultural adaptation and validation of the Turkish version of the Hip disability and Osteoarthritis Outcome Score-Physical function Short-form (HOOS-PS).

    PubMed

    Yilmaz, Ozlem; Gul, Ebru Demir; Bodur, Hatice

    2014-01-01

    The purpose of this study is to adapt the Hip disability and Osteoarthritis Outcome Score-Physical function Short-form (HOOS-PS) to Turkish language and to evaluate the psychometric properties of the Turkish version in patients with primary hip osteoarthritis. After the translation from the source language (English) to the target language (Turkish), synthesis, back translation, revision, and pretest stages were done. Next, 50 patients with primary hip osteoarthritis were asked to fill out the Turkish version of the HOOS-PS two times with one week interval. Internal consistency was tested using the Cronbach's alpha coefficient, and test-retest reliability was assessed by calculating the intra-class correlation coefficient (ICC). Construct validity was investigated by comparing the results of the HOOS-PS and WOMAC, Lequesne questionnaries using Spearman's rank correlation coefficient. Internal consistency was good with a Cronbach's alpha of 0.778 (>0.7) and ICC was 0.911 (>0.7). Both scores verify that the Turkish HOOS-PS is a reliable tool. Spearman's rank correlation coefficients between the HOOS-PS and overall WOMAC (r = 0.653), WOMAC physical functions (r = 0.626), WOMAC pain (r = 0.629) subscales, overall Lequesne (r = 0.650), and Lequesne daily living activities (r = 0.620) subscales were high (r > 0.6), and moderate correlations were found between the HOOS-PS and WOMAC stiffness (r = 0.511), Lequesne pain (r = 0.569), and Lequesne-walking distance (r = 0.578) subscales (0.6 > r > 0.2), thus providing proof for the validity of the Turkish form. The Turkish HOOS-PS was found to be reliable and valid for patients with primary hip osteoarthritis. PMID:24026527

  1. Lung function score including a parameter of small airway disease as a highly predictive indicator of survival after allogeneic hematopoietic cell transplantation.

    PubMed

    Nakamae, Mika; Yamashita, Mariko; Koh, Hideo; Nishimoto, Mitsutaka; Hayashi, Yoshiki; Nakane, Takahiko; Nakashima, Yasuhiro; Hirose, Asao; Hino, Masayuki; Nakamae, Hirohisa

    2016-06-01

    Some studies on the predictive value of determining pulmonary function prior to allogeneic hematopoietic cell transplantation (allo-HCT) have shown a significant association between pulmonary function test (PFT) parameters and pulmonary complications, and mortality. However, the percentage of patients showing abnormalities in pretransplant PFT parameters is low. We comprehensively evaluated the effect of pretransplant PFT parameters, including a marker of small airway disease (ratio of the airflow rate of 50% vital capacity to the airflow rate of 25% vital capacity (V˙50/V˙25), on outcomes in 206 evaluable patients who underwent allo-HCT at our institute. Notable among the significant parameters in a univariable analysis, V˙50/V˙25 was the most powerful indicator of survival following allo-HCT (delta-Akaike information criterion [∆AIC] = 12.47, ∆χ(2)  = 14.47; P = 0.0001). Additionally, a pretransplant lung function score (pLFS) established by applying three parameters with superior predictive values including V˙50/V˙25 represented a better discriminating variable for the prediction of survival. Our data demonstrate that a pLFS incorporating a parameter of small airway disease, rather than the parameters of central airway obstruction, may be useful for predicting patient survival following allo-HCT. PMID:27018997

  2. Maxillofacial trauma scoring systems.

    PubMed

    Sahni, Vaibhav

    2016-07-01

    The changing complexity of maxillofacial fractures in recent years has created a situation where classical systems of classification of maxillofacial injuries fall short of defining trauma particularly that observed with high-velocity collisions where more than one region of the maxillofacial skeleton is affected. Trauma scoring systems designed specifically for the maxillofacial region are aimed to provide a more accurate assessment of the injury, its prognosis, the possible treatment outcomes, economics, length of hospital stay, and triage. The evolution and logic of such systems along with their merits and demerits are discussed. The author also proposes a new system to aid users in quickly and methodically choosing the system best suited to their needs without having to study a plethora of literature available in order to isolate their choice. PMID:26971084

  3. Estimating Reading Skill from ACT Assessment Scores.

    ERIC Educational Resources Information Center

    Noble, Julie

    1986-01-01

    A study correlating Nelson-Denny Reading Test scores with American College Testing Program Assessments (ACT) indicates that reading skill can be predicted accurately from the ACT social studies reading and English usage subtests. (MSE)

  4. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  5. Cocoa flavanol intake improves endothelial function and Framingham Risk Score in healthy men and women: a randomised, controlled, double-masked trial: the Flaviola Health Study.

    PubMed

    Sansone, Roberto; Rodriguez-Mateos, Ana; Heuel, Jan; Falk, David; Schuler, Dominik; Wagstaff, Rabea; Kuhnle, Gunter G C; Spencer, Jeremy P E; Schroeter, Hagen; Merx, Marc W; Kelm, Malte; Heiss, Christian

    2015-10-28

    Cocoa flavanol (CF) intake improves endothelial function in patients with cardiovascular risk factors and disease. We investigated the effects of CF on surrogate markers of cardiovascular health in low risk, healthy, middle-aged individuals without history, signs or symptoms of CVD. In a 1-month, open-label, one-armed pilot study, bi-daily ingestion of 450 mg of CF led to a time-dependent increase in endothelial function (measured as flow-mediated vasodilation (FMD)) that plateaued after 2 weeks. Subsequently, in a randomised, controlled, double-masked, parallel-group dietary intervention trial (Clinicaltrials.gov: NCT01799005), 100 healthy, middle-aged (35-60 years) men and women consumed either the CF-containing drink (450 mg) or a nutrient-matched CF-free control bi-daily for 1 month. The primary end point was FMD. Secondary end points included plasma lipids and blood pressure, thus enabling the calculation of Framingham Risk Scores and pulse wave velocity. At 1 month, CF increased FMD over control by 1·2 % (95 % CI 1·0, 1·4 %). CF decreased systolic and diastolic blood pressure by 4·4 mmHg (95 % CI 7·9, 0·9 mmHg) and 3·9 mmHg (95 % CI 6·7, 0·9 mmHg), pulse wave velocity by 0·4 m/s (95 % CI 0·8, 0·04 m/s), total cholesterol by 0·20 mmol/l (95 % CI 0·39, 0·01 mmol/l) and LDL-cholesterol by 0·17 mmol/l (95 % CI 0·32, 0·02 mmol/l), whereas HDL-cholesterol increased by 0·10 mmol/l (95 % CI 0·04, 0·17 mmol/l). By applying the Framingham Risk Score, CF predicted a significant lowering of 10-year risk for CHD, myocardial infarction, CVD, death from CHD and CVD. In healthy individuals, regular CF intake improved accredited cardiovascular surrogates of cardiovascular risk, demonstrating that dietary flavanols have the potential to maintain cardiovascular health even in low-risk subjects. PMID:26348767

  6. Calibration of DFT Functionals for the Prediction of 57Fe Mössbauer Spectral Parameters in Iron-Nitrosyl and Iron-Sulfur Complexes: Accurate Geometries Prove Essential

    PubMed Central

    Sandala, Gregory M.; Hopmann, Kathrin H.; Ghosh, Abhik

    2011-01-01

    structure. Significant improvements to the isomer shift calibrations are obtained for B3LYP and B3LYP* when geometries obtained with the OLYP functional are used. In addition, greatly improved performance of these functionals is found if the complete test set is grouped separately into Fe–NO and Fe–S complexes. Calibration fits including only Fe–NO complexes are found to be excellent, while those containing the non-nitrosyl Fe–S complexes alone are found to demonstrate less accurate correlations. Similar trends are also found with OLYP, OPBE, PW91, and BP86. Correlations between experimental and calculated QSs were also investigated. Generally, universal and separate Fe–NO and Fe–S fit parameters obtained to determine QSs are found to be of good to excellent quality for every density functional examined, especially if [Fe4(NO)4(μ3-S)4]− is removed from the test set. PMID:22039359

  7. FILMPAR: A parallel algorithm designed for the efficient and accurate computation of thin film flow on functional surfaces containing micro-structure

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Thompson, H. M.; Gaskell, P. H.

    2009-12-01

    FILMPAR is a highly efficient and portable parallel multigrid algorithm for solving a discretised form of the lubrication approximation to three-dimensional, gravity-driven, continuous thin film free-surface flow over substrates containing micro-scale topography. While generally applicable to problems involving heterogeneous and distributed features, for illustrative purposes the algorithm is benchmarked on a distributed memory IBM BlueGene/P computing platform for the case of flow over a single trench topography, enabling direct comparison with complementary experimental data and existing serial multigrid solutions. Parallel performance is assessed as a function of the number of processors employed and shown to lead to super-linear behaviour for the production of mesh-independent solutions. In addition, the approach is used to solve for the case of flow over a complex inter-connected topographical feature and a description provided of how FILMPAR could be adapted relatively simply to solve for a wider class of related thin film flow problems. Program summaryProgram title: FILMPAR Catalogue identifier: AEEL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 530 421 No. of bytes in distributed program, including test data, etc.: 1 960 313 Distribution format: tar.gz Programming language: C++ and MPI Computer: Desktop, server Operating system: Unix/Linux Mac OS X Has the code been vectorised or parallelised?: Yes. Tested with up to 128 processors RAM: 512 MBytes Classification: 12 External routines: GNU C/C++, MPI Nature of problem: Thin film flows over functional substrates containing well-defined single and complex topographical features are of enormous significance, having a wide variety of engineering

  8. Ab initio calculation of accurate dissociation energy, potential energy curve and dipole moment function for the A1Σ+ state 7LiH molecule

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Liu, Yu-Fang; Sun, Jin-Feng; Yang, Xiang-Dong; Zhu, Zun-Lue

    2006-05-01

    The reasonable dissociation limit of the A1Σ+ state 7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space for the first time. The whole potential energy curve and the dipole moment function for the A1Σ+ state are calculated over a wide internuclear separation range from about 0.1 to 1.4 nm. The calculated equilibrium geometry and dissociation energy of this potential energy curve are of Re=0.2487 nm and De=1.064 eV, respectively. The unusual negative values of the anharmonicity constant and the vibration-rotational coupling constant are of ωeχe=-4.7158cm-1 and αe=-0.08649cm-1, respectively. The vertical excitation energy from the ground to the A1Σ+ state is calculated and the value is of 3.613 eV at 0.15875 nm (the equilibrium position of the ground state). The highly anomalous shape of this potential energy curve, which is exceptionally flat over a wide radial range around the equilibrium position, is discussed in detail. The harmonic frequency value of 502.47cm-1 about this state is approximately estimated. Careful comparison of the theoretical determinations with those obtained by previous theories about the A1Σ+ state dissociation energy clearly shows that the present calculations are much closer to the experiments than previous theories, thus represents an improvement.

  9. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach

    PubMed Central

    Wang, Jui-Chih; Chu, Pei-Ying; Chen, Chung-Ming; Lin, Jung-Hsin

    2012-01-01

    Identification of possible protein targets of small chemical molecules is an important step for unravelling their underlying causes of actions at the molecular level. To this end, we construct a web server, idTarget, which can predict possible binding targets of a small chemical molecule via a divide-and-conquer docking approach, in combination with our recently developed scoring functions based on robust regression analysis and quantum chemical charge models. Affinity profiles of the protein targets are used to provide the confidence levels of prediction. The divide-and-conquer docking approach uses adaptively constructed small overlapping grids to constrain the searching space, thereby achieving better docking efficiency. Unlike previous approaches that screen against a specific class of targets or a limited number of targets, idTarget screen against nearly all protein structures deposited in the Protein Data Bank (PDB). We show that idTarget is able to reproduce known off-targets of drugs or drug-like compounds, and the suggested new targets could be prioritized for further investigation. idTarget is freely available as a web-based server at http://idtarget.rcas.sinica.edu.tw. PMID:22649057

  10. Effect of a community intervention programme promoting social interactions on functional disability prevention for older adults: propensity score matching and instrumental variable analyses, JAGES Taketoyo study

    PubMed Central

    Hikichi, Hiroyuki; Kondo, Naoki; Kondo, Katsunori; Aida, Jun; Takeda, Tokunori; Kawachi, Ichiro

    2015-01-01

    Background The efficacy of promoting social interactions to improve the health of older adults is not fully established due to residual confounding and selection bias. Methods The government of Taketoyo town, Aichi Prefecture, Japan, developed a resident-centred community intervention programme called ‘community salons’, providing opportunities for social interactions among local older residents. To evaluate the impact of the programme, we conducted questionnaire surveys for all older residents of Taketoyo. We carried out a baseline survey in July 2006 (prior to the introduction of the programme) and assessed the onset of functional disability during March 2012. We analysed the data of 2421 older people. In addition to the standard Cox proportional hazard regression, we conducted Cox regression with propensity score matching (PSM) and an instrumental variable (IV) analysis, using the number of community salons within a radius of 350 m from the participant's home as an instrument. Results In the 5 years after the first salon was launched, the salon participants showed a 6.3% lower incidence of functional disability compared with non-participants. Even adjusting for sex, age, equivalent income, educational attainment, higher level activities of daily living and depression, the Cox adjusted HR for becoming disabled was 0.49 (95% CI 0.33 to 0.72). Similar results were observed using PSM (HR 0.52, 95% CI 0.33 to 0.83) and IV-Cox analysis (HR 0.50, 95% CI 0.34 to 0.74). Conclusions A community health promotion programme focused on increasing social interactions among older adults may be effective in preventing the onset of disability. PMID:25888596

  11. In early returns scoring scores big.

    PubMed

    Butman, Samuel M

    2016-07-01

    A scoring or cutting balloon is always useful in preventing slippage during therapy of in-stent restenosis. A drug-coated scoring balloon for in-stent restenosis may be an alternative to a drug-coated balloon Definitive comparison trials are needed and likely to help define their exact role in patients with in-stent restenosis. PMID:27400636

  12. EVALUATION OF ANATOMICAL INTEGRITY USING ULTRASOUND EXAMINATION, AND FUNCTIONAL INTEGRITY USING THE CONSTANT & MURLEY SCORE, OF THE ROTATOR CUFF FOLLOWING ARTHROSCOPIC REPAIR

    PubMed Central

    Godinho, Glaydson Gomes; França, Flavio de Oliveira; Alves, Freitas José Marcio; Watanabe, Fábio Nagato; Nobre, Leonardo Oliveira; De Almeida Neto, Manoel Augusto; Mendes Da Silva, Marcos André

    2015-01-01

    Objective: To evaluate the functional and anatomical results from surgical treatment via arthroscopy in cases of complete rupture of the rotator cuff, using ultrasound images and the Constant and Murley functional index to investigate the correlation between them. Methods: 100 patients (110 shoulders) were evaluated. The mean follow-up was 48.8 ± 33.28 months (12 to 141 months). The mean age was 60.25 ± 10.09 (36 to 81 years). Rupture of the supraspinal tendon alone occurred in 85 cases (77%), and in association with the infraspinatus in 20 cases (18%) and subscapularis in four shoulders (4%). An association of supraspinatus, infraspinatus and subscapularis lesions was found in one shoulder (1%). The lesions were classified according to DeOrio and Cofield scores as small/medium in 85 shoulders (77%) and large/extensive in 25 (23%). The clinical results were assessed in accordance with the Constant and Murley criteria. The ultrasound results relate to reports issued by different radiologists. Statistical analysis was carried out using the chi-square test, Fisher's exact test, Student's t test, Pearson's correlation, Kruskal-Wallis correlation and logistic regression (significance: p < 0.05). Results: The mean Constant evaluation was 85.3 ± 10.06 in the normal shoulders and 83.96 ± 8.67 in the operated shoulders (p = 0.224). Excellent and good results were found in 74 shoulders (67%), satisfactory and moderate results in 32 (29%) and poor results in four (4%). The ultrasound evaluation showed 38 shoulders with re-rupture (35%) and absence of rupture in 71 (65%). Among the 74 shoulders (67%) with excellent/good results, 22 (30%) presented re-rupture in the ultrasound report (p = 0.294). Among the four shoulders (4%) with poor results, two (50%) presented reports of intact tendons (p = 0.294). Conclusion: There was no statistically valid correlation between the ultrasound diagnosis and the clinical evaluation of results among the patients who underwent arthroscopic

  13. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  14. Effect of tiotropium on lung function decline in early-stage of chronic obstructive pulmonary disease patients: propensity score-matched analysis of real-world data

    PubMed Central

    Lee, Ha Youn; Choi, Sun Mi; Lee, Jinwoo; Park, Young Sik; Lee, Chang-Hoon; Kim, Deog Kyeom; Lee, Sang-Min; Yoon, Ho Il; Yim, Jae-Joon; Kim, Young Whan; Han, Sung Koo; Yoo, Chul-Gyu

    2015-01-01

    Background Tiotropium failed to slow the annual rate of forced expiratory volume in 1 second (FEV1) decline in chronic obstructive pulmonary disease (COPD) patients with <70% predicted FEV1. However, the rate of FEV1 decline is known to be faster at early stages, which suggests that the effects of tiotropium may be more prominent in early-stage of COPD patients. The aim of this study was to test the hypothesis that tiotropium modifies the rate of FEV1 decline in COPD patients with an FEV1≥70%. Methods We retrospectively reviewed the records of COPD patients diagnosed between January 1, 2004, and July 31, 2012, at Seoul National University Hospital, Seoul National University Bundang Hospital, and Seoul Metropolitan Government-Seoul National University Boramae Medical Center. The inclusion criteria were as follows: age ≥40 years, postbron-chodilator (BD) FEV1≥70% of predicted and FEV1/FVC (forced vital capacity) <0.70, and spirometry more than two times at certain times of the year. Conversely, the exclusion criteria were as follows: asthma, lung cancer, pulmonary tuberculosis, pulmonary resection, or long-term use of a short-acting muscarinic antagonist. The annual lung function decline in patients using tiotropium was compared with that in patients not using the drug. Results Of the 587 patients enrolled in the study, 257 took tiotropium. Following propensity score matching, 404 patients were included in the analysis. The mean annual rate of post-BD FEV1 decline was 23.9 (tiotropium) and 22.5 (control) mL/yr (P=0.86); corresponding pre-BD values were 30.4 and 21.9 mL/yr (P=0.31), respectively. Mean annual rate of post-BD FVC decline was 55.1 (tiotropium) and 43.5 (control) mL/yr (P=0.33); corresponding pre-BD values were 37.1 and 33.3 mL/yr (P=0.13). Conclusion Therefore, tiotropium does not reduce the rate of lung function decline in COPD patients with FEV1≥70%. PMID:26508848

  15. Ligand Identification Scoring Algorithm (LISA)

    PubMed Central

    Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms. PMID:21561101

  16. Scoring function for DNA-drug docking of anticancer and antiparasitic compounds based on spectral moments of 2D lattice graphs for molecular dynamics trajectories.

    PubMed

    Pérez-Montoto, Lázaro G; Santana, Lourdes; González-Díaz, Humberto

    2009-11-01

    We introduce here a new class of invariants for MD trajectories based on the spectral moments pi(k)(L) of the Markov matrix associated to lattice network-like (LN) graph representations of Molecular Dynamics (MD) trajectories. The procedure embeds the MD energy profiles on a 2D Cartesian coordinates system using simple heuristic rules. At the same time, we associate the LN with a Markov matrix that describes the probabilities of passing from one state to other in the new 2D space. We construct this type of LNs for 422 MD trajectories obtained in DNA-drug docking experiments of 57 furocoumarins. The combined use of psoralens+ultraviolet light (UVA) radiation is known as PUVA therapy. PUVA is effective in the treatment of skin diseases such as psoriasis and mycosis fungoides. PUVA is also useful to treat human platelet (PTL) concentrates in order to eliminate Leishmania spp. and Trypanosoma cruzi. Both are parasites that cause Leishmaniosis (a dangerous skin and visceral disease) and Chagas disease, respectively; and may circulate in blood products collected from infected donors. We included in this study both lineal (psoralens) and angular (angelicins) furocoumarins. In the study, we grouped the LNs on two sets; set1: DNA-drug complex MD trajectories for active compounds and set2: MD trajectories of non-active compounds or no-optimal MD trajectories of active compounds. We calculated the respective pi(k)(L) values for all these LNs and used them as inputs to train a new classifier that discriminate set1 from set2 cases. In training series the model correctly classifies 79 out of 80 (specificity=98.75%) set1 and 226 out of 238 (Sensitivity=94.96%) set2 trajectories. In independent validation series the model correctly classifies 26 out of 26 (specificity=100%) set1 and 75 out of 78 (sensitivity=96.15%) set2 trajectories. We propose this new model as a scoring function to guide DNA-docking studies in the drug design of new coumarins for anticancer or antiparasitic

  17. The Apgar Score.

    PubMed

    2015-10-01

    The Apgar score provides an accepted and convenient method for reporting the status of the newborn infant immediately after birth and the response to resuscitation if needed. The Apgar score alone cannot be considered as evidence of, or a consequence of, asphyxia; does not predict individual neonatal mortality or neurologic outcome; and should not be used for that purpose. An Apgar score assigned during resuscitation is not equivalent to a score assigned to a spontaneously breathing infant. The American Academy of Pediatrics and the American College of Obstetricians and Gynecologists encourage use of an expanded Apgar score reporting form that accounts for concurrent resuscitative interventions. PMID:26416932

  18. Overestimation Bias in Self-Reported SAT Scores

    ERIC Educational Resources Information Center

    Mayer, Richard E.; Stull, Andrew T.; Campbell, Julie; Almeroth, Kevin; Bimber, Bruce; Chun, Dorothy; Knight, Allan

    2007-01-01

    The authors analyzed self-reported SAT scores and actual SAT scores for five different samples of college students (N = 650). Students overestimated their actual SAT scores by an average of 25 points (SD = 81, d = 0.31), with 10% under-reporting, 51% reporting accurately, and 39% over-reporting, indicating a systematic bias towards over-reporting.…

  19. The Reliability and Precision of Total Scores and IRT Estimates as a Function of Polytomous IRT Parameters and Latent Trait Distribution

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2013-01-01

    A classic topic in the fields of psychometrics and measurement has been the impact of the number of scale categories on test score reliability. This study builds on previous research by further articulating the relationship between item response theory (IRT) and classical test theory (CTT). Equations are presented for comparing the reliability and…

  20. Validity of the General Conceptual Ability Score from the Differential Ability Scales as a Function of Significant and Rare Interfactor Variability

    ERIC Educational Resources Information Center

    Kotz, Kasey M.; Watkins, Marley W.; McDermott, Paul A.

    2008-01-01

    Some researchers have argued that discrepant broad index scores invalidate IQs, but others have questioned the fundamental logic of that argument. To resolve this debate, the present study used a nationally representative sample of children (N = 1,200) who were matched individually for IQ. Children with significantly uneven broad index score…

  1. Recursive Partitioning to Identify Potential Causes of Differential Item Functioning in Cross-National Data

    ERIC Educational Resources Information Center

    Finch, W. Holmes; Hernández Finch, Maria E.; French, Brian F.

    2016-01-01

    Differential item functioning (DIF) assessment is key in score validation. When DIF is present scores may not accurately reflect the construct of interest for some groups of examinees, leading to incorrect conclusions from the scores. Given rising immigration, and the increased reliance of educational policymakers on cross-national assessments…

  2. Evaluation of Transient Elastography, Acoustic Radiation Force Impulse Imaging (ARFI), and Enhanced Liver Function (ELF) Score for Detection of Fibrosis in Morbidly Obese Patients

    PubMed Central

    Karlas, Thomas; Dietrich, Arne; Peter, Veronica; Wittekind, Christian; Lichtinghagen, Ralf; Garnov, Nikita; Linder, Nicolas; Schaudinn, Alexander; Busse, Harald; Prettin, Christiane; Keim, Volker; Tröltzsch, Michael; Schütz, Tatjana; Wiegand, Johannes

    2015-01-01

    Background Liver fibrosis induced by non-alcoholic fatty liver disease causes peri-interventional complications in morbidly obese patients. We determined the performance of transient elastography (TE), acoustic radiation force impulse (ARFI) imaging, and enhanced liver fibrosis (ELF) score for fibrosis detection in bariatric patients. Patients and Methods 41 patients (median BMI 47 kg/m2) underwent 14-day low-energy diets to improve conditions prior to bariatric surgery (day 0). TE (M and XL probe), ARFI, and ELF score were performed on days -15 and -1 and compared with intraoperative liver biopsies (NAS staging). Results Valid TE and ARFI results at day -15 and -1 were obtained in 49%/88% and 51%/90% of cases, respectively. High skin-to-liver-capsule distances correlated with invalid TE measurements. Fibrosis of liver biopsies was staged as F1 and F3 in n = 40 and n = 1 individuals. However, variations (median/range at d-15/-1) of TE (4.6/2.6–75 and 6.7/2.9–21.3 kPa) and ARFI (2.1/0.7–3.7 and 2.0/0.7–3.8 m/s) were high and associated with overestimation of fibrosis. The ELF score correctly classified 87.5% of patients. Conclusion In bariatric patients, performance of TE and ARFI was poor and did not improve after weight loss. The ELF score correctly classified the majority of cases and should be further evaluated. PMID:26528818

  3. An Outcome Measure of Functionality and Pain in Patients with Low Back Disorder: A Validation Study of the Iranian version of Low Back Outcome Score

    PubMed Central

    Nayeb Aghaei, Hossein; Azhari, Shirzad; Shazadi, Sohrab; Khayat Kashany, Hamid; Mohammadi, Hassan Reza; Montazeri, Ali

    2016-01-01

    Study Design Cross-sectional study. Purpose This study aimed to cross-culturally translate and validate the low back outcome score (LBOS) in Iran. Overview of Literature Lumbar disc hernia (LDH) is the most common diagnoses of low back pain and imposes a heavy burden on both individual and society. Instruments measuring patient reported outcomes should satisfy cetain psychometric properties. Methods The translation and cross-cultural adaptation of the original questionnaire was performed using Beaton's guideline. A total of 163 patients with LDH were asked to respond to the questionnaire at three points in time: preoperative and twice within 1-week interval after surgery assessments. The Oswestry disabilty index (ODI) was also completed. The internal consistency, test-retest, convergent validity, and responsiveness to change were assessed. Responsiveness to change also was assessed comparing patients' pre- and postoperative scores. Results The mean age of the cohort was 49.8 years (standard deviation=10.1). The Cronbach's alpha coefficients for the LBOS at preoperative and postoperative assessments ranged from 0.77 to 0.79, indicating good internal consistency. Test-retest reliability as performed by intraclass correlation coefficient was found to be 0.82 (0.62–0.91). The instrument discriminated well between sub-groups of patients who differed in the Finneson-Cooper score. The ODI correlated strongly with the LBOS score, lending support to its good convergent validity (r=––0.83; p<0.001). Further analysis also indicated that the questionnaire was responsive to change (p<0.001). Conclusions The Iranian version of LBOS performed well and the findings suggest that it is a valid measure of back pain treatment evaluation among LDH patients. PMID:27559453

  4. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    NASA Astrophysics Data System (ADS)

    Kapil, V.; VandeVondele, J.; Ceriotti, M.

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  5. Cut Scores: Results May Vary. NBETPP Monographs, Volume 1, Number 1.

    ERIC Educational Resources Information Center

    Horn, Catherine; Ramos, Miguel; Blumer, Irwin; Madaus, George

    This paper discusses how cut scores are set and used and how accurately they reflect student achievement. Regardless of the method used, the cut-score setting process is subjective. The cut score is the point on a score scale that separates one performance standard from another. Cut scores may also be used to set performance levels for…

  6. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements?

    PubMed

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-09-13

    The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. Overall, the main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses. PMID:27537680

  7. Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data

    PubMed Central

    Pruett, John R.; Kandala, Sridhar; Hoertel, Sarah; Snyder, Abraham Z.; Elison, Jed T.; Nishino, Tomoyuki; Feczko, Eric; Dosenbach, Nico U.F.; Nardos, Binyam; Power, Jonathan D.; Adeyemo, Babatunde; Botteron, Kelly N.; McKinstry, Robert C.; Evans, Alan C.; Hazlett, Heather C.; Dager, Stephen R.; Paterson, Sarah; Schultz, Robert T.; Collins, D. Louis; Fonov, Vladimir S.; Styner, Martin; Gerig, Guido; Das, Samir; Kostopoulos, Penelope; Constantino, John N.; Estes, Annette M.; Petersen, Steven E.; Schlaggar, Bradley L.; Piven, Joseph

    2015-01-01

    Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization. PMID:25704288

  8. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods.

    PubMed

    Kapil, V; VandeVondele, J; Ceriotti, M

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats. PMID:26851912

  9. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    PubMed

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol. PMID:19603962

  10. Home Energy Score

    SciTech Connect

    2011-12-16

    The Home Energy Score allows a homeowner to compare her or his home's energy consumption to that of other homes, similar to a vehicle's mile-per-gallon rating. A home energy assessor will collect energy information during a brief home walk-through and then score that home on a scale of 1 to 10.

  11. SCORE - A DESCRIPTION.

    ERIC Educational Resources Information Center

    SLACK, CHARLES W.

    REINFORCEMENT AND ROLE-REVERSAL TECHNIQUES ARE USED IN THE SCORE PROJECT, A LOW-COST PROGRAM OF DELINQUENCY PREVENTION FOR HARD-CORE TEENAGE STREET CORNER BOYS. COMMITTED TO THE BELIEF THAT THE BOYS HAVE THE POTENTIAL FOR ETHICAL BEHAVIOR, THE SCORE WORKER FOLLOWS B.F. SKINNER'S THEORY OF OPERANT CONDITIONING AND REINFORCES THE DELINQUENT'S GOOD…

  12. Smoothing and Equating Methods Applied to Different Types of Test Score Distributions and Evaluated with Respect to Multiple Equating Criteria. Research Report. ETS RR-11-20

    ERIC Educational Resources Information Center

    Moses, Tim; Liu, Jinghua

    2011-01-01

    In equating research and practice, equating functions that are smooth are typically assumed to be more accurate than equating functions with irregularities. This assumption presumes that population test score distributions are relatively smooth. In this study, two examples were used to reconsider common beliefs about smoothing and equating. The…

  13. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data.

    PubMed

    Pearlman, David A; Rao, B Govinda; Charifson, Paul

    2008-05-15

    We demonstrate a new approach to the development of scoring functions through the formulation and parameterization of a new function, which can be used both for rapidly ranking the binding of ligands to proteins and for estimating relative aqueous molecular solubilities. The intent of this work is to introduce a new paradigm for creation of scoring functions, wherein we impose the following criteria upon the function: (1) simple; (2) intuitive; (3) requires no postparameterization tweaking; (4) can be applied (without reparameterization) to multiple target systems; and (5) can be rapidly evaluated for any potential ligand. Following these criteria, a new function, FURSMASA (function for rapid scoring using an MD-averaged grid and the accessible surface area) has been developed. Three novel features of the function include: (1) use of an MD-averaged potential energy grid for ligand-protein interactions, rather than a simple static grid; (2) inclusion of a term that depends on the change in the solvent-accessible surface area changes on an atomic (not molecular) basis; and (3) use of the recently derived predictive index (PI) target when optimizing the function, which focuses the function on its intended purpose of relative ranking. A genetic algorithm is used to optimize the function against test data sets that include ligands for the following proteins: IMPDH, p38, gyrase B, HIV-1, and TACE, as well as the Syracuse Research solubility database. We find that the function is predictive, and can simultaneously fit all the test data sets with cross-validated predictive indices ranging from 0.68 to 0.82. As a test of the ability of this function to predict binding for systems not in the training set, the resulting fitted FURSAMA function is then applied to 23 ligands of the COX-2 enzyme. Comparing the results for COX-2 against those obtained using a variety of well-known rapid scoring functions demonstrates that FURSMASA outperforms all of them in terms of the PI and

  14. Accurate Prediction of Docked Protein Structure Similarity.

    PubMed

    Akbal-Delibas, Bahar; Pomplun, Marc; Haspel, Nurit

    2015-09-01

    One of the major challenges for protein-protein docking methods is to accurately discriminate nativelike structures. The protein docking community agrees on the existence of a relationship between various favorable intermolecular interactions (e.g. Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native structure. Different docking algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights against specific training data to evaluate and rank candidate structures. However, the exact form of this relationship is unknown and the accuracy of such methods is impaired by the pervasiveness of false positives. Unlike the conventional scoring functions, we propose a novel machine learning approach that not only ranks the candidate structures relative to each other but also indicates how similar each candidate is to the native conformation. We trained the AccuRMSD neural network with an extensive dataset using the back-propagation learning algorithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å error margin. PMID:26335807

  15. Reporting Valid and Reliable Overall Scores and Domain Scores

    ERIC Educational Resources Information Center

    Yao, Lihua

    2010-01-01

    In educational assessment, overall scores obtained by simply averaging a number of domain scores are sometimes reported. However, simply averaging the domain scores ignores the fact that different domains have different score points, that scores from those domains are related, and that at different score points the relationship between overall…

  16. Additive prognostic value of coronary artery calcium score and renal function in patients with acute chest pain without known coronary artery disease: up to 5-year follow-up.

    PubMed

    Chaikriangkrai, Kongkiat; Nabi, Faisal; Mahmarian, John J; Chang, Su Min

    2015-12-01

    Long-term incremental prognostic value of renal function over coronary artery calcium score (CACS) in symptomatic patients without known coronary artery disease (CAD) is unclear. The objective of this study was to examine additive prognostic value of renal function over CACS in patients with acute chest pain suspected of CAD. Renal function and CACS were assessed in patients without known CAD who presented to the emergency department with chest pain from 2005 to 2008. Renal function was assessed using estimated glomerular filtration rate (eGFR), and chronic kidney disease (CKD) was defined as eGFR < 60 mL/min/1.73 m(2). A total of 949 patients (804 non-CKD and 145 CKD, age 54 ± 13 years) were included. During the follow-up period of up to 5.3 years, major adverse cardiac events (MACE) occurred in 5.7% of patients (19 cardiac deaths, 6 myocardial infarction and 29 late coronary revascularization). Annualized MACE rate was higher in patients in higher CACS categories with and without CKD (p = 0.011 and p < 0.001 respectively). In multivariate logistic regression analysis, CACS categories (CACS 1-100: HR 3.17, p = 0.005; CACS 101-400: HR 7.68, p < 0.001; CACS > 400: HR 8.88, p < 0.001) and CKD (HR 10.18, p < 0.001) were independent predictors for MACE. Both adding renal function and CACS significantly improved the overall predictive performance (p < 0.001 for global Chi square increase) from Framingham risk categories or thrombolysis in myocardial infarction (TIMI) risk score. Both CACS and renal function were independent predictors for future cardiac events and provided additive prognostic value to each other and over either Framingham risk categories or TIMI risk score. PMID:26243534

  17. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    PubMed

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity. PMID:26166624

  18. A simple yet accurate correction for winner's curse can predict signals discovered in much larger genome scans

    PubMed Central

    Bigdeli, T. Bernard; Lee, Donghyung; Webb, Bradley Todd; Riley, Brien P.; Vladimirov, Vladimir I.; Fanous, Ayman H.; Kendler, Kenneth S.; Bacanu, Silviu-Alin

    2016-01-01

    Motivation: For genetic studies, statistically significant variants explain far less trait variance than ‘sub-threshold’ association signals. To dimension follow-up studies, researchers need to accurately estimate ‘true’ effect sizes at each SNP, e.g. the true mean of odds ratios (ORs)/regression coefficients (RRs) or Z-score noncentralities. Naïve estimates of effect sizes incur winner’s curse biases, which are reduced only by laborious winner’s curse adjustments (WCAs). Given that Z-scores estimates can be theoretically translated on other scales, we propose a simple method to compute WCA for Z-scores, i.e. their true means/noncentralities. Results:WCA of Z-scores shrinks these towards zero while, on P-value scale, multiple testing adjustment (MTA) shrinks P-values toward one, which corresponds to the zero Z-score value. Thus, WCA on Z-scores scale is a proxy for MTA on P-value scale. Therefore, to estimate Z-score noncentralities for all SNPs in genome scans, we propose FDR Inverse Quantile Transformation (FIQT). It (i) performs the simpler MTA of P-values using FDR and (ii) obtains noncentralities by back-transforming MTA P-values on Z-score scale. When compared to competitors, realistic simulations suggest that FIQT is more (i) accurate and (ii) computationally efficient by orders of magnitude. Practical application of FIQT to Psychiatric Genetic Consortium schizophrenia cohort predicts a non-trivial fraction of sub-threshold signals which become significant in much larger supersamples. Conclusions: FIQT is a simple, yet accurate, WCA method for Z-scores (and ORs/RRs, via simple transformations). Availability and Implementation: A 10 lines R function implementation is available at https://github.com/bacanusa/FIQT. Contact: sabacanu@vcu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27187203

  19. Grading More Accurately

    ERIC Educational Resources Information Center

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  20. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  1. Volleyball Scoring Systems.

    ERIC Educational Resources Information Center

    Calhoun, William; Dargahi-Noubary, G. R.; Shi, Yixun

    2002-01-01

    The widespread interest in sports in our culture provides an excellent opportunity to catch students' attention in mathematics and statistics classes. One mathematically interesting aspect of volleyball, which can be used to motivate students, is the scoring system. (MM)

  2. Does a More Precise Chemical Description of Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?

    PubMed Central

    2014-01-01

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein–ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein–ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data. PMID:24528282

  3. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  4. Frequency Scale Factors for Some Double-Hybrid Density Functional Theory Procedures: Accurate Thermochemical Components for High-Level Composite Protocols.

    PubMed

    Chan, Bun; Radom, Leo

    2016-08-01

    In the present study, we have obtained geometries and frequency scale factors for a number of double-hybrid density functional theory (DH-DFT) procedures. We have evaluated their performance for obtaining thermochemical quantities [zero-point vibrational energies (ZPVE) and thermal corrections for 298 K enthalpies (ΔH298) and 298 K entropies (S298)] to be used within high-level composite protocols (using the W2X procedure as a probe). We find that, in comparison with the previously prescribed protocol for optimization and frequency calculations (B3-LYP/cc-pVTZ+d), the use of contemporary DH-DFT methods such as DuT-D3 and DSD-type procedures leads to a slight overall improved performance compared with B3-LYP. A major strength of this approach, however, lies in the better robustness of the DH-DFT methods in that the largest deviations are notably smaller than those for B3-LYP. In general, the specific choices of the DH-DFT procedure and the associated basis set do not drastically change the performance. Nonetheless, we find that the DSD-PBE-P86/aug'-cc-pVTZ+d combination has a very slight edge over the others that we have examined, and we recommend its general use for geometry optimization and vibrational frequency calculations, in particular within high-level composite methods such as the higher-level members of the WnX series of protocols. The scale factors determined for DSD-PBE-P86/aug'-cc-pVTZ+d are 0.9830 (ZPVE), 0.9876 (ΔH298), and 0.9923 (S298). PMID:27471908

  5. The transcorrelated method for accurate correlation energies using gaussian-type functions: examples on He, H 2 , LiH and H 2 O

    NASA Astrophysics Data System (ADS)

    Handy, N. C.

    2002-01-01

    The first transcorrelated calculations for correlated wavefuPinctions C Φwhich use purely analytical integration methods are presented. If we write C = ɛi>j where G T is a linear combination of functions like exp (-ari 2 j) and exp (-br 2 B), and Φis a Slater determinant whose orbital basis set is the usual gaussians, then Boys showed that all the integrals of the transcorrelated method could be evaluated. These are the bases used here. However, the use of a limited gaussian orbital basis set makes Φa bad approximation to the best determinant. The results in atomic units are (giving the S.C.F. energy W SCF = < Φ|H| Φ>/< Φ| Φ> and the correlation energy W c , with their exact values in parenthesis): He: W SCF =-2.710 (-2.862), W c =-0.0399 (-0.0420), H 2 : W SCF =-0.976 (-1.133), W c =-0.0419 (-0.0405), LiH: W SCF =-7.589 (-7.987), W c =-0.0759 (-0.082), H 2 O: W SCF =-64.23 (-76.07), W c =-0.254 (-0.364). Calculations were performed at the experimental geometry. A few three-electron integrals used in the determination of parameters, but not in the determination of energies, were ignored in LiH and H 2 O, but this is not thought to affect the nature of the results. The reason why the convergence of the energy in these calculations is much closer to variational-type convergence than in previous transcorrelated calculations is explained. These results give great potentiality for the method when bigger orbital basis sets are used, which is already possible with the faster computers now available.

  6. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    PubMed Central

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students’ written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors’ and nonmajors’ written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of “near-perfect” agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations. PMID:22135372

  7. Applying computerized-scoring models of written biological explanations across courses and colleges: prospects and limitations.

    PubMed

    Ha, Minsu; Nehm, Ross H; Urban-Lurain, Mark; Merrill, John E

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors' and nonmajors' written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of "near-perfect" agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations. PMID:22135372

  8. Interpreting Standardized Test Scores: Some Fine Points.

    ERIC Educational Resources Information Center

    Hunter, William J.

    1980-01-01

    An essential function of the school guidance worker is the translation of test results into plain language and/or concrete recommendations. To do so requires a thorough understanding of the various test scores publishers provide. (Author)

  9. Scoring docking conformations using predicted protein interfaces

    PubMed Central

    2014-01-01

    Background Since proteins function by interacting with other molecules, analysis of protein-protein interactions is essential for comprehending biological processes. Whereas understanding of atomic interactions within a complex is especially useful for drug design, limitations of experimental techniques have restricted their practical use. Despite progress in docking predictions, there is still room for improvement. In this study, we contribute to this topic by proposing T-PioDock, a framework for detection of a native-like docked complex 3D structure. T-PioDock supports the identification of near-native conformations from 3D models that docking software produced by scoring those models using binding interfaces predicted by the interface predictor, Template based Protein Interface Prediction (T-PIP). Results First, exhaustive evaluation of interface predictors demonstrates that T-PIP, whose predictions are customised to target complexity, is a state-of-the-art method. Second, comparative study between T-PioDock and other state-of-the-art scoring methods establishes T-PioDock as the best performing approach. Moreover, there is good correlation between T-PioDock performance and quality of docking models, which suggests that progress in docking will lead to even better results at recognising near-native conformations. Conclusion Accurate identification of near-native conformations remains a challenging task. Although availability of 3D complexes will benefit from template-based methods such as T-PioDock, we have identified specific limitations which need to be addressed. First, docking software are still not able to produce native like models for every target. Second, current interface predictors do not explicitly consider pairwise residue interactions between proteins and their interacting partners which leaves ambiguity when assessing quality of complex conformations. PMID:24906633

  10. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  11. A Cooperative Co-Evolutionary Genetic Algorithm for Tree Scoring and Ancestral Genome Inference.

    PubMed

    Gao, Nan; Zhang, Yan; Feng, Bing; Tang, Jijun

    2015-01-01

    Recent advances of technology have made it easy to obtain and compare whole genomes. Rearrangements of genomes through operations such as reversals and transpositions are rare events that enable researchers to reconstruct deep evolutionary history among species. Some of the popular methods need to search a large tree space for the best scored tree, thus it is desirable to have a fast and accurate method that can score a given tree efficiently. During the tree scoring procedure, the genomic structures of internal tree nodes are also provided, which provide important information for inferring ancestral genomes and for modeling the evolutionary processes. However, computing tree scores and ancestral genomes are very difficult and a lot of researchers have to rely on heuristic methods which have various disadvantages. In this paper, we describe the first genetic algorithm for tree scoring and ancestor inference, which uses a fitness function considering co-evolution, adopts different initial seeding methods to initialize the first population pool, and utilizes a sorting-based approach to realize evolution. Our extensive experiments show that compared with other existing algorithms, this new method is more accurate and can infer ancestral genomes that are much closer to the true ancestors. PMID:26671797

  12. Walk Score®

    PubMed Central

    Brown, Scott C.; Pantin, Hilda; Lombard, Joanna; Toro, Matthew; Huang, Shi; Plater-Zyberk, Elizabeth; Perrino, Tatiana; Perez-Gomez, Gianna; Barrera-Allen, Lloyd; Szapocznik, José

    2013-01-01

    Background Walk Score® is a nationally and publicly available metric of neighborhood walkability based on proximity to amenities (e.g., retail, food, schools). However, few studies have examined the relationship of Walk Score to walking behavior. Purpose To examine the relationship of Walk Score to walking behavior in a sample of recent Cuban immigrants, who overwhelmingly report little choice in their selection of neighborhood built environments when they arrive in the U.S. Methods Participants were 391 recent healthy Cuban immigrants (M age=37.1 years) recruited within 90 days of arrival in the U.S., and assessed within 4 months of arrival (M=41.0 days in the U.S.), who resided throughout Miami-Dade County FL. Data on participants’ addresses, walking and sociodemographics were collected prospectively from 2008 to 2010. Analyses conducted in 2011 examined the relationship of Walk Score for each participant’s residential address in the U.S. to purposive walking, controlling for age, gender, education, BMI, days in the U.S., and habitual physical activity level in Cuba. Results For each 10-point increase in Walk Score, adjusting for covariates, there was a significant 19% increase in the likelihood of purposive walking, a 26% increase in the likelihood of meeting physical activity recommendations by walking, and 27% more minutes walked in the previous week. Conclusions Results suggest that Walk Score is associated with walking in a sample of recent immigrants who initially had little choice in where they lived in the U.S. These results support existing guidelines indicating that mixed land use (such as parks and restaurants near homes) should be included when designing walkable communities. PMID:23867028

  13. Prepartum concentrate supplementation of a diet based on medium-quality grass silage: Effects on performance, health, fertility, metabolic function, and immune function of low body condition score cows.

    PubMed

    Little, M W; O'Connell, N E; Welsh, M D; Barley, J; Meade, K G; Ferris, C P

    2016-09-01

    When cows with a "higher" body condition score (BCS) are oversupplied with energy during the dry period, postpartum energy balance is normally reduced, which can have a detrimental effect on immune competence and increase the infectious disease risk. However, within grassland-based systems higher yielding cows frequently have a low BCS at drying off. The effects on performance, health, and metabolic and immune functions of providing additional energy to cows with low BCS during the dry period is less certain. To address this uncertainty, 53 multiparous Holstein-Friesian cows (mean BCS of 2.5; 1-5 scale) were allocated to 1 of 2 treatments at dry-off: silage only or silage plus concentrates. Cows on the silage-only treatment were offered ad libitum access to medium-quality grass silage. Cows on the silage-plus-concentrate treatment were offered ad libitum access to a mixed ration comprising the same grass silage plus concentrates [in a 75:25 dry matter (DM) ratio], which provided a mean concentrate DM intake of 3.0kg/cow per day. Postpartum, cows were offered a common mixed ration comprising grass silage and concentrates (in a 40:60 DM ratio) for a 70-d period. Offering concentrates during the dry period increased DM intake, tended to increase energy balance, and increased body weight (BW) and BCS gain prepartum. Offering concentrates during the dry period increased BW and BCS loss postpartum and tended to increase milk fat percentage and serum nonesterified fatty acid concentration, but it did not affect postpartum DM intake, energy balance, and milk yield. Although the percentage of phagocytosis-positive neutrophils did not differ, neutrophils from cows on the silage-plus-concentrate treatment had higher phagocytic fluorescence intensity at 1 and 2 wk postpartum and higher phagocytic index at 1 wk postpartum. Serum haptoglobin concentrations and IFN-γ production by pokeweed mitogen stimulated whole blood culture were unaffected by treatment, although haptoglobin

  14. Developing Scoring Algorithms

    Cancer.gov

    We developed scoring procedures to convert screener responses to estimates of individual dietary intake for fruits and vegetables, dairy, added sugars, whole grains, fiber, and calcium using the What We Eat in America 24-hour dietary recall data from the 2003-2006 NHANES.

  15. Accurate measurement of time

    NASA Astrophysics Data System (ADS)

    Itano, Wayne M.; Ramsey, Norman F.

    1993-07-01

    The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.

  16. Syncopation and the Score

    PubMed Central

    Song, Chunyang; Simpson, Andrew J. R.; Harte, Christopher A.; Pearce, Marcus T.; Sandler, Mark B.

    2013-01-01

    The score is a symbolic encoding that describes a piece of music, written according to the conventions of music theory, which must be rendered as sound (e.g., by a performer) before it may be perceived as music by the listener. In this paper we provide a step towards unifying music theory with music perception in terms of the relationship between notated rhythm (i.e., the score) and perceived syncopation. In our experiments we evaluated this relationship by manipulating the score, rendering it as sound and eliciting subjective judgments of syncopation. We used a metronome to provide explicit cues to the prevailing rhythmic structure (as defined in the time signature). Three-bar scores with time signatures of 4/4 and 6/8 were constructed using repeated one-bar rhythm-patterns, with each pattern built from basic half-bar rhythm-components. Our manipulations gave rise to various rhythmic structures, including polyrhythms and rhythms with missing strong- and/or down-beats. Listeners (N = 10) were asked to rate the degree of syncopation they perceived in response to a rendering of each score. We observed higher degrees of syncopation in time signatures of 6/8, for polyrhythms, and for rhythms featuring a missing down-beat. We also found that the location of a rhythm-component within the bar has a significant effect on perceived syncopation. Our findings provide new insight into models of syncopation and point the way towards areas in which the models may be improved. PMID:24040323

  17. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.

    PubMed

    Ning, Kang; Ng, Hoong Kee; Leong, Hon Wai

    2007-01-01

    Peptide identification by tandem mass spectrometry (MS/MS) is one of the most important problems in proteomics. Recent advances in high throughput MS/MS experiments result in huge amount of spectra. Unfortunately, identification of these spectra is relatively slow, and the accuracies of current algorithms are not high with the presence of noises and post-translational modifications (PTMs). In this paper, we strive to achieve high accuracy and efficiency for peptide identification problem, with special concern on identification of peptides with PTMs. This paper expands our previous work on PepSOM with the introduction of two accurate modified scoring functions: Slambda for peptide identification and Slambda* for identification of peptides with PTMs. Experiments showed that our algorithm is both fast and accurate for peptide identification. Experiments on spectra with simulated and real PTMs confirmed that our algorithm is accurate for identifying PTMs. PMID:18546510

  18. Benchmark calculations with correlated molecular wave functions. V. The determination of accurate [ital ab] [ital initio] intermolecular potentials for He[sub 2], Ne[sub 2], and Ar[sub 2

    SciTech Connect

    Woon, D.E. )

    1994-02-15

    Dimer interactions of helium, neon, and argon have been studied using the augmented correlation consistent basis sets of Dunning and co-workers. Two correlation methods have been employed throughout; Moller--Plesset perturbation theory through fourth-order (MP4) and single and double excitation coupled-cluster theory with perturbative treatment of triple excitations [CCSD(T)]. Full configuration interaction (FCI) calculations were performed on He[sub 2] for some basis sets. In general, only valence electrons were correlated, although some calculations which also correlated the [ital n]=2 shell of Ar[sub 2] were performed. Dimer potential energy curves were determined using the supermolecule method with and without the counterpoise correction. A series of additional basis sets beyond the augmented correlation consistent sets were explored in which the diffuse region of the radial function space has been systematically saturated. In combination with the systematic expansion across angular function space which is inherent to the correlation consistent prescription, this approach guarantees very accurate atomic polarizabilities and hyperpolarizabilities and should lead to an accurate description of dispersion forces. The best counterpoise-corrected MP4 values for the well depths of the three dimers are (in microhartrees, empirical values in parentheses) He[sub 2], 31.9 (34.6); Ne[sub 2], 123 (134); and Ar[sub 2], 430 (454). The corresponding CCSD(T) values are He[sub 2], 33.1; Ne[sub 2], 128; and Ar[sub 2], 417. Although these values are very good, the nearly exponential convergence of well depth as a function of basis quality afforded by using the various series of correlation consistent basis sets allows estimation of complete basis set (CBS) limiting values. The MP4 estimated CBS limits are He[sub 2], 32.2; Ne[sub 2], 126; and Ar[sub 2], 447.

  19. The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores

    ERIC Educational Resources Information Center

    Velicer, Wayne F.

    1976-01-01

    Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)

  20. MCMI-III Scores on Substance Abusers With and Without Histories of Suicide Attempts.

    PubMed

    Craig, Robert J.; Bivens, Alex

    2000-09-01

    Sixty-eight patients with a history of suicide attempt were compared to 340 patients without a history of suicide attempt using the MCMI-III, a frequently used test for measuring personality disorders. Patients with a suicide attempt history scored higher on Schizoid, Avoidant, Depression, Dependent, Passive-Aggressive (Negativistic), Self-Defeating, and Paranoid and significantly lower on Histrionic and Compulsive and scored higher on all clinical syndrome scales except for Drug Dependence and Delusional Disorder. Logistic regression correctly predicted the no-suicide-history group with 97% accuracy, but only accurately predicted 16% of the patients with a suicide attempt history. A discriminant function analysis correctly predicted 90% of the patients with a suicidal attempt history and 63% of the patients with no history of suicide attempt. Results suggest that MCMI-III scores may be able to detect patients with a history of suicide attempt, using multivariate statistics. PMID:12466656

  1. The quantile score and its decomposition

    NASA Astrophysics Data System (ADS)

    Bentzien, Sabrina; Friederichs, Petra

    2014-05-01

    Forecast verification for probabilistic weather and climate predictions gain more and more importance due to the increasing number of ensemble prediction systems. The predictive performance of probabilistic forecasts is generally assessed using proper score functions, which are applied to a set of forecast-observation pairs. The propriety of a score guarantees honesty and prevents hedging. A variety of proper scores exist for different types of probabilistic forecasts. Moreover, proper scoring functions can be decomposed into the three parts reliability, resolution, and uncertainty, which describe main characteristics of a forecasting scheme. This decomposition is well known for the Brier score and the continuous ranked probability score. This study expands the pool of verification methods for probabilistic forecasts by a decomposition of the quantile score (QS). Quantiles are suitable probabilistic measures especially for extreme forecast events, since they do not depend on an apriori defined threshold. The QS is a weighted absolute error between quantile forecasts and observations. We derive a decomposition of the QS in reliability, resolution, and uncertainty, and give a brief description of potential biases. A quantile reliability plot is presented. The quantile verification within this framework is illustrated on precipitation forecasts derived from the mesoscale ensemble prediction system COSMO-DE-EPS of the German Meteorological Service.

  2. Accurate ab Initio Spin Densities

    PubMed Central

    2012-01-01

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921

  3. Statistical Assessment of Estimated Transformations in Observed-Score Equating

    ERIC Educational Resources Information Center

    Wiberg, Marie; González, Jorge

    2016-01-01

    Equating methods make use of an appropriate transformation function to map the scores of one test form into the scale of another so that scores are comparable and can be used interchangeably. The equating literature shows that the ways of judging the success of an equating (i.e., the score transformation) might differ depending on the adopted…

  4. Pharmacophore-Based Similarity Scoring for DOCK

    PubMed Central

    2015-01-01

    Pharmacophore modeling incorporates geometric and chemical features of known inhibitors and/or targeted binding sites to rationally identify and design new drug leads. In this study, we have encoded a three-dimensional pharmacophore matching similarity (FMS) scoring function into the structure-based design program DOCK. Validation and characterization of the method are presented through pose reproduction, crossdocking, and enrichment studies. When used alone, FMS scoring dramatically improves pose reproduction success to 93.5% (∼20% increase) and reduces sampling failures to 3.7% (∼6% drop) compared to the standard energy score (SGE) across 1043 protein–ligand complexes. The combined FMS+SGE function further improves success to 98.3%. Crossdocking experiments using FMS and FMS+SGE scoring, for six diverse protein families, similarly showed improvements in success, provided proper pharmacophore references are employed. For enrichment, incorporating pharmacophores during sampling and scoring, in most cases, also yield improved outcomes when docking and rank-ordering libraries of known actives and decoys to 15 systems. Retrospective analyses of virtual screenings to three clinical drug targets (EGFR, IGF-1R, and HIVgp41) using X-ray structures of known inhibitors as pharmacophore references are also reported, including a customized FMS scoring protocol to bias on selected regions in the reference. Overall, the results and fundamental insights gained from this study should benefit the docking community in general, particularly researchers using the new FMS method to guide computational drug discovery with DOCK. PMID:25229837

  5. Automated Essay Scoring versus Human Scoring: A Comparative Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2007-01-01

    The current research was conducted to investigate the validity of automated essay scoring (AES) by comparing group mean scores assigned by an AES tool, IntelliMetric [TM] and human raters. Data collection included administering the Texas version of the WriterPlacer "Plus" test and obtaining scores assigned by IntelliMetric [TM] and by human…

  6. Demonstrating the Utility of a Multilevel Model in the Assessment of Differential Item Functioning.

    ERIC Educational Resources Information Center

    Pommerich, Mary

    When tests contain few items, observed score may not be an accurate reflection of true score, and the Mantel Haenszel (MH) statistic may perform poorly in detecting differential item functioning. Applications of the MH procedure in such situations require an alternate strategy; one such strategy is to include background variables in the matching…

  7. Fingerprinting of music scores

    NASA Astrophysics Data System (ADS)

    Irons, Jonathan; Schmucker, Martin

    2004-06-01

    Publishers of sheet music are generally reluctant in distributing their content via the Internet. Although online sheet music distribution's advantages are numerous the potential risk of Intellectual Property Rights (IPR) infringement, e.g. illegal online distributions, disables any innovation propensity. While active protection techniques only deter external risk factors, additional technology is necessary to adequately treat further risk factors. For several media types including music scores watermarking technology has been developed, which ebeds information in data by suitable data modifications. Furthermore, fingerprinting or perceptual hasing methods have been developed and are being applied especially for audio. These methods allow the identification of content without prior modifications. In this article we motivate the development of watermarking and fingerprinting technologies for sheet music. Outgoing from potential limitations of watermarking methods we explain why fingerprinting methods are important for sheet music and address potential applications. Finally we introduce a condept for fingerprinting of sheet music.

  8. Automated sleep scoring and sleep apnea detection in children

    NASA Astrophysics Data System (ADS)

    Baraglia, David P.; Berryman, Matthew J.; Coussens, Scott W.; Pamula, Yvonne; Kennedy, Declan; Martin, A. James; Abbott, Derek

    2005-12-01

    This paper investigates the automated detection of a patient's breathing rate and heart rate from their skin conductivity as well as sleep stage scoring and breathing event detection from their EEG. The software developed for these tasks is tested on data sets obtained from the sleep disorders unit at the Adelaide Women's and Children's Hospital. The sleep scoring and breathing event detection tasks used neural networks to achieve signal classification. The Fourier transform and the Higuchi fractal dimension were used to extract features for input to the neural network. The filtered skin conductivity appeared visually to bear a similarity to the breathing and heart rate signal, but a more detailed evaluation showed the relation was not consistent. Sleep stage classification was achieved with and accuracy of around 65% with some stages being accurately scored and others poorly scored. The two breathing events hypopnea and apnea were scored with varying degrees of accuracy with the highest scores being around 75% and 30%.

  9. Olympic Scoring of English Compositions

    ERIC Educational Resources Information Center

    Follman, John; Panther, Edward

    1974-01-01

    Examines empirically the efficacy of utilizing Olympic diving and gymnastic scoring systems for grading graduate students' English compositions. Results indicated that such scoring rules do not produce ratings different in reliability or in level from conventional letter grades. (ED)

  10. Comparison of Scores on the Checklist for Autism Spectrum Disorder, Childhood Autism Rating Scale, and Gilliam Asperger's Disorder Scale for Children with Low Functioning Autism, High Functioning Autism, Asperger's Disorder, ADHD, and Typical Development

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Murray, Michael J.; Morrow, Jill D.; Yurich, Kirsten K. L.; Mahr, Fauzia; Cothren, Shiyoko; Purichia, Heather; Bouder, James N.; Petersen, Christopher

    2009-01-01

    Reliability and validity for three autism instruments were compared for 190 children with low functioning autism (LFA), 190 children with high functioning autism or Asperger's disorder (HFA), 76 children with attention deficit hyperactivity disorder (ADHD), and 64 typical children. The instruments were the Checklist for Autism Spectrum Disorder…

  11. Line Lengths and Starch Scores.

    ERIC Educational Resources Information Center

    Moriarty, Sandra E.

    1986-01-01

    Investigates readability of different line lengths in advertising body copy, hypothesizing a normal curve with lower scores for shorter and longer lines, and scores above the mean for lines in the middle of the distribution. Finds support for lower scores for short lines and some evidence of two optimum line lengths rather than one. (SKC)

  12. Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo and Fluoro Functionalities

    SciTech Connect

    Ginovska, Bojana; Camaioni, Donald M; Dupuis, Michel; Schwerdtfeger, Christine A; Gilcrease, Quinn

    2008-10-23

    Dielectric continuum solvation models are widely used because they are a computationally efficacious way to simulate equilibrium properties of solutes. With advances that allow for molecular-shaped cavities, they have reached a high level of accuracy, in particular for neutral solutes. However, benchmark tests show that existing schemes for defining cavities are unable to consistently predict accurately the effects of solvation on ions, especially anions. This work involves the further development of a protocol put forth earlier for defining the cavities of aqueous solutes, with resulting advances that are most striking for anions. Molecular cavities are defined as interlocked spheres around atoms or groups of atoms in the solute, but the sphere radii are determined by simple empirically-based expressions involving the effective atomic charges of the solute atoms (derived from molecular electrostatic potential) and base radii. Both of these terms are optimized for the different types of atoms or functional groups in a training set of neutral and charged solutes. Parameters in these expressions for radii were fitted by minimizing residuals between calculated and measured standard free energies of solvation (ΔGs*), weighted by the uncertainty in the measured value. The calculations were performed using density functional theory with the B3LYP functional and the 6-311+G** basis set and the COnductor-like Screening MOdel (COSMO). The optimized radii definitions reproduce ΔGs* of neutral solutes and singly-charged ions in the training set to within experimental uncertainty and, more importantly, accurately predict ΔGs* of compounds outside the training set, in particular anions. Inherent to this approach, the cavity definitions reflect the strength of specific solute-water interactions. We surmise that this feature underlies the success of the model, referred to as the CD-COSMO model for Charge-Dependent (also Camaioni-Dupuis) COSMO

  13. Is a Writing Sample Necessary for "Accurate Placement"?

    ERIC Educational Resources Information Center

    Sullivan, Patrick; Nielsen, David

    2009-01-01

    The scholarship about assessment for placement is extensive and notoriously ambiguous. Foremost among the questions that continue to be unresolved in this scholarship is this one: Is a writing sample necessary for "accurate placement"? Using a robust data sample of student assessment essays and ACCUPLACER test scores, we put this question to the…

  14. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9-10 year old children in South-India1-3

    PubMed Central

    Veena, Sargoor R; Krishnaveni, Ghattu V; Srinivasan, Krishnamachari; Wills, Andrew K; Muthayya, Sumithra; Kurpad, Anura V; Yajnik, Chittaranjan S; Fall, Caroline HD

    2012-01-01

    Folate and vitamin B-12 (B-12) are essential for normal brain development. Few studies have examined the relationship of maternal folate and B-12 status during pregnancy to offspring cognitive function. To test the hypothesis that lower maternal plasma folate and B-12 concentrations and higher plasma homocysteine concentrations during pregnancy, are associated with poorer neurodevelopment, cognitive function was assessed during 2007-2008 among 536 children (aged 9-10 y) from the Mysore Parthenon birth cohort. Maternal folate, B-12 and homocysteine concentrations were measured in stored plasma samples taken at 30±2 wk gestation. The children’s cognitive function was measured using 3 core tests from the Kaufman Assessment Battery and additional tests measuring learning ability, long-term storage/retrieval, attention and concentration, visuo-spatial and verbal abilities. During pregnancy 4% of mothers had low folate concentrations (<7 nmol/L), 42.5% had low B-12 concentrations (<150 pmol/L) and 3% had hyperhomocysteinemia (>10 μmol/L). There was a 0.1-0.2 SD increase in the children’s cognitive scores per SD increase in maternal folate concentration (p<0.001 for all tests). The associations with learning ability and long-term storage/retrieval, visuo-spatial ability, attention and concentration were independent of maternal age, BMI, parity, the parents’ education, socio-economic status, rural/urban residence, religion, the child’s gestational age, birth size, sex and the children’s size, educational level and folate and B-12 concentrations at 9.5 y. There were no consistent associations of maternal B-12 and homocysteine concentrations with childhood cognitive performance. Conclusions In this Indian population higher maternal folate, but not vitamin B-12 concentrations during pregnancy, predicted better childhood cognitive ability. PMID:20335637

  15. Equating Scores from Adaptive to Linear Tests

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2006-01-01

    Two local methods for observed-score equating are applied to the problem of equating an adaptive test to a linear test. In an empirical study, the methods were evaluated against a method based on the test characteristic function (TCF) of the linear test and traditional equipercentile equating applied to the ability estimates on the adaptive test…

  16. Age, Creatinine and Ejection Fraction Score in Brazil: Comparison with InsCor and the EuroSCORE

    PubMed Central

    Mejía, Omar Asdrúbal Vilca; Matrangolo, Bruna La Regina; Titinger, David Provenzale; de Faria, Leandro Batisti; Dallan, Luís Roberto Palma; Galas, Filomena Regina Barbosa; Lisboa, Luiz Augusto Ferreira; Dallan, Luís Alberto Oliveira; Jatene, Fabio Biscegli

    2015-01-01

    Background Risk scores for cardiac surgery cannot continue to be neglected. Objective To assess the performance of “Age, Creatinine and Ejection Fraction Score” (ACEF Score) to predict mortality in patients submitted to elective coronary artery bypass graft and/or heart valve surgery, and to compare it to other scores. Methods A prospective cohort study was carried out with the database of a Brazilian tertiary care center. A total of 2,565 patients submitted to elective surgeries between May 2007 and July 2009 were assessed. For a more detailed analysis, the ACEF Score performance was compared to the InsCor’s and EuroSCORE’s performance through correlation, calibration and discrimination tests. Results Patients were stratified into mild, moderate and severe for all models. Calibration was inadequate for ACEF Score (p = 0.046) and adequate for InsCor (p = 0.460) and EuroSCORE (p = 0.750). As for discrimination, the area under the ROC curve was questionable for the ACEF Score (0.625) and adequate for InsCor (0.744) and EuroSCORE (0.763). Conclusion Although simple to use and practical, the ACEF Score, unlike InsCor and EuroSCORE, was not accurate for predicting mortality in patients submitted to elective coronary artery bypass graft and/or heart valve surgery in a Brazilian tertiary care center. PMID:26312550

  17. Utilizing signature-score to identify oncogenic pathways of cholangiocarcinoma

    PubMed Central

    Hsiao, Tzu-Hung; Chen, Hung-I Harry; Lu, Jo-Yang; Lin, Pei-Ying; Keller, Charles; Comerford, Sarah; Tomlinson, Gail E.; Chen, Yidong

    2013-01-01

    Extracting maximal information from gene signature sets (GSSs) via microarray-based transcriptional profiling involves assigning function to up and down regulated genes. Here we present a novel sample scoring method called Signature-score (S-score) which can be used to quantify the expression pattern of tumor samples from previously identified gene signature sets. A simulation result demonstrated an improved accuracy and robustness by S-score method comparing with other scoring methods. By applying the S-score method to cholangiocarcinoma (CAC), an aggressive hepatic cancer that arises from bile ducts cells, we identified enriched oncogenic pathways in two large CAC data sets. Thirteen pathways were enriched in CAC compared with normal liver and bile duct. Moreover, using S-score, we were able to dissect correlations between CAC-associated oncogenic pathways and Gene Ontology function. Two major oncogenic clusters and associated functions were identified. Cluster 1, which included beta-catenin and Ras, showed a positive correlation with the cell cycle, while cluster 2, which included TGF-beta, cytokeratin 19 and EpCAM was inversely correlated with immune function. We also used S-score to identify pathways that are differentially expressed in CAC and hepatocellular carcinoma (HCC), the more common subtype of liver cancer. Our results demonstrate the utility and effectiveness of S-score in assigning functional roles to tumor-associated gene signature sets and in identifying potential therapeutic targets for specific liver cancer subtypes. PMID:23905013

  18. Skill Scores for Probabilistic Climate and Weather Prediction

    NASA Astrophysics Data System (ADS)

    Maynard, T.; Suckling, E. B.; Smith, L. A.

    2012-04-01

    A wide variety of skill scores are in use for the evaluation of probability forecasts. While the importance of using proper scores is well recognised, researchers often face requests to present results under a variety of different scores. Is there any sense in which considering many "different" skill scores makes a case more (or less) persuasive? Which set of scores makes the most persuasive case? A number of scores are considered, and their strengths and weaknesses contrasted, including the most commonly used metrics such as the proper linear score, continous ranked probability score and logartithmic score, amongst others. The role of moving from ensembles of point forecasts to continuous probability distributions is discussed. Illustrations with meteorological forecasts are considered, as are mathematical experiments where the size of the forecast-outcome archive can be made arbitrarily large. The aim is to restrict the number of skill scores considered, reduce the use of misleading scores, identify independent evidence and ensure that the set of scores published are specified before the results are in. I J Good's logarithmic score is known to be the only local, proper score for continuous variables. Proposed criticisms of locality are considered and rejected and it is argued that proper, non-local scores tend to include a term that is independent of the probability mass associated with the outcome. Thus they reward the forecast for some other property of the distribution function itself, having for example a particular shape; it is conjectured that this may be a general result. This is depricated, except in cases where the forecaster is being rewarded for something other than the relation between the forecast and reality, or whose distribution functions are unavoidably constrained by some particular structure. Remaining challenges to the evaluation of probability forecasts are noted. In partucular the effect of small samples and the implications of uncertinaty

  19. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.

    PubMed

    Bar-Haim, Shay; Aharon, Ayelet; Ben-Moshe, Tal; Marantz, Yael; Senderowitz, Hanoch

    2009-03-01

    Identifying active compounds (hits) that bind to biological targets of pharmaceutical relevance is the cornerstone of drug design efforts. Structure based virtual screening, namely, the in silico evaluation of binding energies and geometries between a protein and its putative ligands, has emerged over the past few years as a promising approach in this field. The success of the method relies on the availability of reliable 3-dimensional (3D) structures of the target protein and its candidate ligands (the screening library), a reliable docking method that can fit the different ligands into the protein's binding site, and an accurate scoring function that can rank the resulting binding modes in accord with their binding affinities. This last requirement is arguably the most difficult to meet due to the complexity of the binding process. A potential solution to this so-called scoring problem is the usage of multiple scoring functions in an approach known as consensus scoring. Several consensus scoring methods were suggested in the literature and have generally demonstrated an improved ranking of screening libraries relative to individual scoring functions. Nevertheless, current consensus scoring strategies suffer from several shortcomings, in particular, strong dependence on the initial parameters and an incomplete treatment of inactive compounds. In this work we present a new consensus scoring algorithm (SeleX-Consensus Scoring abbreviated to SeleX-CS) specifically designed to address these limitations: (i) A subset of the initial set of the scoring functions is allowed to form the consensus score, and this subset is optimized via a Monte Carlo/Simulated Annealing procedure. (ii) Rank redundancy between the members of the screening library is removed. (iii) The method explicitly considers the presence of inactive compounds. The new algorithm was applied to the ranking of screening libraries targeting two G-protein coupled receptors (GPCR). Excellent enrichment factors

  20. A Surgical Business Composite Score for Army Medicine.

    PubMed

    Stoddard, Douglas R; Robinson, Andrew B; Comer, Tracy A; Meno, Jenifer A; Welder, Matthew D

    2016-06-01

    Measuring surgical business performance for Army military treatment facilities is currently done through 6 business metrics developed by the Army Medical Command (MEDCOM) Surgical Services Service Line (3SL). Development of a composite score for business performance has the potential to simplify and synthesize measurement, improving focus for strategic goal setting and implementation. However, several considerations, ranging from data availability to submetric selection, must be addressed to ensure the score is accurate and representative. This article presents the methodology used in the composite score's creation and presents a metric based on return on investment and a measure of cases recaptured from private networks. PMID:27244067

  1. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India.

    PubMed

    Veena, Sargoor R; Krishnaveni, Ghattu V; Srinivasan, Krishnamachari; Wills, Andrew K; Muthayya, Sumithra; Kurpad, Anura V; Yajnik, Chittaranjan S; Fall, Caroline H D

    2010-05-01

    Folate and vitamin B-12 are essential for normal brain development. Few studies have examined the relationship of maternal folate and vitamin B-12 status during pregnancy and offspring cognitive function. To test the hypothesis that lower maternal plasma folate and vitamin B-12 concentrations and higher plasma homocysteine concentrations during pregnancy are associated with poorer neurodevelopment, 536 children (aged 9-10 y) from the Mysore Parthenon birth cohort underwent cognitive function assessment during 2007-2008 using 3 core tests from the Kaufman Assessment Battery, and additional tests measuring learning, long-term storage/retrieval, attention and concentration, and visuo-spatial and verbal abilities. Maternal folate, vitamin B-12, and homocysteine concentrations were measured at 30 +/- 2 wk gestation. During pregnancy, 4% of mothers had low folate concentrations (<7 nmol/L), 42.5% had low vitamin B-12 concentrations (<150 pmol/L), and 3% had hyperhomocysteinemia (>10 micromol/L). The children's cognitive test scores increased by 0.1-0.2 SD per SD increase across the entire range of maternal folate concentrations (P < 0.001 for all), with no apparent associations at the deficiency level. The associations with learning, long-term storage/retrieval, visuo-spatial ability, attention, and concentration were independent of the parents' education, socioeconomic status, religion, and the child's sex, age, current size, and folate and vitamin B-12 concentrations. There were no consistent associations of maternal vitamin B-12 and homocysteine concentrations with childhood cognitive performance. In this Indian population, higher maternal folate, but not vitamin B-12, concentrations during pregnancy predicted better childhood cognitive ability. It also suggests that, in terms of neurodevelopment, the concentration used to define folate deficiency may be set too low. PMID:20335637

  2. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  3. Automated Essay Scoring versus Human Scoring: A Correlational Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2008-01-01

    The purpose of the current study was to analyze the relationship between automated essay scoring (AES) and human scoring in order to determine the validity and usefulness of AES for large-scale placement tests. Specifically, a correlational research design was used to examine the correlations between AES performance and human raters' performance.…

  4. How to accurately bypass damage

    PubMed Central

    Broyde, Suse; Patel, Dinshaw J.

    2016-01-01

    Ultraviolet radiation can cause cancer through DNA damage — specifically, by linking adjacent thymine bases. Crystal structures show how the enzyme DNA polymerase η accurately bypasses such lesions, offering protection. PMID:20577203

  5. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, David C.; Goorvitch, D.

    1994-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schr\\"{o}dinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  6. Extended score interval in the assessment of basic surgical skills

    PubMed Central

    Acosta, Stefan; Sevonius, Dan; Beckman, Anders

    2015-01-01

    Introduction The Basic Surgical Skills course uses an assessment score interval of 0–3. An extended score interval, 1–6, was proposed by the Swedish steering committee of the course. The aim of this study was to analyze the trainee scores in the current 0–3 scored version compared to a proposed 1–6 scored version. Methods Sixteen participants, seven females and nine males, were evaluated in the current and proposed assessment forms by instructors, observers, and learners themselves during the first and second day. In each assessment form, 17 tasks were assessed. The inter-rater reliability between the current and the proposed score sheets were evaluated with intraclass correlation (ICC) with 95% confidence intervals (CI). Results The distribution of scores for ‘knot tying’ at the last time point and ‘bowel anastomosis side to side’ given by the instructors in the current assessment form showed that the highest score was given in 31 and 62%, respectively. No ceiling effects were found in the proposed assessment form. The overall ICC between the current and proposed score sheets after assessment by the instructors increased from 0.38 (95% CI 0.77–0.78) on Day 1 to 0.83 (95% CI 0.51–0.94) on Day 2. Discussion A clear ceiling effect of scores was demonstrated in the current assessment form, questioning its validity. The proposed score sheet provides more accurate scores and seems to be a better feedback instrument for learning technical surgical skills in the Basic Surgical Skills course. PMID:25636607

  7. More than Just Test Scores

    ERIC Educational Resources Information Center

    Levin, Henry M.

    2012-01-01

    Around the world we hear considerable talk about creating world-class schools. Usually the term refers to schools whose students get very high scores on the international comparisons of student achievement such as PISA or TIMSS. The practice of restricting the meaning of exemplary schools to the narrow criterion of achievement scores is usually…

  8. Trends in Classroom Observation Scores

    ERIC Educational Resources Information Center

    Casabianca, Jodi M.; Lockwood, J. R.; McCaffrey, Daniel F.

    2015-01-01

    Observations and ratings of classroom teaching and interactions collected over time are susceptible to trends in both the quality of instruction and rater behavior. These trends have potential implications for inferences about teaching and for study design. We use scores on the Classroom Assessment Scoring System-Secondary (CLASS-S) protocol from…

  9. Improving Test Scores. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2003-01-01

    What strategies can improve test scores? According to research done by Amrein and Berliner, who studied 18 states with high stakes testing, their conclusion was that students did not necessarily score higher and often remained at the same level prior to the introduction of the high stakes testing. In other research done by Carnoy and Loeb, their…

  10. Skyrocketing Scores: An Urban Legend

    ERIC Educational Resources Information Center

    Krashen, Stephen

    2005-01-01

    A new urban legend claims, "As a result of the state dropping bilingual education, test scores in California skyrocketed." Krashen disputes this theory, pointing out that other factors offer more logical explanations of California's recent improvements in SAT-9 scores. He discusses research on the effects of California's Proposition 227, which…

  11. Interpreting Linked Psychomotor Performance Scores

    ERIC Educational Resources Information Center

    Looney, Marilyn A.

    2013-01-01

    Given that equating/linking applications are now appearing in kinesiology literature, this article provides an overview of the different types of linked test scores: equated, concordant, and predicted. It also addresses the different types of evidence required to determine whether the scores from two different field tests (measuring the same…

  12. The Machine Scoring of Writing

    ERIC Educational Resources Information Center

    McCurry, Doug

    2010-01-01

    This article provides an introduction to the kind of computer software that is used to score student writing in some high stakes testing programs, and that is being promoted as a teaching and learning tool to schools. It sketches the state of play with machines for the scoring of writing, and describes how these machines work and what they do.…

  13. High Scores but Low Skills

    ERIC Educational Resources Information Center

    Liu, Liqun; Neilson, William S.

    2011-01-01

    In this paper college admissions are based on test scores and students can exert two types of effort: real learning and exam preparation. The former improves skills but the latter is more effective in raising test scores. In this setting the students with the lowest skills are no longer the ones with the lowest aptitude, but instead are the ones…

  14. Effort Analysis: Individual Score Validation of Achievement Test Data

    ERIC Educational Resources Information Center

    Wise, Steven L.

    2015-01-01

    Whenever the purpose of measurement is to inform an inference about a student's achievement level, it is important that we be able to trust that the student's test score accurately reflects what that student knows and can do. Such trust requires the assumption that a student's test event is not unduly influenced by construct-irrelevant factors…

  15. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  16. Usefulness of the Korean Knee Score for Evaluation of the Results of Total Knee Arthroplasty

    PubMed Central

    Lee, Jin Kyu; Shim, Ji-Hoon; Chung, Kyu-Sung

    2015-01-01

    Purpose The Korean Knee score (KKS) was designed to reflect the floor-sitting lifestyle that necessitates high knee flexion. The purpose of this study is to assess whether the KKS reflects the floor-sitting lifestyle more accurately than the previously developed Knee Society clinical rating system. In addition, the presence of ceiling effects was compared between the two rating systems. Materials and Methods Eighty-one consecutive patients (120 knees) who were assessed regularly after total knee arthroplasty (TKA) on an outpatient basis between January 2012 and December 2012 were enrolled. All patients were asked to complete a questionnaire to assess the Knee Society Knee score (KSKS), Knee Society Function score (KSFS), and KKS. Results At the final follow-up, the mean KSKS, KSFS, and KKS were 91.2, 86.0, and 70.1, respectively, and the scores were similar between the ≥125° maximum flexion group and <125° maximum flexion group. However, the 'floor life' subdomain score of the KKS was significantly higher in the >125° maximum flexion group (15.13 vs. 11.24, p=0.001). The number of cases with the highest possible score was 24 (20%) for the KSKS and 47 (39%) for the KSFS, whereas none of the cases obtained the highest possible KKS. According to the standard deviation method, more substantial ceiling effects were present in the KSKS (83 cases, 69.1%) and KSFS (67 cases, 55.8%) than in the KKS (23 cases, 19.2%). Conclusions Although, the KKS was effective in reducing the ceiling effect, it demonstrated limited improvement in assessing the ability to perform high knee flexion after TKA. However, the 'floor life' subdomain of KSS appeared to be valid for evaluating high flexion of the knee. PMID:25750889

  17. Accurate and Sensitive Peptide Identification with Mascot Percolator

    PubMed Central

    Brosch, Markus; Yu, Lu; Hubbard, Tim; Choudhary, Jyoti

    2009-01-01

    Sound scoring methods for sequence database search algorithms such as Mascot and Sequest are essential for sensitive and accurate peptide and protein identifications from proteomic tandem mass spectrometry data. In this paper, we present a software package that interfaces Mascot with Percolator, a well performing machine learning method for rescoring database search results, and demonstrate it to be amenable for both low and high accuracy mass spectrometry data, outperforming all available Mascot scoring schemes as well as providing reliable significance measures. Mascot Percolator can be readily used as a stand alone tool or integrated into existing data analysis pipelines. PMID:19338334

  18. Myeloproliferative Neoplasm (MPN) Symptom Assessment Form Total Symptom Score: Prospective International Assessment of an Abbreviated Symptom Burden Scoring System Among Patients With MPNs

    PubMed Central

    Emanuel, Robyn M.; Dueck, Amylou C.; Geyer, Holly L.; Kiladjian, Jean-Jacques; Slot, Stefanie; Zweegman, Sonja; te Boekhorst, Peter A.W.; Commandeur, Suzan; Schouten, Harry C.; Sackmann, Federico; Kerguelen Fuentes, Ana; Hernández-Maraver, Dolores; Pahl, Heike L.; Griesshammer, Martin; Stegelmann, Frank; Doehner, Konstanze; Lehmann, Thomas; Bonatz, Karin; Reiter, Andreas; Boyer, Francoise; Etienne, Gabriel; Ianotto, Jean-Christophe; Ranta, Dana; Roy, Lydia; Cahn, Jean-Yves; Harrison, Claire N.; Radia, Deepti; Muxi, Pablo; Maldonado, Norman; Besses, Carlos; Cervantes, Francisco; Johansson, Peter L.; Barbui, Tiziano; Barosi, Giovanni; Vannucchi, Alessandro M.; Passamonti, Francesco; Andreasson, Bjorn; Ferarri, Maria L.; Rambaldi, Alessandro; Samuelsson, Jan; Birgegard, Gunnar; Tefferi, Ayalew; Mesa, Ruben A.

    2012-01-01

    Purpose Myeloproliferative neoplasm (MPN) symptoms are troublesome to patients, and alleviation of this burden represents a paramount treatment objective in the development of MPN-directed therapies. We aimed to assess the utility of an abbreviated symptom score for the most pertinent and representative MPN symptoms for subsequent serial use in assessing response to therapy. Patients and Methods The Myeloproliferative Neoplasm Symptom Assessment Form total symptom score (MPN-SAF TSS) was calculated as the mean score for 10 items from two previously validated scoring systems. Questions focus on fatigue, concentration, early satiety, inactivity, night sweats, itching, bone pain, abdominal discomfort, weight loss, and fevers. Results MPN-SAF TSS was calculable for 1,408 of 1,433 patients with MPNs who had a mean score of 21.2 (standard deviation [SD], 16.3). MPN-SAF TSS results significantly differed among MPN disease subtypes (P < .001), with a mean of 18.7 (SD, 15.3), 21.8 (SD, 16.3), and 25.3 (SD, 17.2) for patients with essential thrombocythemia, polycythemia vera, and myelofibrosis, respectively. The MPN-SAF TSS strongly correlated with overall quality of life (QOL; r = 0.59; P < .001) and European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 (EORTC QLQ-C30) functional scales (all P < .001 and absolute r ≥ 0.50 except social functioning r = 0.48). No significant trends were present when comparing therapy subgroups. The MPN-SAF TSS had excellent internal consistency (Cronbach's α = .83). Factor analysis identified a single underlying construct, indicating that the MPN-SAF TSS is an appropriate, unified scoring method. Conclusion The MPN-SAF TSS is a concise, valid, and accurate assessment of MPN symptom burden with demonstrated clinical utility in the largest prospective MPN symptom study to date. This new prospective scoring method may be used to assess MPN symptom burden in both clinical practice and trial settings. PMID

  19. The ORBIT bleeding score: a simple bedside score to assess bleeding risk in atrial fibrillation

    PubMed Central

    O'Brien, Emily C.; Simon, DaJuanicia N.; Thomas, Laine E.; Hylek, Elaine M.; Gersh, Bernard J.; Ansell, Jack E.; Kowey, Peter R.; Mahaffey, Kenneth W.; Chang, Paul; Fonarow, Gregg C.; Pencina, Michael J.; Piccini, Jonathan P.; Peterson, Eric D.

    2015-01-01

    Background Therapeutic decisions in atrial fibrillation (AF) are often influenced by assessment of bleeding risk. However, existing bleeding risk scores have limitations. Objectives We sought to develop and validate a novel bleeding risk score using routinely available clinical information to predict major bleeding in a large, community-based AF population. Methods We analysed data from Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF), a prospective registry that enrolled incident and prevalent AF patients at 176 US sites. Using Cox proportional hazards regression, we identified factors independently associated with major bleeding among patients taking oral anticoagulation (OAC) over a median follow-up of 2 years (interquartile range = 1.6–2.5). We also created a numerical bedside risk score that included the five most predictive risk factors weighted according to their strength of association with major bleeding. The predictive performance of the full model, the simple five-item score, and two existing risk scores (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile INR, elderly, drugs/alcohol concomitantly, HAS-BLED, and anticoagulation and risk factors in atrial fibrillation, ATRIA) were then assessed in both the ORBIT-AF cohort and a separate clinical trial population, Rivaroxaban Once-daily oral direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation (ROCKET-AF). Results Among 7411 ORBIT-AF patients taking OAC, the rate of major bleeding was 4.0/100 person-years. The full continuous model (12 variables) and five-factor ORBIT risk score (older age [75+ years], reduced haemoglobin/haematocrit/history of anaemia, bleeding history, insufficient kidney function, and treatment with antiplatelet) both had good ability to identify those who bled vs. not (C-index 0.69 and 0.67, respectively). These scores both had

  20. Accurate calculation of diffraction-limited encircled and ensquared energy.

    PubMed

    Andersen, Torben B

    2015-09-01

    Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873

  1. Comparison of Program Effects: The Use of Mastery Scores.

    ERIC Educational Resources Information Center

    Yeh, Jennie P.; Moy, Raymond

    The setting of a cut-off score on a mastery test usually involves a consideration of one or more of the following elements: (1) the distribution of observed test scores; (2) the type of mastery criterion used; (3) the level of acceptable risks of mis-classification; (4) the loss of functions of mis-classifications; and (5) the distribution of true…

  2. Factors Affecting Children's Math Achievement Scores in Preschool

    ERIC Educational Resources Information Center

    Kilday, Carolyn R.

    2010-01-01

    This dissertation contains three independently conducted studies on factors that affect the math achievement scores of preschool-aged children. The first study examined the associations between children's executive-functioning (EF) and math achievement scores at 54 months of age. Results suggest that EF is strongly associated with children's…

  3. Are Kohn-Sham conductances accurate?

    PubMed

    Mera, H; Niquet, Y M

    2010-11-19

    We use Fermi-liquid relations to address the accuracy of conductances calculated from the single-particle states of exact Kohn-Sham (KS) density functional theory. We demonstrate a systematic failure of this procedure for the calculation of the conductance, and show how it originates from the lack of renormalization in the KS spectral function. In certain limits this failure can lead to a large overestimation of the true conductance. We also show, however, that the KS conductances can be accurate for single-channel molecular junctions and systems where direct Coulomb interactions are strongly dominant. PMID:21231333

  4. Reading Ages and Standardized Scores

    ERIC Educational Resources Information Center

    Bookbinder, G. E.

    1976-01-01

    Discusses the advantages of and objections to testing children's reading ages and recommends that test results be given for both reading age and percentile levels (rather than standardized scores). (JM)

  5. Formulas for Image Factor Scores

    ERIC Educational Resources Information Center

    Hakstian, A. Ralph

    1973-01-01

    Formulas are presented in this paper for computing scores associated with factors of G, the image covariance matrix, under three conditions. The subject of the paper is restricted to "pure" image analysis. (Author/NE)

  6. Scoring systems of severity in patients with multiple trauma.

    PubMed

    Rapsang, Amy Grace; Shyam, Devajit Chowlek

    2015-04-01

    Trauma is a major cause of morbidity and mortality; hence severity scales are important adjuncts to trauma care in order to characterize the nature and extent of injury. Trauma scoring models can assist with triage and help in evaluation and prediction of prognosis in order to organise and improve trauma systems. Given the wide variety of scoring instruments available to assess the injured patient, it is imperative that the choice of the severity score accurately match the application. Even though trauma scores are not the key elements of trauma treatment, they are however, an essential part of improvement in triage decisions and in identifying patients with unexpected outcomes. This article provides the reader with a compendium of trauma severity scales along with their predicted death rate calculation, which can be adopted in order to improve decision making, trauma care, research and in comparative analyses in quality assessment. PMID:25015031

  7. Quantification of protein group coherence and pathway assignment using functional association

    PubMed Central

    2011-01-01

    Background Genomics and proteomics experiments produce a large amount of data that are awaiting functional elucidation. An important step in analyzing such data is to identify functional units, which consist of proteins that play coherent roles to carry out the function. Importantly, functional coherence is not identical with functional similarity. For example, proteins in the same pathway may not share the same Gene Ontology (GO) terms, but they work in a coordinated fashion so that the aimed function can be performed. Thus, simply applying existing functional similarity measures might not be the best solution to identify functional units in omics data. Results We have designed two scores for quantifying the functional coherence by considering association of GO terms observed in two biological contexts, co-occurrences in protein annotations and co-mentions in literature in the PubMed database. The counted co-occurrences of GO terms were normalized in a similar fashion as the statistical amino acid contact potential is computed in the protein structure prediction field. We demonstrate that the developed scores can identify functionally coherent protein sets, i.e. proteins in the same pathways, co-localized proteins, and protein complexes, with statistically significant score values showing a better accuracy than existing functional similarity scores. The scores are also capable of detecting protein pairs that interact with each other. It is further shown that the functional coherence scores can accurately assign proteins to their respective pathways. Conclusion We have developed two scores which quantify the functional coherence of sets of proteins. The scores reflect the actual associations of GO terms observed either in protein annotations or in literature. It has been shown that they have the ability to accurately distinguish biologically relevant groups of proteins from random ones as well as a good discriminative power for detecting interacting pairs of

  8. Complex versus Simple Modeling for Differential Item Functioning (DIF) Detection: When the Intraclass Correlation Coefficient (Rho) of the Studied Item Is Less than the Rho of the Total Score

    ERIC Educational Resources Information Center

    Jin, Ying

    2013-01-01

    Previous research has demonstrated that DIF methods that do not account for multilevel data structure could result in too frequent rejection of the null hypothesis (i.e., no DIF) when the intraclass correlation coefficient (?) of the studied item was the same as ? of the total score. The current study extended previous research by comparing the…

  9. Can Score Databanks Help Teaching?

    PubMed Central

    Almeida, Alessandro; Barral-Netto, Manoel

    2011-01-01

    Background Basic courses in most medical schools assess students' performance by conferring scores. The objective of this work is to use a large score databank for the early identification of students with low performance and to identify course trends based on the mean of students' grades. Methodology/Principal Findings We studied scores from 2,398 medical students registered in courses over a period of 10 years. Students in the first semester were grouped into those whose ratings remained in the lower quartile in two or more courses (low-performance) and students who had up to one course in the lower quartile (high-performance). ROC curves were built, aimed at the identification of a cut-off average score in the first semesters that would be able to predict low performances in future semesters. Moreover, to follow the long-term pattern of each course, the mean of all scores conferred in a semester was compared to the overall course mean obtained by averaging 10 years of data. Individuals in the low-performance group had a higher risk of being in the lower quartile of at least one course in the second semester (relative risk 3.907; 95% CI: 3.378–4.519) and in the eighth semester (relative risk 2.873; 95% CI: 2.495–3.308). The prediction analysis revealed that an average score of 7.188 in the first semester could identify students that presented scores below the lower quartiles in both the second and eighth semesters (p<0.0001 for both AUC). When scores conferred by single courses were compared over time, three time-trend patterns emerged: low variation, upward trend and erratic pattern. Conclusion/Significance An early identification of students with low performance may be useful in promoting pedagogical strategies for these individuals. Evaluation of the time trend of scores conferred by courses may help departments monitoring changes in personnel and methodology that may affect a student's performance. PMID:21246033

  10. Rapid and Accurate Identification of Candida albicans Isolates by Use of PNA FISHFlow▿

    PubMed Central

    Trnovsky, Jan; Merz, William; Della-Latta, Phyllis; Wu, Fann; Arendrup, Maiken Cavling; Stender, Henrik

    2008-01-01

    We developed the simple, rapid (1 h), and accurate PNA FISHFlow method for the identification of Candida albicans. The method exploits unique in solution in situ hybridization conditions under which the cells are simultaneously fixed and hybridized. This method facilitates the accurate identification of clinical yeast isolates using two scoring techniques: flow cytometry and fluorescence microscopy. PMID:18287325

  11. [Trauma scores: reproducibility and reliability].

    PubMed

    Waydhas, C; Nast-Kolb, D; Trupka, A; Kerim-Sade, C; Kanz, G; Zoller, J; Schweiberer, L

    1992-02-01

    The inter-rater reliability of the Injury Severity Score (ISS) and the Polytraumaschlüssel (PTS) [multiple trauma code] was studied using diagnosis sheets filled in for 107 multiple injured patients. The scoring was performed by eight physicians with different levels of qualification. The scores for individual patients varied widely depending on the scorer, with extremes differing from the mean by about 80% and 70% for the ISS and PTS, respectively. The mean ISS and PTS for the whole study population also varied significantly between the scorers (P less than 0.0001, one-way analysis of variance). Raters with experience in trauma scoring calculated significantly higher scores (P less than 0.01, t-test) Neither the ISS nor the PTS seem reliable enough to describe injury severity in an individual patient. Treatment decisions must not be based on such grounds. Even for larger groups, caution must be exercised in comparison of different populations of multiple traumatized patients. PMID:1570531

  12. Knee instability scores for ACL reconstruction.

    PubMed

    Rahnemai-Azar, Ata A; Naendrup, Jan-Hendrik; Soni, Ashish; Olsen, Adam; Zlotnicki, Jason; Musahl, Volker

    2016-06-01

    Despite abundant biological, biomechanical, and clinical research, return to sport after anterior cruciate ligament (ACL) injury remains a significant challenge. Residual rotatory knee laxity has been identified as one of the factors responsible for poor functional outcome. To improve and standardize the assessment of knee instability, a variety of instability scoring systems is available. Recently, devices to objectively quantify static and dynamic clinical exams have been developed to complement traditional subjective grading systems. These devices enable an improved evaluation of knee instability and possible associated injuries. This additional information may promote the development of new treatment algorithms and allow for individualized treatment. In this review, the different subjective laxity scores as well as complementary objective measuring systems are discussed, along with an introduction of injury to an individualized treatment algorithm. PMID:26980119

  13. Interpreting Force Concept Inventory Scores: Normalized Gain and SAT Scores

    ERIC Educational Resources Information Center

    Coletta, Vincent P.; Phillips, Jeffrey A.; Steinert, Jeffrey J.

    2007-01-01

    Preinstruction SAT scores and normalized gains (G) on the force concept inventory (FCI) were examined for individual students in interactive engagement (IE) courses in introductory mechanics at one high school (N=335) and one university (N=292), and strong, positive correlations were found for both populations (r=0.57 and r=0.46, respectively).…

  14. A Bootstrap Procedure of Propensity Score Estimation

    ERIC Educational Resources Information Center

    Bai, Haiyan

    2013-01-01

    Propensity score estimation plays a fundamental role in propensity score matching for reducing group selection bias in observational data. To increase the accuracy of propensity score estimation, the author developed a bootstrap propensity score. The commonly used propensity score matching methods: nearest neighbor matching, caliper matching, and…

  15. Estimating Decision Indices Based on Composite Scores

    ERIC Educational Resources Information Center

    Knupp, Tawnya Lee

    2009-01-01

    The purpose of this study was to develop an IRT model that would enable the estimation of decision indices based on composite scores. The composite scores, defined as a combination of unidimensional test scores, were either a total raw score or an average scale score. Additionally, estimation methods for the normal and compound multinomial models…

  16. Electronic Scoring of Essays: Does Topic Matter?

    ERIC Educational Resources Information Center

    James, Cindy L.

    2008-01-01

    The scoring of student essays by computer has generated much debate and subsequent research. The majority of the research thus far has focused on validating the automated scoring tools by comparing the electronic scores to human scores of writing or other measures of writing skills, and exploring the predictive validity of the automated scores.…

  17. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  18. Principles and Practices of Test Score Equating. Research Report. ETS RR-10-29

    ERIC Educational Resources Information Center

    Dorans, Neil J.; Moses, Tim P.; Eignor, Daniel R.

    2010-01-01

    Score equating is essential for any testing program that continually produces new editions of a test and for which the expectation is that scores from these editions have the same meaning over time. Particularly in testing programs that help make high-stakes decisions, it is extremely important that test equating be done carefully and accurately.…

  19. Validating a Computerized Scoring System for Assessing Writing and Placing Students in Composition Courses

    ERIC Educational Resources Information Center

    James, Cindy L.

    2006-01-01

    How do scores from writing samples generated by computerized essay scorers compare to those generated by ''untrained'' human scorers and what combination of scores, if any, is more accurate at placing students in composition courses? This study endeavored to answer this two-part question by evaluating the correspondence between writing sample…

  20. 3D Encoding of Musical Score Information and the Playback Method Used by the Cellular Phone

    NASA Astrophysics Data System (ADS)

    Kubo, Hitoshi; Sugiura, Akihiko

    Recently, 3G cellular phone that can take a movie has spread by improving the digital camera function. And, 2Dcode has accurate readout and high operability. And it has spread as an information transmission means. However, the symbol is expanded and complicated when information of 2D codes increases. To solve these, 3D code was proposed. But it need the special equipment for readout, and specializes in the enhancing reality feeling technology. Therefore, it is difficult to apply it to the cellular phone. And so, we propose 3D code that can be recognized by the movie shooting function of the cellular phone. And, score information was encoded. We apply Gray Code to the property of music, and encode it. And the effectiveness was verified.

  1. LSAT Scores of Economics Majors.

    ERIC Educational Resources Information Center

    Nieswiadomy, Michael

    1998-01-01

    Argues that economics education provides many benefits to students, including preparation for law school. Examines the ranking of economics majors on the Law School Admission Test (LSAT). Finds that among the 14 majors having more than 2,000 students take the LSAT, economics students received the highest average score. (DSK)

  2. "Score the Core" Web-based pathologist training tool improves the accuracy of breast cancer IHC4 scoring.

    PubMed

    Engelberg, Jesse A; Retallack, Hanna; Balassanian, Ronald; Dowsett, Mitchell; Zabaglo, Lila; Ram, Arishneel A; Apple, Sophia K; Bishop, John W; Borowsky, Alexander D; Carpenter, Philip M; Chen, Yunn-Yi; Datnow, Brian; Elson, Sarah; Hasteh, Farnaz; Lin, Fritz; Moatamed, Neda A; Zhang, Yanhong; Cardiff, Robert D

    2015-11-01

    Hormone receptor status is an integral component of decision-making in breast cancer management. IHC4 score is an algorithm that combines hormone receptor, HER2, and Ki-67 status to provide a semiquantitative prognostic score for breast cancer. High accuracy and low interobserver variance are important to ensure the score is accurately calculated; however, few previous efforts have been made to measure or decrease interobserver variance. We developed a Web-based training tool, called "Score the Core" (STC) using tissue microarrays to train pathologists to visually score estrogen receptor (using the 300-point H score), progesterone receptor (percent positive), and Ki-67 (percent positive). STC used a reference score calculated from a reproducible manual counting method. Pathologists in the Athena Breast Health Network and pathology residents at associated institutions completed the exercise. By using STC, pathologists improved their estrogen receptor H score and progesterone receptor and Ki-67 proportion assessment and demonstrated a good correlation between pathologist and reference scores. In addition, we collected information about pathologist performance that allowed us to compare individual pathologists and measures of agreement. Pathologists' assessment of the proportion of positive cells was closer to the reference than their assessment of the relative intensity of positive cells. Careful training and assessment should be used to ensure the accuracy of breast biomarkers. This is particularly important as breast cancer diagnostics become increasingly quantitative and reproducible. Our training tool is a novel approach for pathologist training that can serve as an important component of ongoing quality assessment and can improve the accuracy of breast cancer prognostic biomarkers. PMID:26410019

  3. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel.

    PubMed

    González-Pérez, Abel; López-Bigas, Nuria

    2011-04-01

    Several large ongoing initiatives that profit from next-generation sequencing technologies have driven--and in coming years will continue to drive--the emergence of long catalogs of missense single-nucleotide variants (SNVs) in the human genome. As a consequence, researchers have developed various methods and their related computational tools to classify these missense SNVs as probably deleterious or probably neutral polymorphisms. The outputs produced by each of these computational tools are of different natures and thus difficult to compare and integrate. Taking advantage of the possible complementarity between different tools might allow more accurate classifications. Here we propose an effective approach to integrating the output of some of these tools into a unified classification; this approach is based on a weighted average of the normalized scores of the individual methods (WAS). (In this paper, the approach is illustrated for the integration of five tools.) We show that this WAS outperforms each individual method in the task of classifying missense SNVs as deleterious or neutral. Furthermore, we demonstrate that this WAS can be used not only for classification purposes (deleterious versus neutral mutation) but also as an indicator of the impact of the mutation on the functionality of the mutant protein. In other words, it may be used as a deleteriousness score of missense SNVs. Therefore, we recommend the use of this WAS as a consensus deleteriousness score of missense mutations (Condel). PMID:21457909

  4. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  5. Revised trauma scoring system to predict in-hospital mortality in the emergency department: Glasgow Coma Scale, Age, and Systolic Blood Pressure score

    PubMed Central

    2011-01-01

    mmHg, four points). The c-statistics for the GAP scores (0.933 for long-term mortality and 0.965 for short-term mortality) were better than or comparable to the trauma scores calculated using other scales. Compared with existing instruments, our reclassification tables show that the GAP scoring system reclassified all patients except one in the correct direction. In most cases, the observed incidence of death in patients who were reclassified matched what would have been predicted by the GAP scoring system. Conclusions The GAP scoring system can predict in-hospital mortality more accurately than the previously developed trauma scoring systems. PMID:21831280

  6. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  7. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  8. The thermodynamic cost of accurate sensory adaptation

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai

    2015-03-01

    Living organisms need to obtain and process environment information accurately in order to make decisions critical for their survival. Much progress have been made in identifying key components responsible for various biological functions, however, major challenges remain to understand system-level behaviors from the molecular-level knowledge of biology and to unravel possible physical principles for the underlying biochemical circuits. In this talk, we will present some recent works in understanding the chemical sensory system of E. coli by combining theoretical approaches with quantitative experiments. We focus on addressing the questions on how cells process chemical information and adapt to varying environment, and what are the thermodynamic limits of key regulatory functions, such as adaptation.

  9. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening.

    PubMed

    Ding, Bo; Wang, Jian; Li, Nan; Wang, Wei

    2013-01-28

    Accurately ranking docking poses remains a great challenge in computer-aided drug design. In this study, we present an integrated approach called MIEC-SVM that combines structure modeling and statistical learning to characterize protein-ligand binding based on the complex structure generated from docking. Using the HIV-1 protease as a model system, we showed that MIEC-SVM can successfully rank the docking poses and consistently outperformed the state-of-art scoring functions when the true positives only account for 1% or 0.5% of all the compounds under consideration. More excitingly, we found that MIEC-SVM can achieve a significant enrichment in virtual screening even when trained on a set of known inhibitors as small as 50, especially when enhanced by a model average approach. Given these features of MIEC-SVM, we believe it provides a powerful tool for searching for and designing new drugs. PMID:23259763

  10. Predict amine solution properties accurately

    SciTech Connect

    Cheng, S.; Meisen, A.; Chakma, A.

    1996-02-01

    Improved process design begins with using accurate physical property data. Especially in the preliminary design stage, physical property data such as density viscosity, thermal conductivity and specific heat can affect the overall performance of absorbers, heat exchangers, reboilers and pump. These properties can also influence temperature profiles in heat transfer equipment and thus control or affect the rate of amine breakdown. Aqueous-amine solution physical property data are available in graphical form. However, it is not convenient to use with computer-based calculations. Developed equations allow improved correlations of derived physical property estimates with published data. Expressions are given which can be used to estimate physical properties of methyldiethanolamine (MDEA), monoethanolamine (MEA) and diglycolamine (DGA) solutions.

  11. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  12. A correlation study of the American Shoulder and Elbow Society Score and the Oxford Shoulder Score with the use of regression analysis to predict one score from the other in patients undergoing reverse shoulder joint arthroplasty for cuff tear arthropathy

    PubMed Central

    Poon, Peter C

    2014-01-01

    Background More than 30 different scoring systems are available for evaluating outcomes of shoulder surgery. Unfortunately, given the multitude of scoring systems, there is no objective method to compare results between studies when different scoring systems are utilized. Methods We compared the American Shoulder and Elbow Society score (ASES) and the Oxford Shoulder Score (OSS) in patients undergoing reverse shoulder arthroplasty for cuff tear arthropathy. Twenty-nine patients had the ASES and OSS recorded pre-operatively, and at 6 and 12 months follow-up. The paired scores were assessed for their degree of correlation and sensitivity to change over time. Linear regression analysis was used to formulate a regression equation to predict one score from the other. Results The ASES and OSS correlated well with a Pearson’s correlation coefficient of 0.91 (p < 0.0001, n = 87). Both scores were sensitive to change. Regression analysis yielded a formula to predict the ASES from the OSS and vice versa with good accuracy (r2 = 0.83, F1,85 = 422.6, p < 0.0001). Conclusions Where good correlation exists, regression formulae can be used to accurately predict one score from the other in a specific population that it has been validated for. This can be of benefit when objectively comparing outcomes between studies using these two scoring systems.

  13. Scores and scales used in emergency medicine. Practicability in toxicology.

    PubMed

    Oprita, B; Aignatoaie, B; Gabor-Postole, D A

    2014-01-01

    Medical scores, criteria and classification systems support clinical decision-making and management. They enable the clinician to predict the outcome, stratify risk, assess conditions and diagnose diseases accurately. In the emergency medicine, it is very important to ascertain safety criteria to discharge patients, time to remain in the E.R., and also ascertain the time intervals for discharge/admission. The use of the scores in the emergency medicine, toxicology and other areas of intensive medicine have become increasingly efficient. Creating a prognostic score for the acute intoxications to be used by the personnel from the Emergency Departments may have positive effects in the management of the poisoned patients (e.g. the admission in a certain treatment space: cases expected to have a trend towards worsening will be directed to the resuscitation space and after a short period of time admitted in the appropriate facility; this way, the bed occupancy time in the Emergency Department will be shortened). PMID:25870686

  14. Do Examinees Understand Score Reports for Alternate Methods of Scoring Computer Based Tests?

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.; Williams, Natasha J.; Dodd, Barbara G.

    2011-01-01

    This study assessed the interpretability of scaled scores based on either number correct (NC) scoring for a paper-and-pencil test or one of two methods of scoring computer-based tests: an item pattern (IP) scoring method and a method based on equated NC scoring. The equated NC scoring method for computer-based tests was proposed as an alternative…

  15. Introduction of a score system for the clinical evaluation of patients with spinal processes.

    PubMed

    Klekamp, J; Samii, M

    1993-01-01

    To facilitate statistical analysis of the clinical course of patients with spinal lesions such as tumours, dysraphic malformations, inflammation, or syringomyelia, we have developed a score system for each of the following symptoms and signs: sensory deficits, dysaesthesiae, pain, motor weakness, gait, bladder and bowel function. For each a score between 0 and 5 is given. The grading is designed in such a way that levels of functional significance receive separate scores: 0 = no function, 1 = severely disabled, 2 = disabled, 3 = severely compromised but function preserved, 4 = slightly compromised, and 5 = normal function. In general, scores between 0 and 2 indicate insufficient functional capacity and an unsatisfactory condition. Scores between 3 and 5 represent levels of function which should be the aim of treatment. We have used this scoring system for evaluation of almost 500 patients with spinal lesions both retrospectively and prospectively with good results in terms of reproducibility and validity. PMID:8237513

  16. C57BL/6 Neuromuscular Healthspan Scoring System

    PubMed Central

    2013-01-01

    Developing a scoring system based on physiological and functional measurements is critical to test the efficacy of potential interventions for sarcopenia and frailty in aging animal models; therefore, the aim of this study was to develop a neuromuscular healthspan scoring system (NMHSS). We examined three ages of male C57BL/6 mice: adults (6–7 months old, 100% survival), old (24–26 months old, 75% survival), and elderly group (>28 months old, ≤50% survival)—as well as mice along this age continuum. Functional performance (as determined by the rotarod and inverted-cling grip test) and in vitro muscle contractility were the determinants. A raw score was derived for each determinant, and the NMHSS was then derived as the sum of the individual determinant scores. In comparison with individual determinants, the NMHSS reduced the effect of individual variability within age groups, thus potentially providing an enhanced ability to detect treatment effects in future studies. PMID:23585418

  17. Interpreting force concept inventory scores: Normalized gain and SAT scores

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.; Phillips, Jeffrey A.; Steinert, Jeffrey J.

    2007-06-01

    Preinstruction SAT scores and normalized gains (G) on the force concept inventory (FCI) were examined for individual students in interactive engagement (IE) courses in introductory mechanics at one high school (N=335) and one university (N=292) , and strong, positive correlations were found for both populations ( r=0.57 and r=0.46 , respectively). These correlations are likely due to the importance of cognitive skills and abstract reasoning in learning physics. The larger correlation coefficient for the high school population may be a result of the much shorter time interval between taking the SAT and studying mechanics, because the SAT may provide a more current measure of abilities when high school students begin the study of mechanics than it does for college students, who begin mechanics years after the test is taken. In prior research a strong correlation between FCI G and scores on Lawson’s Classroom Test of Scientific Reasoning for students from the same two schools was observed. Our results suggest that, when interpreting class average normalized FCI gains and comparing different classes, it is important to take into account the variation of students’ cognitive skills, as measured either by the SAT or by Lawson’s test. While Lawson’s test is not commonly given to students in most introductory mechanics courses, SAT scores provide a readily available alternative means of taking account of students’ reasoning abilities. Knowing the students’ cognitive level before instruction also allows one to alter instruction or to use an intervention designed to improve students’ cognitive level.

  18. An Optimizing Weight For Wrong Scores.

    ERIC Educational Resources Information Center

    Donlon, Thomas F.

    This study empirically determined the optimizing weight to be applied to the Wrongs Total Score in scoring rubrics of the general form = R - kW, where S is the Score, R the Rights Total, k the weight and W the Wrongs Total, if reliability is to be maximized. As is well known, the traditional formula score rests on a theoretical framework which is…

  19. Item Response Modeling with Sum Scores

    ERIC Educational Resources Information Center

    Johnson, Timothy R.

    2013-01-01

    One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…

  20. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.

    PubMed

    Liu, Jinfeng; He, Xiao; Zhang, John Z H

    2013-06-24

    Docking programs that use scoring functions to estimate binding affinities of small molecules to biological targets are widely applied in drug design and drug screening with partial success. But accurate and efficient scoring functions for protein-ligand binding affinity still present a grand challenge to computational chemists. In this study, the polarized protein-specific charge model (PPC) is incorporated into the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method to rescore the binding poses of some protein-ligand complexes, for which docking programs, such as Autodock, could not predict their binding modes correctly. Different sampling techniques (single minimized conformation and multiple molecular dynamics (MD) snapshots) are used to test the performance of MM/PBSA combined with the PPC model. Our results show the availability and effectiveness of this approach in correctly ranking the binding poses. More importantly, the bridging water molecules are found to play an important role in correctly determining the protein-ligand binding modes. Explicitly including these bridging water molecules in MM/PBSA calculations improves the prediction accuracy significantly. Our study sheds light on the importance of both bridging water molecules and the electronic polarization in the development of more reliable scoring functions for predicting molecular docking and protein-ligand binding affinity. PMID:23651068

  1. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  2. Exact score distribution computation for ontological similarity searches

    PubMed Central

    2011-01-01

    Background Semantic similarity searches in ontologies are an important component of many bioinformatic algorithms, e.g., finding functionally related proteins with the Gene Ontology or phenotypically similar diseases with the Human Phenotype Ontology (HPO). We have recently shown that the performance of semantic similarity searches can be improved by ranking results according to the probability of obtaining a given score at random rather than by the scores themselves. However, to date, there are no algorithms for computing the exact distribution of semantic similarity scores, which is necessary for computing the exact P-value of a given score. Results In this paper we consider the exact computation of score distributions for similarity searches in ontologies, and introduce a simple null hypothesis which can be used to compute a P-value for the statistical significance of similarity scores. We concentrate on measures based on Resnik's definition of ontological similarity. A new algorithm is proposed that collapses subgraphs of the ontology graph and thereby allows fast score distribution computation. The new algorithm is several orders of magnitude faster than the naive approach, as we demonstrate by computing score distributions for similarity searches in the HPO. It is shown that exact P-value calculation improves clinical diagnosis using the HPO compared to approaches based on sampling. Conclusions The new algorithm enables for the first time exact P-value calculation via exact score distribution computation for ontology similarity searches. The approach is applicable to any ontology for which the annotation-propagation rule holds and can improve any bioinformatic method that makes only use of the raw similarity scores. The algorithm was implemented in Java, supports any ontology in OBO format, and is available for non-commercial and academic usage under: https://compbio.charite.de/svn/hpo/trunk/src/tools/significance/ PMID:22078312

  3. The Thoracolumbar AOSpine Injury Score

    PubMed Central

    Kepler, Christopher K.; Vaccaro, Alexander R.; Schroeder, Gregory D.; Koerner, John D.; Vialle, Luiz R.; Aarabi, Bizhan; Rajasekaran, Shanmuganathan; Bellabarba, Carlo; Chapman, Jens R.; Kandziora, Frank; Schnake, Klaus J.; Dvorak, Marcel F.; Reinhold, Max; Oner, F. Cumhur

    2015-01-01

    Study Design Survey of 100 worldwide spine surgeons. Objective To develop a spine injury score for the AOSpine Thoracolumbar Spine Injury Classification System. Methods Each respondent was asked to numerically grade the severity of each variable of the AOSpine Thoracolumbar Spine Injury Classification System. Using the results, as well as limited input from the AOSpine Trauma Knowledge Forum, the Thoracolumbar AOSpine Injury Score was developed. Results Beginning with 1 point for A1, groups A, B, and C were consecutively awarded an additional point (A1, 1 point; A2, 2 points; A3, 3 points); however, because of a significant increase in the severity between A3 and A4 and because the severity of A4 and B1 was similar, both A4 and B1 were awarded 5 points. An uneven stepwise increase in severity moving from N0 to N4, with a substantial increase in severity between N2 (nerve root injury with radicular symptoms) and N3 (incomplete spinal cord injury) injuries, was identified. Hence, each grade of neurologic injury was progressively given an additional point starting with 0 points for N0, and the substantial difference in severity between N2 and N3 injuries was recognized by elevating N3 to 4 points. Finally, 1 point was awarded to the M1 modifier (indeterminate posterolateral ligamentous complex injury). Conclusion The Thoracolumbar AOSpine Injury Score is an easy-to-use, data-driven metric that will allow for the development of a surgical algorithm to accompany the AOSpine Thoracolumbar Spine Injury Classification System. PMID:27190734

  4. The Thoracolumbar AOSpine Injury Score.

    PubMed

    Kepler, Christopher K; Vaccaro, Alexander R; Schroeder, Gregory D; Koerner, John D; Vialle, Luiz R; Aarabi, Bizhan; Rajasekaran, Shanmuganathan; Bellabarba, Carlo; Chapman, Jens R; Kandziora, Frank; Schnake, Klaus J; Dvorak, Marcel F; Reinhold, Max; Oner, F Cumhur

    2016-06-01

    Study Design Survey of 100 worldwide spine surgeons. Objective To develop a spine injury score for the AOSpine Thoracolumbar Spine Injury Classification System. Methods Each respondent was asked to numerically grade the severity of each variable of the AOSpine Thoracolumbar Spine Injury Classification System. Using the results, as well as limited input from the AOSpine Trauma Knowledge Forum, the Thoracolumbar AOSpine Injury Score was developed. Results Beginning with 1 point for A1, groups A, B, and C were consecutively awarded an additional point (A1, 1 point; A2, 2 points; A3, 3 points); however, because of a significant increase in the severity between A3 and A4 and because the severity of A4 and B1 was similar, both A4 and B1 were awarded 5 points. An uneven stepwise increase in severity moving from N0 to N4, with a substantial increase in severity between N2 (nerve root injury with radicular symptoms) and N3 (incomplete spinal cord injury) injuries, was identified. Hence, each grade of neurologic injury was progressively given an additional point starting with 0 points for N0, and the substantial difference in severity between N2 and N3 injuries was recognized by elevating N3 to 4 points. Finally, 1 point was awarded to the M1 modifier (indeterminate posterolateral ligamentous complex injury). Conclusion The Thoracolumbar AOSpine Injury Score is an easy-to-use, data-driven metric that will allow for the development of a surgical algorithm to accompany the AOSpine Thoracolumbar Spine Injury Classification System. PMID:27190734

  5. Can Contemporary Density Functional Theory Predict Energy Spans in Molecular Catalysis Accurately Enough To Be Applicable for in Silico Catalyst Design? A Computational/Experimental Case Study for the Ruthenium-Catalyzed Hydrogenation of Olefins.

    PubMed

    Rohmann, Kai; Hölscher, Markus; Leitner, Walter

    2016-01-13

    The catalytic hydrogenation of cyclohexene and 1-methylcyclohexene is investigated experimentally and by means of density functional theory (DFT) computations using novel ruthenium Xantphos(Ph) (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) and Xantphos(Cy) (4,5-bis(dicyclohexylphosphino)-9,9-dimethylxanthene) precatalysts [Ru(Xantphos(Ph))(PhCO2)(Cl)] (1) and [Ru(Xantphos(Cy))(PhCO2)(Cl)] (2), the synthesis, characterization, and crystal structures of which are reported. The intention of this work is to (i) understand the reaction mechanisms on the microscopic level and (ii) compare experimentally observed activation barriers with computed barriers. The Gibbs free activation energy ΔG(⧧) was obtained experimentally with precatalyst 1 from Eyring plots for the hydrogenation of cyclohexene (ΔG(⧧) = 17.2 ± 1.0 kcal/mol) and 1-methylcyclohexene (ΔG(⧧) = 18.8 ± 2.4 kcal/mol), while the Gibbs free activation energy ΔG(⧧) for the hydrogenation of cyclohexene with precatalyst 2 was determined to be 21.1 ± 2.3 kcal/mol. Plausible activation pathways and catalytic cycles were computed in the gas phase (M06-L/def2-SVP). A variety of popular density functionals (ωB97X-D, LC-ωPBE, CAM-B3LYP, B3LYP, B97-D3BJ, B3LYP-D3, BP86-D3, PBE0-D3, M06-L, MN12-L) were used to reoptimize the turnover determining states in the solvent phase (DF/def2-TZVP; IEF-PCM and/or SMD) to investigate how well the experimentally obtained activation barriers can be reproduced by the calculations. The density functionals B97-D3BJ, MN12-L, M06-L, B3LYP-D3, and CAM-B3LYP reproduce the experimentally observed activation barriers for both olefins very well with very small (0.1 kcal/mol) to moderate (3.0 kcal/mol) mean deviations from the experimental values indicating for the field of hydrogenation catalysis most of these functionals to be useful for in silico catalyst design prior to experimental work. PMID:26713773

  6. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  7. Docking and scoring protein interactions: CAPRI 2009.

    PubMed

    Lensink, Marc F; Wodak, Shoshana J

    2010-11-15

    Protein docking algorithms are assessed by evaluating blind predictions performed during 2007-2009 in Rounds 13-19 of the community-wide experiment on critical assessment of predicted interactions (CAPRI). We evaluated the ability of these algorithms to sample docking poses and to single out specific association modes in 14 targets, representing 11 distinct protein complexes. These complexes play important biological roles in RNA maturation, G-protein signal processing, and enzyme inhibition and function. One target involved protein-RNA interactions not previously considered in CAPRI, several others were hetero-oligomers, or featured multiple interfaces between the same protein pair. For most targets, predictions started from the experimentally determined structures of the free (unbound) components, or from models built from known structures of related or similar proteins. To succeed they therefore needed to account for conformational changes and model inaccuracies. In total, 64 groups and 12 web-servers submitted docking predictions of which 4420 were evaluated. Overall our assessment reveals that 67% of the groups, more than ever before, produced acceptable models or better for at least one target, with many groups submitting multiple high- and medium-accuracy models for two to six targets. Forty-one groups including four web-servers participated in the scoring experiment with 1296 evaluated models. Scoring predictions also show signs of progress evidenced from the large proportion of correct models submitted. But singling out the best models remains a challenge, which also adversely affects the ability to correctly rank docking models. With the increased interest in translating abstract protein interaction networks into realistic models of protein assemblies, the growing CAPRI community is actively developing more efficient and reliable docking and scoring methods for everyone to use. PMID:20806235

  8. Dictyostelium possesses highly diverged presenilin/γ-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/γ-secretase complex

    PubMed Central

    McMains, Vanessa C.; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R.

    2010-01-01

    SUMMARY Presenilin (PS) is the catalytic moiety of the γ-secretase complex. PS and other γ-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate γ-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer’s disease, understanding essential elements within each γ-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate γ-secretase activity. We have identified highly diverged orthologs for each γ-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/γ-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-β peptides Aβ40 and Aβ42; strains deficient in γ-secretase cannot produce Aβ peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments α- and β-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active γ-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/γ-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  9. Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/gamma-secretase complex.

    PubMed

    McMains, Vanessa C; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R

    2010-01-01

    Presenilin (PS) is the catalytic moiety of the gamma-secretase complex. PS and other gamma-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate gamma-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer's disease, understanding essential elements within each gamma-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate gamma-secretase activity. We have identified highly diverged orthologs for each gamma-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/gamma-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-beta peptides Abeta(40) and Abeta(42); strains deficient in gamma-secretase cannot produce Abeta peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments alpha- and beta-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active gamma-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/gamma-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  10. Free Energy Score Spaces: Using Generative Information in Discriminative Classifiers.

    PubMed

    Perina, Alessandro; Cristani, Marco; Castellani, Umberto; Murino, Vittorio; Jojic, Nebojsa

    2012-07-01

    A score function induced by a generative model of the data can provide a feature vector of a fixed dimension for each data sample. Data samples themselves may be of differing lengths (e.g., speech segments or other sequential data), but as a score function is based on the properties of the data generation process, it produces a fixed-length vector in a highly informative space, typically referred to as "score space." Discriminative classifiers have been shown to achieve higher performances in appropriately chosen score spaces with respect to what is achievable by either the corresponding generative likelihood-based classifiers or the discriminative classifiers using standard feature extractors. In this paper, we present a novel score space that exploits the free energy associated with a generative model. The resulting free energy score space (FESS) takes into account the latent structure of the data at various levels and can be shown to lead to classification performance that at least matches the performance of the free energy classifier based on the same generative model and the same factorization of the posterior. We also show that in several typical computer vision and computational biology applications the classifiers optimized in FESS outperform the corresponding pure generative approaches, as well as a number of previous approaches combining discriminating and generative models. PMID:22156097

  11. Scoring with the Computer: Alternative Procedures for Improving the Reliability of Holistic Essay Scoring

    ERIC Educational Resources Information Center

    Attali, Yigal; Lewis, Will; Steier, Michael

    2013-01-01

    Automated essay scoring can produce reliable scores that are highly correlated with human scores, but is limited in its evaluation of content and other higher-order aspects of writing. The increased use of automated essay scoring in high-stakes testing underscores the need for human scoring that is focused on higher-order aspects of writing. This…

  12. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. scoringRules - A software package for probabilistic model evaluation

    NASA Astrophysics Data System (ADS)

    Lerch, Sebastian; Jordan, Alexander; Krüger, Fabian

    2016-04-01

    Models in the geosciences are generally surrounded by uncertainty, and being able to quantify this uncertainty is key to good decision making. Accordingly, probabilistic forecasts in the form of predictive distributions have become popular over the last decades. With the proliferation of probabilistic models arises the need for decision theoretically principled tools to evaluate the appropriateness of models and forecasts in a generalized way. Various scoring rules have been developed over the past decades to address this demand. Proper scoring rules are functions S(F,y) which evaluate the accuracy of a forecast distribution F , given that an outcome y was observed. As such, they allow to compare alternative models, a crucial ability given the variety of theories, data sources and statistical specifications that is available in many situations. This poster presents the software package scoringRules for the statistical programming language R, which contains functions to compute popular scoring rules such as the continuous ranked probability score for a variety of distributions F that come up in applied work. Two main classes are parametric distributions like normal, t, or gamma distributions, and distributions that are not known analytically, but are indirectly described through a sample of simulation draws. For example, Bayesian forecasts produced via Markov Chain Monte Carlo take this form. Thereby, the scoringRules package provides a framework for generalized model evaluation that both includes Bayesian as well as classical parametric models. The scoringRules package aims to be a convenient dictionary-like reference for computing scoring rules. We offer state of the art implementations of several known (but not routinely applied) formulas, and implement closed-form expressions that were previously unavailable. Whenever more than one implementation variant exists, we offer statistically principled default choices.

  18. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  19. Towards an accurate bioimpedance identification

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Louarroudi, E.; Bragos, R.; Pintelon, R.

    2013-04-01

    This paper describes the local polynomial method (LPM) for estimating the time-invariant bioimpedance frequency response function (FRF) considering both the output-error (OE) and the errors-in-variables (EIV) identification framework and compare it with the traditional cross— and autocorrelation spectral analysis techniques. The bioimpedance FRF is measured with the multisine electrical impedance spectroscopy (EIS) technique. To show the overwhelming accuracy of the LPM approach, both the LPM and the classical cross— and autocorrelation spectral analysis technique are evaluated through the same experimental data coming from a nonsteady-state measurement of time-varying in vivo myocardial tissue. The estimated error sources at the measurement frequencies due to noise, σnZ, and the stochastic nonlinear distortions, σZNL, have been converted to Ω and plotted over the bioimpedance spectrum for each framework. Ultimately, the impedance spectra have been fitted to a Cole impedance model using both an unweighted and a weighted complex nonlinear least square (CNLS) algorithm. A table is provided with the relative standard errors on the estimated parameters to reveal the importance of which system identification frameworks should be used.

  20. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  1. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  2. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  3. Credit Scores, Race, and Residential Sorting

    ERIC Educational Resources Information Center

    Nelson, Ashlyn Aiko

    2010-01-01

    Credit scores have a profound impact on home purchasing power and mortgage pricing, yet little is known about how credit scores influence households' residential location decisions. This study estimates the effects of credit scores on residential sorting behavior using a novel mortgage industry data set combining household demographic, credit, and…

  4. Developmental Sentence Scoring for Japanese (DSSJ)

    PubMed Central

    Miyata, Susanne; MacWhinney, Brian; Otomo, Kiyoshi; Sirai, Hidetosi; Oshima-Takane, Yuriko; Hirakawa, Makiko; Shirai, Yasuhiro; Sugiura, Masatoshi; Itoh, Keiko

    2014-01-01

    This paper reports on the development and use of the Developmental Sentence Scoring for Japanese (DSSJ), a new morpho-syntactical measure for Japanese constructed after the model of the English Developmental Sentence Scoring model (Lee, 1974). Using this measure, we calculated DSSJ scores for 84 children divided into six age groups between 2;8 and 5;2 on the basis of 100-sentence samples collected from free-play child-adult conversations. The analysis showed a high correlation of the DSSJ overall score with the Mean Length of Utterance. The analysis of the DSSJ subarea scores revealed large variations between these subarea scores for children with similar overall DSSJ scores. When investigating the high-scoring children (over 1 SD over group average), most children scored high in three to five subareas, but the combination of scores for these subareas varied from child to child. It is concluded that DSSJ is a valuable tool especially for the language acquisition research. The overall DSSJ score reliably reflects the overall morpho-syntactic development of Japanese children, and the subarea scores provide specific information on individual acquisition patterns. PMID:25414535

  5. Smoothing Methods for Estimating Test Score Distributions.

    ERIC Educational Resources Information Center

    Kolen, Michael J.

    1991-01-01

    Estimation/smoothing methods that are flexible enough to fit a wide variety of test score distributions are reviewed: kernel method, strong true-score model-based method, and method that uses polynomial log-linear models. Applications of these methods include describing/comparing test score distributions, estimating norms, and estimating…

  6. Validation of Automated Scoring of Science Assessments

    ERIC Educational Resources Information Center

    Liu, Ou Lydia; Rios, Joseph A.; Heilman, Michael; Gerard, Libby; Linn, Marcia C.

    2016-01-01

    Constructed response items can both measure the coherence of student ideas and serve as reflective experiences to strengthen instruction. We report on new automated scoring technologies that can reduce the cost and complexity of scoring constructed-response items. This study explored the accuracy of c-rater-ML, an automated scoring engine…

  7. 7 CFR 4280.316 - Application scoring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Application scoring. 4280.316 Section 4280.316... Program § 4280.316 Application scoring. Applications will be scored based on the criteria specified in this section using only the information submitted in the application. The total available points...

  8. Developing Score Reports for Cognitive Diagnostic Assessments

    ERIC Educational Resources Information Center

    Roberts, Mary Roduta; Gierl, Mark J.

    2010-01-01

    This paper presents a framework to provide a structured approach for developing score reports for cognitive diagnostic assessments ("CDAs"). Guidelines for reporting and presenting diagnostic scores are based on a review of current educational test score reporting practices and literature from the area of information design. A sample diagnostic…

  9. "Score Choice": A Tempest in a Teapot?

    ERIC Educational Resources Information Center

    Hoover, Eric

    2009-01-01

    A new option that allows students to choose which of their test scores to send to colleges has generated renewed criticism of the College Board. College Board officials tout the option, called Score Choice, as a way to ease test taker anxiety. Some prominent admissions officials have publicly described Score Choice as a sales tactic that will…

  10. Quality metric for accurate overlay control in <20nm nodes

    NASA Astrophysics Data System (ADS)

    Klein, Dana; Amit, Eran; Cohen, Guy; Amir, Nuriel; Har-Zvi, Michael; Huang, Chin-Chou Kevin; Karur-Shanmugam, Ramkumar; Pierson, Bill; Kato, Cindy; Kurita, Hiroyuki

    2013-04-01

    The semiconductor industry is moving toward 20nm nodes and below. As the Overlay (OVL) budget is getting tighter at these advanced nodes, the importance in the accuracy in each nanometer of OVL error is critical. When process owners select OVL targets and methods for their process, they must do it wisely; otherwise the reported OVL could be inaccurate, resulting in yield loss. The same problem can occur when the target sampling map is chosen incorrectly, consisting of asymmetric targets that will cause biased correctable terms and a corrupted wafer. Total measurement uncertainty (TMU) is the main parameter that process owners use when choosing an OVL target per layer. Going towards the 20nm nodes and below, TMU will not be enough for accurate OVL control. KLA-Tencor has introduced a quality score named `Qmerit' for its imaging based OVL (IBO) targets, which is obtained on the-fly for each OVL measurement point in X & Y. This Qmerit score will enable the process owners to select compatible targets which provide accurate OVL values for their process and thereby improve their yield. Together with K-T Analyzer's ability to detect the symmetric targets across the wafer and within the field, the Archer tools will continue to provide an independent, reliable measurement of OVL error into the next advanced nodes, enabling fabs to manufacture devices that meet their tight OVL error budgets.

  11. Individual Differences in Accurately Judging Personality From Text.

    PubMed

    Hall, Judith A; Goh, Jin X; Mast, Marianne Schmid; Hagedorn, Christian

    2016-08-01

    This research examines correlates of accuracy in judging Big Five traits from first-person text excerpts. Participants in six studies were recruited from psychology courses or online. In each study, participants performed a task of judging personality from text and performed other ability tasks and/or filled out questionnaires. Participants who were more accurate in judging personality from text were more likely to be female; had personalities that were more agreeable, conscientious, and feminine, and less neurotic and dominant (all controlling for participant gender); scored higher on empathic concern; self-reported more interest in, and attentiveness to, people's personalities in their daily lives; and reported reading more for pleasure, especially fiction. Accuracy was not associated with SAT scores but had a significant relation to vocabulary knowledge. Accuracy did not correlate with tests of judging personality and emotion based on audiovisual cues. This research is the first to address individual differences in accurate judgment of personality from text, thus adding to the literature on correlates of the good judge of personality. PMID:25720617

  12. Detection of Differential Item Functioning for More than Two Groups: A Monte Carlo Comparison of Methods

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Differential item functioning (DIF) assessment is a crucial component in test construction, serving as the primary way in which instrument developers ensure that measures perform in the same way for multiple groups within the population. When such is not the case, scores may not accurately reflect the trait of interest for all individuals in the…

  13. Correlation between the different pH-metry scores in gastroesophageal reflux disease in children.

    PubMed

    Lupu, Vasile Valeriu; Ignat, Ancuţa; Paduraru, Gabriela; Ciubara, Anamaria; Moscalu, Mihaela; Marginean, Cristina Oana; Burlea, Marin

    2016-06-01

    The 24-hour esophageal pH-metry is the most widely used method to diagnose the gastroesophageal reflux disease (GERD). The study compares the different scores obtained during the 24-hour esophageal pH-metry. A retrospective study over 5 years including 234 children (1 month and 18 years old) admitted in a pediatric gastroenterology regional center in Northeast Romania, with suspicion of GERD. They underwent 24- hour esophageal pH-metry, and the scores obtained (Boix-Ochoa, DeMeester, Johnson-DeMeester) were compared. Out of the 234 children, 172 (73.50%) had positive Boix-Ochoa score and 62 (26.50%) had normal Boix-Ochoa score (<11.99). Based on the DeMeester score, 149 children (63.68%) were positive and 85 (36.32%) were negative. The correlation of the Demeester score with the Boix-Ochoa score was very high (r = 0.978, P <  < 0.01, 95% confidence interval). Considering the Johnson-DeMeester score, 120 cases (51.28%) had GERD and 114 (48.72%) did not. The correlation of the Johnson-DeMeester score with the Boix-Ochoa score was still high (r = 0.94, P <  < 0.01, 95% 95% confidence interval). As considered until now, the Boix-Ochoa score is the most accurate score to be used in pediatrics for the diagnosis of GERD. The use of the different scores-Boix-Ochoa, DeMeester, Johnson-DeMeester-showed a high sensitivity and specificity of the pH-metry measurements applied to the study lot, but the last score has a higher risk of false-negative results. PMID:27367982

  14. Automatic recognition and scoring of olympic rhythmic gymnastic movements.

    PubMed

    Díaz-Pereira, M Pino; Gómez-Conde, Iván; Escalona, Merly; Olivieri, David N

    2014-04-01

    We describe a conceptually simple algorithm for assigning judgement scores to rhythmic gymnastic movements, which could improve scoring objectivity and reduce judgemental bias during competitions. Our method, implemented as a real-time computer vision software, takes a video shot or a live performance video stream as input and extracts detailed velocity field information from body movements, transforming them into specialized spatio-temporal image templates. The collection of such images over time, when projected into a velocity covariance eigenspace, trace out unique but similar trajectories for a particular gymnastic movement type. By comparing separate executions of the same atomic gymnastic routine, our method assigns a quality judgement score that is related to the distance between the respective spatio-temporal trajectories. For several standard gymnastic movements, the method accurately assigns scores that are comparable to those assigned by expert judges. We also describe our rhythmic gymnastic video shot database, which we have made freely available to the human movement research community. The database can be obtained at http://www.milegroup.net/apps/gymdb/. PMID:24502991

  15. Inter-Rater Reliability of Total Body Score-A Scale for Quantification of Corpse Decomposition.

    PubMed

    Nawrocka, Marta; Frątczak, Katarzyna; Matuszewski, Szymon

    2016-05-01

    The degree of body decomposition can be quantified using Total Body Score (TBS), a scale frequently used in taphonomic or entomological studies of decomposition. Here, the inter-rater reliability of the scale is analyzed. The study was made on 120 laymen, which were trained in the use of the scale. Participants scored decomposition of pig carcasses from photographs. It was found that the scale, when used by different people, gives homogeneous results irrespective of the user qualifications (the Krippendorff's alfa for all participants was 0.818). The study also indicated that carcasses in advanced decomposition receive significantly less accurate scores. Moreover, it was found that scores for cadavers in mosaic decomposition (i.e., representing signs of at least two stages of decomposition) are less accurate. These results demonstrate that the scale may be regarded as inter-rater reliable. Some propositions for refinement of the scale were also discussed. PMID:27093214

  16. Investigation of geometrical and scoring grid resolution for Monte Carlo dose calculations for IMRT

    NASA Astrophysics Data System (ADS)

    DeSmedt, B.; Vanderstraeten, B.; Reynaert, N.; DeNeve, W.; Thierens, H.

    2005-09-01

    Monte Carlo based treatment planning of two different patient groups treated with step-and-shoot IMRT (head-and-neck and lung treatments) with different CT resolutions and scoring methods is performed to determine the effect of geometrical and scoring voxel sizes on DVHs and calculation times. Dose scoring is performed in two different ways: directly into geometrical voxels (or in a number of grouped geometrical voxels) or into scoring voxels defined by a separate scoring grid superimposed on the geometrical grid. For the head-and-neck cancer patients, more than 2% difference is noted in the right optical nerve when using voxel dimensions of 4 × 4 × 4 mm3 compared to the reference calculation with 1 × 1 × 2 mm3 voxel dimensions. For the lung cancer patients, 2% difference is noted in the spinal cord when using voxel dimensions of 4 × 4 × 10 mm3 compared to the 1 × 1 × 5 mm3 calculation. An independent scoring grid introduces several advantages. In cases where a relatively high geometrical resolution is required and where the scoring resolution is less important, the number of scoring voxels can be limited while maintaining a high geometrical resolution. This can be achieved either by grouping several geometrical voxels together into scoring voxels or by superimposing a separate scoring grid of spherical voxels with a user-defined radius on the geometrical grid. For the studied lung cancer cases, both methods produce accurate results and introduce a speed increase by a factor of 10-36. In cases where a low geometrical resolution is allowed, but where a high scoring resolution is required, superimposing a separate scoring grid on the geometrical grid allows a reduction in geometrical voxels while maintaining a high scoring resolution. For the studied head-and-neck cancer cases, calculations performed with a geometrical resolution of 2 × 2 × 2 mm3 and a separate scoring grid containing spherical scoring voxels with a radius of 2 mm produce accurate results

  17. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  18. Accurate refinement of docked protein complexes using evolutionary information and deep learning.

    PubMed

    Akbal-Delibas, Bahar; Farhoodi, Roshanak; Pomplun, Marc; Haspel, Nurit

    2016-06-01

    One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work, we introduced AccuRefiner, a machine learning based tool for refining protein-protein complexes. Given a docked complex, the refinement tool produces a small set of refined versions of the input complex, with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work, we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 Å error margin on average, by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures. PMID:26846813

  19. Reliability of True Cutting Scores for Rasch Calibrated Items.

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.

    This paper provides formulas for expected true-score measures and reliability of binary items as a function of their Rasch difficulty parameters when the trait distribution is normal or logistic. With the proposed formula, one can evaluate the theoretical values of classical reliability indexes for norm-referenced and criterion-referenced…

  20. Some Results on Mean Square Error for Factor Score Prediction

    ERIC Educational Resources Information Center

    Krijnen, Wim P.

    2006-01-01

    For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…

  1. Observed-Score Equating as a Test Assembly Problem.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Luecht, Richard M.

    1998-01-01

    Derives a set of linear conditions of item-response functions that guarantees identical observed-score distributions on two test forms. The conditions can be added as constraints to a linear programming model for test assembly. An example illustrates the use of the model for an item pool from the Law School Admissions Test (LSAT). (SLD)

  2. Building a User-Oriented Statewide Score Reporting System.

    ERIC Educational Resources Information Center

    Bunch, Michael B.

    In 1983 the Maryland State Department of Public Education (MSDE) issued a request for proposals for "The Development of the Score Reporting System for the Maryland Functional Testing Program." The MSDE called for a literature review, a national survey, a statewide survey of user needs and capabilities, an assessment of the state's report producing…

  3. The Influence of an NCLB Accountability Plan on the Distribution of Student Test Score Gains

    ERIC Educational Resources Information Center

    Springer, Matthew G.

    2008-01-01

    Previous research on the effect of accountability programs on the distribution of student test score gains is decidedly mixed. This study examines the issue by estimating an educational production function in which test score gains are a function of the incentives schools have to focus instruction on below-proficient students. NCLB's threat of…

  4. Proposal of a Mediterranean Diet Serving Score

    PubMed Central

    Monteagudo, Celia; Mariscal-Arcas, Miguel; Rivas, Ana; Lorenzo-Tovar, María Luisa; Tur, Josep A.; Olea-Serrano, Fátima

    2015-01-01

    Background and Aims Numerous studies have demonstrated a relationship between Mediterranean Diet (MD) adherence and the prevention of cardiovascular diseases, cancer, and diabetes, etc. The study aim was to validate a novel instrument to measure MD adherence based on the consumption of food servings and food groups, and apply it in a female population from southern Spain and determining influential factors. Methods and Results The study included 1,155 women aged 12-83 yrs, classified as adolescents, adults, and over-60-yr-olds. All completed a validated semi-quantitative food frequency questionnaire (FFQ). The Mediterranean Dietary Serving Score (MDSS) is based on the latest update of the Mediterranean Diet Pyramid, using the recommended consumption frequency of foods and food groups; the MDSS ranges from 0 to 24. The discriminative power or correct subject classification capacity of the MDSS was analyzed with the Receiver Operating Characteristic (ROC) curve, using the MDS as reference method. Predictive factors for higher MDSS adherence were determined with a logistic regression model, adjusting for age. According to ROC curve analysis, MDSS evidenced a significant discriminative capacity between adherents and non-adherents to the MD pattern (optimal cutoff point=13.50; sensitivity=74%; specificity=48%). The mean MDSS was 12.45 (2.69) and was significantly higher with older age (p<0.001). Logistic regression analysis showed highest MD adherence by over 60-year-olds with low BMI and no habit of eating between meals. Conclusions The MDSS is an updated, easy, valid, and accurate instrument to assess MD adherence based on the consumption of foods and food groups per meal, day, and week. It may be useful in future nutritional education programs to prevent the early onset of chronic non-transmittable diseases in younger populations. PMID:26035442

  5. A Self-Instructional Device for Conditioning Accurate Prosody.

    ERIC Educational Resources Information Center

    Buiten, Roger; Lane, Harlan

    1965-01-01

    A self-instructional device for conditioning accurate prosody in second-language learning is described in this article. The Speech Auto-Instructional Device (SAID) is electro-mechanical and performs three functions: SAID (1) presents to the student tape-recorded pattern sentences that are considered standards in prosodic performance; (2) processes…

  6. A Comparison of Two Scoring Methods for an Automated Speech Scoring System

    ERIC Educational Resources Information Center

    Xi, Xiaoming; Higgins, Derrick; Zechner, Klaus; Williamson, David

    2012-01-01

    This paper compares two alternative scoring methods--multiple regression and classification trees--for an automated speech scoring system used in a practice environment. The two methods were evaluated on two criteria: construct representation and empirical performance in predicting human scores. The empirical performance of the two scoring models…

  7. Are the Best Scores the Best Scores for Predicting College Success?

    ERIC Educational Resources Information Center

    Patterson, Brian F.; Mattern, Krista D.; Swerdzewski, Peter

    2012-01-01

    The College Board's SAT[R] Score Choice[TM] policy allows students to choose which set(s) of scores to send to colleges and universities to which they plan to apply. Based on data gathered before the implementation of that policy, the following study evaluated the predictive validity of the various sets of SAT scores. The value of five score sets…

  8. Correlation of the score for subjective pain with physical disability, clinical and radiographic scores in recent onset rheumatoid arthritis

    PubMed Central

    Sarzi-Puttini, Piercarlo; Fiorini, Tania; Panni, Benedetta; Turiel, Maurizio; Cazzola, Marco; Atzeni, Fabiola

    2002-01-01

    Background To analyse the relationship between subjective pain score and other measures of clinical, radiographic and functional status; in particular Larsen radiographic scores and Health Assessment Questionnaire (HAQ); in patients with severe rheumatoid arthritis (RA) with a disease duration of less than 3 years. Methods In this cross sectional study of 105 patients with RA (76 women, 29 men: mean age 50.93; mean disease duration 15.86 months; 71% rheumatoid factor positive) subjective pain was assessed according to the Visual Analog Scale (VAS). Correlation coefficients between pain score and disease activity measures (patients' global assessment of disease by VAS, number of tender and swollen joints, morning stiffness, erythrocyte sedimentation rate [ESR], C-reactive protein [CRP] and titre of rheumatoid factor, radiographic evaluations (Larsen-Dale scores for radiographic damage of the small joints of the hands, wrist and feet), disability measures (health assessment questionnaire [HAQ]), and demographic variables were calculated; hierarchical regression analysis was done with subjective pain score as the dependent variable. Results The Spearman's correlation coefficient comparing subjective pain and HAQ was 0.421 (p < 0.001), between subjective pain and global assessment of disease and morning stiffness was 0.573 (p < 0.001) and 0.427 (p < 0.001) respectively, and between pain and number of tender and swollen joints 0.037 and 0.050 respectively (p > 0.05). In regression analysis, global assessment of disease by patients explained 32.8% of the variation in pain intensity score, morning stiffness 10.7%, CRP 4.0%, HAQ 3.8% and Larsen-Dale scores explained 2.1%; other variables were not significant in the model. Conclusions Pain scores of patients with early severe rheumatoid arthritis are correlated at higher levels with patients' global assessment of disease and with morning stiffness rather than with radiographic or other clinical variables such as number of

  9. Oswestry Disability Index Scoring Made Easy

    PubMed Central

    Mehra, A; Baker, D; Disney, S; Pynsent, PB

    2008-01-01

    INTRODUCTION Low back pain effects up to 80% of the population at some time during their active life. Questionnaires are available to help measure pain and disability. The Oswestry Disability Index (ODI) is the most commonly used outcome measure for low back pain. The aim of this study was to see if training in completing the ODI forms improved the scoring accuracy. PATIENTS AND METHODS The last 100 ODI forms completed in a hospital's spinal clinic were reviewed retrospectively and errors in the scoring were identified. Staff members involved in scoring the questionnaire were made aware of the errors and the correct method of scoring explained. A chart was created with all possible scores to aid the staff with scoring. A prospective audit on 50 questionnaires was subsequently performed. RESULTS The retrospective study showed that 33 of the 100 forms had been incorrectly scored. All questionnaires where one or more sections were not completed by the patient were incorrectly scored. A scoring chart was developed and staff training was implemented. This reduced the error rate to 14% in the prospective audit. CONCLUSIONS Clinicians applying outcome measures should read the appropriate literature to ensure they understand the scoring system. Staff must then be given adequate training in the application of the questionnaires. PMID:18598595

  10. Development of the Knowledge-based & Empirical Combined Scoring Algorithm (KECSA) to Score Protein-Ligand Interactions

    PubMed Central

    Zheng, Zheng

    2013-01-01

    We describe a novel knowledge-based protein-ligand scoring function that employs a new definition for the reference state, allowing us to relate a statistical potential to a Lennard-Jones (LJ) potential. In this way, the LJ potential parameters were generated from protein-ligand complex structural data contained in the PDB. Forty-nine types of atomic pairwise interactions were derived using this method, which we call the knowledge-based and empirical combined scoring algorithm (KECSA). Two validation benchmarks were introduced to test the performance of KECSA. The first validation benchmark included two test sets that address the training-set and enthalpy/entropy of KECSA The second validation benchmark suite included two large-scale and five small-scale test sets to compare the reproducibility of KECSA with respect to two empirical score functions previously developed in our laboratory (LISA and LISA+), as well as to other well-known scoring methods. Validation results illustrate that KECSA shows improved performance in all test sets when compared with other scoring methods especially in its ability to minimize the RMSE. LISA and LISA+ displayed similar performance using the correlation coefficient and Kendall τ as the metric of quality for some of the small test sets. Further pathways for improvement are discussed which would KECSA more sensitive to subtle changes in ligand structure. PMID:23560465

  11. Correlation between the different pH-metry scores in gastroesophageal reflux disease in children

    PubMed Central

    Lupu, Vasile Valeriu; Ignat, Ancuţa; Paduraru, Gabriela; Ciubara, Anamaria; Moscalu, Mihaela; Marginean, Cristina Oana; Burlea, Marin

    2016-01-01

    Abstract The 24-hour esophageal pH-metry is the most widely used method to diagnose the gastroesophageal reflux disease (GERD). The study compares the different scores obtained during the 24-hour esophageal pH-metry. A retrospective study over 5 years including 234 children (1 month and 18 years old) admitted in a pediatric gastroenterology regional center in Northeast Romania, with suspicion of GERD. They underwent 24- hour esophageal pH-metry, and the scores obtained (Boix-Ochoa, DeMeester, Johnson-DeMeester) were compared. Out of the 234 children, 172 (73.50%) had positive Boix-Ochoa score and 62 (26.50%) had normal Boix-Ochoa score (<11.99). Based on the DeMeester score, 149 children (63.68%) were positive and 85 (36.32%) were negative. The correlation of the Demeester score with the Boix-Ochoa score was very high (r = 0.978, P <  < 0.01, 95% confidence interval). Considering the Johnson-DeMeester score, 120 cases (51.28%) had GERD and 114 (48.72%) did not. The correlation of the Johnson-DeMeester score with the Boix-Ochoa score was still high (r = 0.94, P <  < 0.01, 95% 95% confidence interval). As considered until now, the Boix-Ochoa score is the most accurate score to be used in pediatrics for the diagnosis of GERD. The use of the different scores—Boix-Ochoa, DeMeester, Johnson-DeMeester—showed a high sensitivity and specificity of the pH-metry measurements applied to the study lot, but the last score has a higher risk of false-negative results. PMID:27367982

  12. A general formula for computing maximum proportion correct scores in various psychophysical paradigms with arbitrary probability distributions of stimulus observations.

    PubMed

    Dai, Huanping; Micheyl, Christophe

    2015-05-01

    Proportion correct (Pc) is a fundamental measure of task performance in psychophysics. The maximum Pc score that can be achieved by an optimal (maximum-likelihood) observer in a given task is of both theoretical and practical importance, because it sets an upper limit on human performance. Within the framework of signal detection theory, analytical solutions for computing the maximum Pc score have been established for several common experimental paradigms under the assumption of Gaussian additive internal noise. However, as the scope of applications of psychophysical signal detection theory expands, the need is growing for psychophysicists to compute maximum Pc scores for situations involving non-Gaussian (internal or stimulus-induced) noise. In this article, we provide a general formula for computing the maximum Pc in various psychophysical experimental paradigms for arbitrary probability distributions of sensory activity. Moreover, easy-to-use MATLAB code implementing the formula is provided. Practical applications of the formula are illustrated, and its accuracy is evaluated, for two paradigms and two types of probability distributions (uniform and Gaussian). The results demonstrate that Pc scores computed using the formula remain accurate even for continuous probability distributions, as long as the conversion from continuous probability density functions to discrete probability mass functions is supported by a sufficiently high sampling resolution. We hope that the exposition in this article, and the freely available MATLAB code, facilitates calculations of maximum performance for a wider range of experimental situations, as well as explorations of the impact of different assumptions concerning internal-noise distributions on maximum performance in psychophysical experiments. PMID:25724517

  13. [The diagnostic scores for deep venous thrombosis].

    PubMed

    Junod, A

    2015-08-26

    Seven diagnostic scores for the deep venous thrombosis (DVT) of lower limbs are analyzed and compared. Two features make this exer- cise difficult: the problem of distal DVT and of their proximal extension and the status of patients, whether out- or in-patients. The most popular score is the Wells score (1997), modi- fied in 2003. It includes one subjective ele- ment based on clinical judgment. The Primary Care score 12005), less known, has similar pro- perties, but uses only objective data. The pre- sent trend is to associate clinical scores with the dosage of D-Dimers to rule out with a good sensitivity the probability of TVP. For the upper limb DVT, the Constans score (2008) is available, which can also be coupled with D-Dimers testing (Kleinjan). PMID:26502582

  14. Risk scoring for prediction of acute cardiac complications from imbalanced clinical data.

    PubMed

    Liu, Nan; Koh, Zhi Xiong; Chua, Eric Chern-Pin; Tan, Licia Mei-Ling; Lin, Zhiping; Mirza, Bilal; Ong, Marcus Eng Hock

    2014-11-01

    Fast and accurate risk stratification is essential in the emergency department (ED) as it allows clinicians to identify chest pain patients who are at high risk of cardiac complications and require intensive monitoring and early intervention. In this paper, we present a novel intelligent scoring system using heart rate variability, 12-lead electrocardiogram (ECG), and vital signs where a hybrid sampling-based ensemble learning strategy is proposed to handle data imbalance. The experiments were conducted on a dataset consisting of 564 chest pain patients recruited at the ED of a tertiary hospital. The proposed ensemble-based scoring system was compared with established scoring methods such as the modified early warning score and the thrombolysis in myocardial infarction score, and showed its effectiveness in predicting acute cardiac complications within 72 h in terms of the receiver operation characteristic analysis. PMID:25375686

  15. Development and Validation of a Disease Severity Scoring Model for Pediatric Sepsis

    PubMed Central

    HU, Li; ZHU, Yimin; CHEN, Mengshi; LI, Xun; LU, Xiulan; LIANG, Ying; TAN, Hongzhuan

    2016-01-01

    Background: Multiple severity scoring systems have been devised and evaluated in adult sepsis, but a simplified scoring model for pediatric sepsis has not yet been developed. This study aimed to develop and validate a new scoring model to stratify the severity of pediatric sepsis, thus assisting the treatment of sepsis in children. Methods: Data from 634 consecutive patients who presented with sepsis at Children’s hospital of Hunan province in China in 2011–2013 were analyzed, with 476 patients placed in training group and 158 patients in validation group. Stepwise discriminant analysis was used to develop the accurate discriminate model. A simplified scoring model was generated using weightings defined by the discriminate coefficients. The discriminant ability of the model was tested by receiver operating characteristic curves (ROC). Results: The discriminant analysis showed that prothrombin time, D-dimer, total bilirubin, serum total protein, uric acid, PaO2/FiO2 ratio, myoglobin were associated with severity of sepsis. These seven variables were assigned with values of 4, 3, 3, 4, 3, 3, 3 respectively based on the standardized discriminant coefficients. Patients with higher scores had higher risk of severe sepsis. The areas under ROC (AROC) were 0.836 for accurate discriminate model, and 0.825 for simplified scoring model in validation group. Conclusions: The proposed disease severity scoring model for pediatric sepsis showed adequate discriminatory capacity and sufficient accuracy, which has important clinical significance in evaluating the severity of pediatric sepsis and predicting its progress. PMID:27516993

  16. Must Kohn-Sham oscillator strengths be accurate at threshold?

    SciTech Connect

    Yang Zenghui; Burke, Kieron; Faassen, Meta van

    2009-09-21

    The exact ground-state Kohn-Sham (KS) potential for the helium atom is known from accurate wave function calculations of the ground-state density. The threshold for photoabsorption from this potential matches the physical system exactly. By carefully studying its absorption spectrum, we show the answer to the title question is no. To address this problem in detail, we generate a highly accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the experimental spectrum and that of the exact ground-state Kohn-Sham potential.

  17. [The cardiovascular surgeon and the Syntax score].

    PubMed

    Gómez-Sánchez, Mario; Soulé-Egea, Mauricio; Herrera-Alarcón, Valentín; Barragán-García, Rodolfo

    2015-01-01

    The Syntax score has been established as a tool to determine the complexity of coronary artery disease and as a guide for decision-making among coronary artery bypass surgery and percutaneous coronary intervention. The purpose of this review is to systematically examine what the Syntax score is, and how the surgeon should integrate the information in the selection and treatment of patients. We reviewed the results of the SYNTAX Trial, the clinical practice guidelines, as well as the benefits and limitations of the score. Finally we discuss the future directions of the Syntax score. PMID:25595855

  18. Scoring the VIA Survey of Character.

    PubMed

    Diamond, Mark R; O'Brien-Malone, Angela; Woodworth, Rosalind J

    2010-12-01

    The VIA Survey of Character (VIA) is a self-report inventory designed to measure and assess 24 character strengths that are linked conceptually to six fundamental "virtues"--Wisdom and Knowledge, Courage, Humanity, Justice, Temperance, and Transcendence, as developed by Peterson and Seligman in 2004. Despite its popularity, the current presentation of the VIA is not easy to score; researchers must either use a limited online scoring facility or must use outdated scoring keys. This paper presents a full description of the scoring key. PMID:21323141

  19. An audit of the current U.S. Department of Agriculture frame size scoring system.

    PubMed

    Reinhardt, C D; Busby, W D

    2014-06-01

    Feedlot and carcass data from steers (n = 16,700) and heifers (n = 6,357) originating from 16 different states and fed in 17 feedlots located in southwest Iowa were used to evaluate the accuracy of the USDA frame score for predicting final BW of fed cattle. Frame score was recorded by USDA or state personnel for cattle either before leaving the state of origin or on arrival at the terminal feedlot. Mixed model procedures were used to investigate relationships between USDA frame score and measures of live performance and carcass traits. Other fixed effects included in the model included USDA muscle score, sex, age classification on feedlot entry (calf: ≤270 d of age, yearling: 271-365 d of age, and long yearling: >365 d of age), BCS on feedlot arrival, number of treatments for respiratory disease, hide color, and site of frame or muscle scoring; the interactions of sex × frame score and hide color × frame score were also included; fat thickness was included as a fixed effect (covariate) in the analysis of ADG, final BW, days on feed, LM area, marbling score, and quality grade. Random effects included in the model were year of feedlot arrival and feedlot in which cattle were fed. The system accurately projects the minimum target final BW for large frame steers and heifers; however, the final BW of the smallest medium frame steers and heifers exceeds the target minimum final BW by 35 and 40 kg, respectively. When frame score was assigned post facto based on actual final BW (adjusted to 1.27 cm fat thickness), it was determined that large frame was over-assigned by graders (62 vs. 35% for steers and 54 vs. 32% for heifers, actual score vs. postharvest score, respectively), medium frame was underassigned (37 vs. 51% and 46 vs. 58% for steers and heifers), and small frame was underassigned (0.7 vs. 15% and 0.6 vs. 10% for steers and heifers; K = 0.01, P < 0.01). Across sexes, of the cattle assigned to small, medium, or large frame score, 40, 59, and 43% actually had

  20. AB162. A novel “SSS+f” nephrometry score system to evaluate the technical complexity of nephron-sparing surgery

    PubMed Central

    Zhang, Shudong; Ma, Lin; Liu, Lei; Tian, Yu

    2016-01-01

    Objective For the complex and technical nature of tumor exposure, tumor resection, and renal reconstruction involved in partial nephrectomy, a detailed understanding of renal tumor anatomy is necessary for comprehensive preoperative surgical protocols. We have developed a novel nephrometry scoring system (3S+f nephrometry score) to quantify the anatomical characteristics of renal masses on computerized tomography/magnetic resonance imaging. We aimed to propose this simple scoring system to evaluate the technical complexity of partial nephrectomy. Methods We retrospectively evaluated 100 patients with contrast-enhanced CT imaging who underwent laparoscopic partial nephrectomy consecutively between January 2014 and October 2015. The “SSS+f” nephrometry score is based on four critical and reproducible anatomical features of solid renal masses. Of the four components three are scored on a 1, 2 or 3-point scale with the 4th indicating the quantity and quality of the perinephric fat which put great influence on the technical difficulty is scored on 0 or 1-point scale. The “SSS+f” nephrometry score consists of SIZE (tumor size as intrarenal maximal diameter), SITE (tumor location including lateral/lower pole, medial/upper pole, hilar/endophytic), SIDE (distance of tumor deepest side to the collecting system or sinus or the main renal artery or vein). Moreover, perinephric fat (f) which is sticky or thick is assigned to tumors that evaluate technical difficulty of mobilize the kidney and isolate the renal tumor. Results The “SSS+f” nephrometry scoring system accurately classified the complexity of 100 consecutive tumors undergoing laparoscopic partial nephrectomy at our institution by single surgeon. Tumor complexity according to nephrometry score was assessed as low in 18 (18%), moderate in 48 (48%) and high-complexity group in 34 (34%). There were no significant differences with respect to EBL, transfusion rate, or postoperative complications among the three

  1. Scoring Dawg Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Backes, Paul G.

    2011-01-01

    This novel core break-off and retention mechanism consists of a scoring dawg controlled by a set of two tubes (a drill tube and an inner tube). The drill tube and the inner tube have longitudinal concentric holes. The solution can be implemented in an eccentric tube configuration as well where the tubes have eccentric longitudinal holes. The inner tube presents at the bottom two control surfaces for controlling the orientation of the scoring dawg. The drill tube presents a sunk-in profile on the inside of the wall for housing the scoring dawg. The inner tube rotation relative to the drill tube actively controls the orientation of the scoring dawg and hence its penetration and retrieval from the core. The scoring dawg presents a shaft, two axially spaced arms, and a tooth. The two arms slide on the control surfaces of the inner tube. The tooth, when rotated, can penetrate or be extracted from the core. During drilling, the two tubes move together maintaining the scoring dawg completely outside the core. After the desired drilling depth has been reached the inner tube is rotated relative to the drill tube such that the tooth of the scoring dawg moves toward the central axis. By rotating the drill tube, the scoring dawg can score the core and so reduce its cross sectional area. The scoring dawg can also act as a stress concentrator for breaking the core in torsion or tension. After breaking the core, the scoring dawg can act as a core retention mechanism. For scoring, it requires the core to be attached to the rock. If the core is broken, the dawg can be used as a retention mechanism. The scoring dawg requires a hard-tip insert like tungsten carbide for scoring hard rocks. The relative rotation of the two tubes can be controlled manually or by an additional actuator. In the implemented design solution the bit rotation for scoring was in the same direction as the drilling. The device was tested for limestone cores and basalt cores. The torque required for breaking the

  2. Toward More Substantively Meaningful Automated Essay Scoring

    ERIC Educational Resources Information Center

    Ben-Simon, Anat; Bennett, Randy Elliott

    2007-01-01

    This study evaluated a "substantively driven" method for scoring NAEP writing assessments automatically. The study used variations of an existing commercial program, e-rater[R], to compare the performance of three approaches to automated essay scoring: a "brute-empirical" approach in which variables are selected and weighted solely according to…

  3. Factor Score Reliabilities and Domain Validities.

    ERIC Educational Resources Information Center

    Gorsuch, Richard L.

    1980-01-01

    Kaiser and Michael reported a formula for factor scores giving an internal consistency reliability and its square root, the domain validity. Using this formula is inappropriate if variables are included which have trival weights rather than salient weights for the factor for which the score is being computed. (Author/RL)

  4. The Scoring of Writing Samples: A Study.

    ERIC Educational Resources Information Center

    Cronnell, Bruce

    Although the design of the writing task itself may present assessment problems, the scoring of the piece of writing raises the greatest difficulties for large-scale testing of writing ability. A study investigated whether teachers and staff members of the Southwest Regional Laboratory (SWRL) (1) scored the same way, (2) agreed with each other in…

  5. Using Empirical Data to Set Cutoff Scores.

    ERIC Educational Resources Information Center

    Hills, John R.

    Six experimental approaches to the problems of setting cutoff scores and choosing proper test length are briefly mentioned. Most of these methods share the premise that a test is a random sample of items, from a domain associated with a carefully specified objective. Each item is independent and is scored zero or one, with no provision for…

  6. Observed Score Linear Equating with Covariates

    ERIC Educational Resources Information Center

    Branberg, Kenny; Wiberg, Marie

    2011-01-01

    This paper examined observed score linear equating in two different data collection designs, the equivalent groups design and the nonequivalent groups design, when information from covariates (i.e., background variables correlated with the test scores) was included. The main purpose of the study was to examine the effect (i.e., bias, variance, and…

  7. Predicting Latent Class Scores for Subsequent Analysis

    ERIC Educational Resources Information Center

    Petersen, Janne; Bandeen-Roche, Karen; Budtz-Jorgensen, Esben; Larsen, Klaus Groes

    2012-01-01

    Latent class regression models relate covariates and latent constructs such as psychiatric disorders. Though full maximum likelihood estimation is available, estimation is often in three steps: (i) a latent class model is fitted without covariates; (ii) latent class scores are predicted; and (iii) the scores are regressed on covariates. We propose…

  8. Using Test Score Data to Focus Instruction

    ERIC Educational Resources Information Center

    Trimble, Susan; Gay, Anne; Matthews, Jan

    2005-01-01

    Advances in technology available to access test data coupled with the challenges of No Child Left Behind (NCLB) are pushing schools to grapple with the complexities of test score data. With the current frenzy to raise test scores, there is little attention being paid to teacher development in learning to use data to improve learning. For the past…

  9. Enriching Automated Essay Scoring Using Discourse Marking.

    ERIC Educational Resources Information Center

    Burstein, Jill; Kukich, Karen; Wolff, Susanne; Lu, Chi; Chodorow, Martin

    Electronic Essay Rater (e-rater) is a prototype automated essay scoring system built at Educational Testing Service that uses discourse marking in addition to syntactic information and topical content vector analyses to assign essay scores automatically. This paper gives a general description of e-rater as a whole, but its emphasis is on the…

  10. Coefficient Alpha and Reliability of Scale Scores

    ERIC Educational Resources Information Center

    Almehrizi, Rashid S.

    2013-01-01

    The majority of large-scale assessments develop various score scales that are either linear or nonlinear transformations of raw scores for better interpretations and uses of assessment results. The current formula for coefficient alpha (a; the commonly used reliability coefficient) only provides internal consistency reliability estimates of raw…

  11. MMPI T Scores: Linear versus Normalized.

    ERIC Educational Resources Information Center

    Hsu, Louis M.

    1984-01-01

    Includes two articles regarding scoring for Minnesota Multiphasic Personality Inventory scales. Comments on the advisability of utilizing normalized T scores (Hsu), and addresses these objections from a theoretical standpoint and in the context of responses from a new reference sample (Colligan, Osborne, and Offord). (LLL)

  12. Validation of Automated Scoring of Oral Reading

    ERIC Educational Resources Information Center

    Balogh, Jennifer; Bernstein, Jared; Cheng, Jian; Van Moere, Alistair; Townshend, Brent; Suzuki, Masanori

    2012-01-01

    A two-part experiment is presented that validates a new measurement tool for scoring oral reading ability. Data collected by the U.S. government in a large-scale literacy assessment of adults were analyzed by a system called VersaReader that uses automatic speech recognition and speech processing technologies to score oral reading fluency. In the…

  13. Geometric Facial Gender Scoring: Objectivity of Perception

    PubMed Central

    Gilani, Syed Zulqarnain; Rooney, Kathleen; Shafait, Faisal; Walters, Mark; Mian, Ajmal

    2014-01-01

    Gender score is the cognitive judgement of the degree of masculinity or femininity of a face which is considered to be a continuum. Gender scores have long been used in psychological studies to understand the complex psychosocial relationships between people. Perceptual scores for gender and attractiveness have been employed for quality assessment and planning of cosmetic facial surgery. Various neurological disorders have been linked to the facial structure in general and the facial gender perception in particular. While, subjective gender scoring by human raters has been a tool of choice for psychological studies for many years, the process is both time and resource consuming. In this study, we investigate the geometric features used by the human cognitive system in perceiving the degree of masculinity/femininity of a 3D face. We then propose a mathematical model that can mimic the human gender perception. For our experiments, we obtained 3D face scans of 64 subjects using the 3dMDface scanner. The textureless 3D face scans of the subjects were then observed in different poses and assigned a gender score by 75 raters of a similar background. Our results suggest that the human cognitive system employs a combination of Euclidean and geodesic distances between biologically significant landmarks of the face for gender scoring. We propose a mathematical model that is able to automatically assign an objective gender score to a 3D face with a correlation of up to 0.895 with the human subjective scores. PMID:24923319

  14. Using Educational Test Scores To Evaluate Children.

    ERIC Educational Resources Information Center

    Pandiani, John A.; Simon, Monica M.; Banks, Steven M.

    This paper reports on an ongoing effort of the Vermont Mental Health Performance Indicator Project (PIP) to examine the relevance and utility of standardized test scores for evaluating community mental health programs. This analysis is of test scores from Vermont's first four years of statewide testing. The study is examining anonymous…

  15. Evaluating Score Equity Assessment for State NAEP

    ERIC Educational Resources Information Center

    Wells, Craig S.; Baldwin, Su; Hambleton, Ronald K.; Sireci, Stephen G.; Karatonis, Ana; Jirka, Stephen

    2009-01-01

    Score equity assessment is an important analysis to ensure inferences drawn from test scores are comparable across subgroups of examinees. The purpose of the present evaluation was to assess the extent to which the Grade 8 NAEP Math and Reading assessments for 2005 were equivalent across selected states. More specifically, the present study…

  16. Understanding Scoring Rubrics: A Guide for Teachers.

    ERIC Educational Resources Information Center

    Boston, Carol, Ed.

    This compilation provides an introduction to using scoring rubrics in the classroom. When good rubrics are used well, teachers and students receive extensive feedback on the quality and quantity of student learning. When scoring rubrics are used in large-scale assessment, technical questions related to interrater reliability tend to dominate the…

  17. An Overview of Automated Scoring of Essays

    ERIC Educational Resources Information Center

    Dikli, Semire

    2006-01-01

    Automated Essay Scoring (AES) is defined as the computer technology that evaluates and scores the written prose (Shermis & Barrera, 2002; Shermis & Burstein, 2003; Shermis, Raymat, & Barrera, 2003). AES systems are mainly used to overcome time, cost, reliability, and generalizability issues in writing assessment (Bereiter, 2003; Burstein,…

  18. More Issues in Observed-Score Equating

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2013-01-01

    This article is a response to the commentaries on the position paper on observed-score equating by van der Linden (this issue). The response focuses on the more general issues in these commentaries, such as the nature of the observed scores that are equated, the importance of test-theory assumptions in equating, the necessity to use multiple…

  19. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  20. Do Student Growth Scores Measure Academic Growth?

    ERIC Educational Resources Information Center

    Pomplun, Mark R.

    2009-01-01

    This study investigated convergent validity evidence for student growth scores with high school course grades. The Measures of Academic Progress and Educational Planning and Assessment System growth scores for approximately 1,800 ninth-grade students over 2 years were related to language, arts, and mathematics course grades for developmental,…

  1. Linking Teacher Pay to Student Scores.

    ERIC Educational Resources Information Center

    LaFee, Scott

    2000-01-01

    A suburban Philadelphia district set aside $100,000 for merit-pay (bonuses) for individuals and groups of teachers. Although teachers are resistant, vowing to give to charity any bonuses linked to test scores, morale and scores have improved. Cincinnati and Castle Rock, Colorado, have workable plans. (MLH)

  2. 7 CFR 1776.9 - Scoring applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Scoring applications. 1776.9 Section 1776.9 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM HWWS Grants § 1776.9 Scoring...

  3. 7 CFR 1776.9 - Scoring applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Scoring applications. 1776.9 Section 1776.9 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM HWWS Grants § 1776.9 Scoring...

  4. 7 CFR 1776.9 - Scoring applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Scoring applications. 1776.9 Section 1776.9 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM HWWS Grants § 1776.9 Scoring...

  5. 7 CFR 1776.9 - Scoring applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Scoring applications. 1776.9 Section 1776.9 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM HWWS Grants § 1776.9 Scoring...

  6. 7 CFR 1776.9 - Scoring applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Scoring applications. 1776.9 Section 1776.9 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) HOUSEHOLD WATER WELL SYSTEM GRANT PROGRAM HWWS Grants § 1776.9 Scoring...

  7. 24 CFR 902.63 - PHAS scoring.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... indicators. (b) Adjustments to the PHAS score. (1) Adjustments to the score may be made after a PHA's audit... changed by HUD in accordance with data included in the independent audit report, or obtained through such... adjustments determined necessary as a result of the independent public accountant (IPA) audit, as provided...

  8. Bayesian Model Averaging for Propensity Score Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  9. Model feedback in Bayesian propensity score estimation.

    PubMed

    Zigler, Corwin M; Watts, Krista; Yeh, Robert W; Wang, Yun; Coull, Brent A; Dominici, Francesca

    2013-03-01

    Methods based on the propensity score comprise one set of valuable tools for comparative effectiveness research and for estimating causal effects more generally. These methods typically consist of two distinct stages: (1) a propensity score stage where a model is fit to predict the propensity to receive treatment (the propensity score), and (2) an outcome stage where responses are compared in treated and untreated units having similar values of the estimated propensity score. Traditional techniques conduct estimation in these two stages separately; estimates from the first stage are treated as fixed and known for use in the second stage. Bayesian methods have natural appeal in these settings because separate likelihoods for the two stages can be combined into a single joint likelihood, with estimation of the two stages carried out simultaneously. One key feature of joint estimation in this context is "feedback" between the outcome stage and the propensity score stage, meaning that quantities in a model for the outcome contribute information to posterior distributions of quantities in the model for the propensity score. We provide a rigorous assessment of Bayesian propensity score estimation to show that model feedback can produce poor estimates of causal effects absent strategies that augment propensity score adjustment with adjustment for individual covariates. We illustrate this phenomenon with a simulation study and with a comparative effectiveness investigation of carotid artery stenting versus carotid endarterectomy among 123,286 Medicare beneficiaries hospitlized for stroke in 2006 and 2007. PMID:23379793

  10. Propensity score and proximity matching using random forest.

    PubMed

    Zhao, Peng; Su, Xiaogang; Ge, Tingting; Fan, Juanjuan

    2016-03-01

    In order to derive unbiased inference from observational data, matching methods are often applied to produce balanced treatment and control groups in terms of all background variables. Propensity score has been a key component in this research area. However, propensity score based matching methods in the literature have several limitations, such as model mis-specifications, categorical variables with more than two levels, difficulties in handling missing data, and nonlinear relationships. Random forest, averaging outcomes from many decision trees, is nonparametric in nature, straightforward to use, and capable of solving these issues. More importantly, the precision afforded by random forest (Caruana et al., 2008) may provide us with a more accurate and less model dependent estimate of the propensity score. In addition, the proximity matrix, a by-product of the random forest, may naturally serve as a distance measure between observations that can be used in matching. The proposed random forest based matching methods are applied to data from the National Health and Nutrition Examination Survey (NHANES). Our results show that the proposed methods can produce well balanced treatment and control groups. An illustration is also provided that the methods can effectively deal with missing data in covariates. PMID:26706666

  11. Does field reliability for Static-99 scores decrease as scores increase?

    PubMed

    Rice, Amanda K; Boccaccini, Marcus T; Harris, Paige B; Hawes, Samuel W

    2014-12-01

    This study examined the field reliability of Static-99 (Hanson & Thornton, 2000) scores among 21,983 sex offenders and focused on whether rater agreement decreased as scores increased. As expected, agreement was lowest for high-scoring offenders. Initial and most recent Static-99 scores were identical for only about 40% of offenders who had been assigned a score of 6 during their initial evaluations, but for more than 60% of offenders who had been assigned a score of 2 or lower. In addition, the size of the difference between scores increased as scores increased, with pairs of scores differing by 2 or more points for about 30% of offenders scoring in the high-risk range. Because evaluators and systems use high Static-99 scores to identify sexual offenders who may require intensive supervision or even postrelease civil commitment, it is important to recognize that there may be more measurement error for high scores than low scores and to consider adopting procedures for minimizing or accounting for measurement error. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:24932647

  12. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  13. Remote balance weighs accurately amid high radiation

    NASA Technical Reports Server (NTRS)

    Eggenberger, D. N.; Shuck, A. B.

    1969-01-01

    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot.

  14. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  15. Pronuclear scoring. Time for international standardization.

    PubMed

    Zollner, Ursula; Zollner, Klaus-Peter; Steck, Thomas; Dietl, Johannes

    2003-05-01

    Zygote scoring is an efficient tool for embryo selection not only in countries where embryo selection is not permitted. Several different scoring systems have been published so far, making comparisons of assessments between investigators and laboratories extremely difficult. Pronuclear evaluation should be standardized in a manner analogous to the standardization of cleavage stage embryo scoring or of semen evaluation by the World Health Organization. The ideal score should be clear and easily applicable. The items that have the greatest influence on embryonic development seem to be alignment and size of pronuclei, alignment and number of nucleoli, halo effect and appearance of vacuoles. These morphologic parameters can be observed in different features and can be summarized as a zygote score. PMID:12815911

  16. A Bayesian Approach to Learning Scoring Systems.

    PubMed

    Ertekin, Şeyda; Rudin, Cynthia

    2015-12-01

    We present a Bayesian method for building scoring systems, which are linear models with coefficients that have very few significant digits. Usually the construction of scoring systems involve manual effort-humans invent the full scoring system without using data, or they choose how logistic regression coefficients should be scaled and rounded to produce a scoring system. These kinds of heuristics lead to suboptimal solutions. Our approach is different in that humans need only specify the prior over what the coefficients should look like, and the scoring system is learned from data. For this approach, we provide a Metropolis-Hastings sampler that tends to pull the coefficient values toward their "natural scale." Empirically, the proposed method achieves a high degree of interpretability of the models while maintaining competitive generalization performances. PMID:27441407

  17. Essays on probability elicitation scoring rules

    NASA Astrophysics Data System (ADS)

    Firmino, Paulo Renato A.; dos Santos Neto, Ademir B.

    2012-10-01

    In probability elicitation exercises it has been usual to considerer scoring rules (SRs) to measure the performance of experts when inferring about a given unknown, Θ, for which the true value, θ*, is (or will shortly be) known to the experimenter. Mathematically, SRs quantify the discrepancy between f(θ) (the distribution reflecting the expert's uncertainty about Θ) and d(θ), a zero-one indicator function of the observation θ*. Thus, a remarkable characteristic of SRs is to contrast expert's beliefs with the observation θ*. The present work aims at extending SRs concepts and formulas for the cases where Θ is aleatory, highlighting advantages of goodness-of-fit and entropy-like measures. Conceptually, it is argued that besides of evaluating the personal performance of the expert, SRs may also play a role when comparing the elicitation processes adopted to obtain f(θ). Mathematically, it is proposed to replace d(θ) by g(θ), the distribution that model the randomness of Θ, and do also considerer goodness-of-fit and entropylike metrics, leading to SRs that measure the adherence of f(θ) to g(θ). The implications of this alternative perspective are discussed and illustrated by means of case studies based on the simulation of controlled experiments. The usefulness of the proposed approach for evaluating the performance of experts and elicitation processes is investigated.

  18. Understanding the Code: keeping accurate records.

    PubMed

    Griffith, Richard

    2015-10-01

    In his continuing series looking at the legal and professional implications of the Nursing and Midwifery Council's revised Code of Conduct, Richard Griffith discusses the elements of accurate record keeping under Standard 10 of the Code. This article considers the importance of accurate record keeping for the safety of patients and protection of district nurses. The legal implications of records are explained along with how district nurses should write records to ensure these legal requirements are met. PMID:26418404

  19. Accurate indel prediction using paired-end short reads

    PubMed Central

    2013-01-01

    Background One of the major open challenges in next generation sequencing (NGS) is the accurate identification of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to different types of evidence or counter-evidence for the presence of an indel, such as the number of split read alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural variants detected in this manner contain many false positives. Results Here, we present a machine learning based method which is able to discover and distinguish true from false indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative classifier based on features of split read alignment profiles and trained on true and false indel candidates that were validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illumina reads from 80 genomes of the first phase of the 1001 Genomes Project ( http://www.1001genomes.org) in Arabidopsis thaliana. Conclusion In this work we show that indel classification is a necessary step to reduce the number of false positive candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/. PMID:23442375

  20. PISA and TIMSS Science Score, Which Clock Is More Accurate to Indicate National Science and Technology Competitiveness?

    ERIC Educational Resources Information Center

    Shi, Wei-Zhao; He, Xiqin; Wang, Yan; Fan, Zeng-Guang; Guo, Liangdong

    2016-01-01

    In 2015, PISA and TIMSS are coming up to us together. In this study, the data from PISA and TIMSS are used to investigate that which one is a better indicator of national science and technology (S&T) competitiveness? Number of S & T journal articles (per million people) is used as a measure to represent the national S&T…

  1. Words Correct per Minute: The Variance in Standardized Reading Scores Accounted for by Reading Speed

    ERIC Educational Resources Information Center

    Williams, Jacqueline L.; Skinner, Christopher H.; Floyd, Randy G.; Hale, Andrea D.; Neddenriep, Christine; Kirk, Emily P.

    2011-01-01

    The measure words correct per minute (WC/M) incorporates a measure of accurate aloud word reading and a measure of reading speed. The current article describes two studies designed to parse the variance in global reading scores accounted for by reading speed. In Study I, reading speed accounted for more than 40% of the reading composite score…

  2. Validation of the European System for Cardiac Operative Risk Evaluation-II model in an urban Indian population and comparison with three other risk scoring systems

    PubMed Central

    Pillai, Biju Sivam; Baloria, Kanwar Aditya; Selot, Nandini

    2015-01-01

    Aims and Objectives: The aims were to compare the European System for Cardiac Operative Risk Evaluation (EuroSCORE)-II system against three established risk scoring systems for predictive accuracy in an urban Indian population and suggest improvements or amendments in the existing scoring system for adaptation in Indian population. Materials and Methods: EuroSCORE-II, Parsonnet score, System-97 score, and Cleveland score were obtained preoperatively for 1098 consecutive patients. EuroSCORE-II system was analyzed in comparison to each of the above three scoring systems in an urban Indian population. Calibrations of scoring systems were assessed using Hosmer–Lemeshow test. Areas under receiver operating characteristics (ROC) curves were compared according to the statistical approach suggested by Hanley and McNeil. Results: All EuroSCORE-II subgroups had highly significant P values stating good predictive mortality, except high-risk group (P = 0.175). The analysis of ROC curves of different scoring systems showed that the highest predictive value for mortality was calculated for the System-97 score followed by the Cleveland score. System-97 revealed extremely high predictive accuracies across all subgroups (curve area >80%). This difference in predictive accuracy was found to be statistically significant (P < 0.001). Conclusions: The present study suggests that the EuroSCORE-II model in its present form is not validated for use in the Indian population. An interesting observation was significantly accurate predictive abilities of the System-97 score. PMID:26139738

  3. Development and Validation of the Vitiligo Extent Score (VES): an International Collaborative Initiative.

    PubMed

    van Geel, Nanja; Lommerts, Janny; Bekkenk, Marcel; Wolkerstorfer, Albert; Prinsen, Cecilia A C; Eleftheriadou, Viktoria; Taïeb, Alain; Picardo, Mauro; Ezzedine, Khaled; Speeckaert, Reinhart

    2016-05-01

    The clinical assessment of vitiligo involves an estimation of the affected body surface area. The most commonly used method is the "palm of hand 1% rule" as integrated in the Vitiligo Area Scoring Index. However, this method can be challenging and time consuming. In this study, we introduce a global Vitiligo Extent Score (VES). In the first part of the study, this measurement instrument was developed and subsequently optimized during a pilot scoring session. In a subsequent stage, the inter- and intrarater reliability of the instrument were tested. Live scoring showed an excellent interrater reliability for the VES (intraclass correlation VES: 0.924 vs. Vitiligo Area Scoring Index: 0.846). Subsequent scoring on pictures was comparable with the live evaluation and demonstrated an excellent intrarater reliability. A high intraclass correlation for the VES (intraclass correlation VES: 0.923 vs. Vitiligo Area Scoring Index: 0.757) was also found in an additional subgroup of patients with extensive vitiligo. Moreover, user-friendliness and timing were scored very favorably. In conclusion, this measurement instrument allows us to monitor accurately and easily the affected body surface area in a standardized way. Moreover, our results provide evidence that the VES can be proposed as a promising tool to measure the vitiligo extent in clinical trials and in daily practice. PMID:26827762

  4. Prognostic performance of clinical indices and model scorings for acute-on-chronic liver failure: A study of 164 patients

    PubMed Central

    ZHANG, QIANQIAN; GUO, XIAOLIN; ZHAO, SHIXING; PANG, XIAOLI; WANG, YANG; ZHANG, YUJIAO; CHI, BAORONG

    2016-01-01

    The present study aimed to analyze the prognostic factors of acute-on-chronic liver failure (ACLF), with the perspective of an improved selection of optimal therapeutic schemes. A retrospective analysis was used to study 164 patients with ACLF hospitalized between 2010 and 2014 in a single center. Patients were divided into favorable and unfavorable groups, according to the treatment outcomes. General characteristics and clinical manifestations were analyzed to determine whether they would affect the prognosis of the patients with ACLF, with a particular focus on the scoring systems Child-Pugh, model for end-stage liver disease (MELD), MELD with incorporation of sodium (MELD-Na), MELD and serum sodium ratio (MESO) and integrated MELD (iMELD). Hepatitis B virus infection was the predominant cause of ACLF, accounting for 88 cases (53.7%). Age, prothrombin time, thrombin time, international normalized ratio (INR), prothrombin activity, serum sodium, albumin, total bilirubin, serum creatinine, platelets, fasting blood sugar, infections, hepatic encephalopathy, hepatorenal syndrome (HRS), and electrolyte disorder were revealed to be associated with prognosis. Age, serum sodium, INR, HRS, and infection were independent prognostic risk factors, as determined by multivariate analysis. Child-Pugh, MELD, MELD-Na, MESO and iMELD scoring systems all demonstrated adequate predictive values, with MELD-Na as the most effective scoring system. In conclusion, age, hyponatremia, INR, HRS and bacterial or fungal infections were reported to be independent prognostic risk factors for ACLF. Among the various liver function scoring systems, MELD-Na was the most accurate in predicting the prognosis of ACLF. PMID:27073448

  5. Teachers' Use of Rubrics to Score Non-traditional Tasks: Factors Related to Discrepancies in Scoring

    ERIC Educational Resources Information Center

    Meier, Sherry L.; Rich, Beverly S.; Cady, JoAnn

    2006-01-01

    This study considered middle school mathematics teachers use of rubrics to score non-traditional tasks. A group of eighth-grade teachers attended a two-day workshop where they evaluated assessment tasks and discussed the use of an associated scoring rubric. Scored samples of student work submitted by the teachers indicated that they had difficulty…

  6. Rapid Conversion of Adolescent MMPI Raw Scores to T Scores Using the HP-67 Programmable Calculator.

    ERIC Educational Resources Information Center

    Hembling, David W.

    1984-01-01

    Used a programmable Hewlett-Packard scientific calculator to rapidly convert raw scores from adolescent MMPI protocols to T scores, scale by scale. The K factor is handled, as needed, automatically. Complete scoring and profiling of the R-form MMPI can be done in less than 10 minutes. (Author/JAC)

  7. Concurrent Validity of LibQUAL+[TM] Scores: What Do LibQUAL+[TM] Scores Measure?

    ERIC Educational Resources Information Center

    Thompson, Bruce; Cook, Colleen; Kyrillidou, Martha

    2005-01-01

    The present study investigated the validity of LibQUAL+[TM] scores, and specifically how total and subscale LibQUAL+[TM] scores are associated with self-reported, library-related satisfaction and outcomes scores. Participants included 88,664 students and faculty who completed the American English (n[AE] = 69,494) or the British English (n[BE] =…

  8. Development of Scoring Functions for Antibody Sequence Assessment and Optimization

    PubMed Central

    Seeliger, Daniel

    2013-01-01

    Antibody development is still associated with substantial risks and difficulties as single mutations can radically change molecule properties like thermodynamic stability, solubility or viscosity. Since antibody generation methodologies cannot select and optimize for molecule properties which are important for biotechnological applications, careful sequence analysis and optimization is necessary to develop antibodies that fulfil the ambitious requirements of future drugs. While efforts to grab the physical principles of undesired molecule properties from the very bottom are becoming increasingly powerful, the wealth of publically available antibody sequences provides an alternative way to develop early assessment strategies for antibodies using a statistical approach which is the objective of this paper. Here, publically available sequences were used to develop heuristic potentials for the framework regions of heavy and light chains of antibodies of human and murine origin. The potentials take into account position dependent probabilities of individual amino acids but also conditional probabilities which are inevitable for sequence assessment and optimization. It is shown that the potentials derived from human sequences clearly distinguish between human sequences and sequences from mice and, hence, can be used as a measure of humaness which compares a given sequence with the phenotypic pool of human sequences instead of comparing sequence identities to germline genes. Following this line, it is demonstrated that, using the developed potentials, humanization of an antibody can be described as a simple mathematical optimization problem and that the in-silico generated framework variants closely resemble native sequences in terms of predicted immunogenicity. PMID:24204701

  9. Methods for Constructing and Assessing Propensity Scores

    PubMed Central

    Garrido, Melissa M; Kelley, Amy S; Paris, Julia; Roza, Katherine; Meier, Diane E; Morrison, R Sean; Aldridge, Melissa D

    2014-01-01

    Objectives To model the steps involved in preparing for and carrying out propensity score analyses by providing step-by-step guidance and Stata code applied to an empirical dataset. Study Design Guidance, Stata code, and empirical examples are given to illustrate (1) the process of choosing variables to include in the propensity score; (2) balance of propensity score across treatment and comparison groups; (3) balance of covariates across treatment and comparison groups within blocks of the propensity score; (4) choice of matching and weighting strategies; (5) balance of covariates after matching or weighting the sample; and (6) interpretation of treatment effect estimates. Empirical Application We use data from the Palliative Care for Cancer Patients (PC4C) study, a multisite observational study of the effect of inpatient palliative care on patient health outcomes and health services use, to illustrate the development and use of a propensity score. Conclusions Propensity scores are one useful tool for accounting for observed differences between treated and comparison groups. Careful testing of propensity scores is required before using them to estimate treatment effects. PMID:24779867

  10. Ultra-accurate collaborative information filtering via directed user similarity

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Song, W.-J.; Liu, J.-G.

    2014-07-01

    A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers' recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones in opposite direction, the large-degree users' selections are recommended extensively by the traditional second-order CF algorithms. By considering the users' similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random walks proposed by Liu et al. (Int. J. Mod. Phys. C, 20 (2009) 285) the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix, respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.

  11. Assessment and In Vivo Scoring of Murine Experimental Autoimmune Uveoretinitis Using Optical Coherence Tomography

    PubMed Central

    Chu, Colin J.; Herrmann, Philipp; Carvalho, Livia S.; Liyanage, Sidath E.; Bainbridge, James W. B.; Ali, Robin R.; Dick, Andrew D.; Luhmann, Ulrich F. O.

    2013-01-01

    Despite advances in clinical imaging and grading our understanding of retinal immune responses and their morphological correlates in experimental autoimmune uveoretinitis (EAU), has been hindered by the requirement for post-mortem histology. To date, monitoring changes occurring during EAU disease progression and evaluating the effect of therapeutic intervention in real time has not been possible. We wanted to establish whether optical coherence tomography (OCT) could detect intraretinal changes during inflammation and to determine its utility as a tool for accurate scoring of EAU. EAU was induced in C57BL/6J mice and animals evaluated after 15, 26, 36 and 60 days. At each time-point, contemporaneous Spectralis-OCT scanning, topical endoscopic fundal imaging (TEFI), fundus fluorescein angiography (FFA) and CD45-immunolabelled histology were performed. OCT features were further characterised on retinal flat-mounts using immunohistochemistry and 3D reconstruction. Optic disc swelling and vitreous opacities detected by OCT corresponded to CD45+ cell infiltration on histology. Vasculitis identified by FFA and OCT matched perivascular myeloid and T-cell infiltrates and could be differentiated from unaffected vessels. Evolution of these changes could be followed over time in the same eye. Retinal folds were visible and found to encapsulate mixed populations of activated myeloid cells, T-cells and microglia. Using these features, an OCT-based EAU scoring system was developed, with significant correlation to validated histological (Pearson r2 = 0.6392, P<0.0001, n = 31 eyes) and TEFI based scoring systems (r2 = 0.6784, P<0.0001). OCT distinguishes the fundamental features of murine EAU in vivo, permits dynamic assessment of intraretinal changes and can be used to score disease severity. As a result, it allows tissue synchronisation with subsequent cellular and functional assessment and greater efficiency of animal usage. By relating OCT signals with

  12. An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins

    PubMed Central

    Sander, Jeffry D.; Zaback, Peter; Joung, J. Keith; Voytas, Daniel F.; Dobbs, Drena

    2009-01-01

    Zinc-finger proteins (ZFPs) have long been recognized for their potential to manipulate genetic information because they can be engineered to bind novel DNA targets. Individual zinc-finger domains (ZFDs) bind specific DNA triplet sequences; their apparent modularity has led some groups to propose methods that allow virtually any desired DNA motif to be targeted in vitro. In practice, however, ZFPs engineered using this ‘modular assembly’ approach do not always function well in vivo. Here we report a modular assembly scoring strategy that both identifies combinations of modules least likely to function efficiently in vivo and provides accurate estimates of their relative binding affinities in vitro. Predicted binding affinities for 53 ‘three-finger’ ZFPs, computed based on energy contributions of the constituent modules, were highly correlated (r = 0.80) with activity levels measured in bacterial two-hybrid assays. Moreover, Kd values for seven modularly assembled ZFPs and their intended targets, measured using fluorescence anisotropy, were also highly correlated with predictions (r = 0.91). We propose that success rates for ZFP modular assembly can be significantly improved by exploiting the score-based strategy described here. PMID:19056825

  13. The Algoplus Score to Assess Acute Postoperative pain in Elderly patients-A Pilot Observational Study.

    PubMed

    Dualé, Christian; Pereira, Bruno; Abbal, Bertrand; Julien, Hugues; Rat, Patrice; Schoeffler, Pierre; Pickering, Gisèle

    2015-12-01

    Standard verbal or analogue scales may not be accurate to assess acute postoperative pain in elderly patients. This study was designed to field test the Algoplus tool, developed specifically for this population and based on observation of patient behavior. Prospective, observational cohort. Single center, French University hospital. Forty-eight patients, aged over 65, scheduled for surgery under general anesthesia, and observed on admission to the postanesthesia care unit, immediately after extubation, during the different steps of analgesic intervention (demand, relief with intravenous opioid titration, plus intermediate measures when relevant), and either at discharge or 3 hours after admission. A numerical rating scale (NRS) was used to guide analgesia. The Algoplus score and the state of alertness or sedation were noted. NRS scores and Algoplus scores were significantly related, and both scores significantly decreased under the effect of analgesia, but the correlation was low. In early observations, the Algoplus score was higher than that predicted by the NRS score, in relation to residual sedation. Female gender tended to lower the Algoplus score compared to the NRS score. When the NRS score exceeded 3/10, indicating the need for analgesic intervention, the Algoplus score was generally lower than the recommended trigger for analgesia (2/5). These results are promising, but further evidence of a clinical benefit to the use of Algoplus for acute postoperative pain is needed. In future studies, scoring should be adjusted to take into account the time from extubation, the state of sedation, and the patient's gender in order to interpret results. PMID:26697817

  14. Automated coronary artery calcium scoring from non-contrast CT using a patient-specific algorithm

    NASA Astrophysics Data System (ADS)

    Ding, Xiaowei; Slomka, Piotr J.; Diaz-Zamudio, Mariana; Germano, Guido; Berman, Daniel S.; Terzopoulos, Demetri; Dey, Damini

    2015-03-01

    Non-contrast cardiac CT is used worldwide to assess coronary artery calcium (CAC), a subclinical marker of coronary atherosclerosis. Manual quantification of regional CAC scores includes identifying candidate regions, followed by thresholding and connected component labeling. We aimed to develop and validate a fully-automated, algorithm for both overall and regional measurement of CAC scores from non-contrast CT using a hybrid multi-atlas registration, active contours and knowledge-based region separation algorithm. A co-registered segmented CT atlas was created from manually segmented non-contrast CT data from 10 patients (5 men, 5 women) and stored offline. For each patient scan, the heart region, left ventricle, right ventricle, ascending aorta and aortic root are located by multi-atlas registration followed by active contours refinement. Regional coronary artery territories (left anterior descending artery, left circumflex artery and right coronary artery) are separated using a knowledge-based region separation algorithm. Calcifications from these coronary artery territories are detected by region growing at each lesion. Global and regional Agatston scores and volume scores were calculated in 50 patients. Agatston scores and volume scores calculated by the algorithm and the expert showed excellent correlation (Agatston score: r = 0.97, p < 0.0001, volume score: r = 0.97, p < 0.0001) with no significant differences by comparison of individual data points (Agatston score: p = 0.30, volume score: p = 0.33). The total time was <60 sec on a standard computer. Our results show that fast accurate and automated quantification of CAC scores from non-contrast CT is feasible.

  15. Shock Emergence in Supernovae: Limiting Cases and Accurate Approximations

    NASA Astrophysics Data System (ADS)

    Ro, Stephen; Matzner, Christopher D.

    2013-08-01

    We examine the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem. In the limit of a uniform initial atmosphere, there are analytical formulae for these quantities. In the opposite limit of a very steep density gradient, the solutions match the outcome of shock acceleration in exponential atmospheres.

  16. SHOCK EMERGENCE IN SUPERNOVAE: LIMITING CASES AND ACCURATE APPROXIMATIONS

    SciTech Connect

    Ro, Stephen; Matzner, Christopher D.

    2013-08-10

    We examine the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem. In the limit of a uniform initial atmosphere, there are analytical formulae for these quantities. In the opposite limit of a very steep density gradient, the solutions match the outcome of shock acceleration in exponential atmospheres.

  17. A robust and accurate formulation of molecular and colloidal electrostatics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics. PMID:27497538

  18. A robust and accurate formulation of molecular and colloidal electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  19. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    ERIC Educational Resources Information Center

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored…

  20. Effects on Score Distributions of Deleting an Unkeyable Item from a Test.

    ERIC Educational Resources Information Center

    Dorans, Neil J.

    A formal analysis is presented of the effects of item deletion on equating/scaling functions and reported score distributions. The phrase "item deletion" refers to the process of changing the original key of a flawed item to either all options correct, including omits, or to no options correct, i.e., not scoring the flawed item. There are two…