Science.gov

Sample records for accurate species identifications

  1. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  2. The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text

    PubMed Central

    Fanini, Lucia; Faulwetter, Sarah; Pavloudi, Christina; Vasileiadou, Aikaterini; Arvanitidis, Christos; Jensen, Lars Juhl

    2013-01-01

    The exponential growth of the biomedical literature is making the need for efficient, accurate text-mining tools increasingly clear. The identification of named biological entities in text is a central and difficult task. We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition, which we here use to identify names of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists. The SPECIES software is open source and can be downloaded from http://species.jensenlab.org along with dictionary files and the manually annotated gold-standard corpus. The ORGANISMS web resource can be found at http://organisms.jensenlab.org. PMID:23823062

  3. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods

    PubMed Central

    Flynn, Jullien M; Brown, Emily A; Chain, Frédéric J J; MacIsaac, Hugh J; Cristescu, Melania E

    2015-01-01

    Metabarcoding has the potential to become a rapid, sensitive, and effective approach for identifying species in complex environmental samples. Accurate molecular identification of species depends on the ability to generate operational taxonomic units (OTUs) that correspond to biological species. Due to the sometimes enormous estimates of biodiversity using this method, there is a great need to test the efficacy of data analysis methods used to derive OTUs. Here, we evaluate the performance of various methods for clustering length variable 18S amplicons from complex samples into OTUs using a mock community and a natural community of zooplankton species. We compare analytic procedures consisting of a combination of (1) stringent and relaxed data filtering, (2) singleton sequences included and removed, (3) three commonly used clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods of treating alignment gaps when calculating sequence divergence. Depending on the combination of methods used, the number of OTUs varied by nearly two orders of magnitude for the mock community (60–5068 OTUs) and three orders of magnitude for the natural community (22–22191 OTUs). The use of relaxed filtering and the inclusion of singletons greatly inflated OTU numbers without increasing the ability to recover species. Our results also suggest that the method used to treat gaps when calculating sequence divergence can have a great impact on the number of OTUs. Our findings are particularly relevant to studies that cover taxonomically diverse species and employ markers such as rRNA genes in which length variation is extensive. PMID:26078860

  4. Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR.

    PubMed

    Shams, M; Vial, L; Chapulliot, D; Nesme, X; Lavire, C

    2013-07-01

    Agrobacteria are common soil bacteria that interact with plants as commensals, plant growth promoting rhizobacteria or alternatively as pathogens. Indigenous agrobacterial populations are composites, generally with several species and/or genomic species and several strains per species. We thus developed a recA-based PCR approach to accurately identify and specifically detect agrobacteria at various taxonomic levels. Specific primers were designed for all species and/or genomic species of Agrobacterium presently known, including 11 genomic species of the Agrobacterium tumefaciens complex (G1-G9, G13 and G14, among which only G2, G4, G8 and G14 still received a Latin epithet: pusense, radiobacter, fabrum and nepotum, respectively), A. larrymoorei, A. rubi, R. skierniewicense, A. sp. 1650, and A. vitis, and for the close relative Allorhizobium undicola. Specific primers were also designed for superior taxa, Agrobacterium spp. and Rhizobiaceace. Primer specificities were assessed with target and non-target pure culture DNAs as well as with DNAs extracted from composite agrobacterial communities. In addition, we showed that the amplicon cloning-sequencing approach used with Agrobacterium-specific or Rhizobiaceae-specific primers is a way to assess the agrobacterial diversity of an indigenous agrobacterial population. Hence, the agrobacterium-specific primers designed in the present study enabled the first accurate and rapid identification of all species and/or genomic species of Agrobacterium, as well as their direct detection in environmental samples.

  5. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry.

    PubMed

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification.

  6. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification. PMID:27313979

  7. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry.

    PubMed

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification. PMID:27313979

  8. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Wang, Mingjun; Wang, Huilin; Tan, Hao; Zhang, Ziding; Webb, Geoffrey I.; Song, Jiangning

    2014-07-01

    Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms, identification of substrates and specific acetylation sites is crucial. Experimental identification is often time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a high-throughput manner to generate relatively precise predictions. Here we develop a method termed as SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine sequence-derived and functional features with two-step feature selection. Feature importance analysis indicates functional features, applied for lysine acetylation site prediction for the first time, significantly improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and identify many high-confidence putative substrates that are not previously identified. The results along with the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and facilitate hypothesis-driven experimental design and validation.

  9. Phytochip: development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp and other harmful algal species.

    PubMed

    Noyer, Charlotte; Abot, Anne; Trouilh, Lidwine; Leberre, Véronique Anton; Dreanno, Catherine

    2015-05-01

    Detection of harmful algal blooms has become a challenging concern because of the direct impacts on public health and economy. The identification of toxic dinoflagellates and diatoms in monitoring programs requires an extensive taxonomic expertise and is time consuming. Advances in molecular biology have allowed the development of new approaches, more rapid, accurate and cost-effective for detecting these microorganisms. In this context, we developed a new DNA microarray (called, Phytochip) for the simultaneous detection of multiple HAB species with a particular emphasis on Pseudo-nitzschia species. Oligonucleotide probes were designed along the rRNA operon. After DNA extraction, the target rDNA genes were amplified and labeled using an asymmetric PCR; then, the amplicons were hybridized to the oligonucleotide probes present on the chips. The total assay from seawater sampling to data acquisition can be performed within a working day. Specificity and sensitivity were assessed by using monoclonal cultures, mixtures of species and field samples spiked with a known amount of cultured cells. The Phytochip with its 81 validated oligonucleotide probes was able to detect 12 species of Pseudo-nitzschia and 11 species of dinoflagellates among which were 3 species of Karenia and 3 species of Alexandrium. The Phytochip was applied to environmental samples already characterized by light microscopy and cloned into DNA libraries. The hybridizations on the Phytochip were in good agreement with the sequences retrieved from the clone libraries and the microscopic observations. The Phytochip enables a reliable multiplex detection of phytoplankton and can assist a water quality monitoring program as well as more general ecological research. PMID:25765159

  10. Phytochip: development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp and other harmful algal species.

    PubMed

    Noyer, Charlotte; Abot, Anne; Trouilh, Lidwine; Leberre, Véronique Anton; Dreanno, Catherine

    2015-05-01

    Detection of harmful algal blooms has become a challenging concern because of the direct impacts on public health and economy. The identification of toxic dinoflagellates and diatoms in monitoring programs requires an extensive taxonomic expertise and is time consuming. Advances in molecular biology have allowed the development of new approaches, more rapid, accurate and cost-effective for detecting these microorganisms. In this context, we developed a new DNA microarray (called, Phytochip) for the simultaneous detection of multiple HAB species with a particular emphasis on Pseudo-nitzschia species. Oligonucleotide probes were designed along the rRNA operon. After DNA extraction, the target rDNA genes were amplified and labeled using an asymmetric PCR; then, the amplicons were hybridized to the oligonucleotide probes present on the chips. The total assay from seawater sampling to data acquisition can be performed within a working day. Specificity and sensitivity were assessed by using monoclonal cultures, mixtures of species and field samples spiked with a known amount of cultured cells. The Phytochip with its 81 validated oligonucleotide probes was able to detect 12 species of Pseudo-nitzschia and 11 species of dinoflagellates among which were 3 species of Karenia and 3 species of Alexandrium. The Phytochip was applied to environmental samples already characterized by light microscopy and cloned into DNA libraries. The hybridizations on the Phytochip were in good agreement with the sequences retrieved from the clone libraries and the microscopic observations. The Phytochip enables a reliable multiplex detection of phytoplankton and can assist a water quality monitoring program as well as more general ecological research.

  11. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    PubMed

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species.

  12. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    PubMed

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species. PMID:27296834

  13. Accurate and practical identification of 20 Fusarium species by seven-locus sequence analysis and reverse line blot hybridization, and an in vitro antifungal susceptibility study.

    PubMed

    Wang, He; Xiao, Meng; Kong, Fanrong; Chen, Sharon; Dou, Hong-Tao; Sorrell, Tania; Li, Ruo-Yu; Xu, Ying-Chun

    2011-05-01

    Eleven reference and 25 clinical isolates of Fusarium were subject to multilocus DNA sequence analysis to determine the species and haplotypes of the fusarial isolates from Beijing and Shandong, China. Seven loci were analyzed: the translation elongation factor 1 alpha gene (EF-1α); the nuclear rRNA internal transcribed spacer (ITS), large subunit (LSU), and intergenic spacer (IGS) regions; the second largest subunit of the RNA polymerase gene (RPB2); the calmodulin gene (CAM); and the mitochondrial small subunit (mtSSU) rRNA gene. We also evaluated an IGS-targeted PCR/reverse line blot (RLB) assay for species/haplotype identification of Fusarium. Twenty Fusarium species and seven species complexes were identified. Of 25 clinical isolates (10 species), the Gibberella (Fusarium) fujikuroi species complex was the commonest (40%) and was followed by the Fusarium solani species complex (FSSC) (36%) and the F. incarnatum-F. equiseti species complex (12%). Six FSSC isolates were identified to the species level as FSSC-3+4, and three as FSSC-5. Twenty-nine IGS, 27 EF-1α, 26 RPB2, 24 CAM, 18 ITS, 19 LSU, and 18 mtSSU haplotypes were identified; 29 were unique, and haplotypes for 24 clinical strains were novel. By parsimony informative character analysis, the IGS locus was the most phylogenetically informative, and the rRNA gene regions were the least. Results by RLB were concordant with multilocus sequence analysis for all isolates. Amphotericin B was the most active drug against all species. Voriconazole MICs were high (>8 μg/ml) for 15 (42%) isolates, including FSSC. Analysis of larger numbers of isolates is required to determine the clinical utility of the seven-locus sequence analysis and RLB assay in species classification of fusaria. PMID:21389150

  14. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  15. GyrB polymorphisms accurately assign invasive viridans group streptococcal species.

    PubMed

    Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Tarrand, Jeffrey; Han, Xiang Y; Shelburne, Samuel A

    2014-08-01

    Viridans group streptococci (VGS) are a heterogeneous group of medically important bacteria that cannot be accurately assigned to a particular species using conventional phenotypic methods. Although multilocus sequence analysis (MLSA) is considered the gold standard for VGS species-level identification, MLSA is not yet feasible in the clinical setting. Conversely, molecular methods, such as sodA and 16S rRNA gene sequencing, are clinically practical but not sufficiently accurate for VGS species-level identification. Here, we present data regarding the use of an ∼ 400-nucleotide internal fragment of the gene encoding DNA gyrase subunit B (GyrB) for VGS species-level identification. MLSA, internal gyrB, sodA, full-length, and 5' 16S gene sequences were used to characterize 102 unique VGS blood isolates collected from 2011 to 2012. When using the MLSA species assignment as a reference, full-length and 5' partial 16S gene and sodA sequence analyses failed to correctly assign all strains to a species. Precise species determination was particularly problematic for Streptococcus mitis and Streptococcus oralis isolates. However, the internal gyrB fragment allowed for accurate species designations for all 102 strains. We validated these findings using 54 VGS strains for which MLSA, 16S gene, sodA, and gyrB data are available at the NCBI, showing that gyrB is superior to 16S gene and sodA sequence analyses for VGS species identification. We also observed that specific polymorphisms in the 133-amino acid sequence of the internal GyrB fragment can be used to identify invasive VGS species. Thus, the GyrB amino acid sequence may offer a more practical and accurate method for classifying invasive VGS strains to the species level. PMID:24899021

  16. Automated species identification: why not?

    PubMed Central

    Gaston, Kevin J; O'Neill, Mark A

    2004-01-01

    Where possible, automation has been a common response of humankind to many activities that have to be repeated numerous times. The routine identification of specimens of previously described species has many of the characteristics of other activities that have been automated, and poses a major constraint on studies in many areas of both pure and applied biology. In this paper, we consider some of the reasons why automated species identification has not become widely employed, and whether it is a realistic option, addressing the notions that it is too difficult, too threatening, too different or too costly. Although recognizing that there are some very real technical obstacles yet to be overcome, we argue that progress in the development of automated species identification is extremely encouraging that such an approach has the potential to make a valuable contribution to reducing the burden of routine identifications. Vision and enterprise are perhaps more limiting at present than practical constraints on what might possibly be achieved. PMID:15253351

  17. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance.

    PubMed

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Suffredini, Anthony F; Sacks, David B; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple 'fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  18. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Suffredini, Anthony F.; Sacks, David B.; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple `fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  19. [Application of gene detection technology in food species identification].

    PubMed

    Chen, Ying; Wu, Yajun

    2011-07-01

    It is critical to determine the biological identity of all ingredients in food to ensure its safety and quality. Modern gene detection technology makes species identification in food more accurate, sensitive and rapid. A comprehensive review on its current applications in the last decade and the future perspective in food species identification is presented, including a brief introduction of gene detection methods, and their applications in plant-originated food, animal-originated food, high value-added food and highly processed food.

  20. Rapid Accurate Identification of Bacterial and Viral Pathogens

    SciTech Connect

    Dunn, John

    2007-03-09

    The goals of this program were to develop two assays for rapid, accurate identification of pathogenic organisms at the strain level. The first assay "Quantitative Genome Profiling or QGP" is a real time PCR assay with a restriction enzyme-based component. Its underlying concept is that certain enzymes should cleave genomic DNA at many sites and that in some cases these cuts will interrupt the connection on the genomic DNA between flanking PCR primer pairs thereby eliminating selected PCR amplifications. When this occurs the appearance of the real-time PCR threshold (Ct) signal during DNA amplification is totally eliminated or, if cutting is incomplete, greatly delayed compared to an uncut control. This temporal difference in appearance of the Ct signal relative to undigested control DNA provides a rapid, high-throughput approach for DNA-based identification of different but closely related pathogens depending upon the nucleotide sequence of the target region. The second assay we developed uses the nucleotide sequence of pairs of shmi identifier tags (-21 bp) to identify DNA molecules. Subtle differences in linked tag pair combinations can also be used to distinguish between closely related isolates..

  1. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; et al

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  2. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  3. Two unusual occurrences of trichomoniasis: rapid species identification by PCR.

    PubMed

    Bellanger, A P; Cabaret, O; Costa, J M; Foulet, F; Bretagne, S; Botterel, F

    2008-09-01

    PCR analysis in two unusual occurrences of trichomoniasis, trichomonal empyema due to Trichomonas tenax and Trichomonas vaginalis in an infant urine sample, allowed us to obtain rapid and accurate trichomonad species identification. The weak sensitivity of wet preparations and the low viability of the flagellates can be remedied by the PCR method. PMID:18632901

  4. What's in a Name? The Impact of Accurate Staphylococcus pseudintermedius Identification on Appropriate Antimicrobial Susceptibility Testing

    PubMed Central

    2016-01-01

    Bacteria in the Staphylococcus intermedius group, including Staphylococcus pseudintermedius, often encode mecA-mediated methicillin resistance. Reliable detection of this phenotype for proper treatment and infection control decisions requires that these coagulase-positive staphylococci are accurately identified and specifically that they are not misidentified as S. aureus. As correct species level bacterial identification becomes more commonplace in clinical laboratories, one can expect to see changes in guidance for antimicrobial susceptibility testing and interpretation. The study by Wu et al. in this issue (M. T. Wu, C.-A. D. Burnham, L. F. Westblade, J. Dien Bard, S. D. Lawhon, M. A. Wallace, T. Stanley, E. Burd, J. Hindler, R. M. Humphries, J Clin Microbiol 54:535–542, 2016, http://dx.doi.org/10.1128/JCM.02864-15) highlights the impact of robust identification of S. intermedius group organisms on the selection of appropriate antimicrobial susceptibility testing methods and interpretation. PMID:26763965

  5. What's in a Name? The Impact of Accurate Staphylococcus pseudintermedius Identification on Appropriate Antimicrobial Susceptibility Testing.

    PubMed

    Limbago, Brandi M

    2016-03-01

    Bacteria in the Staphylococcus intermedius group, including Staphylococcus pseudintermedius, often encode mecA-mediated methicillin resistance. Reliable detection of this phenotype for proper treatment and infection control decisions requires that these coagulase-positive staphylococci are accurately identified and specifically that they are not misidentified as S. aureus. As correct species level bacterial identification becomes more commonplace in clinical laboratories, one can expect to see changes in guidance for antimicrobial susceptibility testing and interpretation. The study by Wu et al. in this issue (M. T. Wu, C.-A. D. Burnham, L. F. Westblade, J. Dien Bard, S. D. Lawhon, M. A. Wallace, T. Stanley, E. Burd, J. Hindler, R. M. Humphries, J Clin Microbiol 54:535-542, 2016, http://dx.doi.org/10.1128/JCM.02864-15) highlights the impact of robust identification of S. intermedius group organisms on the selection of appropriate antimicrobial susceptibility testing methods and interpretation.

  6. Automatic identification of species with neural networks.

    PubMed

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  7. Automatic identification of species with neural networks

    PubMed Central

    Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification. PMID:25392749

  8. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology.

    PubMed

    Zhang, Jieru; Ju, Ying; Lu, Huijuan; Xuan, Ping; Zou, Quan

    2016-01-01

    Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics. PMID:27478823

  9. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    PubMed Central

    Ju, Ying

    2016-01-01

    Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics. PMID:27478823

  10. Raman spectroscopy for identification of wood species

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gurovich, A. M.; Kostrin, D. K.; Selivanov, L. M.; Simon, V. A.; Stuchenkov, A. B.; Paltcev, A. V.; Uhov, A. A.

    2016-08-01

    This article discusses the application of Raman spectroscopy for identification of wood species. Use of Raman spectroscopy allows increasing the certainty of determining the type of wood compared to the analysis of spectra of diffuse reflectance. Raman spectrums of different wood samples when irradiated by laser radiation are shown. Ways to improve the determination reliability of wood species due to the modernization of the identification technique are discussed. The stages of data processing, allowing carrying out correct further analysis are described.

  11. Legislative Ambiguity and the Accurate Identification of Seriously Emotionally Disturbed.

    ERIC Educational Resources Information Center

    Ostrander, Rick; And Others

    1988-01-01

    Surveyed school psychologists (N=127) practicing under three types of state criteria used in identifying children as seriously emotionally disturbed (SED) to determine the legal accuracy of their identifications of 12 behavioral descriptions of specific disorders. Found considerable differences in the perceptions of school psychology personnel.…

  12. Accurate Peptide Fragment Mass Analysis: Multiplexed Peptide Identification and Quantification

    PubMed Central

    Weisbrod, Chad R.; Eng, Jimmy K.; Hoopmann, Michael R.; Baker, Tahmina; Bruce, James E.

    2012-01-01

    FT All Reaction Monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ions against every fragmentation spectrum across the entire acquisition. A dot product score is calculated against each spectrum in order to generate a score chromatogram used for both identification and quantification. Chromatographic elution profile characteristics are not used to cluster precursor peptide signals to their respective fragment ions. FT-ARM identifications are demonstrated to be complementary to conventional data-dependent shotgun analysis, especially in cases where the data-dependent method fails due to fragmenting multiple overlapping precursors. The sensitivity, robustness and specificity of FT-ARM quantification are shown to be analogous to selected reaction monitoring-based peptide quantification with the added benefit of minimal assay development. Thus, FT-ARM is demonstrated to be a novel and complementary data acquisition, identification, and quantification method for the large scale analysis of peptides. PMID:22288382

  13. A Novel PCR-Based Approach for Accurate Identification of Vibrio parahaemolyticus.

    PubMed

    Li, Ruichao; Chiou, Jiachi; Chan, Edward Wai-Chi; Chen, Sheng

    2016-01-01

    A PCR-based assay was developed for more accurate identification of Vibrio parahaemolyticus through targeting the bla CARB-17 like element, an intrinsic β-lactamase gene that may also be regarded as a novel species-specific genetic marker of this organism. Homologous analysis showed that bla CARB-17 like genes were more conservative than the tlh, toxR and atpA genes, the genetic markers commonly used as detection targets in identification of V. parahaemolyticus. Our data showed that this bla CARB-17-specific PCR-based detection approach consistently achieved 100% specificity, whereas PCR targeting the tlh and atpA genes occasionally produced false positive results. Furthermore, a positive result of this test is consistently associated with an intrinsic ampicillin resistance phenotype of the test organism, presumably conferred by the products of bla CARB-17 like genes. We envision that combined analysis of the unique genetic and phenotypic characteristics conferred by bla CARB-17 shall further enhance the detection specificity of this novel yet easy-to-use detection approach to a level superior to the conventional methods used in V. parahaemolyticus detection and identification. PMID:26858713

  14. A Novel PCR-Based Approach for Accurate Identification of Vibrio parahaemolyticus

    PubMed Central

    Li, Ruichao; Chiou, Jiachi; Chan, Edward Wai-Chi; Chen, Sheng

    2016-01-01

    A PCR-based assay was developed for more accurate identification of Vibrio parahaemolyticus through targeting the blaCARB-17 like element, an intrinsic β-lactamase gene that may also be regarded as a novel species-specific genetic marker of this organism. Homologous analysis showed that blaCARB-17 like genes were more conservative than the tlh, toxR and atpA genes, the genetic markers commonly used as detection targets in identification of V. parahaemolyticus. Our data showed that this blaCARB-17-specific PCR-based detection approach consistently achieved 100% specificity, whereas PCR targeting the tlh and atpA genes occasionally produced false positive results. Furthermore, a positive result of this test is consistently associated with an intrinsic ampicillin resistance phenotype of the test organism, presumably conferred by the products of blaCARB-17 like genes. We envision that combined analysis of the unique genetic and phenotypic characteristics conferred by blaCARB-17 shall further enhance the detection specificity of this novel yet easy-to-use detection approach to a level superior to the conventional methods used in V. parahaemolyticus detection and identification. PMID:26858713

  15. Accurate assessment and identification of naturally occurring cellular cobalamins

    PubMed Central

    Hannibal, Luciana; Axhemi, Armend; Glushchenko, Alla V.; Moreira, Edward S.; Brasch, Nicola E.; Jacobsen, Donald W.

    2009-01-01

    Background Accurate assessment of cobalamin profiles in human serum, cells, and tissues may have clinical diagnostic value. However, non-alkyl forms of cobalamin undergo β-axial ligand exchange reactions during extraction, which leads to inaccurate profiles having little or no diagnostic value. Methods Experiments were designed to: 1) assess β-axial ligand exchange chemistry during the extraction and isolation of cobalamins from cultured bovine aortic endothelial cells, human foreskin fibroblasts, and human hepatoma HepG2 cells, and 2) to establish extraction conditions that would provide a more accurate assessment of endogenous forms containing both exchangeable and non-exchangeable β-axial ligands. Results The cobalamin profile of cells grown in the presence of [57Co]-cyanocobalamin as a source of vitamin B12 shows that the following derivatives are present: [57Co]-aquacobalamin, [57Co]-glutathionylcobalamin, [57Co]-sulfitocobalamin, [57Co]-cyanocobalamin, [57Co]-adenosylcobalamin, [57Co]-methylcobalamin, as well as other yet unidentified corrinoids. When the extraction is performed in the presence of excess cold aquacobalamin acting as a scavenger cobalamin (i.e., “cold trapping”), the recovery of both [57Co]-glutathionylcobalamin and [57Co]-sulfitocobalamin decreases to low but consistent levels. In contrast, the [57Co]-nitrocobalamin observed in extracts prepared without excess aquacobalamin is undetectable in extracts prepared with cold trapping. Conclusions This demonstrates that β-ligand exchange occurs with non-covalently bound β-ligands. The exception to this observation is cyanocobalamin with a non-covalent but non-exchangeable− CNT group. It is now possible to obtain accurate profiles of cellular cobalamins. PMID:18973458

  16. Species identification from dried snake venom.

    PubMed

    Singh, Chandra S; Gaur, Ajay; Sreenivas, Ara; Singh, Lalji

    2012-05-01

    Illegal trade in snake parts has increased enormously. In spite of strict protection under wildlife act, a large number of snakes are being killed ruthlessly in India for venom and skin. Here, an interesting case involving confiscation of crystallized dried snake venom and subsequent DNA-based species identification is reported. The analysis using the universal primers for cytochrome b region of the mitochondrial DNA revealed that the venom was extracted from an Indian cobra (Naja naja). On the basis of this report, the forwarding authority booked a case in the court of law against the accused for illegal hunting of an endangered venomous snake and smuggling of snake venom. This approach thus has immense potential for rapid identification of snake species facing endangerment because of illegal trade. This is also the first report of DNA isolation from dried snake venom for species identification. PMID:22268640

  17. Time-of-flight accurate mass spectrometry identification of quinoline alkaloids in honey.

    PubMed

    Rodríguez-Cabo, Tamara; Moniruzzaman, Mohammed; Rodríguez, Isaac; Ramil, María; Cela, Rafael; Gan, Siew Hua

    2015-08-01

    Time-of-flight accurate mass spectrometry (TOF-MS), following a previous chromatographic (gas or liquid chromatography) separation step, is applied to the identification and structural elucidation of quinoline-like alkaloids in honey. Both electron ionization (EI) MS and positive electrospray (ESI+) MS spectra afforded the molecular ions (M(.+) and M+H(+), respectively) of target compounds with mass errors below 5 mDa. Scan EI-MS and product ion scan ESI-MS/MS spectra permitted confirmation of the existence of a quinoline ring in the structures of the candidate compounds. Also, the observed fragmentation patterns were useful to discriminate between quinoline derivatives having the same empirical formula but different functionalities, such as aldoximes and amides. In the particular case of phenylquinolines, ESI-MS/MS spectra provided valuable clues regarding the position of the phenyl moiety attached to the quinoline ring. The aforementioned spectral information, combined with retention times matching, led to the identification of quinoline and five quinoline derivatives, substituted at carbon number 4, in honey samples. An isomer of phenyquinoline was also noticed; however, its exact structure could not be established. Liquid-liquid microextraction and gas chromatography (GC) TOF-MS were applied to the screening of the aforementioned compounds in a total of 62 honeys. Species displaying higher occurrence frequencies were 4-quinolinecarbonitrile, 4-quinolinecarboxaldehyde, 4-quinolinealdoxime, and the phenylquinoline isomer. The Pearson test revealed strong correlations among the first three compounds. PMID:26041455

  18. Post-identification feedback to eyewitnesses impairs evaluators' abilities to discriminate between accurate and mistaken testimony.

    PubMed

    Smalarz, Laura; Wells, Gary L

    2014-04-01

    Giving confirming feedback to mistaken eyewitnesses has robust distorting effects on their retrospective judgments (e.g., how certain they were, their view, etc.). Does feedback harm evaluators' abilities to discriminate between accurate and mistaken identification testimony? Participant-witnesses to a simulated crime made accurate or mistaken identifications from a lineup and then received confirming feedback or no feedback. Each then gave videotaped testimony about their identification, and a new sample of participant-evaluators judged the accuracy and credibility of the testimonies. Among witnesses who were not given feedback, evaluators were significantly more likely to believe the testimony of accurate eyewitnesses than they were to believe the testimony of mistaken eyewitnesses, indicating significant discrimination. Among witnesses who were given confirming feedback, however, evaluators believed accurate and mistaken witnesses at nearly identical rates, indicating no ability to discriminate. Moreover, there was no evidence of overbelief in the absence of feedback whereas there was significant overbelief in the confirming feedback conditions. Results demonstrate that a simple comment following a witness' identification decision ("Good job, you got the suspect") can undermine fact-finders' abilities to discern whether the witness made an accurate or a mistaken identification. PMID:24341835

  19. Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species

    PubMed Central

    Renner, Kurra; Cole, Ellen; Seabloom, Eric W.; Borer, Elizabeth T.; Malmstrom, Carolyn M.

    2016-01-01

    Ecological understanding of disease risk, emergence, and dynamics and of the efficacy of control strategies relies heavily on efficient tools for microorganism identification and characterization. Misdetection, such as the misclassification of infected hosts as healthy, can strongly bias estimates of disease prevalence and lead to inaccurate conclusions. In natural plant ecosystems, interest in assessing microbial dynamics is increasing exponentially, but guidelines for detection of microorganisms in wild plants remain limited, particularly so for plant viruses. To address this gap, we explored issues and solutions associated with virus detection by serological and molecular methods in noncrop plant species as applied to the globally important Barley yellow dwarf virus PAV (Luteoviridae), which infects wild native plants as well as crops. With enzyme-linked immunosorbent assays (ELISA), we demonstrate how virus detection in a perennial wild plant species may be much greater in stems than in leaves, although leaves are most commonly sampled, and may also vary among tillers within an individual, thereby highlighting the importance of designing effective sampling strategies. With reverse transcription-PCR (RT-PCR), we demonstrate how inhibitors in tissues of perennial wild hosts can suppress virus detection but can be overcome with methods and products that improve isolation and amplification of nucleic acids. These examples demonstrate the paramount importance of testing and validating survey designs and virus detection methods for noncrop plant communities to ensure accurate ecological surveys and reliable assumptions about virus dynamics in wild hosts. PMID:26773088

  20. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics.

    PubMed

    Stanley, Jeffrey R; Adkins, Joshua N; Slysz, Gordon W; Monroe, Matthew E; Purvine, Samuel O; Karpievitch, Yuliya V; Anderson, Gordon A; Smith, Richard D; Dabney, Alan R

    2011-08-15

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, because this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referenced as Statistical Tools for AMT Tag Confidence (STAC). STAC additionally provides a uniqueness probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download, as both a command line and a Windows graphical application.

  1. The Identification of Haemonchus Species and Diagnosis of Haemonchosis.

    PubMed

    Zarlenga, D S; Hoberg, E P; Tuo, W

    2016-01-01

    Diagnosis is often equated with identification or detection when discussing parasitic diseases. Unfortunately, these are not necessarily mutually exclusive activities; diseases and infections are generally diagnosed and organisms are identified. Diagnosis is commonly predicated upon some clinical signs; in an effort to determine the causative agent, identification of genera and species is subsequently performed. Both identification and diagnosis play critical roles in managing an infection, and involve the interplay of direct and indirect methods of detection, particularly in light of the complex and expanding problem of drug-resistance in parasites. Accurate and authoritative identification that is cost- and time-effective, based on structural and molecular attributes of specimens, provides a foundation for defining parasite diversity and changing patterns of geographical distribution, host association and emergence of disease. Most techniques developed thus far have been grounded in assumptions based on strict host associations between Haemonchus contortus and small ruminants, that is, sheep and goats, and between Haemonchus placei and bovids. Current research and increasing empirical evidence of natural infections in the field demonstrates that this assumption misrepresents the host associations for these species of Haemonchus. Furthermore, the capacity of H. contortus to utilize a considerably broad spectrum of ungulate hosts is reflected in our understanding of the role of anthropogenic forcing, the 'breakdown' of ecological isolation, global introduction and host switching as determinants of distribution. Nuanced insights about distribution, host association and epidemiology have emerged over the past 30years, coincidently with the development of increasingly robust means for parasite identification. In this review and for the sake of argument, we would like to delineate the diagnosis of haemonchosis from the identification of the specific pathogen. As a

  2. Species identification key of Korean mammal hair.

    PubMed

    Lee, Eunok; Choi, Tae-Young; Woo, Donggul; Min, Mi-Sook; Sugita, Shoei; Lee, Hang

    2014-05-01

    The hair microstructures of Korean terrestrial mammals from 23 species (22 wild and one domestic) were analyzed using light and scanning electron microscopy (SEM) to construct a hair identification key. The hairs were examined using the medulla structures and cuticular scales of guard hairs from the dorsal regions of mature adult animals. All cuticular scale structures in the hair of Rodentia, Lagomorpha, Carnivora and Insectivora showed the petal pattern, and those of Artiodactyla and Chiroptera showed the wave pattern and coronal pattern, respectively. Rodentia, Lagomorpha and Carnivora showed multicellular, and Insectivora and Artiodactyla showed unicellular regular, mesh or columnar in the medulla structures, respectively. Chiroptera did not show the medulla structures in their hair. We found that it is possible to distinguish between species and order based on general appearance, medulla structures and cuticular scales. Thus, we constructed a hair identification key with morphological characteristics from each species. This study suggests that hair identification keys could be useful in fields, such as forensic science, food safety and foraging ecology.

  3. Species identification key of Korean mammal hair.

    PubMed

    Lee, Eunok; Choi, Tae-Young; Woo, Donggul; Min, Mi-Sook; Sugita, Shoei; Lee, Hang

    2014-05-01

    The hair microstructures of Korean terrestrial mammals from 23 species (22 wild and one domestic) were analyzed using light and scanning electron microscopy (SEM) to construct a hair identification key. The hairs were examined using the medulla structures and cuticular scales of guard hairs from the dorsal regions of mature adult animals. All cuticular scale structures in the hair of Rodentia, Lagomorpha, Carnivora and Insectivora showed the petal pattern, and those of Artiodactyla and Chiroptera showed the wave pattern and coronal pattern, respectively. Rodentia, Lagomorpha and Carnivora showed multicellular, and Insectivora and Artiodactyla showed unicellular regular, mesh or columnar in the medulla structures, respectively. Chiroptera did not show the medulla structures in their hair. We found that it is possible to distinguish between species and order based on general appearance, medulla structures and cuticular scales. Thus, we constructed a hair identification key with morphological characteristics from each species. This study suggests that hair identification keys could be useful in fields, such as forensic science, food safety and foraging ecology. PMID:24451929

  4. Accurate identification of Candida parapsilosis (sensu lato) by use of mitochondrial DNA and real-time PCR.

    PubMed

    Souza, Ana Carolina R; Ferreira, Renata C; Gonçalves, Sarah S; Quindós, Guillermo; Eraso, Elena; Bizerra, Fernando C; Briones, Marcelo R S; Colombo, Arnaldo L

    2012-07-01

    Candida parapsilosis is the Candida species isolated the second most frequently from blood cultures in South America and some European countries, such as Spain. Since 2005, this species has been considered a complex of 3 closely related species: C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis. Here, we describe a real-time TaqMan-MGB PCR assay, using mitochondrial DNA (mtDNA) as the target, which readily distinguishes these 3 species. We first used comparative genomics to locate syntenic regions between these 3 mitochondrial genomes and then selected NADH5 as the target for the real-time PCR assay. Probes were designed to include a combination of different single-nucleotide polymorphisms that are able to differentiate each species within the C. parapsilosis complex. This new methodology was first tested using mtDNA and then genomic DNA from 4 reference and 5 clinical strains. For assay validation, a total of 96 clinical isolates and 4 American Type Culture Collection (ATCC) isolates previously identified by internal transcribed spacer (ITS) ribosomal DNA (rDNA) sequencing were tested. Real-time PCR using genomic DNA was able to differentiate the 3 species with 100% accuracy. No amplification was observed when DNA from other species was used as the template. We observed 100% congruence with ITS rDNA sequencing identification, including for 30 strains used in blind testing. This novel method allows a quick and accurate intracomplex identification of C. parapsilosis and saves time compared with sequencing, which so far has been considered the "gold standard" for Candida yeast identification. In addition, this assay provides a useful tool for epidemiological and clinical studies of these emergent species.

  5. Species identification of Papaver by metabolite profiling.

    PubMed

    Choe, Sanggil; Kim, Suncheun; Lee, Chul; Yang, Wonkyung; Park, Yuran; Choi, Hwakyung; Chung, Heesun; Lee, Dongho; Hwang, Bang Yeon

    2011-09-10

    Papaver somniferum L. and Papaver setigerum D.C. are controlled as opium poppy in Korea because they contain narcotic substances such as morphine and codeine. It is one of the critical issues whether the plants similar to opium poppy in shape are controlled plants or not. There are more than 110 species in the genus Papaver worldwide and about 10 species in Korea. As the morphological features of some species are very similar and the alkaloid contents and the ratios among the major alkaloids vary even within the same species, it is often difficult to identify the exact species by the morphological features and/or major alkaloids analysis. To develop a new method that uses metabolite profiling for species discrimination between P. somniferum, Papaver rhoeas and P. setigerum, the gas chromatography/mass spectrometry (GC-MS) data of the alkaline extract were processed with in-house Microsoft Visual Basic(®) modules and the chemical information was analyzed through multivariate statistical analyses such as Hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA). The GC-MS results combined with multivariate analysis demonstrated that the metabolite profiling was an efficient technique for the classification and this method will provide a powerful tool for the identification of Korean Papaver species.

  6. Identification of Orchidaceae species from Northern West of Syria based on chloroplast DNA.

    PubMed

    Haider, N; Nabulsi, I; Kamary, Y

    2010-08-01

    The plant family Orchidaceae has a great economic value (ornamental and medical uses, beside the aromatic features). Traditionally, identification of orchid species has relied heavily on morphological features. These features, however, are either not variable enough between species or too plastic to be used for identification at the species level. DNA-based markers could be the alternative strategy towards an accurate and robust identification of those species. Since the chloroplast DNA has a lower level of evolution compared to the nuclear genome, an attempt was made in this study to investigate polymorphism in the chloroplast DNA among orchid species distributed in North-West region of Syria using Cleaved Amplified Polymorphic Sequence (CAPS) technique for developing markers for the diagnosis of targeted species. CAPS analysis was carried out on 34 orchid samples that represent all species observed in the region. Universal primers were used to amplify targeted chloroplast regions. Generated PCR products were digested with various restriction enzymes. CAPS results revealed high polymorphism among species examined. This polymorphism was suffiecient for the diagnosis of all of those species apart from five species (Ophrys fuciflora (one sample), Oph. bornmuelleri, Ophrys sp., Oph. scolopax and Oph. argolica). Availability of such species-specific markers would ensure more authentic identification of orchid species compared to morphological characters and can be regarded as a valuable tool to guide in conservation programs of orchid species in Syria. CAPS data generated were converted to an identification key for orchid species studied.

  7. PCR-Based Identification of Oral Streptococcal Species

    PubMed Central

    Zhu, Min; Dawson, Deborah V.; Cao, Huojun; Levy, Steven M.

    2016-01-01

    The microbial etiology of dental caries is still debated. Among the hypothesized contributors are the “low pH streptococci,” a designation given to unusually acid proficient strains among the primary plaque colonizers S. oralis, S. mitis, S. gordonii, and S. anginosus. However, accurate assignment of species is difficult among the oral streptococci. Our objective was to develop a streamlined method for identifying strains of S. oralis and S. mitis from plaque samples so that they could be analyzed in a separate study devoted to low pH streptococci and caries. Two independent PCR amplifications of a locus highly conserved among streptococci were used for presumptive species identification. Multilocus sequence analysis (MLSA) was used to measure accuracy. Sensitivity was 100% for selecting S. oralis and S. mitis among the clones sampled. Specificity was good except for the most closely related species that could not be reliably distinguished even by MLSA. The results with S. oralis and S. mitis were used to identify new primer sets that expanded the utility of the approach to other oral streptococcal species. These novel primer sets offer a convenient means of presumptive identification that will have utility in many studies where large scale, in-depth genomic analyses are not practical. PMID:27703479

  8. Identification of a novel human gammapapillomavirus species

    PubMed Central

    Li, Linlin; Barry, Pennan; Yeh, Elaine; Glaser, Carol; Schnurr, David; Delwart, Eric

    2009-01-01

    By using random PCR amplification, shotgun sequencing and sequence similarity searches, we analysed nucleic acids present in cell cultures inoculated with samples from unexplained cases of encephalitis. We identified a divergent human papillomavirus (HPV) sequence originating from a rectal swab. The full genome was amplified by inverse PCR and sequenced. The prototype of the sixth gammapapillomavirus species, HPV116, was not found in the patient's cerebrospinal fluid or respiratory secretions, nor in culture supernatants from other unexplained cases of encephalitis, indicating that its identification in an encephalitis patient was accidental. PMID:19570953

  9. Identification and significance of Weissella species infections

    PubMed Central

    Kamboj, Kamal; Vasquez, Amber; Balada-Llasat, Joan-Miquel

    2015-01-01

    Weissella spp. are non-spore forming, catalase-negative, gram-positive coccobacilli. They are often misidentified by traditional and commercial phenotypic identification methods as Lactobacillus spp. or Lactobacillus-like organisms. Weissella spp. were previously grouped along with Lactobacillus spp., Leuconostoc spp., and Pediococcus spp. Utilization of more sensitive methods like DNA sequencing or Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) has facilitated identification of Weissella as a unique genus. Nineteen species have been identified to date. W. confusa, W. cibaria, and W. viridescens are the only species isolated from humans. The true prevalence of Weissella spp. continues to be probably underestimated. Weissella spp. strains have been isolated from a wide range of habitats including raw milk, feces, fermented cereals, and vegetables. Weisella is believed to be a rare cause of usually nonfatal infections in humans, and is often considered a contaminant. However, in recent years, Weissella spp. have been implicated in bacteremia, abscesses, prosthetic joint infections, and infective endocarditis. Alterations of the gut flora from surgery or chemotherapy are believed to facilitate translocation of Weissella spp. due to disruption of the mucosal barrier, predisposing the host to infection with this organism. Implications of the isolation of Weissella spp. from blood must be interpreted in context of underlying risk factors. Weissella spp. are inherently resistant to vancomycin. Therefore, early consideraton of the pathogenic role of this bacteria and choice of alternate therapy is important to assure better outcomes. PMID:26583007

  10. Accurate identification of waveform of evoked potentials by component decomposition using discrete cosine transform modeling.

    PubMed

    Bai, O; Nakamura, M; Kanda, M; Nagamine, T; Shibasaki, H

    2001-11-01

    This study introduces a method for accurate identification of the waveform of the evoked potentials by decomposing the component responses. The decomposition was achieved by zero-pole modeling of the evoked potentials in the discrete cosine transform (DCT) domain. It was found that the DCT coefficients of a component response in the evoked potentials could be modeled sufficiently by a second order transfer function in the DCT domain. The decomposition of the component responses was approached by using partial expansion of the estimated model for the evoked potentials, and the effectiveness of the decomposition method was evaluated both qualitatively and quantitatively. Because of the overlap of the different component responses, the proposed method enables an accurate identification of the evoked potentials, which is useful for clinical and neurophysiological investigations.

  11. A Statistical Method for Assessing Peptide Identification Confidence in Accurate Mass and Time Tag Proteomics

    SciTech Connect

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-07-15

    High-throughput proteomics is rapidly evolving to require high mass measurement accuracy for a variety of different applications. Increased mass measurement accuracy in bottom-up proteomics specifically allows for an improved ability to distinguish and characterize detected MS features, which may in turn be identified by, e.g., matching to entries in a database for both precursor and fragmentation mass identification methods. Many tools exist with which to score the identification of peptides from LC-MS/MS measurements or to assess matches to an accurate mass and time (AMT) tag database, but these two calculations remain distinctly unrelated. Here we present a statistical method, Statistical Tools for AMT tag Confidence (STAC), which extends our previous work incorporating prior probabilities of correct sequence identification from LC-MS/MS, as well as the quality with which LC-MS features match AMT tags, to evaluate peptide identification confidence. Compared to existing tools, we are able to obtain significantly more high-confidence peptide identifications at a given false discovery rate and additionally assign confidence estimates to individual peptide identifications. Freely available software implementations of STAC are available in both command line and as a Windows graphical application.

  12. The changing epitome of species identification - DNA barcoding.

    PubMed

    Ajmal Ali, M; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M A; Pandey, Arun K; Lee, Joongku

    2014-07-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The 'DNA barcodes' show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  13. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  14. Rapid and Accurate Identification of Human-Associated Staphylococci by Use of Multiplex PCR▿

    PubMed Central

    Hirotaki, Shintaro; Sasaki, Takashi; Kuwahara-Arai, Kyoko; Hiramatsu, Keiichi

    2011-01-01

    Although staphylococci are identified by phenotypic analysis in many clinical laboratories, these results are often incorrect because of phenotypic variation. Genetic analysis is necessary for definitive species identification. In the present study, we developed a simple multiplex-PCR (M-PCR) for species identification of human-associated staphylococci, which were as follows: Staphylococcus aureus, S. capitis, S. caprae, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, and S. warneri. This method was designed on the basis of nucleotide sequences of the thermonuclease (nuc) genes that were universally conserved in staphylococci except the S. sciuri group and showed moderate sequence diversity. In order to validate this assay, 361 staphylococcal strains were studied, which had been identified at the species levels by sequence analysis of the hsp60 genes. In consequence, M-PCR demonstrated a sensitivity of 100% and a specificity of 100%. By virtue of simplicity and accuracy, this method will be useful in clinical research. PMID:21832022

  15. Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients.

    PubMed

    Bittar, F; Rolain, J-M

    2010-07-01

    Respiratory infections remain a major threat to cystic fibrosis (CF) patients. The detection and correct identification of the bacteria implicated in these infections is critical for the therapeutic management of patients. The traditional methods of culture and phenotypic identification of bacteria lack both sensitivity and specificity because many bacteria can be missed and/or misidentified. Molecular analyses have recently emerged as useful means to resolve these problems, including molecular methods for accurate identification or detection of bacteria and molecular methods for evaluation of microbial diversity. These recent molecular technologies have increased the list of new and/or emerging pathogens and epidemic strains associated with CF patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact cells has also emerged recently as a powerful and rapid method for the routine identification of bacteria in clinical microbiology laboratories and will certainly represent the method of choice also for the routine identification of bacteria in the context of CF. Finally, recent data derived from molecular culture-independent analyses indicate the presence of a previously underestimated, complex microbial community in sputa from CF patients. Interestingly, full genome sequencing of some bacteria frequently recovered from CF patients has highlighted the fact that the lungs of CF patients are hotspots for lateral gene transfer and the adaptation of these ecosystems to a specific chronic condition.

  16. [DNA-based methods for identification of seafood species].

    PubMed

    Zhang, Li; Zhang, Liang; Liu, Shu-Cheng; Zhang, Yi-Jun; Han, Yi

    2010-06-01

    With the development of molecular biotechnology, methods for identification of seafood species are developed from protein to DNA. At present, the main DNA-based methods for species identification are FINS, PCR-RFLP, and specific-PCR, which have been used to identify the species of fresh, frozen, and pickled or canned seafood. However, qualitative and quantitative methods for identification of the mixed seafood species remain to be resolved. The gene databases play an important role in identifying species and are valuable information resources for identification of seafood species. In this paper, recent progresses of major DNA-based methods for identification of seafood species are reviewed and the perspectives of this field are discussed. PMID:20566458

  17. Rapid and accurate identification of microorganisms contaminating cosmetic products based on DNA sequence homology.

    PubMed

    Fujita, Y; Shibayama, H; Suzuki, Y; Karita, S; Takamatsu, S

    2005-12-01

    The aim of this study was to develop rapid and accurate procedures to identify microorganisms contaminating cosmetic products, based on the identity of the nucleotide sequences of the internal transcribed spacer (ITS) region of the ribosomal RNA coding DNA (rDNA). Five types of microorganisms were isolated from the inner portion of lotion bottle caps, skin care lotions, and cleansing gels. The rDNA ITS region of microorganisms was amplified through the use of colony-direct PCR or ordinal PCR using DNA extracts as templates. The nucleotide sequences of the amplified DNA were determined and subjected to homology search of a publicly available DNA database. Thereby, we obtained DNA sequences possessing high similarity with the query sequences from the databases of all the five organisms analyzed. The traditional identification procedure requires expert skills, and a time period of approximately 1 month to identify the microorganisms. On the contrary, 3-7 days were sufficient to complete all the procedures employed in the current method, including isolation and cultivation of organisms, DNA sequencing, and the database homology search. Moreover, it was possible to develop the skills necessary to perform the molecular techniques required for the identification procedures within 1 week. Consequently, the current method is useful for rapid and accurate identification of microorganisms, contaminating cosmetics.

  18. PCR Assay for Species-Specific Identification of Bacteroides thetaiotaomicron

    PubMed Central

    Teng, Lee-Jene; Hsueh, Po-Ren; Tsai, Jui-Chang; Chiang, Feng-Lin; Chen, Ching-Yi; Ho, Shen-Wu; Luh, Kwen-Tay

    2000-01-01

    Bacteroides thetaiotaomicron is the second most frequently encountered species of the anaerobes isolated from clinical specimens. We developed a PCR-based assay for the rapid identification of B. thetaiotaomicron. Specific primers were based on shared amplicons of about 1.2 kb generated from B. thetaiotaomicron by randomly amplified polymorphic DNA. This 1.2-kb fragment was sequenced and then used to design a set of PCR amplification primers. This PCR generated an amplification product of 721 bp, which was unique to all 65 isolates of B. thetaiotaomicron tested. There was no amplification with isolates of other bacterial species. Restriction enzyme digestion of the amplification product and dot blot hybridization further verified the specificity of the assay. These results suggest that this PCR assay targets a nucleotide sequence that is strongly conserved in B. thetaiotaomicron. This simple and rapid PCR assay provides a rapid and accurate method for identification of B. thetaiotaomicron and shows promise for the detection of B. thetaiotaomicron in clinical samples. PMID:10747167

  19. Identification of selection signatures in livestock species

    PubMed Central

    de Simoni Gouveia, João José; da Silva, Marcos Vinicius Gualberto Barbosa; Paiva, Samuel Rezende; de Oliveira, Sônia Maria Pinheiro

    2014-01-01

    The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology. PMID:25071397

  20. Pathoscope: Species identification and strain attribution with unassembled sequencing data

    PubMed Central

    Francis, Owen E.; Bendall, Matthew; Manimaran, Solaiappan; Hong, Changjin; Clement, Nathan L.; Castro-Nallar, Eduardo; Snell, Quinn; Schaalje, G. Bruce; Clement, Mark J.; Crandall, Keith A.; Johnson, W. Evan

    2013-01-01

    Emerging next-generation sequencing technologies have revolutionized the collection of genomic data for applications in bioforensics, biosurveillance, and for use in clinical settings. However, to make the most of these new data, new methodology needs to be developed that can accommodate large volumes of genetic data in a computationally efficient manner. We present a statistical framework to analyze raw next-generation sequence reads from purified or mixed environmental or targeted infected tissue samples for rapid species identification and strain attribution against a robust database of known biological agents. Our method, Pathoscope, capitalizes on a Bayesian statistical framework that accommodates information on sequence quality, mapping quality, and provides posterior probabilities of matches to a known database of target genomes. Importantly, our approach also incorporates the possibility that multiple species can be present in the sample and considers cases when the sample species/strain is not in the reference database. Furthermore, our approach can accurately discriminate between very closely related strains of the same species with very little coverage of the genome and without the need for multiple alignment steps, extensive homology searches, or genome assembly—which are time-consuming and labor-intensive steps. We demonstrate the utility of our approach on genomic data from purified and in silico “environmental” samples from known bacterial agents impacting human health for accuracy assessment and comparison with other approaches. PMID:23843222

  1. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    SciTech Connect

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-04-30

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  2. Microarray for Identification of the Chiropteran Host Species of Rabies Virus in Canada

    PubMed Central

    Lung, Oliver; Nadin-Davis, Susan; Fisher, Mathew; Erickson, Anthony; Knowles, M. Kimberly; Furukawa-Stoffer, Tara; Ambagala, Aruna

    2013-01-01

    Species identification through genetic barcoding can augment traditional taxonomic methods, which rely on morphological features of the specimen. Such approaches are especially valuable when specimens are in poor condition or comprise very limited material, a situation that often applies to chiropteran (bat) specimens submitted to the Canadian Food Inspection Agency for rabies diagnosis. Coupled with phenotypic plasticity of many species and inconclusive taxonomic keys, species identification using only morphological traits can be challenging. In this study, a microarray assay with associated PCR of the mitochondrial cytochrome c oxidase subunit I (COI) gene was developed for differentiation of 14 bat species submitted to the Canadian Food Inspection Agency from 1985–2012 for rabies diagnosis. The assay was validated with a reference collection of DNA from 153 field samples, all of which had been barcoded previously. The COI gene from 152 samples which included multiple specimens of each target species were successfully amplified by PCR and accurately identified by the microarray. One sample that was severely decomposed failed to amplify with PCR primers developed in this study, but amplified weakly after switching to alternate primers and was accurately typed by the microarray. Thus, the chiropteran microarray was able to accurately differentiate between the 14 species of Canadian bats targeted. This PCR and microarray assay would allow unequivocal identification to species of most, if not all, bat specimens submitted for rabies diagnosis in Canada. PMID:27605186

  3. Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex.

    PubMed

    Oliveira, Manoel Marques Evangelista; Santos, Cledir; Sampaio, Paula; Romeo, Orazio; Almeida-Paes, Rodrigo; Pais, Célia; Lima, Nelson; Zancopé-Oliveira, Rosely Maria

    2015-01-01

    Accurate species identification of the Sporothrix schenckii complex is essential, since identification based only on phenotypic characteristics is often inconclusive due to phenotypic variability within the species. We used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for species identification of 70 environmental and clinical isolates of the Sporothrix complex. A reference database was established for MALDI-TOF MS-based species identification according to minor adjustments in the manufacturer's guidelines. The MALDI-TOF MS clearly distinguished strains of Sporothrix brasiliensis, Sporothrix globosa, Sporothrix mexicana, S. schenckii, Sporothrix luriei and Sporothrix pallida, enabling identification of all isolates at the species level, as confirmed by partial calmodulin gene sequence analyses. The present methodology is simple, reliable, rapid and highly suitable for routine identification in clinical mycology laboratories and culture collections, particularly for updating and reclassifying of deposited Sporothrix isolates.

  4. Rapid identification of sequences for orphan enzymes to power accurate protein annotation.

    PubMed

    Ramkissoon, Kevin R; Miller, Jennifer K; Ojha, Sunil; Watson, Douglas S; Bomar, Martha G; Galande, Amit K; Shearer, Alexander G

    2013-01-01

    The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.

  5. Meat Species Identification using Loop-mediated Isothermal Amplification Assay Targeting Species-specific Mitochondrial DNA

    PubMed Central

    2014-01-01

    Meat source fraud and adulteration scandals have led to consumer demands for accurate meat identification methods. Nucleotide amplification assays have been proposed as an alternative method to protein-based assays for meat identification. In this study, we designed Loop-mediated isothermal amplification (LAMP) assays targeting species-specific mitochondrial DNA to identify and discriminate eight meat species; cattle, pig, horse, goat, sheep, chicken, duck, and turkey. The LAMP primer sets were designed and the target genes were discriminated according to their unique annealing temperature generated by annealing curve analysis. Their unique annealing temperatures were found to be 85.56±0.07℃ for cattle, 84.96±0.08℃ for pig, and 85.99±0.05℃ for horse in the BSE-LAMP set (Bos taurus, Sus scrofa domesticus and Equus caballus); 84.91±0.11℃ for goat and 83.90±0.11℃ for sheep in the CO-LAMP set (Capra hircus and Ovis aries); and 86.31±0.23℃ for chicken, 88.66±0.12℃ for duck, and 84.49±0.08℃ for turkey in the GAM-LAMP set (Gallus gallus, Anas platyrhynchos and Meleagris gallopavo). No cross-reactivity was observed in each set. The limits of detection (LODs) of the LAMP assays in raw and cooked meat were determined from 10 pg/μL to 100 fg/μL levels, and LODs in raw and cooked meat admixtures were determined from 0.01% to 0.0001% levels. The assays were performed within 30 min and showed greater sensitivity than that of the PCR assays. These novel LAMP assays provide a simple, rapid, accurate, and sensitive technology for discrimination of eight meat species. PMID:26761677

  6. Identification of Indian crocodile species through DNA barcodes.

    PubMed

    Meganathan, P R; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2013-07-01

    The biodiversity of India includes three crocodile species, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, whose status is threatened due to bushmeat crisis and illegal hunting. The crocodilian conservation management requires novel techniques to help forensic analysts to reveal species identity. DNA barcoding is a species identification technique, where a partial cytochrome c oxidase subunit 1 gene is used as a marker for species identification. Herein, the DNA barcoding technique is evaluated for three Indian crocodiles by analyzing an approximately 750-bp barcode region. The alignment result shows interspecific variations between sequences for discrimination of the three Indian crocodiles leading to species identification. The phylogenetic analyses also substantiate the established crocodilian relationships, which add further advantage to use this DNA barcoding approach for Indian crocodiles. This study provides preliminary evidences for the use of DNA barcoding technique in the identification of Indian crocodile species.

  7. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    PubMed

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.

  8. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    PubMed

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  9. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards

    PubMed Central

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-01-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  10. Species identification by experts and non-experts: comparing images from field guides

    PubMed Central

    Austen, G. E.; Bindemann, M.; Griffiths, R. A.; Roberts, D. L.

    2016-01-01

    Accurate species identification is fundamental when recording ecological data. However, the ability to correctly identify organisms visually is rarely questioned. We investigated how experts and non-experts compared in the identification of bumblebees, a group of insects of considerable conservation concern. Experts and non-experts were asked whether two concurrent bumblebee images depicted the same or two different species. Overall accuracy was below 60% and comparable for experts and non-experts. However, experts were more consistent in their answers when the same images were repeated, and more cautious in committing to a definitive answer. Our findings demonstrate the difficulty of correctly identifying bumblebees using images from field guides. Such error rates need to be accounted for when interpreting species data, whether or not they have been collected by experts. We suggest that investigation of how experts and non-experts make observations should be incorporated into study design, and could be used to improve training in species identification. PMID:27644140

  11. Species identification by experts and non-experts: comparing images from field guides.

    PubMed

    Austen, G E; Bindemann, M; Griffiths, R A; Roberts, D L

    2016-01-01

    Accurate species identification is fundamental when recording ecological data. However, the ability to correctly identify organisms visually is rarely questioned. We investigated how experts and non-experts compared in the identification of bumblebees, a group of insects of considerable conservation concern. Experts and non-experts were asked whether two concurrent bumblebee images depicted the same or two different species. Overall accuracy was below 60% and comparable for experts and non-experts. However, experts were more consistent in their answers when the same images were repeated, and more cautious in committing to a definitive answer. Our findings demonstrate the difficulty of correctly identifying bumblebees using images from field guides. Such error rates need to be accounted for when interpreting species data, whether or not they have been collected by experts. We suggest that investigation of how experts and non-experts make observations should be incorporated into study design, and could be used to improve training in species identification. PMID:27644140

  12. Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates.

    PubMed Central

    Ruoff, K L; Miller, S I; Garner, C V; Ferraro, M J; Calderwood, S B

    1989-01-01

    Two biotypes of Streptococcus bovis can be identified by laboratory testing and can be distinguished from the phenotypically similar organism Streptococcus salivarius. We assessed the clinical relevance of careful identification of these organisms in 68 patients with streptococcal bacteremia caused by these similar species. S. bovis was more likely to be clinically significant when isolated from blood (89%) than was S. salivarius (23%). There was a striking association between S. bovis I bacteremia and underlying endocarditis (94%) compared with that of S. bovis II bacteremia (18%). Bacteremia with S. bovis I was also highly correlated with an underlying colonic neoplasm (71% of patients overall, 100% of those with thorough colonic examinations) compared with bacteremia due to S. bovis II or S. salivarius (17% overall, 25% of patients with thorough colonic examinations). We conclude that careful identification of streptococcal bacteremic isolates as S. bovis biotype I provides clinically important information and should be more widely applied. PMID:2915024

  13. DNA Barcoding for the Identification of Sand Fly Species (Diptera, Psychodidae, Phlebotominae) in Colombia

    PubMed Central

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J.; Vélez, Iván D.; Porter, Charles H.; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia. PMID:24454877

  14. DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia.

    PubMed

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J; Vélez, Iván D; Porter, Charles H; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia.

  15. DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia.

    PubMed

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J; Vélez, Iván D; Porter, Charles H; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia. PMID:24454877

  16. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  17. Automaticity and eyewitness accuracy: a 10- to 12-second rule for distinguishing accurate from inaccurate positive identifications.

    PubMed

    Dunning, David; Perretta, Scott

    2002-10-01

    Eyewitness researchers have shown that witnesses accurately choosing the culprit out of a lineup reach their decisions more quickly than those erroneously choosing an innocent individual. However, this research is silent regarding how quickly or slowly witnesses must be, in absolute terms, to indicate that they are accurate or inaccurate. Across 4 studies, the authors discovered that a time boundary of roughly 10 to 12 s best differentiated accurate from inaccurate positive identifications. Witnesses making their identification faster than 10 to 12 s were nearly 90% accurate; those taking longer were roughly 50% accurate. This finding is consistent with previous research showing that accurate witnesses are more likely than inaccurate witnesses to reach their decisions automatically, that is, quickly, without conscious thought or effort. PMID:12395819

  18. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  19. Evaluation of chromogenic media and seminested PCR in the identification of Candida species.

    PubMed

    Daef, Enas; Moharram, Ahmed; Eldin, Salwa Seif; Elsherbiny, Nahla; Mohammed, Mona

    2014-01-01

    Identification of Candida cultured from various clinical specimens to the species level is increasingly necessary for clinical laboratories. Although sn PCR identifies the species within hours but its cost-effectiveness is to be considered. So there is always a need for media which help in the isolation and identification at the species level. The study aimed to evaluate the performance of different chromogenic media and to compare the effectiveness of the traditional phenotypic methods vs. seminested polymerase chain reaction (sn PCR) for identification of Candida species. One hundred and twenty seven Candida strains isolated from various clinical specimens were identified by conventional methods, four different chromogenic media and sn PCR. HiCrome Candida Differential and CHROMagar Candida media showed comparably high sensitivities and specificities in the identification of C. albicans, C. tropicalis, C. glabrata and C. krusei. CHROMagar Candida had an extra advantage of identifying all C. parapsilosis isolates. CHROMagar-Pal's medium identified C. albicans, C. tropicalis and C. krusei with high sensitivities and specificities, but couldn't identify C. glabrata or C. parapsilosis. It was the only medium that identified C. dubliniensis with a sensitivity and specificity of 100%. Biggy agar showed the least sensitivities and specificities. The overall concordance of the snPCR compared to the conventional tests including CHROMAgar Candida in the identification of Candida species was 97.5%. The use of CHROMAgar Candida medium is an easy and accurate method for presumptive identification of the most commonly encountered Candida spp.

  20. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  1. Egg forensics: an appraisal of DNA sequencing to assist in species identification of illegally smuggled eggs.

    PubMed

    Coghlan, Megan L; White, Nicole E; Parkinson, Liza; Haile, James; Spencer, Peter B S; Bunce, Michael

    2012-03-01

    Psittaciformes (parrots and cockatoos) are charismatic birds, their plumage and capacity for learning make them highly sought after pets. The illegal trade in parrots and cockatoos poses a serious threat to the viability of native populations; in addition, species transported to non-endemic areas may potentially vector disease and genetically 'pollute' local native avifauna. To reduce the logistical difficulties associated with trafficking live birds, smugglers often transport eggs. This creates a problem for authorities in elucidating accurate species identification without the laborious task of incubation and hand rearing until a morphological identification can be made. Here, we use 99 avian eggs seized from carriers coming into and within Australia, as a result of suspected illegal trade. We investigate and evaluate the use of mitochondrial DNA (mtDNA) to accurately identify eggs to family, genus or species level. However, Identification of a species based on percentage mtDNA similarities is difficult without good representations of the inter- and intra-levels of species variation. Based on the available reference database, we were able to identify 52% of the eggs to species level. Of those, 10 species from eight genera were detected, all of which belong to the parrot (Psittacidae) and cockatoo (Cacatuidae) families. Of the remaining 48%, a further 36% of eggs were identified to genus level, and 12% identified to family level using our assignment criteria. Clearly the lack of validated DNA reference sequences is hindering our ability to accurately assign a species identity, and accordingly, we advocate that more attention needs to be paid to establishing validated, multi locus mtDNA reference databases for exotic birds that can both assist in genetic identifications and withstand legal scrutiny.

  2. Accurate identification of centromere locations in yeast genomes using Hi-C.

    PubMed

    Varoquaux, Nelle; Liachko, Ivan; Ay, Ferhat; Burton, Joshua N; Shendure, Jay; Dunham, Maitreya J; Vert, Jean-Philippe; Noble, William S

    2015-06-23

    Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres' tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms.

  3. Accurate identification of centromere locations in yeast genomes using Hi-C

    PubMed Central

    Varoquaux, Nelle; Liachko, Ivan; Ay, Ferhat; Burton, Joshua N.; Shendure, Jay; Dunham, Maitreya J.; Vert, Jean-Philippe; Noble, William S.

    2015-01-01

    Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres’ tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms. PMID:25940625

  4. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions.

    PubMed Central

    Wirth, D F; Pratt, D M

    1982-01-01

    Kinetoplast DNA (kDNA) was isolated from various species of the protozoic parasite Leishmania and analyzed by nucleic acid hybridization to detect species-related heterogeneity of kDNA. Purified DNA isolated from L. mexicana and L. braziliensis displayed no homology in nucleic acid hybridization studies. These results confirmed that rapid kDNA sequence change and evolution is occurring in New World species of Leishmania and suggested that such isolated kDNA could be used as a specific hybridization probe for the rapid identification of Leishmania species by using whole organisms. This work further demonstrates that such species-specific identification is feasible on isolated Leishmania promastigotes and, more important, directly on tissue touch blots derived from the cutaneous lesion. Thus, specific hybridization of isolated kDNA provides the basis for a rapid, accurate method for the diagnosis of human leishmaniasis directly from infected tissue. Images PMID:6960359

  5. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions.

    PubMed

    Wirth, D F; Pratt, D M

    1982-11-01

    Kinetoplast DNA (kDNA) was isolated from various species of the protozoic parasite Leishmania and analyzed by nucleic acid hybridization to detect species-related heterogeneity of kDNA. Purified DNA isolated from L. mexicana and L. braziliensis displayed no homology in nucleic acid hybridization studies. These results confirmed that rapid kDNA sequence change and evolution is occurring in New World species of Leishmania and suggested that such isolated kDNA could be used as a specific hybridization probe for the rapid identification of Leishmania species by using whole organisms. This work further demonstrates that such species-specific identification is feasible on isolated Leishmania promastigotes and, more important, directly on tissue touch blots derived from the cutaneous lesion. Thus, specific hybridization of isolated kDNA provides the basis for a rapid, accurate method for the diagnosis of human leishmaniasis directly from infected tissue. PMID:6960359

  6. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-01

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing. PMID:25164376

  7. Forest Species Identification with High Spectral Resolution Data

    NASA Technical Reports Server (NTRS)

    Olson, C. E., Jr.; Zhu, Z.

    1985-01-01

    Data collected over the Sleeping Bear Sand Dunes Test Site and the Saginaw Forest Test Site (Michigan) with the JPL Airborne Imaging Spectrometer and the Collins' Airborne Spectroradiometer are being used for forest species identification. The linear discriminant function has provided higher identification accuracies than have principal components analyses. Highest identification accuracies are obtained in the 450 to 520 nm spectral region. Spectral bands near 1,300, 1,685 and 2,220 nm appear to be important, also.

  8. SNP Arrays for Species Identification in Salmonids.

    PubMed

    Wenne, Roman; Drywa, Agata; Kent, Matthew; Sundsaasen, Kristil Kindem; Lien, Sigbjørn

    2016-01-01

    The use of SNP genotyping microarrays, developed in one species to analyze a closely related species for which genomic sequence information is scarce, enables the rapid development of a genomic resource (SNP information) without the need to develop new species-specific markers. Using large numbers of microarray SNPs offers the best chance to detect informative markers in nontarget species, markers that can very often be assayed using a lower throughput platform as is described in this paper. PMID:27460372

  9. Identification of Yersinia Species by the Vitek GNI Card

    PubMed Central

    Linde, Hans-Jörg; Neubauer, Heinrich; Meyer, Hermann; Aleksic, Stojanca; Lehn, Norbert

    1999-01-01

    The Vitek GNI card was used to identify 212 isolates of 10 Yersinia species. Identification was correct for 96.3% of the isolates (156 of 162) to the genus level and for 57.4% of the isolates (93 of 162) to the species level for Yersinia spp. listed in the Vitek database. We recommend additional identification methods for isolates assigned to the genus Yersinia by the Vitek system. PMID:9854094

  10. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding.

    PubMed

    Versteirt, V; Nagy, Z T; Roelants, P; Denis, L; Breman, F C; Damiens, D; Dekoninck, W; Backeljau, T; Coosemans, M; Van Bortel, W

    2015-03-01

    Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.

  11. Molecular identification of Pilobolus species from Yellowstone National Park.

    PubMed

    Foos, K Michael; Sheehan, Kathy B

    2011-01-01

    Pilobolus, a widely distributed coprophilous fungus, grows on herbivore dung. Species of Pilobolus traditionally are described with imprecise morphological characteristics potentially leading to misidentification. In this study we used PCR analysis of taxonomically informative sequences to provide more consistent species identification from isolates obtained in Yellowstone National Park. We collected Pilobolus park-wide from six taxa of herbivores over 9 y. Multiple transfers of single sporangium isolates provided pure cultures from which DNA was extracted. Sequence analysis of internal transcribed spacer (ITS) regions of DNA that code for rRNA genes were used to distinguish among similar species. We describe several species of Pilobolus associated with herbivores in various habitats, including two species not previously reported, P. heterosporus and P. sphaerosporus. Our results show that phylogenetic species identification of Pilobolus based on sequence analysis of pure culture isolates provides a more reliable means of identifying species than traditional methods.

  12. Application of the antibiotic batumin for accurate and rapid identification of staphylococcal small colony variants

    PubMed Central

    2012-01-01

    Background Staphylococcus aureus is a major human pathogen causing significant morbidity and mortality. The S. aureus colonies in osteomyelitis, in patients with cystic fibrosis and patients with endoprosthesis rejection frequently have an atypical morphology, i.e. staphylococcal small-colony variants, which form a naturally occurring subpopulation of clinically important staphylococci. Identification of these small colony variants is difficult, because of the loss of typical phenotypic characteristics of these variants. We wanted to improve and simplify the diagnosis of staphylococcal infection using a diagnostic preparation, consisting of 5 μg batumin paper disks. Batumin possesses a unique selective activity against all studied Staphylococcus spp., whereas all other species tested thus far are batumin resistant. We assessed the efficacy of the batumin diagnostic preparation to identify staphylococcal small colony variants, isolated from osteomyelitis patients. Findings With the batumin diagnostic preparation, all 30 tested staphylococcal small-colony variants had a growth inhibition zone around the disk of minimum 25 mm, accordant with the inhibition zones of the parent strains, isolated from the same patients. Conclusions The batumin diagnostic preparation correctly identified the small-colony variants of S. aureus, S. haemolyticus and S. epidermidis as belonging to the genus Staphylococcus, which differ profoundly from parental strains and are difficult to identify with standard methods. Identification of staphylococcal small-colony variants with the batumin diagnostic preparation is technically simple and can facilitate practical laboratory work. PMID:22828414

  13. Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges?

    PubMed

    Searcy, Christopher A; Shaffer, H Bradley

    2016-04-01

    Defining species' niches is central to understanding their distributions and is thus fundamental to basic ecology and climate change projections. Ecological niche models (ENMs) are a key component of making accurate projections and include descriptions of the niche in terms of both response curves and rankings of variable importance. In this study, we evaluate Maxent's ranking of environmental variables based on their importance in delimiting species' range boundaries by asking whether these same variables also govern annual recruitment based on long-term demographic studies. We found that Maxent-based assessments of variable importance in setting range boundaries in the California tiger salamander (Ambystoma californiense; CTS) correlate very well with how important those variables are in governing ongoing recruitment of CTS at the population level. This strong correlation suggests that Maxent's ranking of variable importance captures biologically realistic assessments of factors governing population persistence. However, this result holds only when Maxent models are built using best-practice procedures and variables are ranked based on permutation importance. Our study highlights the need for building high-quality niche models and provides encouraging evidence that when such models are built, they can reflect important aspects of a species' ecology. PMID:27028071

  14. Spectral identification/elimination of molecular species in spacecraft glow

    NASA Astrophysics Data System (ADS)

    Green, B. D.; Marinelli, W. J.; Rawlins, W. T.

    1985-09-01

    Computer models of molecular electronic and vibrational emission intensities were developed. Known radiative emission rates (Einstein coefficients) permit the determination of relative excited state densities from spectral intensities. These codes were applied to the published spectra of glow above shuttle surface and to the Spacelab 1 results of Torr and Torr. The theoretical high-resolution spectra were convolved with the appropriate instrumental slit functions to allow accurate comparison with data. The published spacelab spectrum is complex but N2+ Meinel emission can be clearly identified in the ram spectrum. M2 First Positive emission does not correlate well with observed features, nor does the CN Red System. Spectral overlay comparisons are presented. The spectrum of glow above shuttle surfaces, in contrast to the ISO data, is not highly structured. Diatomic molecular emission was matched to the observed spectral shape. Source excitation mechanisms such as (oxygen atom)-(surface species) reaction product chemiluminescence, surface recombination, or resonance fluorescent re-emission will be discussed for each tentative assignment. These assignments are the necessary first analytical step toward mechanism identification. Different glow mechanisms will occur above surfaces under different orbital conditions.

  15. Molecular identification of cryptic bumblebee species from degraded samples using PCR-RFLP approach.

    PubMed

    Vesterlund, S-R; Sorvari, J; Vasemägi, A

    2014-01-01

    The worldwide decline and local extinctions of bumblebees have raised a need for fast and accurate tools for species identification. Morphological characters are often not sufficient, and molecular methods have been increasingly used for reliable identification of bumblebee species. Molecular methods often require high-quality DNA which makes them less suitable for analysis of low-quality or older samples. We modified the PCR-RFLP protocol for an efficient and cost-effective identification of four bumblebee species in the subgenus Bombus s. str. (B. lucorum, B. terrestris, B. magnus and B. cryptarum). We used a short partial mitochondrial COI fragment (446 bp) and three diagnostic restriction enzymes (Hinf I, Hinc II and Hae III) to identify species from degraded DNA material. This approach allowed us to efficiently determine the correct species from all degraded DNA samples, while only a subset of samples 64.6% (31 of 48) resulted in successful amplification of a longer COI fragment (1064 bp) using the previously described method. This protocol can be applied for conservation and management of bumblebees within this subgenus and is especially useful for fast species identification from degraded samples.

  16. Identification of Medically Important Yeast Species by Sequence Analysis of the Internal Transcribed Spacer Regions

    PubMed Central

    Leaw, Shiang Ning; Chang, Hsien Chang; Sun, Hsiao Fang; Barton, Richard; Bouchara, Jean-Philippe; Chang, Tsung Chain

    2006-01-01

    Infections caused by yeasts have increased in previous decades due primarily to the increasing population of immunocompromised patients. In addition, infections caused by less common species such as Pichia, Rhodotorula, Trichosporon, and Saccharomyces spp. have been widely reported. This study extensively evaluated the feasibility of sequence analysis of the rRNA gene internal transcribed spacer (ITS) regions for the identification of yeasts of clinical relevance. Both the ITS1 and ITS2 regions of 373 strains (86 species), including 299 reference strains and 74 clinical isolates, were amplified by PCR and sequenced. The sequences were compared to reference data available at the GenBank database by using BLAST (basic local alignment search tool) to determine if species identification was possible by ITS sequencing. Since the GenBank database currently lacks ITS sequence entries for some yeasts, the ITS sequences of type (or reference) strains of 15 species were submitted to GenBank to facilitate identification of these species. Strains producing discrepant identifications between the conventional methods and ITS sequence analysis were further analyzed by sequencing of the D1-D2 domain of the large-subunit rRNA gene for species clarification. The rates of correct identification by ITS1 and ITS2 sequence analysis were 96.8% (361/373) and 99.7% (372/373), respectively. Of the 373 strains tested, only 1 strain (Rhodotorula glutinis BCRC 20576) could not be identified by ITS2 sequence analysis. In conclusion, identification of medically important yeasts by ITS sequencing, especially using the ITS2 region, is reliable and can be used as an accurate alternative to conventional identification methods. PMID:16517841

  17. Optical identifications of radio sources with accurate positions using the United Kingdom Schmidt Telescope (UKST) IIIa-J plates

    NASA Technical Reports Server (NTRS)

    Savage, A.

    1986-01-01

    Several programs are making use of UKST Sky Survey plates to identify southern radio sources. The fine-grain modern plates and accurate radio positions give a much improved identification rate. It seems that it will very soon be possible to determine whether or not there is a quasar redshift cut-off at z of about 4. There is an urgent need for more accurate fundamental reference star positions in the South.

  18. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae).

    PubMed

    Saccaggi, D L; Krüger, K; Pietersen, G

    2008-02-01

    Molecular species identification is becoming more wide-spread in diagnostics and ecological studies, particularly with regard to insects for which morphological identification is difficult or time-consuming. In this study, we describe the development and application of a single-step multiplex PCR for the identification of three mealybug species (Hemiptera: Pseudococcidae) associated with grapevine in South Africa: Planococcus ficus (vine mealybug), Planococcus citri (citrus mealybug) and Pseudococcus longispinus (longtailed mealybug). Mealybugs are pests on many commercial crops, including grapevine, in which they transmit viral diseases. Morphological identification of mealybug species is usually time-consuming, requires a high level of taxonomic expertise and usually only adult females can be identified. The single-step multiplex PCR developed here, based on the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene, is rapid, reliable, sensitive, accurate and simple. The entire identification protocol (including DNA extraction, PCR and electrophoresis) can be completed in approximately four hours. Successful DNA extraction from laboratory and unparasitized field-collected individuals stored in absolute ethanol was 97%. Specimens from which DNA could be extracted were always correctly identified (100% accuracy). The technique developed is simple enough to be implemented in any molecular laboratory. The principles described here can be extended to any organism for which rapid, reliable identification is needed.

  19. Comparison of phenotypic and genotypic methods for the species identification of coagulase-negative staphylococcal isolates from bovine intramammary infections

    PubMed Central

    Park, Joo Youn; Fox, Lawrence K.; Seo, Keun Seok; McGuire, Mark A.; Park, Yong Ho; Rurangirwa, Fred R.; Sischo, William M.; Bohach, Gregory A.

    2013-01-01

    Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens from cows with intramammary infection (IMI). Although API STAPH ID 20, a commercially available identification system, and PCR-restriction fragment length polymorphism (PCR-RFLP) of the gap gene (gap PCR-RFLP) have been successfully applied for the identification of CNS isolates from human specimens, their accuracy in the identification of veterinary isolates has not been fully established. In this study, we identified 263 CNS isolates from bovine IMI at species level by partial 16S rRNA gene sequence analysis as the definitive test. Species identification obtained using partial 16S rRNA gene sequence analysis was compared to results from the API STAPH ID 20 and gap PCR-RFLP analysis. Eleven different CNS species were identified by partial 16S rRNA gene sequence analysis. Only 76.0 % (200 / 263) of the species identification results obtained by API STAPH ID 20 matched those obtained by partial 16S rRNA gene sequence analysis, whereas 97.0 % (255 / 263) of the species identification results obtained by the gap PCR-RFLP analysis matched those obtained by partial 16S rRNA gene sequence analysis. The gap PCR-RFLP analysis could be a useful and reliable alternative method for the species identification of CNS isolates from bovine IMI and appears to be a more accurate method of species identification than the API STAPH ID 20 system. PMID:20667671

  20. Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

    NASA Astrophysics Data System (ADS)

    Little, James L.; Williams, Antony J.; Pshenichnov, Alexey; Tkachenko, Valery

    2012-01-01

    In many cases, an unknown to an investigator is actually known in the chemical literature, a reference database, or an internet resource. We refer to these types of compounds as "known unknowns." ChemSpider is a very valuable internet database of known compounds useful in the identification of these types of compounds in commercial, environmental, forensic, and natural product samples. The database contains over 26 million entries from hundreds of data sources and is provided as a free resource to the community. Accurate mass mass spectrometry data is used to query the database by either elemental composition or a monoisotopic mass. Searching by elemental composition is the preferred approach. However, it is often difficult to determine a unique elemental composition for compounds with molecular weights greater than 600 Da. In these cases, searching by the monoisotopic mass is advantageous. In either case, the search results are refined by sorting the number of references associated with each compound in descending order. This raises the most useful candidates to the top of the list for further evaluation. These approaches were shown to be successful in identifying "known unknowns" noted in our laboratory and for compounds of interest to others.

  1. Species Identification of Marine Fishes in China with DNA Barcoding

    PubMed Central

    Zhang, Junbin

    2011-01-01

    DNA barcoding is a molecular method that uses a short standardized DNA sequence as a species identification tool. In this study, the standard 652 base-pair region of the mitochondrial cytochrome oxidase subunit I gene (COI) was sequenced in marine fish specimens captured in China. The average genetic distance was 50-fold higher between species than within species, as Kimura two parameter (K2P) genetic distances averaged 15.742% among congeners and only 0.319% for intraspecific individuals. There are no overlaps of pairwise genetic variations between conspecific and interspecific comparisons apart from the genera Pampus in which the introgressive hybridization was detected. High efficiency of species identification was demonstrated in the present study by DNA barcoding. Due to the incidence of cryptic species, an assumed threshold is suggested to expedite discovering of new species and biodiversity, especially involving biotas of few studies. PMID:21687792

  2. Use of whole-genus genome sequence data to develop a multilocus sequence typing tool that accurately identifies Yersinia isolates to the species and subspecies levels.

    PubMed

    Hall, Miquette; Chattaway, Marie A; Reuter, Sandra; Savin, Cyril; Strauch, Eckhard; Carniel, Elisabeth; Connor, Thomas; Van Damme, Inge; Rajakaruna, Lakshani; Rajendram, Dunstan; Jenkins, Claire; Thomson, Nicholas R; McNally, Alan

    2015-01-01

    The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica.

  3. Use of Whole-Genus Genome Sequence Data To Develop a Multilocus Sequence Typing Tool That Accurately Identifies Yersinia Isolates to the Species and Subspecies Levels

    PubMed Central

    Hall, Miquette; Chattaway, Marie A.; Reuter, Sandra; Savin, Cyril; Strauch, Eckhard; Carniel, Elisabeth; Connor, Thomas; Van Damme, Inge; Rajakaruna, Lakshani; Rajendram, Dunstan; Jenkins, Claire; Thomson, Nicholas R.

    2014-01-01

    The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica. PMID:25339391

  4. Dealing with the identification of protein species in ancient amphorae.

    PubMed

    Dallongeville, Sophie; Garnier, Nicolas; Casasola, Dario Bernal; Bonifay, Michel; Rolando, Christian; Tokarski, Caroline

    2011-03-01

    This manuscript deals with the identification of protein residues in amphorae, including particularly identification of protein species. The work described was performed on fishes, the anchovy (Engraulis encrasicolus) and bonito (Sarda sarda) species frequently found in the Mediterranean area. Based on proteomic techniques, the analytical strategy was adapted to analysis of protein residues from tiny ceramic fragments. The major difficulty was to extract proteins and limit their hydrolysis during the sample preparation; consequently, multiple soft extraction techniques were evaluated. The most valuable results were obtained using a solution containing high amounts of denaturing agents, urea and thiourea, reducing agent, dithiothreitol, and detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The analysis using nano liquid chromatography-nano electrospray ionization double quadrupole time-of-flight mass spectrometry resulted in the identification of up to 200 proteins for the anchovy and bonito species, among which 73 peptides were found to be fish-specific. Because bonito and anchovy species are not documented and fully sequenced in genomic databases, the preliminary protein identification was realized via sequence homology to other fish sequenced species. Amino acid substitutions of peptides were assigned on the basis of the interpretation of tandem mass spectrometry spectra using de novo sequencing; these peptides, not reported up to now in databases, constitute species-specific markers. The method developed was finally applied to an archaeological sample replica impregnated with a mixture of fish tissue from both species; this experiment successfully led to the identification of 17 fish proteins, including 33 fish-specific peptides. This work shows that the analytical method developed has great potential for the identification of protein species in complex archaeological samples. PMID:20890751

  5. Sampling designs matching species biology produce accurate and affordable abundance indices

    PubMed Central

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  6. Sampling designs matching species biology produce accurate and affordable abundance indices.

    PubMed

    Harris, Grant; Farley, Sean; Russell, Gareth J; Butler, Matthew J; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km(2) cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions

  7. Use of MALDI-TOF MS for Identification of Nontuberculous Mycobacterium Species Isolated from Clinical Specimens

    PubMed Central

    Mediavilla-Gradolph, María Concepción; De Toro-Peinado, Inmaculada; Bermúdez-Ruiz, María Pilar; García-Martínez, María de los Ángeles; Ortega-Torres, María; Montiel Quezel-Guerraz, Natalia; Palop-Borrás, Begoña

    2015-01-01

    The aim of this study was to compare the results obtained for identification by MALDI-TOF of nontuberculous mycobacteria (NTM) isolated in clinical samples with those obtained by GenoType Mycobacterium CM/AS (common mycobacteria/additional species). A total of 66 Mycobacterium isolates from various clinical specimens (mainly respiratory) were tested in this study. They were identified using MALDI-TOF Bruker from strains isolated in Lowenstein, following the recommended protocol of heat inactivation and extraction, and were simultaneously analyzed through hybridization by GenoType Mycobacterium from liquid culture MGIT. Our results showed that identification by MALDI-TOF was correct in 98.4% (65/66) of NTM isolated in our clinical practice (M. avium, M. intracellulare, M. abscessus, M. chelonae, M. fortuitum, M. mucogenicum, M. kansasii, and M. scrofulaceum). MALDI-TOF was found to be an accurate, rapid, and cost-effective system for identification of mycobacteria species. PMID:26106617

  8. Historical perspectives and identification of Neisseria and related species.

    PubMed Central

    Knapp, J S

    1988-01-01

    The pathogenic Neisseria spp., N. gonorrhoeae and N. meningitidis, have been studied extensively and rapid identification procedures have been designed to distinguish these species from the commensal Neisseria and related species that are normal flora of the oro- and nasopharynx. The commensal Neisseria spp. have been largely ignored except for isolated studies. It is important that we know about these species, however, because not only may some be misidentified as pathogenic species if identified with inappropriate procedures, but also they may occasionally be isolated from unusual sites and must be correctly identified to the species level for clinical purposes. PMID:3069201

  9. Applying DNA barcodes for identification of economically important species in Brassicaceae.

    PubMed

    Sun, X Q; Qu, Y Q; Yao, H; Zhang, Y M; Yan, Q Q; Hang, Y Y

    2015-01-01

    Brassicaceae is a large plant family of special interest; it includes many economically important crops, herbs, and ornamentals, as well as model organisms. The taxonomy of the Brassicaceae has long been controversial because of the poorly delimited generic boundaries and artificially circumscribed tribes. Despite great effort to delimitate species and reconstruct the phylogeny of Brassicaceae, little research has been carried out to investigate the applicability and effectiveness of different DNA regions as barcodes - a recent aid for taxonomic identification - to identify economically important species in Brassicaceae. In this study, we evaluated the feasibility of five intensively recommended regions [rbcL, matK, trnH-psbA, internal transcribed spacer (ITS), ITS2] as candidate DNA barcodes to discriminate economic species of Brassicaceae in China and try to establish a new digital identification method for economic plants of Brassicaceae. All sequences of 58 samples from 27 economic species (Brassicaceae) in China were assessed in the success rates of PCR amplifications, intra- and inter-specific divergence, DNA barcoding gaps, and efficiency of identification. Compared with other markers, ITS showed superiority in species discrimination with an accurate identification of 67.2% at the species level. Consequently, as one of the most popular phylogenetic markers, our study indicated that ITS was a powerful but not perfect barcode for Brassicaceae identification. We further discuss the discrimination power of different loci due to inheritance pattern, polyploidization and hybridization in species-specific evolution. Further screening of other nuclear genes related to species isolation as plant barcode candidates is also proposed. PMID:26634467

  10. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar

    NASA Astrophysics Data System (ADS)

    Lasemi, Ali; Xue, Deyi; Gu, Peihua

    2016-05-01

    Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.

  11. Identification of goose, mule duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction.

    PubMed

    Rodríguez, Miguel A; García, Teresa; González, Isabel; Asensio, Luis; Mayoral, Belén; López-Calleja, Inés; Hernández, Pablo E; Martín, Rosario

    2003-03-12

    A specific Polymerase Chain Reaction (PCR) has been developed for the identification of goose (Anser anser), mule duck (Anas platyrhynchos x Cairina moschata), chicken (Gallus gallus), turkey (Meleagris gallopavo), and swine (Sus scrofa domesticus) in foie gras. A forward common primer was designed on a conserved DNA sequence in the mitochondrial 12S ribosomal RNA gene (rRNA), and reverse primers were designed to hybridize on species-specific DNA sequences of each species considered. The different sizes of the species-specific amplicons, separated by agarose gel electrophoresis, allowed clear identification of goose, mule duck, chicken, turkey, and swine in foie gras. Analysis of experimental mixtures demonstrated that the detection limit of the assay was approximately 1% for each species analyzed. This genetic marker can be very useful for the accurate identification of these species, avoiding mislabeling or fraudulent species substitution in foie gras.

  12. Molecular identification of Malassezia species isolated from dermatitis affections.

    PubMed

    Affes, M; Ben Salah, S; Makni, F; Sellami, H; Ayadi, A

    2009-05-01

    The lipophilic yeast of the genus Malassezia are opportunistic microorganisms of the skin microflora but they can be agents of various dermatomycoses. The aim of this study was to perform molecular identification of the commonly isolated Malassezia species from various dermatomycoses in our region. Thirty strains of Malassezia were isolated from different dermatologic affections: pityriasis versicolor (17), dandruff (5), seborrheic dermatitis (4), onyxis (2), folliculitis (1) and blepharitis (1). These species were identified by their morphological features and biochemical characterisation. The molecular identification was achieved by amplification of the internal transcribed spacer region by simple PCR. PCR technique was used for molecular characterisation of four Malassezia species: Malassezia globosa (270 bp), Malassezia furfur (230 bp), Malassezia sympodialis (190 bp) and Malassezia restricta (320 bp). We have detected the association between M. furfur and M. sympodialis in 16% and confirmed presumptive identification in 70% of the cases. The phenotypic identification based on microscopic and physiological method is difficult and time consuming. The application of a simple PCR method provides a sensitive and rapid identification system for Malassezia species, which may be applied in epidemiological surveys and routine practice. PMID:18643889

  13. Identification of enteric Helicobacter in avian species.

    PubMed

    Nebbia, P; Tramuta, C; Ortoffi, M; Bert, E; Cerruti Sola, S; Robino, P

    2007-09-01

    The presence of enteric Helicobacter species was investigated in poultry (n=130) and in pet and ornamental birds (n=50) using a PCR sequencing method which permits the differentiation of many Helicobhacter species derived from animal tissues. All samples were of Italian origin, except for 21 Guinea fowl from a French flock. About 80% of poultry (chickens, laying hens, Guinea fowl) were positive to Helicobacter DNA. H. pullorum was most frequently (62.1%) identified whereas H. pylori and 3 H. sp. hamster B strains were seen in only 3 cases each. Pet and ornamental birds were all negative. H. canadensis was found in all Guinea fowl from a French farm. This is the first report on the occurrence of this bacterium in poultry. PMID:17929706

  14. [Identification of fish species based on ribosomal DNA ITS2 locus].

    PubMed

    Yuan, Wan-An

    2010-04-01

    To prevent illegal fishing and sale, the most difficult problem is identification of marketed fish species, especially the parts that are difficult to be differentiated with morphological method (e.g., larval, eggs, scales, meat, products etc. To assist conservation and management of fishery resources, this paper reported a molecular genetic approach based on ribosomal internal transcribed spacer 2 locus. The method includes two steps: (1) the order general primers were designed according to the conservative nature of 5.8SrRAN and 28SrRNA genes within an order, and the DNA ribosomal internal transcribed spacer 2 locus fragment were then amplified and sequenced. (2) The species-specific ladders and the species-specific primers for each species were designed according to the sequencing results. The map of molecular taxonomy was constructed. This approach employs multiplex PCR that is formatted for fish species identification. We tested 210 single-species samples and 40 mix-species samples from different regions of China. The approach distinguished accurately and sensitively samples from each of the five species. This genetic and molecular approach will be useful for fish conservation, assessment, management and exploitation, strengthen in law enforcement of fishery manager, combat rare and endangered fish smuggling, and prevent commercial fraud and biological invasion by harmful nonnative species.

  15. Species identification of Tanzanian antelopes using DNA barcoding.

    PubMed

    Bitanyi, Stella; Bjørnstad, Gro; Ernest, Eblate M; Nesje, Marit; Kusiluka, Lughano J; Keyyu, Julius D; Mdegela, Robinson H; Røed, Knut H

    2011-05-01

    Efficient tools for consistent species identification are important in wildlife conservation as it can provide information on the levels of species exploitation and assist in solving forensic-related problems. In this study, we evaluated the effectiveness of the mitochondrial cytochrome c oxidase subunit I (COI) barcode in species identification of Tanzanian antelope species. A 470 base-pair region of the COI gene was examined in 95 specimens representing 20 species of antelopes, buffalo and domestic Bovidae. All the Tanzanian species showed unique clades, and sequence divergence within species was <1%, whereas divergence between species ranged from 6.3% to 22%. Lowest interspecific divergence was noted within the Tragelaphus genus. Neighbour-joining phylogenetic analyses demonstrated that the examined COI region provided correct and highly supported species clustering using short fragments down to 100 base-pair lengths. This study demonstrates that even short COI fragments can efficiently identify antelope species, thus demonstrating its high potential for use in wildlife conservation activities.

  16. DNA typing in wildlife crime: recent developments in species identification.

    PubMed

    Tobe, Shanan S; Linacre, Adrian

    2010-09-01

    Species identification has become a tool in the investigation of acts of alleged wildlife crimes. This review details the steps required in DNA testing in wildlife crime investigations and highlights recent developments where not only can individual species be identified within a mixture of species but multiple species can be identified simultaneously. 'What species is this?' is a question asked frequently in wildlife crime investigations. Depending on the material being examined, DNA analysis may offer the best opportunity to answer this question. Species testing requires the comparison of the DNA type from the unknown sample to DNA types on a database. The areas of DNA tested are on the mitochondria and include predominantly the cytochrome b gene and the cytochrome oxidase I gene. Standard analysis requires the sequencing of part of one of these genes and comparing the sequence to that held on a repository of DNA sequences such as the GenBank database. Much of the DNA sequence of either of these two genes is conserved with only parts being variable. A recent development is to target areas of those sequences that are specific to a species; this can increase the sensitivity of the test with no loss of specificity. The benefit of targeting species specific sequences is that within a mixture of two of more species, the individual species within the mixture can be identified. This identification would not be possible using standard sequencing. These new developments can lead to a greater number of samples being tested in alleged wildlife crimes.

  17. DNA barcoding and development of species-specific markers for the identification of tea mosquito bugs (Miridae: Heteroptera) in India.

    PubMed

    Rebijith, K B; Asokan, R; Kumar, N K Krishna; Srikumar, K K; Ramamurthy, V V; Bhat, P Shivarama

    2012-10-01

    Rapid, accurate, and timely identification of insects as a group is important and challenging worldwide, as they outnumber all other animals in number and diversity. DNA barcoding is a method for the identification of species in a wide range of animal taxa, which uses the 5' region of the mitochondrial cytochrome c oxidase-I (CO-I). Yet another easy, accurate, and economical method of species discrimination is by developing species-specific markers, which produce specific amplicon for the species in question. The method is handy because it is not limited by life stages, sex, polymorphism, and other factors. Herein, we measured the usefulness of CO-I for the species discrimination of mirids in India viz. Helopeltis antonii Signoret, H. thievora Waterhouse, H. bradyi Waterhouse, and Pachypeltis maesarum Kirkaldy in their various life stages. Furthermore, our study showed the utility of species-specific markers in differentiating H. antonii (295) and H. bradyi (514) regardless of their life stages. Analysis of CO-I gene revealed <1% intraspecific divergence for all four species examined, whereas the interspecific distances ranged from 7 to 13%. This study showed that the DNA barcode and species-specific markers will aid the identification of mirids in India and will stand as a decisive tool in formulating integrated pest management (IPM) strategy, quick identification of invasive and cryptic species, haplotypes, biotypes, and other factors, if any. PMID:23068182

  18. Cluster Analysis of Longidorus Species (Nematoda: Longidoridae), a New Approach in Species Identification

    PubMed Central

    Ye, Weimin; Robbins, R. T.

    2004-01-01

    Hierarchical cluster analysis based on female morphometric character means including body length, distance from vulva opening to anterior end, head width, odontostyle length, esophagus length, body width, tail length, and tail width were used to examine the morphometric relationships and create dendrograms for (i) 62 populations belonging to 9 Longidorus species from Arkansas, (ii) 137 published Longidorus species, and (iii) 137 published Longidorus species plus 86 populations of 16 Longidorus species from Arkansas and various other locations by using JMP 4.02 software (SAS Institute, Cary, NC). Cluster analysis dendograms visually illustrated the grouping and morphometric relationships of the species and populations. It provided a computerized statistical approach to assist by helping to identify and distinguish species, by indicating morphometric relationships among species, and by assisting with new species diagnosis. The preliminary species identification can be accomplished by running cluster analysis for unknown species together with the data matrix of known published Longidorus species. PMID:19262809

  19. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.

    PubMed

    Kinyanjui, G; Khamis, F M; Mohamed, S; Ombura, L O; Warigia, M; Ekesi, S

    2016-02-01

    Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems. PMID:26490301

  20. Species-level identification of staphylococci isolated from bovine mastitis in Brazil using partial 16S rRNA sequencing.

    PubMed

    Lange, Carla C; Brito, Maria A V P; Reis, Daniele R L; Machado, Marco A; Guimarães, Alessandro S; Azevedo, Ana L S; Salles, Érica B; Alvim, Mariana C T; Silva, Fabiana S; Meurer, Igor R

    2015-04-17

    Staphylococci isolated from bovine milk and not classified as Staphylococcus aureus represent a heterogeneous group of microorganisms that are frequently associated with bovine mastitis. The identification of these microorganisms is important, although it is difficult and relatively costly. Genotypic methods add precision in the identification of Staphylococcus species. In the present study, partial 16S rRNA sequencing was used for the species identification of coagulase-positive and coagulase-negative staphylococci isolated from bovine mastitis. Two hundred and two (95%) of the 213 isolates were successfully identified at the species level. The assigning of an isolate to a particular species was based on ≥99% identity with 16S rRNA sequences deposited in GenBank. The identified isolates belonged to 13 different Staphylococcus species; Staphylococcus chromogenes, S. aureus and Staphylococcus epidermidis were the most frequently identified species. Eight isolates could not be assigned to a single species, as the obtained sequences showed 99% or 100% similarity to sequences from two or three different Staphylococcus species. The relatedness of these isolates with the other isolates and reference strains was visualized using a cladogram. In conclusion, 16S rRNA sequencing was an objective and accurate method for the proper identification of Staphylococcus species isolated from bovine mastitis. Additional target genes could be used in non-conclusive cases for the species-level identification of these microorganisms.

  1. Species-level identification of staphylococci isolated from bovine mastitis in Brazil using partial 16S rRNA sequencing.

    PubMed

    Lange, Carla C; Brito, Maria A V P; Reis, Daniele R L; Machado, Marco A; Guimarães, Alessandro S; Azevedo, Ana L S; Salles, Érica B; Alvim, Mariana C T; Silva, Fabiana S; Meurer, Igor R

    2015-04-17

    Staphylococci isolated from bovine milk and not classified as Staphylococcus aureus represent a heterogeneous group of microorganisms that are frequently associated with bovine mastitis. The identification of these microorganisms is important, although it is difficult and relatively costly. Genotypic methods add precision in the identification of Staphylococcus species. In the present study, partial 16S rRNA sequencing was used for the species identification of coagulase-positive and coagulase-negative staphylococci isolated from bovine mastitis. Two hundred and two (95%) of the 213 isolates were successfully identified at the species level. The assigning of an isolate to a particular species was based on ≥99% identity with 16S rRNA sequences deposited in GenBank. The identified isolates belonged to 13 different Staphylococcus species; Staphylococcus chromogenes, S. aureus and Staphylococcus epidermidis were the most frequently identified species. Eight isolates could not be assigned to a single species, as the obtained sequences showed 99% or 100% similarity to sequences from two or three different Staphylococcus species. The relatedness of these isolates with the other isolates and reference strains was visualized using a cladogram. In conclusion, 16S rRNA sequencing was an objective and accurate method for the proper identification of Staphylococcus species isolated from bovine mastitis. Additional target genes could be used in non-conclusive cases for the species-level identification of these microorganisms. PMID:25704228

  2. Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach.

    PubMed

    Ferri, Gianmarco; Alù, Milena; Corradini, Beatrice; Beduschi, Giovanni

    2009-09-01

    Forensic botany can provide significant supporting evidence during criminal investigations. However, it is still an underutilized field of investigation with its most common application limited to identifying specific as well as suspected illegal plants. The ubiquitous presence of plant species can be useful in forensics, but the absence of an accurate identification system remains the major obstacle to the present inability to routinely and correctly identify trace botanical evidence. Many plant materials cannot be identified and differentiated to the species level by traditional morphological characteristics when botanical specimens are degraded and lack physical features. By taking advantage of a universal barcode system, DNA sequencing, and other biomolecular techniques used routinely in forensic investigations, two chloroplast DNA regions were evaluated for their use as "barcoding" markers for plant identification in the field of forensics. We therefore investigated the forensic use of two non-coding plastid regions, psbA-trnH and trnL-trnF, to create a multimarker system for species identification that could be useful throughout the plant kingdom. The sequences from 63 plants belonging to our local flora were submitted and registered on the GenBank database. Sequence comparison to set up the level of identification (species, genus, or family) through Blast algorithms allowed us to assess the suitability of this method. The results confirmed the effectiveness of our botanic universal multimarker assay in forensic investigations.

  3. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea.

    PubMed

    Druzhinina, Irina S; Kopchinskiy, Alexei G; Komoń, Monika; Bissett, John; Szakacs, George; Kubicek, Christian P

    2005-10-01

    One of the biggest obstructions to studies on Trichoderma has been the incorrect and confused application of species names to isolates used in industry, biocontrol of plant pathogens and ecological surveys, thereby making the comparison of results questionable. Here we provide a convenient, on-line method for the quick molecular identification of Hypocrea/Trichoderma at the genus and species levels based on an oligonucleotide barcode: a diagnostic combination of several oligonucleotides (hallmarks) specifically allocated within the internal transcribed spacer 1 and 2 (ITS1 and 2) sequences of the rDNA repeat. The barcode was developed on the basis of 979 sequences of 88 vouchered species which displayed in total 135 ITS1 and 2 haplotypes. Oligonucleotide sequences which are constant in all known ITS1 and 2 of Hypocrea/Trichoderma but different in closely related fungal genera, were used to define genus-specific hallmarks. The library of species-, clade- and genus-specific hallmarks is stored in the MySQL database and integrated in the TrichOKey v. 1.0 - barcode sequence identification program with the web interface located on . TrichOKey v. 1.0 identifies 75 single species, 5 species pairs and 1 species triplet. Verification of the DNA-barcode was done by a blind test on 53 unknown isolates of Trichoderma, collected in Central and South America. The obtained results were in a total agreement with phylogenetic identification based on tef1 (large intron), NCBI BLAST of vouchered records and postum morphological analysis. We conclude that oligonucleotide barcode is a powerful tool for the routine identification of Hypocrea/Trichoderma species and should be useful as a complement to traditional methods.

  4. Enhancing accurate data collection in mass fatality kinship identifications: lessons learned from Hurricane Katrina.

    PubMed

    Donkervoort, Sandra; Dolan, Siobhan M; Beckwith, Michelle; Northrup, Tammy Pruet; Sozer, Amanda

    2008-09-01

    A mass fatality DNA identification effort is a complex process in which direct matching and kinship analysis is used for identifying human remains. Kinship DNA identification is an important tool in the identification process in which victim's DNA profiles are compared to the profiles of "known" biologically related reference samples. Experience from the 9/11 World Trade Center DNA identification efforts showed that forms used to record biological relationships are important and that inaccurately documented information may hamper the kinship analysis and DNA identification process. In the identification efforts following Hurricane Katrina, a Family and/or Donor Reference Collection (FDRC) form was used as a means to document the reported relationship between the reference DNA donor and the purported missing individual. This FDRC form was developed based upon lessons learned from 9/11 and the Tsunami identification efforts. This paper analyses the effectiveness of the FDRC form used in the Hurricane Katrina kinship DNA identification efforts and proposes an improved sample collection form for kinship and other donor reference samples. The data presented can be used to enhance the accuracy of the data collection process through an improved sample collection form, streamlining the DNA kinship identification process and decreasing the burden on valuable resources.

  5. Identification of four Aconitum species used as "Caowu" in herbal markets by 3D reconstruction and microstructural comparison.

    PubMed

    Liu, Chan-Chan; Cheng, Ming-En; Peng, Huasheng; Duan, Hai-Yan; Huang, Luqi

    2015-05-01

    Authentication is the first priority when evaluating the quality of Chinese herbal medicines, particularly highly toxic medicines. The most commonly used authentication methods are morphological identification and microscopic identification. Unfortunately, these methods could not effectively evaluate some herbs with complex interior structures, such as root of Aconitum species with a circular conical shape and an interior structure with successive changes. Defining the part that should be selected as the standard plays an essential role in accurate microscopic identification. In this study, we first present a visual 3D model of Aconitum carmichaeli Debx. constructed obtained from microscopic analysis of serial sections. Based on this model, we concluded that the point of largest root diameter should be used as the standard for comparison and identification. The interior structure at this point is reproducible and its shape and appearance can easily be used to distinguish among species. We also report details of the interior structures of parts not shown in the 3D model, such as stone cells and cortical thickness. To demonstrate the usefulness of the results from the 3D model, we have distinguished the microscopic structures, at their largest segments, of the other three Aconitum species used for local habitat species of Caowu. This work provides the basis for resolution of some debate regarding the microstructural differences among these species. Thus, we conclude that the 3D model composed of serial sections has enabled the selection of a standard cross-section that will enable the accurate identification of Aconitum species in Chinese medicine.

  6. SSR markers: a tool for species identification in Psidium (Myrtaceae).

    PubMed

    Tuler, A C; Carrijo, T T; Nóia, L R; Ferreira, A; Peixoto, A L; da Silva Ferreira, M F

    2015-11-01

    Molecular DNA markers are used for detection of polymorphisms in individuals. As they are independent of developmental stage of the plant and environmental influences, they can be useful tools in taxonomy. The alleles of simple sequence repeat (SSR) markers (or microsatellites) are traditionally used to identify taxonomic units. This application demands the laborious and costly delimitation of exclusive alleles in order to avoid homoplasy. Here, we propose a method for identification of species based on the amplification profile of groups of SSR markers obtained by a transferability study. The approach considers that the SSR are conserved among related species. In this context, using Psidium as a model, 141 SSR markers developed for Psidium guajava were transferred to 13 indigenous species of Psidium from the Atlantic Rainforest. Transferability of the markers was high and 28 SSR were conserved in all species. Four SSR groups were defined and they can help in the identification of all 13 Psidium species studied. A group of 31 SSR was genotyped, with one to six alleles each. The H0 varied from 0.0 to 0.46, and PIC from 0.0 to 0.74. Cluster analysis revealed shared alleles among species. The high percentage of SSR transferability found in Psidium evidences the narrow phylogenetic relationship existing among these species since transferability occurs by the preservation of the microsatellites and anchoring regions. The proposed method was useful for distinguishing the species of Psidium, being useful in taxonomic studies.

  7. SSR markers: a tool for species identification in Psidium (Myrtaceae).

    PubMed

    Tuler, A C; Carrijo, T T; Nóia, L R; Ferreira, A; Peixoto, A L; da Silva Ferreira, M F

    2015-11-01

    Molecular DNA markers are used for detection of polymorphisms in individuals. As they are independent of developmental stage of the plant and environmental influences, they can be useful tools in taxonomy. The alleles of simple sequence repeat (SSR) markers (or microsatellites) are traditionally used to identify taxonomic units. This application demands the laborious and costly delimitation of exclusive alleles in order to avoid homoplasy. Here, we propose a method for identification of species based on the amplification profile of groups of SSR markers obtained by a transferability study. The approach considers that the SSR are conserved among related species. In this context, using Psidium as a model, 141 SSR markers developed for Psidium guajava were transferred to 13 indigenous species of Psidium from the Atlantic Rainforest. Transferability of the markers was high and 28 SSR were conserved in all species. Four SSR groups were defined and they can help in the identification of all 13 Psidium species studied. A group of 31 SSR was genotyped, with one to six alleles each. The H0 varied from 0.0 to 0.46, and PIC from 0.0 to 0.74. Cluster analysis revealed shared alleles among species. The high percentage of SSR transferability found in Psidium evidences the narrow phylogenetic relationship existing among these species since transferability occurs by the preservation of the microsatellites and anchoring regions. The proposed method was useful for distinguishing the species of Psidium, being useful in taxonomic studies. PMID:26476530

  8. Reliable molecular identification of nine tropical whitefly species

    PubMed Central

    Ovalle, Tatiana M; Parsa, Soroush; Hernández, Maria P; Becerra Lopez-Lavalle, Luis A

    2014-01-01

    The identification of whitefly species in adult stage is problematic. Morphological differentiation of pupae is one of the better methods for determining identity of species, but it may vary depending on the host plant on which they develop which can lead to misidentifications and erroneous naming of new species. Polymerase chain reaction (PCR) fragment amplified from the mitochondrial cytochrome oxidase I (COI) gene is often used for mitochondrial haplotype identification that can be associated with specific species. Our objective was to compare morphometric traits against DNA barcode sequences to develop and implement a diagnostic molecular kit based on a RFLP-PCR method using the COI gene for the rapid identification of whiteflies. This study will allow for the rapid diagnosis of the diverse community of whiteflies attacking plants of economic interest in Colombia. It also provides access to the COI sequence that can be used to develop predator conservation techniques by establishing which predators have a trophic linkage with the focal whitefly pest species. PMID:25614792

  9. Identification of Dactylopius cochineal species with high-performance liquid chromatography and multivariate data analysis.

    PubMed

    Serrano, Ana; Sousa, Micaela; Hallett, Jessica; Simmonds, Monique S J; Nesbitt, Mark; Lopes, João A

    2013-10-21

    Identification of American cochineal species (Dactylopius genus) can provide important information for the study of historical works of art, entomology, cosmetics, pharmaceuticals and foods. In this study, validated species of Dactylopius, including the domesticated cochineal D. coccus, were analysed by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and submitted to multivariate data analysis, in order to discriminate the species and hence construct a reference library for a wide range of applications. Principal components analysis (PCA) and partial least squares discriminant analysis (PLSDA) models successfully provided accurate species classifications. This library was then applied to the identification of 72 historical insect specimens of unidentified species, mostly dating from the 19th century, and belonging to the Economic Botany Collection, Royal Botanic Gardens, Kew, England. With this approach it was possible to identify anomalies in how insects were labelled historically, as several of them were revealed not to be cochineal. Nevertheless, more than 85% of the collection was determined to be species of Dactylopius and the majority of the specimens were identified as D. coccus. These results have shown that HPLC-DAD, in combination with suitable chemometric methods, is a powerful approach for discriminating related cochineal species.

  10. Identification of Dactylopius cochineal species with high-performance liquid chromatography and multivariate data analysis.

    PubMed

    Serrano, Ana; Sousa, Micaela; Hallett, Jessica; Simmonds, Monique S J; Nesbitt, Mark; Lopes, João A

    2013-10-21

    Identification of American cochineal species (Dactylopius genus) can provide important information for the study of historical works of art, entomology, cosmetics, pharmaceuticals and foods. In this study, validated species of Dactylopius, including the domesticated cochineal D. coccus, were analysed by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and submitted to multivariate data analysis, in order to discriminate the species and hence construct a reference library for a wide range of applications. Principal components analysis (PCA) and partial least squares discriminant analysis (PLSDA) models successfully provided accurate species classifications. This library was then applied to the identification of 72 historical insect specimens of unidentified species, mostly dating from the 19th century, and belonging to the Economic Botany Collection, Royal Botanic Gardens, Kew, England. With this approach it was possible to identify anomalies in how insects were labelled historically, as several of them were revealed not to be cochineal. Nevertheless, more than 85% of the collection was determined to be species of Dactylopius and the majority of the specimens were identified as D. coccus. These results have shown that HPLC-DAD, in combination with suitable chemometric methods, is a powerful approach for discriminating related cochineal species. PMID:23961534

  11. Combining left and right palmprint images for more accurate personal identification.

    PubMed

    Xu, Yong; Fei, Lunke; Zhang, David

    2015-02-01

    Multibiometrics can provide higher identification accuracy than single biometrics, so it is more suitable for some real-world personal identification applications that need high-standard security. Among various biometrics technologies, palmprint identification has received much attention because of its good performance. Combining the left and right palmprint images to perform multibiometrics is easy to implement and can obtain better results. However, previous studies did not explore this issue in depth. In this paper, we proposed a novel framework to perform multibiometrics by comprehensively combining the left and right palmprint images. This framework integrated three kinds of scores generated from the left and right palmprint images to perform matching score-level fusion. The first two kinds of scores were, respectively, generated from the left and right palmprint images and can be obtained by any palmprint identification method, whereas the third kind of score was obtained using a specialized algorithm proposed in this paper. As the proposed algorithm carefully takes the nature of the left and right palmprint images into account, it can properly exploit the similarity of the left and right palmprints of the same subject. Moreover, the proposed weighted fusion scheme allowed perfect identification performance to be obtained in comparison with previous palmprint identification methods. PMID:25532174

  12. Real-time bioacoustics monitoring and automated species identification

    PubMed Central

    Corrada-Bravo, Carlos; Campos-Cerqueira, Marconi; Milan, Carlos; Vega, Giovany; Alvarez, Rafael

    2013-01-01

    Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Monitoring Network (ARBIMON), a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net). Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica. PMID:23882441

  13. Inter- and intraspecies identification of Bartonella (Rochalimaea) species.

    PubMed

    Roux, V; Raoult, D

    1995-06-01

    Species of the genus Rochalimaea, recently renamed Bartonella, are of a growing medical interest. Bartonella quintana was reported as the cause of trench fever, endocarditis, and bacillary angiomatosis. B. henselae has been implicated in symptoms and infections of human immunodeficiency virus-infected patients, such as fever, endocarditis, and bacillary angiomatosis, and is involved in the etiology of cat scratch disease. Such a wide spectrum of infections makes it necessary to obtain an intraspecies identification tool in order to perform epidemiological studies. B. vinsonii, B. elizabethae, seven isolates of B. quintana, and four isolates of B. henselae were studied by pulsed-field gel electrophoresis (PFGE) after restriction with the infrequently cutting endonucleases NotI, EagI, and SmaI. Specific profiles were obtained for each of the four Bartonella species. Comparison of genomic fingerprints of isolates of the same species showed polymorphism in DNA restriction patterns, and a specific profile was obtained for each isolate. A phylogenetic analysis of the B. quintana isolates was obtained by using the Dice coefficient, UPGMA (unweighted pair-group method of arithmetic averages), and Package Philip programming. Amplification by PCR and subsequent sequencing using an automated laser fluorescent DNA sequencer (Pharmacia) was performed on the intergenic spacer region (ITS) between the 16 and 23S rRNA genes. It was found that each B. henselae isolate had a specific sequence, while the B. quintana isolates fell into only two groups. When endonuclease restriction analysis of the ITS PCR product was done, three enzymes, TaqI, HindIII, and HaeIII, allowed species identification of Bartonella spp. Restriction fragment length polymorphism after PCR amplification of the 16S-23S rRNA gene ITS may be useful for rapid species identification, and PFGE could be an efficient method for isolate identification.

  14. Evaluation of the Biotyper MALDI-TOF MS system for identification of Staphylococcus species.

    PubMed

    Zhu, Wenming; Sieradzki, Krzysztof; Albrecht, Valerie; McAllister, Sigrid; Lin, Wen; Stuchlik, Olga; Limbago, Brandi; Pohl, Jan; Kamile Rasheed, J

    2015-10-01

    The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30 minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results.

  15. Evaluation of the Biotyper MALDI-TOF MS system for identification of Staphylococcus species.

    PubMed

    Zhu, Wenming; Sieradzki, Krzysztof; Albrecht, Valerie; McAllister, Sigrid; Lin, Wen; Stuchlik, Olga; Limbago, Brandi; Pohl, Jan; Kamile Rasheed, J

    2015-10-01

    The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30 minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results. PMID:26183765

  16. Next-Generation Sequencing for Rodent Barcoding: Species Identification from Fresh, Degraded and Environmental Samples

    PubMed Central

    Galan, Maxime; Pagès, Marie; Cosson, Jean-François

    2012-01-01

    Rodentia is the most diverse order among mammals, with more than 2,000 species currently described. Most of the time, species assignation is so difficult based on morphological data solely that identifying rodents at the specific level corresponds to a real challenge. In this study, we compared the applicability of 100 bp mini-barcodes from cytochrome b and cytochrome c oxidase 1 genes to enable rodent species identification. Based on GenBank sequence datasets of 115 rodent species, a 136 bp fragment of cytochrome b was selected as the most discriminatory mini-barcode, and rodent universal primers surrounding this fragment were designed. The efficacy of this new molecular tool was assessed on 946 samples including rodent tissues, feces, museum samples and feces/pellets from predators known to ingest rodents. Utilizing next-generation sequencing technologies able to sequence mixes of DNA, 1,140 amplicons were tagged, multiplexed and sequenced together in one single 454 GS-FLX run. Our method was initially validated on a reference sample set including 265 clearly identified rodent tissues, corresponding to 103 different species. Following validation, 85.6% of 555 rodent samples from Europe, Asia and Africa whose species identity was unknown were able to be identified using the BLASTN program and GenBank reference sequences. In addition, our method proved effective even on degraded rodent DNA samples: 91.8% and 75.9% of samples from feces and museum specimens respectively were correctly identified. Finally, we succeeded in determining the diet of 66.7% of the investigated carnivores from their feces and 81.8% of owls from their pellets. Non-rodent species were also identified, suggesting that our method is sensitive enough to investigate complete predator diets. This study demonstrates how this molecular identification method combined with high-throughput sequencing can open new realms of possibilities in achieving fast, accurate and inexpensive species identification

  17. Strain/species identification in metagenomes using genome-specific markers

    PubMed Central

    Tu, Qichao; He, Zhili; Zhou, Jizhong

    2014-01-01

    Shotgun metagenome sequencing has become a fast, cheap and high-throughput technology for characterizing microbial communities in complex environments and human body sites. However, accurate identification of microorganisms at the strain/species level remains extremely challenging. We present a novel k-mer-based approach, termed GSMer, that identifies genome-specific markers (GSMs) from currently sequenced microbial genomes, which were then used for strain/species-level identification in metagenomes. Using 5390 sequenced microbial genomes, 8 770 321 50-mer strain-specific and 11 736 360 species-specific GSMs were identified for 4088 strains and 2005 species (4933 strains), respectively. The GSMs were first evaluated against mock community metagenomes, recently sequenced genomes and real metagenomes from different body sites, suggesting that the identified GSMs were specific to their targeting genomes. Sensitivity evaluation against synthetic metagenomes with different coverage suggested that 50 GSMs per strain were sufficient to identify most microbial strains with ≥0.25× coverage, and 10% of selected GSMs in a database should be detected for confident positive callings. Application of GSMs identified 45 and 74 microbial strains/species significantly associated with type 2 diabetes patients and obese/lean individuals from corresponding gastrointestinal tract metagenomes, respectively. Our result agreed with previous studies but provided strain-level information. The approach can be directly applied to identify microbial strains/species from raw metagenomes, without the effort of complex data pre-processing. PMID:24523352

  18. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF OXIRANE: A VALUABLE ROUTE TO ITS IDENTIFICATION IN TITAN’S ATMOSPHERE AND THE ASSIGNMENT OF UNIDENTIFIED INFRARED BANDS

    PubMed Central

    Puzzarini, Cristina; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2015-01-01

    In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm−1 for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%–3%, and 3%–4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan’s atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz). PMID:26543240

  19. Differential identification of Candida species and other yeasts by analysis of (/sup 35/S)methionine-labeled polypeptide profiles

    SciTech Connect

    Shen, H.D.; Choo, K.B.; Tsai, W.C.; Jen, T.M.; Yeh, J.Y.; Han, S.H.

    1988-12-01

    This paper describes a scheme for differential identification of Candida species and other yeasts based on autoradiographic analysis of protein profiles of (/sup 35/S)methionine-labeled cellular proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using ATCC strains as references, protein profile analysis showed that different Candida and other yeast species produced distinctively different patterns. Good agreement in results obtained with this approach and with other conventional systems was observed. Being accurate and reproducible, this approach provides a basis for the development of an alternative method for the identification of yeasts isolated from clinical specimens.

  20. Sequence-identification of Candida species isolated from candidemia

    PubMed Central

    Fathi, Naeimeh; Mohammadi, Rasoul; Tabatabaiefar, Mohammad Amin; Ghahri, Mohammad; Sadrossadati, Seyedeh Zahra

    2016-01-01

    Background: Candida species are the most prevalent cause of invasive fungal infections such as candidemia. Candidemia is a lethal fungal infection among immunocompromised patients worldwide. Main pathogen is Candida albicans but a global shift in epidemiology toward non-albicans species have reported. Species identification is imperative for good management of candidemia as a fatal infection. The aim of the study is to identify Candida spp. obtained from candidemia and determination of mortality rate among this population. Materials and Methods: The study was performed during February 2014 to March 2015 in Tehran, Iran. Two-hundred and four blood cultures were evaluated for fungal bloodstream infection. Identification of isolates was carried out using phenotypic tests and polymerase chain reaction sequencing technique. Results: Twenty-two out of 204 patients (10.8%) had candidemia. Candida parapsilosis was the most prevalent species (45.4%), followed by C. albicans (31.8%) and Candida glabrata (22.7%). Male to female sex ratio was 8/14. Conclusions: The emergence of resistant strains of Candida species should be considered by physicians to decrease the mortality of this fatal fungal infection by appropriate treatment. PMID:27713871

  1. Species identification in meat products using real-time PCR.

    PubMed

    Jonker, K M; Tilburg, J J H C; Hagele, G H; de Boer, E

    2008-05-01

    One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.

  2. Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species

    PubMed Central

    2013-01-01

    Introduction Invertebrate communities are central to many environmental monitoring programs. In freshwater ecosystems, aquatic macroinvertebrates are collected, identified and then used to infer ecosystem condition. Yet the key step of species identification is often not taken, as it requires a high level of taxonomic expertise, which is lacking in most organizations, or species cannot be identified as they are morphologically cryptic or represent little known groups. Identifying species using DNA sequences can overcome many of these issues; with the power of next generation sequencing (NGS), using DNA sequences for routine monitoring becomes feasible. Results In this study, we test if NGS can be used to identify species from field-collected samples in an important bioindicator group, the Chironomidae. We show that Cytochrome oxidase I (COI) and Cytochrome B (CytB) sequences provide accurate DNA barcodes for chironomid species. We then develop a NGS analysis pipeline to identifying species using megablast searches of high quality sequences generated using 454 pyrosequencing against comprehensive reference libraries of Sanger-sequenced voucher specimens. We find that 454 generated COI sequences successfully identified up to 96% of species in samples, but this increased up to 99% when combined with CytB sequences. Accurate identification depends on having at least five sequences for a species; below this level species not expected in samples were detected. Incorrect incorporation of some multiplex identifiers (MID’s) used to tag samples was a likely cause, and most errors could be detected when using MID tags on forward and reverse primers. We also found a strong quantitative relationship between the number of 454 sequences and individuals showing that it may be possible to estimate the abundance of species from 454 pyrosequencing data. Conclusions Next generation sequencing using two genes was successful for identifying chironomid species. However, when detecting

  3. Cytochrome b gene for species identification of the conservation animals.

    PubMed

    Hsieh, H M; Chiang, H L; Tsai, L C; Lai, S Y; Huang, N E; Linacre, A; Lee, J C

    2001-10-15

    A partial DNA sequence of cytochrome b gene was used to identify the remains of endangered animals and species endemic to Taiwan. The conservation of animals species included in this study were: the formosan gem-faced civets, leopard cats, tigers, clouded leopards, lion, formosan muntjacs, formosan sika deers, formosan sambars, formosan serows, water buffalo, formosan pangolins and formosan macaques. The control species used included domestic cats, domestic dogs, domestic sheeps, domestic cattles, domestic pigs and humans. Heteroplasmy was detected in the formosan macaque, domestic pig and domestic cats. The frequencies of heteroplasmy in these animals were about 0.25% (1 in 402bp). Sequences were aligned by Pileup program of GCG computer package, and the phylogenetic tree was constructed by the neighbor-joining method. The results of sequence comparison showed that the percentage range of sequence diversity in the same species was from 0.25 to 2.74%, and that between the different species was from 5.97 to 34.83%. The results of phylogenetic analysis showed that the genetic distance between the different species was from 6.33 to 40.59. Animals of the same species, both the endangered animal species and domestic animals, were clustered together in the neighbor-joining tree. Three unknown samples of animal remains were identified by this system. The partial sequence of cytochrome b gene adopted in this study proved to be usable for animal identification.

  4. Species-Specific Detection and Identification of Fusarium Species Complex, the Causal Agent of Sugarcane Pokkah Boeng in China

    PubMed Central

    Que, Youxiong; Wang, Jihua; Comstock, Jack C.; Wei, Jinjin; McCord, Per H.; Chen, Baoshan; Chen, Rukai; Zhang, Muqing

    2014-01-01

    Background Pokkah boeng disease caused by the Fusarium species complex results in significant yield losses in sugarcane. Thus, the rapid and accurate detection and identification of the pathogen is urgently required to manage and prevent the spreading of sugarcane pokkah boeng. Methods A total of 101 isolates were recovered from the pokkah boeng samples collected from five major sugarcane production areas in China throughout 2012 and 2013. The causal pathogen was identified by morphological observation, pathogenicity test, and phylogenetic analysis based on the fungus-conserved rDNA-ITS. Species-specific TaqMan real-time PCR and conventional PCR methods were developed for rapid and accurate detection of the causal agent of sugarcane pokkah boeng. The specificity and sensitivity of PCR assay were also evaluated on a total of 84 isolates of Fusarium from China and several isolates from other fungal pathogens of Sporisorium scitamineum and Phoma sp. and sugarcane endophyte of Acremonium sp. Result Two Fusarium species (F. verticillioides and F. proliferatum) that caused sugarcane pokahh boeng were identified by morphological observation, pathogenicity test, and phylogenetic analysis. Species-specific TaqMan PCR and conventional PCR were designed and optimized to target their rDNA-ITS regions. The sensitivity of the TaqMan PCR was approximately 10 pg of fungal DNA input, which was 1,000-fold over conventional PCR, and successfully detected pokkah boeng in the field-grown sugarcane. Conclusions/Significance This study was the first to identify two species, F. verticillioides and F. proliferatum, that were causal pathogens of sugarcane pokkah boeng in China. It also described the development of a species-specific PCR assay to detect and confirm these pathogens in sugarcane plants from mainland China. This method will be very useful for a broad range of research endeavors as well as the regulatory response and management of sugarcane pokkah boeng. PMID:25141192

  5. Utilization of elongation factor Tu gene (tuf) sequencing and species-specific PCR (SS-PCR) for the molecular identification of Acetobacter species complex.

    PubMed

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2014-02-01

    The aim of this study was to use tuf gene as a molecular target for species discrimination in the Acetobacter genus, as well as to develop species-specific PCR method for direct species identification of Acetobacter aceti. The results showed that most Acetobacter species could be clearly distinguished, and the average sequence similarity for the tuf gene (89.5%) among type strains was significantly lower than that of the 16S rRNA gene sequence (98.0%). A pair of species-specific primers were designed and used to specifically identify A. aceti, but none of the other Acetobacter strains. Our data indicate that the phylogenetic relationships of most strains in the Acetobacter genus can be resolved using tuf gene sequencing, and the novel species-specific primer pair could be used to rapidly and accurately identify the species of A. aceti by the PCR based assay.

  6. Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras

    PubMed Central

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Background Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Methodology/Principal Findings Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. Conclusions/Significance We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways. PMID:22096501

  7. Identification of Pacific rockfish (Sebastes) species by isoelectric focusing.

    PubMed

    Lundstrom, R C

    1983-07-01

    Isoelectric focusing (IEF) is currently the most reliable method available for the identification of fish species. The high resolution of this method usually allows discrimination between even closely related species. One genus, the Sebastes, does present a problem however. Using both low and high resolution, IEF is unable to differentiate several species. Disc electrophoresis, used in an AOAC official final action method, does not differentiate the rockfish reliably. Using IEF, identical protein patterns were obtained for Pacific Ocean perch (Sebastes alutus), Bocaccio rockfish (S. paucispinis), and yelloweye rockfish (S. ruberrimus). A second group, comprised of silvergray rockfish (S. brevispinis), yellowtail rockfish (S. flavidus), black rockfish (S. melanops), and canary rockfish (S. pinniger), also has identical protein patterns. Widow rockfish (S. entomelas) and chilipepper rockfish (S. goodei) each had a unique pattern, different from the above 2 groups and from each other. The actual taxonomic relationships of these rockfish species are not clear and further work with IEF may help in this regard. Users of IEF and disc electrophoresis for identification purposes should be aware of this problem when working with the Sebastes.

  8. [Applicability of DNA barcode for identification of fish species].

    PubMed

    Arami, Shinichiro; Sato, Megumi; Futo, Satoshi

    2011-01-01

    DNA barcoding is a species identification technique, which uses a very short DNA sequence from a region of approximately 650 base-pairs in the 5'-end of the mitochondrial cytochrome c oxidase subunit I gene as a marker to identify species of mammals and fishes. The applicability of DNA barcoding for identification of fish species consumed in Japan was studied. Among thirty-one fresh or processed fishes were obtained from the market, two samples could not be identified due to lack of data in the Barcode of Life Data (BOLD) database. However, BLAST-search of 16S rRNA genes in the National Center for Biotechnology Information (NCBI) database and the PCR-RFLP method published by the Food and Agricultural Materials Inspection Center (FAMIC) were found to be applicable to identify these 2 fishes. The results show that the DNA barcoding technique is potentially useful as a tool for confirming the proper labeling of fish species in the Japanese market. PMID:21720128

  9. [Flower species identification and coverage estimation based on hyperspectral remote sensing data in Hulunbeier grassland].

    PubMed

    Gai, Ying-Ying; Fan, Wen-Jie; Xu, Xi-Ru; Yan, Bin-Yan; Wang, Huan-Jiong; Liu, Yuan

    2011-10-01

    Monitoring grassland species and area real-timely and accurately is of great significance in species diversity research, as well as in sustainable development of ecosystem. Flowers have their own unique spectral characteristics. Compared with the nutrient stage, species are more easily identified by florescence. So, florescence is a critical period for identification. In the present paper, spectral differences among such flowers as Galium verum Linn., Hemerocallis citrina Baroni, Serratula centauroides Linn., Clematis hexapetala Pall., Lilium concolor var. pulchellum, Lilium pumilum and Artemisia frigida Willd. Sp. Pl. were found, along with identification methods, by analyzing canopies spectra and parametrizing characteristics. Verification results showed that when the coverage of flowers was greater than 10%, the accuracy of identification methods would be higher than 90%. On this basis, linear unmixing model was adopted to calculate the area of flowers in quadrates. Results showed that linear unmixing model was an effective method for estimating the coverage of flowers in grassland because the accuracy was about 4%. PMID:22250555

  10. Species identification of cattle and buffalo fat through PCR assay.

    PubMed

    Vaithiyanathan, S; Kulkarni, V V

    2016-04-01

    A method was standardized to isolate quality DNA from cattle and buffalo fat for species identification using QIAamp DNA stool mini kit. The quality of the DNA was sufficient enough to amplify universal primers viz., mt 12S rRNA and mt 16S rRNA, and species specific D loop primers for cattle and buffalo. The sensitivity of the PCR assay in the species specific D loop primer amplification was with a detection level of 0. 47 ng cattle DNA and 0.23 ng buffalo DNA in simplex and, 0. 47 ng cattle DNA and 0.12 ng buffalo DNA in duplex PCR. It is a potentially reliable method for DNA detection to authenticate animal fat. PMID:27413237

  11. Development of a polymerase chain reaction assay for species identification of goose and mule duck in foie gras products.

    PubMed

    Rodrı X0301 Guez, Miguel A; Garcı X0301 A, Teresa; González, Isabel; Asensio, Luis; Mayoral, Belén; López-Calleja, Inés; Hernández, Pablo E; Martı X0301 N, Rosario

    2003-12-01

    Polymerase chain reaction amplification of a conserved region of the α-actin gene has been used for the specific identification of goose (Anser anser) and mule duck (Anas platyrhynchos×Cairina moschata) foie gras. Universal primers were used for the amplification of a DNA fragment containing three introns and four exons of the α-actin gene in goose and mule duck. Sequence analysis of the amplified fragments was necessary for the design of forward species-specific primers in the goose and mule duck α-actin genes. The use of species-specific forward primers, together with a reverse universal primer, produced amplicons of different length, allowing clear identification of goose and mule duck foie gras samples. Analysis of experimental mixtures demonstrated that 1% of duck can be easily detected in goose foie gras using the PCR method developed here. This genetic marker can be very useful for the accurate identification of these two species in foie gras products.

  12. Simplified panel of assimilation tests for identification of Acinetobacter species.

    PubMed

    Kenchappa, Prashanth; Sreenivasmurthy, Badrinath

    2003-10-01

    A total of 66 Acinetobacter isolates obtained from JIPMER hospital wards were subjected to phenotypic identification schemes involving 25-test and a simplified 13-test panel of carbon utilization or assimilation tests. Reference strains belonging to different DNA groups (n=24) were also tested. Identification was done using numerical approach based on a matrix constructed of phenotypic data published elsewhere and the strains were assigned to different DNA groups according to classification of Tjernberg & Ursing. Sixty-six strains tested represented 10 DNA groups in matrix of large test panel; at a probability level of 0.95. Much simplified scheme of 13 assimilation test panel failed to differentiate some isolates with in A. calcoaceticus-A. baumannii complex (Acb-complex) unlike extended panel. In all, from the large panel 95% of isolates were identified correctly among all the isolates and it did not identify 5% of isolates. From the small panel, a total of 89% of isolates were identified correctly and it could not identify 11% of isolates. Reduced number of assimilation tests to 13 from the large panel bought reduction in identification percentage rate by only 6%. It is impossible for many bacterial diagnostic labs worldwide to perform large panel of carbon utilization tests in routine practice. Simplified panel of assimilation tests suggested here seems to be the best alternative method for identification of Acinetobacter species. PMID:15025386

  13. Towards Contactless, Low-Cost and Accurate 3D Fingerprint Identification.

    PubMed

    Kumar, Ajay; Kwong, Cyril

    2015-03-01

    Human identification using fingerprint impressions has been widely studied and employed for more than 2000 years. Despite new advancements in the 3D imaging technologies, widely accepted representation of 3D fingerprint features and matching methodology is yet to emerge. This paper investigates 3D representation of widely employed 2D minutiae features by recovering and incorporating (i) minutiae height z and (ii) its 3D orientation φ information and illustrates an effective matching strategy for matching popular minutiae features extended in 3D space. One of the obstacles of the emerging 3D fingerprint identification systems to replace the conventional 2D fingerprint system lies in their bulk and high cost, which is mainly contributed from the usage of structured lighting system or multiple cameras. This paper attempts to addresses such key limitations of the current 3D fingerprint technologies bydeveloping the single camera-based 3D fingerprint identification system. We develop a generalized 3D minutiae matching model and recover extended 3D fingerprint features from the reconstructed 3D fingerprints. 2D fingerprint images acquired for the 3D fingerprint reconstruction can themselves be employed for the performance improvement and have been illustrated in the work detailed in this paper. This paper also attempts to answer one of the most fundamental questions on the availability of inherent discriminable information from 3D fingerprints. The experimental results are presented on a database of 240 clients 3D fingerprints, which is made publicly available to further research efforts in this area, and illustrate the discriminant power of 3D minutiae representation and matching to achieve performance improvement.

  14. Faster and more accurate graphical model identification of tandem mass spectra using trellises

    PubMed Central

    Wang, Shengjie; Halloran, John T.; Bilmes, Jeff A.; Noble, William S.

    2016-01-01

    Tandem mass spectrometry (MS/MS) is the dominant high throughput technology for identifying and quantifying proteins in complex biological samples. Analysis of the tens of thousands of fragmentation spectra produced by an MS/MS experiment begins by assigning to each observed spectrum the peptide that is hypothesized to be responsible for generating the spectrum. This assignment is typically done by searching each spectrum against a database of peptides. To our knowledge, all existing MS/MS search engines compute scores individually between a given observed spectrum and each possible candidate peptide from the database. In this work, we use a trellis, a data structure capable of jointly representing a large set of candidate peptides, to avoid redundantly recomputing common sub-computations among different candidates. We show how trellises may be used to significantly speed up existing scoring algorithms, and we theoretically quantify the expected speedup afforded by trellises. Furthermore, we demonstrate that compact trellis representations of whole sets of peptides enables efficient discriminative learning of a dynamic Bayesian network for spectrum identification, leading to greatly improved spectrum identification accuracy. Contact: bilmes@uw.edu or william-noble@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307634

  15. Assessment of gas chromatography time-of-flight accurate mass spectrometry for identification of volatile and semi-volatile compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Ramil, M; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-01

    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis. PMID:25127626

  16. Species identification from hair by means of spectral library searches.

    PubMed

    Van Steendam, Katleen; De Wulf, Odile; Dhaenens, Maarten; Deforce, Dieter

    2014-09-01

    Species identification from hair has been performed in the past by several techniques, such as scanning electron microscopy and polymerase chain reaction. Despite the great promise of mass spectrometry herein, the repetitive glycine stretches and the evolutionary conserved sequences of keratins make the results from conventional database search algorithms on MSMS fragmentation data very ambiguous. Here, we present a new method based on electron spray quadrupole time-of-flight (ESI-Q-TOF) mass spectrometry and spectral library searching. By comparing different sets of data processing parameters, spectral libraries for human, cat, and dog were constructed with the highest possible specificity and sensitivity. This proof of principle was confirmed by the annotation of blind samples. In addition, by providing a step-by-step roadmap for creating such libraries, more species can be included in the future as demonstrated here by the inclusion of sheep and rabbit. Additionally, we illustrate that this approach allows for species identification of a single hair, making this an interesting approach in a forensic setting.

  17. UPLC-UV-MS(E) analysis for quantification and identification of major carotenoid and chlorophyll species in algae.

    PubMed

    Fu, Weiqi; Magnúsdóttir, Manuela; Brynjólfson, Sigurður; Palsson, Bernhard Ø; Paglia, Giuseppe

    2012-12-01

    A fast method for quantification and identification of carotenoid and chlorophyll species utilizing liquid chromatography coupled with UV detection and mass spectrometry has been demonstrated and validated for the analysis of algae samples. This method allows quantification of targeted pigments and identification of unexpected compounds, providing isomers separation, UV detection, accurate mass measurements, and study of fragment ions for structural elucidation in a single run. This is possible using parallel alternating low- and high-energy collision spectral acquisition modes, which provide accurate mass full scan chromatograms and accurate mass high-energy chromatograms. Here, it is shown how this approach can be used to confirm carotenoid and chlorophyll species by identification of key diagnostic fragmentations during high-energy mode. The developed method was successfully applied for the analysis of Dunaliella salina samples during defined red LED lighting growth conditions, identifying 37 pigments including 19 carotenoid species and 18 chlorophyll species, and providing quantification of 7 targeted compounds. Limit of detections for targeted pigments ranged from 0.01 ng/mL for lutein to 0.24 ng/mL for chlorophyll a. Inter-run precision ranged for of 3 to 24 (RSD%) while inter-run inaccuracy ranged from -17 to 11. PMID:23052878

  18. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    PubMed Central

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  19. Simple Real-Time PCR and Amplicon Sequencing Method for Identification of Plasmodium Species in Human Whole Blood.

    PubMed

    Lefterova, Martina I; Budvytiene, Indre; Sandlund, Johanna; Färnert, Anna; Banaei, Niaz

    2015-07-01

    Malaria is the leading identifiable cause of fever in returning travelers. Accurate Plasmodium species identification has therapy implications for P. vivax and P. ovale, which have dormant liver stages requiring primaquine. Compared to microscopy, nucleic acid tests have improved specificity for species identification and higher sensitivity for mixed infections. Here, we describe a SYBR green-based real-time PCR assay for Plasmodium species identification from whole blood, which uses a panel of reactions to detect species-specific non-18S rRNA gene targets. A pan-Plasmodium 18S rRNA target is also amplified to allow species identification or confirmation by sequencing if necessary. An evaluation of assay accuracy, performed on 76 clinical samples (56 positives using thin smear microscopy as the reference method and 20 negatives), demonstrated clinical sensitivities of 95.2% for P. falciparum (20/21 positives detected) and 100% for the Plasmodium genus (52/52), P. vivax (20/20), P. ovale (9/9), and P. malariae (6/6). The sensitivity of the P. knowlesi-specific PCR was evaluated using spiked whole blood samples (100% [10/10 detected]). The specificities of the real-time PCR primers were 94.2% for P. vivax (49/52) and 100% for P. falciparum (51/51), P. ovale (62/62), P. malariae (69/69), and P. knowlesi (52/52). Thirty-three specimens were used to test species identification by sequencing the pan-Plasmodium 18S rRNA PCR product, with correct identification in all cases. The real-time PCR assay also identified two samples with mixed P. falciparum and P. ovale infection, which was confirmed by sequencing. The assay described here can be integrated into a malaria testing algorithm in low-prevalence areas, allowing definitive Plasmodium species identification shortly after malaria diagnosis by microscopy.

  20. Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson's disease

    PubMed Central

    Mahlknecht, Philipp; Pechlaner, Raimund; Boesveldt, Sanne; Volc, Dieter; Pinter, Bernardette; Reiter, Eva; Müller, Christoph; Krismer, Florian; Berendse, Henk W.; van Hilten, Jacobus J.; Wuschitz, Albert; Schimetta, Wolfgang; Högl, Birgit; Djamshidian, Atbin; Nocker, Michael; Göbel, Georg; Gasperi, Arno; Kiechl, Stefan; Willeit, Johann; Poewe, Werner

    2016-01-01

    ABSTRACT Introduction The aim of this study was to evaluate odor identification testing as a quick, cheap, and reliable tool to identify PD. Methods Odor identification with the 16‐item Sniffin' Sticks test (SS‐16) was assessed in a total of 646 PD patients and 606 controls from three European centers (A, B, and C), as well as 75 patients with atypical parkinsonism or essential tremor and in a prospective cohort of 24 patients with idiopathic rapid eye movement sleep behavior disorder (center A). Reduced odor sets most discriminative for PD were determined in a discovery cohort derived from a random split of PD patients and controls from center A using L1‐regularized logistic regression. Diagnostic accuracy was assessed in the rest of the patients/controls as validation cohorts. Results Olfactory performance was lower in PD patients compared with controls and non‐PD patients in all cohorts (each P < 0.001). Both the full SS‐16 and a subscore of the top eight discriminating odors (SS‐8) were associated with an excellent discrimination of PD from controls (areas under the curve ≥0.90; sensitivities ≥83.3%; specificities ≥82.0%) and from non‐PD patients (areas under the curve ≥0.91; sensitivities ≥84.1%; specificities ≥84.0%) in all cohorts. This remained unchanged when patients with >3 years of disease duration were excluded from analysis. All 8 incident PD cases among patients with idiopathic rapid eye movement sleep behavior disorder were predicted with the SS‐16 and the SS‐8 (sensitivity, 100%; positive predictive value, 61.5%). Conclusions Odor identification testing provides excellent diagnostic accuracy in the distinction of PD patients from controls and diagnostic mimics. A reduced set of eight odors could be used as a quick tool in the workup of patients presenting with parkinsonism and for PD risk indication. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and

  1. Identification of four squid species by quantitative real-time polymerase chain reaction.

    PubMed

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control.

  2. Identification multiplex assay of 19 terrestrial mammal species present in New Zealand.

    PubMed

    Ramón-Laca, Ana; Linacre, Adrian M T; Gleeson, Dianne M; Tobe, Shanan S

    2013-12-01

    An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species-specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species-specific fragments, making the assay self-confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost-effective manner.

  3. Identification and authentication of Rosa species through development of species-specific SCAR marker(s).

    PubMed

    Bashir, K M I; Awan, F S; Khan, I A; Khan, A I; Usman, M

    2014-05-30

    Roses (Rosa indica) belong to one of the most crucial groups of plants in the floriculture industry. Rosa species have special fragrances of interest to the perfume and pharmaceutical industries. The genetic diversity of plants based on morphological characteristics is difficult to measure under natural conditions due to the influence of environmental factors, which is why a reliable fingerprinting method was developed to overcome this problem. The development of molecular markers will enable the identification of Rosa species. In the present study, randomly amplified polymorphic DNA (RAPD) analysis was done on four Rosa species, Rosa gruss-an-teplitz (Surkha), Rosa bourboniana, Rosa centifolia, and Rosa damascena. A polymorphic RAPD fragment of 391 bp was detected in R. bourboniana, which was cloned, purified, sequenced, and used to design a pair of species-specific sequence-characterized amplified region (SCAR) primers (forward and reverse). These SCAR primers were used to amplify the specific regions of the rose genome. These PCR amplifications with specific primers are less sensitive to reaction conditions, and due to their high reproducibility, these species-specific SCAR primers can be used for marker-assisted selection and identification of Rosa species.

  4. Accurate measurement of the relative abundance of different DNA species in complex DNA mixtures.

    PubMed

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-06-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription.

  5. Accurate Measurement of the Relative Abundance of Different DNA Species in Complex DNA Mixtures

    PubMed Central

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-01-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription. PMID:22334570

  6. [Microalgae Species Identification Study with Raman Microspectroscopy Technology].

    PubMed

    Shao, Yong-ni; Pan, Jian; Jiang, Lu-lu; He, Yong

    2015-07-01

    Identification and classification of microalgae are basis and premise in the study of physiological and biochemical characteristics for microalgae. Microalgae cells mainly consist of five kinds of biological molecules, including proteins, carbonhydrates, lipids, nucleic acids and pigments. These five kinds of biological molecules contents with different ratio in microalgae cells can be utilized to identify microalgae species as a supplement method. This paper investigated the application of Raman microspectroscopy technology in the field of rapid identification on different algae species such as aschlorella sp. and chlamydomonas sp. . Cultivated in the same conditions of culture medium, illumination duration and intensity, these two kinds of species of microalgae cells were immobilized by using agar, and then the samples were placed under 514. 5 nm Raman laser to collect Raman spectra of different growth periods of different species. An approach to remove fluorescence background in Raman spectra called Rolling Circle Filter (RCF) algorithm was adopted to remove the fluorescent background, and then some preprocessing methods were used to offset the baseline and smooth method of Savitzky-Golay was tried to make the spectra curves of total 80 samples smoother. Then 50 samples were randomly extracted from 80 samples for modeling, and the remaining 30 samples for independent validation. This paper adopted different pretreatment methods, and used the partial least squares (PLS) to establish model between the spectral data and the microalgae species, then compared the effects of different pretreatment methods. The results showed that with Raman microspectroscopy technology, the pretreatment method of max-peak ratio standardization was a more effective identification approach which utilizes the different content ratios of pigments of different microalgae species. This method could efficiently eliminate the influence on Raman signal due to different growth stages of

  7. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    SciTech Connect

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  8. Karyotype and identification of sex in two endangered crane species

    USGS Publications Warehouse

    Goodpasture, C.; Seluja, G.; Gee, G.; Wood, Don A.

    1992-01-01

    A laboratory procedure for sex identification of monomorphic birds was developed using modern cytological methods of detecting chromosome abnormalities in human amniotic fluid samples. A pin feather is taken from a pre-fledging bird for tissue culture and karyotype analysis. Through this method, the sex was identified and the karyotype described of the whooping crane (Grus americana) and the Mississippi sandhill crane (G. canadensis pulla). Giemsa-stained karyotypes of these species showed an identical chromosome constitution with 2n = 78 + 2. However, differences in the amount of centromeric heterochromatin were observed in the Mississippi sandhill crane when compared to the whooping crane C-banded karyotype.

  9. Phylogenetic Species Identification in Rattus Highlights Rapid Radiation and Morphological Similarity of New Guinean Species

    PubMed Central

    Robins, Judith H.; Tintinger, Vernon; Aplin, Ken P.; Hingston, Melanie; Matisoo-Smith, Elizabeth; Penny, David; Lavery, Shane D.

    2014-01-01

    The genus Rattus is highly speciose, the taxonomy is complex, and individuals are often difficult to identify to the species level. Previous studies have demonstrated the usefulness of phylogenetic approaches to identification in Rattus but some species, especially among the endemics of the New Guinean region, showed poor resolution. Possible reasons for this are simple misidentification, incomplete gene lineage sorting, hybridization, and phylogenetically distinct lineages that are unrecognised taxonomically. To assess these explanations we analysed 217 samples, representing nominally 25 Rattus species, collected in New Guinea, Asia, Australia and the Pacific. To reduce misidentification problems we sequenced museum specimens from earlier morphological studies and recently collected tissues from samples with associated voucher specimens. We also reassessed vouchers from previously sequenced specimens. We inferred combined and separate phylogenies from two mitochondrial DNA regions comprising 550 base pair D-loop sequences and both long (655 base pair) and short (150 base pair) cytochrome oxidase I sequences. Our phylogenetic species identification for 17 species was consistent with morphological designations and current taxonomy thus reinforcing the usefulness of this approach. We reduced misidentifications and consequently the number of polyphyletic species in our phylogenies but the New Guinean Rattus clades still exhibited considerable complexity. Only three of our eight New Guinean species were monophyletic. We found good evidence for either incomplete mitochondrial lineage sorting or hybridization between species within two pairs, R. leucopus/R. cf. verecundus and R. steini/R. praetor. Additionally, our results showed that R. praetor, R. niobe and R. verecundus each likely encompass more than one species. Our study clearly points to the need for a revised taxonomy of the rats of New Guinea, based on broader sampling and informed by both morphology and

  10. Identification and Evaluation of Reference Genes for Accurate Transcription Normalization in Safflower under Different Experimental Conditions.

    PubMed

    Li, Dandan; Hu, Bo; Wang, Qing; Liu, Hongchang; Pan, Feng; Wu, Wei

    2015-01-01

    Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower.

  11. Identification and Evaluation of Reference Genes for Accurate Transcription Normalization in Safflower under Different Experimental Conditions

    PubMed Central

    Li, Dandan; Hu, Bo; Wang, Qing; Liu, Hongchang; Pan, Feng; Wu, Wei

    2015-01-01

    Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower. PMID:26457898

  12. Identification and Evaluation of Reference Genes for Accurate Transcription Normalization in Safflower under Different Experimental Conditions.

    PubMed

    Li, Dandan; Hu, Bo; Wang, Qing; Liu, Hongchang; Pan, Feng; Wu, Wei

    2015-01-01

    Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower. PMID:26457898

  13. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF PROTONATED OXIRANE: A POTENTIAL PREBIOTIC SPECIES IN TITAN’S ATMOSPHERE

    PubMed Central

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2015-01-01

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm−1 for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan’s atmosphere but also in the interstellar medium. PMID:26543241

  14. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    SciTech Connect

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  15. PCR and blot hybridization for rapid identification of Haloferax species.

    PubMed

    Asker, Dalal; Ohta, Yoshiyuki

    2002-05-01

    Based on the amplification of a 16S rDNA, a PCR assay for the identification of species of Haloferax to genus level was performed. Two variable regions of the 16S rDNA in Haloferax spp. were selected as genus-specific primers for the PCR assay and hybridization probe. Five genera of halophilic Archaea and Escherichia coli were examined as outside groups. Using this approach, all strains of Haloferax spp. were positive. In contrast, all species belonging to the most closely related genera, including Natrinema, Halorubrum, Halobacterium, and Haloarcula, were negative. In addition, the mass bloom of halophilic Archaea that develops in the El-Mallahet saltern of Alexandria City was positive using the same approach. This assay, which does not require pure cultures of microorganisms, is a specific and rapid method for identifying Haloferax spp. in hypersaline environments.

  16. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays.

    PubMed

    Inderbitzin, Patrik; Davis, R Michael; Bostock, Richard M; Subbarao, Krishna V

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers.

  17. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  18. Application of species-specific polymerase chain reaction in the forensic identification of tiger species.

    PubMed

    Wan, Qiu-Hong; Fang, Sheng-Guo

    2003-01-01

    Globally, tigers are considered to be endangered, and are listed on Appendix I of CITES. A simple test, using a species-specific primer pair, was developed to identify tiger meat, faeces and dried skin, and provide forensic evidence of illegal wildlife trade. The specific fragment of mitochondrial cytochrome b gene was also successfully amplified from raw DNA products extracted from single tiger hairs. This PCR-based approach opens a new avenue to forensic identification of less-than-optimal samples.

  19. A sequential procedure for rapid and accurate identification of putative trichomonacidal agents.

    PubMed

    Ibáñez-Escribano, Alexandra; Meneses-Marcel, Alfredo; Marrero-Ponce, Yovani; Nogal-Ruiz, Juan José; Arán, Vicente J; Gómez-Barrio, Alicia; Escario, José Antonio

    2014-10-01

    In the current report, a sequential step-wise methodology based on in silico, in vitro and in vivo experimental procedures for the prompt detection of potential trichomonacidal drugs is proposed. A combinatorial of 12 QSAR (Quantitative Structure-Activity Relationship) models based on Linear Discrimination Analysis (LDA) are suggested for the rational identification of new trichomonacidal drugs from virtual screening of in house chemical libraries and drug databases. Subsequently, compounds selected as potential anti-trichomonas are screened in vitro against Trichomonas vaginalis. Finally, molecules with specific trichomonacidal activity are evaluated in vivo. Herein, different molecules were exposed to the proposed methodology. Firstly, the agents were virtually screened and two of the eight molecules (G-1 and dimetridazole) were classified as trichomonacidals by the 12 models. Subsequently both drugs were proved in vitro and in vivo following the workflow procedure. Although a remarkable in vitro activity was observed in both cases, dimetridazole achieved higher MIC100 activity than metronidazole against the resistant isolate. Furthermore, the in vivo models showed a remarkable reduction of lesions of more than 55% in both compounds. These observations support the current flowchart screening and suggest the use of dimetridazole as a promising drug-like scaffold for novel therapeutic alternatives against T. vaginalis resistant infections.

  20. A novel approach for latent print identification using accurate overlays to prioritize reference prints.

    PubMed

    Gantz, Daniel T; Gantz, Donald T; Walch, Mark A; Roberts, Maria Antonia; Buscaglia, JoAnn

    2014-12-01

    A novel approach to automated fingerprint matching and scoring that produces accurate locally and nonlinearly adjusted overlays of a latent print onto each reference print in a corpus is described. The technology, which addresses challenges inherent to latent prints, provides the latent print examiner with a prioritized ranking of candidate reference prints based on the overlays of the latent onto each candidate print. In addition to supporting current latent print comparison practices, this approach can make it possible to return a greater number of AFIS candidate prints because the ranked overlays provide a substantial starting point for latent-to-reference print comparison. To provide the image information required to create an accurate overlay of a latent print onto a reference print, "Ridge-Specific Markers" (RSMs), which correspond to short continuous segments of a ridge or furrow, are introduced. RSMs are reliably associated with any specific local section of a ridge or a furrow using the geometric information available from the image. Latent prints are commonly fragmentary, with reduced clarity and limited minutiae (i.e., ridge endings and bifurcations). Even in the absence of traditional minutiae, latent prints contain very important information in their ridges that permit automated matching using RSMs. No print orientation or information beyond the RSMs is required to generate the overlays. This automated process is applied to the 88 good quality latent prints in the NIST Special Database (SD) 27. Nonlinear overlays of each latent were produced onto all of the 88 reference prints in the NIST SD27. With fully automated processing, the true mate reference prints were ranked in the first candidate position for 80.7% of the latents tested, and 89.8% of the true mate reference prints ranked in the top ten positions. After manual post-processing of those latents for which the true mate reference print was not ranked first, these frequencies increased to 90

  1. Streptococcus dysgalactiae subsp. equisimilis Isolated From Infections in Dogs and Humans: Are Current Subspecies Identification Criteria accurate?

    PubMed

    Ciszewski, Marcin; Zegarski, Kamil; Szewczyk, Eligia M

    2016-11-01

    Streptococcus dysgalactiae is a pyogenic species pathogenic both for humans and animals. Until recently, it has been considered an exclusive animal pathogen causing infections in wild as well as domestic animals. Currently, human infections are being reported with increasing frequency, and their clinical picture is often similar to the ones caused by Streptococcus pyogenes. Due to the fact that S. dysgalactiae is a heterogeneous species, it was divided into two subspecies: S. dysgalactiae subsp. equisimilis (SDSE) and S. dysgalactiae subsp. dysgalactiae (SDSD). The first differentiation criterion, described in 1996, was based on strain isolation source. Currently applied criteria, published in 1998, are based on hemolysis type and Lancefield group classification. In this study, we compared subspecies identification results for 36 strains isolated from clinical cases both in humans and animals. Species differentiation was based on two previously described criteria as well as MALDI-TOF and genetic analyses: RISA and 16S rRNA genes sequencing. Antimicrobial susceptibility profiles were also determined according to CLSI guidelines. The results presented in our study suggest that the subspecies differentiation criteria previously described in the above two literature positions seem to be inaccurate in analyzed group of strains, the hemolysis type on blood agar, and Lancefield classification should not be here longer considered as criteria in subspecies identification. The antimicrobial susceptibility tests indicate emerging of multiresistant human SDSE strains resistant also to vancomycin, linezolid and tigecycline, which might pose a substantial problem in treatment. PMID:27502064

  2. Revised culture-based system for identification of Malassezia species.

    PubMed

    Kaneko, Takamasa; Makimura, Koichi; Abe, Michiko; Shiota, Ryoko; Nakamura, Yuka; Kano, Rui; Hasegawa, Atsuhiko; Sugita, Takashi; Shibuya, Shuichi; Watanabe, Shinichi; Yamaguchi, Hideyo; Abe, Shigeru; Okamura, Noboru

    2007-11-01

    Forty-six strains of Malassezia spp. with atypical biochemical features were isolated from 366 fresh clinical isolates from human subjects and dogs. Isolates obtained in this study included 2 (4.7%) lipid-dependent M. pachydermatis isolates; 1 (2.4%) precipitate-producing and 6 (14.6%) non-polyethoxylated castor oil (Cremophor EL)-assimilating M. furfur isolates; and 37 (34.3%) M. slooffiae isolates that were esculin hydrolyzing, 17 (15.7%) that were non-tolerant of growth at 40 degrees C, and 2 (1.9%) that assimilated polyethoxylated castor oil. Although their colony morphologies and sizes were characteristic on CHROMagar Malassezia medium (CHROM), all strains of M. furfur developed large pale pink and wrinkled colonies, and all strains of M. slooffiae developed small (<1 mm) pale pink colonies on CHROM. These atypical strains were distinguishable by the appearance of their colonies grown on CHROM. Three clinically important Malassezia species, M. globosa, M. restricta, and M. furfur, were correctly identified by their biochemical characteristics and colony morphologies. The results presented here indicate that our proposed identification system will be useful as a routine tool for the identification of clinically important Malassezia species in clinical laboratories. PMID:17881545

  3. COMPARISON BETWEEN FOUR USUAL METHODS OF IDENTIFICATION OF Candida SPECIES

    PubMed Central

    SOUZA, Margarida Neves; ORTIZ, Stéfanie Otowicz; MELLO, Marcelo Martins; OLIVEIRA, Flávio de Mattos; SEVERO, Luiz Carlos; GOEBEL, Cristine Souza

    2015-01-01

    SUMMARY Infection by Candidaspp. is associated with high mortality rates, especially when treatment is not appropriate and/or not immediate. Therefore, it is necessary to correctly identify the genus and species of Candida. The aim of this study was to compare the identification of 89 samples of Candida spp. by the manual methods germ tube test, auxanogram and chromogenic medium in relation to the ID 32C automated method. The concordances between the methods in ascending order, measured by the Kappa index were: ID 32C with CHROMagar Candida(κ = 0.38), ID 32C with auxanogram (κ = 0.59) and ID 32C with germ tube (κ = 0.9). One of the species identified in this study was C. tropicalis,which demonstrated a sensitivity of 46.2%, a specificity of 95.2%, PPV of 80%, NPV of 81.1%, and an accuracy of 80.9% in tests performed with CHROMagar Candida;and a sensitivity of 76.9%, a specificity of 96.8%, PPV of 90.9%, NPV of 91%, and an accuracy of 91% in the auxanogram tests. Therefore, it is necessary to know the advantages and limitations of methods to choose the best combination between them for a fast and correct identification of Candidaspecies. PMID:26422150

  4. Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network

    NASA Astrophysics Data System (ADS)

    Wee, Chong-Yaw; Yap, Pew-Thian; Brownyke, Jeffery N.; Potter, Guy G.; Steffens, David C.; Welsh-Bohmer, Kathleen; Wang, Lihong; Shen, Dinggang

    Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariate classification algorithm, using a collection of measures derived from white-matter (WM) connectivity networks, to accurately identify MCI patients from normal controls. An enriched description of WM connections, utilizing six physiological parameters, i.e., fiber penetration count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities (λ 1, λ 2, λ 3), results in six connectivity networks for each subject to account for the connection topology and the biophysical properties of the connections. Upon parcellating the brain into 90 regions-of-interest (ROIs), the average statistics of each ROI in relation to the remaining ROIs are extracted as features for classification. These features are then sieved to select the most discriminant subset of features for building an MCI classifier via support vector machines (SVMs). Cross-validation results indicate better diagnostic power of the proposed enriched WM connection description than simple description with any single physiological parameter.

  5. Examining the Effectiveness of Discriminant Function Analysis and Cluster Analysis in Species Identification of Male Field Crickets Based on Their Calling Songs

    PubMed Central

    Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini

    2013-01-01

    Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and

  6. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species

    PubMed Central

    Palange, Padmavali; Vaish, Ritu; Bhatti, Adnan Bashir; Kale, Vinod; Kandi, Maheshwar Reddy; Bhoomagiri, Mohan Rao

    2016-01-01

    Recently there have been reports of gram-positive cocci which are morphologically similar to both Staphylococci and the Micrococci. These bacteria have been identified as Kocuria species with the help of automated identification system and other molecular methods including 16S rRNA (ribosomal ribonucleic acid) evaluation. Kocuria belongs to the family Micrococcaceae which also includes Staphylococcus species and Micrococcus species. Isolation and clinical significance of these bacteria from human specimens warrant great caution as it does not necessarily confirm infection due to their ubiquitous presence, and as a normal flora of skin and mucous membranes in human and animals. Most clinical microbiology laboratories ignore such bacteria as laboratory and specimen contaminants. With increasing reports of infections associated with these bacteria, it is now important for clinical microbiologists to identify and enumerate the virulence and antibiotic susceptibility patterns of such bacteria and assist clinicians in improving the patient care and management. We review the occurrence and clinical significance of Kocuria species. PMID:27630804

  7. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species.

    PubMed

    Kandi, Venkataramana; Palange, Padmavali; Vaish, Ritu; Bhatti, Adnan Bashir; Kale, Vinod; Kandi, Maheshwar Reddy; Bhoomagiri, Mohan Rao

    2016-01-01

    Recently there have been reports of gram-positive cocci which are morphologically similar to both Staphylococci and the Micrococci. These bacteria have been identified as Kocuria species with the help of automated identification system and other molecular methods including 16S rRNA (ribosomal ribonucleic acid) evaluation. Kocuria belongs to the family Micrococcaceae which also includes Staphylococcus species and Micrococcus species. Isolation and clinical significance of these bacteria from human specimens warrant great caution as it does not necessarily confirm infection due to their ubiquitous presence, and as a normal flora of skin and mucous membranes in human and animals. Most clinical microbiology laboratories ignore such bacteria as laboratory and specimen contaminants. With increasing reports of infections associated with these bacteria, it is now important for clinical microbiologists to identify and enumerate the virulence and antibiotic susceptibility patterns of such bacteria and assist clinicians in improving the patient care and management. We review the occurrence and clinical significance of Kocuria species. PMID:27630804

  8. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species

    PubMed Central

    Palange, Padmavali; Vaish, Ritu; Bhatti, Adnan Bashir; Kale, Vinod; Kandi, Maheshwar Reddy; Bhoomagiri, Mohan Rao

    2016-01-01

    Recently there have been reports of gram-positive cocci which are morphologically similar to both Staphylococci and the Micrococci. These bacteria have been identified as Kocuria species with the help of automated identification system and other molecular methods including 16S rRNA (ribosomal ribonucleic acid) evaluation. Kocuria belongs to the family Micrococcaceae which also includes Staphylococcus species and Micrococcus species. Isolation and clinical significance of these bacteria from human specimens warrant great caution as it does not necessarily confirm infection due to their ubiquitous presence, and as a normal flora of skin and mucous membranes in human and animals. Most clinical microbiology laboratories ignore such bacteria as laboratory and specimen contaminants. With increasing reports of infections associated with these bacteria, it is now important for clinical microbiologists to identify and enumerate the virulence and antibiotic susceptibility patterns of such bacteria and assist clinicians in improving the patient care and management. We review the occurrence and clinical significance of Kocuria species.

  9. MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis

    PubMed Central

    Tabb, David L.; Fernando, Christopher G.; Chambers, Matthew C.

    2008-01-01

    Shotgun proteomics experiments are dependent upon database search engines to identify peptides from tandem mass spectra. Many of these algorithms score potential identifications by evaluating the number of fragment ions matched between each peptide sequence and an observed spectrum. These systems, however, generally do not distinguish between matching an intense peak and matching a minor peak. We have developed a statistical model to score peptide matches that is based upon the multivariate hypergeometric distribution. This scorer, part of the “MyriMatch” database search engine, places greater emphasis on matching intense peaks. The probability that the best match for each spectrum has occurred by random chance can be employed to separate correct matches from random ones. We evaluated this software on data sets from three different laboratories employing three different ion trap instruments. Employing a novel system for testing discrimination, we demonstrate that stratifying peaks into multiple intensity classes improves the discrimination of scoring. We compare MyriMatch results to those of Sequest and X!Tandem, revealing that it is capable of higher discrimination than either of these algorithms. When minimal peak filtering is employed, performance plummets for a scoring model that does not stratify matched peaks by intensity. On the other hand, we find that MyriMatch discrimination improves as more peaks are retained in each spectrum. MyriMatch also scales well to tandem mass spectra from high-resolution mass analyzers. These findings may indicate limitations for existing database search scorers that count matched peaks without differentiating them by intensity. This software and source code is available under Mozilla Public License at this URL: http://www.mc.vanderbilt.edu/msrc/bioinformatics/. PMID:17269722

  10. Contrast-enhanced ultrasound improves accurate identification of appendiceal mucinous adenocarcinoma in an old patient

    PubMed Central

    Shang, Jing; Ruan, Li-tao; Dang, Ying; Wang, Yun-yue; Song, Yan; Lian, Jie

    2016-01-01

    Abstract Background: Adenocarcinoma of appendiceal origin is far rarer than other colorectal carcinomas and its preoperative diagnosis is challenging. To our knowledge, utility of contrast-enhanced ultrasound (CEUS) to diagnose it is much less. Method: A 61-year-old man presented with abdominal pain in the right lower quadrant for 20 days. In order to fulfill an accurately preoperative diagnosis, he received laboratory and imaging tests such as carcinoembryonic antigen (CEA), computer tomography (CT), CEUS and endoscope. Diagnosis and Intervention: He was initially suspected of suffering appendicitis, while his white blood cell count was normal and carcinoembryonic antigen (CEA) in serum was remarkably increased. Both routine ultrasound and computer tomography (CT) examinations supported suppurative appendicitis. The overall data, however, failed to excluded neoplastic pathology thoroughly. Therefore, CEUS was carried out and showed an inhomogeneous enhancement intra the lesion located in the body of the appendix, which made our consideration of neoplasm. The result of the follow-up biopsy guided by endoscope was consistent with appendiceal tumor. The patient received laparoscopic right hemicolectomy. Histopathology confirmed as well differentiated mucinous adenocarcinoma of appendix origin. His postoperative course was uneventful, and he had a regular diet again without any complaint. Result: Serum CEA was remarkably increased (12.00 ng/mL). Both routine ultrasound and CT examinations supported suppurative appendicitis. However, CEUS examination showed an inhomogeneous enhancement intra the lesion located in the body of the appendix, which made our consideration of neoplasm. The follow-up biopsy guided by endoscope and surgical specimens confirmed as well differentiated mucinous adenocarcinoma of appendix origin. Conclusion: Most mucinous adenocarcinoma mimicking appendicitis results in difficult diagnosis preoperatively. Clinician and radiologist should be

  11. Accurate multi-source forest species mapping using the multiple spectral-spatial classification approach

    NASA Astrophysics Data System (ADS)

    Stavrakoudis, Dimitris; Gitas, Ioannis; Karydas, Christos; Kolokoussis, Polychronis; Karathanassi, Vassilia

    2015-10-01

    This paper proposes an efficient methodology for combining multiple remotely sensed imagery, in order to increase the classification accuracy in complex forest species mapping tasks. The proposed scheme follows a decision fusion approach, whereby each image is first classified separately by means of a pixel-wise Fuzzy-Output Support Vector Machine (FO-SVM) classifier. Subsequently, the multiple results are fused according to the so-called multiple spectral- spatial classifier using the minimum spanning forest (MSSC-MSF) approach, which constitutes an effective post-regularization procedure for enhancing the result of a single pixel-based classification. For this purpose, the original MSSC-MSF has been extended in order to handle multiple classifications. In particular, the fuzzy outputs of the pixel-based classifiers are stacked and used to grow the MSF, whereas the markers are also determined considering both classifications. The proposed methodology has been tested on a challenging forest species mapping task in northern Greece, considering a multispectral (GeoEye) and a hyper-spectral (CASI) image. The pixel-wise classifications resulted in overall accuracies (OA) of 68.71% for the GeoEye and 77.95% for the CASI images, respectively. Both of them are characterized by high levels of speckle noise. Applying the proposed multi-source MSSC-MSF fusion, the OA climbs to 90.86%, which is attributed both to the ability of MSSC-MSF to tackle the salt-and-pepper effect, as well as the fact that the fusion approach exploits the relative advantages of both information sources.

  12. Photo-detachment signal analysis to accurately determine electronegativity, electron temperature, and charged species density

    NASA Astrophysics Data System (ADS)

    Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.

    2016-09-01

    Laser pulse induced photo-detachment combined with Langmuir probing has been introduced to diagnose plasma electronegativity. This technique uses a laser pulse to convert negative ions into electron-atom pairs and tracks the change of electron saturation current by a Langmuir probe. The existing model determines plasma electronegativity as the ratio of electron saturation current before and after detachment. However, this model depends on various assumptions and neglects the formation of a potential barrier between the laser channel and surrounding electronegative plasma. In this letter, we present a new analytical model to analyze photo-detachment signals in order to improve the accuracy of electronegativity measurements and extend this technique for measuring electron temperature and charged species density. This analytical model is supported by Particle-In-Cell simulation of electronegative plasma dynamics following laser photo-detachment. The analysis of the signal, detected on a simulated probe, shows that the present analytical model determines electronegativity, electron temperature, and plasma density with a relative error of ˜20%, ˜20%, and ˜50%, respectively, whereas the electronegativity obtained from a previous model is underestimated by an order of magnitude.

  13. Clinical Implications of Species Identification in Monomicrobial Aeromonas Bacteremia

    PubMed Central

    Wu, Chi-Jung; Chen, Po-Lin; Hsueh, Po-Ren; Chang, Ming-Chung; Tsai, Pei-Jane; Shih, Hsin-I; Wang, Hsuan-Chen; Chou, Pei-Hsin; Ko, Wen-Chien

    2015-01-01

    Background Advances in Aeromonas taxonomy have led to the reclassification of aeromonads. Hereon, we aimed to re-evaluate the characteristics of Aeromonas bacteremia, including those of a novel species, Aeromonas dhakensis. Methodology/Principal Findings A retrospective study of monomicrobial Aeromonas bacteremia at a medical center in southern Taiwan from 2004–2011 was conducted. Species identification was based on rpoB sequencing. Of bacteremia of 153 eligible patients, A. veronii (50 isolates, 32.7%), A. dhakensis (48, 31.4%), A. caviae (43, 28.1%), and A. hydrophila (10, 6.5%) were the principal causative species. A. dhakensis and A. veronii bacteremia were mainly community-acquired and presented as primary bacteremia, spontaneous bacterial peritonitis, or skin and soft-tissue infection, whereas A. caviae was associated with hospital-onset bacteremia. The distribution of the AmpC β-lactamase and metallo-β-lactamase genes was species-specific: blaAQU-1, blaMOX, or blaCepH was present in A. dhakensis, A. caviae, or A. hydrophila, respectively, and blaCphA was present in A. veronii, A. dhakensis, and A. hydrophila. The cefotaxime resistance rates of the A. caviae, A. dhakensis, and A. hydrophila isolates were higher than that of A. veronii (39.5%%, 25.0%, and 30% vs. 2%, respectively). A. dhakensis bacteremia was linked to the highest 14-day sepsis-related mortality rate, followed by A. hydrophila, A. veronii, and A. caviae bacteremia (25.5%, 22.2%, 14.0%, and 4.7%, respectively; P = 0.048). Multivariate analysis revealed that A. dhakensis bacteremia, active malignancies, and a Pitt bacteremia score ≥ 4 was an independent mortality risk factor. Conclusions/Significance Characteristics of Aeromonas bacteremia vary between species. A. dhakensis prevalence and its associated poor outcomes suggest it an important human pathogen. PMID:25679227

  14. Identification of forensically important blowfly species (Diptera: Calliphoridae) by high-resolution melting PCR analysis.

    PubMed

    Malewski, Tadeusz; Draber-Mońko, Agnieszka; Pomorski, Jan; Łoś, Marta; Bogdanowicz, Wiesław

    2010-07-01

    We describe here the successful coupling of real-time polymerase chain reaction (PCR) and high-resolution melting (HRM) analysis to rapidly identify 15 forensically important species of blowfly from the family Calliphoridae (Diptera), which occur in Poland. Two short regions (119 and 70 base pairs, respectively) of cytochrome oxidase gene subunit I with sufficient sequence diversity were selected. In the case of lacking taxa (e.g., reference species) these amplicons can be synthesized using sequences deposited in gene banks. The technique utilizes low template DNA concentration and is highly reproducible. The melting profile was not altered up to a 10,000-fold difference in DNA template concentration (ranging from 5 pg to 50 ng). The several HRM runs performed on different specimens from Poland belonging to the same species and on different days resulted in only minor variations in the amplification curves and in melting temperatures of the peaks. Intraspecific variation in a larger scale was tested using synthesized oligonucleotides from cosmopolitan Lucilia illustris originating from Poland, France, Great Britain, India, and USA. As HRM PCR analysis is sensitive to even single base changes, all geographic variants of this species were identified. This technique is also cost-effective and simple, and it may even be used by non-geneticists. A working protocol was ultimately constructed for the purpose of rapid and accurate species identification in most countries in Europe regardless of which stage or which part of a blowfly was collected.

  15. Seasonal variation in accurate identification of Escherichia coli within a constructed wetland receiving tertiary-treated municipal effluent.

    PubMed

    McLain, Jean E T; Williams, Clinton F

    2008-09-01

    As the reuse of municipal wastewater escalates worldwide as a means to extend increasingly limited water supplies, accurate monitoring of water quality parameters, including Escherichia coli (E. coli), increases in importance. Chromogenic media are often used for detection of E. coli in environmental samples, but the presence of unique levels of organic and inorganic compounds alters reclaimed water chemistry, potentially hindering E. coli detection using enzyme-based chromogenic technology. Over seven months, we monitored E. coli levels using m-Coli Blue 24 broth in a constructed wetland filled with tertiary-treated municipal effluent. No E. coli were isolated in the wetland source waters, but E. coli, total coliforms, and heterotrophic bacteria increased dramatically within the wetland on all sampling dates, most probably due to fecal inputs from resident wildlife populations. Confirmatory testing of isolates presumptive for E. coli revealed a 41% rate of false-positive identification using m-Coli Blue 24 broth over seven months. Seasonal differences were evident, as false-positive rates averaged 35% in summer, but rose sharply to 75% in the late fall and winter. Corrected E. coli levels were significantly correlated with electrical conductivity, indicating that water chemistry may be controlling bacterial survival within the wetland. This is the first study to report that accuracy of chromogenic media for microbial enumeration in reclaimed water may show strong seasonal differences, and highlights the importance of validation of microbiological results from chromogenic media for accurate analysis of reclaimed water quality.

  16. [Application of mtDNA polymorphism in species identification of sarcosaphagous insects].

    PubMed

    Li, Xiang; Cai, Ji-feng

    2011-04-01

    Species identification of sarcosaphagous insects is one of the important steps in forensic research based on the knowledge of entomology. Recent studies reveal that the application of molecular biology, especially the mtDNA sequences analysis, works well in the species identification of sarcosaphagous insects. The molecular biology characteristics, structures, polymorphism of mtDNA of sarcosaphagous insects, and the recent studies in species identification of sarcosaphagous insects are reviewed in this article.

  17. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1

    PubMed Central

    Schultz, Zachery D.; Warrick, Jay W.; Guckenberger, David J.; Pezzi, Hannah M.; Sperger, Jamie M.; Heninger, Erika; Saeed, Anwaar; Leal, Ticiana; Mattox, Kara; Traynor, Anne M.; Campbell, Toby C.; Berry, Scott M.; Beebe, David J.; Lang, Joshua M.

    2016-01-01

    Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria

  18. Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use.

    PubMed

    Öztürk, Mehmet; Meterelliyöz, Merve

    2015-08-01

    Probiotics are gaining popularity and increasing the importance of their accurate speciation. Lactobacillus species are commonly used as probiotic strains mostly of clinical importance. Present knowledge indicates that at least 14 Lactobacillus species are associated with the human intestinal tract. Currently, researchers are interested in developing efficient techniques for screening and selecting probiotics bacteria, but unfortunately most of these methods are time-consuming, labor-intensive and costly. The aim of this study is to develop reliable, rapid and accurate method to identify 14 references Lactobacillus species that could have been found in the human alimentary tract by 16S ribosomal DNA restriction analysis. In this study, to develop an effective method for the genotype-based identification of the reference Lactobacillus species, 1.5 kb of 16S rRNA nucleotide sequences of 14 Lactobacillus were collected from the Gene Bank aligned, in silico restricted and analyzed in respect to their 16S-rRNA restriction fragment polymorphism. In silico restriction profiles of 16S-rRNA indicated that FspBI, HinfI and DraI restriction enzymes (RE) are convenient for differentiation of 14 Lactobacillus species in human intestinal tract except Lb. casei and Lb. paracasei. The patterns of our experimental findings obtained from 16S PCR-ARDRA completely confirmed our in silico patterns. The present work demonstrated that 16S PCR-ARDRA method with FspBI, HinfI and DraI RE is a rapid, accurate and reliable method for the identification of Lactobacillus species from human alimentary tract, especially during the identification of large numbers of isolates and any laboratory equipped with a thermo cycler for probiotic use.

  19. Nordic-Baltic Student Teachers' Identification of and Interest in Plant and Animal Species: The Importance of Species Identification and Biodiversity for Sustainable Development

    ERIC Educational Resources Information Center

    Palmberg, Irmeli; Berg, Ida; Jeronen, Eila; Kärkkäinen, Sirpa; Norrgård-Sillanpää, Pia; Persson, Christel; Vilkonis, Rytis; Yli-Panula, Eija

    2015-01-01

    Knowledge of species, interest in nature, and nature experiences are the factors that best promote interest in and understanding of environmental issues, biodiversity and sustainable life. The aim of this study is to investigate how well student teachers identify common local species, their interest in and ideas about species identification, and…

  20. Species identification and genetic differentiation of European cavity-nesting wasps (Hymenoptera: Vespidae, Pompilidae, Crabronidae) inferred from DNA barcoding data.

    PubMed

    Turčinavičienė, Jurga; Radzevičiūtė, Rita; Budrienė, Anna; Budrys, Eduardas

    2016-01-01

    Solitary trap-nesting wasps are prospective bioindicators of anthropogenic pressures on natural ecosystems and one of the surrogate taxa for biodiversity assessments. The implementation of these studies is taxonomy-based and relies on accurate identification of species. The identification of larval stages of cavity-nesting Hymenoptera, collected using trap-nests, is complicated or impossible before the post-hibernation hatching of adults. DNA barcoding may allow the identification of the trap-nesting Hymenoptera species immediately after collection of the trap-nests, using larvae or dead specimens as sources of DNA. Using the standard barcoding sequence, we identified 33 wasp species from the families Vespidae, Pompilidae and Crabronidae, inhabiting trap-nests in Europe. Within-species and between-species genetic distances were estimated to evaluate the differences of intraspecific and interspecific genetic diversity. Genetic distances between related species indicated an obvious "barcoding gap". Neighbour-joining analysis revealed that groups corresponding to taxa of genus level are cohesive as well. COI barcode approach was confirmed as a valuable tool for taxonomy-based biodiversity studies of the trap-nesting Hymenoptera.

  1. Molecular Identification of Mucor and Lichtheimia Species in Pure Cultures of Zygomycetes

    PubMed Central

    Ziaee, Ardeshir; Zia, Mohammadali; Bayat, Mansour; Hashemi, Jamal

    2016-01-01

    Background The Mucorales are an important opportunistic fungi that can cause mucormycosis in immunocompromised patients. The fast and precise diagnosis of mucormycosis is very important because, if the diagnosis is not made early enough, dissemination often occurs. It is now well established that molecular methods such as polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) are feasible and reliable tools for the early and accurate diagnosis of mucormycosis agents. Objectives The present study was conducted to evaluate the validity of PCR-RFLP for the identification of Mucorales and some important Mucor and Lichtheimia species in pure cultures of Zygomycetes. Materials and Methods Specific sense and anti-sense primers were used to amplify the Mucorales, Mucor, and Lichtheimia DNA. The PCR products were digested by AfIII, XmnI, and AcII restriction enzymes, and the resultant restriction pattern was analyzed. Results On the basis of the molecular and morphological data, we identified Mucor plumbeus (10.83%), M. circinelloides (9.17%), Lichtheimia corymbifera (9.17%), M. racemosus (5.83%), M. ramosissimus (3.33%), and L. blakesleeana (0.83%). Conclusions It seems that PCR-RFLP is a suitable technique for the identification of Mucorales at the species level. PMID:27284399

  2. Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees.

    PubMed

    Groussin, Mathieu; Hobbs, Joanne K; Szöllősi, Gergely J; Gribaldo, Simonetta; Arcus, Vickery L; Gouy, Manolo

    2015-01-01

    The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype-phenotype space in which proteins diversify.

  3. Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees.

    PubMed

    Groussin, Mathieu; Hobbs, Joanne K; Szöllősi, Gergely J; Gribaldo, Simonetta; Arcus, Vickery L; Gouy, Manolo

    2015-01-01

    The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype-phenotype space in which proteins diversify. PMID:25371435

  4. Identification and characterization of transcription networks in environmentally significant species

    SciTech Connect

    Lawrence, Charles E.; McCue, Lee Ann

    2005-11-30

    Understanding the regulation of gene expression, transcription regulation in particular, is one of the grand challenges of molecular biology. Transcription regulation is arguably the most important foundation of cellular function, since it exerts the most fundamental control of the abundance of virtually all of a cell's functional macromolecules. Nevertheless, this process, perhaps because of its difficulty, has been the subject of only a limited number of genomic level analyses. We have undertaken bioinformatics projects to address this issue by developing (1) a cross-species comparison method (i.e. phylogenetic footprinting) for the identification of transcription factor binding sites, (2) a Bayesian clustering method to identify regulons, (3) an improved scanning algorithm that uses a position weight matrix and several related species sequence data to locate transcription factor binding sites, and (4) a method to predict cognate binding sites for transcription factors of unknown specificity. These bioinformatics methods were developed using the model proteobacterium Escherichia coli, with further applications to the genomes of environmentally significant microbes (Rhodopseudomonas palustris, Shewanella oneidensis) in later years of the grant.

  5. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

    PubMed Central

    2010-01-01

    Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates. PMID:21073689

  6. CpDNA-based species identification and phylogeography: application to African tropical tree species.

    PubMed

    Duminil, J; Heuertz, M; Doucet, J-L; Bourland, N; Cruaud, C; Gavory, F; Doumenge, C; Navascués, M; Hardy, O J

    2010-12-01

    Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterizing the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and Erythrophleum suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic data set. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations. PMID:21091558

  7. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    PubMed Central

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-01-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408

  8. DNA barcoding for identification of sand fly species (Diptera: Psychodidae) from leishmaniasis-endemic areas of Peru.

    PubMed

    Nzelu, Chukwunonso O; Cáceres, Abraham G; Arrunátegui-Jiménez, Martín J; Lañas-Rosas, Máximo F; Yañez-Trujillano, Henrry H; Luna-Caipo, Deysi V; Holguín-Mauricci, Carlos E; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2015-05-01

    Phlebotomine sand flies are the only proven vectors of leishmaniases, a group of human and animal diseases. Accurate knowledge of sand fly species identification is essential in understanding the epidemiology of leishmaniasis and vector control in endemic areas. Classical identification of sand fly species based on morphological characteristics often remains difficult and requires taxonomic expertise. Here, we generated DNA barcodes of the cytochrome c oxidase subunit 1 (COI) gene using 159 adult specimens morphologically identified to be 19 species of sand flies, belonging to 6 subgenera/species groups circulating in Peru, including the vector species. Neighbor-joining (NJ) analysis based on Kimura 2-Parameter genetic distances formed non-overlapping clusters for all species. The levels of intraspecific genetic divergence ranged from 0 to 5.96%, whereas interspecific genetic divergence among different species ranged from 8.39 to 19.08%. The generated COI barcodes could discriminate between all the sand fly taxa. Besides its success in separating known species, we found that DNA barcoding is useful in revealing population differentiation and cryptic diversity, and thus promises to be a valuable tool for epidemiological studies of leishmaniasis.

  9. DNA barcoding for identification of sand fly species (Diptera: Psychodidae) from leishmaniasis-endemic areas of Peru.

    PubMed

    Nzelu, Chukwunonso O; Cáceres, Abraham G; Arrunátegui-Jiménez, Martín J; Lañas-Rosas, Máximo F; Yañez-Trujillano, Henrry H; Luna-Caipo, Deysi V; Holguín-Mauricci, Carlos E; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2015-05-01

    Phlebotomine sand flies are the only proven vectors of leishmaniases, a group of human and animal diseases. Accurate knowledge of sand fly species identification is essential in understanding the epidemiology of leishmaniasis and vector control in endemic areas. Classical identification of sand fly species based on morphological characteristics often remains difficult and requires taxonomic expertise. Here, we generated DNA barcodes of the cytochrome c oxidase subunit 1 (COI) gene using 159 adult specimens morphologically identified to be 19 species of sand flies, belonging to 6 subgenera/species groups circulating in Peru, including the vector species. Neighbor-joining (NJ) analysis based on Kimura 2-Parameter genetic distances formed non-overlapping clusters for all species. The levels of intraspecific genetic divergence ranged from 0 to 5.96%, whereas interspecific genetic divergence among different species ranged from 8.39 to 19.08%. The generated COI barcodes could discriminate between all the sand fly taxa. Besides its success in separating known species, we found that DNA barcoding is useful in revealing population differentiation and cryptic diversity, and thus promises to be a valuable tool for epidemiological studies of leishmaniasis. PMID:25697864

  10. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.

  11. Sequence-Based Identification of Mycobacterium Species Using the MicroSeq 500 16S rDNA Bacterial Identification System

    PubMed Central

    Patel, Jean Baldus; Leonard, Debra G. B.; Pan, Xai; Musser, James M.; Berman, Richard E.; Nachamkin, Irving

    2000-01-01

    We evaluated the MicroSeq 500 16S rDNA Bacterial Sequencing Kit (PE Applied Biosystems), a 500-bp sequence-based identification system, for its ability to identify clinical Mycobacterium isolates. The organism identity was determined by comparing the 16S rDNA sequence to the MicroSeq database, which consists primarily of type strain sequences. A total of 113 isolates (18 different species), previously recovered and identified by routine methods from two clinical laboratories, were analyzed by the MicroSeq method. Isolates with discordant results were analyzed by hsp65 gene sequence analysis and in some cases repeat phenotypic identification, AccuProbe rRNA hybridization (Gen-Probe, Inc., San Diego, Calif.), or high-performance liquid chromatography of mycolic acids. For 93 (82%) isolates, the MicroSeq identity was concordant with the previously reported identity. For 18 (16%) isolates, the original identification was discordant with the MicroSeq identification. Of the 18 discrepant isolates, 7 (six unique sequences) were originally misidentified by phenotypic analysis or the AccuProbe assay but were correctly identified by the MicroSeq assay. Of the 18 discrepant isolates, 11 (seven unique sequences) were unusual species that were difficult to identify by phenotypic methods and, in all but one case, by molecular methods. The remaining two isolates (2%) failed definitive phenotypic identification, but the MicroSeq assay was able to definitively identify one of these isolates. The MicroSeq identification system is an accurate and rapid method for the identification of Mycobacterium spp. PMID:10618095

  12. Teaching Species Identification--A Prerequisite for Learning Biodiversity and Understanding Ecology

    ERIC Educational Resources Information Center

    Randler, Christoph

    2008-01-01

    Animal and plant species identification is often emphasized as a basic prerequisite for an understanding of ecology and training identification skills seems a worthwhile task in biology education. Such identification tasks could be embedded into hands-on, group-based and self-determined learning: a) Teaching and learning should make use of a small…

  13. Nordic-Baltic Student Teachers' Identification of and Interest in Plant and Animal Species: The Importance of Species Identification and Biodiversity for Sustainable Development

    NASA Astrophysics Data System (ADS)

    Palmberg, Irmeli; Berg, Ida; Jeronen, Eila; Kärkkäinen, Sirpa; Norrgård-Sillanpää, Pia; Persson, Christel; Vilkonis, Rytis; Yli-Panula, Eija

    2015-10-01

    Knowledge of species, interest in nature, and nature experiences are the factors that best promote interest in and understanding of environmental issues, biodiversity and sustainable life. The aim of this study is to investigate how well student teachers identify common local species, their interest in and ideas about species identification, and their perceptions of the importance of species identification and biodiversity for sustainable development. Totally 456 student teachers for primary schools were tested using an identification test and a questionnaire consisting of fixed and open questions. A combination of quantitative and qualitative methods was used to get a more holistic view of students' level of knowledge and their preferred learning methods. The student teachers' ability to identify very common species was low, and only 3 % were able to identify most of the tested species. Experiential learning outdoors was suggested by the majority of students as the most efficient learning method, followed by experiential learning indoors, project work and experimental learning. They looked upon the identification of plants and animals as `important' or `very important' for citizens today and for sustainable development. Likewise, they looked upon biodiversity as `important' or `very important' for sustainable development. Our conclusion is that teaching and learning methods for identification and knowledge of species and for education of biodiversity and sustainable development should always include experiential and project-based methods in authentic environments.

  14. Estimating species-specific survival and movement when species identification is uncertain.

    PubMed

    Runge, Jonathan P; Hines, James E; Nichols, James D

    2007-02-01

    Incorporating uncertainty in the investigation of ecological studies has been the topic of an increasing body of research. In particular, mark-recapture methodology has shown that incorporating uncertainty in the probability of detecting individuals in populations enables accurate estimation of population-level processes such as survival, reproduction, and dispersal. Recent advances in mark-recapture methodology have included estimating population-level processes for biologically important groups despite the misassignment of individuals to those groups. Examples include estimating rates of apparent survival despite less than perfect accuracy when identifying individuals to gender or breeding state. Here we introduce a method for estimating apparent survival and dispersal in species that co-occur but that are difficult to distinguish. We use data from co-occurring populations of meadow voles (Microtus pennsylvanicus) and montane voles (M. montanus) in addition to simulated data to show that ignoring species uncertainty can lead to biased estimates of population processes. The incorporation of species uncertainty in mark-recapture studies should aid future research investigating ecological concepts such as interspecific competition, niche differentiation, and spatial population dynamics in sibling species. PMID:17479746

  15. Estimating species-specific suvival and movement when species identification is uncertain

    USGS Publications Warehouse

    Runge, J.P.; Hines, J.E.; Nichols, J.D.

    2007-01-01

    Incorporating uncertainty in the investigation of ecological studies has been the topic of an increasing body of research. In particular, mark?recapture methodology has shown that incorporating uncertainty in the probability of detecting individuals in populations enables accurate estimation of population-level processes such as survival, reproduction, and dispersal. Recent advances in mark?recapture methodology have included estimating population-level processes for biologically important groups despite the misassignment of individuals to those groups. Examples include estimating rates of apparent survival despite less than perfect accuracy when identifying individuals to gender or breeding state. Here we introduce a method for estimating apparent survival and dispersal in species that co-occur but that are difficult to distinguish. We use data from co-occurring populations of meadow voles (Microtus pennsylvanicus) and montane voles (M. montanus) in addition to simulated data to show that ignoring species uncertainty can lead to biased estimates of population processes. The incorporation of species uncertainty in mark?recapture studies should aid future research investigating ecological concepts such as interspecific competition, niche differentiation, and spatial population dynamics in sibling species.

  16. Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis.

    PubMed

    Jin, Dazhi; Luo, Yun; Zhang, Zheng; Fang, Weijia; Ye, Julian; Wu, Fang; Ding, Gangqiang

    2012-05-01

    Identification of Listeria species via a molecular method is critical for food safety and clinical diagnosis. In this study, an assay integrating real-time quantitative PCR (Q-PCR) with high-resolution melting (HRM) curve analysis was developed and assessed for rapid identification of six Listeria species. The ssrA gene, which encodes a transfer-messenger RNA (tmRNA) is conserved and common to all bacterial phyla, contains a variable domain in Listeria spp. Therefore, Q-PCR and a HRM profile were applied to characterize this gene. Fifty-three Listeria species and 45 non-Listeria species were detected using one primer set, with an accuracy of 100% in reference to conventional methods. There was a 93.3% correction rate to 30 artificially contaminated samples. Thus, Q-PCR with melting profiling analysis proved able to identify Listeria species accurately. Consequently, this study demonstrates that the assay we developed is a functional tool for rapidly identifying six Listeria species, and has the potential for discriminating novel species food safety and epidemiological research.

  17. Lactobacillus species identification by amplified ribosomal 16S-23S rRNA restriction fragment length polymorphism analysis.

    PubMed

    Sandes, S H C; Alvin, L B; Silva, B C; Zanirati, D F; Jung, L R C; Nicoli, J R; Neumann, E; Nunes, A C

    2014-12-01

    Lactic acid bacteria strains are commonly used for animal and human consumption due to their probiotic properties. One of the major genera used is Lactobacillus, a highly diverse genus comprised of several closely related species. The selection of new strains for probiotic use, especially strains of Lactobacillus, is the focus of several research groups. Accurate identification to species level is fundamental for research on new strains, as well as for safety assessment and quality assurance. The 16S-23S internal transcribed spacer (ITS-1) is a deeply homologous region among prokaryotes that is commonly used for identification to the species level because it is able to acquire and accumulate mutations without compromising general bacterial metabolism. In the present study, 16S-23S ITS regions of 45 Lactobacillus species (48 strains) were amplified and subjected to independent enzymatic digestions, using 12 restriction enzymes that recognise six-base sequences. Twenty-nine species showed unique restriction patterns, and could therefore be precisely identified solely by this assay (64%). This approach proved to be reproducible, allowing us to establish simplified restriction patterns for each evaluated species. The restriction patterns of each species were similar among homologous strains, and to a large extent reflected phylogenetic relationships based on 16S rRNA sequences, demonstrating the promising nature of this region for evolutionary studies.

  18. Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species

    PubMed Central

    Legat, Andrea; Gruber, Claudia; Zangger, Klaus; Wanner, Gerhard

    2010-01-01

    Polyhydroxyalkanoates (PHAs) are accumulated in many prokaryotes. Several members of the Halobacteriaceae produce poly-3-hydroxybutyrate (PHB), but it is not known if this is a general property of the family. We evaluated identification methods for PHAs with 20 haloarchaeal species, three of them isolates from Permian salt. Staining with Sudan Black B, Nile Blue A, or Nile Red was applied to screen for the presence of PHAs. Transmission electron microscopy and 1H-nuclear magnetic resonance spectroscopy were used for visualization of PHB granules and chemical confirmation of PHAs in cell extracts, respectively. We report for the first time the production of PHAs by Halococcus sp. (Halococcus morrhuae DSM 1307T, Halococcus saccharolyticus DSM 5350T, Halococcus salifodinae DSM 8989T, Halococcus dombrowskii DSM 14522T, Halococcus hamelinensis JCM 12892T, Halococcus qingdaonensis JCM 13587T), Halorubrum sp. (Hrr. coriense DSM 10284T, Halorubrum chaoviator DSM 19316T, Hrr. chaoviator strains NaxosII and AUS-1), haloalkaliphiles (Natronobacterium gregoryi NCMB 2189T, Natronococcus occultus DSM 3396T) and Halobacterium noricense DSM 9758T. No PHB was detected in Halobacterium salinarum NRC-1 ATCC 700922, Hbt. salinarum R1 and Haloferax volcanii DSM 3757T. Most species synthesized PHAs when growing in synthetic as well as in complex medium. The polyesters were generally composed of PHB and poly-ß-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). Available genomic data suggest the absence of PHA synthesis in some haloarchaea and in all other Euryarchaeota and Crenarchaeota. Homologies between haloarchaeal and bacterial PHA synthesizing enzymes had indicated to some authors probable horizontal gene transfer, which, considering the data obtained in this study, may have occurred already before Permian times. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2611-6) contains supplementary material, which is available to authorized users

  19. Identification of mycobacterial species by PCR restriction enzyme analysis of the hsp65 gene—an Indian experience.

    PubMed

    Verma, Ajoy Kumar; Kumar, Gavish; Arora, Jyoti; Singh, Paras; Arora, Vijay Kumar; Myneedu, Vithal Prasad; Sarin, Rohit

    2015-04-01

    Nowadays, nontuberculous mycobacteria (NTM) often cause pulmonary and extrapulmonary disease. Species identification of NTM determines the line of treatment and management of the disease. The routine diagnostic methods, i.e., smear microscopy and biochemical identification, of nontuberculous mycobacteria are tedious and time consuming and not all laboratories can perform these tests on a routine basis. A PCR targeting the hsp65 gene was implemented using standard strains and was applied to 109 clinical isolates. The PCR-amplified product was subjected to restriction enzyme analysis using BstEII and HaeIII. The results obtained were compared with that of biochemical tests. Of 109 NTM, 107 were identified to species level. PCR plus restriction enzyme analysis (PRA) identified 12 types of NTM. Common species identified were Mycobacterium chelonae (32), a rapid growing NTM, and Mycobacterium avium complex (21), among the slow growing NTM. PRA and biochemical identification showed 95.32% (102/107) concordant results. PRA is fast, cheap, and accurate for identification of potentially pathogenic NTM.

  20. Rapid identification of Candida dubliniensis using a species-specific molecular beacon.

    PubMed

    Park, S; Wong, M; Marras, S A; Cross, E W; Kiehn, T E; Chaturvedi, V; Tyagi, S; Perlin, D S

    2000-08-01

    Candida dubliniensis is an opportunistic fungal pathogen that has been linked to oral candidiasis in AIDS patients, although it has recently been isolated from other body sites. DNA sequence analysis of the internal transcribed spacer 2 (ITS2) region of rRNA genes from reference Candida strains was used to develop molecular beacon probes for rapid, high-fidelity identification of C. dubliniensis as well as C. albicans. Molecular beacons are small nucleic acid hairpin probes that brightly fluoresce when they are bound to their targets and have a significant advantage over conventional nucleic acid probes because they exhibit a higher degree of specificity with better signal-to-noise ratios. When applied to an unknown collection of 23 strains that largely contained C. albicans and a smaller amount of C. dubliniensis, the species-specific probes were 100% accurate in identifying both species following PCR amplification of the ITS2 region. The results obtained with the molecular beacons were independently verified by random amplified polymorphic DNA analysis-based genotyping and by restriction enzyme analysis with enzymes BsmAI and NspBII, which cleave recognition sequences within the ITS2 regions of C. dubliniensis and C. albicans, respectively. Molecular beacons are promising new probes for the rapid detection of Candida species.

  1. A DNA-based method for identification of krill species and its application to analysing the diet of marine vertebrate predators.

    PubMed

    Jarman, S N; Gales, N J; Tierney, M; Gill, P C; Elliott, N G

    2002-12-01

    Accurate identification of species that are consumed by vertebrate predators is necessary for understanding marine food webs. Morphological methods for identifying prey components after consumption often fail to make accurate identifications of invertebrates because prey morphology becomes damaged during capture, ingestion and digestion. Another disadvantage of morphological methods for prey identification is that they often involve sampling procedures that are disruptive for the predator, such as stomach flushing or lethal collection. We have developed a DNA-based method for identifying species of krill (Crustacea: Malacostraca), an enormously abundant group of invertebrates that are directly consumed by many groups of marine vertebrates. The DNA-based approach allows identification of krill species present in samples of vertebrate stomach contents, vomit, and, more importantly, faeces. Utilizing samples of faeces from vertebrate predators minimizes the impact of dietary studies on the subject animals. We demonstrate our method first on samples of Adelie penguin (Pygoscelis adeliae) stomach contents, where DNA-based species identification can be confirmed by prey morphology. We then apply the method to faeces of Adelie penguins and to faeces of the endangered pygmy blue whale (Balaenoptera musculus brevicauda). In each of these cases, krill species consumed by the predators could be identified from their DNA present in faeces or stomach contents.

  2. Species Distribution 2.0: An Accurate Time- and Cost-Effective Method of Prospection Using Street View Imagery

    PubMed Central

    Schwoertzig, Eugénie; Millon, Alexandre

    2016-01-01

    Species occurrence data provide crucial information for biodiversity studies in the current context of global environmental changes. Such studies often rely on a limited number of occurrence data collected in the field and on pseudo-absences arbitrarily chosen within the study area, which reduces the value of these studies. To overcome this issue, we propose an alternative method of prospection using geo-located street view imagery (SVI). Following a standardised protocol of virtual prospection using both vertical (aerial photographs) and horizontal (SVI) perceptions, we have surveyed 1097 randomly selected cells across Spain (0.1x0.1 degree, i.e. 20% of Spain) for the presence of Arundo donax L. (Poaceae). In total we have detected A. donax in 345 cells, thus substantially expanding beyond the now two-centuries-old field-derived record, which described A. donax only 216 cells. Among the field occurrence cells, 81.1% were confirmed by SVI prospection to be consistent with species presence. In addition, we recorded, by SVI prospection, 752 absences, i.e. cells where A. donax was considered absent. We have also compared the outcomes of climatic niche modeling based on SVI data against those based on field data. Using generalized linear models fitted with bioclimatic predictors, we have found SVI data to provide far more compelling results in terms of niche modeling than does field data as classically used in SDM. This original, cost- and time-effective method provides the means to accurately locate highly visible taxa, reinforce absence data, and predict species distribution without long and expensive in situ prospection. At this time, the majority of available SVI data is restricted to human-disturbed environments that have road networks. However, SVI is becoming increasingly available in natural areas, which means the technique has considerable potential to become an important factor in future biodiversity studies. PMID:26751565

  3. Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data.

    PubMed

    Garrick, Ryan C; Collins, Benjamin D; Yi, Rachel N; Dyer, Rodney J; Hyseni, Chaz

    2015-01-01

    Reticulitermes termites play key roles in dead wood decomposition and nutrient cycling in forests. They also damage man-made structures, resulting in considerable economic loss. In the eastern United States, five species (R. flavipes, R. virginicus, R. nelsonae, R. hageni and R. malletei) have overlapping ranges and are difficult to distinguish morphologically. Here we present a molecular tool for species identification. It is based on polymerase chain reaction (PCR) amplification of a section of the mitochondrial cytochrome oxidase subunit II gene, followed by a three-enzyme restriction fragment length polymorphism (RFLP) assay, with banding patterns resolved via agarose gel electrophoresis. The assay was designed using a large set of training data obtained from a public DNA sequence database, then evaluated using an independent test panel of Reticulitermes from the Southern Appalachian Mountains, for which species assignments were determined via phylogenetic comparison to reference sequences. After refining the interpretive framework, the PCR-RFLP assay was shown to provide accurate identification of four co-occurring species (the fifth species, R. hageni, was absent from the test panel, so accuracy cannot yet be extended to training data). The assay is cost- and time-efficient, and will help improve knowledge of Reticulitermes species distributions. PMID:26463202

  4. Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data

    PubMed Central

    Garrick, Ryan C.; Collins, Benjamin D.; Yi, Rachel N.; Dyer, Rodney J.; Hyseni, Chaz

    2015-01-01

    Reticulitermes termites play key roles in dead wood decomposition and nutrient cycling in forests. They also damage man-made structures, resulting in considerable economic loss. In the eastern United States, five species (R. flavipes, R. virginicus, R. nelsonae, R. hageni and R. malletei) have overlapping ranges and are difficult to distinguish morphologically. Here we present a molecular tool for species identification. It is based on polymerase chain reaction (PCR) amplification of a section of the mitochondrial cytochrome oxidase subunit II gene, followed by a three-enzyme restriction fragment length polymorphism (RFLP) assay, with banding patterns resolved via agarose gel electrophoresis. The assay was designed using a large set of training data obtained from a public DNA sequence database, then evaluated using an independent test panel of Reticulitermes from the Southern Appalachian Mountains, for which species assignments were determined via phylogenetic comparison to reference sequences. After refining the interpretive framework, the PCR-RFLP assay was shown to provide accurate identification of four co-occurring species (the fifth species, R. hageni, was absent from the test panel, so accuracy cannot yet be extended to training data). The assay is cost- and time-efficient, and will help improve knowledge of Reticulitermes species distributions. PMID:26463202

  5. Probabilistic Identification of Cerebellar Cortical Neurones across Species

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.; Heiney, Shane A.; Blazquez, Pablo M.; Meng, Hui; Angelaki, Dora E.; Arenz, Alexander; Margrie, Troy W.; Mostofi, Abteen; Edgley, Steve; Bengtsson, Fredrik; Ekerot, Carl-Fredrik; Jörntell, Henrik; Dalley, Jeffrey W.; Holtzman, Tahl

    2013-01-01

    Despite our fine-grain anatomical knowledge of the cerebellar cortex, electrophysiological studies of circuit information processing over the last fifty years have been hampered by the difficulty of reliably assigning signals to identified cell types. We approached this problem by assessing the spontaneous activity signatures of identified cerebellar cortical neurones. A range of statistics describing firing frequency and irregularity were then used, individually and in combination, to build Gaussian Process Classifiers (GPC) leading to a probabilistic classification of each neurone type and the computation of equi-probable decision boundaries between cell classes. Firing frequency statistics were useful for separating Purkinje cells from granular layer units, whilst firing irregularity measures proved most useful for distinguishing cells within granular layer cell classes. Considered as single statistics, we achieved classification accuracies of 72.5% and 92.7% for granular layer and molecular layer units respectively. Combining statistics to form twin-variate GPC models substantially improved classification accuracies with the combination of mean spike frequency and log-interval entropy offering classification accuracies of 92.7% and 99.2% for our molecular and granular layer models, respectively. A cross-species comparison was performed, using data drawn from anaesthetised mice and decerebrate cats, where our models offered 80% and 100% classification accuracy. We then used our models to assess non-identified data from awake monkeys and rabbits in order to highlight subsets of neurones with the greatest degree of similarity to identified cell classes. In this way, our GPC-based approach for tentatively identifying neurones from their spontaneous activity signatures, in the absence of an established ground-truth, nonetheless affords the experimenter a statistically robust means of grouping cells with properties matching known cell classes. Our approach therefore

  6. [Research on airborne hyperspectral identification of red tide organism dominant species based on SVM].

    PubMed

    Ma, Yi; Zhang, Jie; Cui, Ting-wei

    2006-12-01

    Airborne hyperspectral identification of red tide organism dominant species can provide technique for distinguishing red tide and its toxin, and provide support for scaling the disaster. Based on support vector machine(SVM), the present paper provides an identification model of red tide dominant species. Utilizing this model, the authors accomplished three identification experiments with the hyperspectral data obtained on 16th July, and 19th and 25th August, 2001. It is shown from the identification results that the model has a high precision and is not restricted by high dimension of the hyperspectral data.

  7. A Novel Method of Automatic Plant Species Identification Using Sparse Representation of Leaf Tooth Features

    PubMed Central

    Jin, Taisong; Hou, Xueliang; Li, Pifan; Zhou, Feifei

    2015-01-01

    Automatic species identification has many advantages over traditional species identification. Currently, most plant automatic identification methods focus on the features of leaf shape, venation and texture, which are promising for the identification of some plant species. However, leaf tooth, a feature commonly used in traditional species identification, is ignored. In this paper, a novel automatic species identification method using sparse representation of leaf tooth features is proposed. In this method, image corners are detected first, and the abnormal image corner is removed by the PauTa criteria. Next, the top and bottom leaf tooth edges are discriminated to effectively correspond to the extracted image corners; then, four leaf tooth features (Leaf-num, Leaf-rate, Leaf-sharpness and Leaf-obliqueness) are extracted and concatenated into a feature vector. Finally, a sparse representation-based classifier is used to identify a plant species sample. Tests on a real-world leaf image dataset show that our proposed method is feasible for species identification. PMID:26440281

  8. Identification of Clinically Relevant Fungi and Prototheca Species by rRNA Gene Sequencing and Multilocus PCR Coupled with Electrospray Ionization Mass Spectrometry

    PubMed Central

    Wang, Rui-Ying; Li, Li; Cao, Ya-Hui; Chen, Yan-Qiong; Zhao, Hua-Zhen; Zhang, Qiang-Qiang; Wu, Ji-Qin; Weng, Xin-Hua; Cheng, Xun-Jia; Zhu, Li-Ping

    2014-01-01

    Background Multilocus PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) is a new strategy for pathogen identification, but information about its application in fungal identification remains sparse. Methods One-hundred and twelve strains and isolates of clinically important fungi and Prototheca species were subjected to both rRNA gene sequencing and PCR/ESI-MS. Three regions of the rRNA gene were used as targets for sequencing: the 5′ end of the large subunit rRNA gene (D1/D2 region), and the internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions). Microbial identification (Micro ID), acquired by combining results of phenotypic methods and rRNA gene sequencing, was used to evaluate the results of PCR/ESI-MS. Results For identification of yeasts and filamentous fungi, combined sequencing of the three regions had the best performance (species-level identification rate of 93.8% and 81.8% respectively). The highest species-level identification rate was achieved by sequencing of D1/D2 for yeasts (92.2%) and ITS2 for filamentous fungi (75.8%). The two Prototheca species could be identified to species level by D1/D2 sequencing but not by ITS1 or ITS2. For the 102 strains and isolates within the coverage of PCR/ESI-MS identification, 87.3% (89/102) achieved species-level identification, 100% (89/89) of which were concordant to Micro ID on species/complex level. The species-level identification rates for yeasts and filamentous fungi were 93.9% (62/66) and 75% (27/36) respectively. Conclusions rRNA gene sequencing provides accurate identification information, with the best results obtained by a combination of ITS1, ITS2 and D1/D2 sequencing. Our preliminary data indicated that PCR/ESI-MS method also provides a rapid and accurate identification for many clinical relevant fungi. PMID:24835205

  9. FAst MEtabolizer (FAME): A rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes.

    PubMed

    Kirchmair, Johannes; Williamson, Mark J; Afzal, Avid M; Tyzack, Jonathan D; Choy, Alison P K; Howlett, Andrew; Rydberg, Patrik; Glen, Robert C

    2013-11-25

    FAst MEtabolizer (FAME) is a fast and accurate predictor of sites of metabolism (SoMs). It is based on a collection of random forest models trained on diverse chemical data sets of more than 20 000 molecules annotated with their experimentally determined SoMs. Using a comprehensive set of available data, FAME aims to assess metabolic processes from a holistic point of view. It is not limited to a specific enzyme family or species. Besides a global model, dedicated models are available for human, rat, and dog metabolism; specific prediction of phase I and II metabolism is also supported. FAME is able to identify at least one known SoM among the top-1, top-2, and top-3 highest ranked atom positions in up to 71%, 81%, and 87% of all cases tested, respectively. These prediction rates are comparable to or better than SoM predictors focused on specific enzyme families (such as cytochrome P450s), despite the fact that FAME uses only seven chemical descriptors. FAME covers a very broad chemical space, which together with its inter- and extrapolation power makes it applicable to a wide range of chemicals. Predictions take less than 2.5 s per molecule in batch mode on an Ultrabook. Results are visualized using Jmol, with the most likely SoMs highlighted. PMID:24219364

  10. Identification of bacterial species by untargeted NMR spectroscopy of the exo-metabolome.

    PubMed

    Palama, T L; Canard, I; Rautureau, G J P; Mirande, C; Chatellier, S; Elena-Herrmann, B

    2016-08-01

    Identification of bacterial species is a crucial bottleneck for clinical diagnosis of infectious diseases. Quick and reliable identification is a key factor to provide suitable antibiotherapies and avoid the development of multiple-drug resistance. We propose a novel nuclear magnetic resonance (NMR)-based metabolomics strategy for rapid discrimination and identification of several bacterial species that relies on untargeted metabolic profiling of supernatants from bacterial culture media. We show that six bacterial species (Gram negative: Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis; Gram positive: Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus saprophyticus) can be well discriminated from multivariate statistical analysis, opening new prospects for NMR applications to microbial clinical diagnosis. PMID:27349704

  11. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...

  12. Use of CHROMagar Candida for the presumptive identification of Candida species directly from clinical specimens in resource-limited settings

    PubMed Central

    Nadeem, Sayyada Ghufrana; Hakim, Shazia Tabassum; Kazmi, Shahana Urooj

    2010-01-01

    Introduction Identification of yeast isolated from clinical specimens to the species level has become increasingly important. Ever-increasing numbers of immuno-suppressed patients, a widening range of recognized pathogens, and the discovery of resistance to antifungal drugs are contributing factors to this necessity. Material and methods A total of 487 yeast strains were studied for the primary isolation and presumptive identification, directly from clinical specimen. Efficacy of CHROMagar Candida has been evaluated with conventional methods including morphology on Corn meal–tween 80 agar and biochemical methods by using API 20 C AUX. Results The result of this study shows that CHROMagar Candida can easily identify three species of Candida on the basis of colonial color and morphology, and accurately differentiate between them i.e. Candida albicans, Candida tropicalis, and Candida krusei. The specificity and sensitivity of CHROMagar Candida for C. albicans calculated as 99%, for C. tropicalis calculated as 98%, and C. krusei it is 100%. Conclusion The data presented supports the use of CHROMagar Candida for the rapid identification of Candida species directly from clinical specimens in resource-limited settings, which could be very helpful in developing appropriate therapeutic strategy and management of patients. PMID:21483597

  13. Identification of tuna species in commercial cans by minor groove binder probe real-time polymerase chain reaction analysis of mitochondrial DNA sequences.

    PubMed

    Terio, Valentina; Di Pinto, Pietro; Decaro, Nicola; Parisi, Antonio; Desario, Costantina; Martella, Vito; Buonavoglia, Canio; Tantillo, Marilia Giuseppina

    2010-12-01

    Three different minor groove binder (MGB) probe assays have been developed for rapid and accurate identification of the species commonly used for production of canned tuna, i.e. yellowfin (Thunnus albacares), bluefin (Thunnus thynnus) and albacore (Thunnus alalunga) tunas. The assays targeting the mitochondrial cytochrome b gene were able to discriminate efficiently between the three species contained in fresh or canned tunas and did not react with other Scombroidei that were tested. A correct species prediction was obtained even from artificial mixtures prepared with different amounts of the reference tuna species and subjected to the sterilisation treatment. Testing of 27 commercial canned tunas by PCR-RFLP, MGB probe assays and sequence analysis showed a concordance of 100% between the last two techniques, whereas by using PCR-RFLP several samples were uncharacterised or mischaracterised. These results make the established MGB probe assays an attractive tool for direct and rapid species identification in canned tuna. PMID:20691254

  14. Species From Feces: Order-Wide Identification of Chiroptera From Guano and Other Non-Invasive Genetic Samples

    PubMed Central

    Williamson, Charles H. D.; Sanchez, Daniel E.; Sobek, Colin J.; Chambers, Carol L.

    2016-01-01

    Bat guano is a relatively untapped reservoir of information, having great utility as a DNA source because it is often available at roosts even when bats are not and is an easy type of sample to collect from a difficult-to-study mammalian order. Recent advances from microbial community studies in primer design, sequencing, and analysis enable fast, accurate, and cost-effective species identification. Here, we borrow from this discipline to develop an order-wide DNA mini-barcode assay (Species from Feces) based on a segment of the mitochondrial gene cytochrome c oxidase I (COI). The assay works effectively with fecal DNA and is conveniently transferable to low-cost, high-throughput Illumina MiSeq technology that also allows simultaneous pairing with other markers. Our PCR primers target a region of COI that is highly discriminatory among Chiroptera (92% species-level identification of barcoded species), and are sufficiently degenerate to allow hybridization across diverse bat taxa. We successfully validated our system with 54 bat species across both suborders. Despite abundant arthropod prey DNA in guano, our primers were highly specific to bats; no arthropod DNA was detected in thousands of feces run on Sanger and Illumina platforms. The assay is extendable to fecal pellets of unknown age as well as individual and pooled guano, to allow for individual (using singular fecal pellets) and community (using combined pellets collected from across long-term roost sites) analyses. We developed a searchable database (http://nau.edu/CEFNS/Forestry/Research/Bats/Search-Tool/) that allows users to determine the discriminatory capability of our markers for bat species of interest. Our assay has applications worldwide for examining disease impacts on vulnerable species, determining species assemblages within roosts, and assessing the presence of bat species that are vulnerable or facing extinction. The development and analytical pathways are rapid, reliable, and inexpensive, and

  15. Identification of species in tribe Brassiceae by dot-blot hybridization using species-specific ITS1 probes.

    PubMed

    Tonosaki, K; Nishio, Takeshi

    2010-10-01

    Simple, reliable methods for identification of species are required for management of many species and lines in a plant gene bank. Species-specific probes were designed from published sequences of the ITS1 region in rDNA of 16 species in Brassica and its related genera, and used as probes for dot-blot hybridization with plant genomic DNA. All the probes detected species-specific signals at dot-blots of genomic DNAs of the 16 species in Brassica, Diplotaxis, Eruca, and Raphanus. Signals of the Brassica digenomic species in the U's triangle, i.e., B. napus, B. juncea, and B. carinata, were detected by the probes of their parental monogenomic species, i.e., B. rapa, B. nigra, and B. oleracea. The probe for B. oleracea showed signals of B. balearica, B. cretica, B. incana, B. insularis, and B. macrocarpa, which have the C genome as B. oleracea. Eruca vesicaria DNA was detected by the probe for E. sativa, which has been classified as a subspecies of E. vescaria. DNA of leaf tissue extracted by an alkaline solution and seed DNA prepared by the NaI method can be used directly for dot-blotting. Misidentification of species was revealed in 20 accessions in the Tohoku University Brassica Seed Bank. These results indicate dot-blot hybridization to be a simple and efficient technique for identification of plant species in a gene bank.

  16. DEVELOPMENT OF DNA-BASED TOOLS FOR IDENTIFICATION AND MONITORING OF AQUATIC INTRODUCED SPECIES

    EPA Science Inventory

    Claims for potential applications of DNA taxonomy range from identification of unknown specimens and the discovery of new species to the study of biodiversity through comprehensive characterizations of complex biotic communities drawn from environmental samples. Recently, these a...

  17. Identification of Pathogenic Rare Yeast Species in Clinical Samples: Comparison between Phenotypical and Molecular Methods▿

    PubMed Central

    Cendejas-Bueno, Emilio; Gomez-Lopez, Alicia; Mellado, Emilia; Rodriguez-Tudela, Juan L.; Cuenca-Estrella, Manuel

    2010-01-01

    Species identification using both phenotypic and molecular methods and antifungal susceptibility tests was carried out with 60 uncommon clinical yeasts. Our data show that phenotypic methods were insufficient for correct identification (only 25%) and that most of the wrongly identified strains showed a resistant antifungal profile. PMID:20237094

  18. Confocal Raman microscopy for identification of bacterial species in biofilms

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  19. Identification of novel Cryptosporidium species in aquarium fish.

    PubMed

    Zanguee, N; Lymbery, J A; Lau, J; Suzuki, A; Yang, R; Ng, J; Ryan, U

    2010-11-24

    Little is known about the prevalence and genotypes of Cryptosporidium in fish. The present study investigated the prevalence of Cryptosporidium species in 200 aquarium fish of 39 different species in Western Australia by PCR amplification at the 18S rRNA locus. A total of 21 positives were detected by PCR (10.5% prevalence) from 13 different species of fish. Nineteen of these isolates were successfully sequenced. Of these, 12 were similar or identical to previously described species/genotypes of Cryptosporidium, while the remaining seven isolates appeared to represent three novel species.

  20. PCR-RFLP on β-tubulin gene for rapid identification of the most clinically important species of Aspergillus.

    PubMed

    Nasri, Tuba; Hedayati, Mohammad Taghi; Abastabar, Mahdi; Pasqualotto, Alessandro C; Armaki, Mojtaba Taghizadeh; Hoseinnejad, Akbar; Nabili, Mojtaba

    2015-10-01

    Aspergillus species are important agents of life-threatening infections in immunosuppressed patients. Proper speciation in the Aspergilli has been justified based on varied fungal virulence, clinical presentations, and antifungal resistance. Accurate identification of Aspergillus species usually relies on fungal DNA sequencing but this requires expensive equipment that is not available in most clinical laboratories. We developed and validated a discriminative low-cost PCR-based test to discriminate Aspergillus isolates at the species level. The Beta tubulin gene of various reference strains of Aspergillus species was amplified using the universal fungal primers Bt2a and Bt2b. The PCR products were subjected to digestion with a single restriction enzyme AlwI. All Aspergillus isolates were subjected to DNA sequencing for final species characterization. The PCR-RFLP test generated unique patterns for six clinically important Aspergillus species, including Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus terreus, Aspergillus clavatus and Aspergillus nidulans. The one-enzyme PCR-RFLP on Beta tubulin gene designed in this study is a low-cost tool for the reliable and rapid differentiation of the clinically important Aspergillus species.

  1. A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance.

    PubMed

    Farajollahi, Ary; Price, Dana C

    2013-09-01

    Mosquitoes are the single most important taxon of arthropods affecting human health globally, and container-inhabiting Aedes are important vectors of arthropod-borne viruses. Desiccation-resistant eggs of container Aedes have facilitated their invasion into new areas, primarily through transportation via the international trade in used tires. The public health threat from an introduced exotic species into a new area is imminent, and proactive measures are needed to identify significant vectors before onset of epidemic disease. In many cases, vector control is the only means to combat exotic diseases. Accurate identification of vectors is crucial to initiate aggressive control measures; however, many vector control personnel are not properly trained to identify introduced species in new geographic areas. We provide updated geographical ranges and a rapid identification guide with detailed larval photographs of the most common container-inhabiting Aedes in North America. Our key includes 5 native species (Aedes atropalpus, Ae. epactius, Ae. hendersoni, Ae. sierrensis, Ae. triseriatus) and 3 invasive species (Ae. aegypti, Ae. albopictus, Ae. japonicus).

  2. Current practices in the identification of critical habitat for threatened species.

    PubMed

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. PMID:25472827

  3. Current practices in the identification of critical habitat for threatened species.

    PubMed

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections.

  4. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil.

    PubMed

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha; Peixoto, Alexandre Afranio

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23-19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.

  5. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil

    PubMed Central

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23–19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil. PMID:26506007

  6. Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry Using the Vitek MS System for Rapid and Accurate Identification of Dermatophytes on Solid Cultures

    PubMed Central

    Monnin, Valérie; Girard, Victoria; Welker, Martin; Arsac, Maud; Cellière, Béatrice; Durand, Géraldine; Bosshard, Philipp P.; Farina, Claudio; Passera, Marco; Van Belkum, Alex; Petrini, Orlando; Tonolla, Mauro

    2014-01-01

    The objective of this research was to extend the Vitek MS fungal knowledge base version 2.0.0 to allow the robust identification of clinically relevant dermatophytes, using a variety of strains, incubation times, and growth conditions. First, we established a quick and reliable method for sample preparation to obtain a reliable and reproducible identification independently of the growth conditions. The Vitek MS V2.0.0 fungal knowledge base was then expanded using 134 well-characterized strains belonging to 17 species in the genera Epidermophyton, Microsporum, and Trichophyton. Cluster analysis based on mass spectrum similarity indicated good species discrimination independently of the culture conditions. We achieved a good separation of the subpopulations of the Trichophyton anamorph of Arthroderma benhamiae and of anthropophilic and zoophilic strains of Trichophyton interdigitale. Overall, the 1,130 mass spectra obtained for dermatophytes gave an estimated identification performance of 98.4%. The expanded fungal knowledge base was then validated using 131 clinical isolates of dermatophytes belonging to 13 taxa. For 8 taxa all strains were correctly identified, and for 3 the rate of successful identification was >90%; 75% (6/8) of the M. gypseum strains were correctly identified, whereas only 47% (18/38) of the African T. rubrum population (also called T. soudanense) were recognized accurately, with a large quantity of strains misidentified as T. violaceum, demonstrating the close relationship of these two taxa. The method of sample preparation was fast and efficient and the expanded Vitek MS fungal knowledge base reliable and robust, allowing reproducible dermatophyte identifications in the routine laboratory. PMID:25297329

  7. Comparing Multiple Criteria for Species Identification in Two Recently Diverged Seabirds

    PubMed Central

    Militão, Teresa; Gómez-Díaz, Elena; Kaliontzopoulou, Antigoni; González-Solís, Jacob

    2014-01-01

    Correct species identification is a crucial issue in systematics with key implications for prioritising conservation effort. However, it can be particularly challenging in recently diverged species due to their strong similarity and relatedness. In such cases, species identification requires multiple and integrative approaches. In this study we used multiple criteria, namely plumage colouration, biometric measurements, geometric morphometrics, stable isotopes analysis (SIA) and genetics (mtDNA), to identify the species of 107 bycatch birds from two closely related seabird species, the Balearic (Puffinus mauretanicus) and Yelkouan (P. yelkouan) shearwaters. Biometric measurements, stable isotopes and genetic data produced two stable clusters of bycatch birds matching the two study species, as indicated by reference birds of known origin. Geometric morphometrics was excluded as a species identification criterion since the two clusters were not stable. The combination of plumage colouration, linear biometrics, stable isotope and genetic criteria was crucial to infer the species of 103 of the bycatch specimens. In the present study, particularly SIA emerged as a powerful criterion for species identification, but temporal stability of the isotopic values is critical for this purpose. Indeed, we found some variability in stable isotope values over the years within each species, but species differences explained most of the variance in the isotopic data. Yet this result pinpoints the importance of examining sources of variability in the isotopic data in a case-by-case basis prior to the cross-application of the SIA approach to other species. Our findings illustrate how the integration of several methodological approaches can help to correctly identify individuals from recently diverged species, as each criterion measures different biological phenomena and species divergence is not expressed simultaneously in all biological traits. PMID:25541978

  8. Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting.

    PubMed

    Böhme, Karola; Fernández-No, Inmaculada C; Barros-Velázquez, Jorge; Gallardo, Jose M; Cañas, Benito; Calo-Mata, Pilar

    2011-11-01

    The rapid identification of food pathogenic and spoilage bacteria is important to ensure food quality and safety. Seafood contaminated with pathogenic bacteria is one of the major causes of food intoxications, and the rapid spoilage of seafood products results in high economic losses. In this study, a collection of the main seafood pathogenic and spoilage Gram-positive bacteria was compiled, including Bacillus spp., Listeria spp., Clostridium spp., Staphylococcus spp. and Carnobacterium spp. The strains, belonging to 20 different species, were obtained from the culture collections and studied by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A reference library was created, including the spectral fingerprints of 32 reference strains and the extracted peak lists with 10-30 peak masses. Genus-specific as well as species-specific peak masses were assigned and could serve as biomarkers for the rapid bacterial identification. Furthermore, the peak mass lists were clustered with the web-application SPECLUST to show the phyloproteomic relationships among the studied strains. Afterwards, the method was successfully applied to identify six strains isolated from seafood by comparison with the reference library. Additionally, phylogenetic analysis based on the 16S rRNA gene was carried out and contrasted with the proteomic approach. This is the first time MALDI-TOF MS fingerprinting is applied to Gram-positive bacterial identification in seafood, being a fast and accurate technique to ensure seafood quality and safety.

  9. Multicenter Evaluation of Candida QuickFISH BC for Identification of Candida Species Directly from Blood Culture Bottles

    PubMed Central

    Abdelhamed, Ayman M.; Zhang, Sean X.; Watkins, Tonya; Morgan, Margie A.; Wu, Fann; Buckner, Rebecca J.; Fuller, DeAnna D.; Davis, Thomas E.; Salimnia, Hossein; Fairfax, Marilynn R.; Lephart, Paul R.; Poulter, Melinda D.; Regi, Sarah B.

    2015-01-01

    Candida species are common causes of bloodstream infections (BSI), with high mortality. Four species cause >90% of Candida BSI: C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis. Differentiation of Candida spp. is important because of differences in virulence and antimicrobial susceptibility. Candida QuickFISH BC, a multicolor, qualitative nucleic acid hybridization assay for the identification of C. albicans (green fluorescence), C. glabrata (red fluorescence), and C. parapsilosis (yellow fluorescence), was tested on Bactec and BacT/Alert blood culture bottles which signaled positive on automated blood culture devices and were positive for yeast by Gram stain at seven study sites. The results were compared to conventional identification. A total of 419 yeast-positive blood culture bottles were studied, consisting of 258 clinical samples (89 C. glabrata, 79 C. albicans, 23 C. parapsilosis, 18 C. tropicalis, and 49 other species) and 161 contrived samples inoculated with clinical isolates (40 C. glabrata, 46 C. albicans, 36 C. parapsilosis, 19 C. tropicalis, and 20 other species). A total of 415 samples contained a single fungal species, with C. glabrata (n = 129; 30.8%) being the most common isolate, followed by C. albicans (n = 125; 29.8%), C. parapsilosis (n = 59; 14.1%), C. tropicalis (n = 37; 8.8%), and C. krusei (n = 17; 4.1%). The overall agreement (with range for the three major Candida species) between the two methods was 99.3% (98.3 to 100%), with a sensitivity of 99.7% (98.3 to 100%) and a specificity of 98.0% (99.4 to 100%). This study showed that Candida QuickFISH BC is a rapid and accurate method for identifying C. albicans, C. glabrata, and C. parapsilosis, the three most common Candida species causing BSI, directly from blood culture bottles. PMID:25762766

  10. Uas Based Tree Species Identification Using the Novel FPI Based Hyperspectral Cameras in Visible, NIR and SWIR Spectral Ranges

    NASA Astrophysics Data System (ADS)

    Näsi, R.; Honkavaara, E.; Tuominen, S.; Saari, H.; Pölönen, I.; Hakala, T.; Viljanen, N.; Soukkamäki, J.; Näkki, I.; Ojanen, H.; Reinikainen, J.

    2016-06-01

    Unmanned airborne systems (UAS) based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI) based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors' knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and spectral information in a forested scene and is operational for environmental remote sensing applications.

  11. Molecular identification of two closely related species of mealybugs of the genus Planococcus (Pseudococcidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Morphological identification of the mealybug species Planococcus citri (Risso) and P. minor (Maskell), two serious agricultural pests, is often complicated by the existence of intermediate forms and a lack of knowledge of the intraspecific variation that occurs in each species. In this paper, we hav...

  12. Synopsis of Falsocis Pic (Coleoptera, Ciidae), new species, new records and an identification key.

    PubMed

    Lopes-Andrade, Cristiano; Lawrence, John F

    2011-01-01

    Three new species of Falsocis Pic are described: Falsocis aquiloniussp. n. from Panamá, Costa Rica and Colombia, Falsocis egregiussp. n. from a single locality in northern Brazil and Falsocis occultussp. n. from two localities in southeastern and southern Brazil. New records, comparative notes and an identification key for male and female specimens of Falsocis species are also provided.

  13. Species and hybrid identification of sturgeon caviar: a new molecular approach to detect illegal trade.

    PubMed

    Boscari, E; Barmintseva, A; Pujolar, J M; Doukakis, P; Mugue, N; Congiu, L

    2014-05-01

    Overexploitation of wild populations due to the high economic value of caviar has driven sturgeons to near extinction. The high prices commanded by caviar on world markets have made it a magnet for illegal and fraudulent caviar trade, often involving low-value farmed caviar being sold as top-quality caviar. We present a new molecular approach for the identification of pure sturgeon species and hybrids that are among the most commercialized species in Europe and North America. Our test is based on the discovery of species-specific single nucleotide polymorphisms (SNPs) in the ribosomal protein S7, supplemented with the Vimentin gene and the mitochondrial D-loop. Test validations performed in 702 specimens of target and nontarget sturgeon species demonstrated a 100% identification success for Acipenser naccarii, A. fulvescens, A. stellatus, A. sinensis and A. transmontanus. In addition to species identification, our approach allows the identification of Bester and AL hybrids, two of the most economically important hybrids in the world, with 80% and 100% success, respectively. Moreover, the approach has the potential to identify many other existing sturgeon hybrids. The development of a standardized sturgeon identification tool will directly benefit trade law enforcement, providing the tools to monitor and regulate the legal trade of caviar and protect sturgeon stocks from illicit producers and traders, hence contributing to safeguarding this group of heavily threatened species.

  14. LINNAEUS: A species name identification system for biomedical literature

    PubMed Central

    2010-01-01

    Background The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles. Results In this paper we describe an open-source species name recognition and normalization software system, LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based approach (implemented as an efficient deterministic finite-state automaton) to identify species names and a set of heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with 97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers. Conclusions LINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing species name mentions with speed and accuracy, and can therefore be integrated into a range of bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded freely at http://linnaeus.sourceforge.net/. PMID:20149233

  15. Multiplex PCR and RFLP approaches for identification of rabbitfish (Siganus) species using mitochondrial gene regions.

    PubMed

    Ravago-Gotanco, R G; Manglicmot, M T; Pante, M J R

    2010-07-01

    Molecular assays are described for the identification of six rabbitfish (Siganus) species. A multiplex PCR assay using primers targeting the mitochondrial cytochrome b region simultaneously identifies four species: Siganus canaliculatus, S. fuscescens, S. javus, and S. spinus. Subsequent RFLP assays of multiplex amplicons differentiate between S. virgatus and S. corallinus based on diagnostic fragments from the mitochondrial cytochrome oxidase I region. Assays were validated with known specimens demonstrating accuracy of the molecular identification. Applied to morphologically indistinguishable early developmental stages, these assays can facilitate studies on species-specific spatio-temporal patterns of larval dispersal and population connectivity to aid fishery management.

  16. Identification of endangered or threatened Costa Rican tree species by wood anatomy and fluorescence activity.

    PubMed

    Moya, Róger; Wiemann, Michael C; Olivares, Carlos

    2013-09-01

    A total of 45 native Costa Rican tree species are threatened or in danger of extinction, but the Convention on International Trade Endangered Species (CITES) includes only eight of these in its Appendices. However, the identification of other species based on their wood anatomy is limited. The present study objective was to describe and to compare wood anatomy and fluorescence activity in some endangered or threatened species of Costa Rica. A total of 45 (22 endangered and 23 threatened with extinction) wood samples of these species, from the xylaria of the Instituto Tecnológico de Costa Rica and the Forest Products Laboratory in Madison, Wisconsin, were examined. Surface fluorescence was positive in eight species, water extract fluorescence was positive in six species and ethanol extract fluorescence was positive in 24 species. Almost all species were diffuse porous except for occasional (Cedrela odorata, C. fissilis, Cordia gerascanthus) or regular (C. salvadorensis and C. tonduzii) semi-ring porosity. A dendritic vessel arrangement was found in Sideroxylon capari, and pores were solitary in Guaiacum sanctum and Vantanea barbourii. Vessel element length was shortest in Guaiacum sanctum and longest in Humiriastrum guianensis, Minquartia guianensis and Vantanea barbourii. Finally, anatomical information and fluorescence activity were utilized to construct an identification key of species, in which fluorescence is a feature used in identification.

  17. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  18. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment.

    PubMed

    Manoylov, Kalina M

    2014-06-01

    Algal taxonomy is a key discipline in phycology and is critical for algal genetics, physiology, ecology, applied phycology, and particularly bioassessment. Taxonomic identification is the most common analysis and hypothesis-testing endeavor in science. Errors of identification are often related to the inherent problem of small organisms with morphologies that are difficult to distinguish without research-grade microscopes and taxonomic expertise in phycology. Proposed molecular approaches for taxonomic identification from environmental samples promise rapid, potentially inexpensive, and more thorough culture-independent identification of all algal species present in a sample of interest. Molecular identification has been used in biodiversity and conservation, but it also has great potential for applications in bioassessment. Comparisons of morphological and molecular identification of benthic algal communities are improved by the identification of more taxa; however, automated identification technology does not allow for the simultaneous analysis of thousands of samples. Currently, morphological identification is used to verify molecular taxonomic identities, but with the increased number of taxa verified in algal gene libraries, molecular identification will become a universal tool in biological studies. Thus, in this report, successful application of molecular techniques related to algal bioassessment is discussed.

  19. Identification of rickettsial isolates at the species level using multi-spacer typing

    PubMed Central

    Fournier, Pierre-Edouard; Raoult, Didier

    2007-01-01

    Background In order to estimate whether multi-spacer typing (MST), based on the sequencing of variable intergenic spacers, could serve for the identification of Rickettsia at the species level, we applied it to 108 rickettsial isolates or arthropod amplicons that include representatives of 23 valid Rickettsia species. Results MST combining the dksA-xerC, mppA-purC, and rpmE-tRNAfMet spacer sequences identified 61 genotypes, allowing the differentiation of each species by at least one distinct genotype. In addition, MST was discriminatory at the strain level in six species for which several isolates or arthropod amplicons were available. Conclusion MST proved to be a reproducible and high-resolution genotyping method allowing clear identification of rickettsial isolates at the species level and further additional differentiation of strains within some species. PMID:17662158

  20. Freshwater and brackish bryozoan species of Croatia (Bryozoa: Gymnolaemata, Phylactolaemata) and their genetic identification.

    PubMed

    Franjević, Damjan; Novosel, Maja; Koletić, Nikola

    2015-10-15

    Freshwater and brackish species of bryozoans belong to the Phylactolaemata and Gymnolaemata class. Twelve species of bryozoans were recorded and morphologically determined at eight locations in the Black Sea and the Adriatic basin in Croatia. Twelve species of Bryozoa have been listed in the taxonomic index for Croatia (Conopeum seurati, Lophopus crystallinus Paludicella articulata, Cristatella mucedo, Fredericella sultana, Hyalinella punctata, Plumatella casmiana, Plumatella emarginata, Plumatella fruticosa, Plumatella fungosa, Plumatella geimermassardi and Plumatella repens). For the purposes of gene identification of recorded species, molecular markers for nuclear 18S and 28S genes, ITS2 region and mitochondrial COI gene were amplified. Genetic identifications of morphologically determined bryozoan species were confirmed using highly similar sequences local alignment analysis. Proliferation of freshwater bryozoan species over long distances with the help of the vector animals was confirmed by defining haplotypes on the base of 18S, 28S and ITS2 sequences associated with the Black Sea-Mediterranean waterfowl flyway.

  1. Freshwater and brackish bryozoan species of Croatia (Bryozoa: Gymnolaemata, Phylactolaemata) and their genetic identification.

    PubMed

    Franjević, Damjan; Novosel, Maja; Koletić, Nikola

    2015-01-01

    Freshwater and brackish species of bryozoans belong to the Phylactolaemata and Gymnolaemata class. Twelve species of bryozoans were recorded and morphologically determined at eight locations in the Black Sea and the Adriatic basin in Croatia. Twelve species of Bryozoa have been listed in the taxonomic index for Croatia (Conopeum seurati, Lophopus crystallinus Paludicella articulata, Cristatella mucedo, Fredericella sultana, Hyalinella punctata, Plumatella casmiana, Plumatella emarginata, Plumatella fruticosa, Plumatella fungosa, Plumatella geimermassardi and Plumatella repens). For the purposes of gene identification of recorded species, molecular markers for nuclear 18S and 28S genes, ITS2 region and mitochondrial COI gene were amplified. Genetic identifications of morphologically determined bryozoan species were confirmed using highly similar sequences local alignment analysis. Proliferation of freshwater bryozoan species over long distances with the help of the vector animals was confirmed by defining haplotypes on the base of 18S, 28S and ITS2 sequences associated with the Black Sea-Mediterranean waterfowl flyway. PMID:26624355

  2. Species-Specific Identification of Human Adenoviruses in Sewage.

    PubMed

    Wieczorek, Magdalena; Krzysztoszek, Arleta; Witek, Agnieszka

    2015-01-01

    Human adenovirus (HAdV) diversity in sewage was assessed by species-specific molecular methods. Samples of raw sewage were collected in 14 sewage disposal systems from January to December 2011, in Poland. HAdVs were detected in 92.1% of the analysed sewage samples and was significantly higher at cities of over 100 000 inhabitants. HAdV DNA was detected in sewage during all seasons. The most abundant species identified were HAdV-F (average 89.6%) and -A (average 19.6%), which are associated with intestine infections. Adenoviruses from B species were not detected. The result of the present study demonstrate that human adenoviruses are consistently present in sewage in Poland, demonstrating the importance of an adequate treatment before the disposal in the environment. Multiple HAdV species identified in raw sewage provide new information about HAdV circulation in the Polish population. PMID:26094312

  3. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species.

    PubMed

    Kinzner, Martin-Carl; Wagner, Herbert C; Peskoller, Andrea; Moder, Karl; Dowell, Floyd E; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M

    2015-01-01

    Species identification-of importance for most biological disciplines-is not always straightforward as cryptic species hamper traditional identification. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and inexpensive method of use in various applications, including the identification of species. Despite its efficiency, NIRS has never been tested on a group of more than two cryptic species, and a working routine is still missing. Hence, we tested if the four morphologically highly similar, but genetically distinct ant species Tetramorium alpestre, T. caespitum, T. impurum, and T. sp. B, all four co-occurring above 1,300 m above sea level in the Alps, can be identified unambiguously using NIRS. Furthermore, we evaluated which of our implementations of the three analysis approaches, partial least squares regression (PLS), artificial neural networks (ANN), and random forests (RF), is most efficient in species identification with our data set. We opted for a 100% classification certainty, i.e., a residual risk of misidentification of zero within the available data, at the cost of excluding specimens from identification. Additionally, we examined which strategy among our implementations, one-vs-all, i.e., one species compared with the pooled set of the remaining species, or binary-decision strategies, worked best with our data to reduce a multi-class system to a two-class system, as is necessary for PLS. Our NIRS identification routine, based on a 100% identification certainty, was successful with up to 66.7% of unambiguously identified specimens of a species. In detail, PLS scored best over all species (36.7% of specimens), while RF was much less effective (10.0%) and ANN failed completely (0.0%) with our data and our implementations of the analyses. Moreover, we showed that the one-vs-all strategy is the only acceptable option to reduce multi-class systems because of a minimum expenditure of time. We emphasise our classification routine using fibre-optic NIRS

  4. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species.

    PubMed

    Kinzner, Martin-Carl; Wagner, Herbert C; Peskoller, Andrea; Moder, Karl; Dowell, Floyd E; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M

    2015-01-01

    Species identification-of importance for most biological disciplines-is not always straightforward as cryptic species hamper traditional identification. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and inexpensive method of use in various applications, including the identification of species. Despite its efficiency, NIRS has never been tested on a group of more than two cryptic species, and a working routine is still missing. Hence, we tested if the four morphologically highly similar, but genetically distinct ant species Tetramorium alpestre, T. caespitum, T. impurum, and T. sp. B, all four co-occurring above 1,300 m above sea level in the Alps, can be identified unambiguously using NIRS. Furthermore, we evaluated which of our implementations of the three analysis approaches, partial least squares regression (PLS), artificial neural networks (ANN), and random forests (RF), is most efficient in species identification with our data set. We opted for a 100% classification certainty, i.e., a residual risk of misidentification of zero within the available data, at the cost of excluding specimens from identification. Additionally, we examined which strategy among our implementations, one-vs-all, i.e., one species compared with the pooled set of the remaining species, or binary-decision strategies, worked best with our data to reduce a multi-class system to a two-class system, as is necessary for PLS. Our NIRS identification routine, based on a 100% identification certainty, was successful with up to 66.7% of unambiguously identified specimens of a species. In detail, PLS scored best over all species (36.7% of specimens), while RF was much less effective (10.0%) and ANN failed completely (0.0%) with our data and our implementations of the analyses. Moreover, we showed that the one-vs-all strategy is the only acceptable option to reduce multi-class systems because of a minimum expenditure of time. We emphasise our classification routine using fibre-optic NIRS

  5. Advances in DNA metabarcoding for food and wildlife forensic species identification.

    PubMed

    Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther

    2016-07-01

    Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs. PMID:27178552

  6. Advances in DNA metabarcoding for food and wildlife forensic species identification.

    PubMed

    Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther

    2016-07-01

    Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.

  7. DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products

    PubMed Central

    Zhang, Tao; Wang, Yi-Jiao; Guo, Wei; Luo, Dan; Wu, Yi; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun; Li, Zhi-Hong

    2016-01-01

    Flour beetles of the genus Tribolium Macleay (Coleoptera: Tenebrionidae) are important stored product pests in China and worldwide. They are often found or are intercepted in grain depots, flour mills, and entry-exit ports, etc. Traditionally, Tribolium species are identified according to the morphological characteristics of the adult. However, it is almost impossible to rapidly identify adult fragments and non-adult stages based on external morphological characteristics. Molecular techniques for the rapid and accurate identification of Tribolium species are required, particularly for pest monitoring and the quarantine of stored products pests. Here, we establish DNA barcoding, species-specific PCR, and real-time PCR techniques for the identification of six stored-product pest Tribolium species including T. castaneum, T. confusum, T. destructor, T. madens, T. freemani and T. brevicornis. We detected the mitochondrial DNA cytochrome oxidase subunit I (COI) barcodes for Tribolium from 18 geographic populations and 101 individuals, built a Tribolium DNA barcode library, and designed species-specific primers and TaqMan probes for the above six Tribolium species. The three techniques were applied to identify Tribolium collected from stored samples and samples captured from quarantine ports. The results demonstrated that three techniques were all able to identify the six species of Tribolium both rapidly and accurately. PMID:27352804

  8. Identification of Weissella species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    PubMed Central

    Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren

    2015-01-01

    Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species. PMID:26594208

  9. Molecular Identification of Cryptosporidium Species from Pet Snakes in Thailand

    PubMed Central

    Yimming, Benjarat; Pattanatanang, Khampee; Sanyathitiseree, Pornchai; Inpankaew, Tawin; Kamyingkird, Ketsarin; Pinyopanuwat, Nongnuch; Chimnoi, Wissanuwat; Phasuk, Jumnongjit

    2016-01-01

    Cryptosporidium is an important pathogen causing gastrointestinal disease in snakes and is distributed worldwide. The main objectives of this study were to detect and identify Cryptosporidium species in captive snakes from exotic pet shops and snake farms in Thailand. In total, 165 fecal samples were examined from 8 snake species, boa constrictor (Boa constrictor constrictor), corn snake (Elaphe guttata), ball python (Python regius), milk snake (Lampropeltis triangulum), king snake (Lampropeltis getula), rock python (Python sebae), rainbow boa (Epicrates cenchria), and carpet python (Morelia spilota). Cryptosporidium oocysts were examined using the dimethyl sulfoxide (DMSO)-modified acid-fast staining and a molecular method based on nested-PCR, PCR-RFLP analysis, and sequencing amplification of the SSU rRNA gene. DMSO-modified acid-fast staining revealed the presence of Cryptosporidium oocysts in 12 out of 165 (7.3%) samples, whereas PCR produced positive results in 40 (24.2%) samples. Molecular characterization indicated the presence of Cryptosporidium parvum (mouse genotype) as the most common species in 24 samples (60%) from 5 species of snake followed by Cryptosporidium serpentis in 9 samples (22.5%) from 2 species of snake and Cryptosporidium muris in 3 samples (7.5%) from P. regius. PMID:27658593

  10. Molecular Identification of Cryptosporidium Species from Pet Snakes in Thailand.

    PubMed

    Yimming, Benjarat; Pattanatanang, Khampee; Sanyathitiseree, Pornchai; Inpankaew, Tawin; Kamyingkird, Ketsarin; Pinyopanuwat, Nongnuch; Chimnoi, Wissanuwat; Phasuk, Jumnongjit

    2016-08-01

    Cryptosporidium is an important pathogen causing gastrointestinal disease in snakes and is distributed worldwide. The main objectives of this study were to detect and identify Cryptosporidium species in captive snakes from exotic pet shops and snake farms in Thailand. In total, 165 fecal samples were examined from 8 snake species, boa constrictor (Boa constrictor constrictor), corn snake (Elaphe guttata), ball python (Python regius), milk snake (Lampropeltis triangulum), king snake (Lampropeltis getula), rock python (Python sebae), rainbow boa (Epicrates cenchria), and carpet python (Morelia spilota). Cryptosporidium oocysts were examined using the dimethyl sulfoxide (DMSO)-modified acid-fast staining and a molecular method based on nested-PCR, PCR-RFLP analysis, and sequencing amplification of the SSU rRNA gene. DMSO-modified acid-fast staining revealed the presence of Cryptosporidium oocysts in 12 out of 165 (7.3%) samples, whereas PCR produced positive results in 40 (24.2%) samples. Molecular characterization indicated the presence of Cryptosporidium parvum (mouse genotype) as the most common species in 24 samples (60%) from 5 species of snake followed by Cryptosporidium serpentis in 9 samples (22.5%) from 2 species of snake and Cryptosporidium muris in 3 samples (7.5%) from P. regius.

  11. Molecular Identification of Cryptosporidium Species from Pet Snakes in Thailand.

    PubMed

    Yimming, Benjarat; Pattanatanang, Khampee; Sanyathitiseree, Pornchai; Inpankaew, Tawin; Kamyingkird, Ketsarin; Pinyopanuwat, Nongnuch; Chimnoi, Wissanuwat; Phasuk, Jumnongjit

    2016-08-01

    Cryptosporidium is an important pathogen causing gastrointestinal disease in snakes and is distributed worldwide. The main objectives of this study were to detect and identify Cryptosporidium species in captive snakes from exotic pet shops and snake farms in Thailand. In total, 165 fecal samples were examined from 8 snake species, boa constrictor (Boa constrictor constrictor), corn snake (Elaphe guttata), ball python (Python regius), milk snake (Lampropeltis triangulum), king snake (Lampropeltis getula), rock python (Python sebae), rainbow boa (Epicrates cenchria), and carpet python (Morelia spilota). Cryptosporidium oocysts were examined using the dimethyl sulfoxide (DMSO)-modified acid-fast staining and a molecular method based on nested-PCR, PCR-RFLP analysis, and sequencing amplification of the SSU rRNA gene. DMSO-modified acid-fast staining revealed the presence of Cryptosporidium oocysts in 12 out of 165 (7.3%) samples, whereas PCR produced positive results in 40 (24.2%) samples. Molecular characterization indicated the presence of Cryptosporidium parvum (mouse genotype) as the most common species in 24 samples (60%) from 5 species of snake followed by Cryptosporidium serpentis in 9 samples (22.5%) from 2 species of snake and Cryptosporidium muris in 3 samples (7.5%) from P. regius. PMID:27658593

  12. Use of species-specific PCR for the identification of 10 sea cucumber species

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Zeng, Ling

    2014-11-01

    We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species. Ten reverse species-specific primers designed from the 16S rRNA gene, in combination with one forward universal primer, generated PCR fragments of ca. 270 bp length for each species. The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species. Amplification was observed in specific species only. The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber, and was proven to be a useful, rapid, and low-cost technique to identify the origin of the sea cucumber product.

  13. Identification, Discrimination, and Discovery of Species of Marine Planktonic Ostracods Using DNA Barcodes.

    PubMed

    Nigro, Lisa M; Angel, Martin V; Blachowiak-Samolyk, Katarzyna; Hopcroft, Russell R; Bucklin, Ann

    2016-01-01

    The Ostracoda (Crustacea; Class Ostracoda) is a diverse, frequently abundant, and ecologically important component of the marine zooplankton assemblage. There are more than 200 described species of marine planktonic ostracods, many of which (especially conspecific species) can be identified only by microscopic examination and dissection of fragile morphological characters. Given the complexity of species identification and increasing lack of expert taxonomists, DNA barcodes (short DNA sequences for species discrimination and identification) are particularly useful and necessary. Results are reported from analysis of 210 specimens of 78 species of marine planktonic ostracods, including two novel species, and 51 species for which barcodes have not been previously published. Specimens were collected during 2006 to 2008 from the Atlantic, Indian, and Southern Oceans, Greenland Sea and Gulf of Alaska. Samples were collected from surface to 5,000 m using various collection devices. DNA sequence variation was analyzed for a 598 base-pair region of the mitochondrial cytochrome oxidase subunit I (COI) gene. Kimura-2-Parameter (K2P) genetic distances within described species (mean = 0.010 ± 0.017 SD) were significantly smaller than between species (0.260 + 0.080), excluding eight taxa hypothesized to comprise cryptic species due to morphological variation (especially different size forms) and/or collection from different geographic regions. These taxa showed similar K2P distance values within (0.014 + 0.026) and between (0.221 ± 0.068) species. All K2P distances > 0.1 resulted from comparisons between identified or cryptic species, with no overlap between intra- and interspecific genetic distances. A Neighbor Joining tree resolved nearly all described species analyzed, with multiple sequences forming monophyletic clusters with high bootstrap values (typically 99%). Based on taxonomically and geographically extensive sampling and analysis (albeit with small sample sizes

  14. Identification, Discrimination, and Discovery of Species of Marine Planktonic Ostracods Using DNA Barcodes

    PubMed Central

    2016-01-01

    The Ostracoda (Crustacea; Class Ostracoda) is a diverse, frequently abundant, and ecologically important component of the marine zooplankton assemblage. There are more than 200 described species of marine planktonic ostracods, many of which (especially conspecific species) can be identified only by microscopic examination and dissection of fragile morphological characters. Given the complexity of species identification and increasing lack of expert taxonomists, DNA barcodes (short DNA sequences for species discrimination and identification) are particularly useful and necessary. Results are reported from analysis of 210 specimens of 78 species of marine planktonic ostracods, including two novel species, and 51 species for which barcodes have not been previously published. Specimens were collected during 2006 to 2008 from the Atlantic, Indian, and Southern Oceans, Greenland Sea and Gulf of Alaska. Samples were collected from surface to 5,000 m using various collection devices. DNA sequence variation was analyzed for a 598 base-pair region of the mitochondrial cytochrome oxidase subunit I (COI) gene. Kimura-2-Parameter (K2P) genetic distances within described species (mean = 0.010 ± 0.017 SD) were significantly smaller than between species (0.260 + 0.080), excluding eight taxa hypothesized to comprise cryptic species due to morphological variation (especially different size forms) and/or collection from different geographic regions. These taxa showed similar K2P distance values within (0.014 + 0.026) and between (0.221 ± 0.068) species. All K2P distances > 0.1 resulted from comparisons between identified or cryptic species, with no overlap between intra- and interspecific genetic distances. A Neighbor Joining tree resolved nearly all described species analyzed, with multiple sequences forming monophyletic clusters with high bootstrap values (typically 99%). Based on taxonomically and geographically extensive sampling and analysis (albeit with small sample sizes

  15. Simplified scheme for routine identification of human Staphylococcus species.

    PubMed

    Kloos, W E; Schleifer, K H

    1975-01-01

    From a total of 40 characters that were previously used to differentiate species of staphylococci, 13 key characters were selected to make a simplified scheme that could be easily used by the routine clinical laboratory for identifying human staphylococci. These key characters included coagulase activity, hemolysis, nitrate reduction, and aerobic acid production from fructose, xylose, arabinose, ribose, maltose, lactose, sucrose, trehalose, mannitol, and xylitol. In the simplified scheme, 924 strains of staphylococci were placed into 11 positions, each of which contained the major portion (greater than or equal to 80%) of strains of one of the recognized species. Several positions contained a rare or few uncommon strains of one or more additional species and these could be resolved on the basis of other key characters.

  16. Species-Level Identification of Orthopoxviruses with an Oligonucleotide Microchip

    PubMed Central

    Lapa, Sergey; Mikheev, Maxim; Shchelkunov, Sergei; Mikhailovich, Vladimir; Sobolev, Alexander; Blinov, Vladimir; Babkin, Igor; Guskov, Alexander; Sokunova, Elena; Zasedatelev, Alexander; Sandakhchiev, Lev; Mirzabekov, Andrei

    2002-01-01

    A method for species-specific detection of orthopoxviruses pathogenic for humans and animals is described. The method is based on hybridization of a fluorescently labeled amplified DNA specimen with the oligonucleotide DNA probes immobilized on a microchip (MAGIChip). The probes identify species-specific sites within the crmB gene encoding the viral analogue of tumor necrosis factor receptor, one of the most important determinants of pathogenicity in this genus of viruses. The diagnostic procedure takes 6 h and does not require any sophisticated equipment (a portable fluorescence reader can be used). PMID:11880388

  17. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    PubMed Central

    Wagner, Herbert C.; Peskoller, Andrea; Moder, Karl; Dowell, Floyd E.; Arthofer, Wolfgang

    2015-01-01

    Species identification—of importance for most biological disciplines—is not always straightforward as cryptic species hamper traditional identification. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and inexpensive method of use in various applications, including the identification of species. Despite its efficiency, NIRS has never been tested on a group of more than two cryptic species, and a working routine is still missing. Hence, we tested if the four morphologically highly similar, but genetically distinct ant species Tetramorium alpestre, T. caespitum, T. impurum, and T. sp. B, all four co-occurring above 1,300 m above sea level in the Alps, can be identified unambiguously using NIRS. Furthermore, we evaluated which of our implementations of the three analysis approaches, partial least squares regression (PLS), artificial neural networks (ANN), and random forests (RF), is most efficient in species identification with our data set. We opted for a 100% classification certainty, i.e., a residual risk of misidentification of zero within the available data, at the cost of excluding specimens from identification. Additionally, we examined which strategy among our implementations, one-vs-all, i.e., one species compared with the pooled set of the remaining species, or binary-decision strategies, worked best with our data to reduce a multi-class system to a two-class system, as is necessary for PLS. Our NIRS identification routine, based on a 100% identification certainty, was successful with up to 66.7% of unambiguously identified specimens of a species. In detail, PLS scored best over all species (36.7% of specimens), while RF was much less effective (10.0%) and ANN failed completely (0.0%) with our data and our implementations of the analyses. Moreover, we showed that the one-vs-all strategy is the only acceptable option to reduce multi-class systems because of a minimum expenditure of time. We emphasise our classification routine using fibre

  18. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    PubMed

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  19. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    EPA Science Inventory

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  20. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    PubMed

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species.

  1. Species identification refined by molecular scatology in a community of sympatric carnivores in Xinjiang, China.

    PubMed

    Laguardia, Alice; Wang, Jun; Shi, Fang-Lei; Shi, Kun; Riordan, Philip

    2015-03-18

    Many ecological studies and conservation management plans employ noninvasive scat sampling based on the assumption that species' scats can be correctly identified in the field. However, in habitats with sympatric similarly sized carnivores, misidentification of scats is frequent and can lead to bias in research results. To address the scat identification dilemma, molecular scatology techniques have been developed to extract DNA from the donor cells present on the outer lining of the scat samples. A total of 100 samples were collected in the winter of 2009 and 2011 in Taxkorgan region of Xinjiang, China. DNA was extracted successfully from 88% of samples and genetic species identification showed that more than half the scats identified in the field as snow leopard (Panthera uncia) actually belonged to fox (Vulpes vulpes). Correlation between scat characteristics and species were investigated, showing that diameter and dry weight of the scat were significantly different between the species. However it was not possible to define a precise range of values for each species because of extensive overlap between the morphological values. This preliminary study confirms that identification of snow leopard feces in the field is misleading. Research that relies upon scat samples to assess distribution or diet of the snow leopard should therefore employ molecular scatology techniques. These methods are financially accessible and employ relatively simple laboratory procedures that can give an indisputable response to species identification from scats.

  2. Species identification refined by molecular scatology in a community of sympatric carnivores in Xinjiang, China.

    PubMed

    Laguardia, Alice; Wang, Jun; Shi, Fang-Lei; Shi, Kun; Riordan, Philip

    2015-03-18

    Many ecological studies and conservation management plans employ noninvasive scat sampling based on the assumption that species' scats can be correctly identified in the field. However, in habitats with sympatric similarly sized carnivores, misidentification of scats is frequent and can lead to bias in research results. To address the scat identification dilemma, molecular scatology techniques have been developed to extract DNA from the donor cells present on the outer lining of the scat samples. A total of 100 samples were collected in the winter of 2009 and 2011 in Taxkorgan region of Xinjiang, China. DNA was extracted successfully from 88% of samples and genetic species identification showed that more than half the scats identified in the field as snow leopard (Panthera uncia) actually belonged to fox (Vulpes vulpes). Correlation between scat characteristics and species were investigated, showing that diameter and dry weight of the scat were significantly different between the species. However it was not possible to define a precise range of values for each species because of extensive overlap between the morphological values. This preliminary study confirms that identification of snow leopard feces in the field is misleading. Research that relies upon scat samples to assess distribution or diet of the snow leopard should therefore employ molecular scatology techniques. These methods are financially accessible and employ relatively simple laboratory procedures that can give an indisputable response to species identification from scats. PMID:25855225

  3. Molecular identification of python species: development and validation of a novel assay for forensic investigations.

    PubMed

    Ciavaglia, Sherryn A; Tobe, Shanan S; Donnellan, Stephen C; Henry, Julianne M; Linacre, Adrian M T

    2015-05-01

    Python snake species are often encountered in illegal activities and the question of species identity can be pertinent to such criminal investigations. Morphological identification of species of pythons can be confounded by many issues and molecular examination by DNA analysis can provide an alternative and objective means of identification. Our paper reports on the development and validation of a PCR primer pair that amplifies a segment of the mitochondrial cytochrome b gene that has been suggested previously as a good candidate locus for differentiating python species. We used this DNA region to perform species identification of pythons, even when the template DNA was of poor quality, as might be the case with forensic evidentiary items. Validation tests are presented to demonstrate the characteristics of the assay. Tests involved the cross-species amplification of this marker in non-target species, minimum amount of DNA template required, effects of degradation on product amplification and a blind trial to simulate a casework scenario that provided 100% correct identity. Our results demonstrate that this assay performs reliably and robustly on pythons and can be applied directly to forensic investigations where the presence of a species of python is in question.

  4. Identification of different bacterial species in biofilms using confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  5. Identification of aphids of Aphis frangulae-group living on Lamiaceae species through DNA barcode.

    PubMed

    Cocuzza, Giuseppe E Massimino; Cavalieri, Vincenzo

    2014-05-01

    The genus Aphis frangulae-group living on Lamiaceae includes several postulate species, which are morphologically indistinguishable. As a consequence, identification is possible only on the basis of the host plant or life cycle. This study tested the utility of a fragment (614 bp) of mitochondrial cytochrome oxidase 1 (COI) with the aim of identifying the species and/or to confirm the previous classification based on host plant and data reported in the literature. Although the general nucleotide variability found was rather low, the analysis enabled the separation and identification of all the specimens collected. In some cases, the lack of nucleotide variability among postulated taxa indicates the limits of identification based on biological traits. Consequently, based on the molecular analysis, the postulate species A. symphyti, A. stachydis and A. lamiorum should be regarded as synonymous of A. frangulae.

  6. DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species

    PubMed Central

    Lowry, Porter P.; Bauert, Martin R.; Razafintsalama, Annick; Ramamonjisoa, Lolona; Widmer, Alex

    2016-01-01

    Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is a biodiversity hotspot and home to some of the world’s most sought after tropical timber species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly diverse and has a pantropical distribution, but these timber species are among the most threatened as a consequence of intensive illegal selective logging and deforestation. Reliable identification of Dalbergia species from Madagascar is important for law enforcement but is almost impossible without fertile plant material, which is often unavailable during forest inventories or when attempting to identify logged trees of cut wood. DNA barcoding has been promoted as a promising tool for species identification in such cases. In this study we tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas of its distributional range, and whether Malagasy species can be distinguished from one another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form two monophyletic groups, each containing two subgroups, only one of which corresponds to a single species. We characterized diagnostic polymorphisms in the three DNA barcoding markers that allow rapid discrimination between Dalbergia from Madagascar and from other areas of its distribution range. Species identification success based on individual barcoding markers or combinations was poor, whereas subgroup identification success was much higher (up to 98%), revealing both the value and limitations of a DNA barcoding approach for the identification of closely related Malagasy rosewoods. PMID:27362258

  7. [Development of a real-time polymerase chain reaction method for the identification of Candida species].

    PubMed

    Ağca, Harun; Dalyan Cilo, Burcu; Özmerdiven, Gülşah Ece; Sağlam, Sezcan; Ener, Beyza

    2015-01-01

    Candida species are one of the major causes of nosocomial infections and are the fourth most common agent involved in bloodstream infections. The impact of non-albicans Candida species is increasing, however C.albicans is still the most common species. Since the antifungal susceptibility pattern among Candida spp. may be different, rapid diagnosis and identification of non-albicans Candida spp. are important for the determination of antifungal agents that will be used for treatment. The aim of the study was to describe a real-time polymerase chain reaction (Rt-PCR) assay that rapidly detects, identifies and quantitates Candida species from blood culture samples. A total of 50 consecutive positive blood culture bottles (BACTEC, Beckton Dickinson, USA) identified at our laboratory between June-November 2013, were included in the study. Reference strains of Candida spp. (C.albicans ATCC 10231, C.glabrata ATCC 90030, C.tropicalis ATCC 1021, C.krusei ATCC 6258, C.parapsilosis ATCC 22019 and C. dubliniensis CD36) grown on Sabouraud dextrose agar were used for quality control. BACTEC bottles that were positive for Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were also studied to search the cross-reactivity. A commercial kit (Zymo Research, USA) was used for DNA extraction. Real-time PCR was performed on LightCycler 480 (Roche, Germany) with primers and probes specific for 18S rRNA of Candida species. Twenty microlitres of the reaction mix contained 2 μl of extracted DNA, 2 μl of LightCycler Fast Start DNA Master Probe (Roche Diagnostics, Germany), 2 μl of MgCl(2) (5 mmol), 2 μl of 10x PCR buffer (Roche Diagnostics, Germany), 0.5 μl of each primer (0.01 nmol/μl) and 1 μl of each probe (0.1 μmol/μl) (TibMolBiol, Germany). Amplification was performed using the following conditions; 95°C for 10 mins and 50 cycles of denaturation at 95°C for 10 secs, annealing at 62°C for 10 secs and polymerisation at 72°C for 20 secs. A melting curve was

  8. [Development of a real-time polymerase chain reaction method for the identification of Candida species].

    PubMed

    Ağca, Harun; Dalyan Cilo, Burcu; Özmerdiven, Gülşah Ece; Sağlam, Sezcan; Ener, Beyza

    2015-01-01

    Candida species are one of the major causes of nosocomial infections and are the fourth most common agent involved in bloodstream infections. The impact of non-albicans Candida species is increasing, however C.albicans is still the most common species. Since the antifungal susceptibility pattern among Candida spp. may be different, rapid diagnosis and identification of non-albicans Candida spp. are important for the determination of antifungal agents that will be used for treatment. The aim of the study was to describe a real-time polymerase chain reaction (Rt-PCR) assay that rapidly detects, identifies and quantitates Candida species from blood culture samples. A total of 50 consecutive positive blood culture bottles (BACTEC, Beckton Dickinson, USA) identified at our laboratory between June-November 2013, were included in the study. Reference strains of Candida spp. (C.albicans ATCC 10231, C.glabrata ATCC 90030, C.tropicalis ATCC 1021, C.krusei ATCC 6258, C.parapsilosis ATCC 22019 and C. dubliniensis CD36) grown on Sabouraud dextrose agar were used for quality control. BACTEC bottles that were positive for Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were also studied to search the cross-reactivity. A commercial kit (Zymo Research, USA) was used for DNA extraction. Real-time PCR was performed on LightCycler 480 (Roche, Germany) with primers and probes specific for 18S rRNA of Candida species. Twenty microlitres of the reaction mix contained 2 μl of extracted DNA, 2 μl of LightCycler Fast Start DNA Master Probe (Roche Diagnostics, Germany), 2 μl of MgCl(2) (5 mmol), 2 μl of 10x PCR buffer (Roche Diagnostics, Germany), 0.5 μl of each primer (0.01 nmol/μl) and 1 μl of each probe (0.1 μmol/μl) (TibMolBiol, Germany). Amplification was performed using the following conditions; 95°C for 10 mins and 50 cycles of denaturation at 95°C for 10 secs, annealing at 62°C for 10 secs and polymerisation at 72°C for 20 secs. A melting curve was

  9. Species level identification and antifungal susceptibility of yeasts isolated from various clinical specimens and evaluation of Integral System Yeasts Plus.

    PubMed

    Bicmen, Can; Doluca, Mine; Gulat, Sinem; Gunduz, Ayriz T; Tuksavul, Fevziye

    2012-07-01

    It is essential to use easy, standard, cost-effective and accurate methods for identification and susceptibility testing of yeasts in routine practice. This study aimed to establish the species distribution and antifungal susceptibility of yeast isolates and also to evaluate the performance of the colorimetric and commercially available Integral System Yeasts Plus (ISYP). Yeast isolates (n=116) were identified by conventional methods and ISYP. Antifungal susceptibility testing was performed by the microdilution method according to the standards of CLSI M27-A3 and ISYP. Candida albicans (50%) was the most common species isolated, followed by C. parapsilosis (25%) (mostly in blood samples). According to the CLSI M27-S3 criteria, resistance rates for amphotericin B, flucytosine, fluconazole, itraconazole, and voriconazole were 0%, 0%, 4.6%, 4.5% and 1.8%, respectively. Resistance for miconazole (MIC >1 mg/L) was found as 17.9%. Sixty-two (53.4%) of the isolates which were analyzed by ISYP showed disagreement with those identified by the conventional methods and API ID 32C identification kit or a specific identification code could not be assigned by ISYP. The performance of ISYP could be indicated as low for all antifungal drugs tested according to the ROC analysis (AUC: 0.28-0.56). As the current version of ISYP displays a poor performance, it is recommended to use the other commercial systems whose results are approved as reliable and in agreement with those of the reference methods in identification and susceptibility testing of yeasts. PMID:22842602

  10. The identification of complete domains within protein sequences using accurate E-values for semi-global alignment

    PubMed Central

    Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.

    2007-01-01

    The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268

  11. Accurate identification of a preference for insertive versus receptive intercourse from static facial cues of gay men.

    PubMed

    Tskhay, Konstantin O; Rule, Nicholas O

    2013-10-01

    In intercourse between men, one of the partners typically assumes the role of an insertive partner (top) while the other assumes a receptive role (bottom). Although some research suggests that the perceptions of potential partners' sexual roles in gay men's relationships can affect whether a man will adopt the role of top or bottom during sexual intercourse, it remains unclear whether sexual roles could be perceived accurately by naïve observers. In Study 1, we found that naïve observers were able to discern men's sexual roles from photos of their faces with accuracy that was significantly greater than chance guessing. Moreover, in Study 2, we determined that the relationship between men's perceived and actual sexual roles was mediated by perceived masculinity. Together, these results suggest that people rely on perceptions of characteristics relevant to stereotypical male-female gender roles and heterosexual relationships to accurately infer sexual roles in same-sex relationships. Thus, same-sex relationships and sexual behavior may be perceptually framed, understood, and possibly structured in ways similar to stereotypes about opposite-sex relationships, suggesting that people may rely on these inferences to form accurate perceptions.

  12. Microbe-ID: an open source toolbox for microbial genotyping and species identification

    PubMed Central

    Tabima, Javier F.; Everhart, Sydney E.; Larsen, Meredith M.; Weisberg, Alexandra J.; Kamvar, Zhian N.; Tancos, Matthew A.; Smart, Christine D.; Chang, Jeff H.

    2016-01-01

    Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID. PMID:27602267

  13. Microbe-ID: an open source toolbox for microbial genotyping and species identification.

    PubMed

    Tabima, Javier F; Everhart, Sydney E; Larsen, Meredith M; Weisberg, Alexandra J; Kamvar, Zhian N; Tancos, Matthew A; Smart, Christine D; Chang, Jeff H; Grünwald, Niklaus J

    2016-01-01

    Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID.

  14. Microbe-ID: an open source toolbox for microbial genotyping and species identification.

    PubMed

    Tabima, Javier F; Everhart, Sydney E; Larsen, Meredith M; Weisberg, Alexandra J; Kamvar, Zhian N; Tancos, Matthew A; Smart, Christine D; Chang, Jeff H; Grünwald, Niklaus J

    2016-01-01

    Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID. PMID:27602267

  15. Microbe-ID: an open source toolbox for microbial genotyping and species identification

    PubMed Central

    Tabima, Javier F.; Everhart, Sydney E.; Larsen, Meredith M.; Weisberg, Alexandra J.; Kamvar, Zhian N.; Tancos, Matthew A.; Smart, Christine D.; Chang, Jeff H.

    2016-01-01

    Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID.

  16. Species identification of invasive yeasts including Candida in Pakistan: limitations of phenotypic methods

    PubMed Central

    Farooqi, Joveria; Jabeen, Kauser; Saeed, Noureen; Zafar, Afia; Brandt, Mary Eleanor; Hasan, Rumina

    2015-01-01

    Objective To compare phenotypic and genotypic methods of yeast identification. Methods The in-vitro cross-sectional study was conducted from January 2006 to May 2009. Invasive yeasts isolated at the clinical microbiology laboratory at the Aga Khan University (AKU), Karachi, Pakistan, were identified. Speciation by phenotypic and molecular methods was compared. All yeasts isolated during the study period from blood and other invasive sites were identified using standard methods. Isolates were shipped to Mycotic Diseases Branch, Centres for Disease Control and Prevention, Atlanta, Georgia, USA, for identification by Luminex flow cytometric multianalyte profiling (xMAP) system. Ribosomal ITS2 DNA sequencing was performed on isolates not identified by Luminex. Result Of the 214 invasive yeasts evaluated, Candida species were 209 (97.7%) while the frequency of non-Candida species was 5 (2.3%). Overall agreement between phenotypic and molecular identification was 81.3%, 90.3% amongst the more common Candida species, and only 38.8% amongst the uncommon yeasts. Conclusion Phenotypic methods of identification proved adequate for common Candida species, but were deficient in recognising rare Candida and non-Candida yeasts, highlighting the importance of molecular methods for identification. PMID:23866432

  17. Identification of Propionibacteria to the species level using Fourier transform infrared spectroscopy and artificial neural networks.

    PubMed

    Dziuba, B

    2013-01-01

    Fourier transform infrared spectroscopy (FTIR) and artificial neural networks (ANN's) were used to identify species of Propionibacteria strains. The aim of the study was to improve the methodology to identify species of Propionibacteria strains, in which the differentiation index D, calculated based on Pearson's correlation and cluster analyses were used to describe the correlation between the Fourier transform infrared spectra and bacteria as molecular systems brought unsatisfactory results. More advanced statistical methods of identification of the FTIR spectra with application of artificial neural networks (ANN's) were used. In this experiment, the FTIR spectra of Propionibacteria strains stored in the library were used to develop artificial neural networks for their identification. Several multilayer perceptrons (MLP) and probabilistic neural networks (PNN) were tested. The practical value of selected artificial neural networks was assessed based on identification results of spectra of 9 reference strains and 28 isolates. To verify results of isolates identification, the PCR based method with the pairs of species-specific primers was used. The use of artificial neural networks in FTIR spectral analyses as the most advanced chemometric method supported correct identification of 93% bacteria of the genus Propionibacterium to the species level.

  18. Identification and Quantitative Measurements of Chemical Species by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Zondlo, Mark A.; Bomse, David S.

    2005-01-01

    The development of a miniature gas chromatograph/mass spectrometer system for the measurement of chemical species of interest to combustion is described. The completed system is a fully-contained, automated instrument consisting of a sampling inlet, a small-scale gas chromatograph, a miniature, quadrupole mass spectrometer, vacuum pumps, and software. A pair of computer-driven valves controls the gas sampling and introduction to the chromatographic column. The column has a stainless steel exterior and a silica interior, and contains an adsorbent of that is used to separate organic species. The detection system is based on a quadrupole mass spectrometer consisting of a micropole array, electrometer, and a computer interface. The vacuum system has two miniature pumps to maintain the low pressure needed for the mass spectrometer. A laptop computer uses custom software to control the entire system and collect the data. In a laboratory demonstration, the system separated calibration mixtures containing 1000 ppm of alkanes and alkenes.

  19. Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    PubMed Central

    Jeong, Seri; Hong, Jun Sung; Kim, Jung Ok; Kim, Keon-Han; Lee, Woonhyoung; Bae, Il Kwon; Lee, Kyungwon

    2016-01-01

    Background Acinetobacter baumannii has a greater clinical impact and exhibits higher antimicrobial resistance rates than the non-baumannii Acinetobacter species. Therefore, the correct identification of Acinetobacter species is clinically important. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has recently become the method of choice for identifying bacterial species. The purpose of this study was to evaluate the ability of MALDI-TOF MS (Bruker Daltonics GmbH, Germany) in combination with an improved database to identify various Acinetobacter species. Methods A total of 729 Acinetobacter clinical isolates were investigated, including 447 A. baumannii, 146 A. nosocomialis, 78 A. pittii, 18 A. ursingii, 9 A. bereziniae, 9 A. soli, 4 A. johnsonii, 4 A. radioresistens, 3 A. gyllenbergii, 3 A. haemolyticus, 2 A. lwoffii, 2 A. junii, 2 A. venetianus, and 2 A. genomospecies 14TU. After 212 isolates were tested with the default Bruker database, the profiles of 63 additional Acinetobacter strains were added to the default database, and 517 isolates from 32 hospitals were assayed for validation. All strains in this study were confirmed by rpoB sequencing. Results The addition of the 63 Acinetobacter strains' profiles to the default Bruker database increased the overall concordance rate between MALDI-TOF MS and rpoB sequencing from 69.8% (148/212) to 100.0% (517/517). Moreover, after library modification, all previously mismatched 64 Acinetobacter strains were correctly identified. Conclusions MALDI-TOF MS enables the prompt and accurate identification of clinically significant Acinetobacter species when used with the improved database. PMID:27139605

  20. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    PubMed

    Bertolini, Francesca; Ghionda, Marco Ciro; D'Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  1. Identification of Culex (Melanoconion) species of the United States using female cibarial armature (Diptera: Culicidae).

    PubMed

    Williams, Martin R; Savage, Harry M

    2009-07-01

    Species within the subgenus Culex (Melanoconion) Theobald are the primary enzootic vectors of viruses in the Venezuelan equine encephalitis complex including Everglades virus, and probable enzootic vectors of eastern equine encephalitis and West Nile viruses. Adult females of this subgenus are often difficult or impossible to identify to species based on external morphological characters. The use of female cibarial armature allows for the identification of field-collected adult female specimens of Culex (Melanoconion). The cibarial armatures are described and illustrated for all species from the United States and a key to species using this character is presented.

  2. Restriction fragment length polymorphism species-specific patterns in the identification of white truffles.

    PubMed

    Bertini, L; Potenza, L; Zambonelli, A; Amicucci, A; Stocchi, V

    1998-07-15

    A molecular method for the identification of ectomycorrhizae belonging to five species of white truffle is described. The polymerase chain reaction (PCR) and universal primers were used to amplify internal transcribed spacers and 5.8S rDNA, target sequences present in a high number of copies. The amplified products were digested with restriction enzymes in order to detect interspecific polymorphisms. Species-specific restriction fragment length polymorphism patterns were determined for all five species. The use of PCR in conjunction with restriction enzymes provides a sensitive and efficient tool for use in distinguishing ectomycorrhizal species and monitoring inoculated seedlings or field mycorrhizal populations. PMID:9682488

  3. Identification of five highly priced tuna species by quantitative real-time polymerase chain reaction.

    PubMed

    Liu, Shasha; Xu, Kunhua; Wu, Zhigang; Xie, Xiao; Feng, Junli

    2016-09-01

    Tunas are economically important fishery worldwide, and are often used for commercial processed production. For effective fishery management and protection of consumers' rights, it is important to develop a molecular method to identify species in canned tuna products rapidly and reliably. Here, we have developed a duplex quantitative real-time PCR (qPCR) for identification of five highly priced tuna species (Thunnus maccoyii, Thunnus obesus, Thunnus albacares, Thunnus alalunga and Katsuwonus pelamis) from processed as well as fresh fish. After amplification and sequencing of seven genetic markers commonly used for species identification, 16S rDNA and control region (CR) of mitochondrial DNA were selected as the reference gene markers for genus Thunnus and tuna species identification, respectively. Subsequently, a 73 bp fragment of 16S rDNA and 85-99 bp fragment of CR were simultaneously amplified from each target species by qPCR. The qPCR efficiency of each reaction was calculated according to the standard curves, and the method was validated by amplification DNA extracted from single or mixed tuna specimen. The developed duplex qPCR system was applied to authenticate species of 14 commercial tuna products successfully, which demonstrated it was really a useful and academic technique to identify highly priced tuna species. PMID:25714139

  4. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India.

    PubMed

    Peddayelachagiri, Bhavani V; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H; Batra, Harsh V

    2016-09-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  5. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India

    PubMed Central

    Peddayelachagiri, Bhavani V.; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H.; Batra, Harsh V.

    2016-01-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  6. The fur gene as a new phylogenetic marker for Vibrionaceae species identification.

    PubMed

    Machado, Henrique; Gram, Lone

    2015-04-01

    Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA.

  7. The fur Gene as a New Phylogenetic Marker for Vibrionaceae Species Identification

    PubMed Central

    Gram, Lone

    2015-01-01

    Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA. PMID:25662978

  8. Species identification refined by molecular scatology in a community of sympatric carnivores in Xinjiang, China

    PubMed Central

    LAGUARDIA, Alice; WANG, Jun; SHI, Fang-Lei; SHI, Kun; RIORDAN, Philip

    2015-01-01

    Many ecological studies and conservation management plans employ noninvasive scat sampling based on the assumption that species’ scats can be correctly identified in the field. However, in habitats with sympatric similarly sized carnivores, misidentification of scats is frequent and can lead to bias in research results. To address the scat identification dilemma, molecular scatology techniques have been developed to extract DNA from the donor cells present on the outer lining of the scat samples. A total of 100 samples were collected in the winter of 2009 and 2011 in Taxkorgan region of Xinjiang, China. DNA was extracted successfully from 88% of samples and genetic species identification showed that more than half the scats identified in the field as snow leopard (Panthera uncia) actually belonged to fox (Vulpes vulpes). Correlation between scat characteristics and species were investigated, showing that diameter and dry weight of the scat were significantly different between the species. However it was not possible to define a precise range of values for each species because of extensive overlap between the morphological values. This preliminary study confirms that identification of snow leopard feces in the field is misleading. Research that relies upon scat samples to assess distribution or diet of the snow leopard should therefore employ molecular scatology techniques. These methods are financially accessible and employ relatively simple laboratory procedures that can give an indisputable response to species identification from scats. PMID:25855225

  9. Detection and identification of Legionella species from groundwaters.

    PubMed

    Brooks, Teresa; Osicki, Raegan; Springthorpe, V; Sattar, Syed; Filion, Lionel; Abrial, David; Riffard, Serge

    Legionellae are opportunistic bacterial pathogens causing Legionnaires' disease and Pontiac fever and are ubiquitous in surface waters and in infrastructure to contain or distribute water, including pipes, cooling towers, and whirlpool spas. Infection in community-acquired and nosocomial outbreaks is by exposure to contaminated aerosols. Little is known about the presence of legionellae in groundwater. This study used samples from various locations in the United States and Canada to determine if legionellae could be isolated from water and biofilms derived from groundwaters not known to be under the direct influence of surface water. Of the 114 total samples of water and biofilm tested, 29.1% and 28.2% were positive for Legionella by cultivation and polymerase chain reaction (PCR), respectively. Legionellae were found in both warm and colder groundwaters, with more isolates from samples incubated at 30 degrees C than the 35 degrees C conventional temperature for Legionella isolation. The concentration of Legionella found in the water samples ranged from 10(2) to 10(5) CFU/L and up to 1.2 x 10(2) CFU/cm(2) in the biofilm. The species of Legionella identified included both known pathogenic species and species that have not yet been identified as human pathogens. Millions of people in Canada, and around the world, rely on groundwater as their source for drinking. This study shows that legionellae are widespread in groundwater and have the potential to seed derived water supplies and biofilms in public distribution systems. This further widens the known sphere of Legionella colonization and the implications of its presence for public health. PMID:15371220

  10. Use of Cytochrome c Oxidase Subunit I (COI) Nucleotide Sequences for Identification of the Korean Luciliinae Fly Species (Diptera: Calliphoridae) in Forensic Investigations

    PubMed Central

    Park, Seong Hwan; Zhang, Yong; Piao, Huguo; Yu, Dong Ha; Jeong, Hyun Ju; Yoo, Ga Young; Chung, Ukhee; Jo, Tae-Ho

    2009-01-01

    Blowflies, especially species belonging to the subfamily Luciliinae, are the first insects to lay eggs on corpses in Korea. Fast and accurate species identification has been a key task for forensic entomologists. Because conventional morphologic identification methods have many limitations with respect to forensic practice, molecular methods have been proposed to identify fly species of forensic importance. To this end, the authors amplified and sequenced the full length of the cytochrome c oxidase subunit I (COI) gene of the Luciliinae fly species collected in Korea. The results showed the COI sequences are instrumental in identifying Luciliinae fly species. However, when compared with previously reported data, considerable inconsistencies were noted. Hemipyrellia ligurriens data in this study differed significantly from two of the five pre-existing data. Two closely related species, Lucilia illustris and Lucilia caesar, showed an overlap of COI haplotypes due to four European sequences. The results suggest that more individuals from various geographic regions and additive nuclear DNA markers should be analyzed, and morphologic identification keys must be reconfirmed to overcome these inconsistencies. PMID:19949660

  11. Use of cytochrome c oxidase subunit i (COI) nucleotide sequences for identification of the Korean Luciliinae fly species (Diptera: Calliphoridae) in forensic investigations.

    PubMed

    Park, Seong Hwan; Zhang, Yong; Piao, Huguo; Yu, Dong Ha; Jeong, Hyun Ju; Yoo, Ga Young; Chung, Ukhee; Jo, Tae-Ho; Hwang, Juck-Joon

    2009-12-01

    Blowflies, especially species belonging to the subfamily Luciliinae, are the first insects to lay eggs on corpses in Korea. Fast and accurate species identification has been a key task for forensic entomologists. Because conventional morphologic identification methods have many limitations with respect to forensic practice, molecular methods have been proposed to identify fly species of forensic importance. To this end, the authors amplified and sequenced the full length of the cytochrome c oxidase subunit I (COI) gene of the Luciliinae fly species collected in Korea. The results showed the COI sequences are instrumental in identifying Luciliinae fly species. However, when compared with previously reported data, considerable inconsistencies were noted. Hemipyrellia ligurriens data in this study differed significantly from two of the five pre-existing data. Two closely related species, Lucilia illustris and Lucilia caesar, showed an overlap of COI haplotypes due to four European sequences. The results suggest that more individuals from various geographic regions and additive nuclear DNA markers should be analyzed, and morphologic identification keys must be reconfirmed to overcome these inconsistencies.

  12. Identification of Erwinia species isolated from apples and pears by differential PCR.

    PubMed

    Gehring, I; Geider, K

    2012-04-01

    Many pathogenic and epiphytic bacteria isolated from apples and pears belong to the genus Erwinia; these include the species E. amylovora, E. pyrifoliae, E. billingiae, E. persicina, E. rhapontici and E. tasmaniensis. Identification and classification of freshly isolated bacterial species often requires tedious taxonomic procedures. To facilitate routine identification of Erwinia species, we have developed a PCR method based on species-specific oligonucleotides (SSOs) from the sequences of the housekeeping genes recA and gpd. Using species-specific primers that we report here, differentiation was done with conventional PCR (cPCR) and quantitative PCR (qPCR) applying two consecutive primer annealing temperatures. The specificity of the primers depends on terminal Single Nucleotide Polymorphisms (SNPs) that are characteristic for the target species. These PCR assays enabled us to distinguish eight Erwinia species, as well as to identify new Erwinia isolates from plant surfaces. When performed with mixed bacterial cultures, they only detected a single target species. This method is a novel approach to classify strains within the genus Erwinia by PCR and it can be used to confirm other diagnostic data, especially when specific PCR detection methods are not already available. The method may be applied to classify species within other bacterial genera.

  13. Classification, Identification, and Clinical Significance of Haemophilus and Aggregatibacter Species with Host Specificity for Humans

    PubMed Central

    2014-01-01

    SUMMARY The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology

  14. Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs.

    PubMed

    Zheng, Qin; Wu, Xiaofeng; Zheng, Hailing; Zhou, Yang

    2015-05-01

    We report the preparation of a specific fibroin antibody and its use for the identification of unearthed ancient silk relics. Based on the 12-amino-acid repeat sequence "GAGAGSGAGAGS", which is found in fibroin of the silkworm Bombyx mori, a specific antibody against fibroin was prepared in rabbits through peptide synthesis and carrier-protein coupling. This antibody was highly specific for fibroin found in silk. Using this antibody we have successfully identified four silk samples from different time periods. Our results reveal, for the first time, a method capable of detecting silk from a few milligrams of archaeological fabric that has been buried for thousands of years, confirming that the ancient practice of wearing silk products while praying for rebirth dated back to at least 400 BCE. This method also complements current approaches in silk detection, especially for the characterization of poorly preserved silks, promoting the investigation of silk origins and of ancient clothing cultures.

  15. Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs.

    PubMed

    Zheng, Qin; Wu, Xiaofeng; Zheng, Hailing; Zhou, Yang

    2015-05-01

    We report the preparation of a specific fibroin antibody and its use for the identification of unearthed ancient silk relics. Based on the 12-amino-acid repeat sequence "GAGAGSGAGAGS", which is found in fibroin of the silkworm Bombyx mori, a specific antibody against fibroin was prepared in rabbits through peptide synthesis and carrier-protein coupling. This antibody was highly specific for fibroin found in silk. Using this antibody we have successfully identified four silk samples from different time periods. Our results reveal, for the first time, a method capable of detecting silk from a few milligrams of archaeological fabric that has been buried for thousands of years, confirming that the ancient practice of wearing silk products while praying for rebirth dated back to at least 400 BCE. This method also complements current approaches in silk detection, especially for the characterization of poorly preserved silks, promoting the investigation of silk origins and of ancient clothing cultures. PMID:25804731

  16. Fish species identification in surimi-based products.

    PubMed

    Pepe, Tiziana; Trotta, Michele; Di Marco, Isolina; Anastasio, Aniello; Bautista, José Manuel; Cortesi, Maria Luisa

    2007-05-01

    Whole fish morphologically identified as belonging to Theragra chalcogramma, Merluccius merluccius, Merluccius hubbsi, and Merluccius capensis and 19 fish products commercialized as surimi with different commercial brands and labeled as T. chalcogramma were analyzed by direct sequence analysis of the cytochrome b gene. A phylogenetic analysis of surimi products was performed as well. Results demonstrated that mislabeling is a large-scale phenomenon, since 84.2% of surimi-based fish products sold as T. chalcogramma (16/19) were prepared with species different from the one declared. In fact, only three samples (samples 15-17) were found to belong to T. chalcogramma. In the remaining samples, Merluccidae (samples 4-14), Gadidae (samples 18 and 19), Sparidae (sample 1), and Pomacentridae (samples 2 and 3) families were detected. A phylogenetic tree was constructed, and the bootstrap value was calculated. According to this methodology, 11 samples were grouped in the same clade as Merluccius spp.

  17. Technical note: Identification of Prototheca species from bovine milk samples by PCR-single strand conformation polymorphism.

    PubMed

    Cremonesi, P; Pozzi, F; Ricchi, M; Castiglioni, B; Luini, M; Chessa, S

    2012-12-01

    We report the development of a PCR-single strand conformation polymorphism (SSCP) method to identify Prototheca spp. responsible for bovine mastitis: P. zopfii and P. blaschkeae. The method was set up using reference strains belonging to P. zopfii genotype 1, P. zopfii genotype 2, and P. blaschkeae as target species and P. stagnora, and P. ulmea as negative controls. The assay was applied on 50 isolates of Prototheca spp. isolated from bovine mastitic milk or bulk-tank milk samples, and all isolates were identified as P. zopfii genotype 2. We conclude that the described PCR-SSCP approach is accurate, inexpensive, and highly suitable for the identification of P. zopfii genotype 2 on field isolates but also directly on milk, if preceded by a specific DNA extraction method. PMID:22999279

  18. Blood species identification using Near-Infrared diffuse transmitted spectra and PLS-DA method

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Zhang, Shengzhao; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2016-05-01

    Blood species identification is of great significance for blood supervision and wildlife investigations. The current methods used to identify the blood species are destructive. Near-Infrared spectroscopy method is known for its non-invasive properties. In this research, we combined Near-Infrared diffuse transmitted spectra and Partial Least Square Discrimination Analysis (PLS-DA) to identify three blood species, including macaque, human and mouse. Blind test and external test were used to assess the PLS-DA model. The model performed 100% accuracy in its identification between three blood species. This approach does not require a specific knowledge of biochemical features for each individual class but relies on a spectroscopic statistical differentiation of the whole components. This is the first time to demonstrate Near-Infrared diffuse transmitted spectra have the ability to identify the species of origin of blood samples. The results also support a good potential of absorption and scattering spectroscopy for species identification in practical applications for real-time detection.

  19. Evaluation of the rapid CORYNE identification system for Corynebacterium species and other coryneforms.

    PubMed Central

    Gavin, S E; Leonard, R B; Briselden, A M; Coyle, M B

    1992-01-01

    The Rapid CORYNE system for identification of aerobic, nonsporeforming, gram-positive rods was evaluated according to the manufacturer's instructions with 177 organisms. After inoculation with a heavy suspension of growth, strips containing 20 cupules were incubated for 24 h, reagents were added, and the results of 21 biochemical reactions were recorded as numerical profiles. The strains consisted of pathogenic species of the genus Corynebacterium, primarily C. diphtheriae (n = 29), opportunistic species of Corynebacterium including C. jeikeium (n = 75), recognized species of non-corynebacteria such as Gardnerella and Arcanobacterium (n = 51), and Centers for Disease Control (CDC) coryneform groups (n = 22). Results from single tests read after 24 h yielded correct identifications to species level with no additional tests for 26 (89.7%) of the pathogenic species; 64 (85.3%) of the opportunistic organisms; 51 (100%) of the non-corynebacteria, and 8 (36.4%) of the CDC coryneform groups. Supplemental tests produced the correct identification for three additional pathogenic isolates (100% total) and four additional isolates from the opportunistic species (90.6% total). Twelve of the 15 isolates not identified by the system were in the CDC coryneform groups. Four of the six misidentified and one of the unidentified isolates were C. matruchotii, which was not included in the data base. The system is an excellent rapid alternative to conventional biochemical tests. PMID:1629322

  20. Molecular and morphological identification of mealybug species (Hemiptera: Pseudococcidae) in Brazilian vineyards.

    PubMed

    Pacheco da Silva, Vitor C; Bertin, Aline; Blin, Aurélie; Germain, Jean-François; Bernardi, Daniel; Rignol, Guylène; Botton, Marcos; Malausa, Thibaut

    2014-01-01

    Mealybugs (Hemiptera: Pseudococcidae) are pests constraining the international trade of Brazilian table grapes. They damage grapes by transmitting viruses and toxins, causing defoliation, chlorosis, and vigor losses and favoring the development of sooty mold. Difficulties in mealybug identification remain an obstacle to the adequate management of these pests. In this study, our primary aim was to identify the principal mealybug species infesting the major table grape-producing regions in Brazil, by morphological and molecular characterization. Our secondary aim was to develop a rapid identification kit based on species-specific Polymerase Chain Reactions, to facilitate the routine identification of the most common pest species. We surveyed 40 sites infested with mealybugs and identified 17 species: Dysmicoccus brevipes (Cockerell), Dysmicoccus sylvarum Williams and Granara de Willink, Dysmicoccus texensis (Tinsley), Ferrisia cristinae Kaydan and Gullan, Ferrisia meridionalis Williams, Ferrisia terani Williams and Granara de Willink, Phenacoccus baccharidis Williams, Phenacoccus parvus Morrison, Phenacoccus solenopsis Tinsley, Planococcus citri (Risso), Pseudococcus viburni (Signoret), Pseudococcus cryptus Hempel, four taxa closely related each of to Pseudococcus viburni, Pseudococcus sociabilis Hambleton, Pseudococcus maritimus (Ehrhorn) and Pseudococcus meridionalis Prado, and one specimen from the genus Pseudococcus Westwood. The PCR method developed effectively identified five mealybug species of economic interest on grape in Brazil: D. brevipes, Pl. citri, Ps. viburni, Ph. solenopsis and Planococcus ficus (Signoret). Nevertheless, it is not possible to assure that this procedure is reliable for taxa that have not been sampled already and might be very closely related to the target species.

  1. Molecular and Morphological Identification of Mealybug Species (Hemiptera: Pseudococcidae) in Brazilian Vineyards

    PubMed Central

    Pacheco da Silva, Vitor C.; Bertin, Aline; Blin, Aurélie; Germain, Jean-François; Bernardi, Daniel; Rignol, Guylène; Botton, Marcos; Malausa, Thibaut

    2014-01-01

    Mealybugs (Hemiptera: Pseudococcidae) are pests constraining the international trade of Brazilian table grapes. They damage grapes by transmitting viruses and toxins, causing defoliation, chlorosis, and vigor losses and favoring the development of sooty mold. Difficulties in mealybug identification remain an obstacle to the adequate management of these pests. In this study, our primary aim was to identify the principal mealybug species infesting the major table grape-producing regions in Brazil, by morphological and molecular characterization. Our secondary aim was to develop a rapid identification kit based on species-specific Polymerase Chain Reactions, to facilitate the routine identification of the most common pest species. We surveyed 40 sites infested with mealybugs and identified 17 species: Dysmicoccus brevipes (Cockerell), Dysmicoccus sylvarum Williams and Granara de Willink, Dysmicoccus texensis (Tinsley), Ferrisia cristinae Kaydan and Gullan, Ferrisia meridionalis Williams, Ferrisia terani Williams and Granara de Willink, Phenacoccus baccharidis Williams, Phenacoccus parvus Morrison, Phenacoccus solenopsis Tinsley, Planococcus citri (Risso), Pseudococcus viburni (Signoret), Pseudococcus cryptus Hempel, four taxa closely related each of to Pseudococcus viburni, Pseudococcus sociabilis Hambleton, Pseudococcus maritimus (Ehrhorn) and Pseudococcus meridionalis Prado, and one specimen from the genus Pseudococcus Westwood. The PCR method developed effectively identified five mealybug species of economic interest on grape in Brazil: D. brevipes, Pl. citri, Ps. viburni, Ph. solenopsis and Planococcus ficus (Signoret). Nevertheless, it is not possible to assure that this procedure is reliable for taxa that have not been sampled already and might be very closely related to the target species. PMID:25062012

  2. Routine phenotypic identification of bacterial species of the family Pasteurellaceae isolated from animals.

    PubMed

    Dousse, Florence; Thomann, Andreas; Brodard, Isabelle; Korczak, Bozena M; Schlatter, Yvonne; Kuhnert, Peter; Miserez, Raymond; Frey, Joachim

    2008-11-01

    Pasteurellaceae are bacteria with an important role as primary or opportunistic, mainly respiratory, pathogens in domestic and wild animals. Some species of Pasteurellaceae cause severe diseases with high economic losses in commercial animal husbandry and are of great diagnostic concern. Because of new data on the phylogeny of Pasteurellaceae, their taxonomy has recently been revised profoundly, thus requiring an improved phenotypic differentiation procedure to identify the individual species of this family. A new and simplified procedure to identify species of Actinobacillus, Avibacterium, Gallibacterium, Haemophilus, Mannheimia, Nicoletella, and Pasteurella, which are most commonly isolated from clinical samples of diseased animals in veterinary diagnostic laboratories, is presented in the current study. The identification procedure was evaluated with 40 type and reference strains and with 267 strains from routine diagnostic analysis of various animal species, including 28 different bacterial species. Type, reference, and field strains were analyzed by 16S ribosomal RNA (rrs) and rpoB gene sequencing for unambiguous species determination as a basis to evaluate the phenotypic differentiation schema. Primary phenotypic differentiation is based on beta-nicotinamide adenine dinucleotide (beta-NAD) dependence and hemolysis, which are readily determined on the isolation medium. The procedure divides the 28 species into 4 groups for which particular biochemical reactions were chosen to identify the bacterial species. The phenotypic identification procedure allowed researchers to determine the species of 240 out of 267 field strains. The procedure is an easy and cost-effective system for the rapid identification of species of the Pasteurellaceae family isolated from clinical specimens of animals. PMID:18987220

  3. Accurate quantification of two key time points used in the determination of hydroxyl polyaluminum species by ferron timed spectrophotometry.

    PubMed

    Zhang, Jing; Yong, Xiaojing; Zhao, Dongyan; Shi, Qiuyi

    2015-01-01

    The content of mononuclear Al (Ala%) changed with its determination time (ta) under different dosages of Ferron (7-iodo-8-hydroxyquinoline-5-sulfonic acid, [Ferron]), and the change of Ala% with [Ferron] at different ta was systematically investigated for the first time. Thus, the most appropriate ta was found with the optimal [Ferron]. Also, the judgment of the platform (flat or level portion) of the complete reaction on the absorption-time curve determined in the hydroxyl polyaluminum solution by Ferron timed spectrophotometry (Ferron assay) was first digitized. The time point (tb) of complete reaction between the medium polyaluminum (Alb) and Ferron reagent depended on the reaction extent, and time could not be used only to judge. Thus, the tb was accurately determined and reduced to half of original, which improved the experiment efficiency significantly. The Ferron assay was completely optimized.

  4. Statistical analysis of texture in trunk images for biometric identification of tree species.

    PubMed

    Bressane, Adriano; Roveda, José A F; Martins, Antônio C G

    2015-04-01

    The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year. Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.

  5. Identification of Dermatophyte Species after Implementation of the In-House MALDI-TOF MS Database

    PubMed Central

    Calderaro, Adriana; Motta, Federica; Montecchini, Sara; Gorrini, Chiara; Piccolo, Giovanna; Piergianni, Maddalena; Buttrini, Mirko; Medici, Maria Cristina; Arcangeletti, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Despite that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool in the clinical microbiology setting, few studies have till now focused on MALDI-TOF MS-based identification of dermatophytes. In this study, we analyze dermatophytes strains isolated from clinical samples by MALDI-TOF MS to supplement the reference database available in our laboratory. Twenty four dermatophytes (13 reference strains and 11 field isolated strains), identified by both conventional and molecular standard procedures, were analyzed by MALDI-TOF MS, and the spectra obtained were used to supplement the available database, limited to a few species. To verify the robustness of the implemented database, 64 clinical isolates other than those used for the implementation were identified by MALDI-TOF MS. The implementation allowed the identification of the species not included in the original database, reinforced the identification of the species already present and correctly identified those within the Trichophyton mentagrophytes complex previously classified as Trichophyton. tonsurans by MALDI-TOF MS. The dendrogram obtained by analyzing the proteic profiles of the different species of dermatophytes reflected their taxonomy, showing moreover, in some cases, a different clusterization between the spectra already present in the database and those newly added. In this study, MALDI-TOF MS proved to be a useful tool suitable for the identification of dermatophytes for diagnostic purpose. PMID:25216335

  6. Comparison of Systems for Identification and Differentiation of Species within the Genus Yersinia

    PubMed Central

    Neubauer, Heinrich; Sauer, Thomas; Becker, Heinz; Aleksic, Stojanca; Meyer, Hermann

    1998-01-01

    Of four tested identification systems (API 20E, API Rapid 32 IDE, Micronaut E, and the PCR-based Yersinia enterocolitica Amplification Set), API 20E is still the system of choice for identifying pathogenic Yersinia isolates. It provides the highest sensitivity both at the genus and at the species level and has the best cost-effectiveness correlation. PMID:9774596

  7. Comparing Methods of Instruction Using Bird Species Identification Skills as Indicators.

    ERIC Educational Resources Information Center

    Randler, Christoph; Bogner, Franz

    2002-01-01

    Compares two different methods of educational instruction, both addressing the improvement of pupils in bird species identification skills. Uses hands-on and group-based learning styles with (stuffed) taxidermy specimens and teacher-based slide presentations. Reports an increase in knowledge with both instructional methods but different learning…

  8. Molecular species identification of cryptic apple and snowberry maggots (Diptera: Tephritidae) in Western and Central Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species R. zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple p...

  9. Collaborative Processes in Species Identification Using an Internet-Based Taxonomic Resource

    ERIC Educational Resources Information Center

    Kontkanen, Jani; Kärkkäinen, Sirpa; Dillon, Patrick; Hartikainen-Ahia, Anu; Åhlberg, Mauri

    2016-01-01

    Visual databases are increasingly important resources through which individuals and groups can undertake species identification. This paper reports research on the collaborative processes undertaken by pre-service teacher students when working in small groups to identify birds using an Internet-based taxonomic resource. The student groups are…

  10. A novel method for simultaneous Enterococcus species identification/typing and van genotyping by high resolution melt analysis.

    PubMed

    Gurtler, Volker; Grando, Danilla; Mayall, Barrie C; Wang, Jenny; Ghaly-Derias, Shahbano

    2012-09-01

    In order to develop a typing and identification method for van gene containing Enterococcus faecium, two multiplex PCR reactions were developed for use in HRM-PCR (High Resolution Melt-PCR): (i) vanA, vanB, vanC, vanC23 to detect van genes from different Enterococcus species; (ii) ISR (intergenic spacer region between the 16S and 23S rRNA genes) to detect all Enterococcus species and obtain species and isolate specific HRM curves. To test and validate the method three groups of isolates were tested: (i) 1672 Enterococcus species isolates from January 2009 to December 2009; (ii) 71 isolates previously identified and typed by PFGE (pulsed-field gel electrophoresis) and MLST (multi-locus sequence typing); and (iii) 18 of the isolates from (i) for which ISR sequencing was done. As well as successfully identifying 2 common genotypes by HRM from the Austin Hospital clinical isolates, this study analysed the sequences of all the vanB genes deposited in GenBank and developed a numerical classification scheme for the standardised naming of these vanB genotypes. The identification of Enterococcus faecalis from E. faecium was reliable and stable using ISR PCR. The typing of E. faecium by ISR PCR: (i) detected two variable peaks corresponding to different copy numbers of insertion sequences I and II corresponding to peak I and II respectively; (ii) produced 7 melt profiles for E. faecium with variable copy numbers of sequences I and II; (iii) demonstrated stability and instability of peak heights with equal frequency within the patient sample (36.4±4.5 days and 38.6±5.8 days respectively for 192 patients); (iv) detected ISR-HRM types with as much discrimination as PFGE and more than MLST; and (v) detected ISR-HRM types that differentiated some isolates that were identical by PFGE and MLST. In conjunction with the rapid and accurate van genotyping method described here, this ISR-HRM typing and identification method can be used as a stable identification and typing method with

  11. Species Identification of Food Contaminating Beetles by Recognizing Patterns in Microscopic Images of Elytra Fragments

    PubMed Central

    Park, Su Inn; Bisgin, Halil; Ding, Hongjian; Semey, Howard G.; Langley, Darryl A.; Tong, Weida

    2016-01-01

    A crucial step of food contamination inspection is identifying the species of beetle fragments found in the sample, since the presence of some storage beetles is a good indicator of insanitation or potential food safety hazards. The current pratice, visual examination by human analysts, is time consuming and requires several years of experience. Here we developed a species identification algorithm which utilizes images of microscopic elytra fragments. The elytra, or hardened forewings, occupy a large portion of the body, and contain distinctive patterns. In addition, elytra fragments are more commonly recovered from processed food products than other body parts due to their hardness. As a preliminary effort, we chose 15 storage product beetle species frequently detected in food inspection. The elytra were then separated from the specimens and imaged under a microscope. Both global and local characteristics were quantified and used as feature inputs to artificial neural networks for species classification. With leave-one-out cross validation, we achieved overall accuracy of 80% through the proposed global and local features, which indicates that our proposed features could differentiate these species. Through examining the overall and per species accuracies, we further demonstrated that the local features are better suited than the global features for species identification. Future work will include robust testing with more beetle species and algorithm refinement for a higher accuracy. PMID:27341524

  12. Accurate high-throughput identification of parallel G-quadruplex topology by a new tetraaryl-substituted imidazole.

    PubMed

    Hu, Ming-Hao; Chen, Shuo-Bin; Wang, Yu-Qing; Zeng, You-Mei; Ou, Tian-Miao; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2016-09-15

    G-quadruplex nucleic acids are four-stranded DNA or RNA secondary structures that are formed in guanine-rich sequences. These structures exhibit extensive structural polymorphism and play a pivotal role in the control of a variety of cellular processes. To date, diverse approaches for high-throughput identification of G-quadruplex structures have been successfully developed, but high-throughput methods for further characterization of their topologies are still lacking. In this study, we report a new tetra-arylimidazole probe psIZCM-1, which was found to display significant and distinctive changes in both the absorption and the fluorescence spectra in the presence of parallel G-quadruplexes but show insignificant changes upon interactions with anti-parallel G-quadruplexes or other non-quadruplex oligonucleotides. In view of this dual-output feature, we used psIZCM-1 to identify the parallel G-quadruplexes from a large set of 314 oligonucleotides (including 300 G-quadruplex-forming oligonucleotides and 14 non-quadruplex oligonucleotides) via a microplate reader and accordingly established a high-throughput method for the characterization of parallel G-quadruplex topologies. The accuracy of this method was greater than 95%, which was much higher than that of the commercial probe NMM. To make the approach more practical, we further combined psIZCM-1 with another G-quadruplex probe IZCM-7 to realize the high-throughput classification of parallel, anti-parallel G-quadruplexes and non-quadruplex structures.

  13. Rapid and high throughput molecular identification of diverse mosquito species by high resolution melting analysis

    PubMed Central

    Ajamma, Yvonne Ukamaka; Mararo, Enock; Omondi, David; Onchuru, Thomas; Muigai, Anne W. T.; Masiga, Daniel; Villinger, Jandouwe

    2016-01-01

    Mosquitoes are a diverse group of invertebrates, with members that are among the most important vectors of diseases. The correct identification of mosquitoes is paramount to the control of the diseases that they transmit. However, morphological techniques depend on the quality of the specimen and often unavailable taxonomic expertise, which may still not be able to distinguish mosquitoes among species complexes (sibling and cryptic species). High resolution melting (HRM) analyses, a closed-tube, post-polymerase chain reaction (PCR) method used to identify variations in nucleic acid sequences, has been used to differentiate species within the Anopheles gambiae and Culex pipiens complexes. We validated the use of PCR-HRM analyses to differentiate species within Anopheles and within each of six genera of culicine mosquitoes, comparing primers targeting cytochrome b ( cyt b), NADH dehydrogenase subunit 1 (ND1), intergenic spacer region (IGS) and cytochrome c oxidase subunit 1 ( COI) gene regions. HRM analyses of amplicons from all the six primer pairs successfully differentiated two or more mosquito species within one or more genera ( Aedes ( Ae. vittatus from Ae. metallicus), Culex ( Cx. tenagius from Cx. antennatus, Cx. neavei from Cx. duttoni, cryptic Cx. pipiens species), Anopheles ( An. gambiae s.s. from An. arabiensis) and Mansonia ( Ma. africana from Ma. uniformis)) based on their HRM profiles. However, PCR-HRM could not distinguish between species within Aedeomyia ( Ad. africana and Ad. furfurea), Mimomyia ( Mi. hispida and Mi. splendens) and Coquillettidia ( Cq. aurites, Cq. chrysosoma, Cq. fuscopennata, Cq. metallica, Cq. microannulatus, Cq. pseudoconopas and Cq. versicolor) genera using any of the primers. The IGS and COI barcode region primers gave the best and most definitive separation of mosquito species among anopheline and culicine mosquito genera, respectively, while the other markers may serve to confirm identifications of closely related sub-species

  14. Rapid and high throughput molecular identification of diverse mosquito species by high resolution melting analysis

    PubMed Central

    Ajamma, Yvonne Ukamaka; Mararo, Enock; Omondi, David; Onchuru, Thomas; Muigai, Anne W. T.; Masiga, Daniel; Villinger, Jandouwe

    2016-01-01

    Mosquitoes are a diverse group of invertebrates, with members that are among the most important vectors of diseases. The correct identification of mosquitoes is paramount to the control of the diseases that they transmit. However, morphological techniques depend on the quality of the specimen and often unavailable taxonomic expertise, which may still not be able to distinguish mosquitoes among species complexes (sibling and cryptic species). High resolution melting (HRM) analyses, a closed-tube, post-polymerase chain reaction (PCR) method used to identify variations in nucleic acid sequences, has been used to differentiate species within the Anopheles gambiae and Culex pipiens complexes. We validated the use of PCR-HRM analyses to differentiate species within Anopheles and within each of six genera of culicine mosquitoes, comparing primers targeting cytochrome b ( cyt b), NADH dehydrogenase subunit 1 (ND1), intergenic spacer region (IGS) and cytochrome c oxidase subunit 1 ( COI) gene regions. HRM analyses of amplicons from all the six primer pairs successfully differentiated two or more mosquito species within one or more genera ( Aedes ( Ae. vittatus from Ae. metallicus), Culex ( Cx. tenagius from Cx. antennatus, Cx. neavei from Cx. duttoni, cryptic Cx. pipiens species), Anopheles ( An. gambiae s.s. from An. arabiensis) and Mansonia ( Ma. africana from Ma. uniformis)) based on their HRM profiles. However, PCR-HRM could not distinguish between species within Aedeomyia ( Ad. africana and Ad. furfurea), Mimomyia ( Mi. hispida and Mi. splendens) and Coquillettidia ( Cq. aurites, Cq. chrysosoma, Cq. fuscopennata, Cq. metallica, Cq. microannulatus, Cq. pseudoconopas and Cq. versicolor) genera using any of the primers. The IGS and COI barcode region primers gave the best and most definitive separation of mosquito species among anopheline and culicine mosquito genera, respectively, while the other markers may serve to confirm identifications of closely related sub-species

  15. Identification of incompatibility alleles in the tetraploid species sour cherry.

    PubMed

    Tobutt, K R; Bosković, R; Cerović, R; Sonneveld, T; Ruzić, D

    2004-03-01

    The incompatibility genetics of sour cherry ( Prunus cerasus), an allotetraploid species thought to be derived from sweet cherry (diploid) and ground cherry (tetraploid), were investigated by test crossing and by analysis of stylar ribonucleases which are known to be the products of incompatibility alleles in sweet cherry. Stylar extracts of 36 accessions of sour cherry were separated electrophoretically and stained for ribonuclease activity. The zymograms of most accessions showed three bands, some two or four. Of the ten bands seen, six co-migrated with bands that in sweet cherry are attributed to the incompatibility alleles S(1), S(3), S(4), S(6, ) S(9) and S(13). 'Cacanski Rubin', 'Erdi Botermo B', 'Koros' and 'Ujfehertoi Furtos', which showed bands apparently corresponding to S(1) and S(4), were test pollinated with the sweet cherry 'Merton Late' ( S(1) S(4)). Monitoring pollen tube growth, and, in one case, fruit set, showed that these crosses were incompatible and that the four sour cherries indeed have the alleles S(1) and S(4). Likewise, test pollination of 'Marasca Piemonte', 'Marasca Savena' and 'Morello, Dutch' with 'Noble' ( S(6) S(13)) showed that these three sour cherries have the alleles S(6) and S(13). S(13) was very frequent in sour cherry cultivars, but is rare in sweet cherry cultivars, whereas with S(3) the situation is reversed. It was suggested that the other four bands are derived from ground cherry and one of these, provisionally attributed to S(B), occurred frequently in a small set of ground cherry accessions surveyed. Analysing some progenies from sour by sweet crosses by S allele-specific PCR and monitoring the success of some sweet by sour crosses were informative. They indicated mostly disomic inheritance, with sweet cherry S alleles belonging to one locus and, presumably, the ground cherry alleles to the other, and helped clarify the genomic arrangement of the alleles and the interactions in heteroallelic pollen. PMID:14689184

  16. Identification of herbarium whole-leaf samples of Epilobium species by ATR-IR spectroscopy.

    PubMed

    Strgulc Krajsek, Simona; Buh, Primoz; Zega, Anamarija; Kreft, Samo

    2008-02-01

    A simple, high-accuracy FT-IR method based on attenuated total reflection (ATR) was developed for the rapid determination of leaf samples of Epilobium species. The method is superior to other analytical techniques, since there is no need of laborious sample preparation such as grinding or extraction and solvent removal. A total of 70 herbarium specimens, belonging to all 13 Epilobium and to 2 Chamerion species growing in Slovenia, were analyzed. With the 100 most-informative wavenumbers in the range 700-1800 cm(-1), we obtained over 90% accuracy of species identification, with discriminant multivariate statistical analysis on the measurements made on whole dried leaves. PMID:18293444

  17. A name for the 'blueberry tetra', an aquarium trade popular species of Hyphessobrycon Durbin (Characiformes, Characidae), with comments on fish species descriptions lacking accurate type locality.

    PubMed

    Marinho, M M F; Dagosta, F C P; Camelier, P; Oyakawa, O T

    2016-07-01

    A new species of Hyphessobrycon is described from a tributary of the upper Rio Tapajós, Amazon basin, Mato Grosso, Brazil. Its exuberant colour in life, with blue to purple body and red fins, is appreciated in the aquarium trade. Characters to diagnose the new species from all congeners are the presence of a single humeral blotch, absence of a distinct caudal-peduncle blotch, absence of a well-defined dark mid-lateral stripe on body, the presence of 16-18 branched anal-fin rays, nine branched dorsal-fin rays and six branched pelvic-fin rays. A brief comment on fish species descriptions solely based on aquarium material and its consequence for conservation policies is provided.

  18. A name for the 'blueberry tetra', an aquarium trade popular species of Hyphessobrycon Durbin (Characiformes, Characidae), with comments on fish species descriptions lacking accurate type locality.

    PubMed

    Marinho, M M F; Dagosta, F C P; Camelier, P; Oyakawa, O T

    2016-07-01

    A new species of Hyphessobrycon is described from a tributary of the upper Rio Tapajós, Amazon basin, Mato Grosso, Brazil. Its exuberant colour in life, with blue to purple body and red fins, is appreciated in the aquarium trade. Characters to diagnose the new species from all congeners are the presence of a single humeral blotch, absence of a distinct caudal-peduncle blotch, absence of a well-defined dark mid-lateral stripe on body, the presence of 16-18 branched anal-fin rays, nine branched dorsal-fin rays and six branched pelvic-fin rays. A brief comment on fish species descriptions solely based on aquarium material and its consequence for conservation policies is provided. PMID:27245763

  19. Sex identification of four penguin species using locus-specific PCR.

    PubMed

    Zhang, Peijun; Han, Jiabo; Liu, Quansheng; Zhang, Junxin; Zhang, Xianfeng

    2013-01-01

    Traditional methods for sex identification are not applicable to sexually monomorphic species, leading to difficulties in the management of their breeding programs. To identify sex in sexually monomorphic birds, molecular methods have been established. Two established primer pairs (2550F/2718R and p8/p2) amplify the CHD1 gene region from both the Z and W chromosomes. Here, we evaluated the use of these primers for sex identification in four sexually monomorphic penguin species: king penguins (Aptenodytes patagonicus), rockhopper penguins (Eudyptes chrysocome), gentoo penguins (Pygoscelis papua), and Magellanic penguins (Spheniscus magellanicus). For all species except rockhopper penguins, primer pair 2550F/2718R resulted in two distinct CHD1Z and CHD1W PCR bands, allowing for sex identification. For rockhopper penguins, only primer pair p8/p2 yielded different CHD1Z and CHD1W bands, which were faint and similar in size making them difficult to distinguish. As a result, we designed a new primer pair (PL/PR) that efficiently determined the gender of individuals from all four penguin species. Sequencing of the PCR products confirmed that they were from the CHD1 gene region. Primer pair PL/PR can be evaluated for use in sexing other penguin species, which will be crucial for the management of new penguin breeding programs. PMID:22383375

  20. Species identification and chromosome variation of captive two-toed sloths.

    PubMed

    Steiner, Cynthia C; Houck, Marlys L; Ryder, Oliver A

    2011-01-01

    Two-toed sloth species, Linnaeus's and Hoffmman's, are frequent residents of zoo collections in North America. However, species identification has always been problematic because of their large overlap in external morphology, which represents an obstacle to the captive breeding program. We describe here a PCR-based technique that allows species identification of two-toed sloths without requiring sequencing, by using a mitochondrial marker (COI gene) and restriction enzyme assay. We also report intra- and inter-specific patterns of chromosome variation in captive two-toed sloths. Molecularly, we identified 22 samples of Linnaeus's and Hoffmman's two-toed sloths corresponding to 14 and 8 individuals, respectively. One animal was identified as a hybrid using the nuclear gene Enam having alleles derived from both species. The chromosome number in Hoffman's two-toed sloths showed low variation ranging only between 50 and 51. In contrast, Linnaeus's two-toed sloths appeared to vary widely, with diploid numbers ranging from 53 to 67, suggesting distinct geographic groups. The species identification method presented here represents a low-cost easy-to-use tool that will help to improve management of the captive population of two-toed sloths.

  1. Sex identification of four penguin species using locus-specific PCR.

    PubMed

    Zhang, Peijun; Han, Jiabo; Liu, Quansheng; Zhang, Junxin; Zhang, Xianfeng

    2013-01-01

    Traditional methods for sex identification are not applicable to sexually monomorphic species, leading to difficulties in the management of their breeding programs. To identify sex in sexually monomorphic birds, molecular methods have been established. Two established primer pairs (2550F/2718R and p8/p2) amplify the CHD1 gene region from both the Z and W chromosomes. Here, we evaluated the use of these primers for sex identification in four sexually monomorphic penguin species: king penguins (Aptenodytes patagonicus), rockhopper penguins (Eudyptes chrysocome), gentoo penguins (Pygoscelis papua), and Magellanic penguins (Spheniscus magellanicus). For all species except rockhopper penguins, primer pair 2550F/2718R resulted in two distinct CHD1Z and CHD1W PCR bands, allowing for sex identification. For rockhopper penguins, only primer pair p8/p2 yielded different CHD1Z and CHD1W bands, which were faint and similar in size making them difficult to distinguish. As a result, we designed a new primer pair (PL/PR) that efficiently determined the gender of individuals from all four penguin species. Sequencing of the PCR products confirmed that they were from the CHD1 gene region. Primer pair PL/PR can be evaluated for use in sexing other penguin species, which will be crucial for the management of new penguin breeding programs.

  2. Species identification and chromosome variation of captive two-toed sloths.

    PubMed

    Steiner, Cynthia C; Houck, Marlys L; Ryder, Oliver A

    2011-01-01

    Two-toed sloth species, Linnaeus's and Hoffmman's, are frequent residents of zoo collections in North America. However, species identification has always been problematic because of their large overlap in external morphology, which represents an obstacle to the captive breeding program. We describe here a PCR-based technique that allows species identification of two-toed sloths without requiring sequencing, by using a mitochondrial marker (COI gene) and restriction enzyme assay. We also report intra- and inter-specific patterns of chromosome variation in captive two-toed sloths. Molecularly, we identified 22 samples of Linnaeus's and Hoffmman's two-toed sloths corresponding to 14 and 8 individuals, respectively. One animal was identified as a hybrid using the nuclear gene Enam having alleles derived from both species. The chromosome number in Hoffman's two-toed sloths showed low variation ranging only between 50 and 51. In contrast, Linnaeus's two-toed sloths appeared to vary widely, with diploid numbers ranging from 53 to 67, suggesting distinct geographic groups. The species identification method presented here represents a low-cost easy-to-use tool that will help to improve management of the captive population of two-toed sloths. PMID:22147591

  3. Evaluation of T3B fingerprinting for identification of clinical and environmental Sporothrix species.

    PubMed

    Oliveira, Manoel Marques Evangelista; Franco-Duarte, Ricardo; Romeo, Orazio; Pais, Célia; Criseo, Giuseppe; Sampaio, Paula; Zancope-Oliveira, Rosely Maria

    2015-03-01

    In this study, PCR fingerprinting using the universal primer T3B was applied to distinguish among clinical and environmental species of the Sporothrix complex, Sporothrix brasiliensis, S. globosa, S. mexicana, S. pallida, S. luriei and S. schenckii sensu stricto. The T3B fingerprinting generated clearly distinct banding patterns, allowing the correct identification of all 43 clinical and environmental isolates at the species level, what was confirmed by partial calmodulin gene sequence analyses. This technique is reproducible and provides the identification of all species of the Sporothrix complex with sufficient accuracy to be applied in clinical mycology laboratories as well as in epidemiological studies in order to obtain a better understanding of the epidemiology of sporotrichosis.

  4. Identification of species origin of meat and meat products on the DNA basis: a review.

    PubMed

    Kumar, Arun; Kumar, Rajiv Ranjan; Sharma, Brahm Deo; Gokulakrishnan, Palanisamy; Mendiratta, Sanjod Kumar; Sharma, Deepak

    2015-01-01

    The adulteration/substitution of meat has always been a concern for various reasons such as public health, religious factors, wholesomeness, and unhealthy competition in meat market. Consumer should be protected from these malicious practices of meat adulterations by quick, precise, and specific identification of meat animal species. Several analytical methodologies have been employed for meat speciation based on anatomical, histological, microscopic, organoleptic, chemical, electrophoretic, chromatographic, or immunological principles. However, by virtue of their inherent limitations, most of these techniques have been replaced by the recent DNA-based molecular techniques. In the last decades, several methods based on polymerase chain reaction have been proposed as useful means for identifying the species origin in meat and meat products, due to their high specificity and sensitivity, as well as rapid processing time and low cost. This review intends to provide an updated and extensive overview on the DNA-based methods for species identification in meat and meat products.

  5. Identification and validation of reference genes for accurate normalization of real-time quantitative PCR data in kiwifruit.

    PubMed

    Ferradás, Yolanda; Rey, Laura; Martínez, Óscar; Rey, Manuel; González, Ma Victoria

    2016-05-01

    Identification and validation of reference genes are required for the normalization of qPCR data. We studied the expression stability produced by eight primer pairs amplifying four common genes used as references for normalization. Samples representing different tissues, organs and developmental stages in kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev.) were used. A total of 117 kiwifruit samples were divided into five sample sets (mature leaves, axillary buds, stigmatic arms, fruit flesh and seeds). All samples were also analysed as a single set. The expression stability of the candidate primer pairs was tested using three algorithms (geNorm, NormFinder and BestKeeper). The minimum number of reference genes necessary for normalization was also determined. A unique primer pair was selected for amplifying the 18S rRNA gene. The primer pair selected for amplifying the ACTIN gene was different depending on the sample set. 18S 2 and ACT 2 were the candidate primer pairs selected for normalization in the three sample sets (mature leaves, fruit flesh and stigmatic arms). 18S 2 and ACT 3 were the primer pairs selected for normalization in axillary buds. No primer pair could be selected for use as the reference for the seed sample set. The analysis of all samples in a single set did not produce the selection of any stably expressing primer pair. Considering data previously reported in the literature, we validated the selected primer pairs amplifying the FLOWERING LOCUS T gene for use in the normalization of gene expression in kiwifruit.

  6. Identification and validation of reference genes for accurate normalization of real-time quantitative PCR data in kiwifruit.

    PubMed

    Ferradás, Yolanda; Rey, Laura; Martínez, Óscar; Rey, Manuel; González, Ma Victoria

    2016-05-01

    Identification and validation of reference genes are required for the normalization of qPCR data. We studied the expression stability produced by eight primer pairs amplifying four common genes used as references for normalization. Samples representing different tissues, organs and developmental stages in kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev.) were used. A total of 117 kiwifruit samples were divided into five sample sets (mature leaves, axillary buds, stigmatic arms, fruit flesh and seeds). All samples were also analysed as a single set. The expression stability of the candidate primer pairs was tested using three algorithms (geNorm, NormFinder and BestKeeper). The minimum number of reference genes necessary for normalization was also determined. A unique primer pair was selected for amplifying the 18S rRNA gene. The primer pair selected for amplifying the ACTIN gene was different depending on the sample set. 18S 2 and ACT 2 were the candidate primer pairs selected for normalization in the three sample sets (mature leaves, fruit flesh and stigmatic arms). 18S 2 and ACT 3 were the primer pairs selected for normalization in axillary buds. No primer pair could be selected for use as the reference for the seed sample set. The analysis of all samples in a single set did not produce the selection of any stably expressing primer pair. Considering data previously reported in the literature, we validated the selected primer pairs amplifying the FLOWERING LOCUS T gene for use in the normalization of gene expression in kiwifruit. PMID:26897117

  7. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR.

    PubMed

    Duan, Chuanren; Cui, Yamin; Zhao, Yi; Zhai, Jun; Zhang, Baoyun; Zhang, Kun; Sun, Da; Chen, Hang

    2016-10-01

    A genetic marker within the 16S rRNA gene of Faecalibacterium was identified for use in a quantitative PCR (qPCR) assay to detect swine faecal contamination in water. A total of 146,038 bacterial sequences were obtained using 454 pyrosequencing. By comparative bioinformatics analysis of Faecalibacterium sequences with those of numerous swine and other animal species, swine-specific Faecalibacterium 16S rRNA gene sequences were identified and Polymerase Chain Okabe (PCR) primer sets designed and tested against faecal DNA samples from swine and non-swine sources. Two PCR primer sets, PFB-1 and PFB-2, showed the highest specificity to swine faecal waste and had no cross-reaction with other animal samples. PFB-1 and PFB-2 amplified 16S rRNA gene sequences from 50 samples of swine with positive ratios of 86 and 90%, respectively. We compared swine-specific Faecalibacterium qPCR assays for the purpose of quantifying the newly identified markers. The quantification limits (LOQs) of PFB-1 and PFB-2 markers in environmental water were 6.5 and 2.9 copies per 100 ml, respectively. Of the swine-associated assays tested, PFB-2 was more sensitive in detecting the swine faecal waste and quantifying the microbial load. Furthermore, the microbial abundance and diversity of the microbiomes of swine and other animal faeces were estimated using operational taxonomic units (OTUs). The species specificity was demonstrated for the microbial populations present in various animal faeces. PMID:27353369

  8. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Ferroni, Agnès; Suarez, Stéphanie; Beretti, Jean-Luc; Dauphin, Brunhilde; Bille, Emmanuelle; Meyer, Julie; Bougnoux, Marie-Elisabeth; Alanio, Alexandre; Berche, Patrick; Nassif, Xavier

    2010-05-01

    Delays in the identification of microorganisms are a barrier to the establishment of adequate empirical antibiotic therapy of bacteremia. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) allows the identification of microorganisms directly from colonies within minutes. In this study, we have adapted and tested this technology for use with blood culture broths, thus allowing identification in less than 30 min once the blood culture is detected as positive. Our method is based on the selective recovery of bacteria by adding a detergent that solubilizes blood cells but not microbial membranes. Microorganisms are then extracted by centrifugation and analyzed by MALDI-TOF-MS. This strategy was first tested by inoculating various bacterial and fungal species into negative blood culture bottles. We then tested positive patient blood or fluid samples grown in blood culture bottles, and the results obtained by MALDI-TOF-MS were compared with those obtained using conventional strategies. Three hundred twelve spiked bottles and 434 positive cultures from patients were analyzed. Among monomicrobial fluids, MALDI-TOF-MS allowed a reliable identification at the species, group, and genus/family level in 91%, 5%, and 2% of cases, respectively, in 20 min. In only 2% of these samples, MALDI-TOF MS did not yield any result. When blood cultures were multibacterial, identification was improved by using specific databases based on the Gram staining results. MALDI-TOF-MS is currently the fastest technique to accurately identify microorganisms grown in positive blood culture broths.

  9. Microarray chip development using infrared imaging for the identification of catfish species.

    PubMed

    Handy, Sara M; Chizhikov, Vladimir; Yakes, Betsy Jean; Paul, Stephen Z; Deeds, Jonathan R; Mossoba, Magdi M

    2014-01-01

    Several families of catfish species are extensively aquacultured around the world; however, only those from the family Ictaluridae can be labeled as catfish in the United States. Non-Ictalurid catfish species that are marketed as "catfish" in the USA are considered misbranded. Misbranding in general has led to an increased interest in developing deoxyribonucleic acid (DNA)-based methods such as DNA barcoding, polymerase chain reaction restriction fragment length polymorphism, and DNA microarrays with fluorescence detection for the identification of fish species. In this proof-of-concept study, DNA microarrays coupled with a newly developed mid-infrared imaging detection method were applied to the identification of seven species of catfish for the first time. Species-specific DNA probes targeting three regions per species of the cytochrome c oxidase 1 (barcoding) gene were developed and printed as microarrays on glass slides. Deoxyribonucleic acid targets labeled with biotin were hybridized to their complementary probes using a strategy that allowed the selective formation of a silver layer on hybridized spots needed for detection. Using this three-probe format, the seven species were all identified correctly, even when a limited number of false positive spots were observed. Raman spectroscopy was employed to further characterize the arrays.

  10. [Identification of Citrobacter species and their occurrence in raw products and foods].

    PubMed

    Urbanová, E; Pácová, Z

    1997-03-01

    Fifty-nine strains of bacteria were tested in study that were isolated from raw materials and foods (raw milk, farm milking parlors, sausage meat, raw potatoes, cheese, frozen oven-ready foods, confectionery products, cold dishes), and they were included in the genus Citrobacter using a commercial diagnostic kit ENTEROtest 16 (Lachema a.s., Brno), numeric identification program TNW (Czech Collection of Microorganisms, Faculty of Science of Masaryk University at Brno) and identification key (O'Hara et al., 1995). The results of the ENTEROtest itself, including OXI and ONPtests, did not provide satisfactory discrimination of detected strains to the level of species since 64.4% were identified by the genus by TNW program or designated as intermediary strains. Correct species identification was obtained in 33.9% only (Tab. I). Five next conventional tests (dulcitol, alpha-methyl-glucoside, raffinose, melibiose, arginine dihydrolase) were used and their results successfully specified 94.9% tested strains to the species level (Tab. I). A dichotomic identification key (O'Hara et al., 1995) enabled to classify the strains on the basis of the results of ENTEROtest 16 and two conventional tests (dulcitol, melibiosis) relatively easily, and it can be recommended for routine identification of typical Citrobacters from foods. Only ten strains were classified in a wrong way (16.9%) due to false results in ENTEROtest (Tab. II). Tab. III shows the strains classified wrongly by both identifications systems. The tested set contained Citrobacter braakii in a majority of cases (30 strains), followed by C. freundii (17 strains), C. youngae (6 strains), 2 strains of genomospecies 10 and one strain of C. koseri, C. amalonaticus and C farmeri. Tab. IV shows the presence of Citrobacter species in the particular raw materials and foods. The most frequently present species in raw materials: C. braakii (26 strains, 68.4%), C. freundii (3 strains, 7.9%) and C. youngae (3 strains, 7.9%). Foods

  11. Evaluation of amplified ribosomal DNA restriction analysis (ARDRA) and species-specific PCR for identification of Bifidobacterium species.

    PubMed

    Krízová, Jana; Spanová, Alena; Rittich, Bohuslav

    2006-01-01

    Molecular biological methods based on genus-specific PCR, species-specific PCR, and amplified ribosomal DNA restriction analysis (ARDRA) of two PCR amplicons (523 and 914bp) using six restriction enzymes were used to differentiate among species of Bifidobacterium. The techniques were established using DNA from 16 type and reference strains of bifidobacteria of 11 species. The discrimination power of 914bp amplicon digestion was higher than that of 523bp amplicon digestion. The 914bp amplicon digestion by six restrictases provided unique patterns for nine species; B. catenulatum and B. pseudocatenulatum were not differentiated yet. The NciI digestion of the 914bp PCR product enabled to discriminate between each of B. animalis, B. lactis, and B. gallicum. The reference strain B. adolescentis CCM 3761 was reclassified as a member of the B. catenulatum/B. pseudocatenulatum group. The above-mentioned methods were applied for the identification of seven strains of Bifidobacterium spp. collected in the Culture Collection of Dairy Microorganisms (CCDM). The strains collected in CCDM were differentiated to the species level. Six strains were identified as B. lactis, one strain as B. adolescentis.

  12. Use of sloppy molecular beacon probes for identification of mycobacterial species.

    PubMed

    El-Hajj, Hiyam H; Marras, Salvatore A E; Tyagi, Sanjay; Shashkina, Elena; Kamboj, Mini; Kiehn, Timothy E; Glickman, Michael S; Kramer, Fred Russell; Alland, David

    2009-04-01

    We report here the use of novel "sloppy" molecular beacon probes in homogeneous PCR screening assays in which thermal denaturation of the resulting probe-amplicon hybrids provides a characteristic set of amplicon melting temperature (T(m)) values that identify which species is present in a sample. Sloppy molecular beacons possess relatively long probe sequences, enabling them to form hybrids with amplicons from many different species despite the presence of mismatched base pairs. By using four sloppy molecular beacons, each possessing a different probe sequence and each labeled with a differently colored fluorophore, four different T(m) values can be determined simultaneously. We tested this technique with 27 different species of mycobacteria and found that each species generates a unique, highly reproducible signature that is unaffected by the initial bacterial DNA concentration. Utilizing this general paradigm, screening assays can be designed for the identification of a wide range of species.

  13. Are cryptic species a problem for parasitological biological tagging for stock identification of aquatic organisms?

    PubMed

    Bray, Rodney A; Cribb, Thomas H

    2015-01-01

    The effective use of biological tags in stock assessment relies on the reliable identification of the parasites concerned. This may be compromised if cryptic species are not recognized. Here we review what is known about cryptic species in aquatic hosts and its potential importance in this respect. Although strictly cryptic species may be considered as species which can be distinguished only by molecular data, we accept the far looser but more practical definition of species that cannot be readily distinguished morphologically. Cryptic species appear to have been identified most frequently as occurring in separate host species; this is heartening in that this has no significant impact on tagging studies. But cryptic species have occasionally been identified in single hosts sympatrically and are relatively common in geographically distinct populations of the same host species. Ignorance of both kinds of occurrences has the capacity to undermine the reliability of tagging analysis. We review in detail what is known of intra- and interspecific genetic variation over geographical ranges in the trematodes, based on recent molecular studies. Although the existence of cryptic species and evidence of intraspecific variability may appear daunting, we suspect that these complexities will add, and indeed have already added, to the sophistication of the information that can be derived from tagging studies.

  14. Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Diaporthe comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Cryptic diversification, phenotypic plasticity and extensive host associations have long complicated accurate identifications of species in this genus. The delimitation of the ge...

  15. Comparison of Traditional Phenotypic Identification Methods with Partial 5′ 16S rRNA Gene Sequencing for Species-Level Identification of Nonfermenting Gram-Negative Bacilli▿

    PubMed Central

    Cloud, Joann L.; Harmsen, Dag; Iwen, Peter C.; Dunn, James J.; Hall, Gerri; LaSala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L.; Mellmann, Alexander

    2010-01-01

    Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5′ 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB. PMID:20164273

  16. Molecular Diagnosis and Identification of Leishmania Species in Jordan from Saved Dry Samples.

    PubMed

    Hijjawi, Nawal; Kanani, Kalil A; Rasheed, Malak; Atoum, Manar; Abdel-Dayem, Mona; Irhimeh, Mohammad R

    2016-01-01

    Diagnosis of the endemic cutaneous leishmaniasis (CL) in Jordan relies on patient clinical presentation and microscopic identification. Studies toward improved identification of the causative Leishmania species, especially in regions where multiple species exist, and the introduction of these techniques into medical diagnosis is paramount. This study looked at the current epidemiology of CL in Jordan. Clinically diagnosed 41 patients with CL were tested for the presence of Leishmania parasite using both Giemsa staining from skin scraps on glass slides and ITS1-PCR from samples blotted onto storage cards (NucleoCards®). Microscopically, 28 out of the 41 (68.3%) collected samples were positive for amastigotes, whereas the molecular ITS1-PCR amplification successfully identified 30 of the 41 samples (73.2%). Furthermore, PCR-RFLP analysis allowed species identification which is impossible microscopically. Of the 30 PCR positive samples, 28 were Leishmania major positive and the other two samples were Leishmania tropica. This indicates that L. major is the most prevalent species in Jordan and the two L. tropica cases originated from Syria indicating possible future L. tropica outbreaks. Diagnosis of CL based on clinical presentation only may falsely increase its prevalence. Although PCR is more sensitive, it is still not available in our medical laboratories in Jordan. PMID:27403435

  17. Molecular Diagnosis and Identification of Leishmania Species in Jordan from Saved Dry Samples

    PubMed Central

    Hijjawi, Nawal; Kanani, Kalil A.; Rasheed, Malak; Atoum, Manar; Abdel-Dayem, Mona; Irhimeh, Mohammad R.

    2016-01-01

    Diagnosis of the endemic cutaneous leishmaniasis (CL) in Jordan relies on patient clinical presentation and microscopic identification. Studies toward improved identification of the causative Leishmania species, especially in regions where multiple species exist, and the introduction of these techniques into medical diagnosis is paramount. This study looked at the current epidemiology of CL in Jordan. Clinically diagnosed 41 patients with CL were tested for the presence of Leishmania parasite using both Giemsa staining from skin scraps on glass slides and ITS1-PCR from samples blotted onto storage cards (NucleoCards®). Microscopically, 28 out of the 41 (68.3%) collected samples were positive for amastigotes, whereas the molecular ITS1-PCR amplification successfully identified 30 of the 41 samples (73.2%). Furthermore, PCR-RFLP analysis allowed species identification which is impossible microscopically. Of the 30 PCR positive samples, 28 were Leishmania major positive and the other two samples were Leishmania tropica. This indicates that L. major is the most prevalent species in Jordan and the two L. tropica cases originated from Syria indicating possible future L. tropica outbreaks. Diagnosis of CL based on clinical presentation only may falsely increase its prevalence. Although PCR is more sensitive, it is still not available in our medical laboratories in Jordan. PMID:27403435

  18. Identification and differentiation of Cryptosporidium species by capillary electrophoresis single-strand conformation polymorphism.

    PubMed

    Power, Michelle L; Holley, Marita; Ryan, Una M; Worden, Paul; Gillings, Michael R

    2011-01-01

    Cryptosporidium species generally lack distinguishing morphological traits, and consequently, molecular methods are commonly used for parasite identification. Various methods for Cryptosporidium identification have been proposed, each with their advantages and disadvantages. In this study, we show that capillary electrophoresis coupled with single-strand conformation polymorphism (CE-SSCP) is a rapid, simple and cost-effective method for the identification of Cryptosporidium species and genotypes. Species could be readily differentiated based on the SSCP mobility of amplified 18S rRNA gene molecules. Clones that differed by single-nucleotide polymorphisms could be distinguished on CE-SSCP mobility. Profiles of species known to have heterogenic copies of 18S rRNA gene contained multiple peaks. Cloning and sequencing of Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium fayeri and Cryptosporidium possum genotype 18S rRNA gene amplicons confirmed that these multiple peaks represented type A and type B 18S rRNA gene copies. CE-SSCP provides a reliable and sensitive analysis for epidemiological studies, environmental detection and diversity screening. PMID:21087296

  19. Identification of five sea cucumber species through PCR-RFLP analysis

    NASA Astrophysics Data System (ADS)

    Lv, Yingchun; Zheng, Rong; Zuo, Tao; Wang, Yuming; Li, Zhaojie; Xue, Yong; Xue, Changhu; Tang, Qingjuan

    2014-10-01

    Sea cucumbers are traditional marine food and Chinese medicine in Asia. The rapid expansion of sea cucumber market has resulted in various problems, such as commercial fraud and mislabeling. Conventionally, sea cucumber species could be distinguished by their morphological and anatomical characteristics; however, their identification becomes difficult when they are processed. The aim of this study was to develop a new convenient method of identifying and distinguishing sea cucumber species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial cytochrome oxidase I gene ( COI) was used to identifing five sea cucumber species ( Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora). A 692 bp fragment of COI was searched for BamHI, KpnI, PstI, XbaI and Eco31I restriction sites with DNAMAN 6.0, which were then used to PCR-RFLP analysis. These five sea cucumber species can be discriminated from mixed sea cucumbers. The developed PCR-RFLP assay will facilitate the identification of sea cucumbers, making their source tracing and quality controlling feasible.

  20. Identification of Yersinia enterocolitica at the Species and Subspecies Levels by Fourier Transform Infrared Spectroscopy ▿

    PubMed Central

    Kuhm, Andrea Elisabeth; Suter, Daniel; Felleisen, Richard; Rau, Jörg

    2009-01-01

    Yersinia enterocolitica and other Yersinia species, such as Y. pseudotuberculosis, Y. bercovieri, and Y. intermedia, were differentiated using Fourier transform infrared spectroscopy (FT-IR) combined with artificial neural network analysis. A set of well defined Yersinia strains from Switzerland and Germany was used to create a method for FT-IR-based differentiation of Yersinia isolates at the species level. The isolates of Y. enterocolitica were also differentiated by FT-IR into the main biotypes (biotypes 1A, 2, and 4) and serotypes (serotypes O:3, O:5, O:9, and “non-O:3, O:5, and O:9”). For external validation of the constructed methods, independently obtained isolates of different Yersinia species were used. A total of 79.9% of Y. enterocolitica sensu stricto isolates were identified correctly at the species level. The FT-IR analysis allowed the separation of all Y. bercovieri, Y. intermedia, and Y. rohdei strains from Y. enterocolitica, which could not be differentiated by the API 20E test system. The probability for correct biotype identification of Y. enterocolitica isolates was 98.3% (41 externally validated strains). For correct serotype identification, the probability was 92.5% (42 externally validated strains). In addition, the presence or absence of the ail gene, one of the main pathogenicity markers, was demonstrated using FT-IR. The probability for correct identification of isolates concerning the ail gene was 98.5% (51 externally validated strains). This indicates that it is possible to obtain information about genus, species, and in the case of Y. enterocolitica also subspecies type with a single measurement. Furthermore, this is the first example of the identification of specific pathogenicity using FT-IR. PMID:19617388

  1. Remote tree species identification in a diverse tropical forest using airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldeck, C.; Asner, G. P.; Kellner, J. R.; Martin, R.; Anderson, C.; Knapp, D. E.

    2013-12-01

    Plant species identification and mapping based on remotely-sensed spectral signatures is a challenging task with the potential to contribute enormously to ecological studies. This task is especially difficult in highly diverse ecosystems such as tropical forests, and for these ecosystems it may be more strategic to direct efforts to identifying crowns of a focal species. We used imaging spectrometer data collected by the Carnegie Airborne Observatory over Barro Colorado Island, Panama, to develop classification models for the identification of tree crowns belonging to selected focal species. We explored alternative methods for detecting crowns of focal species, which included binary, one-class, and biased support vector machines (SVM). Best performance was given by binary and biased SVM, with poor performance observed for one-class SVM. Binary and biased SVM were able to identify crowns of focal species with classification sensitivity and specificity of 87-91% and 89-94%, respectively. The main tradeoff between binary and biased SVM is that construction of binary SVM requires a far greater amount of training data while biased SVM is more difficult to parameterize. Our results show that with sufficient training data, focal species can be mapped with a high degree of accuracy, in terms of both sensitivity and specificity, in this diverse tropical forest.

  2. Species identification of protected carpet pythons suitable for degraded forensic samples.

    PubMed

    Ciavaglia, Sherryn; Donnellan, Stephen; Henry, Julianne; Linacre, Adrian

    2014-09-01

    In this paper we report on the identification of a section of mitochondrial DNA that can be used to identify the species of protected and illegally traded pythons of the genus Morelia. Successful enforcement of wildlife laws requires forensic tests that can identify the species nominated in the relevant legislation. The potentially degraded state of evidentiary samples requires that forensic investigation using molecular genetic species identification is optimized to interrogate small fragments of DNA. DNA was isolated from 35 samples of Morelia spilota from which the complete cytochrome b was sequenced. The ND6 gene was also sequenced in 32 of these samples. Additional DNA sequences were generated from 9 additional species of Morelia. The sequences were aligned by Geneious and imported into MEGA to create phylogenetic trees based on the entire complex of approximately 1,706 base pairs (bp). To mimic degraded DNA, which is usually found in forensic cases, short sub-sections of the full alignment were used to generate phylogenetic trees. The sub-sections that had the greatest DNA sequence information were in parts of the cytochrome b gene. Our results highlight that legislation is presently informed by inadequate taxonomy. We demonstrated that a 278 bp region of the cytochrome b gene recovered the topology of the phylogenetic tree found with the entire gene sequence and correctly identified species of Morelia with a high degree of confidence. The locus described in this report will assist in the successful prosecution of alleged illegal trade in python species.

  3. Identification of Borrelia Species after Creation of an In-House MALDI-TOF MS Database

    PubMed Central

    Calderaro, Adriana; Gorrini, Chiara; Piccolo, Giovanna; Montecchini, Sara; Buttrini, Mirko; Rossi, Sabina; Piergianni, Maddalena; Arcangeletti, Maria Cristina; De Conto, Flora; Chezzi, Carlo; Medici, Maria Cristina

    2014-01-01

    Lyme borreliosis (LB) is a multisystemic disease caused by Borrelia burgdorferi sensu lato (sl) complex transmitted to humans by Ixodes ticks. B. burgdorferi sl complex, currently comprising at least 19 genospecies, includes the main pathogenic species responsible for human disease in Europe: B. burgdorferi sensu stricto (ss), B. afzelii, and B. garinii. In this study, for the first time, MALDI-TOF MS was applied to Borrelia spp., supplementing the existing database, limited to the species B. burgdorferi ss, B. spielmanii and B. garinii, with the species B. afzelii, in order to enable the identification of all the species potentially implicated in LB in Europe. Moreover, we supplemented the database also with B. hermsii, which is the primary cause of tick-borne relapsing fever in western North America, B. japonica, circulating in Asia, and another reference strain of B. burgdorferi ss (B31 strain). The dendrogram obtained by analyzing the protein profiles of the different Borrelia species reflected Borrelia taxonomy, showing that all the species included in the Borrelia sl complex clustered in a unique branch, while Borrelia hermsii clustered separately. In conclusion, in this study MALDI-TOF MS proved a useful tool suitable for identification of Borrelia spp. both for diagnostic purpose and epidemiological surveillance. PMID:24533160

  4. Multiplex-PCR Method for Species Identification of Coagulase-Positive Staphylococci ▿

    PubMed Central

    Sasaki, Takashi; Tsubakishita, Sae; Tanaka, Yoshikazu; Sakusabe, Arihito; Ohtsuka, Masayuki; Hirotaki, Shintaro; Kawakami, Tetsuji; Fukata, Tsuneo; Hiramatsu, Keiichi

    2010-01-01

    In veterinary medicine, coagulase-positive staphylococci (CoPS) other than Staphylococcus aureus have frequently been misidentified as being S. aureus strains, as they have several phenotypic traits in common. There has been no reliable method to distinguish among CoPS species in veterinary clinical laboratories. In the present study, we sequenced the thermonuclease (nuc) genes of staphylococcal species and devised a multiplex-PCR (M-PCR) method for species identification of CoPS by targeting the nuc gene locus. To evaluate sensitivity and specificity, we used this M-PCR method on 374 staphylococcal strains that had been previously identified to the species level by an hsp60 sequencing approach. We could successfully distinguish between S. aureus, S. hyicus, S. schleiferi, S. intermedius, S. pseudintermedius, and S. delphini groups A and B. The present method was both sensitive (99.8%) and specific (100%). Our M-PCR assay will allow the routine species identification of CoPS isolates from various animal species for clinical veterinary diagnosis. PMID:20053855

  5. Species identification of protected carpet pythons suitable for degraded forensic samples.

    PubMed

    Ciavaglia, Sherryn; Donnellan, Stephen; Henry, Julianne; Linacre, Adrian

    2014-09-01

    In this paper we report on the identification of a section of mitochondrial DNA that can be used to identify the species of protected and illegally traded pythons of the genus Morelia. Successful enforcement of wildlife laws requires forensic tests that can identify the species nominated in the relevant legislation. The potentially degraded state of evidentiary samples requires that forensic investigation using molecular genetic species identification is optimized to interrogate small fragments of DNA. DNA was isolated from 35 samples of Morelia spilota from which the complete cytochrome b was sequenced. The ND6 gene was also sequenced in 32 of these samples. Additional DNA sequences were generated from 9 additional species of Morelia. The sequences were aligned by Geneious and imported into MEGA to create phylogenetic trees based on the entire complex of approximately 1,706 base pairs (bp). To mimic degraded DNA, which is usually found in forensic cases, short sub-sections of the full alignment were used to generate phylogenetic trees. The sub-sections that had the greatest DNA sequence information were in parts of the cytochrome b gene. Our results highlight that legislation is presently informed by inadequate taxonomy. We demonstrated that a 278 bp region of the cytochrome b gene recovered the topology of the phylogenetic tree found with the entire gene sequence and correctly identified species of Morelia with a high degree of confidence. The locus described in this report will assist in the successful prosecution of alleged illegal trade in python species. PMID:24915762

  6. Rapid identification of Fusarium graminearum species complex using Rolling Circle Amplification (RCA).

    PubMed

    Davari, Mahdi; van Diepeningen, Anne D; Babai-Ahari, Assadollah; Arzanlou, Mahdi; Najafzadeh, Mohammed Javad; van der Lee, Theo A J; de Hoog, G Sybren

    2012-04-01

    Rolling Circle Amplification (RCA) of DNA is a sensitive and cost effective method for the rapid identification of pathogenic fungi without the need for sequencing. Amplification products can be visualized on 1% agarose gel to verify the specificity of probe-template binding or directly by adding fluorescent dyes. Fusarium Head Blight (FHB) is currently the world's largest threat to the production of cereal crops with the production of a range of mycotoxins as an additional risk. We designed sets of RCA padlock probes based on polymorphisms in the elongation factor 1-α (EF-1α) gene to detect the dominant FHB species, comprising lineages of the Fusarium graminearum species complex (FGSC). The method also enabled the identification of species of the Fusarium oxysporum (FOSC), the Fusarium incarnatum-equiseti (FIESC), and the Fusarium tricinctum (FTSC) species complexes, and used strains from the CBS culture collection as reference. Subsequently probes were applied to characterize isolates from wheat and wild grasses, and inoculated wheat kernels. The RCA assays successfully amplified DNA of the target fungi, both in environmental samples and in the contaminated wheat samples, while no cross reactivity was observed with uncontaminated wheat or related Fusarium species. As RCA does not require expensive instrumentation, the technique has a good potential for local and point of care screening for toxigenic Fusarium species in cereals. PMID:22326479

  7. Species-Specific Identification from Incomplete Sampling: Applying DNA Barcodes to Monitoring Invasive Solanum Plants

    PubMed Central

    Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong

    2013-01-01

    Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling–through this, DNA barcoding will greatly benefit the current fields of its application. PMID:23409092

  8. Molecular Identification and Prevalence of Malassezia Species in Pityriasis Versicolor Patients From Kashan, Iran

    PubMed Central

    Talaee, Rezvan; Katiraee, Farzad; Ghaderi, Maryam; Erami, Mahzad; Kazemi Alavi, Azam; Nazeri, Mehdi

    2014-01-01

    Background: Malassezia species are lipophilic yeasts found on the skin surface of humans and other warm-blooded vertebrates. It is associated with various human diseases, especially pityriasis versicolor, which is a chronic superficial skin disorder. Objectives: The aim of the present study was to identify Malassezia species isolated from patients’ samples affected by pityriasis versicolor, using molecular methods in Kashan, Iran. Patients and Methods: A total of 140 subjects, suspected of having pityriasis versicolor from Kashan, were clinically diagnosed and then confirmed by direct microscopic examination. The scraped skin specimens were inoculated in modified Dixon’s medium. DNA was extracted from the colonies and PCR amplification was carried out for the 26s rDNA region. PCR products were used to further restriction fragment length polymorphism by CfoI enzyme. Results: Direct examination was positive in 93.3% of suspected pityriasis versicolor lesions. No statistically significant difference was observed in the frequency of Malassezia species between women and men. The highest prevalence of tinea versicolor was seen in patients 21–30 years-of-age. No difference could be seen in the frequency of Malassezia species depending on the age of the patients. In total, 65% of patients with pityriasis versicolor had hyperhidrosis. The most commonly isolated Malassezia species in the pityriasis versicolor lesions were; Malassezia globosa (66%), M. furfur (26%), M. restricta (3%), M. sympodialis (3%), and M. slooffiae (2%). Malassezia species were mainly isolated from the neck and chest. Conclusions: This study showed M. globosa to be the most common Malassezia species isolated from Malassezia skin disorders in Kashan, Iran. The PCR-RFLP method was useful in the rapid identification of the Malassezia species. By using these methods, the detection and identification of individual Malassezia species from clinical samples was substantially easier. PMID:25485051

  9. Development of a Real-Time PCR for Identification of Brachyspira Species in Human Colonic Biopsies

    PubMed Central

    Westerman, Laurens J.; Stel, Herbert V.; Schipper, Marguerite E. I.; Bakker, Leendert J.; Neefjes-Borst, Eskelina A.; van den Brande, Jan H. M.; Boel, Edwin C. H.; Seldenrijk, Kees A.; Siersema, Peter D.; Bonten, Marc J. M.; Kusters, Johannes G.

    2012-01-01

    Background Brachyspira species are fastidious anaerobic microorganisms, that infect the colon of various animals. The genus contains both important pathogens of livestock as well as commensals. Two species are known to infect humans: B. aalborgi and B. pilosicoli. There is some evidence suggesting that the veterinary pathogenic B. pilosicoli is a potential zoonotic agent, however, since diagnosis in humans is based on histopathology of colon biopsies, species identification is not routinely performed in human materials. Methods The study population comprised 57 patients with microscopic evidence of Brachyspira infection and 26 patients with no histopathological evidence of Brachyspira infection. Concomitant faecal samples were available from three infected patients. Based on publically available 16S rDNA gene sequences of all Brachyspira species, species-specific primer sets were designed. DNA was extracted and tested by real-time PCR and 16S rDNA was sequenced. Results Sensitivity and specificity for identification of Brachyspira species in colon biopsies was 100% and 87.7% respectively. Sequencing revealed B. pilosicoli in 15.4% of patients, B. aalborgi in 76.9% and a third species, tentatively named “Brachyspira hominis”, in 26.2%. Ten patients (12.3%) had a double and two (3.1%) a triple infection. The presence of Brachyspira pilosicoli was significantly associated with inflammatory changes in the colon-biopsy (p = 0.028). Conclusions This newly designed PCR allows for sub-differentiation of Brachyspira species in patient material and thus allows large-scaled surveillance studies to elucidate the pathogenicity of human Brachyspira infections. One-third of affected patients appeared to be infected with a novel species. PMID:23284968

  10. Barcoding Beetles: A Regional Survey of 1872 Species Reveals High Identification Success and Unusually Deep Interspecific Divergences

    PubMed Central

    Pentinsaari, Mikko; Hebert, Paul D. N.; Mutanen, Marko

    2014-01-01

    With 400 K described species, beetles (Insecta: Coleoptera) represent the most diverse order in the animal kingdom. Although the study of their diversity currently represents a major challenge, DNA barcodes may provide a functional, standardized tool for their identification. To evaluate this possibility, we performed the first comprehensive test of the effectiveness of DNA barcodes as a tool for beetle identification by sequencing the COI barcode region from 1872 North European species. We examined intraspecific divergences, identification success and the effects of sample size on variation observed within and between species. A high proportion (98.3%) of these species possessed distinctive barcode sequence arrays. Moreover, the sequence divergences between nearest neighbor species were considerably higher than those reported for the only other insect order, Lepidoptera, which has seen intensive analysis (11.99% vs up to 5.80% mean NN divergence). Although maximum intraspecific divergence increased and average divergence between nearest neighbors decreased with increasing sampling effort, these trends rarely hampered identification by DNA barcodes due to deep sequence divergences between most species. The Barcode Index Number system in BOLD coincided strongly with known species boundaries with perfect matches between species and BINs in 92.1% of all cases. In addition, DNA barcode analysis revealed the likely occurrence of about 20 overlooked species. The current results indicate that DNA barcodes distinguish species of beetles remarkably well, establishing their potential to provide an effective identification tool for this order and to accelerate the discovery of new beetle species. PMID:25255319

  11. Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil.

    PubMed

    Ottonelli Stopiglia, Cheila Denise; Magagnin, Cibele Massotti; Castrillón, Mauricio Ramírez; Mendes, Sandra Denise Camargo; Heidrich, Daiane; Valente, Patricia; Scroferneker, Maria Lúcia

    2014-01-01

    Sporotrichosis is a subacute or chronic mycosis caused worldwide by the dimorphic species complex, Sporothrix schenckii. We studied 85 isolates recovered in Brazil to verify their identification and evaluate their in vitro antifungal susceptibility patterns. Based on phenotypic tests (microscopic features, ability to grow at 30°C and 37°C, colony diameters, as well as assimilation of sucrose and raffinose) and molecular assays (amplification of a fragment of the calmodulin gene), the strains were identified as S. schenckii, S. brasiliensis and S. globosa, with a predominance of S. schenckii isolates. There was 37.7% disagreement between the phenotypic and genotypic identification methodologies. In general, terbinafine was the most active drug, followed by ketoconazole and itraconazole, and the less active fluconazole and voriconazole. Five isolates (one S. globosa and four S. schenckii) were found to be itraconazole-resistant strains but, in general, there were no differences in the in vitro antifungal susceptibility profiles among the Sporothrix species.

  12. [Identification of Microalgae Species Using Visible/Near Infrared Transmission Spectroscopy].

    PubMed

    Zhu, Hong-yan; Shao, Yong-ni; Jiang, Lu-lu; Guo, An-que; Pan, Jian; He, Yong

    2016-01-01

    At present, the identification and classification of the microalgae and its biochemical analysis have become one of the hot spots on marine biology research. Four microalgae species, including Chlorella vulgaris, Chlorella pyrenoidosa, Nannochloropsis oculata, Chlamydomonas reinhardtii, were chosen as the experimental materials. Using an established spectral acquisition system, which consists of a portable USB 4000 spectrometer having transmitting and receiving fiber bundles connected by a fiber optic probe, a halogen light source, and a computer, the Vis/NIR transmission spectral data of 120 different samples of the microalgae with different concentration gradients were collected, and the spectral curves of fourmicroalgae species were pre-processed by different pre-treatment methods (baseline filtering, convolution smoothing, etc. ). Based on the pre-treated effects, SPA was applied to select effective wavelengths (EWs), and the selected EWs were introduced as inputs to develop and compare PLS, Least Square Support Vector Machines (LS-SVM), Extreme Learning Machine (ELM)models, so as to explore the feasibility of using Vis/NIR transmission spectroscopy technology for the rapid identification of four microalgae species in situ. The results showed that: the effect of Savitzky-Golay smoothing was much better than the other pre-treatment methods. Six EWs selected in the spectraby SPA were possibly relevant to the content of carotenoids, chlorophyll in the microalgae. Moreover, the SPA-PLS model obtained better performance than the Full-Spectral-PLS model. The average prediction accuracy of three methods including SPA-LV-SVM, SPA-ELM, and SPA-PLS were 80%, 85% and 65%. The established method in this study may identify four microalgae species effectively, which provides a new way for the identification and classification of the microalgae species. The methodology using Vis/NIR spectroscopy with a portable optic probe would be applicable to a diverse range of microalgae

  13. A streamlined DNA tool for global identification of heavily exploited coastal shark species (genus Rhizoprionodon).

    PubMed

    Pinhal, Danillo; Shivji, Mahmood S; Nachtigall, Pedro G; Chapman, Demian D; Martins, Cesar

    2012-01-01

    Obtaining accurate species-specific landings data is an essential step toward achieving sustainable shark fisheries. Globally distributed sharpnose sharks (genus Rhizoprionodon) exhibit life-history characteristics (rapid growth, early maturity, annual reproduction) that suggests that they could be fished in a sustainable manner assuming an investment in monitoring, assessment and careful management. However, obtaining species-specific landings data for sharpnose sharks is problematic because they are morphologically very similar to one another. Moreover, sharpnose sharks may also be confused with other small sharks (either small species or juveniles of large species) once they are processed (i.e., the head and fins are removed). Here we present a highly streamlined molecular genetics approach based on seven species-specific PCR primers in a multiplex format that can simultaneously discriminate body parts from the seven described sharpnose shark species commonly occurring in coastal fisheries worldwide. The species-specific primers are based on nucleotide sequence differences among species in the nuclear ribosomal internal transcribed spacer 2 locus (ITS2). This approach also distinguishes sharpnose sharks from a wide range of other sharks (52 species) and can therefore assist in the regulation of coastal shark fisheries around the world.

  14. A Streamlined DNA Tool for Global Identification of Heavily Exploited Coastal Shark Species (Genus Rhizoprionodon)

    PubMed Central

    Pinhal, Danillo; Shivji, Mahmood S.; Nachtigall, Pedro G.; Chapman, Demian D.; Martins, Cesar

    2012-01-01

    Obtaining accurate species-specific landings data is an essential step toward achieving sustainable shark fisheries. Globally distributed sharpnose sharks (genus Rhizoprionodon) exhibit life-history characteristics (rapid growth, early maturity, annual reproduction) that suggests that they could be fished in a sustainable manner assuming an investment in monitoring, assessment and careful management. However, obtaining species-specific landings data for sharpnose sharks is problematic because they are morphologically very similar to one another. Moreover, sharpnose sharks may also be confused with other small sharks (either small species or juveniles of large species) once they are processed (i.e., the head and fins are removed). Here we present a highly streamlined molecular genetics approach based on seven species-specific PCR primers in a multiplex format that can simultaneously discriminate body parts from the seven described sharpnose shark species commonly occurring in coastal fisheries worldwide. The species-specific primers are based on nucleotide sequence differences among species in the nuclear ribosomal internal transcribed spacer 2 locus (ITS2). This approach also distinguishes sharpnose sharks from a wide range of other sharks (52 species) and can therefore assist in the regulation of coastal shark fisheries around the world. PMID:22496864

  15. Re-identification of Aspergillus fumigatus sensu lato based on a new concept of species delimitation.

    PubMed

    Hong, Seung-Beom; Kim, Dae-Ho; Park, In-Cheol; Choi, Young-Joon; Shin, Hyeon-Dong; Samson, Robert

    2010-10-01

    The species concept of Aspergillus fumigatus sensu stricto has recently been defined by polyphasic taxonomy. Based on the new concept of species delimitations, 146 worldwide strains of Aspergillus fumigatus sensu lato were re-identified. Of those 146 strains, 140 (95.8%) could be identified as A. fumigatus sensu stricto, 3 (2.1%) as A. lentulus, and the remaining 3 strains as A. viridinutans complex, Neosartorya udagawae, and N. cf. nishimurae. Of 98 clinical strains, only 1 from dolphin nostril was identified as A. lentulus and not A. fumigatus sensu stricto. Random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR) with primers PELF and URP1F produced nearly the same band patterns among 136 strains of A. fumigatus sensu stricto while discriminated the species from its related species. We also discussed about identification of several atypical A. fumigatus strains from clinical environments.

  16. Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification

    PubMed Central

    Rodrigues, Anderson M.; Najafzadeh, Mohammad J.; de Hoog, G. Sybren; de Camargo, Zoilo P.

    2015-01-01

    Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA) as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 × 106 copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0), supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies. PMID:26696992

  17. Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification.

    PubMed

    Rodrigues, Anderson M; Najafzadeh, Mohammad J; de Hoog, G Sybren; de Camargo, Zoilo P

    2015-01-01

    Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA) as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 × 10(6) copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0), supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies. PMID:26696992

  18. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    PubMed Central

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijfhout, Falko P.

    2015-01-01

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. Here, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required. PMID:26156000

  19. High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    SciTech Connect

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijhout, Falko P.

    2015-07-09

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. Moreover, a range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. In this paper, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.

  20. High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    DOE PAGES

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijhout, Falko P.

    2015-07-09

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. Moreover, a range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. In this paper, we illustrate how the method can be used to: (1) distinguishmore » between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.« less

  1. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures.

    PubMed

    Musah, Rabi A; Espinoza, Edgard O; Cody, Robert B; Lesiak, Ashton D; Christensen, Earl D; Moore, Hannah E; Maleknia, Simin; Drijfhout, Falko P

    2015-07-09

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. Here, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.

  2. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    NASA Astrophysics Data System (ADS)

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijfhout, Falko P.

    2015-07-01

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. Here, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.

  3. Development of a rapid identification method for Aeromonas species by multiplex-PCR.

    PubMed

    Sen, Keya

    2005-11-01

    Existing biochemical methods cannot distinguish among some species of Aeromonads, while genetic methods are labor intensive. In this study, primers were developed to three genes of Aeromonas: lipase, elastase, and DNA gyraseB. In addition, six previously described primer sets, five corresponding to species-specific signature regions of the 16S rRNA gene from A. veronii, A. popoffii, A. caviae, A. jandaei, and A. schubertii, respectively, and one corresponding to A. hydrophila specific lipase (hydrolipase), were chosen. The primer sets were combined in a series of multiplex-PCR (mPCR) assays against 38 previously characterized strains. Following PCR, each species was distinguished by the production of a unique combination of amplicons. When the assays were tested using 63 drinking water isolates, there was complete agreement in the species identification (ID) for 59 isolates, with ID established by biochemical assays. Sequencing the gyrB and the 16S rRNA gene from the remaining four strains established that the ID obtained by mPCR was correct for three strains. For only one strain, no consensus ID could be obtained. A rapid and reliable method for identification of different Aeromonas species is proposed that does not require restriction enzyme digestions, thus simplifying and speeding up the process.

  4. Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Mycoplasma species

    PubMed Central

    Stakenborg, Tim; Vicca, Jo; Butaye, Patrick; Maes, Dominiek; De Baere, Thierry; Verhelst, Rita; Peeters, Johan; de Kruif, Aart; Haesebrouck, Freddy; Vaneechoutte, Mario

    2005-01-01

    Background Mycoplasmas are present worldwide in a large number of animal hosts. Due to their small genome and parasitic lifestyle, Mycoplasma spp. require complex isolation media. Nevertheless, already over 100 different species have been identified and characterized and their number increases as more hosts are sampled. We studied the applicability of amplified rDNA restriction analysis (ARDRA) for the identification of all 116 acknowledged Mycoplasma species and subspecies. Methods Based upon available 16S rDNA sequences, we calculated and compared theoretical ARDRA profiles. To check the validity of these theoretically calculated profiles, we performed ARDRA on 60 strains of 27 different species and subspecies of the genus Mycoplasma. Results In silico digestion with the restriction endonuclease AluI (AG^CT) was found to be most discriminative and generated from 3 to 13 fragments depending on the Mycoplasma species. Although 73 Mycoplasma species could be differentiated using AluI, other species gave undistinguishable patterns. For these, an additional restriction digestion, typically with BfaI (C^TAG) or HpyF10VI (GCNNNNN^NNGC), was needed for a final identification. All in vitro obtained restriction profiles were in accordance with the calculated fragments based on only one 16S rDNA sequence, except for two isolates of M. columbinum and two isolates of the M. mycoides cluster, for which correct ARDRA profiles were only obtained if the sequences of both rrn operons were taken into account. Conclusion Theoretically, restriction digestion of the amplified rDNA was found to enable differentiation of all described Mycoplasma species and this could be confirmed by application of ARDRA on a total of 27 species and subspecies. PMID:15955250

  5. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    PubMed

    Wallinger, Corinna; Juen, Anita; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Thalinger, Bettina; Traugott, Michael

    2012-01-01

    Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae), the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory. PMID:22253728

  6. Rapid Plant Identification Using Species- and Group-Specific Primers Targeting Chloroplast DNA

    PubMed Central

    Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Thalinger, Bettina; Traugott, Michael

    2012-01-01

    Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae), the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory. PMID:22253728

  7. Multiplex-PCR for Identification of Two Species in Genus Hishimonus (Hemiptera: Cicadellidae) in Jujube Orchards.

    PubMed

    Hao, Shaodong; Wang, He; Tao, Wanqiang; Wang, Jinzhong; Zhang, Zhiyong; Zhang, Qiuling; Zhang, Minzhao; Guo, Li; Shi, Xiaoyu

    2015-10-01

    The insect family Cicadellidae includes economically important vectors of plant pathogens. Hishimonus sellatus (Uhler) transmits jujube witches'-broom (JWB). Currently, H. sellatus and Hishimonus lamellatus Cai et Kuoh are observed to co-occur at the same locality on jujube. H. lamellatus is now suspected to be a JWB vector. As such, correct identification of Hishimonus species present in vineyards is essential for epidemiological surveys. However, traditional identification of Hishimonus by morphology is limited to the adult male. We provide a comprehensive description of morphological and molecular tools for discriminating between H. sellatus and H. lamellatus, for use in identification and monitoring of the two Hishimonus species and studies of their plant hosts. A rapid and inexpensive method is introduced to identify H. sellatus and H. lamellatus occurring in jujube orchards. This method is based on amplification of mitochondrial cytochrome oxidase I (COI) gene, using PCR with multiplexed, species-specific primers. The reliability of this new method has been tested on different populations from different sites in Beijing region of China. PMID:26453733

  8. Identification of mealybug pest species (Hemiptera: Pseudococcidae) in Egypt and France, using a DNA barcoding approach.

    PubMed

    Abd-Rabou, S; Shalaby, H; Germain, J-F; Ris, N; Kreiter, P; Malausa, T

    2012-10-01

    Pseudococcidae (mealybugs) is a large taxonomic group, including a number of agronomic pests. Taxonomic identification of mealybug species is a recurrent problem and represents a major barrier to the establishment of adequate pest management strategies. We combined molecular analysis of three DNA markers (28S-D2, cytochrome oxidase I and internal transcribed spacer 2) with morphological examination, for the identification of 176 specimens collected from 40 mealybug populations infesting various crops and ornamental plants in Egypt and France. This combination of DNA and morphological analyses led to the identification of 17 species: seven in Egypt (Planococcus citri (Risso), Planococcus ficus (Signoret), Maconellicoccus hirsutus (Green), Ferrisia virgata (Cockerell), Phenacoccus solenopsis Tinsley, Phenacoccus parvus Morrison and Saccharicoccus sacchari (Cockerell)) and 11 in France (Planococcus citri, Pseudococcus viburni Signoret, Pseudococcus longispinus (Targioni-Tozzetti), Pseudococcus comstocki (Kuwana), Rhizoecus amorphophalli Betrem, Trionymus bambusae (Green), Balanococcus diminutus (Leonardi), Phenacoccus madeirensis Green, Planococcus vovae (Nasonov), Dysmicoccus brevipes (Cockerell) and Phenacoccus aceris Signoret), Pl. citri being found in both countries. We also found genetic variation between populations considered to belong to the same species, justifying further investigation of the possible occurrence of complexes of cryptic taxa.

  9. Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation.

    PubMed

    Palumbi, S R; Cipriano, F

    1998-01-01

    DNA sequence analysis is a powerful tool for identifying the source of samples thought to be derived from threatened or endangered species. Analysis of mitochondrial DNA (mtDNA) from retail whale meat markets has shown consistently that the expected baleen whale in these markets, the minke whale, makes up only about half the products analyzed. The other products are either unregulated small toothed whales like dolphins or are protected baleen whales such as humpback, Bryde's, fin, or blue whales. Independent verification of such mtDNA identifications requires analysis of nuclear genetic loci, but this is technically more difficult than standard mtDNA sequencing. In addition, evolution of species-specific sequences (i.e., fixation of sequence differences to produce reciprocally monophyletic gene trees) is slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. When will use of nuclear sequences allow forensic DNA identification? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" suggests that phylogenetic sorting at nuclear loci is likely to produce species-specific sequences when mitochondrial alleles are reciprocally monophyletic and the branches leading to the mtDNA sequences of a species are three times longer than the average difference observed within species. A preliminary test of the three-times rule, which depends on many assumptions about the species and genes involved, suggests that blue and fin whales should have species-specific sequences at most neutral nuclear loci, whereas humpback and fin whales should show species-specific sequences at fewer nuclear loci. Partial sequences of actin introns from these species confirm the predictions of the three-times rule and show that blue and fin whales are reciprocally monophyletic at this locus. These intron sequences are thus good tools for the identification of these species

  10. Development of an antigen-based rapid diagnostic test for the identification of blowfly (Calliphoridae) species of forensic significance.

    PubMed

    McDonagh, Laura; Thornton, Chris; Wallman, James F; Stevens, Jamie R

    2009-06-01

    In this study we examine the limitations of currently used sequence-based approaches to blowfly (Calliphoridae) identification and evaluate the utility of an immunological approach to discriminate between blowfly species of forensic importance. By investigating antigenic similarity and dissimilarity between the first instar larval stages of four forensically important blowfly species, we have been able to identify immunoreactive proteins of potential use in the development of species-specific immuno-diagnostic tests. Here we outline our protein-based approach to species determination, and describe how it may be adapted to develop rapid diagnostic assays for the 'on-site' identification of blowfly species.

  11. Technical Note: "Mitochondrial and nuclear DNA approaches for reliable identification of Lucilia (Diptera, Calliphoridae) species of forensic interest from Southern Europe".

    PubMed

    GilArriortua, Maite; Saloña-Bordas, Marta I; Cainé, Laura M; Pinheiro, Fátima; de Pancorbo, Marian M

    2015-12-01

    In forensic entomology, rapid and unambiguous identification of blowfly species is a critical prerequisite for accurately estimating the post-mortem interval (PMI). The conventional diagnosis of cadaveric entomofauna based on external characters is hampered by the morphological similarities between species, especially in immature stages. Genetic analysis has been shown to allow precise and reliable diagnosis and delimitation of insect species. Nevertheless, the taxonomy of some species remains unresolved. This study was focused on improving the effectiveness and accuracy of analysis based on the widely used cytochrome c oxidase subunit I barcode region (COI barcode, 658 bp), complemented by other mitochondrial and nuclear regions, such as cytochrome b (Cyt-b, 307 bp) and the second internal transcribed spacer (ITS2, 310-331 bp), for the identification of Southern European blowflies. We analyzed a total of 209 specimens, collected from 38 human corpses, belonging to three Calliphoridae genera and seven species: Chrysomya (Ch. albiceps), Calliphora (C. vicina and C. vomitoria), and Lucilia (L. sericata, L. ampullacea, L. caesar and L. illustris). These species are the most common PMI indicators in Portugal. The results revealed that unambiguous separation of species of the Lucilia genus requires different loci from the barcode region. Furthermore, we conclude that the ITS2 (310-331 bp) molecular marker is a promising diagnostic tool because its inter-specific discriminatory power enables unequivocal and consistent distinctions to be made, even between closely related species (L. caesar-L. illustris). This work also contributes new genetic data that may be of interest in performing species diagnosis for Southern European blowflies. Notably, to the best of our knowledge, we provide the first records of the Cyt-b (307 bp) locus for L. illustris and the ITS2 (310-331 bp) region for Iberian Peninsula Lucilia species.

  12. Forensic timber identification: a case study of a CITES listed species, Gonystylus bancanus (Thymelaeaceae).

    PubMed

    Ng, Kevin Kit Siong; Lee, Soon Leong; Tnah, Lee Hong; Nurul-Farhanah, Zakaria; Ng, Chin Hong; Lee, Chai Ting; Tani, Naoki; Diway, Bibian; Lai, Pei Sing; Khoo, Eyen

    2016-07-01

    Illegal logging and smuggling of Gonystylus bancanus (Thymelaeaceae) poses a serious threat to this fragile valuable peat swamp timber species. Using G. bancanus as a case study, DNA markers were used to develop identification databases at the species, population and individual level. The species level database for Gonystylus comprised of an rDNA (ITS2) and two cpDNA (trnH-psbA and trnL) markers based on a 20 Gonystylus species database. When concatenated, taxonomic species recognition was achieved with a resolution of 90% (18 out of the 20 species). In addition, based on 17 natural populations of G. bancanus throughout West (Peninsular Malaysia) and East (Sabah and Sarawak) Malaysia, population and individual identification databases were developed using cpDNA and STR markers respectively. A haplotype distribution map for Malaysia was generated using six cpDNA markers, resulting in 12 unique multilocus haplotypes, from 24 informative intraspecific variable sites. These unique haplotypes suggest a clear genetic structuring of West and East regions. A simulation procedure based on the composition of the samples was used to test whether a suspected sample conformed to a given regional origin. Overall, the observed type I and II errors of the databases showed good concordance with the predicted 5% threshold which indicates that the databases were useful in revealing provenance and establishing conformity of samples from West and East Malaysia. Sixteen STRs were used to develop the DNA profiling databases for individual identification. Bayesian clustering analyses divided the 17 populations into two main genetic clusters, corresponding to the regions of West and East Malaysia. Population substructuring (K=2) was observed within each region. After removal of bias resulting from sampling effects and population subdivision, conservativeness tests showed that the West and East Malaysia databases were conservative. This suggests that both databases can be used independently

  13. Forensic timber identification: a case study of a CITES listed species, Gonystylus bancanus (Thymelaeaceae).

    PubMed

    Ng, Kevin Kit Siong; Lee, Soon Leong; Tnah, Lee Hong; Nurul-Farhanah, Zakaria; Ng, Chin Hong; Lee, Chai Ting; Tani, Naoki; Diway, Bibian; Lai, Pei Sing; Khoo, Eyen

    2016-07-01

    Illegal logging and smuggling of Gonystylus bancanus (Thymelaeaceae) poses a serious threat to this fragile valuable peat swamp timber species. Using G. bancanus as a case study, DNA markers were used to develop identification databases at the species, population and individual level. The species level database for Gonystylus comprised of an rDNA (ITS2) and two cpDNA (trnH-psbA and trnL) markers based on a 20 Gonystylus species database. When concatenated, taxonomic species recognition was achieved with a resolution of 90% (18 out of the 20 species). In addition, based on 17 natural populations of G. bancanus throughout West (Peninsular Malaysia) and East (Sabah and Sarawak) Malaysia, population and individual identification databases were developed using cpDNA and STR markers respectively. A haplotype distribution map for Malaysia was generated using six cpDNA markers, resulting in 12 unique multilocus haplotypes, from 24 informative intraspecific variable sites. These unique haplotypes suggest a clear genetic structuring of West and East regions. A simulation procedure based on the composition of the samples was used to test whether a suspected sample conformed to a given regional origin. Overall, the observed type I and II errors of the databases showed good concordance with the predicted 5% threshold which indicates that the databases were useful in revealing provenance and establishing conformity of samples from West and East Malaysia. Sixteen STRs were used to develop the DNA profiling databases for individual identification. Bayesian clustering analyses divided the 17 populations into two main genetic clusters, corresponding to the regions of West and East Malaysia. Population substructuring (K=2) was observed within each region. After removal of bias resulting from sampling effects and population subdivision, conservativeness tests showed that the West and East Malaysia databases were conservative. This suggests that both databases can be used independently

  14. Problems associated with identification of Legionella species from the environment and isolation of six possible new species

    SciTech Connect

    Wilkinson, I.J.; Sangster, N.; Ratcliff, R.M.; Mugg, P.A.; Davos, D.E.; Lanser, J.A. )

    1990-03-01

    Following investigation of an outbreak of legionellosis in South Australia, numerous Legionella-like organisms were isolated from water samples. Because of the limited number of commercially available direct fluorescent-antibody reagents and the cross-reactions found with some reagents, non-pneumophila legionellae proved to be difficult to identify and these isolates were stored at -70{degree}C for later study. Latex agglutination reagents for Legionella peneumpphila and Legionella anisa developed by the Institute of Medical and Veterinary Science, Adelaide, Australia, were found to be useful as rapid screening aids. Autofluorescence was useful for placing isolates into broad groups. Cellular fatty acid analysis, ubiquinone analysis, and DNA hybridization techniques were necessary to provide definitive identification. The species which were isolated most frequently were L. pneumophila, followed by L. anisa, Legionella jamestowniensis, Legionella quinlivanii, Legionella rubrilucens, Legionella spiritensis, and a single isolate each of Legionella erythra, Legionella jordanis, Legionella birminghamensis, and Legionella cincinnatiensis. In addition, 10 isolates were found by DNA hybridization studies to be unrelated to any of the 26 currently known species, representing what the authors believe to be 6 possible new species.

  15. [Comparison of Phoenix™ Yeast ID Panel and API® ID 32C commercial systems for the identification of Candida species isolated from clinical samples].

    PubMed

    Gayibova, Ülkü; Dalyan Cılo, Burcu; Ağca, Harun; Ener, Beyza

    2014-07-01

    Opportunistic fungal pathogens are one of the important causes of nosocomial infections, and several different types of yeasts, especially Candida species are increasingly recovered from immunocompromised patients. Since many of the yeasts are resistant to the commonly used antifungal agents, the introduction of appropriate therapy depends on rapid and accurate identification. The aims of this study were to compare the commercial identification systems namely API® ID 32C (bioMerieux, France) and Phoenix™ Yeast ID Panel (Becton Dickinson Diagnostics, USA) for the identification of Candida species and to evaluate the effect of morphological findings in the identification process. A total of 211 yeast strains isolated from different clinical samples (111 urine, 34 blood/vascular catheter, 27 upper/lower respiratory tract, 16 abscess/pus, 13 throat/vagina swabs and 10 sterile body fluids) of 137 patients hospitalized in Uludag University Health and Research Center between October 2013 to January 2014, were included in the study. Samples were cultured on blood agar, chromogenic agar (CHROMagar Candida, BD, USA) and Saboraud's dextrose agar (SDA), and isolated yeast colonies were evaluated with germ tube test and morphological examination by microscopy on cornmeal/Tween-80 agar. The isolates were identified as well by two commercial systems according to the manufacturers' recommendations. Discrepant results between the systems were tried to be resolved by using morphological characteristics of the yeasts. Of the isolates 159 were identified identical by both of the systems, and the concordance between those systems were estimated as 75.4%. According to the concordant identification, the most frequently isolated species was C.albicans (44.1%) followed by C.tropicalis (9.9%), C.glabrata (9.5%), C.parapsilosis (8.5%) and C.kefyr (8.1%). The concordance rate was 81.7% in identification of frequently isolated species (C.albicans, C.tropicalis, C.parapsilosis, C.glabrata, C

  16. [Comparison of Phoenix™ Yeast ID Panel and API® ID 32C commercial systems for the identification of Candida species isolated from clinical samples].

    PubMed

    Gayibova, Ülkü; Dalyan Cılo, Burcu; Ağca, Harun; Ener, Beyza

    2014-07-01

    Opportunistic fungal pathogens are one of the important causes of nosocomial infections, and several different types of yeasts, especially Candida species are increasingly recovered from immunocompromised patients. Since many of the yeasts are resistant to the commonly used antifungal agents, the introduction of appropriate therapy depends on rapid and accurate identification. The aims of this study were to compare the commercial identification systems namely API® ID 32C (bioMerieux, France) and Phoenix™ Yeast ID Panel (Becton Dickinson Diagnostics, USA) for the identification of Candida species and to evaluate the effect of morphological findings in the identification process. A total of 211 yeast strains isolated from different clinical samples (111 urine, 34 blood/vascular catheter, 27 upper/lower respiratory tract, 16 abscess/pus, 13 throat/vagina swabs and 10 sterile body fluids) of 137 patients hospitalized in Uludag University Health and Research Center between October 2013 to January 2014, were included in the study. Samples were cultured on blood agar, chromogenic agar (CHROMagar Candida, BD, USA) and Saboraud's dextrose agar (SDA), and isolated yeast colonies were evaluated with germ tube test and morphological examination by microscopy on cornmeal/Tween-80 agar. The isolates were identified as well by two commercial systems according to the manufacturers' recommendations. Discrepant results between the systems were tried to be resolved by using morphological characteristics of the yeasts. Of the isolates 159 were identified identical by both of the systems, and the concordance between those systems were estimated as 75.4%. According to the concordant identification, the most frequently isolated species was C.albicans (44.1%) followed by C.tropicalis (9.9%), C.glabrata (9.5%), C.parapsilosis (8.5%) and C.kefyr (8.1%). The concordance rate was 81.7% in identification of frequently isolated species (C.albicans, C.tropicalis, C.parapsilosis, C.glabrata, C

  17. DNA-based Simultaneous Identification of Three Terminalia Species Targeting Adulteration

    PubMed Central

    Sharma, Sonal; Shrivastava, Neeta

    2016-01-01

    Background: Various parts of three Terminalia species, namely, Terminalia arjuna (stem bark), Terminalia bellirica (fruit), and Terminalia chebula (fruit) are widely known for their therapeutic principles and other commercial values. However, stem bark of T. bellirica and T. chebula along with Terminalia tomentosa are reported as adulterants of T. arjuna. Correct botanical identification is very critical for safe and effective herbal drugs. DNA-based identification approaches are advancing the conventional methods and sometime proved more beneficial. Objective: The purpose of the study was to develop polymerase chain reaction (PCR) method using internal transcribed spacer (ITS) region to ascertain the identity of T. arjuna herbal material as well as detection of mixing of other three Terminalia species. Materials and Methods: DNA from stem barks samples were isolated and subjected to ITS region amplification and sequencing. Sequences were compared for polymorphic nucleotides determination to develop species-specific primers. Final primers were selected on the basis of in silico analysis and experimentally validated. PCR assays for botanical identification of Terminalia species were developed. Sensitivity testing and assay validation were also performed. Results: The PCR assays developed for Terminalia species were resulted in definite amplicons of the corresponding species. No cross-reactivity of the primers was detected. Sensitivity was found enough to amplify as low as 2 ng of DNA. Mixing of DNA in various concentrations for validation also proved the sensitivity of assay to detect original botanicals in the mixture. The developed methods proved very specific and sensitive to authenticate Arjuna bark to develop evidence-based herbal medicines. SUMMARY Internal transcribed spacer-based species-specific polymerase chain reaction.(PCR) assays were developed to authenticate Terminalia arjuna stem bark and to identify substitution/adulteration of Terminalia bellirica

  18. Genotypic Identification of Fusarium Species from Ocular Sources: Comparison to Morphologic Classification and Antifungal Sensitivity Testing (An AOS Thesis)

    PubMed Central

    Alfonso, Eduardo C.

    2008-01-01

    Purpose Ocular infections caused by fungal organisms can cause significant ocular morbidity, particularly when diagnosis and treatment are delayed. Rapid and accurate identification of Fusarium species at the subgenus level using current diagnostic standards is timely and insensitive. The purpose of this study is to examine the usefulness of polymerase chain reaction (PCR) analysis of the internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) in detecting and differentiating Fusarium species from isolates of ocular infections, and to assess the correlation between the genotypic and morphologic classification. Methods Fifty-eight isolates from 52 patients diagnosed with Fusarium ocular infections were retrieved from storage at the Bascom Palmer Eye Institute’s ocular microbiology laboratory. Morphologic classification was determined at both a general and a reference microbiology laboratory. DNA was extracted and purified, and the ITS region was amplified and sequenced. Following DNA sequences, alignment and phylogenetic analysis were done. Susceptibility to antifungal drugs was measured according to the Clinical and Laboratory Standards Institute reference method. Results Sequence analysis demonstrated 15 unique sequences among the 58 isolates. The grouping showed that the 58 isolates were distributed among 4 main species complexes. At the species level, morphologic classification correlated with genotypic classification in 25% and 97% of the isolates in a general microbiology and a reference mycology laboratory, respectively. Conclusions The sequence variation within the ITS provides a sufficient quantitative basis for the development of a molecular diagnostic approach to the Fusarium pathogens isolated from ocular infections. Morphology based on microscopic and macroscopic observations yields inconsistent results, particularly at nonreference laboratories, emphasizing the need for a more reproducible test with less user-dependent variability. Fusarium

  19. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    SciTech Connect

    Goeransson, Anna-Lena; Nilsson, K. Peter R.; Kagedal, Katarina; Brorsson, Ann-Christin

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.

  20. DNA Barcodes for Species Identification in the Hyperdiverse Ant Genus Pheidole (Formicidae: Myrmicinae)

    PubMed Central

    Ng'endo, R.N.; Osiemo, Z.B.; Brandl, R.

    2013-01-01

    DNA sequencing is increasingly being used to assist in species identification in order to overcome taxonomic impediment. However, few studies attempt to compare the results of these molecular studies with a more traditional species delineation approach based on morphological characters. Mitochondrial DNA Cytochrome oxidase subunit 1 (CO1) gene was sequenced, measuring 636 base pairs, from 47 ants of the genus Pheidole (Formicidae: Myrmicinae) collected in the Brazilian Atlantic Forest to test whether the morphology-based assignment of individuals into species is supported by DNA-based species delimitation. Twenty morphospecies were identified, whereas the barcoding analysis identified 19 Molecular Operational Taxonomic Units (MOTUs). Fifteen out of the 19 DNA-based clusters allocated, using sequence divergence thresholds of 2% and 3%, matched with morphospecies. Both thresholds yielded the same number of MOTUs. Only one MOTU was successfully identified to species level using the CO1 sequences of Pheidole species already in the Genbank. The average pairwise sequence divergence for all 47 sequences was 19%, ranging between 0–25%. In some cases, however, morphology and molecular based methods differed in their assignment of individuals to morphospecies or MOTUs. The occurrence of distinct mitochondrial lineages within morphological species highlights groups for further detailed genetic and morphological studies, and therefore a pluralistic approach using several methods to understand the taxonomy of difficult lineages is advocated. PMID:23902257

  1. Species-specific identification of seven vegetable oils based on suspension bead array.

    PubMed

    Li, Yuanyuan; Wu, Yajun; Han, Jianxun; Wang, Bin; Ge, Yiqiang; Chen, Ying

    2012-03-01

    Species adulteration of vegetable oils has become a main form of adulteration in vegetable oils, severely violating consumer rights and causing disorder in the market. A reliable method of species authentication of vegetable oils is desirable. This paper reports a novel method for identification of seven species of vegetable oils based on suspension bead array. One pair of universal primers and seven species-specific probes were designed targeting rbcl gene of the chloroplast. Each probe was coupled to a unique color-coded microsphere. Biotinylated PCR amplicons of seven oils were hybridized to the complementary probes on microsphere sets. Bound amplicons were detected fluorometrically using a reporter dye, streptavidin-R-phycoeryt hrin (SA-PE). A sample could be analyzed less than 1 h after PCR amplification. With the exception of olive probe, all probes showed no cross-reactivity with other species. Absolute detection limit of the seven probes ranged from 0.01 ng/μL to 0.0001 ng/μL. Detection limit in DNA mixture was from 10% to 5%. Detection of vegetable oils validated the effectiveness of the method. The suspension bead array as a rapid, sensitive, and high-throughput technology has potential to identify more species of vegetable oils with increased species of probes.

  2. Focusing on genera to improve species identification: revised systematics of the ciliate Spirostomum.

    PubMed

    Boscaro, Vittorio; Carducci, Daniela; Barbieri, Giovanna; Senra, Marcus V X; Andreoli, Ilaria; Erra, Fabrizio; Petroni, Giulio; Verni, Franco; Fokin, Sergei I

    2014-08-01

    Although many papers dealing with the description of new ciliate taxa are published each year, species taxonomy and identification in most groups of the phylum Ciliophora remain confused. This is largely due to a scarcity of surveys on the systematics of immediately higher levels (genera and families) providing data for old and new species together. Spirostomum is a common and distinctive inhabitant of fresh- and brackish water environments, including artificial and eutrophic ones, and is a good model for applied ecology and symbiosis research. Despite this, only 3 of the numerous species are commonly cited, and no studies have yet confirmed their monophyly, with the consequence that reproducibility of the results may be flawed. In this paper we present morphological and molecular data for 30 Spirostomum populations representing 6 different morphospecies, some of which were collected in previously unreported countries. We performed a detailed revision of Spirostomum systematics combining literature surveys, new data on hundreds of organisms and statistical and phylogenetic analyses; our results provide insights on the evolution, ecology and distribution of known morphospecies and a novel one: Spirostomum subtilis sp. n. We also offer tools for quick species identification. PMID:24998786

  3. Identification of meat species by PCR-RFLP of the mitochondrial COI gene.

    PubMed

    Haider, Nadia; Nabulsi, Imad; Al-Safadi, Bassam

    2012-02-01

    Meat authenticity verification is pertinent for economical, religious or public health concerns. The present study investigates the use of PCR-RFLP of a part of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene for identification of species origin of raw meat samples of cow, chicken, turkey, sheep, pig, buffalo, camel and donkey. PCR yielded a 710-bp fragment in all species. The amplicons were digested with seven restriction endonucleases (Hind II, Ava II, Rsa I, Taq I, Hpa II, Tru 1I and Xba I) that were selected based on the preliminary in silico analysis. Different levels of polymorphism were detected among samples. The level of COI variation revealed using only Hpa II was sufficient to generate easily analyzable species-specific restriction profiles that could distinguish unambiguously all targeted species. Compared to previously published reports for the determination of meat origin at the molecular level, the approach developed here is much cheaper and faster for routine identification of meats in food control laboratories.

  4. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP

    PubMed Central

    Zia, M.; Mirhendi, H.; Toghyani, M.

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  5. A novel biosensor for rapid identification of high temperature resistant species

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Zhou, Xiaoming

    2007-11-01

    In this paper, a novel biosensor technique for identification of high temperature resistant species based on quantitative measurement of delayed fluorescence (DF) is described. The biosensor, which uses light-emitting diode lattice as excitation light source, is portable and can detect DF emission from plants in vivo. Compared with its primary version in our previous report, the biosensor presented here can better control environmental factors. Moreover, the improved biosensor can automatically complete the measurements of light response curves of DF intensity in a programmed mode. The testing of the improved biosensor has been made in two maize species (Zea May L.) after high temperature treatment. Contrast evaluations of the effects of heat stress on seedlings photosynthesis were made from measurements of net photosynthesis rate (Pn) based on consumption of CO II. Current testing has demonstrated that the DF intensity well correlates with Pn in each plant species after heat stress. We thus conclude that the DF technique is a breakthrough to traditional strategy of identifying the differences in heat tolerance based on gas exchange, and can provide a reliable approach for rapid and non-invasive determination of the effects of heat stress on photosynthesis and identification of high temperature resistant species.

  6. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation

    PubMed Central

    2013-01-01

    Background Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination. Results In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively. Conclusions We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence

  7. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing

    PubMed Central

    Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; Meng, Patrick; Xie, Lei

    2016-01-01

    Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and

  8. Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline

    PubMed Central

    Jedlicki, Ana; Fernández, Gonzalo; Astorga, Marcela; Oyarzún, Pablo; Toro, Jorge E.; Navarro, Jorge M.; Martínez, Víctor

    2012-01-01

    Background and aims On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of Alexandrium involved in local HABs in order to implement a real-time polymerase chain reaction (PCR) assay for its rapid and easy detection on filter-feeding shellfish, such as mussels. Methodology For species-specific determination, the intergenic spacer 1 (ITS1), 5.8S subunit, ITS2 and the hypervariable genomic regions D1–D5 of the large ribosomal subunit of local strains were sequenced and compared with two data sets of other Alexandrium sequences. Species-specific primers were used to amplify signature sequences within the genomic DNA of the studied species by conventional and real-time PCR. Principal results Phylogenetic analysis determined that the Chilean strain falls into Group I of the tamarensis complex. Our results support the allocation of the Chilean Alexandrium species as a toxic Alexandrium tamarense rather than A. catenella, as currently defined. Once local species were determined to belong to Group I of the tamarensis complex, a highly sensitive and accurate real-time PCR procedure was developed to detect dinoflagellate presence in Mytilus spp. (Bivalvia) samples after being fed (challenged) in vitro with the Chilean Alexandrium strain. The results show that real-time PCR is useful to detect Alexandrium intake in filter-feeding molluscs. Conclusions It has been shown that the classification of local Alexandrium using morphological evidence is not very accurate. Molecular methods enabled the HAB dinoflagellate species of the Chilean coast to be assigned as A. tamarense rather than A. catenella. Real-time PCR analysis based on A. tamarense primers allowed the

  9. Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS).

    PubMed

    Strynar, Mark; Dagnino, Sonia; McMahen, Rebecca; Liang, Shuang; Lindstrom, Andrew; Andersen, Erik; McMillan, Larry; Thurman, Michael; Ferrer, Imma; Ball, Carol

    2015-10-01

    Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing shorter chain per- and polyfluorinated compounds to try to reduce the potential for bioaccumulation in humans and wildlife. Some of these new compounds contain central ether oxygens or other minor modifications of traditional perfluorinated structures. At present, there has been very limited information published on these "replacement chemistries" in the peer-reviewed literature. In this study we used a time-of-flight mass spectrometry detector (LC-ESI-TOFMS) to identify fluorinated compounds in natural waters collected from locations with historical perfluorinated compound contamination. Our workflow for discovery of chemicals included sequential sampling of surface water for identification of potential sources, nontargeted TOFMS analysis, molecular feature extraction (MFE) of samples, and evaluation of features unique to the sample with source inputs. Specifically, compounds were tentatively identified by (1) accurate mass determination of parent and/or related adducts and fragments from in-source collision-induced dissociation (CID), (2) in-depth evaluation of in-source adducts formed during analysis, and (3) confirmation with authentic standards when available. We observed groups of compounds in homologous series that differed by multiples of CF2 (m/z 49.9968) or CF2O (m/z 65.9917). Compounds in each series were chromatographically separated and had comparable fragments and adducts produced during analysis. We detected 12 novel perfluoroalkyl ether carboxylic and sulfonic acids in surface water in North Carolina, USA using this approach. A key piece of evidence was the discovery of accurate mass in-source n-mer formation (H(+) and Na(+)) differing by m/z 21.9819, corresponding to the

  10. New records of Protura (Entognatha, Arthropoda) from Romania, with an identification key to the Romanian species

    PubMed Central

    Shrubovych, Julia; Fiera, Cristina

    2016-01-01

    Abstract The Romanian Protura were studied based on 175 specimens collected from Romania, along with bibliographic data. The main publication on the Romanian proturans was written by M.A. Ionescu (1951), who described 13 species mainly from soil and forest litter from 15 collecting points. The current paper represents the first study at a national level. Faunal data on Protura were obtained from 22 sites, mostly from forests of the Romanian Carpathians and also from a peri-urban area of Bucharest, which had not been studied before. As a result, the Romanian Protura fauna now consists of 27 known taxa in 6 genera and 4 families. Of the 27 taxa, 15 species are new records for Romanian fauna. An identification key to the Romanian Protura species is provided. PMID:26865814

  11. Identification of the Species of Origin for Meat Products by Rapid Evaporative Ionization Mass Spectrometry.

    PubMed

    Balog, Julia; Perenyi, Dora; Guallar-Hoyas, Cristina; Egri, Attila; Pringle, Steven D; Stead, Sara; Chevallier, Olivier P; Elliott, Chris T; Takats, Zoltan

    2016-06-15

    Increasingly abundant food fraud cases have brought food authenticity and safety into major focus. This study presents a fast and effective way to identify meat products using rapid evaporative ionization mass spectrometry (REIMS). The experimental setup was demonstrated to be able to record a mass spectrometric profile of meat specimens in a time frame of <5 s. A multivariate statistical algorithm was developed and successfully tested for the identification of animal tissue with different anatomical origin, breed, and species with 100% accuracy at species and 97% accuracy at breed level. Detection of the presence of meat originating from a different species (horse, cattle, and venison) has also been demonstrated with high accuracy using mixed patties with a 5% detection limit. REIMS technology was found to be a promising tool in food safety applications providing a reliable and simple method for the rapid characterization of food products.

  12. New records of Protura (Entognatha, Arthropoda) from Romania, with an identification key to the Romanian species.

    PubMed

    Shrubovych, Julia; Fiera, Cristina

    2016-01-01

    The Romanian Protura were studied based on 175 specimens collected from Romania, along with bibliographic data. The main publication on the Romanian proturans was written by M.A. Ionescu (1951), who described 13 species mainly from soil and forest litter from 15 collecting points. The current paper represents the first study at a national level. Faunal data on Protura were obtained from 22 sites, mostly from forests of the Romanian Carpathians and also from a peri-urban area of Bucharest, which had not been studied before. As a result, the Romanian Protura fauna now consists of 27 known taxa in 6 genera and 4 families. Of the 27 taxa, 15 species are new records for Romanian fauna. An identification key to the Romanian Protura species is provided.

  13. Identification of the Species of Origin for Meat Products by Rapid Evaporative Ionization Mass Spectrometry.

    PubMed

    Balog, Julia; Perenyi, Dora; Guallar-Hoyas, Cristina; Egri, Attila; Pringle, Steven D; Stead, Sara; Chevallier, Olivier P; Elliott, Chris T; Takats, Zoltan

    2016-06-15

    Increasingly abundant food fraud cases have brought food authenticity and safety into major focus. This study presents a fast and effective way to identify meat products using rapid evaporative ionization mass spectrometry (REIMS). The experimental setup was demonstrated to be able to record a mass spectrometric profile of meat specimens in a time frame of <5 s. A multivariate statistical algorithm was developed and successfully tested for the identification of animal tissue with different anatomical origin, breed, and species with 100% accuracy at species and 97% accuracy at breed level. Detection of the presence of meat originating from a different species (horse, cattle, and venison) has also been demonstrated with high accuracy using mixed patties with a 5% detection limit. REIMS technology was found to be a promising tool in food safety applications providing a reliable and simple method for the rapid characterization of food products. PMID:27167240

  14. Ruminal paramphistomosis in cattle from northeastern Algeria: prevalence, parasite burdens and species identification

    PubMed Central

    Titi, Amal; Mekroud, Abdeslam; Chibat, Mohamed el Hadi; Boucheikhchoukh, Mehdi; Zein-Eddine, Rima; Djuikwo-Teukeng, Félicité F.; Vignoles, Philippe; Rondelaud, Daniel; Dreyfuss, Gilles

    2014-01-01

    Slaughterhouse samples were analysed over a two-year period (September 2010–August 2012) in Jijel (northeastern Algeria) in order to determine seasonal variations in the prevalence and intensity of bovine paramphistomosis in a Mediterranean climate and identify paramphistome species using molecular biology. In spring and summer, significantly higher prevalences and lower parasite burdens were noted in bull calves, thus indicating an effect of season on these parameters. In contrast, the differences among seasonal prevalences or among seasonal parasite burdens were not significant in the case of old cows. Eleven adult worms from the slaughterhouses of Jijel and three neighbouring departments (Constantine, El Tarf and Setif) were analysed using molecular markers for species identification. Two different species, Calicophoron daubneyi and C. microbothrium, were found. The presence of these two paramphistomids raises the question of their respective frequency in the definitive host and local intermediate hosts. PMID:25279553

  15. Molecular identification of Entamoeba species in savanna woodland chimpanzees (Pan troglodytes schweinfurthii).

    PubMed

    Jirků-Pomajbíková, Kateřina; Čepička, Ivan; Kalousová, Barbora; Jirků, Milan; Stewart, Fiona; Levecke, Bruno; Modrý, David; Piel, Alex K; Petrželková, Klára J

    2016-05-01

    To address the molecular diversity and occurrence of pathogenic species of the genus Entamoeba spp. in wild non-human primates (NHP) we conducted molecular-phylogenetic analyses on Entamoeba from wild chimpanzees living in the Issa Valley, Tanzania. We compared the sensitivity of molecular [using a genus-specific polymerase chain reaction (PCR)] and coproscopic detection (merthiolate-iodine-formaldehyde concentration) of Entamoeba spp. We identified Entamoeba spp. in 72 chimpanzee fecal samples (79%) subjected to species-specific PCRs for six Entamoeba species/groups (Entamoeba histolytica, Entamoeba nuttalli, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba coli and Entamoeba polecki ST2). We recorded three Entamoeba species: E. coli (47%), E. dispar (16%), Entamoeba hartmanni (51%). Coproscopically, we could only distinguish the cysts of complex E. histolytica/dispar/moshkovskii/nuttalli and E. coli. Molecular prevalence of entamoebas was higher than the prevalence based on the coproscopic examination. Our molecular phylogenies showed that sequences of E. dispar and E. coli from Issa chimpanzees are closely related to sequences from humans and other NHP from GenBank. The results showed that wild chimpanzees harbour Entamoeba species similar to those occurring in humans; however, no pathogenic species were detected. Molecular-phylogenetic methods are critical to improve diagnostics of entamoebas in wild NHP and for determining an accurate prevalence of Entamoeba species. PMID:26935395

  16. Quantitative bioluminometric method for DNA-based species/varietal identification in food authenticity assessment.

    PubMed

    Trantakis, Ioannis A; Christopoulos, Theodore K; Spaniolas, Stelios; Kalaitzis, Panagiotis; Ioannou, Penelope C; Tucker, Gregory A

    2012-02-01

    A method is reported for species quantification by exploiting single-nucleotide polymorphisms (SNPs). These single-base changes in DNA are particularly useful because they enable discrimination of closely related species and/or varieties. As a model, quantitative authentication studies were performed on coffee. These involved the determination of the percentage of Arabica and Robusta species based on a SNP in the chloroplastic trnL(UAA)-trnF(GAA) intraspacer region. Following polymerase chain reaction (PCR), the Robusta-specific and Arabica-specific fragments were subjected to 15 min extension reactions by DNA polymerase using species-specific primers carrying oligo(dA) tags. Biotin was incorporated into the extended strands. The products were captured in streptavidin-coated microtiter wells and quantified by using oligo(dT)-conjugated photoprotein aequorin. Aequorin was measured within 3 s via its characteristic flash-type bioluminescent reaction that was triggered by the addition of Ca(2+). Because of the close resemblance between the two DNA fragments, during PCR one species serves as an internal standard for the other. The percentage of the total luminescence signal obtained from a certain species was linearly related to the percent content of the sample with respect to this species. The method is accurate and reproducible. The microtiter well-based assay configuration allows high sample throughput and facilitates greatly the automation.

  17. Molecular identification of Entamoeba species in savanna woodland chimpanzees (Pan troglodytes schweinfurthii).

    PubMed

    Jirků-Pomajbíková, Kateřina; Čepička, Ivan; Kalousová, Barbora; Jirků, Milan; Stewart, Fiona; Levecke, Bruno; Modrý, David; Piel, Alex K; Petrželková, Klára J

    2016-05-01

    To address the molecular diversity and occurrence of pathogenic species of the genus Entamoeba spp. in wild non-human primates (NHP) we conducted molecular-phylogenetic analyses on Entamoeba from wild chimpanzees living in the Issa Valley, Tanzania. We compared the sensitivity of molecular [using a genus-specific polymerase chain reaction (PCR)] and coproscopic detection (merthiolate-iodine-formaldehyde concentration) of Entamoeba spp. We identified Entamoeba spp. in 72 chimpanzee fecal samples (79%) subjected to species-specific PCRs for six Entamoeba species/groups (Entamoeba histolytica, Entamoeba nuttalli, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba coli and Entamoeba polecki ST2). We recorded three Entamoeba species: E. coli (47%), E. dispar (16%), Entamoeba hartmanni (51%). Coproscopically, we could only distinguish the cysts of complex E. histolytica/dispar/moshkovskii/nuttalli and E. coli. Molecular prevalence of entamoebas was higher than the prevalence based on the coproscopic examination. Our molecular phylogenies showed that sequences of E. dispar and E. coli from Issa chimpanzees are closely related to sequences from humans and other NHP from GenBank. The results showed that wild chimpanzees harbour Entamoeba species similar to those occurring in humans; however, no pathogenic species were detected. Molecular-phylogenetic methods are critical to improve diagnostics of entamoebas in wild NHP and for determining an accurate prevalence of Entamoeba species.

  18. Cloning of a novel specific SCAR marker for species identification in Lactobacillus pentosus.

    PubMed

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina

    2014-08-01

    Identifying Lactobacillus species using only phenotypic and genotypic (16S rDNA sequence analysis) techniques yields inaccurate results. The objective of this study was to develop species-specific primers based on randomly amplified polymorphic DNA (RAPD) fingerprinting to distinguish species within the closely related Lactobacillus plantarum group. One of these primers, OPD-3, produced a species-specific band that was found only in the tested Lactobacillus pentosus. This specific fragment was isolated from agarose gel and ligated into a vector for DNA sequencing. A pair of primers, SpOPD3Lpen-F1/R1, that were highly specific sequence-characterized-amplified-regions (SCARs) were designed according to the nucleotide sequences of the specific RAPD marker. These primers were used for PCR analysis of the template DNA of the Lactobacillus strains, and a single 542 bp species-specific band was found only in L. pentosus. Using PCR, a novel species-specific primer pair is shown to rapidly, accurately and effectively distinguish L. pentosus from other species in the L. plantarum group of probiotic bacteria.

  19. Morphological variation in males of Dendrocephalus orientalis (Anostraca: Thamnocephalidae): Implications for species identification.

    PubMed

    Hirose, Gustavo Luis; Barros-Alves, Samara De Paiva; Alves, Douglas Fernandes Rodrigues; Silva, Izabel Regina Soares Da; Bezerra, Maria Angélica De Oliveira

    2015-01-01

    The genus Dendrocephalus Daday, 1908 consists of 17 described species. The morphology of the frontal appendage and the first pairs of thoracopods of males are the main characteristics used for species identification. The objectives of this study were to increase knowledge of the morphology of Dendrocephalus orientalis and to propose a new identification key for the species occurring in Brazil. Specimens were collected in temporary ponds within the conservation unit Monument Natural Grota do Angico (MNGA), which straddles the borders of the municipalities of Poço Redondo and Canindé de São Francisco, State of Sergipe, Brazil. During the study period, 560 male individuals of D. orientalis were sampled. The specimens showed variations in the number of spines on the eyes and the proximal surface of the male frontal appendage. On the eye, the number of spines ranged from 0 to 2; morphotypes with 1 and 2 spines predominated in the samples, with 50.5% and 46.2%, respectively. The number of spines on each eye was the same within each individual. On the proximal surface of the males frontal appendage the following numbers of spines on each arm were recorded: 1 and 1 (57.86%); 2 and 1 (30.89%); 2 and 2 (9.46%); 1 and 0 (1.25%); 3 and 2 (0.36%); 2 and 0 (0.18%). Based on these variations, we conclude that the number of spines on the eyes and the frontal appendage arms cannot be used as a diagnostic character for species identification. On the other hand, the first pairs of thoracopods and sub-branches 1V and 2A of the frontal appendage should be included in keys, since these structures did not show significant intraspecific morphological variation.  PMID:25662144

  20. Morphological variation in males of Dendrocephalus orientalis (Anostraca: Thamnocephalidae): Implications for species identification.

    PubMed

    Hirose, Gustavo Luis; Barros-Alves, Samara De Paiva; Alves, Douglas Fernandes Rodrigues; Silva, Izabel Regina Soares Da; Bezerra, Maria Angélica De Oliveira

    2015-02-05

    The genus Dendrocephalus Daday, 1908 consists of 17 described species. The morphology of the frontal appendage and the first pairs of thoracopods of males are the main characteristics used for species identification. The objectives of this study were to increase knowledge of the morphology of Dendrocephalus orientalis and to propose a new identification key for the species occurring in Brazil. Specimens were collected in temporary ponds within the conservation unit Monument Natural Grota do Angico (MNGA), which straddles the borders of the municipalities of Poço Redondo and Canindé de São Francisco, State of Sergipe, Brazil. During the study period, 560 male individuals of D. orientalis were sampled. The specimens showed variations in the number of spines on the eyes and the proximal surface of the male frontal appendage. On the eye, the number of spines ranged from 0 to 2; morphotypes with 1 and 2 spines predominated in the samples, with 50.5% and 46.2%, respectively. The number of spines on each eye was the same within each individual. On the proximal surface of the males frontal appendage the following numbers of spines on each arm were recorded: 1 and 1 (57.86%); 2 and 1 (30.89%); 2 and 2 (9.46%); 1 and 0 (1.25%); 3 and 2 (0.36%); 2 and 0 (0.18%). Based on these variations, we conclude that the number of spines on the eyes and the frontal appendage arms cannot be used as a diagnostic character for species identification. On the other hand, the first pairs of thoracopods and sub-branches 1V and 2A of the frontal appendage should be included in keys, since these structures did not show significant intraspecific morphological variation. 

  1. Identification of Medically Important Candida and Non-Candida Yeast Species by an Oligonucleotide Array▿

    PubMed Central

    Leaw, Shiang Ning; Chang, Hsien Chang; Barton, Richard; Bouchara, Jean-Philippe; Chang, Tsung Chain

    2007-01-01

    The incidence of yeast infections has increased in the recent decades, with Candida albicans still being the most common cause of infections. However, infections caused by less common yeasts have been widely reported in recent years. Based on the internal transcribed spacer 1 (ITS 1) and ITS 2 sequences of the rRNA genes, an oligonucleotide array was developed to identify 77 species of clinically relevant yeasts belonging to 16 genera. The ITS regions were amplified by PCR with a pair of fungus-specific primers, followed by hybridization of the digoxigenin-labeled PCR product to a panel of oligonucleotide probes immobilized on a nylon membrane for species identification. A collection of 452 yeast strains (419 target and 33 nontarget strains) was tested, and a sensitivity of 100% and a specificity of 97% were obtained by the array. The detection limit of the array was 10 pg of yeast genomic DNA per assay. In conclusion, yeast identification by the present method is highly reliable and can be used as an alternative to the conventional identification methods. The whole procedure can be finished within 24 h, starting from isolated colonies. PMID:17507521

  2. Identification of Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species by repetitive-sequence-based PCR.

    PubMed

    Pounder, June I; Hansen, Dewey; Woods, Gail L

    2006-08-01

    The performance of repetitive-sequence-based PCR (rep-PCR) using the DiversiLab system for identification of Coccidioides species, Blastomyces dermatitidis, and Histoplasma capsulatum was assessed by comparing data obtained to colony morphology and microscopic characteristics and to nucleic acid probe results. DNA from cultures of 23 Coccidioides, 24 B. dermatitidis, 24 H. capsulatum, 3 Arthrographis, and 2 Malbranchea isolates was extracted using a microbial DNA isolation kit as recommended by Bacterial Barcodes, Inc. Rep-PCR and probe results agreed for 97.2% of the dimorphic fungi when > or =85% similarity was used as the criterion for identification. Two H. capsulatum isolates were not identified, but no isolates were misidentified. From 43 of those cultures (15 Coccidioides, 14 B. dermatitidis, 14 H. capsulatum, 3 Arthrographis, and 2 Malbranchea), DNA also was extracted using an IDI lysis kit, a simpler method. Rep-PCR and probe results agreed for 97.7% of the dimorphic fungi when a criterion of > or =90% similarity was used for identification. One H. capsulatum isolate could not be identified; no isolates were misidentified. Using > or =85% similarity for identification resulted in one misidentification. These data suggest that the DiversiLab system can be used to identify Coccidioides and B. dermatitidis and, possibly, H. capsulatum isolates. PMID:16891521

  3. The novel primers for sex identification in the brown eared-pheasant and their application to other species.

    PubMed

    Wang, N; Zhang, Z-W

    2009-01-01

    We designed a pair of primers for sex identification in the brown eared-pheasant (Crossoptilon mantchuricum) based on the mechanism of PCR amplification of CHD fragments, and identified the number of products. The new primers were considered to have more sensitivity than P2/P8, and cross-species application indicated that they can also be used for sex identification in other species of Phasianidae and Passeriformes.

  4. Culture-based identification of pigmented Porphyromonas and Prevotella species in primary endodontic infections

    PubMed Central

    Rajaram, Anuradha; Kotrashetti, Vijayalakshmi S.; Somannavar, Pradeep D.; Ingalagi, Preeti; Bhat, Kishore

    2016-01-01

    Background. The most common species isolated from primary endodontic infections are black-pigmented bacteria. These species are implicated in apical abscess formation due to their proteolytic activity and are fastidious in nature. Therefore, the present study was carried out to evaluate the presence and identification of various pigmented Porphyromonas and Prevotella species in the infected root canal through culture-based techniques. Methods. Thirty-one patients with primary endodontic infections were selected. Using sterile paper points, samples were collected from the root canals after access opening and prior to obturation, which were cultured using blood and kanamycin blood agar. Subsequently, biochemical test was used to identify the species and the results were analyzed using percentage comparison analysis, McNemar and chi-squared tests, Wilcoxon match pair test and paired t-test. Results. Out of 31 samples 26 were positive for black-pigmented organisms; the predominantly isolated species were Prevotella followed by Porphyromonas. In Porphyromonas only P. gingivalis was isolated. One of the interesting features was isolation of P. gingivalis through culture, which is otherwise very difficult to isolate through culture. Conclusion. The presence of Prevotella and Porphyromonas species suggests that a significant role is played by these organisms in the pathogenesis of endodontic infections.

  5. Identification of naturally occurring hybrids between two overexploited sciaenid species along the South African coast.

    PubMed

    Mirimin, L; Kerwath, S E; Macey, B M; Bester-van der Merwe, A E; Lamberth, S J; Bloomer, P; Roodt-Wilding, R

    2014-07-01

    Hybridisation between fish species can play a significant role in evolutionary processes and can influence management and conservation planning, however, this phenomenon has been widely understudied, especially in marine organisms. The distribution limits of two sciaenid species (silver kob, Argyrosomus inodorus, and dusky kob, A. japonicus) partly overlap along the South African coast, where both species have undergone severe depletion due to overfishing. Following the identification of a number of possible cases of species misidentification or hybridisation (21 out of 422 individuals), nuclear and mitochondrial DNA data (12microsatellite loci and 562bp of the COI gene) were analysed to investigate the genetic composition of these individuals. Results indicated a field-based species misidentification rate of approximately 2.8% and a rate of natural hybridisation of 0.7%. Interestingly, all hybrid fish resulted from first-generation (F1) hybridisation events, which occurred exclusively between silver kob females and dusky kob males. Whether hybridisation is the result of natural events (such as secondary contact following a shift in distribution range), or anthropogenic activities (size-selective pressure due to overfishing), these findings have important implications for critical recovery and future management of these species in the wild. PMID:24582737

  6. Culture-based identification of pigmented Porphyromonas and Prevotella species in primary endodontic infections

    PubMed Central

    Rajaram, Anuradha; Kotrashetti, Vijayalakshmi S.; Somannavar, Pradeep D.; Ingalagi, Preeti; Bhat, Kishore

    2016-01-01

    Background. The most common species isolated from primary endodontic infections are black-pigmented bacteria. These species are implicated in apical abscess formation due to their proteolytic activity and are fastidious in nature. Therefore, the present study was carried out to evaluate the presence and identification of various pigmented Porphyromonas and Prevotella species in the infected root canal through culture-based techniques. Methods. Thirty-one patients with primary endodontic infections were selected. Using sterile paper points, samples were collected from the root canals after access opening and prior to obturation, which were cultured using blood and kanamycin blood agar. Subsequently, biochemical test was used to identify the species and the results were analyzed using percentage comparison analysis, McNemar and chi-squared tests, Wilcoxon match pair test and paired t-test. Results. Out of 31 samples 26 were positive for black-pigmented organisms; the predominantly isolated species were Prevotella followed by Porphyromonas. In Porphyromonas only P. gingivalis was isolated. One of the interesting features was isolation of P. gingivalis through culture, which is otherwise very difficult to isolate through culture. Conclusion. The presence of Prevotella and Porphyromonas species suggests that a significant role is played by these organisms in the pathogenesis of endodontic infections. PMID:27651878

  7. Assessing DNA Barcoding as a Tool for Species Identification and Data Quality Control

    PubMed Central

    Murphy, Robert W.

    2013-01-01

    In recent years, the number of sequences of diverse species submitted to GenBank has grown explosively and not infrequently the data contain errors. This problem is extensively recognized but not for invalid or incorrectly identified species, sample mixed-up, and contamination. DNA barcoding is a powerful tool for identifying and confirming species and one very important application involves forensics. In this study, we use DNA barcoding to detect erroneous sequences in GenBank by evaluating deep intraspecific and shallow interspecific divergences to discover possible taxonomic problems and other sources of error. We use the mitochondrial DNA gene encoding cytochrome b (Cytb) from turtles to test the utility of barcoding for pinpointing potential errors. This gene is widely used in phylogenetic studies of the speciose group. Intraspecific variation is usually less than 2.0% and in most cases it is less than 1.0%. In comparison, most species differ by more than 10.0% in our dataset. Overlapping intra- and interspecific percentages of variation mainly involve problematic identifications of species and outdated taxonomies. Further, we detect identical problems in Cytb from Insectivora and Chiroptera. Upon applying this strategy to 47,524 mammalian CoxI sequences, we resolve a suite of potentially problematic sequences. Our study reveals that erroneous sequences are not rare in GenBank and that the DNA barcoding can serve to confirm sequencing accuracy and discover problems such as misidentified species, inaccurate taxonomies, contamination, and potential errors in sequencing. PMID:23431400

  8. Identification of naturally occurring hybrids between two overexploited sciaenid species along the South African coast.

    PubMed

    Mirimin, L; Kerwath, S E; Macey, B M; Bester-van der Merwe, A E; Lamberth, S J; Bloomer, P; Roodt-Wilding, R

    2014-07-01

    Hybridisation between fish species can play a significant role in evolutionary processes and can influence management and conservation planning, however, this phenomenon has been widely understudied, especially in marine organisms. The distribution limits of two sciaenid species (silver kob, Argyrosomus inodorus, and dusky kob, A. japonicus) partly overlap along the South African coast, where both species have undergone severe depletion due to overfishing. Following the identification of a number of possible cases of species misidentification or hybridisation (21 out of 422 individuals), nuclear and mitochondrial DNA data (12microsatellite loci and 562bp of the COI gene) were analysed to investigate the genetic composition of these individuals. Results indicated a field-based species misidentification rate of approximately 2.8% and a rate of natural hybridisation of 0.7%. Interestingly, all hybrid fish resulted from first-generation (F1) hybridisation events, which occurred exclusively between silver kob females and dusky kob males. Whether hybridisation is the result of natural events (such as secondary contact following a shift in distribution range), or anthropogenic activities (size-selective pressure due to overfishing), these findings have important implications for critical recovery and future management of these species in the wild.

  9. Culture-based identification of pigmented Porphyromonas and Prevotella species in primary endodontic infections.

    PubMed

    Rajaram, Anuradha; Kotrashetti, Vijayalakshmi S; Somannavar, Pradeep D; Ingalagi, Preeti; Bhat, Kishore

    2016-01-01

    Background. The most common species isolated from primary endodontic infections are black-pigmented bacteria. These species are implicated in apical abscess formation due to their proteolytic activity and are fastidious in nature. Therefore, the present study was carried out to evaluate the presence and identification of various pigmented Porphyromonas and Prevotella species in the infected root canal through culture-based techniques. Methods. Thirty-one patients with primary endodontic infections were selected. Using sterile paper points, samples were collected from the root canals after access opening and prior to obturation, which were cultured using blood and kanamycin blood agar. Subsequently, biochemical test was used to identify the species and the results were analyzed using percentage comparison analysis, McNemar and chi-squared tests, Wilcoxon match pair test and paired t-test. Results. Out of 31 samples 26 were positive for black-pigmented organisms; the predominantly isolated species were Prevotella followed by Porphyromonas. In Porphyromonas only P. gingivalis was isolated. One of the interesting features was isolation of P. gingivalis through culture, which is otherwise very difficult to isolate through culture. Conclusion . The presence of Prevotella and Porphyromonas species suggests that a significant role is played by these organisms in the pathogenesis of endodontic infections. PMID:27651878

  10. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections

    PubMed Central

    Chambers, E. Anne; Hebert, Paul D. N.

    2016-01-01

    Background High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. Methodology/Principal Findings This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. Conclusions/Significance This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna

  11. Identification and characterization of dermatophyte species and strains with PCR amplification.

    PubMed

    Liu, Guofang; He, Chenghua; Zhang, Haibin

    2014-08-01

    The aim of the present study was to use two polymerase chain reaction (PCR) methods, with (GACA)4 and non-transcribed spacer (NTS) as primers, to identify and characterize dermatophyte isolates from dogs and cats to a species and strain level. A total of 45 isolates from nine dermatophyte species were collected from pet dogs and cats and subjected to PCR amplification with the microsatellite primer (GACA)4. Dermatophyte strains of three of the same species collected from four cities were subjected to PCR amplification with the NTS primer set. These two PCR methods were applied to identify and characterize the dermatophyte isolates to a species and strain level. Regional differences among the strain specificities were also examined. The results from PCR with (GACA)4 demonstrated that strains from the same species produced similar PCR product band patterns. In addition, these patterns differed among species, indicating that (GACA)4 primer-based PCR was able to distinguish between the various dermatophyte species. By contrast, dermatophyte isolates and/or strains within the same species revealed various band patterns with NTS-based PCR. In addition, the results indicated that regional differences contributed to the variations in PCR product band patterns. Therefore, the results of the present study indicate that the NTS-based PCR method is efficient in distinguishing dermatophytes to the strain level, while a combination of (GACA)4 and NTS primer-based PCR methods is able to clarify dermatophyte isolates to a species and strain level. The present study provides information concerning the identification of pathogenic fungi and the epidemiological characteristics of fungal skin diseases.

  12. Identification of local clinical Candida isolates using CHROMagar Candida™ as a primary identification method for various Candida species.

    PubMed

    Madhavan, P; Jamal, F; Chong, P P; Ng, K P

    2011-08-01

    The objective of our study was to study the effectiveness of CHROMagar Candida™ as the primary identification method for various clinical Candida isolates, other than the three suggested species by the manufacturer. We studied 34 clinical isolates which were isolated from patients in a local teaching hospital and 7 ATCC strains. These strains were first cultured in Sabouraud dextrose broth (SDB) for 36 hours at 35ºC, then on CHROMagar plates at 30ºC, 35ºC and 37ºC. The sensitivity of this agar to identify Candida albicans, Candida dubliniensis, Candida tropicalis, Candida glabrata, Candida rugosa, Candida krusei and Candida parapsilosis ranged between 25 and 100% at 30ºC, 14% and 100% at 35ºC, 56% and 100% at 37ºC. The specificity of this agar was 100% at 30ºC, between 97% and 100% at 35ºC, 92% and 100% at 37ºC. The efficiency of this agar ranged between 88 and 100% at 30ºC, 83% and 100% at 35ºC, 88% and 100% at 37ºC. Each species also gave rise to a variety of colony colours ranging from pink to green to blue of different colony characteristics. Therefore, the chromogenic agar was found to be useful in our study for identifying clinical Candida isolates. PMID:22041745

  13. Development of species-specific primers for rapid identification of Debaryomyces hansenii.

    PubMed

    Wrent, Petra; Rivas, Eva-María; Gil de Prado, Elena; Peinado, José M; de Silóniz, María-Isabel

    2015-01-16

    In this work, we developed a specific PCR assay for Debaryomyces hansenii strains that uses a putative homologous PAD1 region (729 bp) present in this yeast species as a target. The amplification of this sequence with the D. hansenii specific primer pair (DhPADF/DhPADR) was found to be a rapid, specific and an affordable method enabling identification of D. hansenii from other yeast strains. Primers were tested in almost 100 strains, 49 strains from Type Culture Collection belonging to the genus Debaryomyces and to other yeast species commonly found in foods or related genera. These primers were able to discriminate between closely related species of Debaryomyces, such as Debaryomyces fabryi and Debaryomyces subglobosus, with a 100% detection rate for D. hansenii. Also, the method was tested in 45 strains from different foods. Results confirmed the specificity of the PCR method and detected two earlier misidentifications of D. hansenii strains obtained by RFLP analysis of the 5.8S ITS rDNA region. Subsequently we confirmed by sequencing the D1/D2 domain of 26S rDNA that these strains belonged to D. fabryi. We call attention in this work to the fact that the RFLPs of the 5.8S ITS rDNA profiles of D. hansenii, D. fabryi and D. subglobosus are the same and this technique will thus lead to incorrect identifications. PMID:25462930

  14. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species.

    PubMed

    Patel, Rohan V; Nahal, Hardeep K; Breit, Robert; Provart, Nicholas J

    2012-09-01

    Large numbers of sequences are now readily available for many plant species, allowing easy identification of homologous genes. However, orthologous gene identification across multiple species is made difficult by evolutionary events such as whole-genome or segmental duplications. Several developmental atlases of gene expression have been produced in the past couple of years, and it may be possible to use these transcript abundance data to refine ortholog predictions. In this study, clusters of homologous genes between seven plant species - Arabidopsis, soybean, Medicago truncatula, poplar, barley, maize and rice - were identified. Following this, a pipeline to rank homologs within gene clusters by both sequence and expression profile similarity was devised by determining equivalent tissues between species, with the best expression profile match being termed the 'expressolog'. Five electronic fluorescent pictograph (eFP) browsers were produced as part of this effort, to aid in visualization of gene expression data and to complement existing eFP browsers at the Bio-Array Resource (BAR). Within the eFP browser framework, these expression profile similarity rankings were incorporated into an Expressolog Tree Viewer to allow cross-species homolog browsing by both sequence and expression pattern similarity. Global analyses showed that orthologs with the highest sequence similarity do not necessarily exhibit the highest expression pattern similarity. Other orthologs may show different expression patterns, indicating that such genes may require re-annotation or more specific annotation. Ultimately, it is envisaged that this pipeline will aid in improvement of the functional annotation of genes and translational plant research.

  15. The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA

    PubMed Central

    Zhao, Zi-Hua; Cui, Bing-Yi; Li, Zhi-Hong; Jiang, Fan; Yang, Qian-Qian; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun

    2016-01-01

    Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA. PMID:26880378

  16. Identification of Malassezia species from pityriasis versicolor lesions with a new multiplex PCR method.

    PubMed

    Vuran, Emre; Karaarslan, Aydın; Karasartova, Djursun; Turegun, Buse; Sahin, Fikret

    2014-02-01

    Despite the fact that a range of molecular methods have been developed as tools for the diagnosis of Malassezia species, there are several drawbacks associated with them, such as inefficiency of differentiating all the species, high cost, and questionable reproducibility. In addition, most of the molecular methods require cultivation to enhance sensitivity. Therefore, alternative methods eliminating cultivation and capable of identifying species with high accuracy and reliability are needed. Herein, a multiplex polymerase chain reaction (PCR)-based method was especially developed for the detection of eleven Malassezia species. The multiplex PCR was standardized by incorporating a consensus forward primer, along with Malassezia species-specific reverse primers considering the sizes of the PCR products. In the method, the multiplex-PCR primer content is divided into three parts to circumvent the problem of increased nonspecific background resulting from the use of a large number of primers. DNA extraction protocol described by Harju and colleagues was modified using liquid nitrogen instead of -80 °C to break down the yeast membrane. By a modified extraction procedure followed by multiplex PCR and electrophoresis, the method enables identification and differentiation of Malassezia species from both of the samples obtained directly from skin and yeast colonies grown in culture. Fifty-five patients who were confirmed with pityriasis versicolor were enrolled in the study. Multiplex PCR detected and differentiated all 55 samples obtained directly from the patients' skin. However, 50 out of 55 samples yielded Malassezia colony in the culture. In addition, eight of 50 colonies were misdiagnosed or not completely differentiated by conventional methods based on the sequence analysis of eight colonies. The method is capable of identifying species with high accuracy and reliability. In addition, it is simple, quick, and cost-effective. More importantly, the method works

  17. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species.

    PubMed

    Turchetto, Caroline; Segatto, Ana Lúcia A; Beduschi, Júlia; Bonatto, Sandro L; Freitas, Loreta B

    2015-07-17

    Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids

  18. Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species

    PubMed Central

    Yücesoy, Mine; Marol, Serhat

    2003-01-01

    Background The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. Methods A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37°C. Results The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. Conclusions It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar. PMID:14613587

  19. Molecular species identification of cryptic apple and snowberry maggots (Diptera: Tephritidae) in western and central Washington.

    PubMed

    Green, Emily; Almskaar, Kristin; Sim, Sheina B; Arcella, Tracy; Yee, Wee L; Feder, Jeffrey L; Schwarz, Dietmar

    2013-10-01

    In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species Rhagoletis zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple production for export. Here, we attempt to distinguish the two species by scoring R. pomonella and R. zephyria populations from western and south-central Washington for a set of 11 nuclear markers, including four single nucleotide polymorphisms (SNPs) developed for rapid and inexpensive genotyping using Taqman real-time quantitative-polymerase chain reaction. We show that the four SNPs may be adequate in most cases for distinguishing whether a fly originated from apple or black hawthorn (the two major host plants for R. pomonella representing an economic risk) versus snowberry (the major host for R. zephyria, and not a commercial threat). However, directional introgression of R. zephyria alleles into R. pomonella can complicate the identification of flies of mixed ancestry based only on the four SNPs. Moreover, this problem is more acute in the sensitive apple-growing regions of central Washington where our results imply hybridization is common. Consequently, application of the four SNP quantitative-polymerase chain reaction assay can immediately assist ongoing apple maggot monitoring, while the development of additional genetic markers through next-generation sequencing would be valuable for increasing confidence in species identification and for assessing the threat posed by hybridization as R. pomonella further spreads into the more arid apple-growing regions of central Washington.

  20. In-situ identification of meat from different animal species by shifted excitation Raman difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2012-05-01

    The identification of food products and the detection of adulteration are of global interest for food safety and quality control. We present a non-invasive in-situ approach for the differentiation of meat from selected animal species using microsystem diode laser based shifted excitation Raman difference spectroscopy (SERDS) at 671 nm and 785 nm. In that way, the fingerprint Raman spectra can be used for identification without a disturbing fluorescence background masking Raman signals often occurring in the investigation of biological samples. Two miniaturized SERDS measurement heads including the diode laser and all optical elements are fiber-optically coupled to compact laboratory spectrometers. To realize two slightly shifted excitation wavelengths necessary for SERDS the 671 nm laser (spectral shift: 0.7 nm, optical power: 50 mW) comprises two separate laser cavities each with a volume Bragg grating for frequency selection whereas the 785 nm light source (spectral shift: 0.5 nm, optical power: 110 mW) is a distributed feedback laser. For our investigations we chose the most consumed meat types in the US and Europe, i.e. chicken and turkey as white meat as well as pork and beef as red meat species. The applied optical powers were sufficient to detect meat Raman spectra with integration times of 10 seconds pointing out the ability for a rapid discrimination of meat samples. Principal components analysis was applied to the SERDS spectra to reveal spectral differences between the animals suitable for their identification. The results will be discussed with respect to specific characteristics of the analyzed meat species.

  1. [Identification of Microalgae Species Using Visible/Near Infrared Transmission Spectroscopy].

    PubMed

    Zhu, Hong-yan; Shao, Yong-ni; Jiang, Lu-lu; Guo, An-que; Pan, Jian; He, Yong

    2016-01-01

    At present, the identification and classification of the microalgae and its biochemical analysis have become one of the hot spots on marine biology research. Four microalgae species, including Chlorella vulgaris, Chlorella pyrenoidosa, Nannochloropsis oculata, Chlamydomonas reinhardtii, were chosen as the experimental materials. Using an established spectral acquisition system, which consists of a portable USB 4000 spectrometer having transmitting and receiving fiber bundles connected by a fiber optic probe, a halogen light source, and a computer, the Vis/NIR transmission spectral data of 120 different samples of the microalgae with different concentration gradients were collected, and the spectral curves of fourmicroalgae species were pre-processed by different pre-treatment methods (baseline filtering, convolution smoothing, etc. ). Based on the pre-treated effects, SPA was applied to select effective wavelengths (EWs), and the selected EWs were introduced as inputs to develop and compare PLS, Least Square Support Vector Machines (LS-SVM), Extreme Learning Machine (ELM)models, so as to explore the feasibility of using Vis/NIR transmission spectroscopy technology for the rapid identification of four microalgae species in situ. The results showed that: the effect of Savitzky-Golay smoothing was much better than the other pre-treatment methods. Six EWs selected in the spectraby SPA were possibly relevant to the content of carotenoids, chlorophyll in the microalgae. Moreover, the SPA-PLS model obtained better performance than the Full-Spectral-PLS model. The average prediction accuracy of three methods including SPA-LV-SVM, SPA-ELM, and SPA-PLS were 80%, 85% and 65%. The established method in this study may identify four microalgae species effectively, which provides a new way for the identification and classification of the microalgae species. The methodology using Vis/NIR spectroscopy with a portable optic probe would be applicable to a diverse range of microalgae

  2. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  3. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  4. Molecular identification of forensically important blowfly species (Diptera: Calliphoridae) from Germany.

    PubMed

    Reibe, Saskia; Schmitz, Johanna; Madea, Burkhard

    2009-12-01

    Forensic entomology applies knowledge about the behaviour and ecology of insects associated to corpses to homicide investigations. It is possible to calculate a minimum post-mortem interval by determining the age of the oldest blowfly larvae feeding on a corpse. The growth rate of the larvae is highly dependent on temperature and also varies between the different blowfly species infesting a corpse. It is, thus, crucial to correctly identify the species collected from a crime scene. To increase the quality of species identification, molecular methods were applied to 53 individuals of six different species sampled in Bonn, Germany: Calliphora vicina, Calliphora vomitoria, Lucilia caesar, Lucilia sericata, Lucilia illustris, and Protophormia terraenovae. We extracted DNA and checked a 229 bp sequence within the mitochondrial cytochrome oxidase subunit I. The sequences of the local flies were aligned to published data of specimens from other countries. We also studied the practical value of the analysed DNA region for their differentiation. All species were matched correctly by a Basic Local Alignment Search Tool (BLAST) search apart from L. caesar and L. illustris. Although molecular methods are very useful-especially if it is necessary to identify small fragments of insect material or very young larvae-we propose to use it only in addition to the conventional methods.

  5. Development of a monoclonal antibody detection assay for species-specific identification of abalone.

    PubMed

    Lopata, Andreas L; Luijx, Thomas; Fenemore, Bartha; Sweijd, Neville A; Cook, Peter A

    2002-10-01

    Species identification based on biochemical and molecular techniques has a broad range of applications. These include compliance enforcement, the management and conservation of marine organisms, and commercial quality control. Abalone poaching worldwide and illegal trade in abalone products have increased mainly because of the attractive prices obtained and caused a sharp decline in stocks. Alleged poachers have been acquitted because of lack of evidence to correctly identify species. Therefore, a robust method is required that would identify tissue of abalone origin to species level. The aim of this study was to develop immunologic techniques, using monoclonal and polyclonal antibodies, to identify 10 different abalone species and subspecies from South Africa, the United States, Australia, and Japan. The combination of 3 developed monoclonal antibodies to South African abalone (Haliotis midae) enabled differentiation between most of the 10 species including the subspecies H. diversicolor supertexta and H. diversicolor diversicolor. In a novel approach, using antibodies of patients with allergy to abalone, the differentiation of additional subspecies, H. discus discus and H. discus hannai, was possible. A field-based immunoassay was developed to identify confiscated tissue of abalone origin. PMID:14961238

  6. Species-specific PCR for the identification of Cooperia curticei (Nematoda: Trichostrongylidae) in sheep.

    PubMed

    Amarante, M R V; Bassetto, C C; Neves, J H; Amarante, A F T

    2014-12-01

    Agricultural ruminants usually harbour mixed infections of gastrointestinal nematodes. A specific diagnosis is important because distinct species can differ significantly in their fecundity and pathogenicity. Haemonchus spp. and Cooperia spp. are the most important gastrointestinal nematodes infecting ruminants in subtropical/tropical environments. In Brazil, C. punctata is more adapted to cattle than sheep. Additionally, C. spatulata appears to be more adapted to cattle, whereas C. curticei is more adapted to sheep. However, infection of sheep with C. punctata is common when cattle and sheep share the same pasture. Although morphological analyses have been widely used to identify nematodes, molecular methods can overcome technical limitations and help improve species-specific diagnoses. Genetic markers in the first and second internal transcribed spacers (ITS-1 and ITS-2, respectively) of nuclear ribosomal DNA (rDNA) have been used successfully to detect helminths. In the present study, the ITS-1 region was analysed and used to design a species-specific oligonucleotide primer pair to identify C. curticei. The polymerase chain reaction (PCR) product was sequenced and showed 97% similarity to C. oncophora partial ITS-1 clones and 99% similarity to the C. curticei sequence JF680982. The specificity of this primer pair was corroborated by the analysis of 17 species of helminths, including C. curticei, C. punctata and C. spatulata. Species-specific diagnosis, which has implications for rapid and reliable identification, can support studies on the biology, ecology and epidemiology of trichostrongylid nematodes in a particular geographical location.

  7. Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis.

    PubMed

    Virkler, Kelly; Lednev, Igor K

    2009-09-15

    Forensic analysis has become one of the most growing areas of analytical chemistry in recent years. The ability to determine the species of origin of a body fluid sample is a very important and crucial part of a forensic investigation. We introduce here a new technique which utilizes a modern analytical method based on the combination of Raman spectroscopy and advanced statistics to analyze the composition of blood traces from different species. Near-infrared Raman spectroscopy (NIR) was used to analyze multiple dry samples of human, canine, and feline blood for the ultimate application to forensic species identification. All of the spectra were combined into a single data matrix, and the number of principle components that described the system was determined using multiple statistical methods such as significant factor analysis (SFA), principle component analysis (PCA), and several cross-validation methods. Of the six principle components that were determined to be present, the first three, which contributed over 90% to the spectral data of the system, were used to form a three-dimensional scores plot that clearly showed significant separation between the three groups of species. Ellipsoids representing a 99% confidence interval surrounding each species group showed no overlap. This technique using Raman spectroscopy is nondestructive and quick and can potentially be performed at the scene of a crime.

  8. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: II. Species Identification Using Molecular Techniques

    NASA Astrophysics Data System (ADS)

    de La Mota, A.; Betancourt, C.; Detres, Y.; Armstrong, R.

    2003-12-01

    Fungi samples from filters collected in Castle Bruce, Dominica from March through July 2002, were previously purified and identified to genus level using classic macroscopic and microscopic techniques. A total of 105 isolated colonies were cultured in liquid media and the mycelial mats used for DNA extraction. PCR was used to amplify the ITS region of the rDNA using the ITS1 and ITS4 primers. Both strands of the amplified products were sequenced and the final identification to species level was completed by a GenBank search. Fourteen different species and one fungal endophyte were identified from genders Aspergillus,Penicillium, Fusarium, Cladosporium, Curvularia and Phanerochaete. Some of these species such as A. fumigatus, A. japonicus, P. citrinum and C. cladosporoides are known to cause respiratory disorders in humans. A. fumigatus causes an aggressive pulmonary allergic response that might result in allergic bronchopulmonary aspergillosis. Other species such as F. equiseti and C. brachyspora are plant pathogens affecting economically important crops. Sahara dust is an important source of fungal spores of species that are not common in the Caribbean region.

  9. Identification of Carnobacterium species by restriction fragment length polymorphism of the 16S-23S rRNA gene intergenic spacer region and species-specific PCR.

    PubMed

    Rachman, Cinta; Kabadjova, Petia; Valcheva, Rosica; Prévost, Hervé; Dousset, Xavier

    2004-08-01

    The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification