Science.gov

Sample records for accurate selected thermophysical

  1. Thermophysical properties

    SciTech Connect

    Kayser, R.F.

    1993-01-01

    Numerous fluids have been identified as promising alternative refrigerants, but much of the information needed to predict their behavior as pure fluids and as components in mixtures does not exist. In particular, reliable thermophysical properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to provide highly accurate, selected thermophysical properties data for Refrigerants 32, 123, 124, and 125, and to use these data to fit simple and complex equations of state and detailed transport property models. The new data will fill gaps in the existing data sets and resolve the problems and uncertainties that exist in and between the data sets. This report describes the progress made during the fourth quarter of this fifteen-month project, which was initiated in late January, 1992.

  2. Thermophysical Properties of Hydrocarbon Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  3. Thermophysical property data: Who needs them?

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    Specific examples are cited to illustrate the universal needs and demands for thermophysical property data. Applications of the principle of similarity in fluid mechanics and heat transfer and extensions of the principle to fluid mixtures are discussed. It becomes quite clear that no matter how eloquent theories (or experiments) in fluid mechanics or heat transfer are, results of their application can be no more accurate than the thermophysical properties required to transform these theories into practice - or in the case of an experiment, to reduce the data. Present day projects take place on such a scale that the need for international standards groups and mutual cooperation is evident.

  4. Accurate determination of the amino acid content of selected feedstuffs.

    PubMed

    Rutherfurd, Shane M

    2009-01-01

    The accurate determination of the amino acid content is important. In the present study, a least-squares non-linear regression model of the amino acid content determined over multiple hydrolysis times was used to accurately determine the content of amino acids in five different feedstuffs. These values were compared with 24-h hydrolysis values determined for the same feedstuffs. Overall, approximately two-thirds of the amino acids determined in this study (aspartic acid, threonine, glutamic acid, proline, glycine, alanine, leucine, tyrosine, phenylalanine and arginine) using 24-h hydrolysis were in good agreement (<3% difference). When examined across feedstuffs, the concentration of serine was underestimated by the 24-h hydrolysis method by 4.8%, while the concentrations of histidine and lysine were overestimated by 3.9% and 3.1%, respectively.

  5. The thermophysics of glaciers

    SciTech Connect

    Zotikov, I.A.

    1986-01-01

    This volume presents the results of experimental and theoretical work on the thermodynamics of ice sheets and glaciers. The author has carried out extensive field work in both the Soviet Union and Antarctica over the last 25 years and has contributed to the understanding of the thermophysics of glaciers. The topics covered in this volume embrace heat flow measurement and temperature distributions in glaciers, the thermal drilling of glaciers, the melting and freezing of ice sheets, and other thermophysical problems. Also included are topics of relevance to glacial engineering.

  6. Calculating Thermophysical Properties Of 12 Fluids

    NASA Technical Reports Server (NTRS)

    Cleghorn, T. F.; Mccarty, R. D.

    1991-01-01

    MIPROPS is set of computer programs giving thermophysical and transport properties of selected fluids. Calculates properties of fluids in both liquid and vapor states over wide range of temperatures and pressures. Fluids included: helium, hydrogen, nitrogen, oxygen, argon, nitrogen trifluoride, methane, ethylene, ethane, propane, isobutane, and normal butane. All programs except helium program incorporate same equation of state. Written in FORTRAN 77.

  7. Selecting accurate statements from the cognitive interview using confidence ratings.

    PubMed

    Roberts, Wayne T; Higham, Philip A

    2002-03-01

    Participants viewed a videotape of a simulated murder, and their recall (and confidence) was tested 1 week later with the cognitive interview. Results indicated that (a) the subset of statements assigned high confidence was more accurate than the full set of statements; (b) the accuracy benefit was limited to information that forensic experts considered relevant to an investigation, whereas peripheral information showed the opposite pattern; (c) the confidence-accuracy relationship was higher for relevant than for peripheral information; (d) the focused-retrieval phase was associated with a greater proportion of peripheral and a lesser proportion of relevant information than the other phases; and (e) only about 50% of the relevant information was elicited, and most of this was elicited in Phase 1.

  8. Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics

    PubMed Central

    Baele, Guy; Li, Wai Lok Sibon; Drummond, Alexei J.; Suchard, Marc A.; Lemey, Philippe

    2013-01-01

    Recent implementations of path sampling (PS) and stepping-stone sampling (SS) have been shown to outperform the harmonic mean estimator (HME) and a posterior simulation-based analog of Akaike’s information criterion through Markov chain Monte Carlo (AICM), in Bayesian model selection of demographic and molecular clock models. Almost simultaneously, a Bayesian model averaging approach was developed that avoids conditioning on a single model but averages over a set of relaxed clock models. This approach returns estimates of the posterior probability of each clock model through which one can estimate the Bayes factor in favor of the maximum a posteriori (MAP) clock model; however, this Bayes factor estimate may suffer when the posterior probability of the MAP model approaches 1. Here, we compare these two recent developments with the HME, stabilized/smoothed HME (sHME), and AICM, using both synthetic and empirical data. Our comparison shows reassuringly that MAP identification and its Bayes factor provide similar performance to PS and SS and that these approaches considerably outperform HME, sHME, and AICM in selecting the correct underlying clock model. We also illustrate the importance of using proper priors on a large set of empirical data sets. PMID:23090976

  9. Thermophysical properties. Progress report, 1 January 1992--31 March 1993

    SciTech Connect

    Kayser, R.F.

    1993-04-01

    Numerous fluids have been identified as promising alternative refrigerants, but much of the information needed to predict their behavior as pure fluids and as components in mixtures does not exist. In particular, reliable thermophysical properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this fifteen-month project has been to provide highly accurate, selected thermophysical properties data for Refrigerants 32, 123, 124, and 125, and to use these data to fit equations of state and transport property models. The new data have filled gaps in the existing data sets and resolved problems and uncertainties that existed in and between the data sets.

  10. Thermophysical properties. Quarterly report, 1 October 1992--31 December 1992

    SciTech Connect

    Kayser, R.F.

    1993-01-01

    Numerous fluids have been identified as promising alternative refrigerants, but much of the information needed to predict their behavior as pure fluids and as components in mixtures does not exist. In particular, reliable thermophysical properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to provide highly accurate, selected thermophysical properties data for Refrigerants 32, 123, 124, and 125, and to use these data to fit simple and complex equations of state and detailed transport property models. The new data will fill gaps in the existing data sets and resolve the problems and uncertainties that exist in and between the data sets. This report describes the progress made during the fourth quarter of this fifteen-month project, which was initiated in late January, 1992.

  11. Workshop on the Thermophysical Properties of Molten Materials

    SciTech Connect

    Not Available

    1993-11-01

    The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans.

  12. Workshop on the Thermophysical Properties of Molten Materials

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans.

  13. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  14. Reference module selection criteria for accurate testing of photovoltaic (PV) panels

    SciTech Connect

    Roy, J.N.; Gariki, Govardhan Rao; Nagalakhsmi, V.

    2010-01-15

    It is shown that for accurate testing of PV panels the correct selection of reference modules is important. A detailed description of the test methodology is given. Three different types of reference modules, having different I{sub SC} (short circuit current) and power (in Wp) have been used for this study. These reference modules have been calibrated from NREL. It has been found that for accurate testing, both I{sub SC} and power of the reference module must be either similar or exceed to that of modules under test. In case corresponding values of the test modules are less than a particular limit, the measurements may not be accurate. The experimental results obtained have been modeled by using simple equivalent circuit model and associated I-V equations. (author)

  15. Thermophysical properties of USi to 1673 K

    NASA Astrophysics Data System (ADS)

    White, J. T.; Nelson, A. T.; Dunwoody, J. T.; Byler, D. D.; McClellan, K. J.

    2016-04-01

    Consideration of uranium silicide compounds as candidate nuclear reactor fuels requires the accurate knowledge of their thermophysical properties as a function of temperature. Stoichiometric USi has received little attention in the literature with regard to property characterization. This absence of data prevents modeling and simulation communities from predicting performance of uranium silicide fuels that are either nominally USi itself, or are designed with other uranium silicide phases but may include appreciable fractions of USi introduced as a result of the fuel synthesis or fabrication process. This study was undertaken to quantify the thermal expansion coefficient, specific heat capacity, thermal diffusivity, and thermal conductivity of USi from ambient conditions to just below the peritectic decomposition of the compound. Stoichiometric samples that were prepared by arc melting and powder metallurgical routes for thermophysical property measurements exhibited 94% USi phase, with the balance being U3Si5 phase that likely formed during the solidification process. An energetic phase transformation was observed at 723 K, which is attributed to the inclusion of the secondary U3Si5 phase.

  16. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp

    PubMed Central

    2014-01-01

    Over the last few decades, researchers have developed a number of empirical and theoretical models for the correlation and prediction of the thermophysical properties of pure fluids and mixtures treated as pseudo-pure fluids. In this paper, a survey of all the state-of-the-art formulations of thermophysical properties is presented. The most-accurate thermodynamic properties are obtained from multiparameter Helmholtz-energy-explicit-type formulations. For the transport properties, a wider range of methods has been employed, including the extended corresponding states method. All of the thermophysical property correlations described here have been implemented into CoolProp, an open-source thermophysical property library. This library is written in C++, with wrappers available for the majority of programming languages and platforms of technical interest. As of publication, 110 pure and pseudo-pure fluids are included in the library, as well as properties of 40 incompressible fluids and humid air. The source code for the CoolProp library is included as an electronic annex. PMID:24623957

  17. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis.

    PubMed Central

    Sieracki, M E; Reichenbach, S E; Webb, K L

    1989-01-01

    The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and

  18. Accurate and efficient loop selections by the DFIRE-based all-atom statistical potential.

    PubMed

    Zhang, Chi; Liu, Song; Zhou, Yaoqi

    2004-02-01

    The conformations of loops are determined by the water-mediated interactions between amino acid residues. Energy functions that describe the interactions can be derived either from physical principles (physical-based energy function) or statistical analysis of known protein structures (knowledge-based statistical potentials). It is commonly believed that statistical potentials are appropriate for coarse-grained representation of proteins but are not as accurate as physical-based potentials when atomic resolution is required. Several recent applications of physical-based energy functions to loop selections appear to support this view. In this article, we apply a recently developed DFIRE-based statistical potential to three different loop decoy sets (RAPPER, Jacobson, and Forrest-Woolf sets). Together with a rotamer library for side-chain optimization, the performance of DFIRE-based potential in the RAPPER decoy set (385 loop targets) is comparable to that of AMBER/GBSA for short loops (two to eight residues). The DFIRE is more accurate for longer loops (9 to 12 residues). Similar trend is observed when comparing DFIRE with another physical-based OPLS/SGB-NP energy function in the large Jacobson decoy set (788 loop targets). In the Forrest-Woolf decoy set for the loops of membrane proteins, the DFIRE potential performs substantially better than the combination of the CHARMM force field with several solvation models. The results suggest that a single-term DFIRE-statistical energy function can provide an accurate loop prediction at a fraction of computing cost required for more complicate physical-based energy functions. A Web server for academic users is established for loop selection at the softwares/services section of the Web site http://theory.med.buffalo.edu/.

  19. Thermophysical properties data on molten semiconductors

    SciTech Connect

    Nakamura, S.; Hibiya, T. )

    1992-01-01

    Thermophysical properties of molten semiconductors are reviewed. Published data for viscosity, thermal conductivity, surface tension, and other properties are presented. Several measurement methods often used for molten semiconductors are described. Recommended values of thermophysical properties are tabulated for Si, Ge, GaAs, InP, InSb, GaSh, and other compounds. This review shows that further measurements of thermophysical properties of GaAs and InP in the molten state are required. It is also indicated that a very limited amount of data on emissivity is available. Space experiments relating to thermophysical property measurements are described briefly. 77 refs., 9 figs., 3 tabs.

  20. Thermophysical properties of freons: methane series. Part 2

    SciTech Connect

    Altunin, V.V.; Geller, V.Z.; Kremenevskaya, E.A.; Perelshtein, I.I.; Petrov, E.K.

    1987-01-01

    The second volume devoted to this group of halogenated hydrocarbons features thermophysical properties of Freon-10 through Freon-14. Tables offer data on temperatures from the normal boiling point to 473 K, and pressures from 0.1 to 20 MPa. This volume contains a review of equations for the calculation of thermophysical properties of freons; thermophysical properties of Freon-10 (CCl/sub 4/); thermophysical properties of Freon-11 (CFCl/sub 3/); thermophysical properties of Freon-12 (CF/sub 2/Cl/sub 2/); thermophysical properties of Freon-13 (CF/sub 3/Cl); thermophysical properties of Freon-14 (CF/sub 4/).

  1. A European Roadmap for Thermophysical Properties Metrology

    NASA Astrophysics Data System (ADS)

    Filtz, J.-R.; Wu, J.; Stacey, C.; Hollandt, J.; Monte, C.; Hay, B.; Hameury, J.; Villamañan, M. A.; Thurzo-Andras, E.; Sarge, S.

    2015-03-01

    A roadmap for thermophysical properties metrology was developed in spring 2011 by the Thermophysical Properties Working Group in the EURAMET Technical Committee in charge of Thermometry, Humidity and Moisture, and Thermophysical Properties metrology. This roadmapping process is part of the EURAMET (European Association of National Metrology Institutes) activities aiming to increase impact from national investment in European metrology R&D. The roadmap shows a shared vision of how the development of thermophysical properties metrology should be oriented over the next 15 years to meet future social and economic needs. Since thermophysical properties metrology is a very broad and varied field, the authors have limited this roadmap to the following families of properties: thermal transport properties (thermal conductivity, thermal diffusivity, etc.), radiative properties (emissivity, absorbance, reflectance, and transmittance), caloric quantities (specific heat, enthalpy, etc.), thermodynamic properties (PVT and phase equilibria properties), and temperature-dependent quantities (thermal expansion, compressibility, etc.). This roadmap identifies the main societal and economical triggers that drive developments in thermophysical properties metrology. The key topics considered are energy, environment, advanced manufacturing and processing, public safety, security, and health. Key targets that require improved thermophysical properties measurements are identified in order to address these triggers. Ways are also proposed for defining the necessary skills and the main useful means to be implemented. These proposals will have to be revised as needs and technologies evolve in the future.

  2. Thermophysics Characterization of Kerosene Combustion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2000-01-01

    A one-formula surrogate fuel formulation and its quasi-global combustion kinetics model are developed to support the design of injectors and thrust chambers of kerosene-fueled rocket engines. This surrogate fuel model depicts a fuel blend that properly represents the general physical and chemical properties of kerosene. The accompanying gaseous-phase thermodynamics of the surrogate fuel is anchored with the heat of formation of kerosene and verified by comparing a series of one-dimensional rocket thrust chamber calculations. The quasi-global combustion kinetics model consists of several global steps for parent fuel decomposition, soot formation, and soot oxidation, and a detailed wet-CO mechanism. The final thermophysics formulations are incorporated with a computational fluid dynamics model for prediction of the combustor efficiency of an uni-element, tri-propellant combustor and the radiation of a kerosene-fueled thruster plume. The model predictions agreed reasonably well with those of the tests.

  3. Thermophysics Characterization of Kerosene Combustion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2001-01-01

    A one-formula surrogate fuel formulation and its quasi-global combustion kinetics model are developed to support the design of injectors and thrust chambers of kerosene-fueled rocket engines. This surrogate fuel model depicts a fuel blend that properly represents the general physical and chemical properties of kerosene. The accompanying gaseous-phase thermodynamics of the surrogate fuel is anchored with the heat of formation of kerosene and verified by comparing a series of one-dimensional rocket thrust chamber calculations. The quasi-global combustion kinetics model consists of several global steps for parent fuel decomposition, soot formation, and soot oxidation and a detailed wet-CO mechanism to complete the combustion process. The final thermophysics formulations are incorporated with a computational fluid dynamics model for prediction of the combustion efficiency of an unielement, tripropellant combustor and the radiation of a kerosene-fueled thruster plume. The model predictions agreed reasonably well with those of the tests.

  4. Effective Temperatures of Selected Main-Sequence Stars with the Most Accurate Parameters

    NASA Astrophysics Data System (ADS)

    Soydugan, F.; Eker, Z.; Soydugan, E.; Bilir, S.; Gökçe, E. Y.; Steer, I.; Tüysüz, M.; Šenyüz, T.; Demircan, O.

    2015-07-01

    In this study we investigate the distributions of the properties of detached double-lined binaries (DBs) in the mass-luminosity, mass-radius, and mass-effective temperature diagrams. We have improved the classical mass-luminosity relation based on the database of DBs by Eker et al. (2014a). Based on the accurate observational data available to us we propose a method for improving the effective temperatures of eclipsing binaries with accurate mass and radius determinations.

  5. Thermophysical parameters of the LBO crystal

    SciTech Connect

    Grechin, Sergei G; Zuev, A V; Fokin, A S; Kokh, Aleksandr E; Moiseev, N V; Popov, Petr A; Sidorov, Aleksei A

    2010-08-27

    The thermophysical parameters (linear thermal expansion coefficients, thermal conductivities, and heat capacity) of the lithium triborate (LBO) crystal are measured and compared with previously published data. (nonlinear-optics phenomena)

  6. Thermophysical simulations of comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    González, M.; Gutiérrez, P. J.; Lara, L. M.

    2014-03-01

    Aims: In this work, we simulate the global behavior of comet Hale-Bopp with our thermophysical model starting with simple, homogeneous conditions, so that dust mantling and the active area develop consistently depending on the properties of the simulated nucleus. We aim to obtain a range of compatibility between our model and the observations, that can be used as constraints on some of the characteristics of cometary nuclei. Methods: Our thermophysical model includes crystallization (and release of trapped CO), sublimation/recondensation, heat and gas transport through the nucleus, and dragged dust release. We run a battery of simulations with different parameter sets selected according to our current knowledge of comets and compare our results with observational data. Initial calculations are performed for a comet radius R0 = 30 km. To match the calculated integrated H2O production to the observed rate, we renormalize to a new R, which must be within 20 and 40 km, that is a range compatible with several estimates. Further selection is performed comparing the simulated water and carbon monoxide production rate profiles with the observational profiles and checking that the observational upper/lower limits of the H2O production are fulfilled. Results: We have found a reasonable agreement between our model and the data for H2O and CO production rates, without the need of distributed sources, for the following initial conditions: the nucleus is composed of water, carbon monoxide, and dust with a moderate dust proportion, tending to be icy, with a dust-to-ice ratio of between 0.5 and 1. The water ice must be initially amorphous with 15 to 20% of trapped carbon monoxide. The icy matrix has a thermal inertia between 100 and 200 J m-2 K s-1/2, considering the initial composition with crystalline ice at 140 K. The dust follows an exponential size distribution with particles from 0.1 μm to 1 mm and leaves the comet dragged by the expelled vapor with a dragging efficiency

  7. Thermophysical property data - Who needs them. [similarity principle applications in fluid mechanics and heat transfer

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    Specific examples are cited herein to illustrate the universal needs and demands for thermophysical property data. Applications of the principle of similarity in fluid mechanics and heat transfer and extensions of the principle to fluid mixtures are discussed. It becomes quite clear that no matter how eloquent theories or experiments in fluid mechanics or heat transfer are, the results of their application can be no more accurate than the thermophysical properties required to transform these theories into practice, or in the case of an experiment, to reduce the data. Present-day projects take place on such a scale that the need for international standards and mutual cooperation is evident.

  8. Thermophysical properties of HFC-143a and HFC-152a. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    Haynes, W.M.

    1994-01-01

    Numerous fluids have been identified as promising alternative refrigerants, but much of the information needed to predict their behavior as pure fluids and as components in mixtures does not exist. In particular, reliable thermophysical properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to provide highly accurate, selected thermophysical properties data for refrigerants HFC-143a (CH{sub 3}CF{sub 3}) and HFC-152a (CH{sub 3}CHF{sub 2}) and to use these data to fit complex equations of state and detailed transport property models. The new data will fill gaps in the existing data sets and resolve problems and uncertainties that exist in and between the data sets. This report describes progress during the third quarter of this twelve-month project, which was initiated on April 1, 1993.

  9. Thermophysical Properties of GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Keller, Dennis J.; Nathal, Michael (Technical Monitor)

    2000-01-01

    The thermophysical properties and electrical resistivity of GRCop-84 (Cu - 8 at.% Cr-4 at.% Nb) were measured from cryogenic temperatures to near its melting point. The data were analyzed using weighted regression to determine the properties as a function of temperature and assign appropriate confidence intervals. The results showed that the thermal expansion of GRCop-84 was significantly lower than NARloy-Z (Cu-3 wt. % Ag-0.5 wt. % Zr), the currently used thrust cell liner material. The lower thermal expansion is expected to translate into lower thermally induced stresses and increases in thrust cell liner lives between 2X and 41X over NARloy-Z. The somewhat lower thermal conductivity of GRCop-84 can be offset by redesigning the liners to utilize its much greater mechanical properties. Optimized designs are not expected to suffer from the lower thermal conductivity. Electrical resistivity data, while not central to the primary application, show that GRCop-84 has potential for applications where a combination of good electrical conductivity and strength is required.

  10. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    SciTech Connect

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-18

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1–2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S{sub 0} and A{sub 0}, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A{sub 0} to thickness variations was shown to be superior to S{sub 0}, however, the attenuation from A{sub 0} when a liquid loading was present was much higher than S{sub 0}. A{sub 0} was less sensitive to the presence of coatings on the surface of than S{sub 0}.

  11. Selective pressures for accurate altruism targeting: evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory.

    PubMed

    Clune, Jeff; Goldsby, Heather J; Ofria, Charles; Pennock, Robert T

    2011-03-01

    Inclusive fitness theory predicts that natural selection will favour altruist genes that are more accurate in targeting altruism only to copies of themselves. In this paper, we provide evidence from digital evolution in support of this prediction by competing multiple altruist-targeting mechanisms that vary in their accuracy in determining whether a potential target for altruism carries a copy of the altruist gene. We compete altruism-targeting mechanisms based on (i) kinship (kin targeting), (ii) genetic similarity at a level greater than that expected of kin (similarity targeting), and (iii) perfect knowledge of the presence of an altruist gene (green beard targeting). Natural selection always favoured the most accurate targeting mechanism available. Our investigations also revealed that evolution did not increase the altruism level when all green beard altruists used the same phenotypic marker. The green beard altruism levels stably increased only when mutations that changed the altruism level also changed the marker (e.g. beard colour), such that beard colour reliably indicated the altruism level. For kin- and similarity-targeting mechanisms, we found that evolution was able to stably adjust altruism levels. Our results confirm that natural selection favours altruist genes that are increasingly accurate in targeting altruism to only their copies. Our work also emphasizes that the concept of targeting accuracy must include both the presence of an altruist gene and the level of altruism it produces.

  12. 2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.

    PubMed

    Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen

    2016-11-15

    Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves.

  13. Thermophysical properties of lysozyme (protein) solutions

    NASA Technical Reports Server (NTRS)

    Liu, Jiaching; Yang, Wen-Jei

    1992-01-01

    Thermophysical properties of protein solutions composed of the lysozyme crystals with a 0.1 M sodium acetate and 5 percent NaCl solution as the buffer (pH = 4.0) are determined. The properties being measured include specific heat, thermal conductivity, dynamic viscosity, and surface tension. The protein concentrations are varied. Thermal diffusivity is calculated using the measured results. The purpose of the research is to measure thermophysical properties of lysozyme solutions which would serve as the data bank for controlling and modeling the crystal growth process on earth as well as in space.

  14. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids

    NASA Astrophysics Data System (ADS)

    Langstaff, D.; Gunn, M.; Greaves, G. N.; Marsing, A.; Kargl, F.

    2013-12-01

    The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids.

  15. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids.

    PubMed

    Langstaff, D; Gunn, M; Greaves, G N; Marsing, A; Kargl, F

    2013-12-01

    The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids. PMID:24387452

  16. Persistent Luminescent Nanocarrier as an Accurate Tracker in Vivo for Near Infrared-Remote Selectively Triggered Photothermal Therapy.

    PubMed

    Zheng, Bin; Chen, Hong-Bin; Zhao, Pei-Qi; Pan, Hui-Zhuo; Wu, Xiao-Li; Gong, Xiao-Qun; Wang, Han-Jie; Chang, Jin

    2016-08-24

    Optical imaging-guidance of indocyanine green (ICG) for photothermal therapy (PTT) has great latent capacity in cancer therapy. However, the conventional optical image-guidance mode has caused strong tissue autofluorescence of the living tissue, which leads to the accurate infrared light irradiation cannot be conducted. In this article, ICG and persistent luminescence phosphors (PLPs) coloaded mesoporous silica nanocarriers ((ICG+PLPs)@mSiO2) were first designed and prepared for persistent luminescent imaging-guided PTT. The (ICG+PLPs)@mSiO2 nanocarriers could significantly improve signal-to-noise ratio during luminescence imaging-guided PTT, making the PLP promising for improving the accuracy of the tumor site for photothermal therapy in vivo. This paper is likely to develop a new way for accurately regulating cancer cell death based on luminescence imaging-guided PTT selectively triggered by near-infrared (NIR)-remote. PMID:27491888

  17. Accurate characterization of delay discounting: a multiple model approach using approximate Bayesian model selection and a unified discounting measure.

    PubMed

    Franck, Christopher T; Koffarnus, Mikhail N; House, Leanna L; Bickel, Warren K

    2015-01-01

    The study of delay discounting, or valuation of future rewards as a function of delay, has contributed to understanding the behavioral economics of addiction. Accurate characterization of discounting can be furthered by statistical model selection given that many functions have been proposed to measure future valuation of rewards. The present study provides a convenient Bayesian model selection algorithm that selects the most probable discounting model among a set of candidate models chosen by the researcher. The approach assigns the most probable model for each individual subject. Importantly, effective delay 50 (ED50) functions as a suitable unifying measure that is computable for and comparable between a number of popular functions, including both one- and two-parameter models. The combined model selection/ED50 approach is illustrated using empirical discounting data collected from a sample of 111 undergraduate students with models proposed by Laibson (1997); Mazur (1987); Myerson & Green (1995); Rachlin (2006); and Samuelson (1937). Computer simulation suggests that the proposed Bayesian model selection approach outperforms the single model approach when data truly arise from multiple models. When a single model underlies all participant data, the simulation suggests that the proposed approach fares no worse than the single model approach.

  18. Facilitating the selection and creation of accurate interatomic potentials with robust tools and characterization

    NASA Astrophysics Data System (ADS)

    Trautt, Zachary T.; Tavazza, Francesca; Becker, Chandler A.

    2015-10-01

    The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM.

  19. Determination of the biotin content of select foods using accurate and sensitive HPLC/avidin binding

    PubMed Central

    Staggs, C.G.; Sealey, W.M.; McCabe, B.J.; Teague, A.M.; Mock, D.M.

    2006-01-01

    Assessing dietary biotin content, biotin bioavailability, and resulting biotin status are crucial in determining whether biotin deficiency is teratogenic in humans. Accuracy in estimating dietary biotin is limited both by data gaps in food composition tables and by inaccuracies in published data. The present study applied sensitive and specific analytical techniques to determine values for biotin content in a select group of foods. Total biotin content of 87 foods was determined using acid hydrolysis and the HPLC/avidin-binding assay. These values are consistent with published values in that meat, fish, poultry, egg, dairy, and some vegetables are relatively rich sources of biotin. However, these biotin values disagreed substantially with published values for many foods. Assay values varied between 247 times greater than published values for a given food to as much as 36% less than the published biotin value. Among 51 foods assayed for which published values were available, only seven agreed within analytical variability (720%). We conclude that published values for biotin content of foods are likely to be inaccurate. PMID:16648879

  20. Thermophysical properties of gas phase uranium tetrafluoride

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Anghaie, Samim

    1993-01-01

    Thermophysical data of gaseous uranium tetrafluoride (UF4) are theoretically obtained by taking into account dissociation of molecules at high temperatures (2000-6000 K). Determined quantities include specific heat, optical opacity, diffusion coefficient, viscosity, and thermal conductivity. A computer program is developed for the calculation.

  1. Thermophysical properties of gas phase uranium tetrafluoride

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoichi; Anghaie, Samim

    1993-07-01

    Thermophysical data of gaseous uranium tetrafluoride (UF4) are theoretically obtained by taking into account dissociation of molecules at high temperatures (2000-6000 K). Determined quantities include specific heat, optical opacity, diffusion coefficient, viscosity, and thermal conductivity. A computer program is developed for the calculation.

  2. Thermophysical properties of U3Si2 to 1773 K

    NASA Astrophysics Data System (ADS)

    White, J. T.; Nelson, A. T.; Dunwoody, J. T.; Byler, D. D.; Safarik, D. J.; McClellan, K. J.

    2015-09-01

    Use of U3Si2 in nuclear reactors requires accurate thermophysical property data to capture heat transfer within the core. Compilation of the limited previous research efforts focused on the most critical property, thermal conductivity, reveals extensive disagreement. Assessment of this data is challenged by the fact that the critical structural and chemical details of the material used to provide historic data is either absent or confirms the presence of significant impurity phases. This study was initiated to fabricate high purity U3Si2 to quantify the coefficient of thermal expansion, heat capacity, thermal diffusivity, and thermal conductivity from room temperature to 1773 K. Datasets provided in this manuscript will facilitate more detailed fuel performance modeling to assess both current and proposed reactor designs that incorporate U3Si2 .

  3. Thermophysical properties of U3Si2 to 1773K

    DOE PAGES

    White, Joshua Taylor; Nelson, Andrew Thomas; Dunwoody, John Tyler; Byler, David Darrin; Safarik, Douglas Joseph; McClellan, Kenneth James

    2015-05-08

    Use of U3Si2 in nuclear reactors requires accurate thermophysical property data to capture heat transfer within the core. Compilation of the limited previous research efforts focused on the most critical property, thermal conductivity, reveals extensive disagreement. Assessment of this data is challenged by the fact that the critical structural and chemical details of the material used to provide historic data is either absent or confirms the presence of significant impurity phases. This study was initiated to fabricate high purity U3Si2 to quantify the coefficient of thermal expansion, heat capacity, thermal diffusivity, and thermal conductivity from room temperature to 1773 K.more » Here, the datasets provided in this manuscript will facilitate more detailed fuel performance modeling to assess both current and proposed reactor designs that incorporate U3Si2.« less

  4. Thermophysical properties of uranium dioxide - Version 0 for peer review

    SciTech Connect

    Fink, J.K.; Petri, M.C.

    1997-02-01

    Data on thermophysical properties of solid and liquid UO{sub 2} have been reviewed and critically assessed to obtain consistent thermophysical property recommendations for inclusion in the International Nuclear Safety Center Database on the World Wide Web (http://www.insc.anl.gov.). Thermodynamic properties that have been assessed are enthalpy, heat capacity, melting point, enthalpy of fusion, thermal expansion, density, surface tension, and vapor pressure. Transport properties that have been assessed are thermal conductivity, thermal diffusivity, viscosity, and emissivity. Summaries of the recommendations with uncertainties and detailed assessments for each property are included in this report and in the International Nuclear Safety Center Database for peer review. The assessments includes a review of the experiments and data, an examination of previous recommendations, the basis for selecting recommendations, a determination of uncertainties, and a comparison of recommendations with data and with previous recommendations. New data and research that have led to new recommendations include thermal expansion and density measurements of solid and liquid UO{sub 2}, derivation of physically-based equations for the thermal conductivity of solid UO{sub 2}, measurements of the heat capacity of liquid UO{sub 2}, and measurements and analysis of the thermal conductivity of liquid UO{sub 2}.

  5. Estimate of the influence of thermophysical parameter deviations on SC thermal regime

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Rassamakin, B. M.; Taranova, T. A.; Khoroshylov, V. S.

    The necessity of accurate information on actual values of thermophysical properties for the SC with passive thermal control system is substantiated. On the basis of the telemetry information from the temperature sensors of the AUOS-SM-KF SC, the degradation of black enamel AK-512 is analyzed using inverse-scattering method as well as effective thermal conductivity of honeycomb panel and embedded heat-pipes is evaluated.

  6. Measurement of thermophysical properties coupled with LCA assessment for the optimization of a historical building retrofit

    NASA Astrophysics Data System (ADS)

    Bortolin, A.; Bison, P.; Cadelano, G.; Ferrarini, G.; Fortuna, S.

    2015-11-01

    Historical buildings are a significant part of the Italian building stock and, in most cases, need deep refurbishment interventions to reach the energy criteria required by the current standards. A workflow that integrates on-site surveys and building modeling is mandatory to obtain effective energy saving measures. This work describes the analysis and modeling of the San Vito alla Rivera church, a XIV century building that was damaged during 2009 L'Aquila earthquake, suffering a partial collapse of the façade and of the roof. The latter was selected for a complete restoration that could improve its thermal performance while maintaining, as much as possible, the original structure. Several elements of the roof were collected in situ in order to measure, in laboratory, its thermophysical properties applying standard techniques and alternative methods based on infrared thermography. The accurate characterization of the materials was the starting point for the estimation of the environmental impact of the retrofit aimed to reach a defined thermal transmittance. A model of the building was created with TRNSYS software to calculate the energy consumption before and after the intervention. A Life Cycle Assessment (LCA) analysis was conducted on different insulation materials to determine the one with the lowest impact.

  7. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  8. Containerless thermophysical property measurements for liquid metals

    SciTech Connect

    Xiao, Z.L.; Pryor, K.E.; Hauge, R.H.; Margrave, J.L.

    1995-04-01

    Methods for measuring the thermophysical properties of liquid metals including sample size and density, translational and vibrational modes, surface tension, emissivity and thermodynamic temperature have been developed in the authors laboratory. Sample shape, size and density are measured with a video-imaging and computer processing technique. The translational and vibrational frequencies are monitored through the use of a continuous duo-lateral position sensor, where appropriate analysis of the data provides surface tension information. A two-channel polarization modulation ellipsometer has been developed to measure the optical constants and emissivity of a levitated metal drop. Preliminary results from the use of these techniques have been promising.

  9. Thermophysical Properties of Fluids and Fluid Mixtures

    SciTech Connect

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  10. Thermophysical Properties of Platinum-Copper Alloys

    NASA Astrophysics Data System (ADS)

    Mehmood, Shahid; Klotz, Ulrich E.; Pottlacher, Gernot

    2012-12-01

    Platinum and copper along with their alloys have been used in a broad range of applications including jewelry, coinage, electrical and electronic devices, and many others. Their thermophysical properties play an important role in casting processes and are required as input data for casting simulation. The focus of this work was to investigate these properties by different methods. Platinum, copper, and four platinum-copper alloys, namely, Pt96Cu04, Pt68Cu32, Pt50Cu50, and Pt25Cu75, were investigated within this work. The melting range and thermal expansion were measured at fem by differential scanning calorimetry and dilatometry, respectively. At TU Graz, wire-shaped samples were investigated by an ohmic pulse heating technique. This technique delivers thermophysical properties of electrically conducting materials far into the liquid phase. These measurements allow the calculation of specific heat capacity and the temperature dependencies of electrical resistivity, enthalpy, and density of these alloys in the solid and liquid phases. Thermal conductivity and thermal diffusivity as a function of temperature are estimated from resistivity data using the Wiedemann-Franz law at the end of the solid phase and at the beginning of the liquid phase. The results are compared with the available literature values.

  11. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  12. Modeling thermophysical properties of food under high pressure.

    PubMed

    Otero, L; Guignon, B; Aparicio, C; Sanz, P D

    2010-04-01

    A set of well-known generic models to predict the thermophysical properties of food from its composition at atmospheric conditions was adapted to work at any pressure. The suitability of the models was assessed using data from the literature for four different food products, namely tomato paste, potato, pork, and cod. When the composition of the product considered was not known, an alternative was proposed if some thermal data at atmospheric conditions were available. Since knowledge on the initial freezing point and ice content of food are essential for the correct prediction of its thermal properties, models for obtaining these properties under pressure were also included. Our results showed that good predictions under pressure, accurate enough for most engineering calculations can be made, either from composition data or using known thermal data of the food considered at atmospheric conditions. All the equations and coefficients needed to construct the models are given throughout the text, thus readers can compose their own routines. However, these routines can also be downloaded free at http://www.if.csic.es/programas/ifiform.htm as executable programs running in Windows.

  13. Thermophysical properties of coexistent phases of plutonium

    SciTech Connect

    Freibert, Franz J; Mitchell, Jeremy N; Saleh, Tarik A; Schwartz, Dan S

    2009-01-01

    Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutal in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature Martensitic phase transformation ({delta} {yields} {alpha}{prime}) in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

  14. Thermophysical properties of plasma sprayed coatings

    NASA Technical Reports Server (NTRS)

    Wilkes, K. E.; Lagedrost, J. F.

    1973-01-01

    Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.

  15. Thermophysical properties of reaction processed zirconium diboride

    NASA Astrophysics Data System (ADS)

    Lonergan, Jason Michael

    This dissertation focuses on the thermophysical properties of high purity zirconium diboride ceramics. These ceramics have shown promise for potential applications such as leading edge materials for next generation hypersonic vehicles. The overall goal of this work was to improve the understanding of the thermal properties and maximize the thermal conductivity of ZrB2 . Four main areas were investigated in this work. First, the sintering kinetics and the intrinsic thermal properties of reaction processed ZrB 2 were studied and compared to ZrB2 produced by hot pressing commercial powders. The reaction process produced ceramics with higher thermal conductivity and enhanced densification. Next, Hf impurity concentrations were varied showing that decreasing Hf content increased thermal conductivity. Finally, isotope enrichments were performed showing that lighter isotopes increased lattice frequency and subsequently thermal conductivity. Fully enriched Zr10B2 had a thermal conductivity of 145 W/m*K which is the highest value for ZrB2 reported to date. Scattering models based on quantum mechanics were used with density functional theory to analyze the effects of impurities and isotopes on the electron and phonon density of states. Overall, this work adds insight into the fundamental mechanisms behind the thermophysical properties of ZrB2. Tailoring compositions to reduce Hf content and adjusting boron isotope concentration has led to improved thermal properties at all temperatures. The processing conditions, reported properties, and insights gained from models will help the realization of ZrB2 as a leading edge material for the next generation of hypersonic vehicles.

  16. Thermophysical Model of S-complex NEAs: 1627 Ivar

    NASA Astrophysics Data System (ADS)

    Crowell, Jenna L.; Howell, Ellen S.; Magri, Christopher; Fernandez, Yan R.; Marshall, Sean E.; Warner, Brian D.; Vervack, Ronald J.

    2015-11-01

    We present updates to the thermophysical model of asteroid 1627 Ivar. Ivar is an Amor class near Earth asteroid (NEA) with a taxonomic type of Sqw [1] and a rotation rate of 4.795162 ± 5.4 * 10-6 hours [2]. In 2013, our group observed Ivar in radar, in CCD lightcurves, and in the near-IR’s reflected and thermal regimes (0.8 - 4.1 µm) using the Arecibo Observatory’s 2380 MHz radar, the Palmer Divide Station’s 0.35m telescope, and the SpeX instrument at the NASA IRTF respectively. Using these radar and lightcurve data, we generated a detailed shape model of Ivar using the software SHAPE [3,4]. Our shape model reveals more surface detail compared to earlier models [5] and we found Ivar to be an elongated asteroid with the maximum extended length along the three body-fixed coordinates being 12 x 11.76 x 6 km. For our thermophysical modeling, we have used SHERMAN [6,7] with input parameters such as the asteroid’s IR emissivity, optical scattering law and thermal inertia, in order to complete thermal computations based on our shape model and the known spin state. We then create synthetic near-IR spectra that can be compared to our observed spectra, which cover a wide range of Ivar’s rotational longitudes and viewing geometries. As has been noted [6,8], the use of an accurate shape model is often crucial for correctly interpreting multi-epoch thermal emission observations. We will present what SHERMAN has let us determine about the reflective, thermal, and surface properties for Ivar that best reproduce our spectra. From our derived best-fit thermal parameters, we will learn more about the regolith, surface properties, and heterogeneity of Ivar and how those properties compare to those of other S-complex asteroids. References: [1] DeMeo et al. 2009, Icarus 202, 160-180 [2] Crowell, J. et al. 2015, LPSC 46 [3] Magri C. et al. 2007, Icarus 186, 152-177 [4] Crowell, J. et al. 2014, AAS/DPS 46 [5] Kaasalainen, M. et al. 2004, Icarus 167, 178-196 [6] Crowell, J. et

  17. Thermophysical and mechanical properties of SiC/SiC composites

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1998-09-01

    The key thermophysical and mechanical properties for SiC/SiC composites are summarized, including temperature-dependent tensile properties, elastic constants, thermal conductivity, thermal expansion, and specific heat. The effects of neutron irradiation on the thermal conductivity and dimensional stability (volumetric swelling, creep) of SiC is discussed. The estimated lower and upper temperatures limits for structural applications in high power density fusion applications are 400 and 1000 C due to thermal conductivity degradation and void swelling considerations, respectively. Further data are needed to more accurately determine these estimated temperature limits.

  18. An electronic system for measuring thermophysical properties of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Corwin, R. R.; Kramer, J. S.

    1975-01-01

    An electronic system is described which measures the surface temperature of a small portion of the surface of the model or sample at high speeds using an infrared radiometer. This data is processed along with heating rate data from the reference heat gauge in a small computer and prints out the desired thermophysical properties, time, surface temperature, and reference heat rate. This system allows fast and accurate property measurements over thirty temperature increments. The technique, the details of the apparatus, the procedure for making these measurements, and the results of some preliminary tests are presented.

  19. Thermophysical Properties of Fluid H2O

    NASA Astrophysics Data System (ADS)

    Kestin, J.; Sengers, J. V.; Kamgar-Parsi, B.; Sengers, J. M. H. Levelt

    1984-01-01

    In view of the important role that water substance plays in science and industry, this paper lists the thermophysical properties of fluid H2O which are most needed for engineering applications. The properties are described in a very compact form with the aid of explicit expressions for programing on a computer and for inclusion in data banks. The paper includes a fundamental equation in the form of the Helmholtz free energy expressed as an analytic function of temperature and density. This fundamental equation is a dimensionless version of the Provisional IAPS Formulation 1982 for the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use, which enables one to calculate all equilibrium thermodynamic properties in a wide range of states, but with the exclusion of a small region near the critical point. In the latter region, the equilibrium properties are described by a scaled fundamental equation in the form of the pressure as a function of chemical potential and temperature. In addition, the paper gives equations for the viscosity, thermal conductivity, and surface tension. All equations in the paper are mutually thermodynamically consistent. The set of equations and their constants listed here represents the most reliable information according to the judgment of the authors.

  20. Current thermophysical properties research on refrigerant mixtures in Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, K.

    1990-03-01

    This paper reviews the thermophysical properties of nonazeotropic refrigerant blends (NARBs), which are prospective working fluids, especially for advanced heat pump systems as well as for other industrial applications such as ultra-lowtemperature freezers for medical use, domestic air-conditioners, etc. After a brief introduction on the thermodynamic behavior of NARBs, the current state of thermophysical-properties research for NARBs, which are possible candidates for CFC alternatives, is reviewed. The thermophysical properties discussed in this paper include not only thermodynamic properties such as PVTx properties, vapor-liquid equilibria, critical parameters, etc., but also transport properties such as viscosity and thermal conductivity. Emphasis is placed on the most recent results resulting from an extensive research project partially supported by the Japanese Association of Refrigeration (JAR) on the occasion of its 60th foundation anniversary, celebrated in 1985. In view of the urgent demand to accumulate information on various thermophysical properties of CFC alternatives including R134a and R123, some of our current activities in Japan are presented. A task force to provide a set of reliable thermophysical properties for engineering use of CFC alternatives has been organized with partial support from the Ministry of International Trade and Industry, Japan.

  1. The index of orthognathic functional treatment need accurately prioritises those patients already selected for orthognathic surgery within the NHS.

    PubMed

    Shah, Rupal; Breeze, John; Chand, Mohit; Stockton, Peter

    2016-06-01

    The index of orthognathic functional treatment need (IOFTN) is a newly-proposed system to help to prioritise patients for orthognathic treatment. The five categories are similar to those used in orthodontics, but include additional parameters such as sleep apnoea and facial asymmetry. The aim of this audit was to validate the index and find out the potential future implications, should such a system ever be adopted by commissioners. We calculated the IOFTN category of 100 consecutive patients who had orthognathic surgery between 2010-14 using clinical notes, photographs, study models, and radiographs, and determined the number in categories 4 or 5, analogous to the current indications for orthodontic treatment within the NHS. Sufficient clinical information was available to categorise 59/100 patients, and 56 of the 59 (95%) were in either category 4 or 5. All three of the remaining patients (in categories 1-3) who were operated on were treated because of the anticipated favourable impact on their quality of life. The IOFTN has been proposed for use in future commissioning of orthognathic services within the NHS, and this study has confirmed its efficacy in prioritising treatment accurately, with 95% of patients being in categories 4 or 5. We recommend that the orthognathic treatment index be adapted to include additional psychosocial assessment so that patients who fall into the lower functional categories are not automatically excluded from this potentially life-changing treatment.

  2. Thermophysical Properties of a Chromium Nickel Molybdenum Steel in the Solid and Liquid Phases

    NASA Astrophysics Data System (ADS)

    Wilthan, B.; Reschab, H.; Tanzer, R.; Schützenhöfer, W.; Pottlacher, Gernot

    2008-02-01

    Numerical simulation of vacuum arc re-melting, pressurized or protective electro-slag re-melting, and ingot casting have become quite important in the metal industry. However, a major drawback of these simulation techniques is the lack of accurate thermophysical properties for temperatures above 1,500 K. Heat capacity, heat of fusion, density, and thermal conductivity are important input parameters for the heat transfer equation. Since, direct measurements of thermal conductivity of alloys in the liquid state are almost impossible, its estimation from electrical conductivity using the Wiedemann Franz law is very useful. The afore-mentioned thermophysical properties of several steels are investigated within the context of an ongoing project. Here, we present a full set of thermophysical data for the chromium nickel molybdenum steel meeting the standard DIN 1.4435 (X2CrNiMo18-14-3); these values will be used by our partner to simulate various re-melting and solidification processes. Wire-shaped samples of the steel are resistively volume-heated, as part of a fast capacitor discharge circuit. Time-resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe. The voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers, the temperature of the sample with a pyrometer, and the volumetric expansion of the wire with a fast acting CCD camera. These measurements enable the heat of fusion, the heat capacity, and the electrical resistivity to be determined as a function of temperature in the solid and liquid phases. The thermal conductivity and thermal diffusivity are estimated via the Wiedemann Franz law.

  3. Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect

    NASA Astrophysics Data System (ADS)

    Nugent, Carolyn Rosemary

    This dissertation examines the influence of solar radiation on near-Earth asteroids (NEAs); it investigates thermal properties and examines changes to orbits caused by the process of anisotropic re-radiation of sunlight called the Yarkovsky effect. For the first portion of this dissertation, we used geometric albedos pV and diameters derived from the Wide-Field Infrared Survey Explorer (WISE), as well as geometric albedos and diameters from the literature, to produce more accurate diurnal Yarkovsky drift predictions for 540 NEAs out of the current sample of ˜8800 known objects. These predictions are intended to assist observers, and should enable future Yarkovsky detections. The second portion of this dissertation introduces a new method for detecting the Yarkovsky drift. We identified and quantified semi-major axis drifts in NEAs by performing orbital fits to optical and radar astrometry of all numbered NEAs. We discuss a subset of 54 NEAs that exhibit some of the most reliable and strongest drift rates. Our selection criteria include a Yarkovsky sensitivity metric that quantifies the detectability of semi-major axis drift in any given data set, a signal-to-noise metric, and orbital coverage requirements. In 42 cases, the observed drifts (˜ 10-3 AU/Myr) agree well with numerical estimates of Yarkovsky drifts. This agreement suggests that the Yarkovsky effect is the dominant non-gravitational process affecting these orbits, and allows us to derive constraints on asteroid physical properties. We define the Yarkovsky efficiency fY as the ratio of the change in orbital energy to incident solar radiation energy, and we find that typical Yarkovsky efficiencies are ˜10-5. The final portion of this dissertation describes the development of and results from a detailed thermal model of potentially hazardous asteroid (29075) 1950 DA. This model combines radar-derived shape models of the object and fourteen 12 micron observations by the WISE spacecraft. The observations

  4. Ferrofluids: Thermophysical properties and formation of microstructures

    NASA Astrophysics Data System (ADS)

    Mousavi Khoeini, NargesSadat Susan

    This work is a combined effort of experimental and theoretical studies toward better understanding the structural and physical properties of aqueous ferrofluids containing nano-sized magnetite (iron oxide magnetic particles) of about 10nm. Ferrofluids have attracted remarkable attention mainly because their properties can be controlled by means of an externally applied magnetic field. The dispersion of nano-sized magnets in a carrier liquid exhibits superparamagnetic behaviour while retaining its fluid properties. The interplay between hydrodynamic and magnetic phenomena has made ferrofluids an extremely promising and useful tool in wide spectra of applications, from technical applications to biomedical ones. In the presence of a magnetic field, magnetic moments of the nanomagnets suspended in the host liquid are aligned toward the field direction and begin to form microstructures such as short chains, strands and long stripes. As this process advances the microstructures may collapse into bundles and thick chains and form macrostructures. Upon the removal of the magnetic field, nanoparticles will be homogeneously redistributed throughout the sample due to thermal agitation. Zero-field structures, and especially the field-induced assembly of magnetic nanoparticles, are primarily responsible for the change in physical properties of ferrofluids, including thermophysical, optical, rheological, and magnetization properties. Because of the field-induced assembly of magnetic nanoparticles in the field direction, ferrofluids become strongly anisotropic and as a result, ferrofluids can significantly enhance directional heat transfer in a thermal system. Thermophysical properties of a ferrofluid are important in studying heat transfer processes in any thermal application, making the study of their behavior a necessity. Taking into account the influence of the formation and growth of microstructures on change in properties of ferrofluids, one can find the significance of

  5. Mapping Europa's Thermophysical Properties from Galileo PPR

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Rodriguez, N. J.; Spencer, J. R.

    2009-09-01

    The Galileo Photopolarimeter-Radiometer (PPR) instrument mapped thermal infrared radiation from Jupiter and the Galilean satellites. We use the resulting brightness temperatures at a range of local times to map the thermal properties of Europa's surface, namely bolometric albedo and thermal inertia. Ten high-quality PPR observations were identified based on their coverage and lack of noise. We divided the surface of Europa into 10 degree bins and searched the high-quality data for points in each of those bins. We sorted through the bins to find those with observations near noon and at night, as comparison of these times provides the most robust constraint on thermal properties. For each of these bins, we fit a thermal model to determine the thermal inertia and bolometeric albedo of that bin. Our resulting maps of these quantities cover only the subset of the surface where sufficient data was obtained: a band near the anti-Jovian point and a thinner band near 310 W longitude. Allowing for the low resolution of our maps, our thermally-derived albedos appear to correlate with the albedo features observed in the Galileo SSI basemap. The thermal inertia maps provide a unique probe of the cm-scale properties of Europa's surface, and thus constrain surface processes. Knowledge of diurnal temperatures also allows estimation of the detectability of endogenic hot spots. The improved knowledge of Europa's surface temperature distribution provided by these temperature maps and derived thermophysical properties will also aid in the design of thermal instrumentation to search for endogenic activity on future Europa missions.

  6. Photometric selection of quasars in large astronomical data sets with a fast and accurate machine learning algorithm

    NASA Astrophysics Data System (ADS)

    Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.

    2014-03-01

    Future astronomical surveys will produce data on ˜108 objects per night. In order to characterize and classify these sources, we will require algorithms that scale linearly with the size of the data, that can be easily parallelized and where the speedup of the parallel algorithm will be linear in the number of processing cores. In this paper, we present such an algorithm and apply it to the question of colour selection of quasars. We use non-parametric Bayesian classification and a binning algorithm implemented with hash tables (BASH tables). We show that this algorithm's run time scales linearly with the number of test set objects and is independent of the number of training set objects. We also show that it has the same classification accuracy as other algorithms. For current data set sizes, it is up to three orders of magnitude faster than commonly used naive kernel-density-estimation techniques and it is estimated to be about eight times faster than the current fastest algorithm using dual kd-trees for kernel density estimation. The BASH table algorithm scales linearly with the size of the test set data only, and so for future larger data sets, it will be even faster compared to other algorithms which all depend on the size of the test set and the size of the training set. Since it uses linear data structures, it is easier to parallelize compared to tree-based algorithms and its speedup is linear in the number of cores unlike tree-based algorithms whose speedup plateaus after a certain number of cores. Moreover, due to the use of hash tables to implement the binning, the memory usage is very small. While our analysis is for the specific problem of selection of quasars, the ideas are general and the BASH table algorithm can be applied to any density-estimation problem involving sparse high-dimensional data sets. Since sparse high-dimensional data sets are a common type of scientific data set, this method has the potential to be useful in a broad range of

  7. Undercooling Limits and Thermophysical Properties in Glass Forming Alloys

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Ohsaka, Kenichi; Spjut, R. Erik

    1999-01-01

    The primary objective of this program is to produce deeply undercooled metallic liquids and to identify factors that limit undercooling and glass formation. The main research objectives are: (1) Investigating undercooling limits in glass-forming alloys and identifying factors that affect undercooling; (2) Measuring thermophysical properties and investigating the validity of the classical nucleation theory and other existing theories in the extreme undercooled states; and (3) To investigate the limits of electrostatic levitation technology in the ground base and to identify thermophysical parameters that might require reduced-g environment.

  8. Electrostatic levitation technology for thermophysical properties of molten materials

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1993-01-01

    Measurements of thermophysical properties of undercooled liquids often require some kind of levitator which isolates samples from container walls. We introduce in this presentation a high temperature/high vacuum electrostatic levitator (HTHVESL) which promises some unique capabilities for the studies of thermophysical properties of molten materials. Although substantial progress has been made in the past several months, this technology is still in the development stage, therefore, in this presentation we only focus on the present state of the HTHVESL(1) and point out other capabilities which might be realized in the near future.

  9. An accurate cluster selection function for the J-PAS narrow-band wide-field survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Dupke, R.; Cypriano, E.; Lima-Neto, G.; López-Sanjuan, C.; Varela, J.; Alcaniz, J. S.; Broadhurst, T.; Cenarro, A. J.; Devi, N. Chandrachani; Díaz-García, L. A.; Fernandes, C. A. C.; Hernández-Monteagudo, C.; Mei, S.; Mendes de Oliveira, C.; Molino, A.; Oteo, I.; Schoenell, W.; Sodré, L.; Viironen, K.; Marín-Franch, A.

    2016-03-01

    The impending Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS) will be the first wide-field survey of ≳ 8500 deg2 to reach the `stage IV' category. Because of the redshift resolution afforded by 54 narrow-band filters, J-PAS is particularly suitable for cluster detection in the range z<1. The photometric redshift dispersion is estimated to be only ˜0.003 with few outliers ≲4 per cent for galaxies brighter than i ˜ 23 AB, because of the sensitivity of narrow band imaging to absorption and emission lines. Here, we evaluate the cluster selection function for J-PAS using N-body+semi-analytical realistic mock catalogues. We optimally detect clusters from this simulation with the Bayesian Cluster Finder, and we assess the completeness and purity of cluster detection against the mock data. The minimum halo mass threshold we find for detections of galaxy clusters and groups with both >80 per cent completeness and purity is Mh ˜ 5 × 1013 M⊙ up to z ˜ 0.7. We also model the optical observable, M^{*}_CL-halo mass relation, finding a non-evolution with redshift and main scatter of σ _{M^{*}_CL | M_h}˜ 0.14 dex down to a factor 2 lower in mass than other planned broad-band stage IV surveys, at least. For the Mh ˜ 1 × 1014 M⊙ Planck mass limit, J-PAS will arrive up to z ˜ 0.85 with a σ _{M^{*}_CL | M_h}˜ 0.12 dex. Therefore, J-PAS will provide the largest sample of clusters and groups up to z ˜ 0.8 with a mass calibration accuracy comparable to X-ray data.

  10. A convenient method for calculation of ionic diffusion coefficients for accurate selected ion flow tube mass spectrometry, SIFT-MS

    NASA Astrophysics Data System (ADS)

    Dryahina, K.; Spanel, P.

    2005-07-01

    A method to calculate diffusion coefficients of ions important for the selected ion flow tube mass spectrometry, SIFT-MS, is presented. The ions, on which this method is demonstrated, include the SIFT-MS precursors H3O+(H2O)0,1,2,3, NO.+(H2O)0,1,2 and O2+ and the product ions relevant to analysis of breath trace metabolites ammonia (NH3+(H2O)0,1,2, NH4+(H2O)0,1,2), acetaldehyde (C2H4OH+(H2O)0,1,2), acetone (CH3CO+, (CH3)2CO+, (CH3)2COH+(H2O)0,1, (CH3)2CO.NO+), ethanol (C2H5OHH+(H2O)0,1,2) and isoprene (C5H7+, C5H8+, C5H9+). Theoretical model of the (12, 4) potential for interaction between the ions and the helium atoms is used, with the repulsive part approximated by the mean hard-sphere cross section and the attractive part describing ion-induced dipole interactions. The reduced zero-field mobilities at 300 K are calculated using the Viehland and Mason theory [L.A. Viehland, S.L. Lin, E.A. Mason, At. Data Nucl. Data Tables, 60 (1995) 37-95], parameterised by a simple formula as a function of the mean hard-sphere cross section, and converted to diffusion coefficients using the Einstein relation. The method is tested on a set of experimental data for simple ions and cluster ions.

  11. Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer

    PubMed Central

    Silvia, Saviozzi; Francesca, Cordero; Marco, Lo Iacono; Silvia, Novello; Giorgio V, Scagliotti; Raffaele, Calogero A

    2006-01-01

    Background In real-time RT quantitative PCR (qPCR) the accuracy of normalized data is highly dependent on the reliability of the reference genes (RGs). Failure to use an appropriate control gene for normalization of qPCR data may result in biased gene expression profiles, as well as low precision, so that only gross changes in expression level are declared statistically significant or patterns of expression are erroneously characterized. Therefore, it is essential to determine whether potential RGs are appropriate for specific experimental purposes. Aim of this study was to identify and validate RGs for use in the differentiation of normal and tumor lung expression profiles. Methods A meta-analysis of lung cancer transcription profiles generated with the GeneChip technology was used to identify five putative RGs. Their consistency and that of seven commonly used RGs was tested by using Taqman probes on 18 paired normal-tumor lung snap-frozen specimens obtained from non-small-cell lung cancer (NSCLC) patients during primary curative resection. Results The 12 RGs displayed showed a wide range of Ct values: except for rRNA18S (mean 9.8), the mean values of all the commercial RGs and ESD ranged from 19 to 26, whereas those of the microarray-selected RGs (BTF-3, YAP1, HIST1H2BC, RPL30) exceeded 26. RG expression stability within sample populations and under the experimental conditions (tumour versus normal lung specimens) was evaluated by: (1) descriptive statistic; (2) equivalence test; (3) GeNorm applet. All these approaches indicated that the most stable RGs were POLR2A, rRNA18S, YAP1 and ESD. Conclusion These data suggest that POLR2A, rRNA18S, YAP1 and ESD are the most suitable RGs for gene expression profile studies in NSCLC. Furthermore, they highlight the limitations of commercial RGs and indicate that meta-data analysis of genome-wide transcription profiling studies may identify new RGs. PMID:16872493

  12. Experimental laboratory measurement of thermophysical properties of selected coal types

    NASA Technical Reports Server (NTRS)

    Lloyd, W. G.

    1979-01-01

    A number of bituminous coals of moderate to high plasticity were examined, along with portions of their extrudates from the JPL 1.5-inch 850 F screw extruder. Portions of the condensed pyrolysis liquids released during extrusion, and of the gaseous products formed during extrusion were also analyzed. In addition to the traditional determinations, the coals and extrudates were examined in terms of microstructure (especially extractable fractions), thermal analysis (especially that associated with the plastic state), and reactivity towards thermal and catalyzed hydroliquefaction. The process of extrusion increases the fixed carbon content of coals by about 5% and tends to increase the surface area. Coals contaning 25% or more DMF-extractable material show an increase in extractables as a result of extrusion; those initially containing less than 20% extractables show a decrease as a result of extrusion. Both the raw and extruded samples of Kentucky #9 coal are highly reactive towards hydroliquefaction, undergoing conversions of 75 to 80% in 15 min and 85-94% in 60 min in a stirred clave.

  13. Ferrofluids: Thermophysical properties and formation of microstructures

    NASA Astrophysics Data System (ADS)

    Mousavi Khoeini, NargesSadat Susan

    This work is a combined effort of experimental and theoretical studies toward better understanding the structural and physical properties of aqueous ferrofluids containing nano-sized magnetite (iron oxide magnetic particles) of about 10nm. Ferrofluids have attracted remarkable attention mainly because their properties can be controlled by means of an externally applied magnetic field. The dispersion of nano-sized magnets in a carrier liquid exhibits superparamagnetic behaviour while retaining its fluid properties. The interplay between hydrodynamic and magnetic phenomena has made ferrofluids an extremely promising and useful tool in wide spectra of applications, from technical applications to biomedical ones. In the presence of a magnetic field, magnetic moments of the nanomagnets suspended in the host liquid are aligned toward the field direction and begin to form microstructures such as short chains, strands and long stripes. As this process advances the microstructures may collapse into bundles and thick chains and form macrostructures. Upon the removal of the magnetic field, nanoparticles will be homogeneously redistributed throughout the sample due to thermal agitation. Zero-field structures, and especially the field-induced assembly of magnetic nanoparticles, are primarily responsible for the change in physical properties of ferrofluids, including thermophysical, optical, rheological, and magnetization properties. Because of the field-induced assembly of magnetic nanoparticles in the field direction, ferrofluids become strongly anisotropic and as a result, ferrofluids can significantly enhance directional heat transfer in a thermal system. Thermophysical properties of a ferrofluid are important in studying heat transfer processes in any thermal application, making the study of their behavior a necessity. Taking into account the influence of the formation and growth of microstructures on change in properties of ferrofluids, one can find the significance of

  14. Thermophysical properties of materials based on silicon nitride

    SciTech Connect

    Blinder, A.V.; Bolgar, A.S.; Petrovskii, V.Ya.

    1995-09-01

    The heat capacity and thermal conductivity of materials based on Si{sub 3}N{sub 4} are investigated for the first time. The temperature dependence of the thermal diffusivity of the composites studied is calculated. The influence of structural changes on the nature of the thermophysical properties of materials based on {beta}-Si{sub 3}N{sub 4}.

  15. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed

    Christmann-Franck, Serge; van Westen, Gerard J P; Papadatos, George; Beltran Escudie, Fanny; Roberts, Alexander; Overington, John P; Domine, Daniel

    2016-09-26

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand-target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile.

  16. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed Central

    2016-01-01

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand–target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  17. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed

    Christmann-Franck, Serge; van Westen, Gerard J P; Papadatos, George; Beltran Escudie, Fanny; Roberts, Alexander; Overington, John P; Domine, Daniel

    2016-09-26

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand-target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  18. Thermophysical analysis of II-VI semiconductors by PPE calorimetry and lock-in thermography

    SciTech Connect

    Streza, M.; Dadarlat, D.; Strzałkowski, K.

    2013-11-13

    An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directly irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.

  19. Recommendations on adopting the values and correlations for calculating the thermophysical and kinetic properties of liquid lead

    NASA Astrophysics Data System (ADS)

    Savchenko, I. V.; Lezhnin, S. I.; Mosunova, N. A.

    2015-06-01

    Recent years have seen an essentially increased interest in studying the properties of liquid lead, which is primarily connected with the possibility of using it as coolant in nuclear power installations, first of all, in reactors based on fission of heavy nuclei by fast neutrons. The article presents an analysis of published data on the thermophysical and kinetic properties of lead in liquid state, the results of which served as a basis for selecting and recommending correlations to be used in carrying out scientific and engineering calculations. A general assessment of the state of experimental investigations into the thermophysical properties of liquid lead is presented. The presented value of lead solidification temperature is the maximally reliable one. The data on the boiling temperature, melting and vaporization enthalpies, and saturated vapor pressure have been determined with satisfactory accuracy. The published data on the liquid lead heat capacity differ considerably from each other; therefore, the recommended values should be experimentally checked and determined more exactly. The available experimental data on surface tension density, volumetric expansion coefficient, sound velocity, viscosity, and thermal conductivity do not cover the entire range of liquid phase existence temperatures. The temperature region above 1200 K and the crystal-liquid phase transition region are the least studied ones. Additional investigations of these properties in the above-mentioned temperature intervals are necessary. The question about the influence of impurities on the thermophysical properties of lead still remains to be answered and requires experimental investigations.

  20. Mechanical and thermophysical properties of hot-pressed SYNROC B

    SciTech Connect

    Hoenig, C.L.; Newkirk, H.W.; Otto, R.A.; Brady, R.L.; Brown, A.E.; Ulrich, A.R.; Lum, R.C.

    1981-05-06

    The optimal SYNROC compositons for use with commercial waste are reviewed. Large amounts of powder (about 2.5 kg) were prepared by convention al ceramic operations to test the SYNROC concept on a processing scale. Samples, 15.2 cm in diameter, were hot pressed in graphite, and representative samples were cut for microstructural evaluations. Measured mechanical and thermophysical properties did not vary significantly as a function of sample location and were typical of titanate ceramic materials.

  1. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2013-06-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors' knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  2. Thermophysical Properties of Automotive Metallic Brake Disk Materials

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Park, K.; Lee, S. H.; Kang, K. H.; Lim, K. T.

    2008-12-01

    The temperature distribution, the thermal deformation, and the thermal stress of automotive brake disks have quite close relations with car safety; therefore, much research in this field has been performed. However, successful and satisfactory results have not been obtained because the temperature-dependent thermophysical properties of brake disk materials are not sufficiently known. In this study, the thermophysical properties (thermal diffusivity, the specific heat, and the coefficient of thermal expansion) of three kinds of iron alloy series brake disk materials, FC250, FC170, and FCD50, and two kinds of aluminum alloy series brake disk materials, Al MMC and A356, were measured in the temperature range from room temperature to 500 °C, and the thermal conductivity was calculated using the measured thermal diffusivity, specific heat capacity, and density. As expected, the results show that the two series have significant differences in respect of the thermophysical properties, and to reduce the thermal deformation of the brake disk, the aluminum alloys with a high thermal conductivity and the iron alloys with low thermal expansion are recommended.

  3. Site change detection for RADIUS using thermophysical algebraic invariants

    NASA Astrophysics Data System (ADS)

    Nandhakumar, Nagaraj; Michel, Johnathan D.; Arnold, D. Gregory; Velten, Vincent J.; Tsihrintzis, George A.

    1996-02-01

    Research on the formulation of invariant features for model-based object recognition has mostly been concerned with geometric constructs either of the object or in the imaging process. We describe a new method that identifies invariant features computed from long wave infrared (LWIR) imagery. These features are called thermophysical invariants and depend primarily on the material composition of the object. Features are defined that are functions of only the thermophysical properties of the imaged materials. A physics-based model is derived from the principle of conservation of energy applied at the surface of the imaged regions. A linear form of the model is used to derive features that remain constant despite changes in scene parameters/driving conditions. Simulated and real imagery, as well as ground truth thermo-couple measurements were used to test the behavior of such features. A method of change detection in outdoor scenes is investigated. The invariants are used to detect when a hypothesized material no longer exists at a given location. For example, one can detect when a patch of clay/gravel has been replaced with concrete at a given site. This formulation yields promising results, but it can produce large values outside a normally small range. Therefore, we adopt a new feature classification algorithm based on the theories of symmetric alpha- stable (S(alpha) S) distributions. We show that symmetric, alpha-stable distributions model the thermophysical invariant data much better than the Gaussian model and suggest a classifier with superior performance.

  4. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  5. Selective and Accurate Determination Method of Propofol in Human Plasma by Mixed-Mode Cation Exchange Cartridge and GC-MS

    PubMed Central

    2016-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for the determination of propofol in human plasma has been developed and validated. Propofol was extracted from human plasma by using mixed-mode cation exchange/reversed-phase (MCX) cartridges. As propofol easily volatilizes during concentration, 100% methanol was injected directly into GC-MS to elute propofol. Despite avoiding concentration process of the eluted solution, lower limit of quantization (LLOQ) of propofol was 25 ng/mL. The validated method exhibited good linearity (R2 = 0.9989) with accuracy and precision −5.8%~11.7% and 3.7%~11.6%, respectively. The other validation parameters, recovery and matrix effect, ranged from 96.6% to 99.4% and 95.3% to 101.4%, respectively. Propofol standard was quantified to evaluate possible loss due to the concentration processes, nitrogen gas and centrifugal vacuum. These two concentration processes resulted in notable decrease in the quantity of propofol, signifying avoiding any concentration processes during propofol quantification. Also, to confirm suitability of the developed method, authentic human plasma samples were analyzed. The selective assay method using MCX cartridge and GC-MS facilitated quantification of propofol in plasma sample accurately by preventing any losses due to the concentration processes.

  6. Selective and Accurate Determination Method of Propofol in Human Plasma by Mixed-Mode Cation Exchange Cartridge and GC-MS

    PubMed Central

    2016-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for the determination of propofol in human plasma has been developed and validated. Propofol was extracted from human plasma by using mixed-mode cation exchange/reversed-phase (MCX) cartridges. As propofol easily volatilizes during concentration, 100% methanol was injected directly into GC-MS to elute propofol. Despite avoiding concentration process of the eluted solution, lower limit of quantization (LLOQ) of propofol was 25 ng/mL. The validated method exhibited good linearity (R2 = 0.9989) with accuracy and precision −5.8%~11.7% and 3.7%~11.6%, respectively. The other validation parameters, recovery and matrix effect, ranged from 96.6% to 99.4% and 95.3% to 101.4%, respectively. Propofol standard was quantified to evaluate possible loss due to the concentration processes, nitrogen gas and centrifugal vacuum. These two concentration processes resulted in notable decrease in the quantity of propofol, signifying avoiding any concentration processes during propofol quantification. Also, to confirm suitability of the developed method, authentic human plasma samples were analyzed. The selective assay method using MCX cartridge and GC-MS facilitated quantification of propofol in plasma sample accurately by preventing any losses due to the concentration processes. PMID:27597928

  7. Selective and Accurate Determination Method of Propofol in Human Plasma by Mixed-Mode Cation Exchange Cartridge and GC-MS.

    PubMed

    Pyo, Jae Sung

    2016-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for the determination of propofol in human plasma has been developed and validated. Propofol was extracted from human plasma by using mixed-mode cation exchange/reversed-phase (MCX) cartridges. As propofol easily volatilizes during concentration, 100% methanol was injected directly into GC-MS to elute propofol. Despite avoiding concentration process of the eluted solution, lower limit of quantization (LLOQ) of propofol was 25 ng/mL. The validated method exhibited good linearity (R (2) = 0.9989) with accuracy and precision -5.8%~11.7% and 3.7%~11.6%, respectively. The other validation parameters, recovery and matrix effect, ranged from 96.6% to 99.4% and 95.3% to 101.4%, respectively. Propofol standard was quantified to evaluate possible loss due to the concentration processes, nitrogen gas and centrifugal vacuum. These two concentration processes resulted in notable decrease in the quantity of propofol, signifying avoiding any concentration processes during propofol quantification. Also, to confirm suitability of the developed method, authentic human plasma samples were analyzed. The selective assay method using MCX cartridge and GC-MS facilitated quantification of propofol in plasma sample accurately by preventing any losses due to the concentration processes. PMID:27597928

  8. Studies of Thermophysical Properties of Metals and Semiconductors by Containerless Processing Under Microgravity

    NASA Technical Reports Server (NTRS)

    Seidel, A.; Soellner, W.; Stenzel, C.

    2012-01-01

    Electromagnetic levitation under microgravity provides unique opportunities for the investigation of liquid metals, alloys and semiconductors, both above and below their melting temperatures, with minimized disturbances of the sample under investigation. The opportunity to perform such experiments will soon be available on the ISS with the EML payload which is currently being integrated. With its high-performance diagnostics systems EML allows to measure various physical properties such as heat capacity, enthalpy of fusion, viscosity, surface tension, thermal expansion coefficient, and electrical conductivity. In studies of nucleation and solidification phenomena the nucleation kinetics, phase selection, and solidification velocity can be determined. Advanced measurement capabilities currently being studied include the measurement and control of the residual oxygen content of the process atmosphere and a complementary inductive technique to measure thermophysical properties.

  9. Establishment of computerized numerical databases on thermophysical and other properties of molten as well as solid materials and data evaluation and validation for generating recommended reliable reference data

    NASA Technical Reports Server (NTRS)

    Ho, C. Y.

    1993-01-01

    The Center for Information and Numerical Data Analysis and Synthesis, (CINDAS), measures and maintains databases on thermophysical, thermoradiative, mechanical, optical, electronic, ablation, and physical properties of materials. Emphasis is on aerospace structural materials especially composites and on infrared detector/sensor materials. Within CINDAS, the Department of Defense sponsors at Purdue several centers: the High Temperature Material Information Analysis Center (HTMIAC), the Ceramics Information Analysis Center (CIAC) and the Metals Information Analysis Center (MIAC). The responsibilities of CINDAS are extremely broad encompassing basic and applied research, measurement of the properties of thin wires and thin foils as well as bulk materials, acquisition and search of world-wide literature, critical evaluation of data, generation of estimated values to fill data voids, investigation of constitutive, structural, processing, environmental, and rapid heating and loading effects, and dissemination of data. Liquids, gases, molten materials and solids are all considered. The responsibility of maintaining widely used databases includes data evaluation, analysis, correlation, and synthesis. Material property data recorded on the literature are often conflicting, diverging, and subject to large uncertainties. It is admittedly difficult to accurately measure materials properties. Systematic and random errors both enter. Some errors result from lack of characterization of the material itself (impurity effects). In some cases assumed boundary conditions corresponding to a theoretical model are not obtained in the experiments. Stray heat flows and losses must be accounted for. Some experimental methods are inappropriate and in other cases appropriate methods are carried out with poor technique. Conflicts in data may be resolved by curve fitting of the data to theoretical or empirical models or correlation in terms of various affecting parameters. Reasons (e.g. phase

  10. First accurate experimental study of Mu reactivity from a state-selected reactant in the gas phase: the Mu + H2{1} reaction rate at 300 K

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Sukhorukov, Oleksandr; Ishida, Katsuhiko; Pratt, Francis; Fleming, Donald; Momose, Takamasa; Matsuda, Yasuyuki; Torikai, Eiko

    2015-02-01

    This paper reports on the experimental background and methodology leading to recent results on the first accurate measurement of the reaction rate of the muonium (Mu) atom from a state-selected reactant in the gas phase: the Mu + H2\\{1\\}\\to MuH + H reaction at 300 K, and its comparison with rigorous quantum rate theory, Bakule et al (2012 J. Phys. Chem. Lett. 3 2755). Stimulated Raman pumping, induced by 532 nm light from the 2nd harmonic of a Nd:YAG laser, was used to produce H2 in its first vibrational (v = 1) state, H2\\{1\\}, in a single Raman/reaction cell. A pulsed muon beam (from ‘ISIS’, at 50 Hz) matched the 25 Hz repetition rate of the laser, allowing data taking in equal ‘Laser-On/Laser-Off’ modes of operation. The signal to noise was improved by over an order of magnitude in comparison with an earlier proof-of-principle experiment. The success of the present experiment also relied on optimizing the overlap of the laser profile with the extended stopping distribution of the muon beam at 50 bar H2 pressure, in which Monte Carlo simulations played a central role. The rate constant, found from the analysis of three separate measurements, which includes a correction for the loss of {{H}2}\\{1\\} concentration due to collisional relaxation with unpumped H2 during the time of each measurement, is {{k}Mu}\\{1\\} = 9.9[(-1.4)(+1.7)] × 10-13 cm3 s-1 at 300 K. This is in good to excellent agreement with rigorous quantum rate calculations on the complete configuration interaction/Born-Huang surface, as reported earlier by Bakule et al, and which are also briefly commented on herein.

  11. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    PubMed

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  12. Thermophysical modeling of main-belt asteroids from WISE data

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbó, M.; Durech, J.; Alí-Lagoa, V.

    2014-07-01

    We determine asteroid physical parameters such as size, surface roughness, albedo, and thermal inertia by applying the implementation of the thermophysical model (TPM) of Lagerros (1996; 1997; 1998) to the thermal data obtained by the NASA WISE satellite. We present thermophysical parameters for ˜150 asteroids, which gives us so far the largest sample of asteroids with determined values of thermal inertia. On several individual cases, we discuss the reliability of our determinations and limitations of the TPM method we use. As initial shapes, we adopt convex shape models from the DAMIT database (Durech et al., 2010) and present new determinations based on combined dense and sparse-in-time disk-integrated photometry and the lightcurve inversion method (Kaasalainen & Torppa 2001; Kaasalainen et al., 2001). We use thermal data from the WISE filters W3 and W4, as well as the data observed by the IRAS satellite. However, due to the intriguing accuracy of the fluxes and larger amount of measurements, the WISE data are significantly more important and dominate the modeling. The WISE data are processed the same way as in Alí-Lagoa et al. (2014) for asteroid (341 843) 2008 EV_5. We show the main results of the study of derived thermophysical parameters within the whole population of MBAs and within several asteroid families with the main focus on the thermal inertia. The thermal inertia increases with decreasing size (as previously shown by Delbó et al., 2007), but a large range of thermal inertia values is observed within the similar size ranges between D˜10-100 km. Surprisingly, we derived very low (<10 J m^{-2} s^{-1/2} K^{-1}) thermal inertias for many asteroids (˜20) with various sizes. The range of thermal inertia values is large even within a few asteroid families.

  13. Thermal Infrared Observations and Thermophysical Modeling of Phobos

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Michael; Edwards, Christopher Scott; Mommert, Michael; Trilling, David E.; Glotch, Timothy

    2016-10-01

    Mars-observing spacecraft have the opportunity to study Phobos from Mars orbit, and have produced a sizeable record of observations using the same instruments that study the surface of the planet below. However, these observations are generally infrequent, acquired only rarely over each mission.Using observations gathered by Mars Global Surveyor's (MGS) Thermal Emission Spectrometer (TES), we can investigate the fine layer of regolith that blankets Phobos' surface, and characterize its thermal properties. The mapping of TES observations to footprints on the Phobos surface has not previously been undertaken, and must consider the orientation and position of both MGS and Phobos, and TES's pointing mirror angle. Approximately 300 fully resolved observations are available covering a significant subset of Phobos' surface at a variety of scales.The properties of the surface regolith, such as grain size, density, and conductivity, determine how heat is absorbed, transferred, and reradiated to space. Thermophysical modeling allows us to simulate these processes and predict, for a given set of assumed parameters, how the observed thermal infrared spectra will appear. By comparing models to observations, we can constrain the properties of the regolith, and see how these properties vary with depth, as well as regionally across the Phobos surface. These constraints are key to understanding how Phobos formed and evolved over time, which in turn will help inform the environment and processes that shaped the solar system as a whole.We have developed a thermophysical model of Phobos adapted from a model used for unresolved observations of asteroids. The model has been modified to integrate thermal infrared flux across each observed portion of Phobos. It will include the effects of surface roughness, temperature-dependent conductivity, as well as radiation scattered, reflected, and thermally emitted from the Martian surface. Combining this model with the newly-mapped TES

  14. The calculation of thermophysical properties of nickel plasma

    SciTech Connect

    Apfelbaum, E. M.

    2015-09-15

    The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data of measurements.

  15. Thermophysical properties of hydrogen along the liquid-vapor coexistence

    NASA Astrophysics Data System (ADS)

    Osman, S. M.; Sulaiman, N.; Bahaa Khedr, M.

    2016-05-01

    We present Theoretical Calculations for the Liquid-Vapor Coexistence (LVC) curve of fluid Hydrogen within the first order perturbation theory with a suitable first order quantum correction to the free energy. In the present equation of state, we incorporate the dimerization of H2 molecule by treating the fluid as a hard convex body fluid. The thermophysical properties of fluid H2 along the LVC curve, including the pressure-temperature dependence, density-temperature asymmetry, volume expansivity, entropy and enthalpy, are calculated and compared with computer simulation and empirical results.

  16. Infrared radiometer for measuring thermophysical properties of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Corwin, R. R.; Moorman, S. L.; Becker, E. C.

    1978-01-01

    An infrared radiometer is described which was developed to measure temperature rises of wind tunnel models undergoing transient heating over a temperature range of -17.8 C to 260 C. This radiometer interfaces directly with a system which measures the effective thermophysical property square root of rho ck. It has an output temperature fluctuation of 0.26 C at low temperatures and 0.07 C at high temperatures, and the output frequency response of the radiometer is from dc to 400 hertz.

  17. System and method to determine thermophysical properties of a multi-component gas

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2003-08-05

    A system and method to characterize natural gas hydrocarbons using a single inferential property, such as standard sound speed, when the concentrations of the diluent gases (e.g., carbon dioxide and nitrogen) are known. The system to determine a thermophysical property of a gas having a first plurality of components comprises a sound velocity measurement device, a concentration measurement device, and a processor to determine a thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the concentration measurements, wherein the number of concentration measurements is less than the number of components in the gas. The method includes the steps of determining the speed of sound in the gas, determining a plurality of gas component concentrations in the gas, and determining the thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the plurality of concentrations.

  18. Thermophysical Properties of Launch Complex 17 of the Cape Canaveral Concrete

    SciTech Connect

    Bauer, Stephen J.; Flint, Gregory Mark

    2013-09-01

    Accurate knowledge of thermophysical properties of concrete is considered extremely important for meaningful models to be developed of scenarios wherein the concrete is rapidly heated. Test of solid propellant burns on samples of concrete from Launch Complex 17 of the Cape Canaveral show spallation and fragmentation. In response to the need for accurate modeling scenarios of these observations, an experimental program to determine the permeability and thermal properties of the concrete was developed. Room temperature gas permeability measurements of Launch Complex 17 of the Cape Canaveral concrete dried at 50°C yield permeability estimates of 0.07mD (mean), and thermal properties (thermal conductivity, diffusivity, and specific heat) were found to vary with temperatures from room temperature to 300°C. Thermal conductivity ranges from 1.7-1.9 W/mK at 50°C to 1.0-1.15 W/mK at 300°C, thermal diffusivity ranges from 0.75-0.96 mm2/s at 50°C to 0.44-0.58 mm2/s at 300°C, and specific heat ranges from 1.76-2.32 /m3K to 2.00-2.50 /m3K at 300°C.

  19. Proof-of-principle tests of the REKA method for in situ thermophysical property measurement

    SciTech Connect

    Danko, G.; Emert, G.

    1995-12-01

    It would be advantageous to measure rock thermophysical properties at Yucca Mountain around the exploratory drifts at some 500-1000 points in standard rockbolt holes. The in situ values, being primary site characteristics, would be applicable to (1) validate highly speculative empirical models for rockmass effects, (2) analyze the variability of rock properties at low cost, (3) identify initial convective effects, (4) monitor rock dryout due to ventilation, and (5) support hydrothermal site characterization. A scaled version of the thermal probe method, called REKA (Rapid Evaluation of K and Alpha) has been tested in the Mackay School of Mines Thermophysical Laboratory under different, controlled conditions in order to evaluate its application potential for field measurements when rockmass effects are present. The REKA method involves a single borehole probe with a heater and temperature measurement section. An elliptical temperature field is generated by the heater, and the temperature distribution along the length of the probe is recorded at several locations and at given time intervals for a period of 24 hours. The scaled REKA probe requires an approximately 0.9 m-deep (3 ft) hole which is 0.013 m (1/2 in) in diameter. The full-size probe version that has been used in underground mines requires approximately 1.8 m-deep (6 ft) hole with (0.045 m 1 3/4 in) diameter. Other probe sizes can also be selected in order to apply the method to the standard drillholes that are used for rockbolt installations. Three laboratory test series were conducted using different, controlled conditions in two host test beds to determine the response of the REKA probe to conditions that may be present during actual in situ measurements.

  20. Thermophysical Characteristics of OSIRIS-REx Target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Yu, Liangliang; Ji, Jianghui

    2016-01-01

    In this work, we investigate the thermophysical properties, including thermal inertia, roughness fraction and surface grain size of OSIRIS-REx target asteroid (101955) Bennu by using a thermophysical model with the recently updated 3D radar-derived shape model (Nolan et al., 2013) and mid-infrared observations (Müller et al. 2012, Emery et al., 2014). We find that the asteroid bears an effective diameter of 510+6 -40 m, a geometric albedo of 0.047+0.0083 -0.0011, a roughness fraction of 0.04+0.26 -0.04, and thermal inertia of 240+440 -60 Jm-2s-0.5K-1 for our best-fit solution. The best-estimate thermal inertia suggests that fine-grained regolith may cover a large portion of Bennu's surface, where a grain size may vary from 1.3 to 31 mm. Our outcome suggests that Bennu is suitable for the OSIRIS-REx mission to return samples to Earth.

  1. Measuring the Thermophysical and Structural Properties of Glass-Forming and Quasicrystal-Forming Liquids

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Bradshaw, Richard C.; Rogers, Jan R.; Gangopadhyay, Anup K.; Kelton, Ken F.

    2006-01-01

    The thermophysical properties of glass-forming and quasicrystal-forming alloys show many interesting features in the undercooled liquid range. Some of the features in the thermophysical property curves are expected to reflect changes in the structure and coordination of the liquid. These measurements require containerless processing such as electrostatic levitation to access the undercooled liquid regime. An overview of the state of the art in measuring the thermophysical properties and structure of undercooled liquid glass-forming and quasicrystal-forming alloys will be presented, along with the status of current measurements.

  2. Thermophysical Properties and Phase Changes in the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Arafin, Sayyadul

    2015-11-01

    The correlation between phase changes within the upper mantle and the thermophysical properties of the minerals therein has been investigated by using the thermoelastic and thermodynamic equations. The depth dependence data of seismic velocities of Jeffreys-Bullen and density within the upper mantle are used as inputs in the analysis. The material characteristic properties like Debye temperature,Θ _D, adiabatic compressibility, κ S, Grüneisen parameter, ξ and the specific heat capacity, C_{{P}} computed as a function of depth show clearly two discontinuities at average depths of 414 km and 645 km which are in fair agreement with the presently accepted depths 410 km and 670 km from the preliminary reference earth model data.

  3. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-12-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.

  4. Measurement of thermophysical property of plasma forming tungsten nanofiber layer

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yagi, Takashi; Kobayashi, Kenichi; Tokitani, Masayuki; Ohno, Noriyasu

    2016-05-01

    Thermophysical property of a nanostructured tungsten layer formed on a tungsten film was investigated. A 1-µm-thick tungsten film deposited on a quartz glass substrate was irradiated with a high density helium plasma at the surface temperature of 1500 K. The plasma irradiation led to the formation of highly porous fiberform-nanostructured tungsten layer with a thickness of 3.5 µm. Impulse heating was applied at the interface of the film/substrate, and transient heat diffusion was observed using a pulsed light heating thermoreflectance apparatus. The thermoreflectance signals clearly differed between the nanostructure existing and mechanically removed regions; the difference can be attributed to thermal effusivity of the nanostructured tungsten layer. The estimated thermal conductivity of the nanostructured tungsten decreases to ∼2% of that of bulk when the density of the nanostructure is assumed to be ∼6% of the bulk value.

  5. Thermophysical properties of some key solids: An update

    NASA Astrophysics Data System (ADS)

    White, G. K.; Minges, M. L.

    1997-09-01

    In 1985, the CODATA Bulletin published a Report of its Task Group on Thermophysical Properties of Solids which analyzed available data on, and gave recommended values for, the heat capacity of Cu, Fe, W, and Al2O3, the thermal expansion of Cu, Si, W, and Al2O3, the electrical resistivity of Cu, Fe, Pt, and W, the thermal conductivity of Al, Cu, Fe, and W, and the absolute thermopower of Pb, Cu, Pt, and W. The analysts for the different properties were R. B. Castanet, S. J. Collocott, P. D. Desai, C. Y. Ho, J. G. Hust, R. B. Roberts, C. A. Swenson, and G. K. White. The present paper is an updated version of the earlier report and includes more recent data which change some of the recommended values. notably the heat capacity of Cu and W and the thermal expansion of Si and W.

  6. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  7. Thermophysical Modeling of WISE Data on 2010 AB78

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Mainzer, A.; Grav, T.

    2010-10-01

    2010 AB78 was the first NEO discovered by WISE in early January. It came back through the WISE scan path in February and again in July, appearing in a total of 89 frames. The lines-of-sight to the asteroid cover 180 deg in RA and 70 deg in Dec. These data are used to constrain the rotation rate, rotation axis, thermal inertia and size of 2010 AB78 using the rotating cratered thermophysical model of Wright (2007). All data were obtained on the same side of the WISE scan circle, limiting our ability to constrain the thermal inertia. The effect of poorly constrained parameters on the size is handled using a Monte Carlo Markov Chain approach.

  8. Thermophysical characteristics of EuF2.136 crystal

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Moiseev, N. V.; Karimov, D. N.; Sorokin, N. I.; Sulyanova, E. A.; Sobolev, B. P.

    2015-09-01

    Single crystals of EuF2.136 solid solution with a f luorite-type structure (sp. gr. , a = 5.82171(5) Å) have been grown by the Bridgeman method from a melt. Their thermal conductivity k( T) in the temperature range of 50-300 K and heat capacity С Р ( T) at 63-300 K have been studied experimentally for the first time. At T = 300 K the thermophysical characteristics are as follows: thermal conductivity k = 2.13 W/(m K), heat capacity С Р = 73 J/(mol K), and phonon mean free path l ≈ 11 Å. The temperature dependences of entropy S( T), enthalpy H( T), and phonon mean free path l( T) in EuF2.136 crystal are determined.

  9. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Anderson, William G.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  10. Thermophysical Properties of Molten Silicon Measured by JPL High Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ohsaka, K.

    1999-01-01

    Five thermophysical properties of molten silicon measured by the High Temperature Electrostatic Levitator (HTESL) at JPL are presented. The properties measured are the density, the constant pressure specific heat capacity, the hemispherical total emissivity, the surface tension and the viscosity.

  11. Recommended values of the thermophysical properties of eight alloys, their major constituents and oxides

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.

    1967-01-01

    Reference work provides in tabular and graphical form the thermophysical properties of basic alloys, their constituents and oxides. This is useful for personnel who deal with extreme temperature environments.

  12. Galileo PPR Observations of Europa: Correlations of Thermophysical Properties with Surface Features

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Spencer, J. R.; Howett, C. J. A.

    2012-03-01

    We will compare Galileo Photopolarimeter-Radiometer (PPR) temperature data to thermal models and a geologic map to determine if there are correlations between thermophysical properties and surface features.

  13. Thermophysical Properties of Undercooled Alloys: An Overview of the Molecular Simulation Approaches

    PubMed Central

    Lv, Yong J.; Chen, Min

    2011-01-01

    We review the studies on the thermophysical properties of undercooled metals and alloys by molecular simulations in recent years. The simulation methods of melting temperature, enthalpy, specific heat, surface tension, diffusion coefficient and viscosity are introduced and the simulated results are summarized. By comparing the experimental results and various theoretical models, the temperature and the composition dependences of the thermophysical properties in undercooled regime are discussed. PMID:21339987

  14. Thermophysical properties of undercooled alloys: an overview of the molecular simulation approaches.

    PubMed

    Lv, Yong J; Chen, Min

    2011-01-10

    We review the studies on the thermophysical properties of undercooled metals and alloys by molecular simulations in recent years. The simulation methods of melting temperature, enthalpy, specific heat, surface tension, diffusion coefficient and viscosity are introduced and the simulated results are summarized. By comparing the experimental results and various theoretical models, the temperature and the composition dependences of the thermophysical properties in undercooled regime are discussed.

  15. Shape and Rotation Modeling and Thermophysical Analysis of Near-Earth Asteroid (1917) Cuyo

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Lowry, S. C.; Rozek, A.; Duddy, S. R.; Rozitis, B.; Wolters, S. D.; Snodgrass, C.; Fitzsimmons, A.; Green, S.; Hicks, M. D.

    2013-10-01

    We are conducting an ESO Large Program that includes optical photometry, thermal-IR observations, and optical-NIR spectroscopy of selected NEAs. Among the principal goals of the program are shape and spin-state modeling, and searching for YORP-induced changes in rotation periods. One of our targets is asteroid (1917) Cuyo, a near-Earth asteroid from the Amor group. We carried out an extensive observing campaign on Cuyo between April 2010 and April 2013, operating primarily at the ESO 3.6m NTT for optical photometry, and the 8.2m VLT at Paranal for thermal-IR imaging. Further optical observations were acquired at the ESO 2.2m telescope, the Palomar 200" Hale telescope (California), JPL’s Table Mountain Observatory (California) and the Faulkes Telescope South (Australia). We obtained optical imaging data for rotational lightcurves throughout this period, as the asteroid passed through a wide range of observational geometries, conducive to producing a good shape model and spin state solution. The preliminary shape and spin state model indicates a nearly spherical shape and a rotation pole at ecliptic longitude λ = 53° ± 20° and latitude β = -37° ± 10° (1-sigma error bars are approximate). The sidereal rotation period was measured to be 2.6899522 ± (3 × 10^-7) hours. Linkage with earlier lightcurve data shows possible evidence of a small change in rotation rate during the period 1989-2013. We applied the NEATM thermal model (Harris A., Icarus 131, 291, 1998) to our VLT thermal-IR measurements (8-19.6 μm), obtained in September and December 2011. The derived effective diameter ranges from 3.4 to 4.2 km, and the geometric albedo is 0.16 (+0.07, -0.04). Using the shape model and thermal fluxes we will perform a detailed thermophysical analysis using the new Advanced Thermophysical Model (Rozitis, B. & Green, S.F., MNRAS 415, 2042, 2011; Rozitis, B. & Green, S.F., MNRAS 423, 367, 2012). This work was performed in part at the Jet Propulsion Laboratory under a

  16. Thermophysical Model of S-complex NEAs: 1627 Ivar

    NASA Astrophysics Data System (ADS)

    Crowell, Jenna; Howell, Ellen S.; Magri, Christopher; Fernandez, Yanga R.; Marshall, Sean E.; Warner, Brian D.; Vervack, Ronald J., Jr.

    2016-01-01

    We present an updated thermophysical model of 1627 Ivar, an Amor class near Earth asteroid (NEA) with a taxonomic type of Sqw [1]. Ivar's large size and close approach to Earth in 2013 (minimum distance 0.32 AU) provided an opportunity to observe the asteroid over many different viewing angles for an extended period of time, which we have utilized to generate a shape and thermophysical model of Ivar, allowing us to discuss the implications that these results have on the regolith of this asteroid. Using the software SHAPE [2,3], we updated the nonconvex shape model of Ivar, which was constructed by Kaasalainen et al. [4] using photometry. We incorporated 2013 radar data and CCD lightcurves using the Arecibo Observatory's 2380Mz radar and the 0.35m telescope at the Palmer Divide Station respectively, to create a shape model with higher surface detail. We found Ivar to be elongated with maximum extended lengths along principal axes of 12 x 5 x 6 km and a rotation rate of 4.795162 ± 5.4 * 10-6 hrs [5]. In addition to these radar data and lightcurves, we also observed Ivar in the near IR using the SpeX instrument at the NASA IRTF. These data cover a wide range of Ivar's rotational longitudes and viewing geometries. We have used SHERMAN [6,7] with input parameters such as the asteroid's IR emissivity, optical scattering law, and thermal inertia, in order to complete thermal computations based on our shape model and known spin state. Using this procedure, we find which reflective, thermal, and surface properties best reproduce the observed spectra. This allows us to characterize properties of the asteroid's regolith and study heterogeneity of the surface. We will compare these results with those of other S-complex asteroids to better understand this asteroid type and the uniqueness of 1627 Ivar.[1] DeMeo et al. 2009, Icarus 202, 160-180 [2] Magri, C. et al. 2011, Icarus 214, 210-227. [3] Crowell, J. et al. 2014, AAS/DPS 46 [4] Kaasalainen, M. et al. 2004, Icarus 167, 178

  17. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    PubMed

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    state, but is important for the thermophysical properties of helium. Such properties computed from our potential have uncertainties that are generally significantly smaller (sometimes by nearly two orders of magnitude) than those of the most accurate measurements and can be used to establish new metrology standards based on properties of low-density helium.

  18. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    NASA Astrophysics Data System (ADS)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  19. Thermophysical and structural measurements of liquid metallic alloys using electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Bendert, James Christopher

    In the study of the glass transition, the properties of high temperature liquids in their equilibrium and supercooled states may provide clues to the question of why certain compositions form glasses more easily than others. In metallic alloys such measurements are difficult due to the high reactivity and high melting temperatures of these liquids. Levitation methods provide a solution this problem by isolating liquid alloys from their environments. Here, the techniques of data acquisition and analysis for thermophysical property measurements under electrostatic levitation are presented, with demonstrative examples from select compositions from the Cu-Zr system. The development of techniques and software for the analysis of X-ray diffraction data acquired using electrostatic levitation is also discussed and applied to amorphous Zr58.5Cu15.6Ni12.8Al10.3Nb 2.8. The results of systematic studies of density and viscosity as a function of temperature in Cu100-xZrx (x = 30-55) reveal maxima in thermal expansion coefficient and kinetic strength at the best compositions of the alloy system. Interpretation of these results predicted a temperature dependence of the thermal expansion coefficient on supercooling. This prediction was confirmed by high precision measurements of density in Zr58.5Cu 15.6Ni12.8Al10.3Nb2.8 and Zr57 Cu15.4Ni12.6Al10Nb5 on cooling through the glass transition during electrostatic levitation.

  20. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  1. Mechanical and thermophysical properties of rare-earth monopnictides

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Singh, Devraj; Jain, Sushil Kumar

    2016-08-01

    The present paper addresses the temperature dependent elastic, mechanical and thermal properties of NaCl structure (B1 type) holmium monopnictides, HoX (X = N, P, As, Sb, Bi) computed using Coulomb and Born repulsive potentials extended up to second nearest neighbors. The second-order elastic constants (SOECs) of single crystals HoX are calculated as a function of temperature in the range 0-500K. The compounds under study are found to be brittle in nature. Beside these calculations, the theoretical hardness has been obtained for various rare-earth monopnictides using the elastic properties in the polycrystalline approach. The obtained hardness values indicate HoN to be hard, but cannot be considered super hard. The anisotropic nature of the chosen single crystal is an important physical quantity in studying the directional dependent thermal properties such as Debye temperature and thermal conductivity computed using ultrasonic velocities along different crystallographic directions. The obtained results are discussed in correlation with mechanical and thermophysical properties of similar materials.

  2. Thermophysical characterization of composite materials under transient heating conditions

    NASA Technical Reports Server (NTRS)

    Roetling, J.; Hanson, J.

    1972-01-01

    Thermophysical property measurements were made under transient heating conditions on several materials being considered for use in SCOUT rocket motors. The materials included were ATJ graphite, MX 2600 silica phenolic, FM 5272 cellulose phenolic, and two carbon-carbon composites: CARBITEX 700 and RPP-4. The ATJ was included as a reference or base line material to check performance of the transient tests as it was not expected to be sensitive to heating rate. Measurements included in the program were thermal conductivity, strength, compressive stress-strain (carbon-carbon only), thermal expansion and the effective thermal expansion under partially restrained conditions. Development of this latter measurement was a major part of the program. It consisted of partially restraining the expansion of a specimen as it was heated, measuring the load and strain which occurred (together with a simultaneous modulus determination by superimposing a small cyclic load) and using these quantities to calculate what the effective thermal expansion would have to be to produce the observed stress and deformation. For materials which are sensitive to heating rate, such as reinforced phenolics, it was believed that this would provide a more realistic determination of the thermal expansion as it more nearly simulates the conditions experienced in end use.

  3. Ab initio modelling of methane hydrate thermophysical properties.

    PubMed

    Jendi, Z M; Servio, P; Rey, A D

    2016-04-21

    The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production. PMID:27019976

  4. Thermophysical properties of sulfonium- and ammonium-based ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Luís, Andreia; Lopes-da-Silva, José A.; Freire, Mara G.; Carvalho, Pedro J.; Coutinho, João A. P.

    2014-01-01

    Experimental data for the density, viscosity, refractive index and surface tension of four sulfonium- and ammonium-based Ionic Liquids (ILs) with the common bis(trifluoromethylsulfonyl)imide anion were measured in the temperature range between 288.15 and 353.15 K and at atmospheric pressure. The ILs considered include butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N4441][NTf2], diethylmethylsulfonium bis(trifluoromethylsulfonyl)imide, [S221][NTf2], and triethylsulfonium bis(trifluoromethylsulfonyl)imide, [S222][NTf2]. Based on the gathered results and on data taken from literature, the impact of the cation isomerism and of the size of the aliphatic tails, as well as the effect resulting from the substitution of a nitrogen by a sulfur atom as the cation central atom, on the thermophysical properties of sulfonium- and ammonium-based ILs is here discussed. Remarkably, more symmetric cations present a lower viscosity for the same, and sometimes even for higher, alkyl chain lengths at the cation. Additional derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperature for the investigated ILs were also estimated and are presented and discussed. PMID:25516634

  5. Thermophysical properties of ethylene glycol mixture based CNT nanofluids

    NASA Astrophysics Data System (ADS)

    Camarano, D. M.; Mansur, F. A.; Araújo, T. L. C. F.; Salles, G. C.; Santos, A. P.

    2016-07-01

    Nanofluids are produced by dispersing nanometer-scale solid particles into base liquids such as water, ethylene glycol, etc. The thermal quadrupole method is utilized to determine the thermophysical properties of materials. By this technique, the thermal diffusivity and conductivity of different nanofluids containing the surfactants humic acid, sodium salt of humic acid and sodium carboxymethyl cellulose and multi-wall carbon nanotubes were evaluated at room temperature and at 75 oC. Values of thermal diffusivity varying in the range from 9.60x10-8 m2s-1 to 1.46x10-7 m2s-1 and thermal conductivity from 0.26 Wm-1K-1 to 41 Wm-1K-1 were obtained. As main conclusions, it was noted that nanofluids exhibit superior heat transfer characteristics than the conventional heat transfer fluid and the thermal conductivity is enhanced by 50% for the nanofluid containing 0.0275 mg/mL of sodium salt of humic acid + ethylene glycol, at the temperature of 25 oC.

  6. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    NASA Technical Reports Server (NTRS)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  7. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile, and accurate RNA structure analysis

    PubMed Central

    Smola, Matthew J.; Rice, Greggory M.; Busan, Steven; Siegfried, Nathan A.; Weeks, Kevin M.

    2016-01-01

    SHAPE chemistries exploit small electrophilic reagents that react with the 2′-hydroxyl group to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues based on the ability of reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as for simple model RNAs. This protocol describes the experimental steps, implemented over three days, required to perform SHAPE probing and construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. These steps include RNA folding and SHAPE structure probing, mutational profiling by reverse transcription, library construction, and sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots, and provides useful troubleshooting information, often within an hour. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures, and visualize probable and alternative helices, often in under a day. We illustrate these algorithms with the E. coli thiamine pyrophosphate riboswitch, E. coli 16S rRNA, and HIV-1 genomic RNAs. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles, and entire transcriptomes. The straightforward MaP strategy greatly expands the number, length, and complexity of analyzable RNA structures. PMID:26426499

  8. PredPPCrys: Accurate Prediction of Sequence Cloning, Protein Production, Purification and Crystallization Propensity from Protein Sequences Using Multi-Step Heterogeneous Feature Fusion and Selection

    PubMed Central

    Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning

    2014-01-01

    X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed ‘PredPPCrys’ using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of

  9. A Class of Multiresponsive Colorimetric and Fluorescent pH Probes via Three Different Reaction Mechanisms of Salen Complexes: A Selective and Accurate pH Measurement.

    PubMed

    Cheng, Jinghui; Gou, Fei; Zhang, Xiaohong; Shen, Guangyu; Zhou, Xiangge; Xiang, Haifeng

    2016-09-19

    We report a class of multiresponsive colorimetric and fluorescent pH probes based on three different reaction mechanisms including cation exchange, protonation, and hydrolysis reaction of K(I), Ca(II), Zn(II), Cu(II), Al(III), and Pd(II) Salen complexes. Compared with traditional pure organic pH probes, these complex-based pH probes exhibited a much better selectivity due to the shielding function of the filled-in metal ion in the complex. Their pH sensing performances were affected by the ligand structure and the central metal ion. This work is the first report of "off-on-on'-off" colorimetric and fluorescent pH probes that possess three different reaction mechanisms and should inspire the design of multiple-responsive probes for important analytes in biological systems.

  10. Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer

    PubMed Central

    Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Abstract. Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy. PMID:25473883

  11. Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer

    NASA Astrophysics Data System (ADS)

    Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel

    2014-12-01

    Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy.

  12. Influence of the Duration of Thermal Action on the Errors in Determining the Thermophysical Characteristics of Ceramic Materials by a Laser Pulse Method

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Kats, M. D.

    2016-05-01

    An analysis of the errors involved in determining the thermophysical characteristics of a special-purpose ceramic material — zirconium carbide — is made. It is shown that the errors of determining the heat capacity and thermal diffusivity of the indicated material under conditions corresponding to the implementation of the laser pulse method vary nonmonotonically depending on the pulse duration. The possibility of attaining minimum values of methodical errors by appropriately selecting the thickness of a sample and of the time of its heating is shown.

  13. Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Mielke, P.; Weinert, S.; Bignall, G.; Sass, I.

    2016-09-01

    Greywacke of the Waipapa and Torlesse (Composite) Terrane form the basement of the Taupo Volcanic Zone (TVZ), New Zealand. Together with inferred buried lavas, domes and igneous complexes they are likely to be the dominant rock type prevailing at depths > 4 km beneath the TVZ. A fundamental understanding of the rock properties of the deep formations is of utmost importance for the exploration of deep unconventional geothermal resources. An outcrop analogue study was conducted to improve the understanding of the thermo-physical rock properties of likely deep buried rock formations beneath the TVZ. A total of 145 core samples were taken at 10 locations inside and outside the TVZ and their grain and bulk density, porosity, matrix permeability, bulk thermal conductivity and specific heat capacity, and the compressional and shear wave velocities measured on oven-dry samples. Additional tests of the unconfined compressive strength were conducted for selected greywacke samples to quantify their mechanical rock strength. The obtained data indicates that the thermo-physical rock properties are mainly controlled by porosity, and minor by mineralogy, texture and grain size. Samples from Waipapa-type and Torlesse-type greywacke exhibit minor rheological differences, with Waipapa-type greywacke having lowest porosity (about 1% vs. 3%) and highest bulk thermal conductivity (2.5 W m- 1 K- 1 vs. 1.7 W m- 1 K- 1) and specific heat capacity (0.8 kJ kg- 1 K- 1 vs. 0.7 kJ kg- 1 K- 1). Matrix permeability is < 1E-16 m2 for all greywacke samples. Tested lavas exhibit heterogeneous rock properties due to their wide range of porosity (< 1% up to 32%). The thermo-physical rock properties were tested at laboratory conditions (ambient temperature and pressure), which do not reflect the in situ conditions at greater depth. With depth, thermal conductivity and acoustic wave velocity are likely to decrease caused by micro fractures resulting from thermal cracking of the rock, while specific

  14. Multiplexed direct genomic selection (MDiGS): a pooled BAC capture approach for highly accurate CNV and SNP/INDEL detection.

    PubMed

    Alvarado, David M; Yang, Ping; Druley, Todd E; Lovett, Michael; Gurnett, Christina A

    2014-06-01

    Despite declining sequencing costs, few methods are available for cost-effective single-nucleotide polymorphism (SNP), insertion/deletion (INDEL) and copy number variation (CNV) discovery in a single assay. Commercially available methods require a high investment to a specific region and are only cost-effective for large samples. Here, we introduce a novel, flexible approach for multiplexed targeted sequencing and CNV analysis of large genomic regions called multiplexed direct genomic selection (MDiGS). MDiGS combines biotinylated bacterial artificial chromosome (BAC) capture and multiplexed pooled capture for SNP/INDEL and CNV detection of 96 multiplexed samples on a single MiSeq run. MDiGS is advantageous over other methods for CNV detection because pooled sample capture and hybridization to large contiguous BAC baits reduces sample and probe hybridization variability inherent in other methods. We performed MDiGS capture for three chromosomal regions consisting of ∼ 550 kb of coding and non-coding sequence with DNA from 253 patients with congenital lower limb disorders. PITX1 nonsense and HOXC11 S191F missense mutations were identified that segregate in clubfoot families. Using a novel pooled-capture reference strategy, we identified recurrent chromosome chr17q23.1q23.2 duplications and small HOXC 5' cluster deletions (51 kb and 12 kb). Given the current interest in coding and non-coding variants in human disease, MDiGS fulfills a niche for comprehensive and low-cost evaluation of CNVs, coding, and non-coding variants across candidate regions of interest.

  15. Thermophysical Properties of the Lunar Surface from Diviner Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Bandfield, Joshua; Vasavada, Ashwin; Ghent, Rebecca; Siegler, Matthew; Williams, Jean-Pierre; Greenhagen, Benjamin; Aharonson, Oded; Paige, David

    2013-04-01

    Orbital thermal infrared measurements are sensitive to a variety of properties of the Moon's surface layer, including rock abundance, regolith cover and porosity, and small-scale surface roughness. With its multiple spectral channels and large dynamic temperature range, the Diviner Lunar Radiometer [1] on NASA's LRO spacecraft has enabled the first global, high-resolution maps of these important thermophysical properties. Here we present a summary of the results of Diviner's thermophysical investigation thus far. Maps of surface rock abundance show low typical values of <1% with higher abundances for recent craters and their blocky ejecta, as well as mass wasting on crater walls, rilles, and impact melt features [2]. The extent and abundance of surface rocks decrease systematically with crater age, and rocky surfaces are only preserved on the youngest craters (<1 Ga). We used nighttime regolith surface temperatures and eclipse cooling observations to constrain profiles of density and conductivity in the upper ~1 m, revealing a remarkably homogeneous subsurface structure [3]. Geographic variations in upper regolith density are nonetheless apparent. For example, buried rocks are suggested within young impact ejecta showing strong radar backscatter, high subsurface density, and a lack of surface rocks [2,4]. Rock fragmentation and regolith accumulation rates can be quantified by comparison of the Diviner data with published crater ages, yielding typical erosion rates which rapidly decrease from ~10 kg m-2 yr-1 for crater ages of ~1 Ma to ~1 mg m-2 yr-1 at ~1 Ga [4]. Variations in upper regolith density correlate with the ages of individual mare basalt units, suggesting this layer is actively processed by impacts on geologically short timescales, which may reveal age relationships previously unseen [5]. Vast cold regions surrounding fresh impact craters during lunar night (termed "cold spots") are only apparent in thermal infrared data [2]. These features cannot be

  16. Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties

    SciTech Connect

    Manohar S. Sohal; Matthias A. Ebner; Piyush Sabharwall; Phil Sharpe

    2010-03-01

    The purpose of this report is to provide a review of thermodynamic and thermophysical properties of candidate molten salt coolants, which may be used as a primary coolant within a nuclear reactor or heat transport medium from the Next Generation Nuclear Plant (NGNP) to a processing plant, for example, a hydrogen-production plant. Thermodynamic properties of four types of molten salts, including LiF-BeF2 (67 and 33 mol%, respectively; also known as FLiBe), LiF-NaF-KF (46.5, 11.5, and 52 mol%, also known as FLiNaK), and KCl-MgCl2 (67 and 33 mol%), and sodium nitrate-sodium nitrite-potassium nitrate (NaNO3–NaNO2–KNO3, (7-49-44 or 7-40-53 mol%) have been investigated. Limitations of existing correlations to predict density, viscosity, specific heat capacity, surface tension, and thermal conductivity, were identified. The impact of thermodynamic properties on the heat transfer, especially Nusselt number was also discussed. Stability of the molten salts with structural alloys and their compatibility with the structural alloys was studied. Nickel and alloys with dense Ni coatings are effectively inert to corrosion in fluorides but not so in chlorides. Of the chromium containing alloys, Hastelloy N appears to have the best corrosion resistance in fluorides, while Haynes 230 was most resistant in chloride. In general, alloys with increasing carbon and chromium content are increasingly subject to corrosion by the fluoride salts FLiBe and FLiNaK, due to attack and dissolution of the intergranular chromium carbide. Future research to obtain needed information was identified.

  17. GASPLOT - A computer graphics program that draws a variety of thermophysical property charts

    NASA Technical Reports Server (NTRS)

    Trivisonno, R. J.; Hendricks, R. C.

    1977-01-01

    A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine.

  18. Some thermophysical properties of paraffin wax as a thermal storage medium

    SciTech Connect

    Haji-Sheikh, A.; Eftekhar, J.; Lou, D.Y.S.

    1982-01-01

    An experimental study is conducted to determine the suitability of paraffin wax SUNTECH P116 as a phase change material for storage of thermal energy. Certain temperature dependent thermophysical properties in the neighborhood of the melting point useful for this study, but not adequately available in the literature, are measured. They include thermal conductivity, density, thermal expansion coefficient, and viscosity. It is observed that the thermal conductivity of paraffin wax, in solid phase, is not a monotonic function of temperature as reported in the literature. Other thermophysical properties of the liquid phase measured vary monotonically with temperature.

  19. Top loading cryogen-free apparatus for low temperature thermophysical properties measurement

    NASA Astrophysics Data System (ADS)

    Liu, Huiming; Gong, Linghui; Xu, Dong; Huang, Chuanjun; Zhang, Meimei; Xu, Peng; Li, Laifeng

    2014-07-01

    The thermophysical properties of matter, especially properties at low temperature, are extremely important for engineering and materials science. Traditional liquid helium based cryostats are in many cases no longer affordable to operate due to the high liquid helium cost. This paper describes the design and test results of a cryogen-free cryostat, based on a GM cryocooler, with 50 mm diameter top loading sample facilities for thermophysical properties measurement at low temperature. The sample temperature range is tuned between 2.6 K and 300 K and it can be continuously controlled with a high resolution. Moreover, the modular sample holder can be adapted to multiple properties measurement.

  20. Thermophysical and hydric properties estimation based on a double inverse analysis

    NASA Astrophysics Data System (ADS)

    Derbal, R.; Defer, D.

    2016-09-01

    This article presents a dual method for the determination of thermophysical and hydric properties of porous materials. First empirical relationships between thermophysical properties and moisture content were determined. Then, a laboratory setup allowed for temperature recording during a drying test. Empirical relationships and recorded data are the algorithm inputs. The two stages algorithm is based on a finite difference discretization and a parametric estimation. Autoclaved Aerated Concrete was tested in this case study and positive estimation results with 8 % accuracy are encouraging outcome for next use of the method.

  1. Experimental investigation on thermo-physical properties and overall performance of MWCNT-water nanofluid flow inside horizontal coiled wire inserted tubes

    NASA Astrophysics Data System (ADS)

    Akhavan-Behabadi, M. A.; Shahidi, Mohamad; Aligoodarz, M. R.; Ghazvini, Mohammad

    2016-04-01

    The present study is aimed to measure and analyze the thermo-physical properties and overall performance of MWCNT-water nanofluid in turbulent flow regimes under constant heat flux conditions inside horizontal coiled wire inserted tubes. For this purpose, stable MWCNT-water nanofluids with different particle weight fractions of 0.05, 0.1 and 0.2 % as well as deionized water were utilized as the working fluids. It was found that the existing theoretical models could not predict the thermo-physical property values accurately, especially in case of specific heat capacity. Therefore, new empirical correlations are presented based on the obtained experimental results to predict such properties for the nanofluids. In addition, the overall performance of heat transfer techniques considered in this paper was evaluated based on thermal performance factor. The results revealed that thermal performance factor for all cases are greater than unity which indicate that simultaneous usage of nanofluids and wire coil inserts enhances the heat transfer without huge penalty in pumping power. Hence, using nanofluids as the working fluid in combination with coiled wire inserted tubes can be considered for some practical applications.

  2. Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris

    2003-01-01

    The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.

  3. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    ERIC Educational Resources Information Center

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  4. Thermophysical Property Measurement of Molten Silicon by High Temperature Electrostatic Levitation

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1995-01-01

    Several thermophysical properties of molten silicon measured by the High Temperature Electrostatic Levitator (HTESL) are presented. They are density, constant pressure specific heat capacity, hemispherical total emissivity, and surface tension. Over the temperature region investigated (i.e. 1350 K < Tm < 1825 K), the measured liquid density is expressed by a quadratic expression:.

  5. Thermophysical properties of enzyme clarified Lime (Citrus aurantifolia L) juice at different moisture contents.

    PubMed

    Manjunatha, S S; Raju, P S; Bawa, A S

    2014-11-01

    Thermophysical properties of enzyme clarified lime (Citrus aurantifolia L.) juice were evaluated at different moisture contents ranging from 30.37 % to 89.30 % (wet basis) corresponding to a water activity range of 0.835 to 0.979. The thermophysical properties evaluated were density, Newtonian viscosity, thermal conductivity, specific heat and thermal diffusivity. The investigation showed that density and Newtonian viscosity of enzyme clarified lime juice decreased significantly (p < 0.05) with increase in moisture content and water activity, whereas thermal conductivity and specific heat increased significantly (p < 0.05) with increase in moisture content and water activity and the thermal diffusivity increased marginally. Empirical mathematical models were established relating to thermophysical properties of enzyme clarified lime juice with moisture content/water activity employing regression analysis by the method of least square approximation. Results indicated the existence of strong correlation between thermophysical properties and moisture content/water activity of enzyme clarified lime juice, a significant (p < 0.0001) negative correlation between physical and thermal properties was observed. PMID:26396296

  6. Thermophysical Properties of Molten Germanium Measured by the High Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    Thermophysical properties of molten germanium such as the density, the thermal expansion coefficient, the hemisphereical total emissivity, the constant pressure specific heat capacity, the surface tension, and the electrical resistivity have been measured using the High Temperature Electrostatic Levitator at JPL.

  7. Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Paige, D. A.

    2012-01-01

    The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.

  8. Thermophysical properties of enzyme clarified Lime (Citrus aurantifolia L) juice at different moisture contents.

    PubMed

    Manjunatha, S S; Raju, P S; Bawa, A S

    2014-11-01

    Thermophysical properties of enzyme clarified lime (Citrus aurantifolia L.) juice were evaluated at different moisture contents ranging from 30.37 % to 89.30 % (wet basis) corresponding to a water activity range of 0.835 to 0.979. The thermophysical properties evaluated were density, Newtonian viscosity, thermal conductivity, specific heat and thermal diffusivity. The investigation showed that density and Newtonian viscosity of enzyme clarified lime juice decreased significantly (p < 0.05) with increase in moisture content and water activity, whereas thermal conductivity and specific heat increased significantly (p < 0.05) with increase in moisture content and water activity and the thermal diffusivity increased marginally. Empirical mathematical models were established relating to thermophysical properties of enzyme clarified lime juice with moisture content/water activity employing regression analysis by the method of least square approximation. Results indicated the existence of strong correlation between thermophysical properties and moisture content/water activity of enzyme clarified lime juice, a significant (p < 0.0001) negative correlation between physical and thermal properties was observed.

  9. Measurements and data of thermophysical properties traceable to a metrological standard

    NASA Astrophysics Data System (ADS)

    Baba, Tetsuya

    2010-04-01

    In order to improve the performance of devices, components and systems, where heat is generated, transported, stored or converted to other types of energy, reliable thermal design and simulation are required using reliable thermophysical property data. In order to produce reliable thermophysical property data systematically and continually, the international and national standards of thermophysical properties must be established and the measurement methods should be evaluated and standardized, and the measuring instruments must be calibrated by reference materials traceable to the international or national standard. Users search for and purchase a particular grade of material which satisfies the properties, performances and technical specifications required. In order to guarantee fair commerce and trade, values of thermophysical properties should be measured traceable to the national standard. Thus, the establishment of an international standard is required satisfying the global CIPM MRA under the metric convention, and then, the global and regional framework to examine calibration and measurement capability of national metrology institutes (NMIs). A domestic traceability system in each country should be established and the quality management system of the NMI and calibration laboratories should be constructed based on ISO 17025.

  10. Thermophysical properties of BKC 44306 and BKC 44307 PMDI urethane solid and foams

    SciTech Connect

    Bauer, Stephen J.; Flint, Gregory Mark; Urquhart, Alexander; Mondy, Lisa Ann

    2014-02-01

    Accurate knowledge of thermophysical properties of urethane foam is considered extremely important for meaningful models and analyses to be developed of scenarios wherein the foam is heated. Its performance at temperature requires a solid understanding of the foam material properties at temperature. Also, foam properties vary with density/porosity. An experimental program to determine the thermal properties of the two foams and their parent solid urethane was developed in order to support development of a predictive model relating density and thermal properties from first principles. Thermal properties (thermal conductivity, diffusivity, and specific heat) of the foam were found to vary with temperatures from 26°C to 90°C. Thermal conductivity generally increases with increasing temperature for a given initial density and ranges from .0433 W/mK at 26°C to .0811 W/mK at 90°C; thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from .4101 mm2/s at 26°C to .1263 mm2/s at 90°C; and specific heat generally increases with increasing temperature for a given initial density and ranges from .1078 MJ/m3K at 26°C to .6323 MJ/m3K at 90°C. Thermal properties of the solid urethane were also found to vary with temperatures from 26°C to 90°C. Average thermal conductivity generally increases with increasing temperature for a given initial density and ranges from 0.126 to 0.131 W/mK at 26°C to 0.153 to 0.157 W/mK at 90°C; average thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from 0.142 to 0.147 mm2/s at 26°C to 0.124 to 0.125 mm2/s at 90°C; and average specific heat generally increases with increasing temperature for a given initial density and ranges from 0.889 to 0.899 MJ/m3K to 1.229 to 1.274 MJ/m3K at 90°C. The density of both foam and solid urethane decreased

  11. Point flow sensor study for electronic gas energy metering. Phase 1. Thermophysical and fluid-dynamic data. Final report, March 15, 1994-July 15, 1996

    SciTech Connect

    Bonne, U.; Vesovic, V.; Wakeham, W.A.

    1996-07-15

    The set published properties of gases constituting natural gas, at pressures up to 300 basr (4500 psi) ad for -40 less than or equal to T less than or equal to 250 deg C, is not accurate or consistent enough for members of hte gas industry, research groups, NGV-automotive engineers, and meter manufacturers to nondestructively calibrate existing, affordable, combustionless, on-line and in situ microsensors for their applications. Therefore, this study was set up to (1) establish a consistent set of thermophysical properties (thermal conductivity, viscosity, and isobaric heat capacity) of pure and mixed gas constituents of natural gases and (2) prove the validity and limitations of using one or more point sensors in suitable flow channels for the determination of total fluid flow.

  12. Atomic structure and thermophysical properties of molten silver-copper oxide air braze alloys

    NASA Astrophysics Data System (ADS)

    Hardy, John Steven

    The Ag-CuOx materials system is the basis for a family of filler alloys used in a recently developed ceramic-metal joining technique referred to as air brazing, which is a brazing process that can be carried out in ambient air rather than under the vacuum or inert to reducing gas conditions required for conventional brazing methods. This research was conducted to elucidate the atomic coordination and selected thermophysical properties of these materials as a function of temperature when they are in the salient liquid state in air, since this is when the critical steps of wetting and spreading occur in the joining process. A series of alloys was selected spanning the entire length of the phase diagram including the pure end members, Ag and CuOx; alloys that form the two constituent single phase liquids; and alloys for which the two liquid phases coexist in the miscibility gap of the phase diagram. The oxygen content of the liquid alloys in air was measured using thermogravimetry. The oxidative weight gain of 99.999% pure metallic precursors was measured while simultaneously accounting for the concurrent silver volatility using a method that was developed in the course of the study. The surface tension and mass density were measured using the maximum bubble pressure method. The number density was calculated based on the information gained from the oxygen content and mass density measurements. For compositions that were amenable to laser heating, containerless high energy x-ray scattering measurements of the liquid atomic coordination were performed using a synchrotron beamline, an aerodynamic levitator, and laser heating. For the remaining compositions x-ray scattering measurements were performed in a beamline-compatible furnace. The two liquid phases that form in this materials system have distinct atomic coordinations characterized by an average of nearly two-fold coordinated ionic metal-oxygen pairs in the CuOx-rich liquid and nearly eight-fold coordinated atomic

  13. Comparison of approaches for measuring the mass accommodation coefficient for the condensation of water and sensitivities to uncertainties in thermophysical properties.

    PubMed

    Miles, Rachael E H; Reid, Jonathan P; Riipinen, Ilona

    2012-11-01

    We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation

  14. Comparison of Approaches for Measuring the Mass Accommodation Coefficient for the Condensation of Water and Sensitivities to Uncertainties in Thermophysical Properties

    PubMed Central

    2012-01-01

    We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation

  15. Comparison of approaches for measuring the mass accommodation coefficient for the condensation of water and sensitivities to uncertainties in thermophysical properties.

    PubMed

    Miles, Rachael E H; Reid, Jonathan P; Riipinen, Ilona

    2012-11-01

    We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation

  16. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  17. Thermophysical properties of a monolayer tissue with respect to freeze-drying.

    PubMed

    Ferrando, M; Glasmacher, B; Rau, G

    2002-01-01

    Conservation of tissue structures by means of freeze-drying is still limited as the complex mechanisms taking place at molecular/cellular level are not fully understood. The successful application of hydroxyethyl starch (HES) in combination with maltose, sucrose, and trehalose as stabilizers of lipid bilayers/membranes in red blood cells suggests an extended use of this mixture of cryoprotectants. The effectiveness of such cryoprotectant solutions has been linked to changes in the thermophysical properties of cellular structures. This work deals, in a first step, with the thermophysical properties of a model monolayer tissue--onion epidermis--in binary aqueous solutions of dissacharides. First and second order phase transitions, i.e. melting, crystallisation, and glass transition, are characterised by means of Modulated Differential Scanning Calorimetry (MDSC). PMID:12451873

  18. On the Effect of Thermophysical Properties of Clothing on the Heat Strain Predicted by PHS Model.

    PubMed

    d'Ambrosio Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe; Malchaire, Jacques

    2016-03-01

    Procedures and equations reported in ISO 9920 for the correction of basic thermophysical clothing properties taking into account pumping effect and air movement are very different from those used by the Predicted Heat Strain (PHS) model in ISO 7933. To study the effect of these differences on the assessment of hot environments using the PHS model, an analysis focusing on the modelling of the dynamic thermal insulation and the vapour resistance of the clothing reported in ISO 9920 and ISO 7933 standards will be discussed in this paper. The results are useful evidence to start a discussion on the best practice for dealing with clothing thermophysical properties and underline the need to harmonize the entire set of standards in the field of the Ergonomics of the Thermal Environment. ISO 7933 is presently under revision.

  19. Microstructural and thermophysical properties of U-6 wt.%Zr alloy for fast reactor application

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Nair, M. R.; Ravi, K.; Dash, Smruti; Kutty, T. R. G.; Kumar, Arun; Singh, R. P.

    2012-08-01

    The microstructural and high temperature behavior of U-6 wt.%Zr alloy has been investigated in this study. U-6 wt.%Zr alloy sample for this study was prepared by following injection casting route. The thermophysical properties like coefficient of thermal expansion, specific heat, thermal conductivity of the above alloy were determined. The hot-hardness data of the U-6 wt.%Zr alloy was also generated from room temperature to 973 K. Apart from that, the fuel-clad chemical compatibility with T91 grade steel was also studied by diffusion couple experiment. No studies have been reported on U-6 wt.%Zr alloy. This paper aims at filling up the gap on characterization and thermophysical property evaluation of U-6 wt.%Zr alloy.

  20. Thermophysical Properties Measurements of Zr62Cu20Al10Ni8

    NASA Technical Reports Server (NTRS)

    Bradshaw, Richard C.; Waren, Mary; Rogers, Jan R.; Rathz, Thomas J.; Gangopadhyay, Anup K.; Kelton, Ken F.; Hyers, Robert W.

    2006-01-01

    Thermophysical property studies performed at high temperature can prove challenging because of reactivity problems brought on by the elevated temperatures. Contaminants from measuring devices and container walls can cause changes in properties. To prevent this, containerless processing techniques can be employed to isolate a sample during study. A common method used for this is levitation. Typical levitation methods used for containerless processing are, aerodynamically, electromagnetically and electrostatically based. All levitation methods reduce heterogeneous nucleation sites, 'which in turn provide access to metastable undercooled phases. In particular, electrostatic levitation is appealing because sample motion and stirring are minimized; and by combining it with optically based non-contact measuring techniques, many thermophysical properties can be measured. Applying some of these techniques, surface tension, viscosity and density have been measured for the glass forming alloy Zr62Cu20Al10Ni8 and will be presented with a brief overview of the non-contact measuring method used.

  1. Determination of the thermophysical properties of titanium alloys from liquid bath profiles

    NASA Astrophysics Data System (ADS)

    Leder, M. O.; Gorina, A. V.; Kornilova, M. A.; Tarenkova, N. Yu.; Kondrashov, E. N.

    2015-12-01

    An experimental-theoretical technique is proposed to determine the thermophysical properties of titanium alloys in the liquid phase. This technique is based on analyzing the liquid bath profiles in fully solidified ingots after vacuum arc remelting (VAR). The experimental part of the technique makes it possible to easily estimate liquid bath contours without any markers, such as radioactive isotopes. The theoretical part is based on solving the inverse heat conduction problem for a solidifying ingot. The developed technique is used to determine some thermophysical parameters of the liquid bath and boundary conditions for VAR of titanium alloys Ti-6Al-4V, Ti-5Cr, and Ti-3Fe, since it is extremely difficult to measure them directly.

  2. Photothermal method using a pyroelectric sensor for thermophysical characterization of agricultural and biological samples

    NASA Astrophysics Data System (ADS)

    Frandas, A.; Dadarlat, Dorin; Chirtoc, Mihai; Jalink, Henk; Bicanic, Dane D.; Paris, D.; Antoniow, Jean S.; Egee, Michel; Ungureanu, Costica

    1998-07-01

    The photopyroelectric method in different experimental configurations was used for thermophysical characterization of agricultural and biological samples. The study appears important due to the relation of thermal parameters to the quality of foodstuffs (connected to their preservation, storage and adulteration), migration profiles in biodegradable packages, and the mechanism of desiccation tolerance of seeds. Results are presented on the thermal parameters measurement and their dependence on temperature and water content for samples such as: honey, starch, seeds.

  3. Thermophysical and mechanical properties of Fe-(8-9)%Cr reduced activation steels

    SciTech Connect

    Zinkle, S.J.; Robertson, J.P.; Klueh, R.L.

    1998-09-01

    The key thermophysical and mechanical properties for 8--9%Cr reduced activation ferritic/martensitic steels are summarized, including temperature-dependent tensile properties in the unirradiated and irradiated conditions, stress-rupture behavior, elastic constants, thermal conductivity, thermal expansion, specific heat, and ductile-to-brittle transition temperature. The estimated lower and upper temperatures limits for structural applications are 250 and 550 C due to radiation hardening/embrittlement and thermal creep considerations, respectively.

  4. Surface thermophysical properties determination of OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Yu, LiangLiang; Ji, Jianghui

    2015-09-01

    In this work, we investigate the thermophysical properties of OSIRIS-REx target asteroid (101955) Bennu (hereafter Bennu), where thermal inertia plays an important role in understanding the nature of the asteroid's surface, and will definitely provide substantial information for the sampling return mission. Using a thermophysical model incorporating, the recently updated 3D radar-derived shape model and mid-infrared observations of Spitzer-PUI, Spitzer-IRAC, Herschel/PACS and ESO VLT/VISIR, we derive the surface thermophysical properties of Bennu. The asteroid has an effective diameter of 510^{+6}_{-40} m, a geometry albedo of 0.047^{+0.0083}_{-0.0011}, a roughness fraction of 0.04^{+0.26}_{-0.04} and thermal inertia of 240^{+440}_{-60} Jm^{-2} s^{-0.5} K^{-1} for a best-fitting solution at 1σ level. The best-estimate thermal inertia indicates that fine-grained regolith may cover a large area of Bennu's surface, with a grain size that may range from 1.3 to 31 mm, and our outcome further supports that Bennu would be a suitable target for the OSIRIS-REx mission to return samples from the asteroid to Earth.

  5. A device for rapid determination of thermophysical properties of phase-change wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.

    1976-01-01

    An experimental method for direct measurement of the thermophysical properties of wind tunnel heat transfer models was developed. The technique consists of placing the model under a bank of high intensity, radiant heaters so that the fast opening water cooled shutters, which isolate the heater bank from the model, allow a step-input heat rate to be applied. Measurements of the heat transfer rate coupled with a surface-temperature time history of the same material are sufficient to determine the material thermophysical properties. An infrared thermometer is used to measure model surface temperature and a slug calorimeter provides heat transfer rate information. The output from the infrared thermometer and calorimeter is then fed into an analog-to-digital converter which provides digitized data to a computer. This computer then calculates combined thermophysical properties and a teleprinter prints out all the data. Thus, results are available within 7 minutes of test initiation as opposed to the weeks or months required using prior techniques.

  6. Thermophysical Properties of Alloy 617 from 25°C to 1000°C

    SciTech Connect

    B. H. Rabin; R. N. Wright; W. D. Swank

    2013-09-01

    Key thermophysical properties needed for the successful design and use of Alloy 617 in steam generator and heat exchanger applications have been measured experimentally, and results are compared with literature values and results obtained from some other commercial Ni–Cr alloys and model materials. Specifically, the thermal diffusivity, thermal expansion coefficient, and specific heat capacity have been measured for Alloy 617 over a range of temperatures, allowing calculation of thermal conductivity up to 1000 degrees C. It has been found that the thermal conductivity of Alloy 617 exhibits significant deviation from monotonic behavior in the temperature range from 600 degrees C to 850 degrees C, the temperatures of interest for most heat transfer applications. The non-linear behavior appears to result primarily from short-range order/disorder phenomena known to occur in the Ni–Cr system. Similar deviation from monotonic behavior was observed in the solid solution Ni–Cr-W Alloy 230, and lesser deviations were observed in iron based Alloy 800H and an austenitic stainless steel. Measured thermophysical property data are provided for four different heats of Alloy 617, and it is shown that property variations between the four different heats are not significant. Measurements were also obtained from Alloy 617 that was aged for up to 2000 h at 750 degrees C, and it was found that this aging treatment does not significantly influence the thermophysical properties.

  7. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  8. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  9. Development of a one-dimensional electro-thermophysical model of the snow sea-ice system: Arctic climate processes and microwave remote sensing applications

    NASA Astrophysics Data System (ADS)

    Hanesiak, John Michael

    Snow covered sea ice plays a crucial role in the earth's climate. This includes polar biology, local, regional and world weather and ocean circulations as well as indigenous people's way of life. Recent research has indicated significant climate change in the polar regions, especially the Canadian arctic. Polar climate processes are also among the most poorly misrepresented within global circulation models (GCMs). The goal of this thesis is to improve our understanding and capability to simulate arctic climate processes in a predictive sense. An electro-thermophysical relationship exists between the thermophysical characteristics (climate variables and processes) and electrical properties (dielectrics) that control microwave remote sensing of snow-covered first- year sea ice (FYI). This work explicitly links microwave dielectrics and a thermodynamic model of snow and sea ice by addressing four key issues. These includes: (1)ensure the existing one-dimensional sea ice models treat the surface energy balance (SEB) and snow/ice thermodynamics in the appropriate time scales we see occurring in field experiments, (2)ensure the snow/ice thermodynamics are not compromised by differences in environmental and spatial representation within components of the SEB, (3)ensure the snow layer is properly handled in the modeling environment, and (4)how we can make use of satellite microwave remote sensing data within the model environment. Results suggest that diurnal processes are critical and need to be accounted for in modeling snow-covered FYI, similar to time scales acting in microwave remote sensing signatures. Output from the coupled snow sea-ice model provides the required input to microwave dielectric models of snow and sea ice to predict microwave penetration depths within the snow and sea ice (an Electro-Thermophysical model of the Snow Sea Ice System (ETSSIS)). Results suggest ETSSIS can accurately simulate microwave penetration depths in the cold dry snow season and

  10. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  11. Development of measurement capabilities for the thermophysical properties of energy-related fluids. Annual report, December 1, 1993--November 30, 1994

    SciTech Connect

    Not Available

    1993-08-17

    Objectives are to develop state-of-the-art experimental apparatus for measuring the thermophysical properties of a wide range of fluids and fluid mixtures important to the energy, chemical, and energy-related industries, and carry out benchmark measurements on key systems. Measurement capabilities to be developed cover transport properties, thermodynamic properties, phase equilibria properties, and dielectric properties. The new apparatus will make it possible to study a wide range of complex fluid systems under conditions that have been previously inaccessible. Specific measurement capabilities to be developed are: Thermal Conductivity Apparatus, Vibrating Wire Viscometer, Dual-Sinker Densimeter, High-Temperature Vibrating Tube Densimeter, Dynamic Phase Equilibria Apparatus, Apparatus for Dilute Solutions, Total-Enthalpy Flow Calorimeter, Dielectric Constant Apparatus. The research also includes benchmark experimental measurements on pure and mixed alternative refrigerants, aqueous solutions, and carefully selected systems consisting of species of diverse size (methane + neopentane) and polarity (methane + ammonia) important for development of predictive models for energy-related fluids.

  12. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2015-10-01

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  13. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    PubMed

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  14. The role of hydrogeological conditions and thermophysical properties on the evaluation of geothermal exchange potential in Central Italy

    NASA Astrophysics Data System (ADS)

    Chicco, Jessica; Verdoya, Massimo; Verda, Vittorio; Invernizzi, Chiara

    2016-04-01

    Within the framework of the EU strategy for sustainable development, the exploitation of the shallow subsurface geothermal resources is of great relevance. In this regard, a multidisciplinary investigation aimed at optimising the performance of borehole heat exchangers is in progress in the Marche region (Central Italy). In particular, an improvement of the present-day knowledge about thermo-physical parameters of the sedimentary deposits forming the Umbria-Marche succession, as well as the hydrogeological setting and geological structures, is fundamental in order to obtain a better picture of the regional geothermal exchange potential. Therefore, we carried out accurate laboratory measurements of thermal conductivity, volume heat capacity, thermal diffusivity, porosity, and density of both core and outcrop samples of the main geological formations of Marche, Moreover, the mineralogical content was defined through XRD diffraction. Because climatic variations can influence the moisture content of the shallower portions of the subsoil, the groundwater physical properties (temperature and electrical conductivity above all), have been continuously monitored for several years. Based on the collected data, a detailed thermo-fluid dynamic modelling was carried out under different, hydrogeological and geo-structural conditions to calculate the effect of groundwater velocity on the heat exchange between the boreholes and the ground. A relation, based on well-known non-dimensional parameters, was obtained in order to correct the purely conductive heat transfer on the basis of groundwater velocity. The preliminary results show that groundwater plays an important role, giving rise to higher heat exchange coefficients. This improves the present-day knowledge of the geothermal exchange potential in the region and overtakes previous analyses that only considered heat conduction.

  15. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  16. Selective accurate-mass-based analysis of 11 oxy-PAHs on atmospheric particulate matter by pressurized liquid extraction followed by high-performance liquid chromatography and magnetic sector mass spectrometry.

    PubMed

    Walgraeve, C; Demeestere, K; De Wispelaere, P; Dewulf, J; Lintelmann, J; Fischer, K; Van Langenhove, H

    2012-02-01

    An innovative analytical method based on high-performance liquid chromatography and atmospheric pressure chemical ionization magnetic sector mass spectrometry was developed and optimized to determine trace concentrations of 11 compounds belonging to the group of the seldom-analyzed oxy-PAHs (phenanthrene-9,10-dione, chrysene-5,6-dione, benzo[a]pyrene-4,5-dione, benzo[a]pyrene-1,6-dione, benzo[a]pyrene-3,6-dione, benzo[a]pyrene-6,12-dione, 4-oxa-benzo[def]chrysene-5-one, pyrene-1-carboxaldehyde, benzo[de]anthracene-7-one, benzo[a]anthracene-7,12-dione, and napthacene-5,12-dione) on airborne particulate matter (PM(10)). The mass spectrometer was operated in multiple ion detection mode, allowing for selective accurate mass detection (mass resolution of 12,000 full width at half maximum) of the oxy-PAHs characteristic ions. Optimization of both the vaporizer (450 °C) and capillary temperature (350 °C) resulted into instrumental detection limits in the range between 7 (benzo[a]pyrene-1,6-dione) and 926 pg (benzo[a]anthracene-7,12-dione). The advanced pressurized liquid extraction (PLE) and the more traditionally used ultrasonic extraction (USE) were compared using ethyl acetate as an extraction solvent. For both techniques, high recoveries from spiked quartz fiber filters (PLE, 82-110%; USE, 67-97%) were obtained. Recoveries obtained from real PM(10) samples were also high (76-107%), and no significant matrix effects (ME) on the ionization process (enhancement or suppression) were found (ME, 89-123%). Method limits of quantification (S/N = 10) were in the range between 2 and 336 pg/m(3). This method was used to analyze real PM samples collected at several urban and rural locations in the Antwerp area. For the first time, concentrations for Belgium are provided. Concentrations of individual oxy-PAHs are in the lower pictograms per cubic meter to 6 ng/m(3) range. High concentration differences between individual compounds are found as exemplified by the 75th percentile

  17. Non-Newtonian flow between concentric cylinders calculated from thermophysical properties obtained from simulations

    SciTech Connect

    Narayan, A.P.; Rainwater, J.C.; Hanley, H.J.M. |

    1995-03-01

    A study of the Weissenberg effect (rod climbing in a stirred system) based on nonequilibrium molecular dynamics (NEMD) is reported. Simulation results from a soft-sphere fluid are used to obtain a self-consistent free-surface profile of the fluid of finite compressibility undergoing Couette flow between concentric cylinders. A numerical procedure is then applied to calculate the height profile for a hypothetical fluid with thermophysical properties of the soft-sphere liquid and of a dense colloidal suspension. The height profile calculated is identified with shear thickening and the forms of the viscometric functions. The maximum climb occurs between the cylinders rather than at the inner cylinder.

  18. Anomalies in the Thermophysical Properties of Undercooled Glass-Forming Alloys

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Rogers, Jan R.; Kelton, Kenneth F.; Gangopadhyay, Anup

    2008-01-01

    The surface tension, viscosity, and density of several bulk metallic glass-forming alloys have been measured using noncontact techniques in the electrostatic levitation facility (ESL) at NASA Marshall Space Flight Center. All three properties show unexpected behavior in the undercooled regime. Similar deviations were previously observed in titanium-based quasicrystal-forming alloys,but the deviations in the properties of the glass-forming alloys are much more pronounced. New results for anomalous thermophysical properties in undercooled glass-forming alloys will be presented and discussed.

  19. Thermophysical and mechanical properties of V-(4-5)%Cr-(4-5)%Ti alloys

    SciTech Connect

    Zinkle, S.J.

    1998-03-01

    Solid solution V-Cr-Ti alloys exhibit a good combination of high thermal conductivity, adequate tensile strength, and low thermal expansion. The key thermophysical and mechanical properties for V-(4-5)%Cr-(4-5)%Ti alloys are summarized in this report. Some of these data are available in the ITER Materials Properties Handbook (IMPH), whereas other data have been collected from recent studies. The IMPH is updated regularly, and should be used as the reference point for design calculations whenever possible.

  20. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    SciTech Connect

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  1. Prediction of Mass Evaporation of During Measurements of Thermophysical Properties Using an Electrostatic Levitator

    NASA Astrophysics Data System (ADS)

    Lee, J.; Matson, D. M.

    2014-10-01

    This paper describes the prediction of mass evaporation of at% alloys during thermophysical property measurements using the electrostatic levitator at NASA Marshall Space Flight Center in Huntsville, AL. The final mass, final composition, and activity of individual component are considered in the calculation of mass evaporation. The predicted reduction in mass and variation in composition are validated with six ESL samples which underwent different thermal cycles. The predicted mass evaporation and composition shift show good agreement with experiments with the maximum relative errors of 4.8 % and 1.7 %, respectively.

  2. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    SciTech Connect

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  3. Distribution and thermophysical properties of n-heptacosane molecules confined in carbon nanotube

    NASA Astrophysics Data System (ADS)

    Tong, Xuan; Wu, Shuying; Peng, Deqi; Gong, Shuguang

    2016-06-01

    Molecular dynamics (MD) simulations were performed to provide an insight about the molecule distribution and thermophysical properties of n-heptacosane confined in the (25, 25) single-walled carbon nanotube (CNT). The results show that an orderly distribution of n-heptacosane molecules along the CNT inner wall is clearly observed. Meanwhile, n-heptacosane confined in CNT exhibits an increased self-diffusion coefficient, a decreased melting point and an enhanced thermal conductivity, compared to the bulk. The simulations reveal that MD is an effective and convenient method to understand the variation characteristics of alkane-based phase change materials confined in CNT on molecular and atomic scale.

  4. Modeling of Thermophysical Processes in the Ignition of a Small Wooden Plank

    NASA Astrophysics Data System (ADS)

    Loboda, E. L.; Kasymov, D. P.; Yakimov, A. S.

    2015-01-01

    A formulation and a numerical solution based on a mathematical model of a porous reactive medium are given to the problem of ignition of a wooden plank by the action of a fire source. It is found that the ignition of the original reactant is determined by the processes of heat and mass exchange with the fire source, drying, and pyrolysis (decomposition and synthesis reactions) of a dry plank, by the reaction of oxidation of carbon dioxide, and also by the thermophysical properties of wood.

  5. Thermophysical properties of Ti-5Al-5V-5Mo-3Cr-1Zr titanium alloy

    NASA Astrophysics Data System (ADS)

    Bykov, V. A.; Kulikova, T. V.; Vedmid', L. B.; Fishman, A. Ya.; Shunyaev, K. Yu.; Tarenkova, N. Yu.

    2014-07-01

    The thermophysical properties of the Ti-5Al-5V-5Mo-3Cr-1Zr titanium alloy in a wide range of temperatures from room temperature to 1000°C have been studied by the methods of differential scanning calorimetry, the laser flash method, and dilatometry. The obtained data on heat capacity, thermal diffusivity, and thermal expansion have been used for calculating coefficient of thermal conductivity. The sequence and temperatures of structural transformations during heating of the alloy have been established. It has been shown that the studied alloy possesses a coefficient of thermal conductivity that is 3.5-4 times smaller than that of pure titanium.

  6. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  7. Comprehensive Creep and Thermophysical Performance of Refractory Materials

    SciTech Connect

    Ferber, M.K.; Wereszczak, A.; Hemrick, J.A.

    2006-06-29

    Furnace designers and refractory engineers recognize that optimized furnace superstructure design and refractory selection are needed as glass production furnaces are continually striving toward greater output and efficiencies. Harsher operating conditions test refractories to the limit, while changing production technology (such as the conversion to oxy-fuel from traditional air-fuel firing) can alter the way the materials perform [1-3]. Refractories for both oxy- and air-fuel fired furnace superstructures (see Fig. 1) are subjected to high temperatures that may cause them to creep excessively or subside during service if the refractory material is not creep resistant, or if it is subjected to high stress, or both. Furnace designers can ensure that superstructure structural integrity is maintained if the creep behavior of the refractory material is well understood and well represented by appropriate engineering creep models. Several issues limit the abilities of furnace designers to (1) choose the optimum refractory for their applications, (2) optimize the engineering design, or (3) predict the service mechanical integrity of their furnace superstructures. Published engineering creep data are essentially nonexistent for almost all commercially available refractories used for glass furnace superstructures. The limited data that do exist are supplied by the various refractory suppliers. Unfortunately, the suppliers generally have different ways of conducting their mechanical testing, and they interpret and report their data differently. This inconsistency makes it hard for furnace designers to draw fair comparisons between competing grades of candidate refractories. Furthermore, the refractory suppliers' data are often not available in a form that can be readily used for furnace design or for the prediction and design of long-term structural integrity of furnace superstructures. As a consequence, the U.S. Department of Energy (DOE) Industrial Technology Program (ITP

  8. Measurements of thermophysical properties of solids at the Institute VINČA

    NASA Astrophysics Data System (ADS)

    Milošević, Nenad; Stepanić, Nenad; Terzić, Marijana; Nikolić, Ivana

    2016-07-01

    This paper presents the Metrological Laboratory for Thermophysical Quantities (MLTV) and its actual measurement possibilities. The MLTV is located in the Department of Thermal Engineering and Energy of the Institute of Nuclear Sciences VINČA in Serbia. It was founded in 1963, accredited by the National Accreditation Body in 2007 and became the national designated laboratory for thermophysical quantities and received the status of a EURAMET Associate Member in 2015. Today, the laboratory develops, maintains and disseminates traceability of different national standards, such as those for thermal conductivity of insulations and poorly conductive solid materials from 250 K to 350 K, thermal diffusivity of a large variety of solid materials from 200 K to 1450 K and specific heat and specific electrical resistivity from 250 K to 2400 K of electroconductive solid materials. Total hemispherical and spectral normal emissivity from 1200 K to 2400 K of electroconductive solid materials are also measured in the MLTV. The methods and experimental setups for the realization and measurement of all of these standards and quantities are described with corresponding examples.

  9. Thermophysical Properties of Manganin (Cu86Mn12Ni2) in the Solid and Liquid State

    NASA Astrophysics Data System (ADS)

    Schmon, A.; Aziz, K.; Luckabauer, M.; Pottlacher, G.

    2015-07-01

    Manganin is the trademark name of the alloy Cu86Mn12Ni2. Despite its frequent usage in manufacturing processes, literature data are scarce particularly at higher temperatures. This work presents a set of thermophysical data of this alloy in a temperature range above its classic area of application up to the end of its liquid phase. For investigating the alloy, four examination setups were employed. Using differential thermal analysis, solidus and liquidus temperatures were obtained. In the solid phase, the electrical resistivity as a function of temperature was determined by a four-point probe positioned in a furnace. Thermal expansion was measured with a high-resolution two-beam laser dilatometer based on Michelson-interferometry and thereby density was calculated. The liquid state was investigated using a s-ohmic-pulse-heating setup. Wire-shaped specimens were resistively volume heated as part of an electrical discharge circuit. Measured quantities were the current through the specimen, the voltage drop along the specimen, the surface radiance by a pyrometer, and the thermal expansion with an adapted CCD camera system. On the basis of these measurements, temperature-dependent thermophysical properties of enthalpy, isobaric heat capacity, electrical resistivity, and density are obtained. Additionally the thermal conductivity and thermal diffusivity are estimated in the high-temperature range applying the Wiedemann-Franz law.

  10. Surface Thermophysical Characteristics of OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Ji, Jianghui; YU, Liangliang

    2015-08-01

    The NASA OSIRIS-REx mission will launch a spacecraft to explore asteroid (101955) Bennu (hereafter, Bennu) in 2016 and return sample to Earth in 2023. Herein we have investigated thermophysical properties of Bennu, where the thermal inertia plays a key role of understanding the nature of the asteroid's surface, and will provide a substantial information on the sampling return mission. Using the thermophysical model in incorporation with the most-recently updated 3D radar-derived shape model \\citep{Nolan2013}, and mid-infrared observations of Spitzer-PUI, Spitzer-IRAC, Herschel/PACS and ESO VLT/VISIR \\citep{Muller2012,Emery2014}, we obtain the surface physical properties of Bennu. For the best-fitting solution, we find that Bennu has an effective diameter of 510±6 m, a geometry albedo of 0.047^{+0.0031}_{-0.0011} and the thermal inertia of 240^{+80}_{-40} Jm^{-2}s^{-0.5}K^{-1}. Such thermal inertia indicates that fine-grained regolith is likely to spread over the surface of Bennu. It seems that Bennu would be a suitable target for the OSIRIS-REx sample return mission.

  11. Development of Network Database System for Thermophysical Property Data of Thin Films

    NASA Astrophysics Data System (ADS)

    Yamashita, Yuichiro; Yagi, Takashi; Baba, Tetsuya

    2011-11-01

    The database system for thermophysical property data, which has been developed by the National Metrology Institute of Japan (NMIJ), is evolved to store comprehensive information on thin films. Since a thin film is identified by not only its constituent elements, phases, or compositions but also its method of synthesis, a strategy for storing all thin-film specimens is adopted when the data are measured by NMIJ. In addition, new criteria of material classification in our database are introduced to systematically manage material information on multilayer thin-film specimens. For example, when a multi layered film is measured by an ultrafast laser flash method, the database stores not only analyzed results but also data at various measurement stages, which can follow analysis steps from an observed signal data to derived results: thermal diffusivity and boundary thermal resistance of the film. In order to store new data items, the database system has been updated. The updated database system is demonstrated in terms of its storage of record items and its user interface using a set of thermophysical property data of a “TiN single-layer thin film on a synthesized quartz substrate”, “Al2O3 coated with Mo three-layer thin films on a fused silica substrate”, and “ITO coated with Mo three-layer thin films on a fused silica substrate”. This database system is available at http://riodb.ibase.aist.go.jp/TPDB/DBGVsupport/index_en.html.

  12. Site change detection and object recognition using thermophysical affine invariants from infrared imagery

    NASA Astrophysics Data System (ADS)

    Nandhakumar, Nagaraj; Michel, Johnathan D.; Arnold, D. Gregory; Velten, Vincent J.

    1995-09-01

    Research on the formulation of invariant features for model-based object recognition has mostly been concerned with geometric constructs either of the object or in the imaging process. We describe a new method that identifies invariant features computed from long wave infrared imagery. These features are called thermophysical invariants and depend primarily on the material composition of the object. We use this approach for identifying objects or changes in scenes viewed by downward looking infrared images. Features are defined that are functions of only the thermophysical properties of the imaged materials. A physics-based model is derived from the principle of conservation of energy applied at the surface of the imaged regions. A linear form of the model is used to derive features that remain constant despite changes in scene parameters/driving conditions. Simulated and real imagery, as well as ground truth thermo-couple measurements were used to test the behavior of such features. A method of change detection in outdoor scenes is investigated. The invariants are used to detect when a hypothesized material no longer exists at a given location. For example, one can detect when a patch of clay/gravel has been replaced with concrete at a given site.

  13. Thermophysical and Chemical Properties of Perennial Energy Crops Depending on Harvest Period

    NASA Astrophysics Data System (ADS)

    Stolarski, Mariusz J.; Krzyżaniak, Michał; Śnieg, Malwina; Słomińska, Emilia; Piórkowski, Marek; Filipkowski, Radosław

    2014-04-01

    This paper presents analyses of the thermophysical and chemical properties of eleven perennial crop species harvested in one-year rotation cycles. The crops included four species grown for biomass in the form of straw, five species producing semi-wood biomass, and two species yielding wood biomass. The research comprised three consecutive crop harvests. In each harvesting season, biomass samples for analyses were taken on six dates at one-month intervals. Thermophysical and chemical properties of the biomass were significantly differentiated within the main experimental factors and their interactions. The biomass produced by Virginia mallow had the best quality parameters as solid fuel. In fact, it achieved the lowest water content and the highest lower heating value during all of the analyzed seasons and harvest dates. The biomass of the species yielding straw or semi-wood products attained better quality as solid fuel on later harvest dates. In turn, the quality of willow biomass remained practically unchanged between the harvest dates.

  14. The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets

    NASA Astrophysics Data System (ADS)

    Fraeman, A. A.; Ehlmann, B. L.; Arvidson, R. E.; Edwards, C. S.; Grotzinger, J. P.; Milliken, R. E.; Quinn, D. P.; Rice, M. S.

    2016-09-01

    We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1-3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate-bearing unit, (5) a hematite-capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near-infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late-stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.

  15. Thermophysical Properties of Cu-Matrix Composites Manufactured Using Cu Powder Coated with Graphene

    NASA Astrophysics Data System (ADS)

    Babul, T.; Baranowski, M.; Sobczak, N.; Homa, M.; Leśniewski, W.

    2016-08-01

    Compact Cu matrix composites reinforced with graphene were prepared by thermochemical processes and cold isostatic pressing. Thermophysical properties were investigated using laser flash analysis, differential scanning calorimetry, and dilatometry. From the results of the measurements, it follows that within the entire investigated temperature range, both the thermal diffusivity and the calculated values therefrom of the thermal conductivity of copper-graphene composites change according to the temperature changes. Above 500 °C, abnormal decrease of the thermal diffusivity was registered for sample prepared from pure copper powder. In this case, the elevated temperature of test could cause sintering of copper particles, which were not coated by graphene. The as-received composites had higher thermal diffusivity and the thermal conductivity at the room temperature in comparison to the material obtained by standard pressing of pure copper powder. However, the production methods of some samples could cause their partial sintering. Based on the study, it could not be concluded that graphene only has impacts on the thermophysical properties.

  16. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    SciTech Connect

    Casella, Amanda J.; Pereira, Mario M.; Steen, Franciska H.

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  17. Thermophysical Properties of Cu-Matrix Composites Manufactured Using Cu Powder Coated with Graphene

    NASA Astrophysics Data System (ADS)

    Babul, T.; Baranowski, M.; Sobczak, N.; Homa, M.; Leśniewski, W.

    2016-06-01

    Compact Cu matrix composites reinforced with graphene were prepared by thermochemical processes and cold isostatic pressing. Thermophysical properties were investigated using laser flash analysis, differential scanning calorimetry, and dilatometry. From the results of the measurements, it follows that within the entire investigated temperature range, both the thermal diffusivity and the calculated values therefrom of the thermal conductivity of copper-graphene composites change according to the temperature changes. Above 500 °C, abnormal decrease of the thermal diffusivity was registered for sample prepared from pure copper powder. In this case, the elevated temperature of test could cause sintering of copper particles, which were not coated by graphene. The as-received composites had higher thermal diffusivity and the thermal conductivity at the room temperature in comparison to the material obtained by standard pressing of pure copper powder. However, the production methods of some samples could cause their partial sintering. Based on the study, it could not be concluded that graphene only has impacts on the thermophysical properties.

  18. Protonic Ammonium Nitrate Ionic Liquids and Their Mixtures: Insights into Their Thermophysical Behavior.

    PubMed

    Canongia Lopes, José N; Esperança, José M S S; de Ferro, André Mão; Pereiro, Ana B; Plechkova, Natalia V; Rebelo, Luis P N; Seddon, Kenneth R; Vázquez-Fernández, Isabel

    2016-03-10

    This study is centered on the thermophysical characterization of different families of alkylammonium nitrate ionic liquids and their binary mixtures, namely the determination at atmospheric pressure of densities, electric conductivities and viscosities in the 288.15 < T/K < 353.15 range. First, measurements focusing on ethylammonium, propylammonium and butylammonium nitrate systems, and their binary mixtures, were determined. These were followed by studies involving binary mixtures composed of ethylammonium nitrate (with three hydrogen bond donor groups) and different homologous ionic liquids with differing numbers of hydrogen bond donor groups: diethylammonium nitrate (two hydrogen bond donors), triethylammonium nitrate (one hydrogen bond donor) and tetraethylammonium nitrate (no hydrogen bond donors). Finally, the behavior of mixtures with different numbers of equivalent carbon atoms in the alkylammonium cations was analyzed. The results show a quasi-ideal behavior for all monoalkylammonium nitrate mixtures. In contrast, the other mixtures show deviations from ideality, namely when the difference in the number of carbon atoms present in the cations increases or the number of hydrogen bond donors present in the cation decreases. Overall, the results clearly show that, besides the length and distribution of alkyl chains present in a cation such as alkylammonium, there are other structural and interaction parameters that influence the thermophysical properties of both pure compounds and their mixtures.

  19. AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz

    SciTech Connect

    Perley, R. A.; Butler, B. J. E-mail: BButler@nrao.edu

    2013-02-15

    We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than {approx}5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.

  20. Thermophysical modeling of asteroids from WISE thermal infrared data - Significance of the shape model and the pole orientation uncertainties

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbo', M.; Ďurech, J.; Alí-Lagoa, V.

    2015-08-01

    In the analysis of thermal infrared data of asteroids by means of thermophysical models (TPMs) it is a common practice to neglect the uncertainty of the shape model and the rotational state, which are taken as an input for the model. Here, we present a novel method of investigating the importance of the shape model and the pole orientation uncertainties in the thermophysical modeling - the varied shape TPM (VS-TPM). Our method uses optical photometric data to generate various shape models that map the uncertainty in the shape and the rotational state. The TPM procedure is then run for all these shape models. We apply the implementation of the classical TPM as well as our VS-TPM to the convex shape models of several asteroids together with their thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer (WISE) and compare the results. These show that the uncertainties of the shape model and the pole orientation can be very important (e.g., for the determination of the thermal inertia) and should be considered in the thermophysical analyses. We present thermophysical properties for six asteroids - (624) Hektor, (771) Libera, (1036) Ganymed, (1472) Muonio, (1627) Ivar, and (2606) Odessa.

  1. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    PubMed Central

    Reis, P. M.; Carvalho, P. J.; Lopes-da-Silva, J. A.; Esperança, J. M. S. S.; Araújo, J. M. M.; Rebelo, L. P. N.; Freire, M. G.; Pereiro, A. B.

    2016-01-01

    This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from 293.15 to 353.15 K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  2. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    NASA Astrophysics Data System (ADS)

    Gheribi, A. E.; Corradini, D.; Dewan, L.; Chartrand, P.; Simon, C.; Madden, P. A.; Salanne, M.

    2014-05-01

    Molten fluorides are known to show favourable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and as fuel in the molten salt fast reactor concept. By using ab initio parameterised polarisable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat capacity, viscosity and thermal conductivity) which are necessary for assessing the heat transfer performance of the melt over the whole range of compositions and temperatures. We then deduce from our calculations several figures of merit which are important in helping the optimisation of the design of molten salt fast reactors.

  3. Theoretical Treatment of the Thermophysical Properties of Fluids Containing Chain-like Molecules

    SciTech Connect

    Carol K. Hall

    2008-11-14

    This research program was designed to enhance our understanding of the behavior of fluids and fluid mixtures containing chain-like molecules. The original objective was to explain and predict the experimentally observed thermophysical properties, including phase equilibria and dynamics, of systems containing long flexible molecules ranging in length from alkanes to polymers. Over the years the objectives were expanded to include the treatment of molecules that were not chain-like. Molecular dynamics and Monte Carlo computer simulations were used to investigate how variations in molecular size, shape and architecture influence the types of phase equilibria, thermodynamic properties, structure and surface interactions that are observed experimentally. The molecular insights and theories resulting from this program could eventually serve as the foundation upon which to build correlations of the properties of fluids that are both directly and indirectly related to the Nation’s energy resources including: petroleum, natural gas, and polymer solutions, melts, blends, and materials.

  4. Thermal energy storage material thermophysical property measurement and heat transfer impact

    NASA Technical Reports Server (NTRS)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  5. Thermophysical Properties of Lignocellulose: A Cell-Scale Study Down to 41K

    PubMed Central

    Cheng, Zhe; Xu, Zaoli; Zhang, Lei; Wang, Xinwei

    2014-01-01

    Thermal energy transport is of great importance in lignocellulose pyrolysis for biofuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells) is prepared to characterize their thermal properties from room temperature down to ∼40 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly depends on the heat capacity's change. PMID:25532131

  6. Preparation, thermo-physical properties and heat transfer enhancement of nanofluids

    NASA Astrophysics Data System (ADS)

    Rashmi, W.; Khalid, M.; Ong, S. S.; Saidur, R.

    2014-09-01

    Research interest in convective heat transfer using suspensions of nano-sized solid particles has been growing rapidly over the past decade, seeking to develop novel methods for enhancing the thermal performance of heat transfer fluids. Due to their superior transport properties and significant enhancement in heat transfer characteristics, nanofluids are believed to be a promising heat transfer fluid for the future. The stability of nanofluids is also a key aspect of their sustainability and efficiency. This review summarizes the recent research findings on stability, thermophysical properties and convective heat transfer of nano-sized particles suspended in base fluids. Furthermore, various mechanisms of thermal conductivity enhancement and challenges faced in nanofluid development are also discussed.

  7. Effect of high hydrostatic pressure on rheological and thermophysical properties of murtilla (Ugni molinae Turcz) berries.

    PubMed

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Zura-Bravo, Liliana

    2016-06-01

    Effects of high hydrostatic pressure (HHP) on rheological and thermophysical properties of murtilla berries were evaluated after pressure treatments for 5 min between 100 and 500 MPa. Differential scanning calorimetry was employed to measure specific heat capacity. HHP caused a significant decrease in specific heat and density, while thermal diffusivity did not changed significantly. Thermal conductivity showed a slight increase upon HHP treatment. Apparent viscosity increased significantly above 200 MPa HHP treatment. Apparent viscosity of treated samples between 200 and 400 MPa did not differ significantly and the increase was significant at 500 MPa. Herschel-Bulkley, Bingham and Ostwald de Waele models were used to describe the rheological behaviour of murtilla purée, and Ostwald de Waele model gave the best fit for the experimental data. PMID:27478228

  8. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    PubMed Central

    Reis, P. M.; Carvalho, P. J.; Lopes-da-Silva, J. A.; Esperança, J. M. S. S.; Araújo, J. M. M.; Rebelo, L. P. N.; Freire, M. G.; Pereiro, A. B.

    2016-01-01

    This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from 293.15 to 353.15 K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids. PMID:27642190

  9. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rozas, R. E.; Demiraǧ, A. D.; Toledo, P. G.; Horbach, J.

    2016-08-01

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss the validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.

  10. Spin-state and thermophysical analysis of the near-Earth asteroid (8567) 1996 HW_1

    NASA Astrophysics Data System (ADS)

    Rożek, A.; Lowry, S.; Rozitis, B.; Wolters, S.; Hicks, M.; Duddy, S.; Fitzsimmons, A.; Green, S.; Snodgrass, C.; Weissman, P.

    2014-07-01

    The asteroid (8567) 1996 HW_1 is a near-Earth Amor-class asteroid. It has been a target of visual lightcurve observations during the two apparitions in 2005 [1,2] and 2008 [3]. The lightcurve datasets were complemented by the radar data obtained at Arecibo during the close approach in September 2008 [4]. The data was combined to constrain the shape and spin state of the asteroid. The sidereal spin rate was measured to be P = 8.76243 hours, and pole position expressed in ecliptic coordinates as λ=281°, β = -31°, with a complex rotation state not being ruled out. The shape of the asteroid resembles a contact binary with two components connected by a narrow neck. It was predicted that the asteroid's rotation rate is decreasing due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We aimed to verify the predicted YORP-induced period change [4]. The asteroid (8567) 1996 HW_1 has been selected as one of the targets of an ESO Large Programme led by Dr. S. Lowry. The programme includes photometric monitoring, infrared thermal observations, and visual near-infrared spectroscopy of selected near-Earth asteroids. Within the ESO LP, the asteroid has been observed on six runs between April 2010 and April 2013 with ESO's 3.6-m NTT telescope (Chile) to acquire optical lightcurves, and in September and December 2011 the infrared observations were performed with the VISIR instrument at the ESO's 8.2-m VLT telescope (Chile). The data set is completed by the visual lightcurve observations gathered from supporting programmes at JPL's Table Mountain Observatory (USA), Palomar 200-in telescope (USA), and the 2-m Liverpool Telescope (Spain). The visual lightcurves from our 2010-2013 observing campaign were combined with the previously published lightcurves from 2005-2009, doubling the time span of the observations for the purpose of the potential YORP detection. The shape model developed from radar and lightcurve data [4] has been used in the spin-state analysis. The

  11. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    NASA Astrophysics Data System (ADS)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  12. Containerless measurements of thermophysical properties of Zr54Ti8Cu20Al10Ni8.

    PubMed

    Bradshaw, R C; Warren, M E; Rogers, J R; Rathz, T J; Gangopadhyay, A K; Kelton, K F; Hyers, R W

    2006-09-01

    High-temperature measurement and study of reactive materials can be difficult with conventional processing methods because contamination from the measuring apparatus and container walls can adversely affect measurements. Containerless processing techniques can be employed to isolate samples from their environment, reducing contamination. Benefits of containerless processing include reduction in heterogeneous nucleation sites, which in turn delays the onset of solidification and allows the study of meta-stable undercooled phases. However, property measurements must use noncontact methods as well. Fortunately, several optical-based methods have been developed and successfully employed to measure thermophysical properties, including surface tension, viscosity, density, and thermal expansion. Combining these techniques with the electrostatic levitator (ESL) located at the NASA Marshall Space Flight Center (MSFC) has resulted in an excellent facility to perform containerless material studies which support microgravity flight projects. Currently, studies of the thermophysical properties of liquid quasi-crystal forming and related alloys ranging from superheated to deeply undercooled states are being done with this facility in support of the NASA-funded flight project Quasi-crystalline Undercooled Alloys for Space Investigation (QUASI). While the primary purpose of these measurements is to support planned flight experiments, they are also a desirable resource for future manufacturing considerations and for fundamental insight in the physics of icosahedral ordering in liquids and solids. Presented here is an overview of the contactless measuring methods for surface tension, viscosity, density, and thermal expansion applied to Zr54Ti8Cu20Al10Ni8, for the superheated and meta-stable undercooled liquid phases, in support of QUASI. PMID:17124115

  13. Near-Earth asteroid (3200) Phaethon: Characterization of its orbit, spin state, and thermophysical parameters

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbo', M.; Vokrouhlický, D.; Pravec, P.; Emery, J. P.; Alí-Lagoa, V.; Bolin, B.; Devogèle, M.; Dyvig, R.; Galád, A.; Jedicke, R.; Kornoš, L.; Kušnirák, P.; Licandro, J.; Reddy, V.; Rivet, J.-P.; Világi, J.; Warner, B. D.

    2016-07-01

    Context. The near-Earth asteroid (3200) Phaethon is an intriguing object: its perihelion is at only 0.14 au and is associated with the Geminid meteor stream. Aims: We aim to use all available disk-integrated optical data to derive a reliable convex shape model of Phaethon. By interpreting the available space- and ground-based thermal infrared data and Spitzer spectra using a thermophysical model, we also aim to further constrain its size, thermal inertia, and visible geometric albedo. Methods: We applied the convex inversion method to the new optical data obtained by six instruments and to previous observations. The convex shape model was then used as input for the thermophysical modeling. We also studied the long-term stability of Phaethon's orbit and spin axis with a numerical orbital and rotation-state integrator. Results: We present a new convex shape model and rotational state of Phaethon: a sidereal rotation period of 3.603958(2) h and ecliptic coordinates of the preferred pole orientation of (319°, -39°) with a 5° uncertainty. Moreover, we derive its size (D = 5.1 ± 0.2 km), thermal inertia (Γ = 600 ± 200 J m-2 s-1/2 K-1), geometric visible albedo (pV = 0.122 ± 0.008), and estimate the macroscopic surface roughness. We also find that the Sun illumination at the perihelion passage during the past several thousand years is not connected to a specific area on the surface, which implies non-preferential heating.

  14. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  15. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower. PMID:27004873

  16. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-01

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  17. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  18. Dynamic measurements of thermophysical properties of metals and alloys at high temperatures by subsecond pulse heating techniques

    NASA Technical Reports Server (NTRS)

    Cezairliyan, Ared

    1993-01-01

    Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting

  19. Phase composition, microstructure, and thermophysical and dielectric properties of multiferroic Bi1- x Dy x FeO3

    NASA Astrophysics Data System (ADS)

    Khasbulatov, S. V.; Pavelko, A. A.; Shilkina, L. A.; Reznichenko, L. A.; Gadjiev, G. G.; Bakmaev, A. G.; Magomedov, M.-R. M.; Omarov, Z. M.; Aleshin, V. A.

    2016-05-01

    An extensive study was performed to establish correlations between the crystal structure, the grain composition, and the dielectric and thermophysical properties of high-temperature multiferroics of the Bi1- x Dyx FeO3 type ( x = = 0.05-0.20). It is shown that a trade-off between the macroresponses in the materials is achieved at x = 0.10; this circumstance permits recommendation of the materials for practical use.

  20. Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering.

    PubMed

    Enrione, Javier; Díaz-Calderón, Paulo; Weinstein-Oppenheimer, Caroline R; Sánchez, Elizabeth; Fuentes, Miguel A; Brown, Donald I; Herrera, Hugo; Acevedo, Cristian A

    2013-12-01

    Cell culture on biopolymeric scaffolds has provided treatments for tissue engineering. Biopolymeric mixtures based on gelatin (Ge), chitosan (Ch) and hyaluronic acid (Ha) have been used to make scaffolds for wound healing. Thermal and physical properties of scaffolds prepared with Ge, Ch and Ha were characterized. Thermal characterization was made by using differential scanning calorimetry (DSC), and physical characterization by gas pycnometry and scanning electron microscopy. The effects of Ge content and cross-linking on thermophysical properties were evaluated by means of a factorial experiment design (central composite face centered). Gelatin content was the main factor that affects the thermophysical properties (microstructure and thermal transitions) of the scaffold. The effect of Ge content of the scaffolds for tissue engineering was studied by seeding skin cells on the biopolymers. The cell attachment was not significantly modified at different Ge contents; however, the cell growth rate increased linearly with the decrease of the Ge content. This relationship together with the thermophysical characterization may be used to design scaffolds for tissue engineering.

  1. Thermophysical properties and corrosion characterization of low cost lithium containing nitrate salts produced in northern Chile for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Fernández, Ángel G.; Gomez, Judith C.; Galleguillos, Hector; Fuentealba, Edward

    2016-05-01

    In recent years, lithium containing salts have been studied for thermal energy storage (TES) systems applications, because of their optimal thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, due to its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations of carbon and low chromium steels were performed at 390°C for 1000 hours. Thermophysical properties of the salt mixtures, such as thermal stability and heat capacity, were measured before and after corrosion tests. Chemical composition of the salts was also determined and an estimation of Chilean production costs is reported. Results showed that purity, thermal stability and heat capacity of the salts were reduced, caused by partial thermal decomposition and incorporation of corrosion products from the steel.

  2. Interfacial Region Thermophysics and Intrinsic Stability of Thin Free Liquid Films

    NASA Astrophysics Data System (ADS)

    Gan, Yu

    2011-12-01

    The film rupture process that dictates merging of adjacent bubbles is particularly important in nucleate boiling heat transfer, bubbly two-phase flow in small tubes, and the mechanisms that dictate the Leidenfrost transition. To understand the mechanisms of bubble merging in nano-structured boiling surfaces and in nanotubes, it is useful to explore film stability and onset of rupture at the molecular level. This dissertation reports the results of such an investigation combining three strategies that includes a new formulation of capillarity theory for free liquid films, molecular dynamics (MD) simulations using similar interaction potentials and bubble merging experiments. Two forms of our molecular film capillarity theory are developed here: one for non-polar fluids based on a Lennard-Jones interaction potential, and a second specifically for water using a modified treatment of the SPC/E interaction potential that accounts for water dipole interactions. The capillarity theory provides theoretical relationships among parameters that govern film structure and thermophysical behavior, while the companion MD simulations allow more detailed molecular level exploration of the film thermophysics. Results obtained with theoretical models and MD simulation studies indicate that the wave instability and the lack of thermodynamics intrinsic stability can lead to rupture of the liquid film, as its thickness decreases below a critical value. It is further predicted that wave instability predominates as an onset of rupture mechanism for liquid films of macroscopic extent, but for free liquid films with nanoscale lateral extent (in, for example, nanostructured boiling surfaces), lack of core stability is more likely to be the mechanism. For electrolyte aqueous solutions, theoretical models and MD simulation studies suggest that dissolved salts tend to alter the surface tension at liquid vapor interfaces and affect the stability of the free liquid film between adjacent bubbles

  3. (1173) Anchises - thermophysical and dynamical studies of a dynamically unstable Jovian Trojan

    NASA Astrophysics Data System (ADS)

    Horner, J.; Müller, T. G.; Lykawka, P. S.

    2012-07-01

    We have performed detailed thermophysical and dynamical modelling of the Jovian Trojan (1173) Anchises. Our results show that this is the most unusual object. By examining observational data of Anchises taken by IRAS, Akari and WISE at wavelengths between 11.5 and 60 μm, together with the variations in its optical light curve, we find that Anchises is most likely an elongated body, with an axis ratio, a/b, of around 1.4. This results in calculated best-fitting dimensions for Anchises of 170 × 121 × 121 km (or an equivalent diameter of 136 +18/-11 km). We find that the observations of Anchises are best fitted by the object having a retrograde sense of rotation, and an unusually high thermal inertia in the range 25-100 J m-2 s-0.5 K-1 (3σ confidence level). The geometric albedo of Anchises is found to be 0.027 (+0.006/-0.007). Anchises therefore has one of the highest published thermal inertias of any object larger than 100 km in diameter, at such large heliocentric distances, as well as being one of the lowest albedo objects ever observed. More observations (visual and thermal) are needed to see whether there is a link between the very shallow phase curve, with almost no opposition effect, and the derived thermal properties for this large Trojan asteroid. Our dynamical investigation of Anchises' orbit has revealed it to be dynamically unstable on time-scales of hundreds of millions of years, similar to the unstable Neptunian Trojans 2001 QR322 and 2008 LC18. Unlike those objects, however, we find that the dynamical stability of Anchises is not a function of its initial orbital elements, the result of the exceptional precision with which its orbit is known. Our results are the first to show that a Jovian Trojan is dynamically unstable, and add further weight to the idea that the planetary Trojans likely represent a significant ongoing contribution to the dynamically unstable Centaur population, the parents of the short-period comets. The observed instability

  4. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical

  5. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical

  6. Fuel Thermo-physical Characterization Project. Fiscal Year 2014 Final Report

    SciTech Connect

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Slonecker, Bruce D.; Smith, Frances N.; Steen, Franciska H.

    2015-03-15

    The Office of Material Management and Minimization (M3) Reactor Conversion Fuel Thermo-Physical Characterization Project at Pacific Northwest National Laboratory (PNNL) was tasked with using PNNL facilities and processes to receive irradiated low enriched uranium–molybdenum (LEU-Mo) fuel plate samples and perform analysis in support of the M3 Reactor Conversion Program. This work is in support of the M3 Reactor Conversion Fuel Development Pillar that is managed by Idaho National Laboratory. The primary research scope was to determine the thermo-physical properties as a function of temperature and burnup. Work conducted in Fiscal Year (FY) 2014 complemented measurements performed in FY 2013 on four additional irradiated LEU-Mo fuel plate samples. Specifically, the work in FY 2014 investigated the influence of different processing methods on thermal property behavior, the absence of aluminum alloy cladding on thermal property behavior for additional model validation, and the influence of higher operating surface heat flux / more aggressive irradiation conditions on thermal property behavior. The model developed in FY 2013 and refined in FY 2014 to extract thermal properties of the U-Mo alloy from the measurements conducted on an integral fuel plate sample (i.e., U-Mo alloy with a thin Zr coating and clad in AA6061) continues to perform very well. Measurements conducted in FY 2014 on samples irradiated under similar conditions compare well to measurements performed in FY 2013. In general, there is no gross influence of fabrication method on thermal property behavior, although the difference in LEU-Mo foil microstructure does have a noticeable influence on recrystallization of grains during irradiation. Samples irradiated under more aggressive irradiation conditions, e.g., higher surface heat flux, revealed lower thermal conductivity when compared to samples irradiated at moderate surface heat fluxes, with the exception of one sample. This report documents thermal

  7. Thermophysical properties of imidazolium tricyanomethanide ionic liquids: experiments and molecular simulation.

    PubMed

    Zubeir, Lawien F; Rocha, Marisa A A; Vergadou, Niki; Weggemans, Wilko M A; Peristeras, Loukas D; Schulz, Peter S; Economou, Ioannis G; Kroon, Maaike C

    2016-08-17

    The low-viscous tricyanomethanide ([TCM](-))-based ionic liquids (ILs) are gaining increasing interest as attractive fluids for a variety of industrial applications. The thermophysical properties (density, viscosity, surface tension, electrical conductivity and self-diffusion coefficient) of the 1-alkyl-3-methylimidazolium tricyanomethanide [Cnmim][TCM] (n = 2, 4 and 6-8) IL series were experimentally measured over the temperature range from 288 to 363 K. Moreover, a classical force field optimized for the imidazolium-based [TCM](-) ILs was used to calculate their thermodynamic, structural and transport properties (density, surface tension, self-diffusion coefficients, viscosity) in the temperature range from 300 to 366 K. The predictions were directly compared against the experimental measurements. The effects of anion and alkyl chain length on the structure and thermophysical properties have been evaluated. In cyano-based ILs, the density decreases with increasing molar mass, in contrast to the behavior of the fluorinated anions, being in agreement with the literature. The contribution per -CH2- group to the increase of the viscosity presents the following sequence: [PF6](-) > [BF4](-) > [Tf2N](-) > [DCA](-) > [TCB](-) > [TCM](-). [TCM](-)-based ILs show lower viscosity than dicyanamide ([DCA](-))- and tetracyanoborate ([TCB](-))-based ILs, while the latter two exhibit a crossover which depends both on temperature and the alkyl chain length of the cation. The surface tension of the investigated ILs decreases with increasing alkyl chain length. [C2mim][TCM] shows an outlier behavior compared to other members of the homologous series. The surface enthalpies and surface entropies for all the studied systems have been calculated based on the experimentally determined surface tensions. The relationship between molar conductivity and viscosity was analyzed using the Walden rule. The experimentally determined self-diffusion coefficients of the cations are in good

  8. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2001-10-01

    Understanding movement of saline sodium nitrate (NaNO{sub 3}) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO{sub 3} solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO{sub 3} solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO{sub 3} solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO{sub 3} solutions into a new TOUGH2 equation-of-state module EWASG-NaNO{sub 3}, which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary

  9. Thermophysical and anion diffusion properties of (U x ,Th1-x )O2.

    PubMed

    Cooper, Michael W D; Murphy, Samuel T; Fossati, Paul C M; Rushton, Michael J D; Grimes, Robin W

    2014-11-01

    Using molecular dynamics, the thermophysical properties of the (U x ,Th1-x )O2 system have been investigated between 300 and 3600 K. The thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure is explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's law is approximately observed for solid solution thermal expansion below 2000 K. Different deviations from Vegard's law above this temperature occur owing to the different temperatures at which the solid solutions undergo the superionic transition (2500-3300 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high U content. Correspondingly, oxygen diffusivity is higher in pure UO2 than in pure ThO2. Furthermore, at temperatures below the superionic transition, oxygen mobility is notably higher in solid solutions than in the end members. Enhanced diffusivity is promoted by lower oxygen-defect enthalpies in (U x ,Th1-x )O2 solid solutions. Unlike in UO2 and ThO2, there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (U x ,Th1-x )O2.

  10. Development and application of a thermophysical property model for cane fiberboard subjected to high temperatures

    SciTech Connect

    Hensel, S.J.; Gromada, R.J.

    1994-06-01

    A thermophysical property model has been developed to analytically determine the thermal response of cane fiberboard when exposed to temperatures and heat fluxes associated with the 10 CFR 71 hypothetical accident condition (HAC) and associated post fire cooling. The complete model was developed from high temperature cane fiberboard 1-D test results and consists of heating and cooling sub-models. The heating property model accounts for the enhanced heat transfer of the hot gases in the fiberboard, the loss of energy via venting, and the loss of mass from venting during the heating portion of the test. The cooling property model accounts for the degraded material effects and the continued heat transfer associated with the hot gases after removal of the external heating source. Agreement between the test results of a four inch thick fiberboard sample with the analytical application of the complete property model is quite good and will be presented. A comparison of analysis results and furnace test data for the 9966 package suggests that the property model sufficiently accounts for the heat transfer in an actual package.

  11. Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids

    PubMed Central

    Martins, Mónia A. R.; Neves, Catarina M. S. S.; Kurnia, Kiki A.; Carvalho, Pedro J.; Rocha, Marisa A. A.; Santos, Luís M. N. B. F.; Pinho, Simão P.; Freire, Mara G.

    2016-01-01

    In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [CnCnim][NTf2] (with n = 1-8 and 10) and asymmetric [CnC1im][NTf2] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier. PMID:27642223

  12. Specific heat and related thermophysical properties of liquid Fe-Cu-Mo alloy

    NASA Astrophysics Data System (ADS)

    Wang, Haipeng; Luo, Bingchi; Chang, Jian; Wei, Bingbo

    2007-08-01

    The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calorimeter over a wide temperature range from 1482 to 1818 K. A maximum undercooling of 221 K (0.13 T m) was achieved and the specific heat was determined as 44.71 J·mol-1·K-1. The excess specific heat, enthalpy change, entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results. It was found that the calculated results by traditional estimating methods can only describe the solidification process under low undercooling conditions. Only the experimental results can reflect the reality under high undercooling conditions. Meanwhile, the thermal diffusivity, thermal conductivity, and sound speed were derived from the present experimental results. Furthermore, the solidified microstructural morphology was examined, which consists of (Fe) and (Cu) phases. The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.

  13. MCMC Radiometric Diameter Uncertainties Applying a Rotating Cratered Thermophysical Model to WISE Data

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Mainzer, A.

    2014-01-01

    Thermophysical models have many parameters that cannot be determined using infrared observations at a single epoch. But by varying these parameters using a Monte Carlo Markov chain with reasonable prior distributions one can determine the uncertainties in the radiometric diameters introduced by the poorly known parameters: typically the rotation pole and the dimensionless thermal inertia parameter. This MCMC approach has been applied to several asteroids observed by WISE: 2010 AB78, a NEO observed by WISE in 3 epochs, has a well determined rotation pole and a diameter 1.28 +/- 0.03 km with 3 percent precision; 2010 CK9, an MBA observed by WISE in one epoch, has a diameter of 3.46 +/- 0.21 km with 6 percent precision; and 2010 MU112, a very hazardous asteroid with a MOID of 0.0011 AU, C3 = 869 km^2/sec^2, a diameter of 611 +/- 84 meters for 14 percent precision from one WISE epoch at phase angle 62 degrees. The proposed NEOcam mission will achieve a long lifetime using passive cooling and obtain many epochs of IR data on most NEOs, allowing the determination of rotation poles, thermal inertias, and diameters with good precision.

  14. Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions

    SciTech Connect

    Wang Weizong; Rong Mingzhe; Yan, J. D.; Spencer, Joseph W.; Murphy, A. B.

    2011-11-15

    Calculated thermophysical properties of nitrogen plasmas in and out of thermal equilibrium are presented. The cut-off of the partition functions due to the lowering of the ionization potential has been taken into account, together with the contributions from different core excited electronic states. The species composition and thermodynamic properties are determined numerically using the Newton-Raphson iterative method, taking into account the corrections due to Coulomb interactions. The transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated using the most recent collision interaction potentials by adopting Devoto's electron and heavy particle decoupling approach, expanded to the third-order approximation (second-order for viscosity) in the framework of Chapman-Enskog method. Results are presented in the pressure range of 0.1 atm-10 atm and in electron temperature range from 300 to 40 000 K, with the ratio of electron temperature to heavy-particle temperature varied from 1 to 20. Results are compared with those from previous works, and the influences of different definitions of the Debye length are discussed.

  15. Mechanical and thermo-physical characterization of the carbon fibre composite NB31

    NASA Astrophysics Data System (ADS)

    Pintsuk, G.; Compan, J.; Linke, J.; Majerus, P.; Peacock, A.; Pitzer, D.; Rödig, M.

    2007-03-01

    The use of carbon-based materials, i.e. graphite and carbon fibre composites (CFCs), as plasma facing materials in experimental nuclear fusion devices is widely spread. For the strike point area of the ITER divertor, a European candidate material was NB31, a three directional (3D) CFC material consisting of ex-pitch, ex-PAN and needled ex-PAN fibres, which will be replaced in the future by the newly developed material NB41. This composite material is used for the fabrication of divertor components for Wendelstein 7-X. In the frame of an extensive characterization on three different material batches of NB31 called 'pilot', 'serial' and 'additional' productions for W7-X and ITER, thermo-physical measurements and tensile tests were performed. The results were correlated to density and microstructure. The latter varied due to difficulties in the manufacturing process, in particular in the needling process. Therefore the specification of a minimum density and unit cell width (combined thickness of an ex-pitch and ex-PAN layer) is necessary to meet the ITER specifications for tensile strength and for thermal conductivity in the ex-pitch direction.

  16. Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.

    1992-01-01

    Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values.

  17. Thermophysical properties of hydrophobised lime plaster - Experimental analysis of moisture effect

    NASA Astrophysics Data System (ADS)

    Pavlíková, Milena; Pernicová, Radka; Pavlík, Zbyšek

    2016-07-01

    Lime plasters are the most popular finishing materials in renewal of historical buildings and culture monuments. Because of their limited durability, new materials and design solutions are investigated in order to improve plasters performance in harmful environmental conditions. For the practical use, the plasters mechanical resistivity and the compatibility with substrate are the most decisive material parameters. However, also plasters hygric and thermal parameters affecting the overall hygrothermal function of the renovated structures are of the particular importance. On this account, the effect of moisture content on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime and cement-lime plasters are tested as well. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity in the broad range of moisture content are experimentally accessed using a transient impulse method. The obtained data reveals the significant increase of the both studied thermal parameters with increasing moisture content and gives information on plasters behaviour in a highly humid environment and/or in the case of their possible direct contact with liquid water. The accessed material parameters will be stored in a material database, where can find use as an input data for computational modelling of coupled heat and moisture transport in this type of porous building materials.

  18. Thermophysical properties and oxygen transport in (Thx,Pu1−x)O2

    PubMed Central

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-01-01

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1−x)O2 (0 ≤ x ≤ 1) between 300–3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1−x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1−x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1−x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder. PMID:27796314

  19. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    SciTech Connect

    Burkes, Douglas; Casella, Amanda J.; Gardner, Levi D.; Casella, Andrew M.; Huber, Tanja K.; Breitkreutz, Harald

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  20. Thermophysical Properties and Structural Transition of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.; Lehoczky, S. L.

    2004-01-01

    Thermophysical properties, namely, density, viscosity, and electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were simultaneously determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(0.2)Te melt as the temperature was decreased from 1090 K to the liquidus temperature.

  1. Side-by-side ANFIS as a useful tool for estimating correlated thermophysical properties

    NASA Astrophysics Data System (ADS)

    Grieu, Stéphane; Faugeroux, Olivier; Traoré, Adama; Claudet, Bernard; Bodnar, Jean-Luc

    2015-12-01

    In the present paper, an artificial intelligence-based approach dealing with the estimation of correlated thermophysical properties is designed and evaluated. This new and "intelligent" approach makes use of photothermal responses obtained when homogeneous materials are subjected to a light flux. Commonly, gradient-based algorithms are used as parameter estimation techniques. Unfortunately, such algorithms show instabilities leading to non-convergence in case of correlated properties to be estimated from a rebuilt impulse response. So, the main objective of the present work was to simultaneously estimate both the thermal diffusivity and conductivity of homogeneous materials, from front-face or rear-face photothermal responses to pseudo random binary signals. To this end, we used side-by-side neuro-fuzzy systems (adaptive network-based fuzzy inference systems) trained with a hybrid algorithm. We focused on the impact on generalization of both the examples used during training and the fuzzification process. In addition, computation time was a key point to consider. That is why the developed algorithm is computationally tractable and allows both the thermal diffusivity and conductivity of homogeneous materials to be simultaneously estimated with very good accuracy (the generalization error ranges between 4.6% and 6.2%).

  2. Thermophysical properties and oxygen transport in the (Ux,Pu1-x)O2 lattice

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Murphy, S. T.; Rushton, M. J. D.; Grimes, R. W.

    2015-06-01

    Using molecular dynamics, the thermophysical properties of the (Ux,Pu1-x)O2 system have been investigated between 300 and 3200 K. The variation with temperature of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure, are explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's Law is approximately observed for the thermal expansion of the solid solutions below 2000 K. Deviation from Vegard's Law above this temperature occurs due to the different superionic transition temperatures of the solid solutions (2200-2900 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high Pu content. While oxygen diffusivity is higher in pure PuO2 than in pure UO2, lower oxygen defect enthalpies in (Ux,Pu1-x)O2 solid solutions cause higher oxygen mobility than would be expected by interpolation between the diffusivities of the end members. In comparison to UO2 and PuO2 there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (Ux,Pu1-x)O2. Comparison is made with previous work on (Ux,Th1-x)O2.

  3. Pressure induced phase transition and thermo-physical properties in LuX (X = N, P)

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-04-01

    Detailed total energy calculations have been performed in lutetium pnictides (LuX, where X = N, P) to understand their high pressure structural stability. In LuN, the ambient rocksalt type structure (B1 phase) transforms to a tetragonal structure (B10 phase) at ˜240 GPa; whereas in LuP the orthorhombic structure (B33, space group Cmcm) emerges as a high pressure structure above 48 GPa. Both the transitions are found to be of first-order type with volume discontinuities of ˜6% and 8.2%, respectively. The high pressure phases B10 and B33 are found to be stable up to 400 GPa, respectively. Further, the structural stability predicted from static lattice calculations has been supported by lattice dynamical stability analysis. The present calculations rule out the B1 to B2 (CsCl type) structural phase transitions predicted to occur at 241 GPa in LuN and at 98 GPa in LuP by previous all-electron calculations (Gupta and Bhat 2013 J. Mol. Model 19 5343-54). The temperature dependence of several thermo-physical properties such as volume, bulk modulus, specific heat and thermal expansion coefficient of the rocksalt structure of these compounds calculated in the present study, using quasi-harmonic approximation, awaits confirmation by experimental studies.

  4. Thermophysical and anion diffusion properties of (Ux,Th1−x)O2

    PubMed Central

    Cooper, Michael W. D.; Murphy, Samuel T.; Fossati, Paul C. M.; Rushton, Michael J. D.; Grimes, Robin W.

    2014-01-01

    Using molecular dynamics, the thermophysical properties of the (Ux,Th1−x)O2 system have been investigated between 300 and 3600 K. The thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure is explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's law is approximately observed for solid solution thermal expansion below 2000 K. Different deviations from Vegard's law above this temperature occur owing to the different temperatures at which the solid solutions undergo the superionic transition (2500–3300 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high U content. Correspondingly, oxygen diffusivity is higher in pure UO2 than in pure ThO2. Furthermore, at temperatures below the superionic transition, oxygen mobility is notably higher in solid solutions than in the end members. Enhanced diffusivity is promoted by lower oxygen-defect enthalpies in (Ux,Th1−x)O2 solid solutions. Unlike in UO2 and ThO2, there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (Ux,Th1−x)O2. PMID:25383028

  5. Thermophysical properties of laser-sintered Zr-ZrB2 cermets

    SciTech Connect

    Sun, Chen-Nan; Gupta, Mool C.; Porter, Wallace D

    2011-01-01

    Thermophysical properties between 293 and 1863 K were investigated for laser-sintered Zr-ZrB{sub 2} cermets containing 30, 50, and 70 wt% Zr. The measured values of coefficient of thermal expansion of Zr-ZrB{sub 2} cermets were larger than the predicted values due to the effect of Zr-O solid solution, which was formed during laser sintering. The order-disorder phase transition of Zr-O solid solution resulted in the sharp increase in heat capacity between 625 and 675 K. Thermal conductivities were calculated from measured densities, heat capacities, and thermal diffusivities. Thermal diffusivities at 473 K were 14.0, 12.2, and 8.0 mm{sup 2}/s for 30Zr-ZrB{sub 2}, 50Zr-ZrB{sub 2}, and 70Zr-ZrB{sub 2}, respectively. Thermal conductivities at 473 K were 38, 31, and 20 W {center_dot} (m {center_dot} K){sup -1} for 30Zr-ZrB{sub 2}, 50Zr-ZrB{sub 2}, and 70Zr-ZrB{sub 2}, respectively. Electron contribution to thermal conductivity of the 70Zr-ZrB{sub 2} cermet was determined using electrical resistivity measurements, which shows that total thermal conductivity mostly came from the electron contribution at high temperatures (1073-1473 K) while the phonon contribution was very small.

  6. The thermophysical and transport properties of eutectic NaK near room temperature

    SciTech Connect

    O'Donnell, W.J.; Papanikolaou, P.G.; Reed, C.B.

    1989-02-01

    The purpose of this report is to compile recommended room temperature thermophysical properties of NaK/sub 78/. The report was prepared to provide a single unified collection of property values for the eutectic sodium-potassium alloy. These properties include density, kinematic and absolute viscosities, thermal conductivity, specific heat, electrical resistivity, electrical conductivity, Prandtl number, and thermal diffusivity. Each section of the report contains a completely referenced property that focuses in the 0--80/degree/C temperature range. All available data for each property have been taken from original publications. The individual sections are organized following a specific outline, considering: discussion of experimental methods, discussion of sources and error, discussion of each reference, tabular presentation of all available data, graphical presentation of the data, recommendations, tabular presentation of recommended values, an equation to calculate recommended values, and a graphical presentation of the recommended curve (0--80/degree/C) generated from the above equation. Also included are experimental methods, whether the references included equations to fit the data, and whether or not these references were primary sources. 26 refs., 12 figs., 14 tabs.

  7. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    NASA Astrophysics Data System (ADS)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  8. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids

    NASA Astrophysics Data System (ADS)

    Fang, Y. K.; Osama, M.; Rashmi, W.; Shahbaz, K.; Khalid, M.; Mjalli, F. S.; Farid, M. M.

    2016-02-01

    This study introduces a new class of heat transfer fluids by dispersing functionalised graphene oxide nanoparticles (GNPs) in ammonium and phosphonium-based deep eutectic solvents (DESs) without the aid of a surfactant. Different molar ratios of salts and hydrogen bond donors (HBD) were used to synthesise DESs for the preparation of different concentrations of graphene nanofluids (GNFs). The concentrations of GNPs were 0.01 wt%, 0.02 wt% and 0.05 wt %. Homogeneous and stable suspensions of nanofluids were obtained by high speed homogenisation and an ultrasonication process. The stability of the GNFs was determined through visual observation for 4 weeks followed by a centrifugal process (5000-20 000 rpm) for 30 min in addition to zeta potential studies. Dispersion of the GNPs in DES was observed using an optical microscope. The synthesised DES-based GNFs showed no particle agglomeration and formation of sediments in the nanofluids. Thermo-physical properties such as thermal conductivity and specific heat of the nanofluids were also investigated in this research. The highest thermal conductivity enhancement of 177% was observed. The findings of this research provide a new class of engineered fluid for heat transfer applications as a function of temperature, type and composition DESs as well as the GNPs concentration.

  9. Analysis of thermal field within an urban canyon with variable thermophysical characteristics of the building's walls

    NASA Astrophysics Data System (ADS)

    De Lieto Vollaro, A.; Galli, G.; Vallati, A.; Romagnoli, R.

    2015-11-01

    In a typical urban configuration, a microclimatic analysis has been carried out. Using a CFD method, a N-S oriented urban street canyon, with a given H/W ratio, has been examined. The standard k-ε turbulence model has been used to simulate a three-dimensional flow field and to calculate the thermo-fluid dynamics parameters that characterize the street canyon. In this study has been analyzed the thermal flow field when the walls of the building change the properties of solar radiation absorption, in particular for α=0.2 and α=0.8. Solar radiation considered is that of 21/07 in Milan in two different hours: at 11:00 a.m. and at 02:00 p.m. The study shows the importance of the thermophysical properties of a wall, in the development of the thermal field and flow field. This is a very important topic, in terms of improvement of wellbeing and the quality of the air within the cities, through the choice of materials and colors of the facades of buildings.

  10. AC Calorimetry and Thermophysical Properties of Bulk Glass-Forming Metallic Liquids

    NASA Technical Reports Server (NTRS)

    Johnson, William L.

    2000-01-01

    Thermo-physical properties of two bulk metallic glass forming alloys, Ti34Zr11Cu47Ni8 (VIT 101) and Zr57Nb5Ni12.6Al10CU15.4 (VIT 106), were investigated in the stable and undercooled melt. Our investigation focused on measurements of the specific heat in the stable and undercooled liquid using the method of AC modulation calorimetry. The VIT 106 exhibited a maximum undercooling of 140 K in free radiative cooling. Specific heat measurements could be performed in stable melt down to an undercooling of 80 K. Analysis of the specific heat data indicate an anomaly near the equilibrium liquidus temperature. This anomaly is also observed in y the temperature dependencies of the external relaxation time, the specific volume, and the surface tension; it is tentatively attributed to a phase separation in the liquid state. The VIT 101 specimen exhibited a small undercooling of about 50 K. Specific heat measurements were performed in the stable and undercooled melt. These various results will be combined with ground based work such as the measurement of T-T-T curves in the electrostatic levitator and low temperature viscosity and specific heat measurements for modeling the nucleation kinetics of these alloys.

  11. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  12. Impact of Inconsistencies in Experimental Thermodynamic Data on Thermophysical Properties of Planetary Mantles

    NASA Astrophysics Data System (ADS)

    Jacobs, M. H.; de Jong, B. H.; Matas, J.; van den Berg, A. P.

    2004-12-01

    A new thermodynamic analysis has been performed on experimental thermophysical and phase diagram data of (Mg,Fe)2SiO_4 olivine, wadsleyite and ringwoodite solid solutions. The analysis demonstrates that large inconsistencies exist in the V- P- T data of wadsleyite and ringwoodite. It has been suggested in recent literature that a hydration effect is able to explain the large differences in volume measured by several independent groups of investigators [1,2]. However, this hydration effect does not explain the combination of a large measured volume associated with a large measured bulk modulus for a number of experimental V- P- T data sets [3-7]. We show the effects of the inconsistencies on the calculated phase diagram, bulk sound velocities and other thermodynamic properties. We have applied our thermodynamic analysis to iron rich compositions at pressure/temperature/iron content conditions representative for the mantles of Earth and Mars. For these conditions a strong compositional effect on thermodynamic properties in two- phase regions is observed from our thermodynamic model. This compositional effect is associated with the slopes of two- phase boundaries in pressure- composition and temperature- composition phase diagrams leading to a change up to 100% or more for specific thermodynamic properties thermal expansivity α , specific heat cP and bulk modulus kS. The amplitude of the anomalies increases with iron content larger than 10%. These anomalous two-phase zones, where olivine transforms to ringwoodite via wadsleyite, cover a pressure range of about 5 GPa. In the Earth's mantle transition zone these two-phase zones therefore occupy a depth range of some 150 km and the impact of these strong variations in α and cP on mantle dynamics may be limited. Planet Mars with its weaker gravity field and reduced pressure gradient is an environment more susceptible to the impact of these two-phase compositional effects, even more so since the iron content of the

  13. Thermal infrared observations and thermophysical characterization of the OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Emery, J.; Fernandez, Y.; Kelley, M.; Warden, K.; Hergenrother, C.; Lauretta, D.; Drake, M.; Campins, H.; Ziffer, J.

    2014-07-01

    Near-Earth asteroids (NEAs) have garnered ever-increasing attention over the past few years due to the insights they offer into Solar System formation and evolution, the potential hazard they pose, and their accessibility for both robotic and human spaceflight missions. Among the NEAs, carbonaceous asteroids hold particular interest, because they may contain clues to how the Earth got its supplies of water and organic materials, and because none has yet been studied in detail by spacecraft. (101955) Bennu is special among the NEAs in that it will not only be visited by a spacecraft, but the OSIRIS-REx mission will also return a sample of Bennu's regolith to the Earth for detailed laboratory study. We present analysis of thermal infrared photometry and spectroscopy to test the hypotheses that Bennu is carbonaceous and that its surface is covered in fine-grained (sub-cm) regolith. The Spitzer Space Telescope observed Bennu in 2007, using the Infrared Spectrograph (IRS) to obtain spectra over the wavelength range of 5.2-38 μ m and images at 16 and 22 μ m at 10 different longitudes, as well as the Infrared Array Camera (IRAC) to image Bennu at 3.6, 4.5, 5.8, and 8.0 μ m, also at 10 different longitudes. Thermophysical analysis, assuming a spherical body with the known rotation period and spin-pole orientation, returns an effective diameter of 484±10 m, in agreement with the effective diameter calculated from the radar shape model at the orientation of the Spitzer observations (492±20 m, Nolan et al. 2013) and a visible geometric albedo of 0.046±0.005 (using H_{V}=20.51, Hergenrother et al. 2013). Including the radar shape model in the thermal analysis, and taking surface roughness into account, yields a disk-averaged thermal inertia of 310±70 J m^{-2}K^{-1}s^{-1/2}, which is significantly lower than that for several other NEAs of comparable size. There may be a small variation of thermal inertia with rotational phase (±60 J m^{-2}K^{-1}s^{-1/2}). The spectral

  14. Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Emery, J. P.; Fernández, Y. R.; Kelley, M. S. P.; Warden (nèe Crane), K. T.; Hergenrother, C.; Lauretta, D. S.; Drake, M. J.; Campins, H.; Ziffer, J.

    2014-05-01

    Near-Earth Asteroids (NEAs) have garnered ever increasing attention over the past few years due to the insights they offer into Solar System formation and evolution, the potential hazard they pose, and their accessibility for both robotic and human spaceflight missions. Among the NEAs, carbonaceous asteroids hold particular interest because they may contain clues to how the Earth got its supplies of water and organic materials, and because none has yet been studied in detail by spacecraft. (101955) Bennu is special among NEAs in that it will not only be visited by a spacecraft, but the OSIRIS-REx mission will also return a sample of Bennu’s regolith to Earth for detailed laboratory study. This paper presents analysis of thermal infrared photometry and spectroscopy that test the hypotheses that Bennu is carbonaceous and that its surface is covered in fine-grained (sub-cm) regolith. The Spitzer Space Telescope observed Bennu in 2007, using the Infrared Spectrograph (IRS) to obtain spectra over the wavelength range 5.2-38 μm and images at 16 and 22 μm at 10 different longitudes, as well as the Infrared Array Camera (IRAC) to image Bennu at 3.6, 4.5, 5.8, and 8.0 μm, also at 10 different longitudes. Thermophysical analysis, assuming a spherical body with the known rotation period and spin-pole orientation, returns an effective diameter of 484 ± 10 m, in agreement with the effective diameter calculated from the radar shape model at the orientation of the Spitzer observations (492 ± 20 m, Nolan, M.C., Magri, C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Hergenrother, C.W., Hudson, R.S., Lauretta, D.S., Margo, J.-L., Ostro, S.J., Scheeres, D.J. [2013]. Icarus 226, 629-640) and a visible geometric albedo of 0.046 ± 0.005 (using Hv = 20.51, Hergenrother, C.W. et al. [2013]. Icarus 226, 663-670). Including the radar shape model in the thermal analysis, and taking surface roughness into account, yields a disk-averaged thermal inertia of 310 ± 70 J m-2 K-1 s-1

  15. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    NASA Technical Reports Server (NTRS)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  16. Theoretical investigation of thermophysical properties in two-temperature argon-helium thermal plasma

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip; Singh, Gurpreet

    2011-08-15

    The thermophysical properties of argon-helium thermal plasma have been studied in the temperature range from 5000 to 40 000 K at atmospheric pressure in local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions. Two cases of thermal plasma considered are (i) ground state plasma in which all the atoms and ions are assumed to be in the ground state and (ii) excited state plasma in which atoms and ions are distributed over various possible excited states. The influence of electronic excitation and non-equilibrium parameter {theta} = T{sub e}/T{sub h} on thermodynamic properties (composition, degree of ionization, Debye length, enthalpy, and total specific heat) and transport properties (electrical conductivity, electron thermal conductivity, and thermal diffusion ratio) have been studied. Within the framework of Chapman-Enskog method, the higher-order contributions to transport coefficient and their convergence are studied. The influence of different molar compositions of argon-helium plasma mixture on convergence of higher-orders is investigated. Furthermore, the effect of different definitions of Debye length has also been examined for electrical conductivity and it is observed that electrical conductivity with the definition of Debye length (in which only electrons participate in screening) is less than that of the another definition (in which both the electrons and ions participate in screening) and this deviation increases with electron temperature. Finally, the effect of lowering of ionization energy is examined on electron number density, Debye length, and higher-order contribution to electrical conductivity. It is observed that the lowering of the ionization energy affects the electron transport-properties and consequently their higher-order contributions depending upon the value of the non-equilibrium parameter {theta}.

  17. Structural, vibrational and thermophysical properties of pyrophyllite by semi-empirical density functional modelling

    NASA Astrophysics Data System (ADS)

    Ulian, Gianfranco; Valdrè, Giovanni

    2015-07-01

    Pyrophyllite has a significant role in both geophysics as a hydrous phase, which can recycle water into the Earth's mantle, and many industrial applications, such as petroleum and civil engineering. However, very few works have been proposed to fully characterize the thermodynamic properties of this mineral, especially at atomic scale. In the present work, we report structural, vibrational, thermochemical and thermophysical properties of pyrophyllite, calculated at the density functional theory level with the hybrid B3LYP functional, all-electron Gaussian-type orbitals and taking into account a correction to include dispersive forces. V( P, T) data at 300 K fit with isothermal third-order Birch-Murnaghan equations of state and yield K T 0 = 46.57 GPa, K' = 10.51 and V 0 = 213.67 Å3, where K T 0 is the thermal bulk modulus at 0 GPa, K' is the first derivative and V 0 is the volume at zero pressure, in very good agreement with recent experimental results obtained by in situ single-crystal synchrotron XRD. The compressional behaviour is highly anisotropic, with axial compressibility in ratio β( a):β( b):β( c) = 1.218:1.000:4.188. Pyrophyllite bulk modulus, thermal expansion coefficients and heat capacity at different P- T conditions are provided. The results of this kind of analysis can be useful in both geophysical and technological applications of the mineral and expand the high-temperature and high-pressure knowledge of this phase at physical conditions that are still difficult to obtain by experimental means. The simulated vibrational spectrum can also be used as a guideline by other authors in their experimental investigation of pyrophyllite.

  18. Investigating the Thermophysical Properties of the Ice-Snow Interface Under a Controlled Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Hammonds, Kevin; Lieb-Lappen, Ross; Baker, Ian; Wang, Xuan; Courville, Zoe

    2015-04-01

    Of critical importance for avalanche forecasting, is the ability to draw meaningful conclusions from a handful of field observations. To this end, it is common for avalanche forecasters to not only have to rely on these sparse data, but also to use their own intuitive understanding of how these observations are correlated with the complex physical processes that produce mechanical instabilities within a snowpack. One such example of this is the long-held notion that kinetic snow metamorphism does not occur at bulk temperature gradients of less than -10°C/m. Although this may be true for the homogeneous case, it has become a point of contention as to whether or not this guideline should be applied to the more representative case of a heavily stratified and anisotropic snowpack. As an idealized case for our initial laboratory investigations, we have studied how an artificially created ice layer or "lens" would affect the thermophysical state of the snow layers adjacent to the ice lens and the ice lens itself, while being held under a controlled temperature gradient. Our findings have shown, via in-situ micro-thermocouple measurements, that a super-temperature gradient many times greater than the imposed bulk temperature gradient can exist within a millimeter above and below the surface of the ice lens. Furthermore, microstructural analysis via time-lapse X-ray Micro-Computed Tomography and environmental SEM imaging has been performed. Results from this analysis show new ice crystal growth and kinetic snow metamorphism occurring simultaneously on or near the ice lens itself with the connectivity density at the ice-snow interface increasing markedly more below the ice lens than above.

  19. Thermophysical characterization of the seeds of invasive Chinese tallow tree: importance for biofuel production.

    PubMed

    Picou, Laura; Boldor, Doran

    2012-10-16

    The limited supply of traditional fossil based fuels, and increased concern about their environmental impact has driven the interest in the utilization of biomass based energy sources, including those that are underutilized or otherwise nuisance species such as Chinese tallow trees (Triadica sebifera [L.]). This species is a prolific seeds producer, and this paper shows that they contain more than 50% lipids by mass that are suitable for conversion into biodiesel. We present here, for the first time, the seeds' thermophysical properties important for biofuel production. The seeds were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and ultimate analysis; their thermal conductivity, thermal diffusivity, and specific heat were determined. The characterization results were correlated to fatty acid composition and lipid content for whole seeds and individual layers, as well as to the protein, hemicellulose, cellulose, and lignin content. The TGA analysis indicated the presence, in addition to lipids, of hemicellulose, cellulose, lignin, and proteins, depending on the layer analyzed. Thermal conductivity and specific heat were, respectively 0.14 ± 0.007 W/mK and 3843.5 ± 171.16 J/kgK for wax, 0.20 ± 0.002 W/mK and 2018.7 ± 5.18 J/kgK for shells, 0.13 ± 0.0 W/mK and 1237 ± 3.15 J/kgK for internal kernel, and 0.13 ± 0.000 W/mK and 2833.9 ± 104.11 J/kgK for whole seeds. These properties and characterization method can be further used in engineering analysis used to determine the most optimum processing method for production of biofuels from this feedstock. PMID:23013244

  20. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  1. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  2. Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa

    NASA Technical Reports Server (NTRS)

    Arp, Vincent D.; Mccarty, Robert D.

    1989-01-01

    Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.

  3. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa.

    PubMed

    Li, Dafang; Zhang, Ping; Yan, Jun

    2013-10-01

    We investigate via quantum molecular-dynamics simulations the thermophysical properties of shocked liquid ammonia up to the pressure 1.3 TPa and temperature 120,000 K. The principal Hugoniot is predicted from the wide-range equation of state, which agrees well with the available experimental measurements up to 64 GPa. Our systematic study of the structural properties demonstrates that the liquid ammonia undergoes a gradual phase transition along the Hugoniot. At about 4800 K, the system transforms into a metallic, complex mixture state consisting of NH3, N2, H2, N, and H. Furthermore, we discuss the implications for the interiors of Uranus and Neptune. PMID:24116573

  4. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa.

    PubMed

    Li, Dafang; Zhang, Ping; Yan, Jun

    2013-10-01

    We investigate via quantum molecular-dynamics simulations the thermophysical properties of shocked liquid ammonia up to the pressure 1.3 TPa and temperature 120,000 K. The principal Hugoniot is predicted from the wide-range equation of state, which agrees well with the available experimental measurements up to 64 GPa. Our systematic study of the structural properties demonstrates that the liquid ammonia undergoes a gradual phase transition along the Hugoniot. At about 4800 K, the system transforms into a metallic, complex mixture state consisting of NH3, N2, H2, N, and H. Furthermore, we discuss the implications for the interiors of Uranus and Neptune.

  5. Crystallization and thermophysical properties of Cu{sub 46}Zr{sub 47}Al{sub 6}Co{sub 1} bulk metallic glass

    SciTech Connect

    Wu, Kang; Li, Ran Zhang, Tao

    2013-11-15

    Phase evolution of two-step crystallization and the subsequent B2-phase transformation was presented in Cu{sub 46}Zr{sub 47}Al{sub 6}Co{sub 1} bulk metallic glass (BMG) during heating process. Thermophysical properties, i.e. the thermal diffusivity and the specific heat capacity, of the BMG in amorphous solid state and supercooled liquid state as well as its crystalline counterparts were measured from room temperature to 1070 K. The thermal conductivity was also calculated through combination of the data of the thermal diffusivity and the specific heat capacity. The possible influence of the crystallization on the thermophysical properties was discussed.

  6. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  7. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  8. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  9. Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events

    NASA Astrophysics Data System (ADS)

    Spinner, Neil S.; Hinnant, Katherine M.; Mazurick, Ryan; Brandon, Andrew; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2016-04-01

    Cylindrical 18650-type surrogate cells were designed and fabricated to mimic the thermophysical properties and behavior of active lithium-ion batteries. An internal jelly roll geometry consisting of alternating stainless steel and mica layers was created, and numerous techniques were used to estimate thermophysical properties. Surrogate cell density was measured to be 1593 ± 30 kg/m3, and heat capacity was found to be 727 ± 18 J/kg-K. Axial thermal conductivity was determined to be 5.1 ± 0.6 W/m-K, which was over an order of magnitude higher than radial thermal conductivity due to jelly roll anisotropy. Radial heating experiments were combined with numerical and analytical solutions to the time-dependent, radial heat conduction equation, and from the numerical method an additional estimate for heat capacity of 805 ± 23 J/kg-K was found. Using both heat capacities and analysis techniques, values for radial thermal conductivity were between 0.120 and 0.197 W/m-K. Under normal operating conditions, relatively low radial temperature distributions were observed; however, during extreme battery failure with a hexagonal cell package, instantaneous radial temperature distributions as high as 43-71 °C were seen. For a vertical cell package, even during adjacent cell failure, similar homogeneity in internal temperatures were observed, demonstrating thermal anisotropy.

  10. Thermophysical properties of simple liquid metals: A brief review of theory

    NASA Technical Reports Server (NTRS)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  11. The influence of thermophysical properties of an anisotropic heat-element substrate on the value of thermal emf in the stationary thermal mode

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Popov, P. A.; Reznikov, B. I.; Sakharov, V. A.

    2016-05-01

    Thermal and thermoelectric processes in anisotropic heat elements located on substrates made of different materials have been numerically simulated. It is shown that, when an invariable heat flux passes through a heat element, the thermophysical properties of the substrate and heat transfer coefficient at its rear surface affect significantly the temperature distribution and the value of generated thermal emf.

  12. Determination of the thermophysical characteristics of certain structural materials under the conditions of thermal action from a high-temperature gas jet

    NASA Astrophysics Data System (ADS)

    Golovanov, A. N.; Kuzin, A. Ya.; Mikov, V. L.; Sazonov, V. V.

    2011-09-01

    Thermophysical characteristics of phenolic carbon-filled plastic P-5-13P and graphite V-1 have been investigated on an experimental setup simulating an actual solid-propellant rocket engine. Temperature and heat-flux density on the thermally stressed boundaries of samples of the materials under study have been determined by solution, with a regularizing algorithm, of the boundary inverse problem.

  13. Investigation of Some Potent Medicinal Plants of N.E.INDIA with Respect to Thermophysical, Chromatographic and Crystallographic Properties

    NASA Astrophysics Data System (ADS)

    Bora, M. N.; Kalita, Mahendra

    2010-06-01

    North East India is readily available of various kinds of medicinal plants. A lot of studies on thermophysical properties of plant leaves, fluids, stems and roots had already been made[3,4,8]. In the present studies of thermophysical properties, chromatographic and crystallographic properties of specific medicinal plant leaves (Azadirechta indica)A, (Vinca rosea)B, (Clerodrendrum colebrookianum)C, (Osimum sanctum)D and fruits (Chisocheton paniculatus) E, and (Cudrania javanensis) F have been made plant based drugs for curing for different chronic diseases. The thermophysical properties of these leaves and fruits have been studies with XRD, XRF, TG, DTG, DTA, and DSC thermograms. From weight loss(%), time and temperature variations, the Activation Energies of these medicinal plant samples have been computed. The thermal stability is found more for the fruits samples than that of the leave samples. Thermal behaviours of all six samples have shown hygroscopic behaviour. The results TG, DTG and DTA thermograms confirmed that all samples show similar dehydration and decomposition reactions and hydrophilic nature. Both chromatographic techniques thin layer (TLC) and Column chromatography have been used for separation of components of the mixtures of samples. From these methods of the fruit sample E a pure crystalline white solids have been identified and confirm them as (MK 01) α-isomer. Our interest to study the molecular and crystal structure of the sample E. The single crystal of (MK 01) is found to be orthorhombic cell with lattice parameters a = 10ṡ699(3)Å b = 15ṡ5100(4)Å c = 16ṡ626(4)Å α = 90° β = 90° γ = 90° with space group P212121 Again from fruit sample F a light yellow solid is isolated and on crystallization give crystalline solid MN-01 and MN-02 and it is confirmed that these two compounds are unsaturated isoflavonoids. The single crystal of MN-01 has been found monoclinic with lattice parameters a = 6.2374(11)Å, b = 8.4243(11)Å, c = 21

  14. Accurate Cross Sections for Microanalysis

    PubMed Central

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747

  15. Estimated Rock Abundance and Thermophysical Parameters in Oppenheimer Crater on the Moon

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald; Ivanov, Mikhail; van der Bogert, Carolyn H.; Pasckert, Jan-Hendrik; Weinauer, Julia

    2016-04-01

    Oppenheimer crater is located in the north-east of the South Pole-Aitken basin (SPA), the largest impact structure on the Moon [e.g., 1]. The crater is ˜215km in diameter and has an estimated age of ˜4.1 Ga [2]. The floor of Oppenheimer shows evidence of dark mantling deposits and a concentric system of graben structures close to the rim of the crater [3]. Image and topography data show that the floor is flat apart from the graben structures and subsequent impacts on the floor. Oppenheimer-U (˜40km) and -H (˜35km) are floor-fractured craters within the north-west and south-east portions of Oppenheimer crater [3]. Dark mantling deposits on the floor are associated with the graben system. [3] estimated an age between ˜3.98Ga and ˜3.66Ga for the pyroclastic activity, based on crater size-frequency distribution (CSFD) measurements on Lunar Reconnaissance Orbiter (LRO) WAC and NAC images. In this study we compare the mapping results of [3] with temperature data of the LRO Diviner experiment [4] using a numerical model [5, 6]. Nighttime temperature variations are directly influenced by the surface and subsurface thermophysical properties, namely bulk density, heat capacity, and thermal conductivity [7, 8]. These properties can be summarized to a thermal inertia, which represents the ability to conduct and store heat [8]. Low thermal inertia units, such as dust and other fine grained material, quickly respond to temperature changes, which results in large temperature amplitudes between the lunar day and night. On the other hand, high thermal inertia material, e.g. rocks or bedrock, take more time to heat up during the day and reradiate the heat during the night [8]. Relative rock abundances are derived from temperature measurements of the same location at different wavelengths. Brightness temperatures are a function of wavelength and increase with decreasing wavelength [9, 10]. This nonlinearity of the Planck radiance can be used to determine the amount of

  16. MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.

    2013-12-01

    , we will present results from a thermophysical study of Gale Crater (Barratt and Putzig, 2013, EPSC abstract 613), for which TES and THEMIS mapping has been carried out during system development. Public access to the MARSTHERM system will be provided in conjunction with the 2013 AGU Fall Meeting and will feature the numerical thermal model and thermal-inertia derivation algorithm developed by Mellon et al. (2000, Icarus 148, 437-455) as modified by Putzig and Mellon (2007, Icarus 191, 68-94). Updates to the thermal model and derivation algorithm that include a more sophisticated representation of the atmosphere and a layered subsurface are presently in development, and these will be incorporated into the system when they are available. Other planned enhancements include tools for modeling temperatures from horizontal mixtures of materials and slope facets, for comparing heterogeneity modeling results to TES and THEMIS results, and for mosaicking THEMIS images.

  17. Thermophysical properties of heat pipe working fluids: Operating range between -60 deg C and 300 deg C

    NASA Astrophysics Data System (ADS)

    1980-08-01

    This Data Item is available as part of the ESDU Sub-series on Heat Transfer. Tabulated values and equations of the saturation-line thermophysical properties of a number of fluids suited to capillary heat pipe and thermosyphon use such as described in ESDU 79012 and 81038 are presented. The fluids considered are acetone, ammonia, diphenyl ether/diphenyl (e g. Dowtherm A), o-dichlorobenzene (e.g. Dowtherm E), methanol, toluene and water which are all suitable fluids operating close to normal temperatures. The properties considered are vapor pressure, density of the saturated liquid and vapor, specific latent heat of vaporization, specific heat capacity of the saturated liquid, dynamic viscosity of the saturated liquid and vapor, thermal conductivity of the saturated liquid and surface tension. Figures of merit (parameters based on working fluid properties indicating the relative suitability of the fluids for various operating temperatures) are given for both capillary-driven heat pipes and thermosyphons.

  18. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs

    SciTech Connect

    Sinton, W.M.; Kaminski, C.

    1988-08-01

    Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake. 35 references.

  19. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs

    NASA Technical Reports Server (NTRS)

    Sinton, William M.; Kaminski, Charles

    1988-01-01

    Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake.

  20. A System And Method To Determine Thermophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOEpatents

    Morrow, Thomas E.; Behring, II, Kendricks A.

    2004-03-09

    A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  1. Development of a simple thermophysical property model for cane fiberboard packages subjected to a hypothetical accident fire

    SciTech Connect

    Hensel, S.J.; Gromada, R.J.

    1994-04-01

    A simple thermophysical property model has been developed to analytically determine the thermal response of cane fiberboard when exposed to temperatures and heat fluxes associated with the hypothetical aident condition and the post fire cooling. The complete model was developed from high temperature cane fiberboard 1-D test results and consists of heating and cooling sub-models. The heating property model accounts for the enhanced heat transfer of the hot gases in the fiberboard, the loss of energy via venting, and the loss of mass from venting during the heating portion of the test. The cooling property model accounts for the degraded material effects and the continued heat transfer associated with the hot gases after removal of the external heating source. Agreement between the test results of a four inch thick fiberboard sample with the analytical application of the complete property model is quite good and will be presented.

  2. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    NASA Astrophysics Data System (ADS)

    Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao

    2015-12-01

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (TC + 10 K) and pressure (PC + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables.

  3. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    SciTech Connect

    Reinink, Shawn K.; Yaras, Metin I.

    2015-06-15

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between

  4. First-principles investigation of the thermo-physical properties of Ca{sub 3}Si{sub 4}

    SciTech Connect

    Tao, Xiaoma; Yang, Jiong; Xi, Lili; Ouyang, Yifang

    2012-10-15

    The first-principles calculations were applied to investigate the thermo-physical properties of Ca{sub 3}Si{sub 4} compound with increasing pressure. Those properties are based on density functional theory (DFT) method within the generalized gradient approximation (GGA) and local density approximation (LDA) for exchange and correlation. The optimized lattice constant and formation enthalpy are in good agreement with the experimental data and other theoretical data available. The calculated band structures confirm that Ca{sub 3}Si{sub 4} is a semiconductor with an indirect band gap of 0.363 eV (GGA) and 0.311 eV (LDA) at 0 GPa, and the calculated band gap decreased with the increasing pressure. The elastic constants, elastic anisotropy, elastic moduli and Poisson's ratio of Ca{sub 3}Si{sub 4} have also been obtained under high pressures. The Debye temperature, heat capacity, coefficient of thermal expansion and Grueneisen parameter have also been calculated in the quasiharmonic Debye model. - Graphical abstract: The Partial Density of States and Band Structure of Ca{sub 3}Si{sub 4}. Highlights: Black-Right-Pointing-Pointer The thermo-physical properties of Ca{sub 3}Si{sub 4} have been investigated. Black-Right-Pointing-Pointer Ca{sub 3}Si{sub 4} is a semiconductor with an indirect band gap. Black-Right-Pointing-Pointer The mechanical properties of Ca{sub 3}Si{sub 4} have been studied. Black-Right-Pointing-Pointer The heat capacity and thermal expansion have been obtained.

  5. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Reinink, Shawn K.; Yaras, Metin I.

    2015-06-01

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  12. Calculation of 2-temperature plasma thermo-physical properties considering condensed phases: application to CO2-CH4 plasma: part 1. Composition and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Chen, Zhexin; Rong, Mingzhe; Cressault, Yann; Yang, Fei; Niu, Chunping; Sun, Hao

    2016-10-01

    As the first part of this series of papers, a new calculation method for composition and thermodynamic properties of 2-temperature plasma considering condensed species under local chemical equilibrium (LCE) and local phase equilibrium assumption is presented. The 2-T mass action law and chemical potential are used to determine the composition of multiphase system. The thermo-physical properties of CO2-CH4 mixture, which may be a possible substitution for SF6, are calculated by this method as an example. The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the thermo-physical properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.

  13. Sensitivity of MIRO continuum channels to thermophysical and dielectric properties in preparation of the Rosetta observations of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Choukroun, Mathieu; Keihm, S.; von Allmen, P.; Lee, S.; Kamp, L.; Gulkis, S.; Hofstadter, M.; Janssen, M.

    2013-10-01

    The Microwave Instrument for the Rosetta Orbiter (MIRO) is equipped with two channels at 0.5 and 1.6 mm (564 and 190 GHz), which provide continuum measurements of the thermal radiation at these frequencies. These measurements are sensitive to the thermophysical properties of the observed object, as the measured antenna temperatures correspond to two different emission depths, thereby allowing to constrain thermal inertia and its variability with location and time. However, the dielectric properties (loss tangent, dielectric constant) and viewing geometry come into play as the emission depth is dependent on the composition and porosity of the observed location and varies with emission angle. In preparation for the upcoming Rosetta observations of 67P/Churyumov-Gerasimenko, we use a cometary nucleus thermal model and a radiative transfer model to investigate the influence of dielectric properties of cometary materials and viewing geometry on the predicted antenna temperatures for a range of thermophysical properties.

  14. Thermophysical ESEM and TEM Characterization of Carbon Fibers CTE, Spectroscopy and Roughness Studies at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ochoa, Ozden O.

    2004-01-01

    Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.

  15. Accurate nuclear radii and binding energies from a chiral interaction

    SciTech Connect

    Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; Hagen, Gaute; Papenbrock, Thomas F.; Carlsson, Boris; Forssen, Christian; Hjorth-Jensen, M.; Navratil, Petr; Nazarewicz, Witold

    2015-05-01

    With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective Jπ=3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shell nuclei are in reasonable agreement with experiment.

  16. Accurate nuclear radii and binding energies from a chiral interaction

    DOE PAGES

    Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; Hagen, Gaute; Papenbrock, Thomas F.; Carlsson, Boris; Forssen, Christian; Hjorth-Jensen, M.; Navratil, Petr; Nazarewicz, Witold

    2015-05-01

    With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective Jπ=3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shellmore » nuclei are in reasonable agreement with experiment.« less

  17. Thermophysical Properties of the Refrigerant Mixtures R417A and R417B from Dynamic Light Scattering (DLS)

    NASA Astrophysics Data System (ADS)

    Heller, A.; Rausch, M. H.; Flohr, F.; Leipertz, A.; Fröba, A. P.

    2012-03-01

    Dynamic light scattering (DLS) has been used for the measurement of several thermophysical properties of the refrigerant mixtures R417A (50 % by mass 1,1,1,2-tetrafluoroethane—R134a, 46.6 % pentafluoroethane—R125, 3.4 % n-butane—R600) and R417B (79 % by mass R125, 18.25 % R134a, 2.75 % R600). Both refrigerant mixtures are designed for a replacement of R22 (chlorodifluoromethane) in existing refrigeration systems. Thermal diffusivity and sound speed have been obtained by light scattering from the bulk fluid for the liquid phase under saturation conditions over a temperature range from about 283 K up to the liquid-vapor critical point with estimated uncertainties between 1 % and 3 % and between 0.5 % and 2 %, respectively. By applying the method of DLS to a liquid-vapor interface, also called surface light scattering, the saturated liquid kinematic viscosity and surface tension have been determined simultaneously. These properties have been measured from 253.15 K up to the liquid-vapor critical point with estimated uncertainties between 1 % and 3 % for kinematic viscosity and between 1 % and 2 % for surface tension. The measured thermal diffusivity, sound speed, kinematic viscosity, and surface tension are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the uncertainties. The results are discussed in detail in comparison with literature data and with various prediction methods.

  18. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.

  19. Compact Test Structure to Measure All Thermophysical Properties for the In-Plane Figure of Merit ZT of Thin Films

    NASA Astrophysics Data System (ADS)

    Moser, Dominik; Mueller, David; Paul, Oliver

    2016-11-01

    This paper reports a versatile thermophysical test structure to measure all material properties contributing to the in-plane thermoelectric figure of merit ZT=S^2Tκ ^{-1} ρ ^{-1} from a single thin film sample of only about 0.5 mm^2. These properties are the Seebeck coefficient S of the sample against aluminum (Al), its thermal conductivity κ , and its resistivity ρ. The thermal membrane-based test structure is produced using standard thin film deposition and structuring processes followed by silicon micromachining. It can be used to characterize thin films deposited at high temperature, such as doped polycrystalline silicon (poly-Si), as well as films deposited at low temperature, e.g., sputtered metals. We present the measurement of all components of the ZT of low-pressure, chemical vapor-deposited n- and p-doped poly-Si thin films in the temperature range from 300 K to 380 K. Values of 1.46 × 10-2 and 0.95 × 10-2 were found at room temperature (RT) for the ZT of n- and p-doped poly-Si films, respectively. Furthermore, the test structure was used to extract ρ and κ of a sputtered aluminum film in the same temperature range. The respective RT values are 48.7 × 10-9 Ω {m} and 154 W m-1 K-1.

  20. Thermophysical properties of gases, liquids, and solids composed of particles interacting with a short-range attractive potential.

    PubMed

    Hess, S; Kröger, M

    2001-07-01

    A short-range polynomial interaction potential is introduced which has both a repulsive core and an attractive part. It is cut off smoothly such that its first and second derivatives vanish at the cutoff distance. The potential therefore enables efficient simulation studies of a model material that exhibits similarities to a full (but computationally expensive) classical Lennard-Jones system. Thermophysical properties of the model are calculated by (nonequilibrium) molecular dynamics computer simulations and compared with analytical results. Among the quantities studied is the pressure as a function of the density for various temperatures. Equations of state for the fluid and the solid are tested. The coexistence of gaseous, (metastable) liquid, and fcc solid phases is found for a range of temperatures. Bulk and shear moduli are computed. The response of the system to a shear deformation with a constant shear rate is analyzed. The liquid shows viscoelastic behavior that can be described with a Maxwell model. The solid behaves as an elastic medium up to a finite deformation and then undergoes a transition to plastic flow, which is stick-slip-like at small shear rates and continuous at higher ones. PMID:11461234

  1. Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.

    PubMed

    Gotcu, Petronela; Seifert, Hans J

    2016-04-21

    Thermophysical properties of two cathode types for lithium-ion batteries were measured by dependence on temperature. The cathode materials are commercial composite thick films containing LiCoO2 and LiMn2O4 blended active materials, mixed with additives (binder and carbon black) deposited on aluminium current collector foils. The thermal diffusivities of the cathode samples were measured by laser flash analysis up to 673 K. The specific heat data was determined based on measured composite specific heat, aluminium specific heat data and their corresponding measured mass fractions. The composite specific heat data was measured using two differential scanning calorimeters over the temperature range from 298 to 573 K. For a comprehensive understanding of the blended composite thermal behaviour, measurements of the heat capacity of an additional LiMn2O4 sample were performed, and are the first experimental data up to 700 K. Thermal conductivity of each cathode type and their corresponding blended composite layers were estimated from the measured thermal diffusivity, the specific heat capacity and the estimated density based on metallographic methods and structural investigations. Such data are highly relevant for simulation studies of thermal management and thermal runaway in lithium-ion batteries, in which the bulk properties are assumed, as a common approach, to be temperature independent. PMID:27031918

  2. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  3. Composition dependence of fluid thermophysical properties: Theory and modeling: Progress report, 8/1/92-7/31/95

    SciTech Connect

    Ely, J.F.

    1995-02-01

    In this report, we highlight the progress made and expected during the three-year period August 1, 1992 through July 31, 1995 on DOE Grant DE-FG02-92ER14294. Since the latter date is several months away, we include some discussion of work in progress and expected results, although we primarily concentrate on work that has been completed. The objectives of this research are four-fold: 1) Fundamental investigation of the equilibrium and nonequilibrium properties of asymmetric fluid mixtures through computer simulation; 2) Development of advanced, highly accurate predictive theories of mixture equilibrium properties; 3) Development and application of selection algorithm methodology and results from fundamental theory to the design of high accuracy mixture equations of state; 4) Application of new theoretical concepts and insights to the development of engineering design models. Significant progress is being been made in all of these areas as is described in the next two sections. In addition, publications, presentations and theses presenting the results of our ongoing DOE sponsored studies are in press or have appeared during the reporting period. These are summarized in the last section. 33 refs., 6 figs., 2 tabs.

  4. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  5. Influence of Hydroxyl Group Position and Temperature on Thermophysical Properties of Tetraalkylammonium Hydroxide Ionic Liquids with Alcohols

    PubMed Central

    Attri, Pankaj; Baik, Ku Youn.; Venkatesu, Pannuru; Kim, In Tae; Choi, Eun Ha

    2014-01-01

    In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15–313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (VE) and the deviation in isentropic compressibility (Δκs) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich–Kister polynomial equation. It was observed that for all studied systems, the VE and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7. PMID:24489741

  6. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study.

    PubMed

    Ul Haq, Rizwan; Rajotia, D; Noor, N F M

    2016-03-01

    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number.

  7. Influence of hydroxyl group position and temperature on thermophysical properties of tetraalkylammonium hydroxide ionic liquids with alcohols.

    PubMed

    Attri, Pankaj; Baik, Ku Youn; Venkatesu, Pannuru; Kim, In Tae; Choi, Eun Ha

    2014-01-01

    In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15-313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (V(E) ) and the deviation in isentropic compressibility (Δκs ) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich-Kister polynomial equation. It was observed that for all studied systems, the V(E) and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7.

  8. The influence of mixing water on the thermophysical properties of nanofluids based on solar salt and silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, B.; Nieto-Maestre, J.; Iparraguirre-Torres, I.; Sánchez-García, J. A.; Julia, J. E.; García-Romero, A.

    2016-05-01

    The use of nanofluids (NFs) based on Solar Salt (SS) and nanoparticles (NPs), either as Thermal Energy Storage (TES) material or as Heat Transfer Fluid (HTF), is attracting great interest in recent years. Many authors [1,3] have reported important improvements on the thermophysical properties (specific heat capacity cp,thermal conductivity k) of NFs based on SS and ceramic NPs. These improvements would lead to important savings and better performance of TES facilities on new Concentrated Solar Power (CSP) plants due to lower quantities of material required and smaller storage tanks. To achieve these advantageous features in the final NFs, it is essential to avoid NP agglomeration during their preparation. Different synthesis procedures have been reported: mixing of solid NPs within a SS solution by means of ultrasounds [1-3], direct mixing of solid NPs and molten salt [4]. In this work, NFs based on SS and 1% by wt. of silica NPs were synthetized from a SS-water solution and a commercial water-silica NF called Ludox HS 30% (Sigma-Aldrich). The influence of the mixing water volume (MW) on the cp of NFs was evaluated. With this aim, the cp of these samples was measured by Differential Scanning Calorimetry (DSC) both in the solid and the liquid state. In addition, the distribution of sizes was measured during the whole preparation process by Dynamic Light Scattering (DLS). Further information about sizes and uniformity of the final NFs was obtained from Scanning Electron Microscopy (SEM) images. X-ray Diffraction (XRD) patterns of the SS and final NF were performed.

  9. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study.

    PubMed

    Ul Haq, Rizwan; Rajotia, D; Noor, N F M

    2016-03-01

    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number. PMID:27006069

  10. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  11. Optimization of thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) previously treated with freezing-point regulators using response surface methodology.

    PubMed

    Wang, Liang; Liu, Zunying; Zhao, Yuanhui; Dong, Shiyuan; Zeng, Mingyong; Yang, Huicheng

    2015-08-01

    Three freezing-point regulators (glycine, sodium chloride and D-sorbitol) were employed to optimize thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) using response surface methodology (RSM). The independent variables were glycine content (0.250-1.250 %), sodium chloride content (0.500-2.500 %) and D-sorbitol content (0.125-0.625 %) and analysis of variance showed that the effects of glycine, sodium chloride and D-sorbitol on the thermophysical properties were statistically significant (P < 0.05). The coefficient of determination, R (2) values for initial freezing point (T i ), unfreezable water mass fraction (W u ), apparent specific heat (C app ) and Enthalpy (H) were 0.896 ~ 0.999. The combined effects of these independent variables on T i , W u , C app and H were investigated. The results indicated that T i , C app and H varied curvilinearly with increasing of glycine, sodium chloride and D-sorbitol content whereas W u increased nearly linearly. Based on response plots and desirability functions, the optimum combination of process variables for Pacific white shrimp previously treated with freezing-point regulators were 0.876 % for glycine content, 2.298 % for sodium chloride content and 0.589 % for D-sorbitol content, correspondently the optimized thermophysical properties were T i , - 5.086 °C; W u , 17.222 %; C app , 41.038 J/g °C and H, 155.942 J/g, respectively. Briefly, the application of freezing-point regulators depressed T i and obtained the optimum W u , C app and H, which would be obviously beneficial for the exploitation of various thermal processing and food storage. PMID:26243904

  12. Optimization of thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) previously treated with freezing-point regulators using response surface methodology.

    PubMed

    Wang, Liang; Liu, Zunying; Zhao, Yuanhui; Dong, Shiyuan; Zeng, Mingyong; Yang, Huicheng

    2015-08-01

    Three freezing-point regulators (glycine, sodium chloride and D-sorbitol) were employed to optimize thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) using response surface methodology (RSM). The independent variables were glycine content (0.250-1.250 %), sodium chloride content (0.500-2.500 %) and D-sorbitol content (0.125-0.625 %) and analysis of variance showed that the effects of glycine, sodium chloride and D-sorbitol on the thermophysical properties were statistically significant (P < 0.05). The coefficient of determination, R (2) values for initial freezing point (T i ), unfreezable water mass fraction (W u ), apparent specific heat (C app ) and Enthalpy (H) were 0.896 ~ 0.999. The combined effects of these independent variables on T i , W u , C app and H were investigated. The results indicated that T i , C app and H varied curvilinearly with increasing of glycine, sodium chloride and D-sorbitol content whereas W u increased nearly linearly. Based on response plots and desirability functions, the optimum combination of process variables for Pacific white shrimp previously treated with freezing-point regulators were 0.876 % for glycine content, 2.298 % for sodium chloride content and 0.589 % for D-sorbitol content, correspondently the optimized thermophysical properties were T i , - 5.086 °C; W u , 17.222 %; C app , 41.038 J/g °C and H, 155.942 J/g, respectively. Briefly, the application of freezing-point regulators depressed T i and obtained the optimum W u , C app and H, which would be obviously beneficial for the exploitation of various thermal processing and food storage.

  13. An "intelligent" approach based on side-by-side cascade-correlation neural networks for estimating thermophysical properties from photothermal responses

    NASA Astrophysics Data System (ADS)

    Grieu, Stéphane; Faugeroux, Olivier; Traoré, Adama; Claudet, Bernard; Bodnar, Jean-Luc

    2015-01-01

    In the present paper, an artificial-intelligence-based approach dealing with the estimation of thermophysical properties is designed and evaluated. This new and "intelligent" approach makes use of photothermal responses obtained when subjecting materials to a light flux. So, the main objective of the present work was to estimate simultaneously both the thermal diffusivity and conductivity of materials, from front-face or rear-face photothermal responses to pseudo random binary signals. To this end, we used side-by-side feedforward neural networks trained with the cascade-correlation algorithm. In addition, computation time was a key point to consider. That is why the developed algorithms are computationally tractable.

  14. Can Appraisers Rate Work Performance Accurately?

    ERIC Educational Resources Information Center

    Hedge, Jerry W.; Laue, Frances J.

    The ability of individuals to make accurate judgments about others is examined and literature on this subject is reviewed. A wide variety of situational factors affects the appraisal of performance. It is generally accepted that the purpose of the appraisal influences the accuracy of the appraiser. The instrumentation, or tools, available to the…

  15. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  16. Thermophysical properties of HCFC alternatives. Quarterly report, April 1--June 30, 1995

    SciTech Connect

    Haynes, W.M.

    1995-07-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  17. Thermophysical properties of HCFC alternatives. Quarterly report, January 1--March 31, 1995

    SciTech Connect

    Haynes, W.M.

    1995-04-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for, two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  18. Thermophysical properties of HCFC alternatives. Final report, 1 April 1994--31 October 1996

    SciTech Connect

    Haynes, W.M.

    1996-11-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of the project is to measure, with high accuracy, selected thermodynamic properties data for one pure refrigerant and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R-502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigerant applications.

  19. Thermophysical properties of HCFC alternatives. Quarterly report, 1 April 1994--30 June 1994

    SciTech Connect

    Haynes, W.M.

    1994-07-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. Reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  20. Thermophysical properties of HCFC alternatives. Quarterly report, 1 January 1996--31 March 1996

    SciTech Connect

    Haynes, W.M.

    1996-04-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  1. Thermophysical properties of HCFC alternatives. Quarterly report, October 1, 1994--December 31, 1994

    SciTech Connect

    Haynes, W.M.

    1995-01-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  2. Thermophysical properties of HCFC alternatives. Quarterly report, 1 April 1996--30 June 1996

    SciTech Connect

    Haynes, W.M.

    1996-07-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  3. Thermophysical properties of HCFC alternatives. Quarterly report, 1 July 1995--30 September 1995

    SciTech Connect

    Haynes, W.M.

    1995-10-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  4. Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Lehoczky, Sandor; Mook, Herb A.; Scripa, Rose; Zhu, Shen

    2001-01-01

    Recently, in support of the microgravity experiment entitled "Crystal Growth of Selected 11-VI Semiconducting Alloys by Directional Solidification," the viscosity of HgZnTe pseudobinary melt was measured using an oscillating-cup viscometer at NASA/Marshall Space Flight Center (MSFC). An unexpected time drift of the measured viscosity, which shows a slow relaxation phenomena at temperatures near the liquidus point, was reproducibly observed. Two sets of data were obtained by cooling the Hg(0.84)Zn(0.16)Te melt from 850 C and stabilizing at temperatures of 790 C, which is just above the liquidus temperature, and stabilizing at temperature of 810 C. While it took one day to reach equilibration at 810 C, five days were required at 790 C A similar relaxation phenomenon was also observed in the measured density of the same liquid. Furthermore, in the density measurements of the HgCdTe melts, which is the pseudobinary system studied in another flight experiment entitled "Growth of Solid Solution Single Crystals," a negative thermal expansion was reported. The liquid density increases from the liquidus point to a maximum value at a temperature approximately 700 C above the liquidus, where normal thermal expansion progressively resumes.

  5. Thermophysical properties of HCFC alternatives. Quarterly report, October 1--December 31, 1995

    SciTech Connect

    Haynes, W.M.

    1996-01-01

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  6. Accurate evaluation of homogenous and nonhomogeneous gas emissivities

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Lee, K. P.

    1984-01-01

    Spectral transmittance and total band adsorptance of selected infrared bands of carbon dioxide and water vapor are calculated by using the line-by-line and quasi-random band models and these are compared with available experimental results to establish the validity of the quasi-random band model. Various wide-band model correlations are employed to calculate the total band absorptance and total emissivity of these two gases under homogeneous and nonhomogeneous conditions. These results are compared with available experimental results under identical conditions. From these comparisons, it is found that the quasi-random band model can provide quite accurate results and is quite suitable for most atmospheric applications.

  7. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  8. Effects of Electrons, Protons, and Ultraviolet Radiation on Thermophysical Properties of Polymeric Films

    NASA Technical Reports Server (NTRS)

    Russell, Dennis A.; Connell, John W.; Fogdall, Lawrence B.; Winkler, Werner W.

    2001-01-01

    The response of coated thin polymer films to ultraviolet (UV), electron and proton radiation simultaneously has been evaluated, with selected measurements in situ. Exposure was intended to simulate the electron and proton radiation environment near the Earth-Sun Lagrangian points (LI and L2) for five years and approximately 1000 equivalent solar hours (ESH) UV. These orbital environments are relevant to several potential missions such as the Next Generation Space Telescope and Geomagnetic Storm Warning, both of which may use thin film based structures for a sunshade and solar sail, respectively. The thin film candidates (12.5 micrometers thick) consisted of commercially available materials (Kapton(R) E, HN, Upilex(R) S, CP-1, CP-2, TOR-RC, and TOR-LMBP) that were metalized on one side with vapor deposited aluminum. All of the films are aromatic polyimides, with the exception of TORLMBP, which is a copoly(arylene ether benzimidazole). The films were exposed as second surface mirrors and the effects of the exposure on solar absorptance, thermal emittance, and tensile properties were determined. The in situ changes in solar absorptance from Kapton(R) and Upilex(R) were less than 0. 1, whereas the solar absorptance of TOR and CP films increased by more than 0.3 without saturating. The thermal emittance measurements also showed that the Kapton(R) and Upilex(R) materials increased only 1-2%, but the remaining materials increased 5-8%. Based on tensile property measurements made in air following the test, the failure stress of every type of polymer film decreased as a result of irradiation. The polymers most stable in reflectance, namely Upilex(R) and Kapton(R), were also the strongest in tension before irradiation, and they retained the greatest percentage of tensile strength. The films less stable in reflectance were also weaker in tension, and lost more tensile strength as a result of irradiation. The apparent failure strain (as a percent of original gage length) of

  9. Feedback about more accurate versus less accurate trials: differential effects on self-confidence and activation.

    PubMed

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-06-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected byfeedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On day 1, participants performed a golf putting task under one of two conditions: one group received feedback on the most accurate trials, whereas another group received feedback on the least accurate trials. On day 2, participants completed an anxiety questionnaire and performed a retention test. Shin conductance level, as a measure of arousal, was determined. The results indicated that feedback about more accurate trials resulted in more effective learning as well as increased self-confidence. Also, activation was a predictor of performance. PMID:22808705

  10. Accurate and occlusion-robust multi-view stereo

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaokun; Stamatopoulos, Christos; Fraser, Clive S.

    2015-11-01

    This paper proposes an accurate multi-view stereo method for image-based 3D reconstruction that features robustness in the presence of occlusions. The new method offers improvements in dealing with two fundamental image matching problems. The first concerns the selection of the support window model, while the second centers upon accurate visibility estimation for each pixel. The support window model is based on an approximate 3D support plane described by a depth and two per-pixel depth offsets. For the visibility estimation, the multi-view constraint is initially relaxed by generating separate support plane maps for each support image using a modified PatchMatch algorithm. Then the most likely visible support image, which represents the minimum visibility of each pixel, is extracted via a discrete Markov Random Field model and it is further augmented by parameter clustering. Once the visibility is estimated, multi-view optimization taking into account all redundant observations is conducted to achieve optimal accuracy in the 3D surface generation for both depth and surface normal estimates. Finally, multi-view consistency is utilized to eliminate any remaining observational outliers. The proposed method is experimentally evaluated using well-known Middlebury datasets, and results obtained demonstrate that it is amongst the most accurate of the methods thus far reported via the Middlebury MVS website. Moreover, the new method exhibits a high completeness rate.

  11. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  12. Accurate multiplex gene synthesis from programmable DNA microchips

    NASA Astrophysics Data System (ADS)

    Tian, Jingdong; Gong, Hui; Sheng, Nijing; Zhou, Xiaochuan; Gulari, Erdogan; Gao, Xiaolian; Church, George

    2004-12-01

    Testing the many hypotheses from genomics and systems biology experiments demands accurate and cost-effective gene and genome synthesis. Here we describe a microchip-based technology for multiplex gene synthesis. Pools of thousands of `construction' oligonucleotides and tagged complementary `selection' oligonucleotides are synthesized on photo-programmable microfluidic chips, released, amplified and selected by hybridization to reduce synthesis errors ninefold. A one-step polymerase assembly multiplexing reaction assembles these into multiple genes. This technology enabled us to synthesize all 21 genes that encode the proteins of the Escherichia coli 30S ribosomal subunit, and to optimize their translation efficiency in vitro through alteration of codon bias. This is a significant step towards the synthesis of ribosomes in vitro and should have utility for synthetic biology in general.

  13. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  14. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  15. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  16. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  17. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  18. Accurate modeling of parallel scientific computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  19. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  20. Accurate mask model for advanced nodes

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle

    2014-07-01

    Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.

  1. Evaluation of Static Thermophysical Properties of the Ternary Molten Salt System Li, Na and Be/F Based on the Modified Peng-Robinson Equation

    NASA Astrophysics Data System (ADS)

    Zhang, Dalin; Qiu, Suizheng; Su, Guanghui; Jia, Dounan

    The static thermophysical properties of the molten salt system like LiF-NaF-BeF2 influence the design and construction of the fuel salt and coolant in the Molten Salt Reactor for the new generation. In this paper, the equation of state of the ternary system 0.15LiF-0.58NaF-0.27BeF2, over the temperature range from 873.15K to 1073.15K at one atmosphere pressure, is described by using modified Peng-Robinson equation. The density of the ternary system is evaluated by this equation directly, and compared with the experimental data. Base on the equation of state, the other static thermophysical properties such as the enthalpy, entropy and heat capacity at constant pressure are evaluated by the fugacity coefficient and residual function methods respectively. The density calculated by Peng-Robinson equation is in highly agreement with the experimental data, and the enthalpy, entropy and heat capacity evaluated by such two different methods are consistent with each other. It could be concluded that the modified Peng-Robinson equation could be applicable to estimate the density of the molten salt system, and the Peng-Robinson equation is recommended to be as the fundamental to evaluate the enthalpy, entropy and heat capacity of the molten salt system.

  2. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  3. Thermo-Physical Properties of B2O3-Containing Mold Flux for High Carbon Steels in Thin Slab Continuous Casters: Structure, Viscosity, Crystallization, and Wettability

    NASA Astrophysics Data System (ADS)

    Park, Jun-Yong; Kim, Gi Hyun; Kim, Jong Bae; Park, Sewoong; Sohn, Il

    2016-08-01

    The effect of B2O3 on the thermo-physical properties of commercial mold fluxes, including the viscosity, crystallization behavior, and wettability, was investigated. Viscosity was measured using the rotating spindle method, and CCT (continuous cooling transformation) diagrams were obtained to investigate the crystallization behavior at various cooling rates using CLSM (confocal laser scanning microscope). The wettability of the fluxes was determined by measuring the contact angles at 1573 K (1300 °C) using the digital images generated by the sessile drop method and were used to calculate the surface tension, interfacial tension, and work of adhesion for Flux A (existing flux) and B (modified flux). These thermo-physical properties were correlated with the structural analysis obtained using FT-IR (Fourier transform-infrared), Raman and MAS-NMR (magic angle spin-nuclear magnetic resonance) spectroscopy. In addition, DTA (differential thermal analysis) was performed on the samples to measure the liquidus temperatures. Higher B2O3 concentrations resulted in lower liquidus temperatures, consequently decreasing the viscosity, the break temperature, and the crystallization temperature. However, B2O3 addition accelerated crystal growth owing to the higher diffusion kinetics of the cations, which also reduced the size of the liquid/solid co-existing region.

  4. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-10-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  5. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-04-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  6. Robustness and Thermophysical Properties of MOF-5: A Prototypical Hydrogen Storage Material

    NASA Astrophysics Data System (ADS)

    Ming, Yang

    contrast, irreversible degradation occurs in a matter of minutes for exposures above the 50% threshold. This transition in performance can be linked to the shape of the water isotherm, which shows a large increase in uptake at ~50% relative humidity. Densification into pellets can slow the degradation of MOF-5 significantly, and may present a pathway to enhance the stability of some MOFs. We subsequently examined the thermodynamics and kinetics of water adsorption/insertion into MOF-5 using van der Waals-augmented Density Functional Theory calculations and transition state finding techniques. Adsorption and insertion energetics were evaluated as a function of water coverage while accounting for the full periodicity of the MOF-5 crystal structure, i.e., without resorting to cluster approximations or structure simplification. We find that incoming water molecules preferentially adsorb at adjacent sites on Zn-O clusters rather than filling widely separated low energy sites. Our calculations also suggest that the thermodynamics of MOF hydrolysis are coverage dependent: water insertion into the framework becomes exothermic (with a low, 0.17eV activation barrier) only after a sufficient number of H2O molecules are adsorbed on a Zn-O cluster. This observation is in good agreement with experimental measurements, which show that hydrolysis is slow at low water coverages and is preceded by an incubation period. The third component in our study of MOF-5 robustness involved cyclic and static exposure to impure hydrogen gas. Five impurity gas mixtures were prepared by introducing low levels of selected contaminants (NH3, H2S, HCl, H2O, CO, CO2, CH4, O 2, N2, and He) to high-purity hydrogen gas. MOF-5 was exposed to these mixtures over hundreds of adsorption/desorption pressure cycles and for extended periods of static exposure lasting up to 1 week. Hydrogen chloride was the only impurity that yielded a measurable decrease in hydrogen storage capacity. Post-cycling and post

  7. Accurate Molecular Polarizabilities Based on Continuum Electrostatics

    PubMed Central

    Truchon, Jean-François; Nicholls, Anthony; Iftimie, Radu I.; Roux, Benoît; Bayly, Christopher I.

    2013-01-01

    A novel approach for representing the intramolecular polarizability as a continuum dielectric is introduced to account for molecular electronic polarization. It is shown, using a finite-difference solution to the Poisson equation, that the Electronic Polarization from Internal Continuum (EPIC) model yields accurate gas-phase molecular polarizability tensors for a test set of 98 challenging molecules composed of heteroaromatics, alkanes and diatomics. The electronic polarization originates from a high intramolecular dielectric that produces polarizabilities consistent with B3LYP/aug-cc-pVTZ and experimental values when surrounded by vacuum dielectric. In contrast to other approaches to model electronic polarization, this simple model avoids the polarizability catastrophe and accurately calculates molecular anisotropy with the use of very few fitted parameters and without resorting to auxiliary sites or anisotropic atomic centers. On average, the unsigned error in the average polarizability and anisotropy compared to B3LYP are 2% and 5%, respectively. The correlation between the polarizability components from B3LYP and this approach lead to a R2 of 0.990 and a slope of 0.999. Even the F2 anisotropy, shown to be a difficult case for existing polarizability models, can be reproduced within 2% error. In addition to providing new parameters for a rapid method directly applicable to the calculation of polarizabilities, this work extends the widely used Poisson equation to areas where accurate molecular polarizabilities matter. PMID:23646034

  8. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  9. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  10. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  11. Accurate statistical associating fluid theory for chain molecules formed from Mie segments

    NASA Astrophysics Data System (ADS)

    Lafitte, Thomas; Apostolakou, Anastasia; Avendaño, Carlos; Galindo, Amparo; Adjiman, Claire S.; Müller, Erich A.; Jackson, George

    2013-10-01

    A highly accurate equation of state (EOS) for chain molecules formed from spherical segments interacting through Mie potentials (i.e., a generalized Lennard-Jones form with variable repulsive and attractive exponents) is presented. The quality of the theoretical description of the vapour-liquid equilibria (coexistence densities and vapour pressures) and the second-derivative thermophysical properties (heat capacities, isobaric thermal expansivities, and speed of sound) are critically assessed by comparison with molecular simulation and with experimental data of representative real substances. Our new EOS represents a notable improvement with respect to previous versions of the statistical associating fluid theory for variable range interactions (SAFT-VR) of the generic Mie form. The approach makes rigorous use of the Barker and Henderson high-temperature perturbation expansion up to third order in the free energy of the monomer Mie system. The radial distribution function of the reference monomer fluid, which is a prerequisite for the representation of the properties of the fluid of Mie chains within a Wertheim first-order thermodynamic perturbation theory (TPT1), is calculated from a second-order expansion. The resulting SAFT-VR Mie EOS can now be applied to molecular fluids characterized by a broad range of interactions spanning from soft to very repulsive and short-ranged Mie potentials. A good representation of the corresponding molecular-simulation data is achieved for model monomer and chain fluids. When applied to the particular case of the ubiquitous Lennard-Jones potential, our rigorous description of the thermodynamic properties is of equivalent quality to that obtained with the empirical EOSs for LJ monomer (EOS of Johnson et al.) and LJ chain (soft-SAFT) fluids. A key feature of our reformulated SAFT-VR approach is the greatly enhanced accuracy in the near-critical region for chain molecules. This attribute, combined with the accurate modeling of second

  12. Accurate statistical associating fluid theory for chain molecules formed from Mie segments.

    PubMed

    Lafitte, Thomas; Apostolakou, Anastasia; Avendaño, Carlos; Galindo, Amparo; Adjiman, Claire S; Müller, Erich A; Jackson, George

    2013-10-21

    A highly accurate equation of state (EOS) for chain molecules formed from spherical segments interacting through Mie potentials (i.e., a generalized Lennard-Jones form with variable repulsive and attractive exponents) is presented. The quality of the theoretical description of the vapour-liquid equilibria (coexistence densities and vapour pressures) and the second-derivative thermophysical properties (heat capacities, isobaric thermal expansivities, and speed of sound) are critically assessed by comparison with molecular simulation and with experimental data of representative real substances. Our new EOS represents a notable improvement with respect to previous versions of the statistical associating fluid theory for variable range interactions (SAFT-VR) of the generic Mie form. The approach makes rigorous use of the Barker and Henderson high-temperature perturbation expansion up to third order in the free energy of the monomer Mie system. The radial distribution function of the reference monomer fluid, which is a prerequisite for the representation of the properties of the fluid of Mie chains within a Wertheim first-order thermodynamic perturbation theory (TPT1), is calculated from a second-order expansion. The resulting SAFT-VR Mie EOS can now be applied to molecular fluids characterized by a broad range of interactions spanning from soft to very repulsive and short-ranged Mie potentials. A good representation of the corresponding molecular-simulation data is achieved for model monomer and chain fluids. When applied to the particular case of the ubiquitous Lennard-Jones potential, our rigorous description of the thermodynamic properties is of equivalent quality to that obtained with the empirical EOSs for LJ monomer (EOS of Johnson et al.) and LJ chain (soft-SAFT) fluids. A key feature of our reformulated SAFT-VR approach is the greatly enhanced accuracy in the near-critical region for chain molecules. This attribute, combined with the accurate modeling of second

  13. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  14. Robustness and Thermophysical Properties of MOF-5: A Prototypical Hydrogen Storage Material

    NASA Astrophysics Data System (ADS)

    Ming, Yang

    contrast, irreversible degradation occurs in a matter of minutes for exposures above the 50% threshold. This transition in performance can be linked to the shape of the water isotherm, which shows a large increase in uptake at ~50% relative humidity. Densification into pellets can slow the degradation of MOF-5 significantly, and may present a pathway to enhance the stability of some MOFs. We subsequently examined the thermodynamics and kinetics of water adsorption/insertion into MOF-5 using van der Waals-augmented Density Functional Theory calculations and transition state finding techniques. Adsorption and insertion energetics were evaluated as a function of water coverage while accounting for the full periodicity of the MOF-5 crystal structure, i.e., without resorting to cluster approximations or structure simplification. We find that incoming water molecules preferentially adsorb at adjacent sites on Zn-O clusters rather than filling widely separated low energy sites. Our calculations also suggest that the thermodynamics of MOF hydrolysis are coverage dependent: water insertion into the framework becomes exothermic (with a low, 0.17eV activation barrier) only after a sufficient number of H2O molecules are adsorbed on a Zn-O cluster. This observation is in good agreement with experimental measurements, which show that hydrolysis is slow at low water coverages and is preceded by an incubation period. The third component in our study of MOF-5 robustness involved cyclic and static exposure to impure hydrogen gas. Five impurity gas mixtures were prepared by introducing low levels of selected contaminants (NH3, H2S, HCl, H2O, CO, CO2, CH4, O 2, N2, and He) to high-purity hydrogen gas. MOF-5 was exposed to these mixtures over hundreds of adsorption/desorption pressure cycles and for extended periods of static exposure lasting up to 1 week. Hydrogen chloride was the only impurity that yielded a measurable decrease in hydrogen storage capacity. Post-cycling and post

  15. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  16. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  17. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  18. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  19. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  20. Accurate density functional thermochemistry for larger molecules.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-06-20

    Density functional methods are combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. Seven different density functionals are assessed for the evaluation of heats of formation, Delta H 0 (298 K), for a test set of 40 molecules composed of H, C, O and N. The use of bond separation energies results in a dramatic improvement in the accuracy of all the density functionals. The B3-LYP functional has the smallest mean absolute deviation from experiment (1.5 kcal mol/f).

  1. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material. PMID:11366835

  2. Universality: Accurate Checks in Dyson's Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  3. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  4. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  5. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  6. How Accurately can we Calculate Thermal Systems?

    SciTech Connect

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-04-20

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.

  7. Accurate Stellar Parameters for Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani; Valenti, Jeff A.

    2015-01-01

    A large impedement to our understanding of planet formation is obtaining a clear picture of planet radii and densities. Although determining precise ratios between planet and stellar host are relatively easy, determining accurate stellar parameters is still a difficult and costly undertaking. High resolution spectral analysis has traditionally yielded precise values for some stellar parameters but stars in common between catalogs from different authors or analyzed using different techniques often show offsets far in excess of their uncertainties. Most analyses now use some external constraint, when available, to break observed degeneracies between surface gravity, effective temperature, and metallicity which can otherwise lead to correlated errors in results. However, these external constraints are impossible to obtain for all stars and can require more costly observations than the initial high resolution spectra. We demonstrate that these discrepencies can be mitigated by use of a larger line list that has carefully tuned atomic line data. We use an iterative modeling technique that does not require external constraints. We compare the surface gravity obtained with our spectral synthesis modeling to asteroseismically determined values for 42 Kepler stars. Our analysis agrees well with only a 0.048 dex offset and an rms scatter of 0.05 dex. Such accurate stellar gravities can reduce the primary source of uncertainty in radii by almost an order of magnitude over unconstrained spectral analysis.

  8. Thermophysical properties of argon

    SciTech Connect

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  9. 26th Thermophysics Conference

    SciTech Connect

    Dever, J.A.; Rodriguez, E.; Slemp, W.S.; Stoyack, J.E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB{sup -71}, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  10. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  11. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  12. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  13. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  14. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  15. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  16. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  17. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  18. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  19. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception. PMID:24549293

  20. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  1. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  2. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  3. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  4. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  5. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  6. Evaluation of structural and thermophysical effects on the measurement accuracy of deep body thermometers based on dual-heat-flux method.

    PubMed

    Huang, Ming; Tamura, Toshiyo; Chen, Wenxi; Kanaya, Shigehiko

    2015-01-01

    To help pave a path toward the practical use of continuous unconstrained noninvasive deep body temperature measurement, this study aims to evaluate the structural and thermophysical effects on measurement accuracy for the dual-heat-flux method (DHFM). By considering the thermometer's height, radius, conductivity, density and specific heat as variables affecting the accuracy of DHFM measurement, we investigated the relationship between those variables and accuracy using 3-D models based on finite element method. The results of our simulation study show that accuracy is proportional to the radius but inversely proportional to the thickness of the thermometer when the radius is less than 30.0mm, and is also inversely proportional to the heat conductivity of the heat insulator inside the thermometer. The insights from this study would help to build a guideline for design, fabrication and optimization of DHFM-based thermometers, as well as their practical use.

  7. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    PubMed

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  8. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    PubMed Central

    2011-01-01

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877

  9. Thermophysical properties and eutectic growth of electrostatically levitated and substantially undercooled liquid Zr91.2Si8.8 alloy

    NASA Astrophysics Data System (ADS)

    Hu, L.; Li, L. H.; Yang, S. J.; Wei, B.

    2015-02-01

    We present the thermophysical properties and eutectic growth of undercooled liquid Zr91.2Si8.8 alloy at electrostatic levitation state. The obtained maximum undercooling is 371 K, which reaches up to 0.2TE. The density of liquid alloy decreases linearly with increasing temperature. The ratio of specific heat to emissivity is measured and the specific heat is derived accordingly. The solidification microstructure is composed of αZr and Zr3Si phases and displays a transition from lamellar eutectic to anomalous eutectic with the enhancement of undercooling. The growth velocity of lamellar eutectic is measured to be only 1 mm/s, whereas it increased to 90 mm/s for anomalous eutectic.

  10. Estimation of lunar surface temperatures and thermophysical properties: test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald; Helbert, Jörn; Robinson, Mark S.; Scholten, Frank

    2014-10-01

    The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) is part of the payload on the joint ESA-JAXA BepiColombo Mission, scheduled for launch in 2016. The spectrometer is designed to map surface compositions, to identify rock-forming minerals, to map surface mineralogy, and to study surface temperature variations. In preparation of the experiment we developed a thermal model that calculates surface temperatures based on appropriate insolation conditions and thermophysical properties. In the absence of thermal measurements on Mercury, we validate the model with lunar parameters. The results show good agreement with Apollo 17, Clementine and LRO-Diviner data. With appropriate changes of the orbital parameters and ephemeris data this model can be applied to the conditions of Mercury.

  11. Electronic, mechanical, phase transition, and thermo-physical properties of TMC (TM = V, Nb, and Ta): high pressure ab initio study

    NASA Astrophysics Data System (ADS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2015-12-01

    The structural, electronic, mechanical, phase transition, and thermo-physical properties of refractory carbides, viz. VC, NbC, and TaC have been computed in stable B1 and high pressure B2 phases by means of two different ab initio calculations using pseudo- and full-potential schemes. These materials have mixed covalent-, metallic-, and ionic-type bonding. The calculations of elastic constants show the mechanical stability of these materials in B1 phase only. The brittle nature and anisotropy is observed in these materials in B1 phase. Non-central forces are present in both the phases. Elastic wave velocities and Debye temperature have also been calculated. The present results on structural, phase transition, elastic, and other properties are in reasonably good agreement with the available experimental and theoretical data. The calculations in high pressure phase need experimental verification.

  12. Method for determining thermo-physical properties of specimens. [photographic recording of changes in thin film phase-change temperature indicating material in wind tunnel

    NASA Technical Reports Server (NTRS)

    Jones, R. A. (Inventor)

    1974-01-01

    The square root of the product of thermophysical properties q, c and k, where p is density, c is specific heat and k is thermal conductivity, is determined directly on a test specimen such as a wind tunnel model. The test specimen and a reference specimen of known specific heat are positioned at a given distance from a heat source. The specimens are provided with a coating, such as a phase change coating, to visually indicate that a given temperature was reached. A shutter interposed between the heat source and the specimens is opened and a motion picture camera is actuated to provide a time record of the heating step. The temperature of the reference specimen is recorded as a function of time. The heat rate to which both the test and reference specimens were subjected is determined from the temperature time response of the reference specimen by the conventional thin-skin calorimeter equation.

  13. Ultra-accurate collaborative information filtering via directed user similarity

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Song, W.-J.; Liu, J.-G.

    2014-07-01

    A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers' recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones in opposite direction, the large-degree users' selections are recommended extensively by the traditional second-order CF algorithms. By considering the users' similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random walks proposed by Liu et al. (Int. J. Mod. Phys. C, 20 (2009) 285) the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix, respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.

  14. Second-Order Accurate Projective Integrators for Multiscale Problems

    SciTech Connect

    Lee, S L; Gear, C W

    2005-05-27

    We introduce new projective versions of second-order accurate Runge-Kutta and Adams-Bashforth methods, and demonstrate their use as outer integrators in solving stiff differential systems. An important outcome is that the new outer integrators, when combined with an inner telescopic projective integrator, can result in fully explicit methods with adaptive outer step size selection and solution accuracy comparable to those obtained by implicit integrators. If the stiff differential equations are not directly available, our formulations and stability analysis are general enough to allow the combined outer-inner projective integrators to be applied to black-box legacy codes or perform a coarse-grained time integration of microscopic systems to evolve macroscopic behavior, for example.

  15. Accurate radio and optical positions for southern radio sources

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce R.; Jauncey, David L.; White, Graeme L.; Nothnagel, Axel; Nicolson, George D.; Reynolds, John E.; Morabito, David D.; Bartel, Norbert

    1992-01-01

    Accurate radio positions with a precision of about 0.01 arcsec are reported for eight compact extragalactic radio sources south of -45-deg declination. The radio positions were determined using VLBI at 8.4 GHz on the 9589 km Tidbinbilla (Australia) to Hartebeesthoek (South Africa) baseline. The sources were selected from the Parkes Catalogue to be strong, flat-spectrum radio sources with bright optical QSO counterparts. Optical positions of the QSOs were also measured from the ESO B Sky Survey plates with respect to stars from the Perth 70 Catalogue, to an accuracy of about 0.19 arcsec rms. These radio and optical positions are as precise as any presently available in the far southern sky. A comparison of the radio and optical positions confirms the estimated optical position errors and shows that there is overall agreement at the 0.1-arcsec level between the radio and Perth 70 optical reference frames in the far south.

  16. Accurate, low-cost 3D-models of gullies

    NASA Astrophysics Data System (ADS)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  17. Accurate masses for dispersion-supported galaxies

    NASA Astrophysics Data System (ADS)

    Wolf, Joe; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj; Geha, Marla; Muñoz, Ricardo R.; Simon, Joshua D.; Avedo, Frank F.

    2010-08-01

    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analysing resolved line-of-sight velocity data for globular clusters, dwarf galaxies and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. We find M1/2 = 3 G-1< σ2los > r1/2 ~= 4 G-1< σ2los > Re, where < σ2los > is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of a mass of approximately 3 × 109 Msolar, assuming a Λ cold dark matter cosmology. The faintest MW dSphs seem to have formed in dark matter haloes that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity between them. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their dynamical I-band mass-to-light ratios ΥI1/2. The ΥI1/2 versus M1/2 relation for dispersion-supported galaxies follows a U shape, with a broad minimum near ΥI1/2 ~= 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ΥI1/2 ~= 3200 for ultra-faint dSphs and a more shallow rise to ΥI1/2 ~= 800 for galaxy cluster spheroids.

  18. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  19. Accurate free energy calculation along optimized paths.

    PubMed

    Chen, Changjun; Xiao, Yi

    2010-05-01

    The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.

  20. Accurate SHAPE-directed RNA structure determination

    PubMed Central

    Deigan, Katherine E.; Li, Tian W.; Mathews, David H.; Weeks, Kevin M.

    2009-01-01

    Almost all RNAs can fold to form extensive base-paired secondary structures. Many of these structures then modulate numerous fundamental elements of gene expression. Deducing these structure–function relationships requires that it be possible to predict RNA secondary structures accurately. However, RNA secondary structure prediction for large RNAs, such that a single predicted structure for a single sequence reliably represents the correct structure, has remained an unsolved problem. Here, we demonstrate that quantitative, nucleotide-resolution information from a SHAPE experiment can be interpreted as a pseudo-free energy change term and used to determine RNA secondary structure with high accuracy. Free energy minimization, by using SHAPE pseudo-free energies, in conjunction with nearest neighbor parameters, predicts the secondary structure of deproteinized Escherichia coli 16S rRNA (>1,300 nt) and a set of smaller RNAs (75–155 nt) with accuracies of up to 96–100%, which are comparable to the best accuracies achievable by comparative sequence analysis. PMID:19109441

  1. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  2. Fast and Provably Accurate Bilateral Filtering.

    PubMed

    Chaudhury, Kunal N; Dabhade, Swapnil D

    2016-06-01

    The bilateral filter is a non-linear filter that uses a range filter along with a spatial filter to perform edge-preserving smoothing of images. A direct computation of the bilateral filter requires O(S) operations per pixel, where S is the size of the support of the spatial filter. In this paper, we present a fast and provably accurate algorithm for approximating the bilateral filter when the range kernel is Gaussian. In particular, for box and Gaussian spatial filters, the proposed algorithm can cut down the complexity to O(1) per pixel for any arbitrary S . The algorithm has a simple implementation involving N+1 spatial filterings, where N is the approximation order. We give a detailed analysis of the filtering accuracy that can be achieved by the proposed approximation in relation to the target bilateral filter. This allows us to estimate the order N required to obtain a given accuracy. We also present comprehensive numerical results to demonstrate that the proposed algorithm is competitive with the state-of-the-art methods in terms of speed and accuracy. PMID:27093722

  3. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  4. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  5. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  6. Accurate adiabatic correction in the hydrogen molecule.

    PubMed

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10(-12) at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10(-7) cm(-1), which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels. PMID:25494728

  7. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  8. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  9. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  10. Accurate Thermal Conductivities from First Principles

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  11. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  12. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  13. Two Types of Motor Strategy for Accurate Dart Throwing

    PubMed Central

    Nasu, Daiki; Matsuo, Tomoyuki; Kadota, Koji

    2014-01-01

    This study investigated whether expert dart players utilize hand trajectory patterns that can compensate for the inherent variability in their release timing. In this study, we compared the timing error and hand trajectory patterns of expert players with those of novices. Eight experts and eight novices each made 60 dart throws, aiming at the bull’s-eye. The movements of the dart and index finger were captured using seven 480-Hz cameras. The data were interpolated using a cubic spline function and analyzed by the millisecond. The estimated vertical errors on the dartboard were calculated as a time-series by using the state variables of the index finger (position, velocity, and direction of motion). This time-series error represents the hand trajectory pattern. Two variables assessing the performance outcome in the vertical plane and two variables related to the timing control were quantified on the basis of the time-series error. The results revealed two typical types of motor strategies in the expert group. The timing error of some experts was similar to that of novices; however, these experts had a longer window of time in which to release an accurately thrown dart. These subjects selected hand trajectory patterns that could compensate for the timing error. Other experts did not select the complementary hand trajectories, but greatly reduced their error in release timing. PMID:24533102

  14. How accurate are our assumptions about our students' background knowledge?

    PubMed

    Rovick, A A; Michael, J A; Modell, H I; Bruce, D S; Horwitz, B; Adamson, T; Richardson, D R; Silverthorn, D U; Whitescarver, S A

    1999-06-01

    Teachers establish prerequisites that students must meet before they are permitted to enter their courses. It is expected that having these prerequisites will provide students with the knowledge and skills they will need to successfully learn the course content. Also, the material that the students are expected to have previously learned need not be included in a course. We wanted to determine how accurate instructors' understanding of their students background knowledge actually was. To do this, we wrote a set of multiple-choice questions that could be used to test students' knowledge of concepts deemed to be essential for learning respiratory physiology. Instructors then selected 10 of these questions to be used as a prerequisite knowledge test. The instructors also predicted the performance they expected from the students on each of the questions they had selected. The resulting tests were administered in the first week of each of seven courses. The results of this study demonstrate that instructors are poor judges of what beginning students know. Instructors tended to both underestimate and overestimate students' knowledge by large margins on individual questions. Although on the average they tended to underestimate students' factual knowledge, they overestimated the students' abilities to apply this knowledge. Hence, the validity of decisions that instructors make, predicated on the basis of their students having the prerequisite knowledge that they expect, is open to question.

  15. Two types of motor strategy for accurate dart throwing.

    PubMed

    Nasu, Daiki; Matsuo, Tomoyuki; Kadota, Koji

    2014-01-01

    This study investigated whether expert dart players utilize hand trajectory patterns that can compensate for the inherent variability in their release timing. In this study, we compared the timing error and hand trajectory patterns of expert players with those of novices. Eight experts and eight novices each made 60 dart throws, aiming at the bull's-eye. The movements of the dart and index finger were captured using seven 480-Hz cameras. The data were interpolated using a cubic spline function and analyzed by the millisecond. The estimated vertical errors on the dartboard were calculated as a time-series by using the state variables of the index finger (position, velocity, and direction of motion). This time-series error represents the hand trajectory pattern. Two variables assessing the performance outcome in the vertical plane and two variables related to the timing control were quantified on the basis of the time-series error. The results revealed two typical types of motor strategies in the expert group. The timing error of some experts was similar to that of novices; however, these experts had a longer window of time in which to release an accurately thrown dart. These subjects selected hand trajectory patterns that could compensate for the timing error. Other experts did not select the complementary hand trajectories, but greatly reduced their error in release timing. PMID:24533102

  16. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  17. Retinal Connectomics: Towards Complete, Accurate Networks

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Watt, Carl B.; Anderson, James R.; Sigulinsky, Crystal; Lauritzen, Scott

    2013-01-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 1012–1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  18. Retinal connectomics: towards complete, accurate networks.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Anderson, James R; Sigulinsky, Crystal; Lauritzen, Scott

    2013-11-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  19. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  20. Preparation and thermophysical properties of (Sm{sub 1−x}Er{sub x}){sub 2}Ce{sub 2}O{sub 7} oxides for thermal barrier coatings

    SciTech Connect

    Xiaoge, Chen; Shusen, Yang; Hongsong, Zhang; Gang, Li; Zhenjun, Li.; Bo, Ren; Xudan, Dang; Haoming, Zhang; An, Tang

    2014-03-01

    Graphical abstract: - Highlights: • These ceramic materials with fluorite structure were synthesized. • Defect points lead to their lower thermal conductivities. • The lower ionic radius of Er{sup 3+} ion leads to the reduction of thermal expansion coefficient of (Sm{sub 1−x}Er{sub x}){sub 2}Ce{sub 2}O{sub 7} oxides. - Abstract: (Sm{sub 1−x}Er{sub x}){sub 2}Ce{sub 2}O{sub 7} ceramics were synthesized by sol–gel method and sintered at 1600 °C for 10 h in air. The influence of Er{sub 2}O{sub 3}-substitution on the phase structure and thermophysical properties of Sm{sub 2}Ce{sub 2}O{sub 7} was investigated. The phase structures of these ceramics were identified by X-ray diffraction showing that all synthesized ceramics have fluorite-type structure. The measurements for thermophysical properties of these ceramics show that their thermal conductivities and thermal expansion coefficients remarkably decreased through Er-substitution. However, the thermal expansion coefficients were higher than that of YSZ and their thermal conductivities were much lower than that of 8YSZ. The excellent thermophysical property implies that these solid solutions are potential materials for the ceramics layer in thermal barrier coatings.

  1. Rapid Accurate Identification of Bacterial and Viral Pathogens

    SciTech Connect

    Dunn, John

    2007-03-09

    The goals of this program were to develop two assays for rapid, accurate identification of pathogenic organisms at the strain level. The first assay "Quantitative Genome Profiling or QGP" is a real time PCR assay with a restriction enzyme-based component. Its underlying concept is that certain enzymes should cleave genomic DNA at many sites and that in some cases these cuts will interrupt the connection on the genomic DNA between flanking PCR primer pairs thereby eliminating selected PCR amplifications. When this occurs the appearance of the real-time PCR threshold (Ct) signal during DNA amplification is totally eliminated or, if cutting is incomplete, greatly delayed compared to an uncut control. This temporal difference in appearance of the Ct signal relative to undigested control DNA provides a rapid, high-throughput approach for DNA-based identification of different but closely related pathogens depending upon the nucleotide sequence of the target region. The second assay we developed uses the nucleotide sequence of pairs of shmi identifier tags (-21 bp) to identify DNA molecules. Subtle differences in linked tag pair combinations can also be used to distinguish between closely related isolates..

  2. Heat exchangers: Selection, rating, and thermal design

    SciTech Connect

    Kakac, S.; Liu, H.

    1998-01-01

    This book takes a systematic approach to the subject, focusing on the selection, design, rating, and operational challenges of various types of heat exchangers. Written by well-known authors in the field of heat transfer, this book covers all the most commonly used types of heat exchangers, including condensers and evaporators. The text begins with the classification of the different types of heat exchangers and discusses methods for their sizing and rating. Single phase forced convection correlations in ducts and pressure drop and pumping power analysis are also covered. A chapter is devoted to the special problem of fouling. Thermal design methods and processes, including designs for condensers and evaporators, complete this thorough introduction to the subject. The appendix provides information on the thermophysical properties of fluids, including the new refrigerants. Every topic features worked examples to illustrate the methods and procedures presented, and additional problems are included at the end of each chapter, with examples to be used as a student design project. An instructor's manual is available, including complete solutions to selected problems in the text. The contents include: classification of heat exchangers; basic design methods of heat exchangers; forced convection correlations for single-phase side of heat exchangers; heat exchanger pressure drop and pumping power; fouling of heat exchangers; double-pipe heat exchangers; design correlations for condensers and evaporators; shell-and-tube heat exchangers; compact heat exchangers; gasketed-plate heat exchangers; and condensers and evaporators.

  3. Experimental and molecular dynamics study of thermo-physical and transport properties of ThO2-5wt.%CeO2 mixed oxides

    NASA Astrophysics Data System (ADS)

    Somayajulu, P. S.; Ghosh, P. S.; Banerjee, J.; Babu, K. L. N. C.; Danny, K. M.; Mandal, B. P.; Mahata, T.; Sengupta, P.; Sali, S. K.; Arya, A.

    2015-12-01

    We have determined the thermo-physical (elastic modulus, specific heat, thermal expansion and thermal conductivity) and transport (ionic conductivity) properties of ThO2-5wt.%CeO2 mixed oxide (MOX) using a combined experimental and theoretical methodology. The specific heat, ionic conductivity and elastic properties of ThO2-5wt.%CeO2 pellets prepared by conventional powder metallurgy (POP) and coated agglomerate pelletization (CAP) routes (sintered in both air and Ar-8%H2 atmosphere) are compared with respect to homogeneity (CeO2 distribution in ThO2 matrix), microstructure, porosity and oxygen to metal ratio. The effects of inhomogeneity and pore distribution on thermal expansion and thermal conductivity of the mixed-oxide pellets are identified. Molecular dynamics (MD) simulations using the Coulomb-Buckingham-Morse-many-body model based interatomic potentials are used to predict elastic properties in the temperature range between 300 and 2000 K and thermodynamic properties, viz., enthalpy increment and specific heats of ThO2. Finally, the thermal expansion coefficient and thermal conductivity of ThO2 and (Th,Ce)O2 mixed-oxides obtained from MD are compared with available experimental results.

  4. A parametric study of Io’s thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters

    NASA Astrophysics Data System (ADS)

    Walker, Andrew C.; Moore, Chris H.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2012-07-01

    Io’s sublimation atmosphere is inextricably linked to the SO2 surface frost temperature distribution which is poorly constrained by observations. We constrain Io’s surface thermal distribution by a parametric study of its thermophysical properties in an attempt to better model the morphology of Io’s sublimation atmosphere. Io’s surface thermal distribution is represented by three thermal units: sulfur dioxide (SO2) frosts/ices, non-frosts (probably sulfur allotropes and/or pyroclastic dusts), and hot spots. The hot spots included in our thermal model are static high temperature surfaces with areas and temperatures based on Keck infrared observations. Elsewhere, over frosts and non-frosts, our thermal model solves the one-dimensional heat conduction equation in depth into Io’s surface and includes the effects of eclipse by Jupiter, radiation from Jupiter, and latent heat of sublimation and condensation. The best fit parameters for the SO2 frost and non-frost units are found by using a least-squares method and fitting to observations of the Hubble Space Telescope’s Space Telescope Imaging Spectrograph (HST STIS) mid- to near-UV reflectance spectra and Galileo PPR brightness temperature. The thermophysical parameters are the frost Bond albedo, αF, and thermal inertia, ΓF, as well as the non-frost surface Bond albedo, αNF, and thermal inertia, ΓNF. The best fit parameters are found to be αF ≈ 0.55 ± 0.02 and ΓF ≈ 200 ± 50 J m-2 K-1 s-1/2 for the SO2 frost surface and αNF ≈ 0.49 ± 0.02 and ΓNF ≈ 20 ± 10 J m-2 K-1 s-1/2 for the non-frost surface. These surface thermophysical parameters are then used as boundary conditions in global atmospheric simulations of Io’s sublimation-driven atmosphere using the direct simulation Monte Carlo (DSMC) method. These simulations are unsteady, three-dimensional, parallelized across 360 processors, and include the following physical effects: inhomogeneous surface frosts, plasma heating, and a temperature

  5. A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals.

    PubMed

    Nelyubina, Yulia V; Shaplov, Alexander S; Lozinskaya, Elena I; Buzin, Mikhail I; Vygodskii, Yakov S

    2016-08-17

    Volume-based prediction of melting points and other properties of ionic liquids (ILs) relies on empirical relations with volumes of ions in these low-melting organic salts. Here we report an accurate way to ionic volumes by Bader's partitioning of electron densities from X-ray diffraction obtained via a simple database approach. For a series of 1-tetradecyl-3-methylimidazolium salts, the volumes of different anions are found to correlate linearly with melting points; larger anions giving lower-melting ILs. The volume-based concept is transferred to ionic liquid crystals (ILs that adopt liquid crystalline mesophases, ILCs) for predicting the domain of their existence from the knowledge of their constituents. For 1-alkyl-3-methylimidazolium ILCs, linear correlations of ionic volumes with the occurrence of LC mesophase and its stability are revealed, thus paving the way to rational design of ILCs by combining suitably sized ions.

  6. A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals.

    PubMed

    Nelyubina, Yulia V; Shaplov, Alexander S; Lozinskaya, Elena I; Buzin, Mikhail I; Vygodskii, Yakov S

    2016-08-17

    Volume-based prediction of melting points and other properties of ionic liquids (ILs) relies on empirical relations with volumes of ions in these low-melting organic salts. Here we report an accurate way to ionic volumes by Bader's partitioning of electron densities from X-ray diffraction obtained via a simple database approach. For a series of 1-tetradecyl-3-methylimidazolium salts, the volumes of different anions are found to correlate linearly with melting points; larger anions giving lower-melting ILs. The volume-based concept is transferred to ionic liquid crystals (ILs that adopt liquid crystalline mesophases, ILCs) for predicting the domain of their existence from the knowledge of their constituents. For 1-alkyl-3-methylimidazolium ILCs, linear correlations of ionic volumes with the occurrence of LC mesophase and its stability are revealed, thus paving the way to rational design of ILCs by combining suitably sized ions. PMID:27479022

  7. Effect of the thermophysical properties of a material on the choice of electron-beam welding conditions

    NASA Astrophysics Data System (ADS)

    Gribkov, M. S.; Martynov, V. N.; Kozhechenko, A. S.; Shcherbakov, A. V.

    2015-12-01

    A method for selecting electron-beam welding (EBW) conditions is developed for specific equipment, thickness, and material of a product. The results can be used for calculating and predicting the welding parameters to reduce the time for preparing products for EBW and the material costs.

  8. Accurate description of calcium solvation in concentrated aqueous solutions.

    PubMed

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2014-07-17

    Calcium is one of the biologically most important ions; however, its accurate description by classical molecular dynamics simulations is complicated by strong electrostatic and polarization interactions with surroundings due to its divalent nature. Here, we explore the recently suggested approach for effectively accounting for polarization effects via ionic charge rescaling and develop a new and accurate parametrization of the calcium dication. Comparison to neutron scattering and viscosity measurements demonstrates that our model allows for an accurate description of concentrated aqueous calcium chloride solutions. The present model should find broad use in efficient and accurate modeling of calcium in aqueous environments, such as those encountered in biological and technological applications.

  9. Molecular Dynamics Simulations of Tri-n-butyl-phosphate/n-Dodecane Mixture: Thermophysical Properties and Molecular Structure

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin

    2014-01-01

    Molecular dynamics simulations of tri-n-butyl-phosphate (TBP)/n-dodecane mixture in the liquid phase have been carried out using two recently developed TBP force field models (J. Phys. Chem. B 2012, 116, 305) in combination with the all-atom optimized potentials for liquid simulations (OPLS-AA) force field model for n-dodecane. Specifically, the electric dipole moment of TBP, mass density of the mixture, and the excess volume of mixing were computed with TBP mole fraction ranging from 0 to 1. It is found that the aforementioned force field models accurately predict the mass density of the mixture in the entire mole fraction range. Commensurate with experimental measurements, the electric dipole moment of the TBP was found to slightly increase with the mole fraction of TBP in the mixture. Also, in accord with experimental data, the excess volume of mixing is positive in the entire mole fraction range, peaking at TBP mole fraction range 0.3 0.5. Finally, a close examination of the spatial pair correlation functions between TBP molecules, and between TBP and n-dodecane molecules, revealed formation of TBP dimers through self-association at close distance, a phenomenon with ample experimental evidence.

  10. Intermolecular potential energy surface and thermophysical properties of the CH{sub 4}–N{sub 2} system

    SciTech Connect

    Hellmann, Robert Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2014-12-14

    A five-dimensional potential energy surface (PES) for the interaction of a rigid methane molecule with a rigid nitrogen molecule was determined from quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the CCSD(T) level of theory was utilized to compute a total of 743 points on the PES. The interaction energies were calculated using basis sets of up to quadruple-zeta quality with bond functions and were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites for methane and five sites for nitrogen was fitted to the interaction energies. The PES was validated by calculating the cross second virial coefficient as well as the shear viscosity and binary diffusion coefficient in the dilute-gas limit for CH{sub 4}–N{sub 2} mixtures. An improved PES was obtained by adjusting a single parameter of the analytical potential function in such a way that quantitative agreement with the most accurate experimental values of the cross second virial coefficient was achieved. The transport property values obtained with the adjusted PES are in good agreement with the best experimental data.

  11. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph.

  12. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  13. 31 CFR 205.24 - How are accurate estimates maintained?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are accurate estimates maintained... Treasury-State Agreement § 205.24 How are accurate estimates maintained? (a) If a State has knowledge that an estimate does not reasonably correspond to the State's cash needs for a Federal assistance...

  14. 78 FR 34604 - Submitting Complete and Accurate Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... COMMISSION 10 CFR Part 50 Submitting Complete and Accurate Information AGENCY: Nuclear Regulatory Commission... accurate information as would a licensee or an applicant for a license.'' DATES: Submit comments by August... may submit comments by any of the following methods (unless this document describes a different...

  15. Theoretical treatment of the thermophysical properties of fluids containing chain-like molecules. Final technical report, June 1, 1994--May 31, 1997

    SciTech Connect

    Hall, C.K.

    1997-12-31

    The author has been engaged in a research program aimed at enhancing the understanding of the thermo-physical properties of fluids containing long, flexible, chain-like molecules. She has been working on four main fronts: (1) the development of an equation of state that is capable of predicting the experimentally observed thermodynamic properties, including phase equilibria, of fluids containing chain-like molecules ranging in length from alkanes to polymers; (2) computer simulation studies of the transport properties of chain fluids, with special focus on the role played by entanglements in the dynamical properties of polymer melts, (3) computer simulation studies and theoretical treatment of the static and dynamic properties of polymer networks and gels, and (4) computer simulation studies of the permeation of penetrants in polymer membranes. The theories resulting from this research could eventually serve as the foundation upon which to build correlations of petroleum and natural gas, as well as of polymer solutions, melts, blends, networks, and gels. In this progress report the author summarizes work accomplished under DOE sponsorship of the period December 1993 to December 1996. In section 2, she summarizes the stated objectives of their previous (1993) proposal, indicating which work has been accomplished, which work is continuing, and which work has been discontinued. In section 3, she summarizes the three new objectives that were added after December 1993. In section 4, she provides a detailed description of the work accomplished, omitting those descriptions that appear in the accompanying proposal. In section 5, she describes their human resource development efforts. Finally, in section 6 she lists the publications resulting from this work. Abstracts of these papers are presented in the appendix.

  16. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Wang, K. D.; Zhao, W. Q.; Li, T. Q.

    2016-07-01

    In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si3N4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si3N4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si3N4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si3N4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si3N4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si3N4 was performed at different powers using a TEM00 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the accuracy of the predicated results for laser ablation of materials undergoing thermo-chemical reactions.

  17. Evaluation of thermophysical properties of ionic liquids with polar solvent: a comparable study of two families of ionic liquids with various ions.

    PubMed

    Govinda, Varadhi; Attri, Pankaj; Venkatesu, Punnuru; Venkateswarlu, Ponneri

    2013-10-17

    In this work, we explore and compare the role of the ion effect on the thermophysical properties of two families of ionic liquids (ILs), namely, tetra-alkyl ammonium cation [R4N](+) with hydroxide [OH](-) anion and 1-alkyl-3-methyl imidazolium cation [amim](+) with different anions (chloride, methyl sulfate, and tetrafluoroborate), with polar solvent such as dimethylsulfoxide (DMSO) in the temperature range from 25 to 40 °C and over the whole concentration range of ILs. Two families of ILs, namely, tetramethyl ammonium hydroxide [(CH3)4N][OH] (TMAH), tetraethyl ammonium hydroxide [(C2H5)4N][OH] (TEAH), tetrapropyl ammonium hydroxide [(C3H7)4N][OH] (TPAH), and tetrabutyl ammonium hydroxide [(C4H9)4N][OH] (TBAH) from ammonium-based ILs and 1-ethyl-3-methylimidazolium chloride [Emim][Cl], 1-ethyl-3-methylimidazolium methylsulfate [Emim][MeSO4], 1-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4], and 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) from imidazolium family of ILs, are used in the present study. To address the molecular interactions of ILs with DMSO, densities (ρ), ultrasonic sound velocities (u), and viscosities (η) have been measured over the entire composition range and at four temperatures, 25, 30, 35, and 40 °C, under atmospheric pressure. From these experimental data, the excess molar volume (V(E)), the deviation in isentropic compressibility (Δκs), and the deviation in viscosity (Δη) were calculated and were adequately correlated by using the Redlich-Kister polynomial equation. The measured and predicted data were interpreted on the basis of intermolecular interactions and structural effects between like and unlike molecules upon mixing. The hydrogen-bonding features between ammonium-based ILs and DMSO were analyzed using molecular modeling program by HyperChem 7. PMID:24087984

  18. Accurate calculation of diffraction-limited encircled and ensquared energy.

    PubMed

    Andersen, Torben B

    2015-09-01

    Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873

  19. DeconMSn: A Software Tool for accurate parent ion monoisotopic mass determination for tandem mass spectra

    SciTech Connect

    Mayampurath, Anoop M.; Jaitly, Navdeep; Purvine, Samuel O.; Monroe, Matthew E.; Auberry, Kenneth J.; Adkins, Joshua N.; Smith, Richard D.

    2008-04-01

    We present a new software tool for tandem MS analyses that: • accurately calculates the monoisotopic mass and charge of high–resolution parent ions • accurately operates regardless of the mass selected for fragmentation • performs independent of instrument settings • enables optimal selection of search mass tolerance for high mass accuracy experiments • is open source and thus can be tailored to individual needs • incorporates a SVM-based charge detection algorithm for analyzing low resolution tandem MS spectra • creates multiple output data formats (.dta, .MGF) • handles .RAW files and .mzXML formats • compatible with SEQUEST, MASCOT, X!Tandem

  20. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  1. The interpretation of selection coefficients.

    PubMed

    Barton, N H; Servedio, M R

    2015-05-01

    Evolutionary biologists have an array of powerful theoretical techniques that can accurately predict changes in the genetic composition of populations. Changes in gene frequencies and genetic associations between loci can be tracked as they respond to a wide variety of evolutionary forces. However, it is often less clear how to decompose these various forces into components that accurately reflect the underlying biology. Here, we present several issues that arise in the definition and interpretation of selection and selection coefficients, focusing on insights gained through the examination of selection coefficients in multilocus notation. Using this notation, we discuss how its flexibility-which allows different biological units to be identified as targets of selection-is reflected in the interpretation of the coefficients that the notation generates. In many situations, it can be difficult to agree on whether loci can be considered to be under "direct" versus "indirect" selection, or to quantify this selection. We present arguments for what the terms direct and indirect selection might best encompass, considering a range of issues, from viability and sexual selection to kin selection. We show how multilocus notation can discriminate between direct and indirect selection, and describe when it can do so. PMID:25790030

  2. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    An MPI library's implementation of broadcast communication can significantly affect the performance of applications built with that library. In order to choose between similar implementations or to evaluate available libraries, accurate measurements of broadcast performance are required. As we demonstrate, existing methods for measuring broadcast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate method for measuring broadcast performance, even in a challenging grid environment. Measuring broadcast performance is not easy. Simply sending one broadcast after another allows them to proceed through the network concurrently, thus resulting in inaccurate per broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by introducing overheads that are as difficult to measure as the performance of the broadcast itself. This problem becomes even more challenging in grid environments. Latencies a long different links can vary significantly. Thus, an algorithm's performance is difficult to predict from it's communication pattern. Even when accurate pre-diction is possible, the pattern is often unknown. Our method introduces a measurable overhead to eliminate the pipelining effect, regardless of variations in link latencies. choose between different available implementations. Also, accurate and complete measurements could guide use of a given implementation to improve application performance. These choices will become even more important as grid-enabled MPI libraries [6, 7] become more common since bad choices are likely to cost significantly more in grid environments. In short, the distributed processing community needs accurate, succinct and complete measurements of collective communications performance. Since successive collective communications can often proceed concurrently, accurately measuring them is difficult. Some benchmarks use knowledge of the communication algorithm to predict the

  3. [Natural selection].

    PubMed

    Mayr, E

    1985-05-01

    Much of the resistance against Darwin's theory of natural selection has been due to misunderstandings. It is shown that natural selection is not a tautology and that it is a two-step process. The first step, the production of variation, is under the control of chance; the second step, selection proper, is an anti-chance process, but subject to many constraints. The target of selection is the individual as a whole, and many neutral mutations can be retained as hitchhikers of successful genotypes. Sexual selection results from selection for pure reproductive success.

  4. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions

    PubMed Central

    He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions. PMID:27783686

  5. Accurate analysis of blood vessel sizes and stenotic lesions using stereoscopic DSA system.

    PubMed

    Fencil, L E; Doi, K; Hoffman, K R

    1988-01-01

    We have developed a technique to determine accurately the magnification factor and three-dimensional orientation of a vessel segment from a stereoscopic pair of digital subtraction angiograms (DSA). Our DSA system includes a stereoscopic x-ray tube with a 25-mm focal spot shift. The magnification and orientation of a selected vessel segment are determined from the distance and direction of the focal spot shift and the stereoscopic discrepancy in image positions for that segment. Our results indicate that the accuracies of determining the magnification and orientation are less than 1% and approximately 5 degrees, respectively. After the magnification and orientation are determined accurately, an iterative deconvolution technique for the measurement of vessel image size is applied to the selected vessel segment. This iterative deconvolution technique provides the best estimate of vessel image size by taking into account the unsharpness of the digital system. With this technique, the vessel image size can be determined to an accuracy of approximately 1.0 mm, which corresponds to one third the pixel size of our DSA system. Information derived from stereoscopic analysis and iterative deconvolution thus allows accurate calculation of actual vascular dimensions from DSA images.

  6. Thermo-physical rock properties and the impact of advancing hydrothermal alteration - A case study from the Tauhara geothermal field, New Zealand

    NASA Astrophysics Data System (ADS)

    Mielke, Philipp; Nehler, Mathias; Bignall, Greg; Sass, Ingo

    2015-08-01

    The thermo-physical rock properties density, porosity, matrix permeability, thermal conductivity and specific heat capacity of 418 orientated rock plugs cut from 233 cores recovered from geothermal investigation wells THM12, THM13, THM14, THM17, THM18, THM19, and TH18 at the Tauhara geothermal field, New Zealand were measured and a statistical database was set up. The lithotype of each sample was classified, and the hydrothermal alteration rank and intensity was determined by optical microscopy. The hydrothermal clays (typically smectite, smectite-illite, illite) were analysed by the methylene blue dye adsorption test and short wave infrared spectroscopy. Investigated stratigraphic units are the Huka Falls Formation with its sub members upper, middle and lower Huka Falls Formation, the Wairora Formation, Spa Andesite and its associated breccias, and Racetrack rhyolite and its associated breccias. Lithotypes are clay-altered tuff and intercalated mudstone/siltstone (cap rock for the Tauhara geothermal system); tuffaceous sandstones, sedimentary and pyroclastic breccias and pumiceous ash tuff (reservoir-hosting units); and rhyolitic and andesitic lavas, and their associated breccias. The obtained rock property data indicate a common porosity range of 30% to 45% for sediments, volcaniclastics and lava breccias, an average of 10% for andesite lava, and 39% for rhyolite lava. Matrix permeability of mudstone, siltstone, breccias and lavas is commonly < 1 mD, while sandstone, tuff and brecciated lavas have two to three orders of magnitude higher permeabilities. Both porosity and permeability decrease with depth. Thermal conductivity decreases with increasing porosity, and is similar for most lithotypes (0.7 W m- 1 K- 1 to 1 W m- 1 K- 1), while lavas have higher values (0.9 W m- 1 K- 1 to 1.4 W m- 1 K- 1). Specific heat capacity is similar for all lithotypes (0.6 kJ kg- 1 K- 1 to 0.8 kJ kg- 1 K- 1). Advancing hydrothermal alteration decreases the porosity of sandstone and

  7. Diffusion-viscosity decoupling in solute rotation and solvent relaxation of coumarin153 in ionic liquids containing fluoroalkylphosphate (FAP) anion: a thermophysical and photophysical study.

    PubMed

    Das, Sudhir Kumar; Sahu, Prabhat Kumar; Sarkar, Moloy

    2013-01-17

    Steady state and time-resolved fluorescence behavior of coumarin153 (C153) has been investigated in two ionic liquids (ILs), namely 1-(2-methoxyethyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([MOEMPL][FAP]) and 1-(2-methoxyethyl)-1-methylmorpholinium tris(pentafluoroethyl)trifluorophosphate ([MOEMMO][FAP]) in order to find out the viscosity-diffusion decoupling during solvation and rotational relaxation of C153. Thermophysical studies have also been carried out to understand the physicochemical properties of the media. At 293 K, the measured viscosity of [MOEMMO][FAP] is 8 times higher than that of [MOEMPL][FAP]. The data obtained from steady state and time-resolved fluorescence measurements show the deviation of average solvation and rotation times from conventional hydrodynamics. The decoupling of solute and solvent dynamics from medium viscosity is manifested through fractional viscosity dependence (η) of the measured average solvation (<τ(s)>) and rotation (<τ(r)>) times: <τ(x)> [proportionality] (η/T)(p) (x denotes solvation or rotation and T is the temperature) covering the p value 0.69 < p < 0.85 for solvent relaxation and 0.48 < p < 1.10 for solute rotation. The excitation wavelength dependent fluorescence studies have been performed to correlate the experimental findings with the heterogeneity of the medium. While the excitation wavelength dependent time-resolved fluorescence studies of coumarin153 reveal a very similar variation of average solvation time with a change in excitation wavelengths for both the ionic liquids, the steady state excitation wavelength dependent measurements of 2-amino-7-nitrofluorene (ANF) show a higher (630 cm(-1)) shift of the fluorescence maximum for highly viscous ionic liquid as compared to that (430 cm(-1)) of another much less viscous ionic liquid. The recent theoretical (Chem. Phys. Lett.2011, 517, 180) and experimental (J. Chem. Phys.2012, 136, 174503) findings and the outcome of the excitation

  8. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  9. Student Selection for Selective Educational Programs Using Multiple Criteria.

    ERIC Educational Resources Information Center

    Jenkins, Jerry A.

    This paper shows that multiple sources of data reflecting educational progress may be used with relative ease to systematically, objectively, and accurately place students in selective educational programs, such as those funded under Chapter 1 of the Education Consolidation and Improvement Act, using readily available commercial microcomputer…

  10. Development of Classification and Story Building Data for Accurate Earthquake Damage Estimation

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Fukukawa, Noriko; Arai, Kensuke

    We investigated the method of developing classification and story building data from census population database in order to estimate earthquake damage more accurately especially in the urban area presuming that there are correlation between numbers of non-wooden or high-rise buildings and the population. We formulated equations of estimating numbers of wooden houses, low-to-mid-rise(1-9 story) and high-rise(over 10 story) non-wooden buildings in the 1km mesh from night and daytime population database based on the building data we investigated and collected in the selected 20 meshs in Kanto area. We could accurately estimate the numbers of three classified buildings by the formulated equations, but in some special cases, such as the apartment block mesh, the estimated values are quite different from actual values.

  11. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang

    2016-08-01

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  12. A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants.

    PubMed

    Karakasis, Evangelos G; Papakostas, George A; Koulouriotis, Dimitrios E; Tourassis, Vassilios D

    2014-02-01

    In this paper, a general framework for computing accurate quaternion color moments and their corresponding invariants is proposed. The proposed unified scheme arose by studying the characteristics of different orthogonal polynomials. These polynomials are used as kernels in order to form moments, the invariants of which can easily be derived. The resulted scheme permits the usage of any polynomial-like kernel in a unified and consistent way. The resulted moments and moment invariants demonstrate robustness to noisy conditions and high discriminative power. Additionally, in the case of continuous moments, accurate computations take place to avoid approximation errors. Based on this general methodology, the quaternion Tchebichef, Krawtchouk, Dual Hahn, Legendre, orthogonal Fourier-Mellin, pseudo Zernike and Zernike color moments, and their corresponding invariants are introduced. A selected paradigm presents the reconstruction capability of each moment family, whereas proper classification scenarios evaluate the performance of color moment invariants. PMID:24216719

  13. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  14. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals. PMID:27563956

  15. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  16. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  17. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  18. A high order accurate difference scheme for complex flow fields

    SciTech Connect

    Dexun Fu; Yanwen Ma

    1997-06-01

    A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed. It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. 18 refs., 12 figs., 1 tab.

  19. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  20. The wisdom of select crowds.

    PubMed

    Mannes, Albert E; Soll, Jack B; Larrick, Richard P

    2014-08-01

    Social psychologists have long recognized the power of statisticized groups. When individual judgments about some fact (e.g., the unemployment rate for next quarter) are averaged together, the average opinion is typically more accurate than most of the individual estimates, a pattern often referred to as the wisdom of crowds. The accuracy of averaging also often exceeds that of the individual perceived as most knowledgeable in the group. However, neither averaging nor relying on a single judge is a robust strategy; each performs well in some settings and poorly in others. As an alternative, we introduce the select-crowd strategy, which ranks judges based on a cue to ability (e.g., the accuracy of several recent judgments) and averages the opinions of the top judges, such as the top 5. Through both simulation and an analysis of 90 archival data sets, we show that select crowds of 5 knowledgeable judges yield very accurate judgments across a wide range of possible settings-the strategy is both accurate and robust. Following this, we examine how people prefer to use information from a crowd. Previous research suggests that people are distrustful of crowds and of mechanical processes such as averaging. We show in 3 experiments that, as expected, people are drawn to experts and dislike crowd averages-but, critically, they view the select-crowd strategy favorably and are willing to use it. The select-crowd strategy is thus accurate, robust, and appealing as a mechanism for helping individuals tap collective wisdom.

  1. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  2. Must Kohn-Sham oscillator strengths be accurate at threshold?

    SciTech Connect

    Yang Zenghui; Burke, Kieron; Faassen, Meta van

    2009-09-21

    The exact ground-state Kohn-Sham (KS) potential for the helium atom is known from accurate wave function calculations of the ground-state density. The threshold for photoabsorption from this potential matches the physical system exactly. By carefully studying its absorption spectrum, we show the answer to the title question is no. To address this problem in detail, we generate a highly accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the experimental spectrum and that of the exact ground-state Kohn-Sham potential.

  3. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  4. Hydrogen atoms can be located accurately and precisely by x-ray crystallography

    PubMed Central

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-01-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545

  5. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    PubMed

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545

  6. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    PubMed

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  7. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  8. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  9. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  10. Second-order accurate difference schemes on highly irregular meshes

    SciTech Connect

    Manteuffel, T.A.; White, A.B. Jr.

    1988-01-01

    In this paper compact-as-possible second-order accurate difference schemes will be constructed for boundary-value problems of arbitrary order on highly irregular meshes. It will be shown that for equations of order (K) these schemes will have truncation error of order (3/endash/K). This phenomena is known as supraconvergence. 7 refs.

  11. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  12. What's Normal? Accurately and Efficiently Assessing Menstrual Function.

    PubMed

    Takemoto, Darcie M; Beharry, Meera S

    2015-09-01

    Many young women are unsure of what constitutes normal menses. By asking focused questions, pediatric providers can quickly and accurately assess menstrual function and dispel anxiety and myths. In this article, we review signs and symptoms of normal versus pathologic menstrual functioning and provide suggestions to improve menstrual history taking.

  13. Benchmarking accurate spectral phase retrieval of single attosecond pulses

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Le, Anh-Thu; Morishita, Toru; Yu, Chao; Lin, C. D.

    2015-02-01

    A single extreme-ultraviolet (XUV) attosecond pulse or pulse train in the time domain is fully characterized if its spectral amplitude and phase are both determined. The spectral amplitude can be easily obtained from photoionization of simple atoms where accurate photoionization cross sections have been measured from, e.g., synchrotron radiations. To determine the spectral phase, at present the standard method is to carry out XUV photoionization in the presence of a dressing infrared (IR) laser. In this work, we examine the accuracy of current phase retrieval methods (PROOF and iPROOF) where the dressing IR is relatively weak such that photoelectron spectra can be accurately calculated by second-order perturbation theory. We suggest a modified method named swPROOF (scattering wave phase retrieval by omega oscillation filtering) which utilizes accurate one-photon and two-photon dipole transition matrix elements and removes the approximations made in PROOF and iPROOF. We show that the swPROOF method can in general retrieve accurate spectral phase compared to other simpler models that have been suggested. We benchmark the accuracy of these phase retrieval methods through simulating the spectrogram by solving the time-dependent Schrödinger equation numerically using several known single attosecond pulses with a fixed spectral amplitude but different spectral phases.

  14. Precise and Accurate Density Determination of Explosives Using Hydrostatic Weighing

    SciTech Connect

    B. Olinger

    2005-07-01

    Precise and accurate density determination requires weight measurements in air and water using sufficiently precise analytical balances, knowledge of the densities of air and water, knowledge of thermal expansions, availability of a density standard, and a method to estimate the time to achieve thermal equilibrium with water. Density distributions in pressed explosives are inferred from the densities of elements from a central slice.

  15. Second-order accurate nonoscillatory schemes for scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1989-01-01

    Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.

  16. Accurately Detecting Students' Lies regarding Relational Aggression by Correctional Instructions

    ERIC Educational Resources Information Center

    Dickhauser, Oliver; Reinhard, Marc-Andre; Marksteiner, Tamara

    2012-01-01

    This study investigates the effect of correctional instructions when detecting lies about relational aggression. Based on models from the field of social psychology, we predict that correctional instruction will lead to a less pronounced lie bias and to more accurate lie detection. Seventy-five teachers received videotapes of students' true denial…

  17. How Accurate Are Judgments of Intelligence by Strangers?

    ERIC Educational Resources Information Center

    Borkenau, Peter

    Whether judgments made by complete strangers as to the intelligence of subjects are accurate or merely illusory was studied in Germany. Target subjects were 50 female and 50 male adults recruited through a newspaper article. Eighteen judges, who did not know the subjects, were recruited from a university community. Videorecordings of the subjects,…

  18. Laser Guided Automated Calibrating System for Accurate Bracket Placement

    PubMed Central

    Anitha, A; Kumar, AJ; Mascarenhas, R; Husain, A

    2015-01-01

    Background: The basic premise of preadjusted bracket system is accurate bracket positioning. It is widely recognized that accurate bracket placement is of critical importance in the efficient application of biomechanics and in realizing the full potential of a preadjusted edgewise appliance. Aim: The purpose of this study was to design a calibrating system to accurately detect a point on a plane as well as to determine the accuracy of the Laser Guided Automated Calibrating (LGAC) System. Materials and Methods: To the lowest order of approximation a plane having two parallel lines is used to verify the accuracy of the system. On prescribing the distance of a point from the line, images of the plane are analyzed from controlled angles, calibrated and the point is identified with a laser marker. Results: The image was captured and analyzed using MATLAB ver. 7 software (The MathWorks Inc.). Each pixel in the image corresponded to a distance of 1cm/413 (10 mm/413) = 0.0242 mm (L/P). This implies any variations in distance above 0.024 mm can be measured and acted upon, and sets the highest possible accuracy for this system. Conclusion: A new automated system is introduced having an accuracy of 0.024 mm for accurate bracket placement. PMID:25745575

  19. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  20. Accurate momentum transfer cross section for the attractive Yukawa potential

    SciTech Connect

    Khrapak, S. A.

    2014-04-15

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  1. A-B Similarity-Complementarity and Accurate Empathy.

    ERIC Educational Resources Information Center

    Gillam, Sandra; McGinley, Hugh

    1983-01-01

    Rated the audio portions of videotaped segments of 32 dyadic interviews between A-type and B-type undergraduate males for accurate empathy using Truax's AE-Scale. Results indicated B-types elicited higher levels of empathy when they interacted with other B-types, while any dyad that contained an A-type resulted in less empathy. (JAC)

  2. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  3. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  4. An articulated statistical shape model for accurate hip joint segmentation.

    PubMed

    Kainmueller, Dagmar; Lamecker, Hans; Zachow, Stefan; Hege, Hans-Christian

    2009-01-01

    In this paper we propose a framework for fully automatic, robust and accurate segmentation of the human pelvis and proximal femur in CT data. We propose a composite statistical shape model of femur and pelvis with a flexible hip joint, for which we extend the common definition of statistical shape models as well as the common strategy for their adaptation. We do not analyze the joint flexibility statistically, but model it explicitly by rotational parameters describing the bent in a ball-and-socket joint. A leave-one-out evaluation on 50 CT volumes shows that image driven adaptation of our composite shape model robustly produces accurate segmentations of both proximal femur and pelvis. As a second contribution, we evaluate a fine grain multi-object segmentation method based on graph optimization. It relies on accurate initializations of femur and pelvis, which our composite shape model can generate. Simultaneous optimization of both femur and pelvis yields more accurate results than separate optimizations of each structure. Shape model adaptation and graph based optimization are embedded in a fully automatic framework. PMID:19964159

  5. Toward more accurate loss tangent measurements in reentrant cavities

    SciTech Connect

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  6. On the importance of having accurate data for astrophysical modelling

    NASA Astrophysics Data System (ADS)

    Lique, Francois

    2016-06-01

    The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.

  7. Sexual selection.

    PubMed

    Hosken, David J; House, Clarissa M

    2011-01-25

    Sexual selection is a concept that has probably been misunderstood and misrepresented more than any other idea in evolutionary biology, confusion that continues to the present day. We are not entirely sure why this is, but sexual politics seems to have played its role, as does a failure to understand what sexual selection is and why it was initially invoked. While in some ways less intuitive than natural selection, sexual selection is conceptually identical to it, and evolution via either mechanism will occur given sufficient genetic variation. Recent claims that sexual selection theory is fundamentally flawed are simply wrong and ignore an enormous body of evidence that provides a bedrock of support for this major mechanism of organic evolution. In fact it is partly due to this solid foundation that current research has largely shifted from documenting whether or not sexual selection occurs, to addressing more complex evolutionary questions. PMID:21256434

  8. Hydrogen technology survey: Thermophysical properties

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1975-01-01

    The thermodynamic functions, transport properties, and physical properties of both liquid and gaseous hydrogen are presented. The low temperature regime is emphasized. The tabulation of the properties of normal hydrogen in both Si and engineering units is given along with the tabulation of parahydrogen.

  9. Statistical Thermodynamics and Microscale Thermophysics

    NASA Astrophysics Data System (ADS)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  10. Selecting Software.

    ERIC Educational Resources Information Center

    Pereus, Steven C.

    2002-01-01

    Describes a comprehensive computer software selection and evaluation process, including documenting district needs, evaluating software packages, weighing the alternatives, and making the purchase. (PKP)

  11. DNA barcode data accurately assign higher spider taxa

    PubMed Central

    Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of

  12. DNA barcode data accurately assign higher spider taxa.

    PubMed

    Coddington, Jonathan A; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina; Kuntner, Matjaž

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios "barcodes" (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families-taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75-100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of the

  13. Label fusion strategy selection.

    PubMed

    Robitaille, Nicolas; Duchesne, Simon

    2012-01-01

    Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques-STAPLE, Voting, and Shape-Based Averaging (SBA)-and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113

  14. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  15. An impedimetric approach for accurate particle sizing using a microfluidic Coulter counter

    NASA Astrophysics Data System (ADS)

    Jagtiani, Ashish V.; Carletta, Joan; Zhe, Jiang

    2011-04-01

    In this paper, we present the design, impedimetric characterization and testing of a microfabricated Coulter counter for particle size measurement that uses a pair of thin film coplanar Au/Ti electrodes. An electrical equivalent circuit model of the designed device is analyzed. Accurate measurement of particle size was achieved by operating the device at a frequency for which the overall impedance is dominated by the channel resistance. A combination of design features, including the use of a pair of sensing electrodes with a surface area of 100 µm by 435 µm, a spacing of 1785 µm between the two sensing electrodes and a 350 µm long microchannel, ensures that this resistance dominates over a range of relatively low frequencies. The device was characterized for NaCl electrolyte solutions with different ionic concentrations ranging from 10-5 to 0.1 M. Results proved that the resistive behavior of the sensor occurs over a range of relatively low frequencies for all tested concentrations. The Coulter counter was then used to detect 30 µm polystyrene particles at a selected excitation frequency. Testing results demonstrated that the device can accurately measure particle sizes with small error. The design can be extended to ac Coulter counters with sub-micron sensing channels. Analysis of three designs of ac Coulter counters including sub-micron sensing channels using the electrical equivalent circuit model predicts that they can be operated at even lower frequencies, to accurately size nanoscale particles.

  16. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis.

    PubMed

    Wilson, Ross C; Tambe, Akshay; Kidwell, Mary Anne; Noland, Cameron L; Schneider, Catherine P; Doudna, Jennifer A

    2015-02-01

    RNA-mediated gene silencing in human cells requires the accurate generation of ∼22 nt microRNAs (miRNAs) from double-stranded RNA substrates by the endonuclease Dicer. Although the phylogenetically conserved RNA-binding proteins TRBP and PACT are known to contribute to this process, their mode of Dicer binding and their genome-wide effects on miRNA processing have not been determined. We solved the crystal structure of the human Dicer-TRBP interface, revealing the structural basis of the interaction. Interface residues conserved between TRBP and PACT show that the proteins bind to Dicer in a similar manner and by mutual exclusion. Based on the structure, a catalytically active Dicer that cannot bind TRBP or PACT was designed and introduced into Dicer-deficient mammalian cells, revealing selective defects in guide strand selection. These results demonstrate the role of Dicer-associated RNA binding proteins in maintenance of gene silencing fidelity. PMID:25557550

  17. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  18. An accurate link correlation estimator for improving wireless protocol performance.

    PubMed

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-02-12

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation.

  19. Light Field Imaging Based Accurate Image Specular Highlight Removal.

    PubMed

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into "unsaturated" and "saturated" category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  20. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    NASA Technical Reports Server (NTRS)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.