Science.gov

Sample records for accurate spectrophotometric methods

  1. Development and validation of a novel, simple, and accurate spectrophotometric method for the determination of lead in human serum.

    PubMed

    Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza

    2016-01-01

    The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS.

  2. Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically

    NASA Astrophysics Data System (ADS)

    Li, Yeguang; Miao, Fengping; Geng, Yahong; Lu, Dayan; Zhang, Chengwu; Zeng, Mingtao

    2012-07-01

    The influence of alkali on astaxanthin and the optimal working wave length for measurement of astaxanthin from Haematococcus crude extract were investigated, and a spectrophotometric method for precise quantification of the astaxanthin based on the method of Boussiba et al. was established. According to Boussiba's method, alkali treatment destroys chlorophyll. However, we found that: 1) carotenoid content declined for about 25% in Haematococcus fresh cysts and up to 30% in dry powder of Haematococcus broken cysts after alkali treatment; and 2) dimethyl sulfoxide (DMSO)-extracted chlorophyll of green Haematococcus bares little absorption at 520-550 nm. Interestingly, a good linear relationship existed between absorbance at 530 nm and astaxanthin content, while an unknown interference at 540-550 nm was detected in our study. Therefore, with 530 nm as working wavelength, the alkali treatment to destroy chlorophyll was not necessary and the influence of chlorophyll, other carotenoids, and the unknown interference could be avoided. The astaxanthin contents of two samples were measured at 492 nm and 530 nm; the measured values at 530 nm were 2.617 g/100 g and 1.811 g/100 g. When compared with the measured values at 492 nm, the measured values at 530 nm decreased by 6.93% and 11.96%, respectively. The measured values at 530 nm are closer to the true astaxanthin contents in the samples. The data show that 530 nm is the most suitable wave length for spectrophotometric determination to the astaxanthin in Haematococcus crude extract.

  3. Simple Spectrophotometric Methods for Standardizing Ayurvedic Formulation

    PubMed Central

    Vador, N.; Vador, B.; Hole, Rupali

    2012-01-01

    Traditional medicines are effective but the standardization of Ayurvedic formulations is essential in order to assess the quality of drugs, based on the concentration of their active principles. Department of AYUSH has given preliminary guidelines for standardizing these conventional formulations, for uniformity of batches in production of Ayurvedic formulation and it is necessary to develop methods for evaluation. The present work is an attempt to standardize asav-arishta, the traditional Ayurvedic formulation using simple, non-expensive spectrophotometric methods. The various parameters performed included total phenolics, total flavonoids, total alkaloids and total saponins, also included pH, sugar %, alcohol content and specific gravity. The results obtained may be considered as tools for assistance to the regulatory authorities, scientific organizations and manufacturers for developing standards. PMID:23325998

  4. Validation of different spectrophotometric methods for determination of vildagliptin and metformin in binary mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    New, simple, specific, accurate, precise and reproducible spectrophotometric methods have been developed and subsequently validated for determination of vildagliptin (VLG) and metformin (MET) in binary mixture. Zero order spectrophotometric method was the first method used for determination of MET in the range of 2-12 μg mL-1 by measuring the absorbance at 237.6 nm. The second method was derivative spectrophotometric technique; utilized for determination of MET at 247.4 nm, in the range of 1-12 μg mL-1. Derivative ratio spectrophotometric method was the third technique; used for determination of VLG in the range of 4-24 μg mL-1 at 265.8 nm. Fourth and fifth methods adopted for determination of VLG in the range of 4-24 μg mL-1; were ratio subtraction and mean centering spectrophotometric methods, respectively. All the results were statistically compared with the reported methods, using one-way analysis of variance (ANOVA). The developed methods were satisfactorily applied to analysis of the investigated drugs and proved to be specific and accurate for quality control of them in pharmaceutical dosage forms.

  5. Validation of different spectrophotometric methods for determination of vildagliptin and metformin in binary mixture.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M

    2014-05-05

    New, simple, specific, accurate, precise and reproducible spectrophotometric methods have been developed and subsequently validated for determination of vildagliptin (VLG) and metformin (MET) in binary mixture. Zero order spectrophotometric method was the first method used for determination of MET in the range of 2-12 μg mL(-1) by measuring the absorbance at 237.6 nm. The second method was derivative spectrophotometric technique; utilized for determination of MET at 247.4 nm, in the range of 1-12 μg mL(-1). Derivative ratio spectrophotometric method was the third technique; used for determination of VLG in the range of 4-24 μg mL(-1) at 265.8 nm. Fourth and fifth methods adopted for determination of VLG in the range of 4-24 μg mL(-1); were ratio subtraction and mean centering spectrophotometric methods, respectively. All the results were statistically compared with the reported methods, using one-way analysis of variance (ANOVA). The developed methods were satisfactorily applied to analysis of the investigated drugs and proved to be specific and accurate for quality control of them in pharmaceutical dosage forms.

  6. Duplicate portion sampling combined with spectrophotometric analysis affords the most accurate results when assessing daily dietary phosphorus intake.

    PubMed

    Navarro-Alarcon, Miguel; Zambrano, Esmeralda; Moreno-Montoro, Miriam; Agil, Ahmad; Olalla, Manuel

    2012-08-01

    The assessment of daily dietary phosphorus (P) intake is a major concern in human nutrition because of its relationship with Ca and Mg metabolism and osteoporosis. Within this context, we hypothesized that several of the methods available for the assessment of daily dietary intake of P are equally accurate and reliable, although few studies have been conducted to confirm this. The aim of this study then was to evaluate daily dietary P intake, which we did by 3 methods: duplicate portion sampling of 108 hospital meals, combined either with spectrophotometric analysis or the use of food composition tables, and 24-hour dietary recall for 3 consecutive days plus the use of food composition tables. The mean P daily dietary intakes found were 1106 ± 221, 1480 ± 221, and 1515 ± 223 mg/d, respectively. Daily dietary intake of P determined by spectrophotometric analysis was significantly lower (P < .001) and closer to dietary reference intakes for adolescents aged from 14 to 18 years (88.5%) and adult subjects (158.1%) compared with the other 2 methods. Duplicate portion sampling with P analysis takes into account the influence of technological and cooking processes on the P content of foods and meals and therefore afforded the most accurate and reliable P daily dietary intakes. The use of referred food composition tables overestimated daily dietary P intake. No adverse effects in relation to P nutrition (deficiencies or toxic effects) were encountered.

  7. Chromatography paper as a low-cost medium for accurate spectrophotometric assessment of blood hemoglobin concentration.

    PubMed

    Bond, Meaghan; Elguea, Carlos; Yan, Jasper S; Pawlowski, Michal; Williams, Jessica; Wahed, Amer; Oden, Maria; Tkaczyk, Tomasz S; Richards-Kortum, Rebecca

    2013-06-21

    Anemia affects a quarter of the world's population, and a lack of appropriate diagnostic tools often prevents treatment in low-resource settings. Though the HemoCue 201+ is an appropriate device for diagnosing anemia in low-resource settings, the high cost of disposables ($0.99 per test in Malawi) limits its availability. We investigated using spectrophotometric measurement of blood spotted on chromatography paper as a low-cost (<$0.01 per test) alternative to HemoCue cuvettes. For this evaluation, donor blood was diluted with plasma to simulate anemia, a micropipette spotted blood on paper, and a bench-top spectrophotometer validated the approach before the development of a low-cost reader. We optimized impregnating paper with chemicals to lyse red blood cells, paper type, drying time, wavelengths measured, and sensitivity to variations in volume of blood, and we validated our approach using patient samples. Lysing the blood cells with sodium deoxycholate dried in Whatman Chr4 chromatography paper gave repeatable results, and the absorbance difference between 528 nm and 656 nm was stable over time in measurements taken up to 10 min after sample preparation. The method was insensitive to the amount of blood spotted on the paper over the range of 5 μL to 25 μL. We created a low-cost, handheld reader to measure the transmission of paper cuvettes at these optimal wavelengths. Training and validating our method with patient samples on both the spectrometer and the handheld reader showed that both devices are accurate to within 2 g dL(-1) of the HemoCue device for 98% and 95% of samples, respectively.

  8. Validated spectrophotometric methods for determination of some oral hypoglycemic drugs.

    PubMed

    Farouk, M; Abdel-Satar, O; Abdel-Aziz, O; Shaaban, M

    2011-02-01

    Four accurate, precise, rapid, reproducible, and simple spectrophotometric methods were validated for determination of repaglinide (RPG), pioglitazone hydrochloride (PGL) and rosiglitazone maleate (RGL). The first two methods were based on the formation of a charge-transfer purple-colored complex of chloranilic acid with RPG and RGL with a molar absorptivity 1.23 × 103 and 8.67 × 102 l•mol-1•cm-1 and a Sandell's sensitivity of 0.367 and 0.412 μg•cm-2, respectively, and an ion-pair yellow-colored complex of bromophenol blue with RPG, PGL and RGL with molar absorptivity 8.86 × 103, 6.95 × 103, and 7.06 × 103 l•mol-1•cm-1, respectively, and a Sandell's sensitivity of 0.051 μg•cm-2 for all ion-pair complexes. The influence of different parameters on color formation was studied to determine optimum conditions for the visible spectrophotometric methods. The other spectrophotometric methods were adopted for demtermination of the studied drugs in the presence of their acid-, alkaline- and oxidative-degradates by computing derivative and pH-induced difference spectrophotometry, as stability-indicating techniques. All the proposed methods were validated according to the International Conference on Harmonization guidelines and successfully applied for determination of the studied drugs in pure form and in pharmaceutical preparations with good extraction recovery ranges between 98.7-101.4%, 98.2-101.3%, and 99.9-101.4% for RPG, PGL, and RGL, respectively. Results of relative standard deviations did not exceed 1.6%, indicating that the proposed methods having good repeatability and reproducibility. All the obtained results were statistically compared to the official method used for RPG analysis and the manufacturers methods used for PGL and RGL analysis, respectively, where no significant differences were found.

  9. Selective and sensitive spectrophotometric method for determination of sub-micro-molar amounts of aluminium ion.

    PubMed

    Shokrollahi, A; Ghaedi, M; Niband, M S; Rajabi, H R

    2008-03-01

    A simple and accurate spectrophotometric method for determination of trace and ultra-trace amounts of Al3+ ion in tap and wastewater sample has been described. Using the eriochrome cyanine R (ECR) in the presence of N,N-dodecyltrimethylammonium bromide (DTAB) as cationic surfactant spectrophotometric determination of Al3+ ion has been carried out. The Beer's law is obeyed over the concentration range of 4-400 ng mL(-1) of Al3+ ion with the detection limits of 0.14 ng mL(-1), while the molar absorptivity of complexes is 1.19x10(5) L mol(-1) cm(-1). The influence of type and amount of surfactant, pH, and amount of ligand on sensitivity of spectrophotometric method were optimized. The method has been successfully applied for Al3+ ion determination in real sample.

  10. Comparison between titrimetric and spectrophotometric methods for quantification of vitamin C.

    PubMed

    da Silva, T L; Aguiar-Oliveira, E; Mazalli, M R; Kamimura, E S; Maldonado, R R

    2017-06-01

    Vitamin C is usually quantified by titrimetric or chromatographic methods. However, these methods have limitations: food color interferes with the titrimetric method and the chromatographic method is costly. The aim of this study was to compare a spectrophotometric method, based on reduction of cupric ions in the presence of cuproine complex, with a titrimetric method, based on reduction of 2,6-dicholorophenolindophenol. Linearity, precision, accuracy, and limits of detection (LOD) and quantification (LOQ) were evaluated using a standard vitamin C solution. Both methods were also applied for AA quantification in industrialized orange and pineapple juices. The methods were precise and accurate when applied to the standard solution. The spectrophotometric method was more sensitive, with lower values for LOD (0.002mgmL(-1)) and LOQ (0.010mgmL(-1)), and more accurate with error less than 5% while results from the titrimetric method were affected by the juice color, which generated errors in excess of 15%.

  11. A spectrophotometric screening method for avermectin oxidizing microorganisms.

    PubMed

    Wang, Yuan-Shan; Hu, Qi-Wei; Zheng, Xing-Chang; Zhang, Jian-Fen; Zheng, Yu-Guo

    2017-04-01

    A spectrophotometric screening method for avermectin oxidizing microbes by determination of 4″-oxo-avermectin was established based on the reaction between 4″-oxo-avermectin and 2,4-dinitrophenylhydrazine. Combined with a gradient HPLC assay, microorganisms capable of regioselectively oxidizing avermectin to 4″-oxo-avermectin were successfully obtained by this method.

  12. Spectrophotometric and spectrofluorimetric methods for analysis of tramadol, acebutolol and dothiepin in pharmaceutical preparations.

    PubMed

    Abdellatef, Hisham E; El-Henawee, Magda M; El-Sayed, Heba M; Ayad, Magda M

    2006-12-01

    Sensitive spectrophotometric and spectrofluorimetric methods are described for the determination of tramadol, acebutolol and dothiepin (dosulepin) hydrochlorides. The two methods are based on the condensation of the cited drugs with the mixed anhydrides of malonic and acetic acids at 60 degrees C for 25-40 min. The coloured condensation products are suitable for the spectrophotometric and spectrofluorimetric determination at 329-333 and 431-434 nm (excitation at 389 nm), respectively. For the spectrophotometric method, Beer's law was obeyed from 0.5 to 2.5 microg ml(-1) for tramadol, dothiepin and 5-25 microg ml(-1) for acebutolol. Using the spectrofluorimetric method linearity ranged from 0.25 to 1.25 microg ml(-1) for tramadol, dothiepin and 1-5 microg ml(-1) for acebutolol. Mean percentage recoveries for the spectrophotometric method were 99.68+/-1.00, 99.95+/-1.11 and 99.72+/-1.01 for tramadol, acebutolol and dothiepin, respectively and for the spectrofluorimetric method, recoveries were 99.5+/-0.844, 100.32+/-0.969 and 99.82+/-1.15 for the three drugs, respectively. The optimum experimental parameters for the reaction has been studied. The validity of the described procedures was assessed. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The proposed methods were successfully applied for the determination of the selected drugs in their pharmaceutical preparations with good recoveries. The procedures were accurate, simple and suitable for quality control application.

  13. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Hegazy, Maha A.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision.

  14. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture.

    PubMed

    Lotfy, Hayam Mahmoud; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2014-05-21

    Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision.

  15. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml-1. The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml-1. The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml-1. All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  16. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments.

    PubMed

    Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M

    2015-04-05

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml(-1). The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml(-1). The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml(-1). All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  17. A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations.

    PubMed

    Matin, A A; Farajzadeh, M A; Jouyban, A

    2005-10-01

    A new, simple, rapid and accurate spectrophotometric method is proposed for determination of sodium diclofenac (SD) in pharmaceutical preparations based on its reaction with concentrated nitric acid (63% w/v). The reaction product is a yellowish compound with maximum absorbance at 380 nm. The corresponding calibration curve is linear over the range of 1-30 mg l(-1), while the limit of detection is 0.46 mg l(-1).

  18. Two smart spectrophotometric methods for the simultaneous estimation of Simvastatin and Ezetimibe in combined dosage form

    NASA Astrophysics Data System (ADS)

    Magdy, Nancy; Ayad, Miriam F.

    2015-02-01

    Two simple, accurate, precise, sensitive and economic spectrophotometric methods were developed for the simultaneous determination of Simvastatin and Ezetimibe in fixed dose combination products without prior separation. The first method depends on a new chemometrics-assisted ratio spectra derivative method using moving window polynomial least square fitting method (Savitzky-Golay filters). The second method is based on a simple modification for the ratio subtraction method. The suggested methods were validated according to USP guidelines and can be applied for routine quality control testing.

  19. Two smart spectrophotometric methods for the simultaneous estimation of Simvastatin and Ezetimibe in combined dosage form.

    PubMed

    Magdy, Nancy; Ayad, Miriam F

    2015-02-25

    Two simple, accurate, precise, sensitive and economic spectrophotometric methods were developed for the simultaneous determination of Simvastatin and Ezetimibe in fixed dose combination products without prior separation. The first method depends on a new chemometrics-assisted ratio spectra derivative method using moving window polynomial least square fitting method (Savitzky-Golay filters). The second method is based on a simple modification for the ratio subtraction method. The suggested methods were validated according to USP guidelines and can be applied for routine quality control testing.

  20. [Selective determination of itraconazole in the presence of its oxidative degradation product by a new spectrophotometric method].

    PubMed

    Lamie, Nesrine T

    2015-02-01

    A simple, specific, accurate and precise spectrophotometric stability indicating method is developed for determination of itraconazole in the presence of its oxidative degradation product and in pharmaceutical formulations. A newly developed spectrophotometric method called ratio difference method by measuring the difference in amplitudes between 230 and 265 nm of ratio spectra. The calibration curve is linear over the concentration range of 5-25 microg x mL(-1) with mean percentage recovery of 99.81 +/- 1.002. Selective quantification of itraconazole, singly in bulk form, pharmaceutical formulations and in the presence of its oxidative degradation product is demonstrated. The results have been statistically compared with a pharmacopeial method.

  1. Selective spectrophotometric methods for determination of ternary mixture with overlapping spectra: a comparative study.

    PubMed

    Abdelrahman, Maha M

    2014-04-24

    Comparable double divisor ratio spectra derivative, area under curve of derivative ratio and mean centering of ratio spectra spectrophotometric methods were introduced for determination of orphenadrine citrate (ORPH), caffeine (CAF) and aspirin (ASP); a combination for symptomatic relief of mild to moderate pain of acute musculoskeletal disorders; with evident accuracy and precision. The suggested methods have the advantage over the previously published spectrophotometric method for determination of the same combination in that they did not require a preliminary separation step and able to resolve the ternary mixture, with severe overlapping spectra, with competent sensitivity and selectivity. The recommended methods allow the determination of ORPH, CAF and ASP in the range of 2-32, 2-28 and 3-28 μg mL(-1), respectively. The validity of the proposed methods was examined by analysis of different laboratory prepared mixtures of ORPH, CAF and ASP and assay of their tablet formulation where reliable results were obtained. Statistical analysis between the suggested spectrophotometric methods and the reported HPLC method using student's-t and F-ratio tests reveals that the suggested methods are as accurate and precise as the reported one.

  2. Simple spectrophotometric method for estimation of disodium edetate in topical gel formulations

    PubMed Central

    Kamboj, Sunil; Sharma, Deepak; Nair, Anroop B.; Kamboj, Suman; Sharma, Rakesh Kumar; Ali, Javed; Pramod, K; Ansari, S. H.

    2011-01-01

    A simple, sensitive, cost-effective and reproducible UV-spectrophotometric method has been developed and validated for the estimation of disodium edetate in topical gel formulations. Solution of disodium edetate reacts with ferric chloride to form complex in 0.1 N HCl giving λmax at 270 nm. Beer's law was obeyed in the concentration range of 5–50 μg/mL (r2= 0.9997). The limit of detection and limit of quantitation were found to be 1.190 and 3.608 μg/mL, respectively. The results show that the procedure is accurate, precise, and reproducible (relative standard deviation < 1%), while being simple and less time consuming. The study concluded that the UV-spectrophotometric method could be used for the quantification of disodium edetate in pure form as well as in pharmaceutical formulations. PMID:23781446

  3. [Determination of recombinant hirudin in urine of rat by spectrophotometric method].

    PubMed

    Jiang, Su-Yun; Jiao, Jian; Lu, Jun; Xu, Yong-Ping; Dou, Gui-Fang

    2013-05-01

    To develop a spectrophotometric method for determining the concentration of recombinant hirudin (rH) in urine of rats. rH concentration was determined based on the rH inhibility to thrombin which hydrolyzed the Chromozym TH TH chromogenic substrate to form the specific pNA absorbed at 405 nm. The standard rH in rat urine was determined by the spectrophotometric method at concentration of 6.25 to 75 ng x mL(-1) with day and intra-day RSD < 10%, method recoveries of > 95% and the dilution recoveries of > 93%. The rH samples of rat urines which iv dose of 0.5, 1.0, and 2.0 mg x kg(-1) were collected and analyzed by the CSA method. Their cumulative excretion rH at 0-12 hr were (116.850 +/- 57.160), (235.544 +/- 39.375) and (474.986 +/- 85.426) microg x kg(-1). The calculated cumulative excretion rate of three doses is about 23% which indicates that the rH was eliminated in the way of a linear kinetics in rats. The rH content in rat urine could be measured by the spectrophotometric method accurately, reliably and sensitively for the rH urinary excretion dynamics study.

  4. Spectrophotometric and spectrofluorimetric methods for analysis of tramadol, acebutolol and dothiepin in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Abdellatef, Hisham E.; El-Henawee, Magda M.; El-Sayed, Heba M.; Ayad, Magda M.

    2006-12-01

    Sensitive spectrophotometric and spectrofluorimetric methods are described for the determination of tramadol, acebutolol and dothiepin (dosulepin) hydrochlorides. The two methods are based on the condensation of the cited drugs with the mixed anhydrides of malonic and acetic acids at 60 °C for 25-40 min. The coloured condensation products are suitable for the spectrophotometric and spectrofluorimetric determination at 329-333 and 431-434 nm (excitation at 389 nm), respectively. For the spectrophotometric method, Beer's law was obeyed from 0.5 to 2.5 μg ml -1 for tramadol, dothiepin and 5-25 μg ml -1 for acebutolol. Using the spectrofluorimetric method linearity ranged from 0.25 to 1.25 μg ml -1 for tramadol, dothiepin and 1-5 μg ml -1 for acebutolol. Mean percentage recoveries for the spectrophotometric method were 99.68 ± 1.00, 99.95 ± 1.11 and 99.72 ± 1.01 for tramadol, acebutolol and dothiepin, respectively and for the spectrofluorimetric method, recoveries were 99.5 ± 0.844, 100.32 ± 0.969 and 99.82 ± 1.15 for the three drugs, respectively. The optimum experimental parameters for the reaction has been studied. The validity of the described procedures was assessed. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The proposed methods were successfully applied for the determination of the selected drugs in their pharmaceutical preparations with good recoveries. The procedures were accurate, simple and suitable for quality control application.

  5. Evaluation of Perrhenate Spectrophotometric Methods in Bicarbonate and Nitrate Media.

    PubMed

    Lenell, Brian A; Arai, Yuji

    2016-04-01

    2-pyridyl thiourea and methyl-2-pyridyl ketoxime based perrhenate, Re(VII), UV-vis spectrophotometric methods were evaluated in nitrate and bicarbonate solutions ranging from 0.001 M to 0.5 M. Standard curves at [Re]=2.5-50 mg L(-1) for the Re(IV)-thiourea and the Re ketoxime complexes were constructed at 405 nm and 490 nm, respectively. Detection of limits for N-(2-pyridyl) thiourea and methyl-2-pyridyl ketoxime methods in ultrapure water are 3.06 mg/L and 4.03 mg/L, respectively. Influences of NaHCO3 and NaNO3 concentration on absorbance spectra, absorptivity, and linearity were documented. For both methods, samples in ultrapure water and NaHCO3 have an R(2) value>0.99, indicating strong linear relationships. Statistical analysis supports that NaHCO3 does not affect linearity between standards for either method. NaNO3 causes major interference with the ketoxime method above 0.001 M NaNO3. Data provides information for practical use of Re spectrophotometric methods in environmental media that is high in bicarbonate and nitrate.

  6. A Rapid Spectrophotometric Screening Method for 2,4-dinitroanisole in Laboratory Water

    DTIC Science & Technology

    2014-07-01

    Approved for public release; distribution is unlimited. ERDC/EL TN-14-3 July 2014 A Rapid Spectrophotometric Screening Method for 2,4-dinitroanisole...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Rapid Spectrophotometric Screening Method for 2,4-dinitroanisole in...D., A. J. Kennedy, A. R. Poda, and A. L. Russell. 2014. A rapid spectrophotometric screening method for 2,4-dinitroanisole in laboratory water

  7. Simultaneous determination of a binary mixture of pantoprazole sodium and itopride hydrochloride by four spectrophotometric methods.

    PubMed

    Ramadan, Nesrin K; El-Ragehy, Nariman A; Ragab, Mona T; El-Zeany, Badr A

    2015-02-25

    Four simple, sensitive, accurate and precise spectrophotometric methods were developed for the simultaneous determination of a binary mixture containing Pantoprazole Sodium Sesquihydrate (PAN) and Itopride Hydrochloride (ITH). Method (A) is the derivative ratio method ((1)DD), method (B) is the mean centering of ratio spectra method (MCR), method (C) is the ratio difference method (RD) and method (D) is the isoabsorptive point coupled with third derivative method ((3)D). Linear correlation was obtained in range 8-44 μg/mL for PAN by the four proposed methods, 8-40 μg/mL for ITH by methods A, B and C and 10-40 μg/mL for ITH by method D. The suggested methods were validated according to ICH guidelines. The obtained results were statistically compared with those obtained by the official and a reported method for PAN and ITH, respectively, showing no significant difference with respect to accuracy and precision.

  8. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Nicola; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Sanson, Alessandra

    2017-02-01

    The optical band gap energy and the electronic processes involved are important parameters of a semiconductor material and it is therefore important to determine their correct values. Among the possible methods, the spectrophotometric is one of the most common. Several methods can be applied to determine the optical band gap energy and still now a defined consensus on the most suitable one has not been established. A highly diffused and accurate optical method is based on Tauc relationship, however to apply this equation is necessary to know the nature of the electronic transitions involved commonly related to the coefficient n. For this purpose, a spectrophotometric technique was used and we developed a graphical method for electronic transitions and band gap energy determination for samples in powder form. In particular, the n coefficient of Tauc equation was determined thorough mathematical elaboration of experimental results on TiO2 (anatase), ZnO, and SnO2. The results were used to calculate the band gap energy values and then compared with the information obtained by Ultraviolet Photoelectron Spectroscopy (UPS). This approach provides a quick and accurate method for band gap determination through n coefficient calculation. Moreover, this simple but reliable method can be used to evaluate the nature of electronic transition that occurs in a semiconductor material in powder form.

  9. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods.

    PubMed

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-05

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  10. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5 nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279 nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor 1DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291 nm, 380 nm and 274.5 nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269 nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  11. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater.

    PubMed

    Riad, Safaa M; Salem, Hesham; Elbalkiny, Heba T; Khattab, Fatma I

    2015-04-05

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p=0.05.

  12. [Spectrophotometric determination of protein content in THP-1 monocytes/macrophages - description of the method].

    PubMed

    Wolska, Jolanta; Janda, Katarzyna; Gutowska, Izabela

    2015-01-01

    Proteins are the basic building block of tissue, and are part of enzymes and hormones regulating many important life processes. Changes in their concentration control the metabolic processes of the cell. Quantitative determination of the protein content is divided into indirect methods (e.g. Kjeldahl method) and direct methods (buret method, Lowry, immunoenzymatic, formol method, based on incorporation of dye in the range of ultraviolet spectrophotometry, and based on the phenomenon of selective absorption of radiation in the infrared range). One of the methods for the determination of protein content is the spectrophotometric method described by Bradford. The protein concentration assay procedure utilizes the phenomenon of formation of the dye (Coomassie Brillant Blue G-250)-protein and colour intensity is proportional to the protein content in the solution. The aim of this study was to verify the usefulness of this method for determining the protein content in THP-1 cells cultured with extracts of nettle fruit stalks (Urtica dioica L.). Aqueous and alcohol extracts at two concentrations were used. It has been shown that the spectrophotometric determination of protein content by the Bradford method is an effective and accurate method for determining the concentration of protein in THP-1 macrophages. The results indicate that this method can be recommended for the determination of the protein content in other cell cultures.

  13. Simple and sensitive spectrophotometric methods for determination of amantadine hydrochloride

    NASA Astrophysics Data System (ADS)

    Darwish, I. A.; Khedr, A. S.; Askal, H. F.; Mahmoud, R. M.

    2006-11-01

    Three simple and sensitive spectrophotometric methods (A-C) for determination of amantadine hydro-chloride have been developed and validated. The first method (A) is based on the oxidation of the drug by ammonium molybdate. The second method (B) was based on the charge-transfer complexation reaction between the amantadine base as an electron donor and iodine as a σ-acceptor. The third method (C) is based on the reaction of N-alkylvinylamine formed from the interaction of the free amino group in amantadine molecule and acetalde-hyde with chloranil to give colored vinylamino-substituted benzoquinone. The colored products of these reactions were measured at their corresponding maximum absorption peaks. Different variables affecting the reactions were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients 0.9993-0.9998 were found between the reading and the corresponding concentration of the drug in the range 2-90 µg·ml-1. The limits of detection ranged from 0.16 to 1.91 µg·ml-1. The precision of the methods was satisfactory: the values of relative standard deviation did not exceed 1.63%. The proposed methods were successfully applied to the analysis of amantadine HCl in its capsules with good accuracy and precision; the label claim percentages ranged from 99.8 to 100.5 ± (0.52-1.22) %. The results obtained by the proposed spectrophotometric methods were comparable with those obtained by the official method.

  14. Development and Validation of Simultaneous Spectrophotometric Methods for Drotaverine Hydrochloride and Aceclofenac from Tablet Dosage Form

    PubMed Central

    Shah, S. A.; Shah, D. R.; Chauhan, R. S.; Jain, J. R.

    2011-01-01

    Two simple spectrophotometric methods have been developed for simultaneous estimation of drotaverine hydrochloride and aceclofenac from tablet dosage form. Method I is a simultaneous equation method (Vierodt's method), wavelengths selected are 306.5 and 276 nm. Method II is the absorbance ratio method (Q-Analysis), which employs 298.5 nm as λ1 and 276 nm as λ2 (λmax of AF) for formation of equations. Both the methods were found to be linear between the range of 8-32 μg/ml for drotaverine and 10-40 μg/ml for aceclofenac. The accuracy and precision were determined and found to comply with ICH guidelines. Both the methods showed good reproducibility and recovery with % RSD in the desired range. The methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of drotaverine and aceclofenac in their combined tablet dosage form. PMID:22457554

  15. Spectrophotometric methods for simultaneous determination of ternary mixture of amlodipine besylate, olmesartan medoxomil and hydrochlorothiazide.

    PubMed

    Merey, Hanan A; Ramadan, Nesrin K; Diab, Sherine S; Moustafa, Azza A

    2014-05-05

    Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a ternary mixture containing amlodipine besylate (AM), olmesartan medoxomil (OL) and hydrochlorothiazide (HZ), where AM is determined at its λ(max) 364.6 nm ((0)D), while (OL) and (HZ) are determined by different methods. Method (A) depends on determining OL and HZ by measuring the second derivative of the ratio spectra ((2)DD) at 254.4 and 338.6 nm, respectively. Method (B) is first derivative of the double divisor ratio spectra (D-(1)DD) at 260.4 and 273.0 nm for OL and HZ, respectively. Method (C) based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method then measuring OL and HZ at their isoabsorptive point at 260.0 nm, while HZ is measured using the amplitude of first derivative at 335.2 nm. Method (D) is mean centering of the ratio spectra (MCR) at 252.0 nm and 220.0 nm for OL and HZ, respectively. The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs and their combined dosage form. The obtained results are statistically compared with those obtained by the official or reported methods, showing no significant difference with respect to accuracy and precision at p=0.05.

  16. Validated spectrophotometric and spectrofluorimetric methods for determination of chloroaluminum phthalocyanine in nanocarriers.

    PubMed

    Siqueira-Moura, M P; Primo, F L; Peti, A P F; Tedesco, A C

    2010-01-01

    UV-VIS-Spectrophotometric and spectrofluorimetric methods have been developed and validated allowing the quantification of chloroaluminum phthalocyanine (CIAIPc) in nanocarriers. In order to validate the methods, the linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and selectivity were examined according to USP 30 and ICH guidelines. Linearities range were found between 0.50-3.00 microg x mL(-1) (Y = 0.3829 X [CIAIPc, microg x mL(-1)] + 0.0126; r = 0.9992) for spectrophotometry, and 0.05-1.00 microg x mL(-1) (Y = 2.24 x 10(6) X [CIAIPc, microg x mL(-1)] + 9.74 x 10(4); r = 0.9978) for spectrofluorimetry. In addition, ANOVA and Lack-of-fit tests demonstrated that the regression equations were statistically significant (p<0.05), and the resulting linear model is fully adequate for both analytical methods. The LOD values were 0.09 and 0.01 microg x mL(-1), while the LOQ were 0.27 and 0.04 microg x mL(-1) for spectrophotometric and spectrofluorimetric methods, respectively. Repeatability and intermediate precision for proposed methods showed relative standard deviation (RSD) between 0.58% to 4.80%. The percent recovery ranged from 98.9% to 102.7% for spectrophotometric analyses and from 94.2% to 101.2% for spectrofluorimetry. No interferences from common excipients were detected and both methods were considered specific. Therefore, the methods are accurate, precise, specific, and reproducible and hence can be applied for quantification of CIAIPc in nanoemulsions (NE) and nanocapsules (NC).

  17. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  18. Validation of a spectrophotometric method for quantification of carboxyhemoglobin.

    PubMed

    Luchini, Paulo D; Leyton, Jaime F; Strombech, Maria de Lourdes C; Ponce, Julio C; Jesus, Maria das Graças S; Leyton, Vilma

    2009-10-01

    The measurement of carboxyhemoglobin (COHb) levels in blood is a valuable procedure to confirm exposure to carbon monoxide (CO) either for forensic or occupational matters. A previously described method using spectrophotometric readings at 420 and 432 nm after reduction of oxyhemoglobin (O(2)Hb) and methemoglobin with sodium hydrosulfite solution leads to an exponential curve. This curve, used with pre-established factors, serves well for lower concentrations (1-7%) or for high concentrations (> 20%) but very rarely for both. The authors have observed that small variations on the previously described factors F1, F2, and F3, obtained from readings for 100% COHb and 100% O(2)Hb, turn into significant changes in COHb% results and propose that these factors should be determined every time COHb is measured by reading CO and O(2) saturated samples. This practice leads to an increase in accuracy and precision.

  19. Determination of adamantane derivatives in pharmaceutical formulations by using spectrophotometric UV-Vis method.

    PubMed

    Sobczak, Agnieszka; Muszalska, Izabela; Rohowska, Paulina; Inerowicz, Tomasz; Dotka, Hubert; Jelińska, Anna

    2013-05-01

    A simple and sensitive extractive spectrophotometric method have been developed and validated for determination of amantadine hydrochloride (AM), memantine hydrochloride (MM) and rimantadine hydrochloride (RM) in pure and pharmaceutical formulations. The method is based on the reaction of these active compounds with bromophenol blue (BB) in acetate buffer (0.1 M) pH 3.5 to form an orange-colored products which have absorption maxima at 408 nm. The procedure of complexation was optimized with regard to such factors as concentrations of BB, pH of medium, a kind of extracting solvents and a number of extractions. Under the optimum conditions, linear relationships A408 = f(c) with good correlation coefficients (≥0.996) and low limit of detection were obtained in the ranges of 50.0-220.0 µg·mL(-1), 20.0-150.0 µg·mL(-1) or 10.0-110.0 µg·mL(-1) for AM, MM and RM, respectively, for the spectrophotometric methods. The proposed method could be applied to the determination of AM, MM and RM in dosage forms. The recovery was 95.3-101.9%. The method was linear, precise and accurate.

  20. Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of Amlodipine and Atorvastatin

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeiny, Badr A.

    2011-12-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for the simultaneous determination of Amlodipine besylate (AM) and Atorvastatin calcium (AT) in tablet dosage forms. The first method is first derivative of the ratio spectra ( 1DD), the second is ratio subtraction and the third is the method of mean centering of ratio spectra. The calibration curve is linear over the concentration range of 3-40 and 8-32 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Standard deviation is <1.5 in the assay of raw materials and tablets. Methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit.

  1. Comparative study of novel spectrophotometric methods manipulating ratio spectra: An application on pharmaceutical ternary mixture of omeprazole, tinidazole and clarithromycin

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Abdel-Monem Hagazy, Maha

    2012-10-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for simultaneous determination of omeprazole (OM), tinidazole (TN) and clarithromycin (CL) in tablets. Method A, is an extended ratio subtraction one (EXRSM). Method B is a ratio difference spectrophotometric one (RDSM), while method C is mean centering of ratio spectra (MCR). The calibration curves are linear over the concentration range of 1-20 μg/mL, 10-60 μg/mL and 0.25-1.0 mg/mL for OM, TN and CL, respectively. The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures of the three drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and tablets. The three methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limits.

  2. Simultaneous spectrophotometric determination of atrazine and cyanazine by chemometric methods

    NASA Astrophysics Data System (ADS)

    Zhang, Guowen; Pan, Junhui

    2011-01-01

    A spectrophotometric method for the simultaneous determination of two herbicides, atrazine and cyanazine, is described for the first time based on their reaction with p-aminoacetophenone in the presence of pyridine in hydrochloric acid medium. The absorption spectra were measured in the wavelength range of 400-600 nm. The optimized method indicated that individual analytes followed Beer's law in the concentration ranges for atrazine and cyanazine were 0.2-3.5 mg L -1 and 0.3-5.0 mg L -1, and the limits of detection for atrazine and cyanazine were 0.099 and 0.15 mg L -1, respectively. The original and first-derivative absorption spectra of the binary mixtures were performed as a pre-treatment on the calibration matrices prior to the application of chemometric models such as classical least squares (CLS), principal component regression (PCR), partial least squares (PLS). The analytical results obtained by using these chemometric methods were evaluated on the basis of percent relative prediction error and recovery. It was found that the application of PCR and PLS models for first-derivative absorbance data gave the satisfactory results. The proposed methods were successfully applied for the simultaneous determination of the two herbicides in several food samples.

  3. A New Kinetic Spectrophotometric Method for the Quantitation of Amorolfine.

    PubMed

    Soto, César; Poza, Cristian; Contreras, David; Yáñez, Jorge; Nacaratte, Fallon; Toral, M Inés

    2017-01-01

    Amorolfine (AOF) is a compound with fungicide activity based on the dual inhibition of growth of the fungal cell membrane, the biosynthesis and accumulation of sterols, and the reduction of ergosterol. In this work a sensitive kinetic and spectrophotometric method for the AOF quantitation based on the AOF oxidation by means of KMnO4 at 30 min (fixed time), pH alkaline, and ionic strength controlled was developed. Measurements of changes in absorbance at 610 nm were used as criterion of the oxidation progress. In order to maximize the sensitivity, different experimental reaction parameters were carefully studied via factorial screening and optimized by multivariate method. The linearity, intraday, and interday assay precision and accuracy were determined. The absorbance-concentration plot corresponding to tap water spiked samples was rectilinear, over the range of 7.56 × 10(-6)-3.22 × 10(-5) mol L(-1), with detection and quantitation limits of 2.49 × 10(-6) mol L(-1) and 7.56 × 10(-6) mol L(-1), respectively. The proposed method was successfully validated for the application of the determination of the drug in the spiked tap water samples and the percentage recoveries were 94.0-105.0%. The method is simple and does not require expensive instruments or complicated extraction steps of the reaction product.

  4. A New Kinetic Spectrophotometric Method for the Quantitation of Amorolfine

    PubMed Central

    Poza, Cristian; Contreras, David; Yáñez, Jorge; Nacaratte, Fallon; Toral, M. Inés

    2017-01-01

    Amorolfine (AOF) is a compound with fungicide activity based on the dual inhibition of growth of the fungal cell membrane, the biosynthesis and accumulation of sterols, and the reduction of ergosterol. In this work a sensitive kinetic and spectrophotometric method for the AOF quantitation based on the AOF oxidation by means of KMnO4 at 30 min (fixed time), pH alkaline, and ionic strength controlled was developed. Measurements of changes in absorbance at 610 nm were used as criterion of the oxidation progress. In order to maximize the sensitivity, different experimental reaction parameters were carefully studied via factorial screening and optimized by multivariate method. The linearity, intraday, and interday assay precision and accuracy were determined. The absorbance-concentration plot corresponding to tap water spiked samples was rectilinear, over the range of 7.56 × 10−6–3.22 × 10−5 mol L−1, with detection and quantitation limits of 2.49 × 10−6 mol L−1 and 7.56 × 10−6 mol L−1, respectively. The proposed method was successfully validated for the application of the determination of the drug in the spiked tap water samples and the percentage recoveries were 94.0–105.0%. The method is simple and does not require expensive instruments or complicated extraction steps of the reaction product. PMID:28348920

  5. A Straightforward Method to Determine Equilibrium Constants from Spectrophotometric Data

    NASA Astrophysics Data System (ADS)

    Keszei, E.; Takács, M. G.; Vizkeleti, B.

    2000-07-01

    Spectrophotometry provides reliable information on the equilibrium concentration in chemically reacting mixtures. However, the widely used traditional linearized models to determine the equilibrium constant from spectrophotometric data do not provide optimal information and unnecessarily complicate data evaluation for students. In this paper we show an easy and straightforward inference method, which makes use only of Beer's Law and an elementary mathematical treatment of the problem. Though the resulting parameter estimation is nonlinear with respect to the equilibrium constant, the commercial availability of many nonlinear parameter estimation software packages eliminates the need for the student to bother with either mathematical or numerical details. Adding a suitable spectral shape function to the model describing equilibrium further facilitates the use of the proposed method and makes it an easy task to determine the components' spectra from equilibrium measurements. Three practical examples are treated in detail in the online version. They illustrate how the method works at different complexity levels and are easy to install in undergraduate physical chemistry labs.

  6. Determination of berkelium by the method of spectrophotometric titration

    SciTech Connect

    Frolova, L.M.; Vityutnev, V.M.; Vasil'ev, V.M.

    1987-01-01

    The method that the authors propose consists of the following: berkelium is oxidized electrochemically, spectrophotometric titration of berkelium(IV) by a solution of the reducing agent is performed, and the amount of berkelium(IV) is determined according to the volume of the titrant, and considering the degree of oxidation of berkelium(III) to berkelium(IV), the total berkelium content in the sample is also determined. In this case the necessity for preliminary determination of the molar extinction coefficient of berkelium(IV) under the experimental conditions falls away. Moreover, the radiometric method of determining the berkelium content is not used. Successful titration requires selection of a reagent which, on the one hand, would rapidly reduce berkelium(VI), but on the other hand, neither itself nor the reaction products would interfere with the measurement of the optical density of berkelium(IV). As is well known, berkelium(IV) is quantitatively and rapidly reduced by hydrogen peroxide (10, 11), hydroxylamine (11), and nitrous acid (9). After preliminary experiments, they selected hydrogen peroxide and sodium nitrite as the titrants.

  7. Spectrophotometric methods manipulating ratio spectra for simultaneous determination of binary mixtures with sever overlapping spectra: a comparative study.

    PubMed

    Moustafa, H; Fayez, Y

    2014-12-10

    Three simple, specific and accurate spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of Rabeprazole sodium (RB) and Domperidone (DP) in their binary mixture without prior separation. Method A, is constant center spectrophotometric method (CC). Method B is a ratio difference spectrophotometric one (RD), while method C is a combined ratio isoabsorptive point-ratio difference method (RIRD). Linear correlations were obtained in range of 4-44μg/mL for both Rabeprazole sodium and Domperidone. The mean percentage recoveries of RB were 99.69±0.504 for method A, 99.83±0.483 for (B) and 100.31±0.499 for (C), respectively, and that of DP were 99.52±0.474 for method A, 100.12±0.505 for (B) and 100.16±0.498 for (C), respectively. Specificity was investigated by analysis of laboratory prepared mixtures containing the cited drugs and their combined tablet dosage form. The obtained results were statistically compared with those obtained by the reported methods, showing no significant difference with respect to accuracy and precision. The three methods were validated as per ICH guidelines and can be applied for routine analysis in quality control laboratories.

  8. A comparative study of smart spectrophotometric methods for simultaneous determination of sitagliptin phosphate and metformin hydrochloride in their binary mixture.

    PubMed

    Lotfy, Hayam M; Mohamed, Dalia; Mowaka, Shereen

    2015-01-01

    Simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the oral antidiabetic drugs; sitagliptin phosphate (STG) and metformin hydrochloride (MET) in combined pharmaceutical formulations. Three methods were manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and a novel approach of induced amplitude modulation (IAM) methods. The first two methods were used for determination of STG, while MET was directly determined by measuring its absorbance at λmax 232 nm. However, (IAM) was used for the simultaneous determination of both drugs. Moreover, another three methods were developed based on derivative spectroscopy followed by mathematical manipulation steps namely; amplitude factor (P-factor), amplitude subtraction (AS) and modified amplitude subtraction (MAS). In addition, in this work the novel sample enrichment technique named spectrum addition was adopted. The proposed spectrophotometric methods did not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined pharmaceutical formulations. Standard deviation values were less than 1.5 in the assay of raw materials and tablets. The obtained results were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there was no significant difference between the proposed methods and the reported one regarding both accuracy and precision.

  9. Spectrophotometric, spectrofluorimetric, and densitometric methods for the determination of indapamide.

    PubMed

    Youssef, Nadia F

    2003-01-01

    Three sensitive spectrophotometric, spectrofluorimetric, and densitometric methods are described for the determination of indapamide. The first and second methods are based on the oxidative coupling reaction of indapamide with 3-methyl-2-benzothiazolinone hydrazone HCl (MBTH) in the presence of cerium(IV) ammonium sulfate in an acidic medium. The absorbance of the reaction product is measured at the lambdamax, 601 nm. With the same reaction, indapamide is determined by its quenching effect on the fluorescence of excess cerous ions at the emission lambdamax, 350 nm, and the excitation at lambdamax, 300 nm. The reaction conditions were optimized, and Beer's law was obeyed for indapamide at 1.2-9.6 microg/mL with mean recoveries of 99.92 +/- 0.83 and 99.97 +/- 1.11%, respectively. The third method, a stability-indicating densitometric assay, was developed for the determination of indapamide, using toluene-ethyl acetate-glacial acetic acid (69 + 30 + 1, v/v/v) as the developing system and scanning at the lambdamax, 242 nm, in the presence of the degradation product and related substance; for the indapamide concentration range of 0.6-6 microg/spot, the mean recovery was 99.73 +/- 0.71%. The proposed methods were successfully applied to the determination of indapamide in bulk powder and commercial tablets, and the results of the analysis agreed statistically with those obtained with the official method. Furthermore, the methods were validated according to the guidelines of the U.S. Pharmacopeia and also assessed by applying the standard additions technique.

  10. Development and validation of spectrophotometric methods for estimating amisulpride in pharmaceutical preparations.

    PubMed

    Sharma, Sangita; Neog, Madhurjya; Prajapati, Vipul; Patel, Hiren; Dabhi, Dipti

    2010-01-01

    Five simple, sensitive, accurate and rapid visible spectrophotometric methods (A, B, C, D and E) have been developed for estimating Amisulpride in pharmaceutical preparations. These are based on the diazotization of Amisulpride with sodium nitrite and hydrochloric acid, followed by coupling with N-(1-naphthyl)ethylenediamine dihydrochloride (Method A), diphenylamine (Method B), beta-naphthol in an alkaline medium (Method C), resorcinol in an alkaline medium (Method D) and chromotropic acid in an alkaline medium (Method E) to form a colored chromogen. The absorption maxima, lambda(max), are at 523 nm for Method A, 382 and 490 nm for Method B, 527 nm for Method C, 521 nm for Method D and 486 nm for Method E. Beer's law was obeyed in the concentration range of 2.5-12.5 microg mL(-1) in Method A, 5-25 and 10-50 microg mL(-1) in Method B, 4-20 microg mL(-1) in Method C, 2.5-12.5 microg mL(-1) in Method D and 5-15 microg mL(-1) in Method E. The results obtained for the proposed methods are in good agreement with labeled amounts, when marketed pharmaceutical preparations were analyzed.

  11. Validation of spectrophotometric method for lactulose assay in syrup preparation

    NASA Astrophysics Data System (ADS)

    Mahardhika, Andhika Bintang; Novelynda, Yoshella; Damayanti, Sophi

    2015-09-01

    Lactulose is a synthetic disaccharide widely used in food and pharmaceutical fields. In the pharmaceutical field, lactulose is used as osmotic laxative in a syrup dosage form. This research was aimed to validate the spectrophotometric method to determine the levels of lactulose in syrup preparation and the commercial sample. Lactulose is hydrolyzed by hydrochloric acid to form fructose and galactose. The fructose was reacted with resorcinol reagent, forming compounds that give absorption peak at 485 nm. Analytical methods was validated, hereafter lactulose content in syrup preparation were determined. The calibration curve was linear in the range of 30-100 μg/mL with a correlation coefficient (r) of 0.9996, coefficient of variance (Vxo) of 1.1 %, limit of detection of 2.32 μg/mL, and limit of quantitation of 7.04 μg/mL. The result of accuracy test for the lactulose assay in the syrup preparation showed recoveries of 96.6 to 100.8 %. Repeatability test of lactulose assay in standard solution of lactulose and sample preparation syrup showed the coefficient of variation (CV) of 0.75 % and 0.7 %. Intermediate precision (interday) test resulted in coefficient of variation 1.06 % on the first day, the second day by 0.99 %, and 0.95 % for the third day. This research gave a valid analysis method and levels of lactulose in syrup preparations of samples A, B, C were 101.6, 100.5, and 100.6 %, respectively.

  12. Comparative study of spectrophotometric methods manipulating ratio spectra: an application on pharmaceutical binary mixture of cinnarizine and dimenhydrinate.

    PubMed

    Lamie, Nesrine T

    2015-04-15

    Four simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of cinnarizine (CIN) and dimenhydrinate (DIM) in a binary mixture with overlapping spectra, without preliminary separation. The first method is dual wavelength spectrophotometry (DW), the second is a ratio difference spectrophotometric one (RD) which measures the difference in amplitudes between 250 and 270 nm of ratio spectrum, the third one is novel constant center spectrophotometric method (CC) and the fourth method is mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 4-20 and 10-45 μg/ml for CIN and DIM, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.

  13. Comparative study of spectrophotometric methods manipulating ratio spectra: An application on pharmaceutical binary mixture of cinnarizine and dimenhydrinate

    NASA Astrophysics Data System (ADS)

    Lamie, Nesrine T.

    2015-04-01

    Four simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of cinnarizine (CIN) and dimenhydrinate (DIM) in a binary mixture with overlapping spectra, without preliminary separation. The first method is dual wavelength spectrophotometry (DW), the second is a ratio difference spectrophotometric one (RD) which measures the difference in amplitudes between 250 and 270 nm of ratio spectrum, the third one is novel constant center spectrophotometric method (CC) and the fourth method is mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 4-20 and 10-45 μg/ml for CIN and DIM, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.

  14. Correlation of Two Anthocyanin Quantification Methods: HPLC and Spectrophotometric Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH differential method and HPLC are methods that are commonly used by researchers and the food industry for quantifying anthocyanins in a sample. This study was conducted to establish a relationship between the two analytical methods. Seven juice samples containing an array of different individu...

  15. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid

    NASA Astrophysics Data System (ADS)

    El-Yazbi, Fawzi A.; Hammud, Hassan H.; Assi, Sulaf A.

    2007-10-01

    A derivative spectrophotometric method was developed for the assay of a ternary mixture of aspirin (ASP), paracetamol (PAR) and salicylic acid (SAL). The method is based on the use of the first and second derivatives of the ratio spectra and measurement at zero-crossing wavelengths. The ratio spectra were obtained by dividing the absorption spectrum of the mixture by that of one of the components. The concentration of the other components are then determined from their respective calibration curves treated similarly. The described method was applied for the determination of these combinations in synthetic mixtures and dosage forms. The results obtained were accurate and precise.

  16. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid.

    PubMed

    El-Yazbi, Fawzi A; Hammud, Hassan H; Assi, Sulaf A

    2007-10-01

    A derivative spectrophotometric method was developed for the assay of a ternary mixture of aspirin (ASP), paracetamol (PAR) and salicylic acid (SAL). The method is based on the use of the first and second derivatives of the ratio spectra and measurement at zero-crossing wavelengths. The ratio spectra were obtained by dividing the absorption spectrum of the mixture by that of one of the components. The concentration of the other components are then determined from their respective calibration curves treated similarly. The described method was applied for the determination of these combinations in synthetic mixtures and dosage forms. The results obtained were accurate and precise.

  17. Validated spectrophotometric methods for the simultaneous determination of telmisartan and atorvastatin in bulk and tablets

    PubMed Central

    Ilango, Kaliappan; Kumar, Pushpangadhan S. Shiji

    2012-01-01

    Aim: Three simple, accurate, and reproducible spectrophotometric methods have been developed and validated for simultaneous estimation of telmisartan (TELM) atorvastatin (ATV) in combined tablet dosage form. Materials and Methods: The first method is based on first-order derivative spectroscopy. The sampling wavelengths were 223 nm (zero crossing of TELM) where ATV showed considerable absorbance and 272 nm (zero crossing of ATV) where TELM showed considerable absorbance. The second method Q-analysis (absorbance ratio), involves formation of Q-absorbance equation using respective absorptivity values at 280.9 nm (isobestic point) and 296.0 nm (λmax of TELM). The third method involves determination using multicomponent mode method; sampling wavelengths selected were 296.0 and 246.9 nm. Results: TELM and ATV followed linearity in the concentration range of 5–40 and 4–32 μg/ml for method I, 5–30 μg/ml and 2–24 μg/ml for method II and III, respectively. Mean recoveries for all three methods were found satisfactory. All methods were validated according to International Conference on Harmonization Q2B guidelines. Conclusion: The developed methods are simple, precise, rugged, and economical. The utility of methods has been demonstrated by analysis of commercially available tablet dosage form. PMID:23781490

  18. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: models in glyphosate-resistant and -susceptible crops.

    PubMed

    Zelaya, Ian A; Anderson, Jennifer A H; Owen, Micheal D K; Landes, Reid D

    2011-03-23

    Endogenous shikimic acid determinations are routinely used to assess the efficacy of glyphosate in plants. Numerous analytical methods exist in the public domain for the detection of shikimic acid, yet the most commonly cited comprise spectrophotometric and high-pressure liquid chromatography (HPLC) methods. This paper compares an HPLC and two spectrophotometric methods (Spec 1 and Spec 2) and assesses the effectiveness in the detection of shikimic acid in the tissues of glyphosate-treated plants. Furthermore, the study evaluates the versatility of two acid-based shikimic acid extraction methods and assesses the longevity of plant extract samples under different storage conditions. Finally, Spec 1 and Spec 2 are further characterized with respect to (1) the capacity to discern between shikimic acid and chemically related alicyclic hydroxy acids, (2) the stability of the chromophore (t1/2), (3) the detection limits, and (4) the cost and simplicity of undertaking the analytical procedure. Overall, spectrophotometric methods were more cost-effective and simpler to execute yet provided a narrower detection limit compared to HPLC. All three methods were specific to shikimic acid and detected the compound in the tissues of glyphosate-susceptible crops, increasing exponentially in concentration within 24 h of glyphosate application and plateauing at approximately 72 h. Spec 1 estimated more shikimic acid in identical plant extract samples compared to Spec 2 and, likewise, HPLC detection was more effective than spectrophotometric determinations. Given the unprecedented global adoption of glyphosate-resistant crops and concomitant use of glyphosate, an effective and accurate assessment of glyphosate efficacy is important. Endogenous shikimic acid determinations are instrumental in corroborating the efficacy of glyphosate and therefore have numerous applications in herbicide research and related areas of science as well as resolving many commercial issues as a consequence of

  19. Spectrophotometric Methods for the Determination of Sitagliptin and Vildagliptin in Bulk and Dosage Forms

    PubMed Central

    El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.

    2011-01-01

    Simple, accurate and precise spectrophotometric methods have been developed for the determination of sitagliptin and vildagliptin in bulk and dosage forms. The proposed methods are based on the charge transfer complexes of sitagliptin phosphate and vildagliptin with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-1,4-benzoquinone (p-chloranil). All the variables were studied to optimize the reactions conditions. For sitagliptin, Beer’s law was obeyed in the concentration ranges of 50-300 μg/ml, 20-120 μg/ml and 100-900 μg/ml with DDQ, TCNQ and p-chloranil, respectively. For vildagliptin, Beer’s law was obeyed in the concentration ranges of 50-300 μg/ml, 10-85 μg/ml and 50-350 μg/ml with DDQ, TCNQ and p-chloranil, respectively. The developed methods were validated and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms. PMID:23675221

  20. Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets.

    PubMed

    Ashour, Safwan; Bayram, Roula

    2015-04-05

    New, accurate, sensitive and reliable kinetic spectrophotometric method for the assay of moxifloxacin hydrochloride (MOXF) in pure form and pharmaceutical formulations has been developed. The method involves the oxidative coupling reaction of MOXF with 3-methyl-2-benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) in the presence of Ce(IV) in an acidic medium to form colored product with lambda max at 623 and 660 nm. The reaction is followed spectrophotometrically by measuring the increase in absorbance at 623 nm as a function of time. The initial rate and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1.89-40.0 μg mL(-1) for initial rate and fixed time methods. The limit of detection for initial rate and fixed time methods is 0.644 and 0.043 μg mL(-1), respectively. Molar absorptivity for the method was found to be 0.89×10(4) L mol(-1) cm(-1). Statistical treatment of the experimental results indicates that the methods are precise and accurate. The proposed method has been applied successfully for the estimation of moxifloxacin hydrochloride in tablet dosage form with no interference from the excipients. The results are compared with the official method.

  1. Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets

    NASA Astrophysics Data System (ADS)

    Ashour, Safwan; Bayram, Roula

    2015-04-01

    New, accurate, sensitive and reliable kinetic spectrophotometric method for the assay of moxifloxacin hydrochloride (MOXF) in pure form and pharmaceutical formulations has been developed. The method involves the oxidative coupling reaction of MOXF with 3-methyl-2-benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) in the presence of Ce(IV) in an acidic medium to form colored product with lambda max at 623 and 660 nm. The reaction is followed spectrophotometrically by measuring the increase in absorbance at 623 nm as a function of time. The initial rate and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1.89-40.0 μg mL-1 for initial rate and fixed time methods. The limit of detection for initial rate and fixed time methods is 0.644 and 0.043 μg mL-1, respectively. Molar absorptivity for the method was found to be 0.89 × 104 L mol-1 cm-1. Statistical treatment of the experimental results indicates that the methods are precise and accurate. The proposed method has been applied successfully for the estimation of moxifloxacin hydrochloride in tablet dosage form with no interference from the excipients. The results are compared with the official method.

  2. Simultaneous determination of Cinnarizine and Domperidone by area under curve and dual wavelength spectrophotometric methods.

    PubMed

    Abdelrahman, Maha M

    2013-09-01

    Accurate, selective and sensitive spectrophotometric methods have been developed and validated for simultaneous determination of Cinnarizine and Domperidone, a binary mixture with overlapping spectra, without preliminary separation. These methods include area under the curve (AUC) and dual wavelength spectrophotometry. For the AUC method, the area under curve of mixture solutions in the wavelength ranges 241-258 nm and 280-292 nm were selected for determination of Cinnarizine and Domperidone and by applying Cramer's rule, concentration of each drug was obtained. In dual wavelength method, two wavelengths were selected for each drug in a way so that the difference in absorbance is zero for another drug. Domperidone shows equal absorbance at 240.2 nm and 273.2 nm, where the differences in absorbance were measured for the determination of Cinnarizine. Similarly, differences in absorbance at 230.8 nm and 259.2 nm were measured for determination of Domperidone. The proposed methods were applied for determination of Cinnarizine and Domperidone over the concentration ranges of 2-20 and 2-22 μg mL(-1), respectively. The suggested methods were validated as per USP guidelines and the results revealed that they are reliable, reproducible and precise for routine use with short analysis time. The results obtained by the proposed methods were statistically compared to the reported method, and there was no significant difference between them regarding both accuracy and precision.

  3. Determination of Cr(III) in chromic acid. Comparison of spectrophotometric and ion chromatographic methods

    SciTech Connect

    Smith, R.E.; Smith, C.H.

    1986-04-01

    Two methods have been developed for determining Cr(III) in chromic acid solutions. Both methods are based on the formation of a Cr-EDTA complex. The ion chromatographic method detects the Cr-EDTA as an anion using chemically suppressed conductivity. The spectrophotometric method detects the Cr-EDTA as a colored complex by measuring the absorbance at 540 nm. The conditions necessary for forming the Cr-EDTA complex are described. The results obtained by the spectrophotometric and ion chromatographic methods are compared. 15 refs., 5 figs., 1 tab.

  4. New sensitive kinetic spectrophotometric methods for determination of omeprazole in dosage forms.

    PubMed

    Mahmoud, Ashraf M

    2009-01-01

    New rapid, sensitive, and accurate kinetic spectrophotometric methods were developed, for the first time, to determine omeprazole (OMZ) in its dosage forms. The methods were based on the formation of charge-transfer complexes with both iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The variables that affected the reactions were carefully studied and optimized. The formed complexes and the site of interaction were examined by UV/VIS, IR, and (1)H-NMR techniques, and computational molecular modeling. Under optimum conditions, the stoichiometry of the reactions between OMZ and the acceptors was found to be 1 : 1. The order of the reactions and the specific rate constants were determined. The thermodynamics of the complexes were computed and the mechanism of the reactions was postulated. The initial rate and fixed time methods were utilized for the determination of OMZ concentrations. The linear ranges for the proposed methods were 0.10-3.00 and 0.50-25.00 mug mL(-1) with the lowest LOD of 0.03 and 0.14 mug mL(-1) for iodine and DDQ, respectively. Analytical performance of the methods was statistically validated; RSD was <1.25% for the precision and <1.95% for the accuracy. The proposed methods were successfully applied to the analysis of OMZ in its dosage forms; the recovery was 98.91-100.32% +/- 0.94-1.84, and was found to be comparable with that of reference method.

  5. Validated spectrophotometric methods for simultaneous determination of troxerutin and carbazochrome in dosage form

    NASA Astrophysics Data System (ADS)

    Khattab, Fatma I.; Ramadan, Nesrin K.; Hegazy, Maha A.; Al-Ghobashy, Medhat A.; Ghoniem, Nermine S.

    2015-03-01

    Four simple, accurate, sensitive and precise spectrophotometric methods were developed and validated for simultaneous determination of Troxerutin (TXN) and Carbazochrome (CZM) in their bulk powders, laboratory prepared mixtures and pharmaceutical dosage forms. Method A is first derivative spectrophotometry (D1) where TXN and CZM were determined at 294 and 483.5 nm, respectively. Method B is first derivative of ratio spectra (DD1) where the peak amplitude at 248 for TXN and 439 nm for CZM were used for their determination. Method C is ratio subtraction (RS); in which TXN was determined at its λmax (352 nm) in the presence of CZM which was determined by D1 at 483.5 nm. While, method D is mean centering of the ratio spectra (MCR) in which the mean centered values at 300 nm and 340.0 nm were used for the two drugs in a respective order. The two compounds were simultaneously determined in the concentration ranges of 5.00-50.00 μg mL-1 and 0.5-10.0 μg mL-1 for TXN and CZM, respectively. The methods were validated according to the ICH guidelines and the results were statistically compared to the manufacturer's method.

  6. A new spectrophotometric method for the determination of tianeptine in tablets using ion-pair reagents.

    PubMed

    Ulu, Sevgi Tatar; Aydogmus, Zeynep

    2008-12-01

    A new rapid and sensitive procedure assay is proposed for the spectrophotometric determination of tianeptine. The developed method involves formation of colored chloroform extractable ion-pair complexes of tianeptine with bromophenol blue (BPB), bromocresol green (BCG), bromothymol blue (BTB) and methyl orange (MO) in acidic medium. Beer's law is obeyed in the concentration ranges 3.0-12.0, 4.0-16.0, 4.0-14.0 and 2.0-10.0 microg ml(-1) with BPB, BCG, BTB and MO, respectively. The detection limit of tianeptine was found to be 1.8 microg ml(-1) for BPB, 2.0 for BCG, 2.0 microg ml(-1) for BTB and 1.0 microg ml(-1) for MO. Validation of the method was performed in terms of linearity, limit of detection (LOD), quantification (LOQ), accuracy and precision. Common excipients used as additives in pharmaceutical preparations do not interfere in the proposed method. The proposed method has been applied to determination of the examined drugs in pharmaceutical formulations and the results demonstrated that the method is equally accurate, precise, and reproducible as the official method. The t-test showed no significant difference at 95% confidence level.

  7. Validated UV-spectrophotometric method for the evaluation of the efficacy of makeup remover.

    PubMed

    Charoennit, P; Lourith, N

    2012-04-01

    A UV-spectrophotometric method for the analysis of makeup remover was developed and validated according to ICH guidelines. Three makeup removers for which the main ingredients consisted of vegetable oil (A), mineral oil and silicone (B) and mineral oil and water (C) were sampled in this study. Ethanol was the optimal solvent because it did not interfere with the maximum absorbance of the liquid foundation at 250 nm. The linearity was determined over a range of makeup concentrations from 0.540 to 1.412 mg mL⁻¹ (R² = 0.9977). The accuracy of this method was determined by analysing low, intermediate and high concentrations of the liquid foundation and gave 78.59-91.57% recoveries with a relative standard deviation of <2% (0.56-1.45%). This result demonstrates the validity and reliability of this method. The reproducibilities were 97.32 ± 1.79, 88.34 ± 2.69 and 95.63 ± 2.94 for preparations A, B and C respectively, which are within the acceptable limits set forth by the ASEAN analytical validation guidelines, which ensure the precision of the method under the same operating conditions over a short time interval and the inter-assay precision within the laboratory. The proposed method is therefore a simple, rapid, accurate, precise and inexpensive technique for the routine analysis of makeup remover efficacy.

  8. Development and validation of spectrophotometric methods for determination of ceftazidime in pharmaceutical dosage forms.

    PubMed

    Hiremath, Basavaraj; Mruthyunjayaswamy, Bennikallu Hire Mathada

    2008-09-01

    Two spectrophotometric methods for the determination of ceftazidime (CFZM) in either pure form or in its pharmaceutical formulations are described. The first method is based on the reaction of 3-methylbenzothiazolin-2-one hydrazone (MBTH) with ceftazidime in the presence of ferric chloride in acidic medium. The resulting blue complex absorbs at lambdamax 628 nm. The second method describes the reaction between the diazotized drug and N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA) to yield a purple colored product with lambdamax at 567 nm. The reaction conditions were optimized to obtain maximum color intensity. The absorbance was found to increase linearly with increasing the concentration of CFZM; the systems obeyed the Beer's law in the range 2-10 and 10-50 microg mL-1 for MBTH and NEDA methods, resp. LOD, LOQ and correlation coefficient values were 0.15, 0.79 and 0.50, 2.61. No interference was observed from common excipients present in pharmaceutical formulations. The proposed methods are simple, sensitive, accurate and suitable for quality control applications.

  9. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method.

    PubMed

    Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui

    2014-05-15

    Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately.

  10. Determination of ethanol in wine by titrimetric and spectrophotometric dichromate methods: collaborative study.

    PubMed

    Pilone, G J

    1985-01-01

    A dichromate-spectrophotometric method for the determination of ethanol in wine was compared in a collaborative, matched pair study with the AOAC dichromate-titrimetric method, 11.008-11.011. Both methods require distillation of the sample into dichromate. The titrimetric method measures ethanol by titrating the excess dichromate with ferrous ammonium sulfate after conversion of ethanol to acetic acid; the spectrophotometric method directly measures the reduced dichromate formed after oxidation. In addition to comparing the 2 methods, the collaborative study also compared the use of 2 types of assemblies for obtaining the ethanol distillate: the Scott-type, which is used in 11.008-11.011, and the electric Kirk-type. Results of the collaborative study indicated that the repeatability and reproducibility of the official titrimetric method were generally far superior to those of the spectrophotometric method; therefore, adoption of the spectrophotometric method is not recommended. Comparison of titrimetric method results obtained using the 2 types of stills indicated that repeatability and reproducibility were somewhat better when Scott apparatus was used, but measurements using Kirk-type compared well in the range of ethanol concentrations found in table and fortified wines. The Kirk-type distillation apparatus has been adopted official first action as an alternative to Scott apparatus in the dichromate oxidation method for ethanol in wine, 11.008-11.011.

  11. Spectroflourometric and spectrophotometric methods for the determination of sitagliptin in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product.

    PubMed

    El-Bagary, Ramzia I; Elkady, Ehab F; Ayoub, Bassam M

    2011-03-01

    Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL(-1). The first derivative spectrophotometric method was used for the determination of MET in the range of 2-12 μg mL(-1) and STG in the range of 50-300 μg mL(-1) by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2-12 μg mL(-1). The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL(-1). The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.

  12. Spectroflourometric and Spectrophotometric Methods for the Determination of Sitagliptin in Binary Mixture with Metformin and Ternary Mixture with Metformin and Sitagliptin Alkaline Degradation Product

    PubMed Central

    El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.

    2011-01-01

    Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL-1. The first derivative spectrophotometric method was used for the determination of MET in the range of 2–12 μg mL-1 and STG in the range of 50-300 μg mL-1 by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2–12 μg mL-1. The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL-1. The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms. PMID:23675222

  13. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  14. Comparison of Spectrophotometric and Fluorimetric Methods in Evaluation of Biotinidase Deficiency

    PubMed Central

    Işeri-Erten, Sevgin Özlem; Dikmen, Zeliha Günnur

    2016-01-01

    Summary Background Biotin, a water-soluble vitamin, is used as a co-factor by enzymes involved in carboxylation reactions. Biotinidase (BTD) catalyzes the recycling of biotin from endogenous and dietary sources. Biotinidase deficiency (BD) is an autosomal recessively inherited disorder of biotin recycling that is associated with neurologic and cutaneous consequences when untreated. The aim of the study was to compare the results of spectrophotometric and fluorimetric methods, as well as to evaluate the advantages and disadvantages of both methods in current research practices. Methods Study group was chosen among the BD suspected newborn, children and parents (n = 52) who applied to Hacettepe University Pediatric Metabolism Unit. Results BTD activity is stable for 2 hours at room temperature and at 4 °C, and for 4 months at –20 °C and –80 °C. Genetic and clinical results showed that 25% of the total number of patients had complete BD which was treated with 10 mg/day biotin, while 15.38% of the patients had partial BD, and they were prescribed biotin 5 mg/day. The area under the ROC curve was 0.960±0.25 and 0.927± 0.41 for the fluorimetric and spectrophotometric method, respectively. Fluorimetric method showed 100% sensitivity and 97% specificity, whereas spectrophotometric method showed 90.5% sensitivity and 93.7% specificity. Conclusions Fluorimetric method is superior to the spectrophotometric method due to higher sensitivity and specificity. PMID:28356871

  15. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  16. Development of a Direct Spectrophotometric and Chemometric Method for Determining Food Dye Concentrations.

    PubMed

    Arroz, Erin; Jordan, Michael; Dumancas, Gerard G

    2017-01-01

    An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10(-7) for blue, 4.59 × 10(-7) for red, and 1.13 × 10(-6) for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.

  17. Validated spectrophotometric methods for the estimation of moxifloxacin in bulk and pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Motwani, Sanjay K.; Chopra, Shruti; Ahmad, Farhan J.; Khar, Roop K.

    2007-10-01

    New, simple, cost effective, accurate and reproducible UV-spectrophotometric methods were developed and validated for the estimation of moxifloxacin in bulk and pharmaceutical formulations. Moxifloxacin was estimated at 296 nm in 0.1N hydrochloric acid (pH 1.2) and at 289 nm in phosphate buffer (pH 7.4). Beer's law was obeyed in the concentration range of 1-12 μg ml -1 ( r2 = 0.9999) in hydrochloric acid and 1-14 μg ml -1 ( r2 = 0.9998) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.63 × 10 4 l mol -1 cm -1 and 9.5 ng cm -2/0.001 A in hydrochloric acid; and 4.08 × 10 4 l mol -1 cm -1 and 10.8 ng cm -2/0.001 A in phosphate buffer media, respectively indicating the high sensitivity of the proposed methods. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.0402, 0.1217 μg ml -1 in hydrochloric acid and 0.0384, 0.1163 μg ml -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of moxifloxacin in pharmaceutical formulations (tablets, i.v. infusions, eye drops and polymeric nanoparticles). The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation <2%), while being simple, cheap and less time consuming and hence can be suitably applied for the estimation of moxifloxacin in different dosage forms and dissolution studies.

  18. Validation of four different spectrophotometric methods for simultaneous determination of Domperidone and Ranitidine in bulk and pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Abdel-Aziz, Omar; Mohammed, Yomna Y.

    2015-10-01

    Four simple, specific, accurate and precise spectrophotometric methods were developed and validated for simultaneous determination of Domperidone (DP) and Ranitidine Hydrochloride (RT) in bulk powder and pharmaceutical formulation. The first method was simultaneous ratio subtraction (SRS), the second was ratio subtraction (RS) coupled with zero order spectrophotometry (D0), the third was first derivative of the ratio spectra (1DD) and the fourth method was mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 0.5-5 and 1-45 μg mL-1 for DP and RT, respectively. The proposed spectrophotometric methods can analyze both drugs without any prior separation steps. The selectivity of the adopted methods was tested by analyzing synthetic mixtures of the investigated drugs, also in their pharmaceutical formulation. The suggested methods were validated according to International Conference of Harmonization (ICH) guidelines and the results revealed that; they were precise and reproducible. All the obtained results were statistically compared with those of the reported method, where there was no significant difference.

  19. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A

    NASA Astrophysics Data System (ADS)

    Zhuang, Yafeng; Zhou, Meng; Gu, Jia; Li, Xiangmei

    2014-03-01

    A new spectrophotometric method for the determination of trace amounts of bisphenol A based on a diazotization-coupling reaction was developed. In acidic solution, clenbuterol was first diazotized with sodium nitrite, then coupled with bisphenol A to from an azo-compound [I] in NH3-NH4Cl buffer, which shows a maximum absorption at 410 nm. The effects of the amount of sodium nitrite, diazo reaction time, the amount of clenbuterol, coupling reaction time and coupling reaction temperature have been examined. Under the optional conditions, the determination of the linear range of bisphenol A is 0.24-8.4 μg/mL, correlation coefficient is 0.9905 and detection limit of this method is 0.15 μg/mL. The spectrophotometric method is simple, rapid, high sensitivity with better accuracy. High performance liquid chromatography (HPLC) technique combined with this new spectrophotometric method has been also developed for the measurement of bisphenol A. The analysis was achieved on a C18 column using water and methanol as a mobile phase and the detection was done spectrophotometrically at 410 nm. These reported methods were applied to the determination of bisphenol A in hot water in contact with commercially available table-water bottle samples.

  20. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A.

    PubMed

    Zhuang, Yafeng; Zhou, Meng; Gu, Jia; Li, Xiangmei

    2014-03-25

    A new spectrophotometric method for the determination of trace amounts of bisphenol A based on a diazotization-coupling reaction was developed. In acidic solution, clenbuterol was first diazotized with sodium nitrite, then coupled with bisphenol A to from an azo-compound [I] in NH3-NH4Cl buffer, which shows a maximum absorption at 410 nm. The effects of the amount of sodium nitrite, diazo reaction time, the amount of clenbuterol, coupling reaction time and coupling reaction temperature have been examined. Under the optional conditions, the determination of the linear range of bisphenol A is 0.24-8.4 μg/mL, correlation coefficient is 0.9905 and detection limit of this method is 0.15 μg/mL. The spectrophotometric method is simple, rapid, high sensitivity with better accuracy. High performance liquid chromatography (HPLC) technique combined with this new spectrophotometric method has been also developed for the measurement of bisphenol A. The analysis was achieved on a C18 column using water and methanol as a mobile phase and the detection was done spectrophotometrically at 410 nm. These reported methods were applied to the determination of bisphenol A in hot water in contact with commercially available table-water bottle samples.

  1. Five different spectrophotometric methods for determination of Amprolium hydrochloride and Ethopabate binary mixture

    NASA Astrophysics Data System (ADS)

    Hussein, Lobna A.; Magdy, N.; Abbas, Mahmoud M.

    2015-03-01

    Five simple, specific, accurate and precise UV-spectrophotometric methods are adopted for the simultaneous determination of Amprolium hydrochloride (AMP) and Ethopabate (ETH), a binary mixture with overlapping spectra, without preliminary separation. The first method is first derivative of the ratio spectra (1DD) for determination of AMP and ETH at 234.7 nm and 306.8 nm respectively with mean percentage recoveries 99.76 ± 0.907 and 100.29 ± 0.842 respectively. The second method is the mean centering of the ratio spectra for determination of AMP and ETH at 238.8 nm and 313 nm respectively with mean percentage recoveries 100.26 ± 1.018 and 99.94 ± 1.286 respectively. The third method is based on dual wavelength selection for determination of AMP and ETH at 235.3 nm & 308 nm and 244 nm & 268.4 nm respectively with mean percentage recoveries 99.30 ± 1.097 and 100.03 ± 1.065 respectively. The fourth method is ratio difference method for determination of AMP and ETH at 239 nm & 310 nm and 239 nm & 313 nm respectively with mean percentage recoveries 99.27 ± 0.892 and 100.40 ± 1.814 respectively. The fifth one is area under the curve (AUC) method where the areas between 235.6-243 nm and 268.3-275 nm are selected for determination of AMP and ETH with mean percentage recoveries 100.35 ± 1.031 and 100.39 ± 0.956 respectively. These methods are tested by analyzing synthetic mixtures of the two drugs and they are applied to their pharmaceutical veterinary preparation. Methods are validated according to the ICH guidelines and accuracy, precision and repeatability are found to be within the acceptable limit.

  2. Five different spectrophotometric methods for determination of Amprolium hydrochloride and Ethopabate binary mixture.

    PubMed

    Hussein, Lobna A; Magdy, N; Abbas, Mahmoud M

    2015-03-05

    Five simple, specific, accurate and precise UV-spectrophotometric methods are adopted for the simultaneous determination of Amprolium hydrochloride (AMP) and Ethopabate (ETH), a binary mixture with overlapping spectra, without preliminary separation. The first method is first derivative of the ratio spectra ((1)DD) for determination of AMP and ETH at 234.7nm and 306.8nm respectively with mean percentage recoveries 99.76±0.907 and 100.29±0.842 respectively. The second method is the mean centering of the ratio spectra for determination of AMP and ETH at 238.8nm and 313nm respectively with mean percentage recoveries 100.26±1.018 and 99.94±1.286 respectively. The third method is based on dual wavelength selection for determination of AMP and ETH at 235.3nm & 308nm and 244nm & 268.4nm respectively with mean percentage recoveries 99.30±1.097 and 100.03±1.065 respectively. The fourth method is ratio difference method for determination of AMP and ETH at 239nm & 310nm and 239nm & 313nm respectively with mean percentage recoveries 99.27±0.892 and 100.40±1.814 respectively. The fifth one is area under the curve (AUC) method where the areas between 235.6-243nm and 268.3-275nm are selected for determination of AMP and ETH with mean percentage recoveries 100.35±1.031 and 100.39±0.956 respectively. These methods are tested by analyzing synthetic mixtures of the two drugs and they are applied to their pharmaceutical veterinary preparation. Methods are validated according to the ICH guidelines and accuracy, precision and repeatability are found to be within the acceptable limit.

  3. Extractive spectrophotometric methods for the determination of doxepin hydrochloride in pharmaceutical preparations using titanium (IV) and iron (III) thiocyanate complexes.

    PubMed

    Misiuk, Wiesława

    2005-01-01

    Two simple, precise, and accurate extractive spectrophotometric methods have been developed for the determination of doxepin hydrochloride in pharmaceutical preparations. The methods are based on the formation of ion association complexes of doxepin with titanium (IV) and iron (III) thiocyanate complexes in acidic medium. The produced compounds are insoluble in water but well soluble in some organic solvents. They are extracted with mixtures of butyl alcohol-chloroform (2:3, v/v) and (1:4, v/v) and measured spectrophotometrically at 400 and 490 nm for DOX-Ti-SCN and DOX-Fe(III)-SCN methods, respectively. Beer's law was obeyed in the concentration ranges of 5-50 and 3-30 microg/ml with molar absorptivity of 7.12 x 10(3) and 1.36 x 10(4) l mol(-1) cm(-1) for DOX-Ti-SCN and DOX-Fe-SCN systems, respectively. The proposed methods have been successfully applied for the analysis of the drug in dosage forms. No interference was observed from common pharmaceutical adjuvants. The methods have been also used for the determination of the drug in the presence of its degradation product. Statistical comparison of the obtained results with the reference methods shows excellent agreement and indicates no significant difference in accuracy and precision.

  4. Highly sensitive and selective spectrophotometric and spectrofluorimetric methods for the determination of ropinirole hydrochloride in tablets

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Zeynep

    2008-06-01

    Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 μg ml -1. The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as π-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 μg ml -1. The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 μg ml -1. The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity ( ɛ), limit of detection (LOD, μg ml -1) and limit of quantitation (LOQ, μg ml -1), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically.

  5. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  6. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  7. Application of a new spectrophotometric method manipulating ratio spectra for determination of bambuterol hydrochloride in the presence of its degradation product terbutaline.

    PubMed

    Lamie, Nesrine T

    2015-01-01

    A simple, specific, accurate and precise spectrophotometric stability indicating method is developed for determination of bambuterol hydrochloride (BH) in the presence of its degradation product terbutaline (TERB) and in pharmaceutical formulations. A newly developed spectrophotometric method called ratio difference method by measuring the difference in amplitudes between 245 and 260 on of ratio spectra. The calibration curves are linear over the concentration range of 0. 1 - 1 mg . mL-1 for BH and 0. 1-0. 7 mg . mL-1 for TERB with mean percentage recovery of 100. 56 ± 0. 751 and 99. 88 ± 1. 183, respectively. The selectivity of the proposed method is checked using laboratory prepared mixtures. The proposed method has been successfully applied to the analysis of BH in pharmaceutical dosage forms without interference from other dosage form additives and the results have been statistically compared with pharmacopeial method.

  8. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  9. Rapid spectrophotometric method for determining surface free energy of microalgal cells.

    PubMed

    Zhang, Xinru; Jiang, Zeyi; Li, Mengyin; Zhang, Xinxin; Wang, Ge; Chou, Aihui; Chen, Liang; Yan, Hai; Zuo, Yi Y

    2014-09-02

    Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.

  10. AAS and spectrophotometric methods for the determination metoprolol tartrate in tablets

    NASA Astrophysics Data System (ADS)

    Alpdoğan, Güzin; Sungur, Sidika

    1999-11-01

    Sensitive and specific atomic adsorption spectroscopy (AAS) and spectrophotometric methods have been developed for the determination of beta adrenergic blocking drug, metoprolol tartrate.The method is based on the formation of Cu(II) dithiocarbamate complex by derivatization of the secondary amino group of metoprolol with CS 2 and CuCl 2 in the presence of ammonia.The copper-bis(dithiocarbamate) complex was extracted into chloroform and the concentration of metoprolol tartrate was determined directly by spectrophotometric and indirectly by AAS measurement of copper.The two methods developed were applied to the assay of metoprolol tartrate in commercial tablet formulations.The methods were compared statistically with each other and with the high performance liquid chromatography (HPLC) method of USPXXII using t- and F-tests.

  11. Spectrophotometric and spectrofluorimetric methods for analysis of acyclovir and acebutolol hydrochloride

    NASA Astrophysics Data System (ADS)

    Ayad, Magda M.; Abdellatef, Hisham E.; El-Henawee, Magda M.; El-Sayed, Heba M.

    2007-01-01

    Simple and sensitive spectrophotometric and spectrofluorimetric methods are described for analysis of acyclovir and acebutolol hydrochloride. The proposed methods are based on oxidation of the selected drugs with cerium(IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 320 nm or the fluorescence intensity of the produced cerous(III) ion at 361-363 nm (excitation at 250 nm). Beer's law obeyed from 2 to 8, 0.25 to 2.5 μg cm -1 acyclovir, 1 to 7 and 0.25 to 2.5 μg ml -1 acebutolol hydrochloride, using the spectrophotometric and spectrofluorimetric method, respectively. The proposed method were successfully applied for determination of the selected drugs in their pharmaceutical preparations with good recoveries.

  12. Spectrophotometric and spectrofluorimetric methods for analysis of acyclovir and acebutolol hydrochloride

    NASA Astrophysics Data System (ADS)

    Abdellatef, Hisham E.; El-Henawee, Magda M.; El-Sayed, Heba M.; Ayad, Magda M.

    2006-11-01

    Simple and sensitive spectrophotometric and spectrofluorimetric methods are described for analysis of acebutolol hydrochloride. The proposed methods are based on oxidation of the selected drug with cerium(IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 320 nm or the fluorescence intensity of the produced cerous(III) ion at 363 nm (excitation at 250 nm). Beer's law obeyed from 1.0-7.0 μg ml -1 and 0.25-2.5 μg ml -1 acebutolol hydrochloride, using the spectrophotometric and spectrofluorimetric method, respectively. The proposed methods were successfully applied for determination of the selected drug in its pharmaceutical preparation with good recoveries.

  13. Simple spectrophotometric and titrimetric methods for the determination of sulfur dioxide.

    PubMed

    Yogendra Kumar, M S; Gowtham, M D; Mahadevaiah; Agendrappa, G

    2006-05-01

    The proposed work describes a simple spectrophotmetric as well as a titrimetric method to determine sulfur dioxide. The spectrophotometric method is based on a redox reaction between sulfur dioxide and iodine monochloride obtained from iodine with chloramine-T in acetic acid. The reagent iodine monochloride oxidizes sulfur dioxide to sulfate, thereby reducing itself to iodine. Thus liberated iodine will also oxidize sulfur dioxide and reduce itself to iodide. The obtained iodide is expected to combine with iodine to form a brown-colored homoatomictriiodide anion (460 nm), which forms an ion-pair with the sulfonamide cation, providing exceptional color stability to the system under an acidic condition, and is quantitatively relatd to sulfur dioxide. The system obeys Beer's law in the range 5 - 100 microg of sulfur dioxide in a final volume of 10 ml. The molar absorptivity is 5.03 x 10(3) l mol(-1)cm(-1), with a relative standard deviation of 3.2% for 50 microg of sulfur dioxide (n = 10). In the titrimetric method, the reagent iodine monochloride was reduced with potassium iodide (10%) to iodine, which oxidized sulfur dioxide to sulfate, and excess iodine was determined with a thiosulfate solution. The volume difference of thiosulfate with the reagent and with the sulfur dioxide determined the sulfur dioxide. Reproducible and accurate results were obtained in the range of 0.1 - 1.5 mg of sulfur dioxide with a relative standard deviation of 1.2% for 0.8 mg of sulfur dioxide (n = 10).

  14. Comparison of methods for following alkaline phosphatase catalysis: spectrophotometric versus amperometric detection.

    PubMed

    Thompson, R Q; Barone, G C; Halsall, H B; Heineman, W R

    1991-01-01

    An amperometric method for alkaline phosphatase is described and compared to the most widely used spectrophotometric method. Catalytic hydrogenation of 4-nitrophenylphosphate (the substrate in the spectrophotometric method) gives 4-aminophenylphosphate (the substrate in the amperometric method). The latter substrate has the formula C6H6NO4PNa2.5H2O and a Mr of 323. The Michaelis constant for 4-aminophenylphosphate in 0.10 M, pH 9.0. Tris buffer is 56 microM, while it is 82 microM for 4-nitrophenyl phosphate. The amperometric method has a detection limit of 7 nM for the product of the enzyme reaction, which is almost 20 times better than the spectrophotometric method. Similarly, with a 15-min reaction at room temperature and in a reaction volume of 1.1 ml, 0.05 microgram/l alkaline phosphatase can be detected by electrochemistry, almost an order of magnitude better than by absorption spectrophotometry. Amperometric detection is ideally suited for small-volume and trace immunoassay.

  15. Investigation of different spectrophotometric and chemometric methods for determination of entacapone, levodopa and carbidopa in ternary mixture.

    PubMed

    Abdel-Ghany, Maha F; Hussein, Lobna A; Ayad, Miriam F; Youssef, Menatallah M

    2017-01-15

    New, simple, accurate and sensitive UV spectrophotometric and chemometric methods have been developed and validated for determination of Entacapone (ENT), Levodopa (LD) and Carbidopa (CD) in ternary mixture. Method A is a derivative ratio spectra zero-crossing spectrophotometric method which allows the determination of ENT in the presence of both LD and CD by measuring the peak amplitude at 249.9nm in the range of 1-20μgmL(-1). Method B is a double divisor-first derivative of ratio spectra method, used for determination of ENT, LD and CD at 245, 239 and 293nm, respectively. Method C is a mean centering of ratio spectra which allows their determination at 241, 241.6 and 257.1nm, respectively. Methods B and C could successfully determine the studied drugs in concentration ranges of 1-20μgmL(-1) for ENT and 10-90μgmL(-1) for both LD and CD. Methods D and E are principal component regression and partial least-squares, respectively, used for the simultaneous determination of the studied drugs by using seventeen mixtures as calibration set and eight mixtures as validation set. The developed methods have the advantage of simultaneous determination of the cited components without any pre-treatment. All the results were statistically compared with the reported methods, where no significant difference was observed. The developed methods were satisfactorily applied to the analysis of the investigated drugs in their pure form and in pharmaceutical dosage forms.

  16. Investigation of different spectrophotometric and chemometric methods for determination of entacapone, levodopa and carbidopa in ternary mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Hussein, Lobna A.; Ayad, Miriam F.; Youssef, Menatallah M.

    2017-01-01

    New, simple, accurate and sensitive UV spectrophotometric and chemometric methods have been developed and validated for determination of Entacapone (ENT), Levodopa (LD) and Carbidopa (CD) in ternary mixture. Method A is a derivative ratio spectra zero-crossing spectrophotometric method which allows the determination of ENT in the presence of both LD and CD by measuring the peak amplitude at 249.9 nm in the range of 1-20 μg mL- 1. Method B is a double divisor-first derivative of ratio spectra method, used for determination of ENT, LD and CD at 245, 239 and 293 nm, respectively. Method C is a mean centering of ratio spectra which allows their determination at 241, 241.6 and 257.1 nm, respectively. Methods B and C could successfully determine the studied drugs in concentration ranges of 1-20 μg mL- 1 for ENT and 10-90 μg mL- 1 for both LD and CD. Methods D and E are principal component regression and partial least-squares, respectively, used for the simultaneous determination of the studied drugs by using seventeen mixtures as calibration set and eight mixtures as validation set. The developed methods have the advantage of simultaneous determination of the cited components without any pre-treatment. All the results were statistically compared with the reported methods, where no significant difference was observed. The developed methods were satisfactorily applied to the analysis of the investigated drugs in their pure form and in pharmaceutical dosage forms.

  17. [Resorcinol-spectrophotometric method for the determination of fructose in mustard leaf's amylose].

    PubMed

    Hasenqimeng; He, Feng-ga

    2002-06-01

    A method using seliwanoff reaction is proposed for the determination of fructose in the amylose of mustard leaves. Fructose reacts with resorcinol forming a red compound with a maximum absorption at 473 nm. The calibration curve is linear over the range of 0-83 micrograms.mL-1 with a correlation coefficient of 0.9998. The content of fructose in the amylose of mustard leaves is found to be 11.41%. Quantitative analysis used for the fructose of syrup include such as volumetric analysis, then layer chromatography, polarimetry, high pressure liquid chromatography and spectrophotometric analysis. According to different color-developing agents, spectrophotometric analysis may be classified as carbazole method, ammonium molybdate way and resorcinol way etc. reported by foreign papers is hard to operate and colored complex is unstable.

  18. [Determination of tangshenoside I in Codonopsis pilosula Nannf. by TLC-UV spectrophotometric method].

    PubMed

    Han, G; Wang, C; Su, X; He, X; Wang, Y; Kenji, M; Osamu, T

    1990-09-01

    A method of thin layer chromatographic separation and ultraviolet spectrophotometric determination of tangshenoside I in Codonopsis pilosula is described. A comparison of the contents in various samples is made. The contents of tangshenoside I in frosted sample have been found to be twice as much as in normal drug. The recovery of tangshenoside I is 99.92% and the coefficient of variation of eight samplings is 1.77%.

  19. Spectrophotometric and spectrofluorimetric methods for the determination of pregabalin in bulk and pharmaceutical preparation

    NASA Astrophysics Data System (ADS)

    Önal, Armağan; Sagirli, Olcay

    2009-02-01

    Two new, sensitive and selective spectrofluorimetric and spectrophotometric methods have been developed for the determination of the γ-amino- n-butyric acid derivative pregabalin (PGB) in bulk drug and capsule. Pregabalin, as a primary amine compound, reacts with 7-chloro-4-nitrobenzofurazon (NBD-Cl) which is a highly sensitive fluorogenic and chromogenic reagent used in many investigations. According to this fact, spectrophotometric and spectrofluorimetric methods for the determination of pregabalin in capsules were developed for the first time. The relation between the absorbance at 460 nm and the concentration is rectilinear over the range 0.5-7.0 μg mL -1. The reaction product was also measured spectrofluorimetrically at 558 nm after excitation at 460 nm. The fluorescence intensity was directly proportional to the concentration over the range 40-400 ng mL -1. The method was applied successfully to the determination of this drug in pharmaceutical dosage form. The mean recovery for the commercial capsules was 99.93% and 99.96% for spectrophotometric and spectrofluorimetric study, respectively. The suggested procedures could be used for the determination of PGB in pure and capsules being sensitive, simple and selective.

  20. New spectrophotometric method for continuous recording of the spleen exonuclease activity.

    PubMed

    Dolapchiev, L B; Bakalova, A T

    1988-11-01

    Some of the synthetic chromophoric substrates of various enzymes cannot be used for direct spectrophotometric recording of the reactions, when a difference between the pH optimum of the enzyme reaction and the pH of maximum absorption of the released chromophore exists. In the present paper we describe a new method for following the time course of the spleen exonuclease-catalyzed reaction with thymidine 3'-monophospho-p-nitrophenyl ester as a substrate, based on the difference obtained in the absorbency of the substrate and its products in the far UV (at 330 nm). This difference, not published before, permits direct spectrophotometric recording of the amount of the hydrolyzed chromophoric substrate in acidic pH, whereas the maximum absorption of the product as accepted in the literature, is in alkaline pH. The molar absorption coefficient of the measurement at pH 5.7 is determined to be epsilon = 522 M-1.mm-1.

  1. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol fermenter.

    PubMed

    Maiti, Sampa; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Bihan, Yann Le; Drogui, Patrick; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo

    2015-08-15

    A new, simple, rapid and selective spectrophotometric method has been developed for detection and estimation of butanol in fermentation broth. The red colored compound, produced during reduction of diquat-dibromide-monohydrate with 2-mercaptoethanol in aqueous solution at high pH (>13), becomes purple on phase transfer to butanol and gives distinct absorption at λ520nm. Estimation of butanol in the fermentation broth has been performed by salting out extraction (SOE) using saturated K3PO4 solution at high pH (>13) followed by absorbance measurement using diquat reagent. Compatibility and optimization of diquat reagent concentration for detection and estimation of butanol concentration in the fermentation broth range was verified by central composite design. A standard curve was constructed to estimate butanol in acetone-ethanol-butanol (ABE) mixture under optimized conditions. The spectrophotometric results for butanol estimation, was found to have 87.5% concordance with the data from gas chromatographic analysis.

  2. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form

    NASA Astrophysics Data System (ADS)

    Salem, Hesham; Mohamed, Dalia

    2015-04-01

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision.

  3. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Ali, Omnia I. M.; Ismail, Nahla S.; Elgohary, Rasha M.

    2016-01-01

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method (1D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry (2D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL- 1 for LCD and 4.0-20.0 μg mL- 1 for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form.

  4. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form.

    PubMed

    Ali, Omnia I M; Ismail, Nahla S; Elgohary, Rasha M

    2016-01-15

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method ((1)D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry ((2)D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL(-1) for LCD and 4.0-20.0 μg mL(-1) for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form.

  5. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form.

    PubMed

    Salem, Hesham; Mohamed, Dalia

    2015-04-05

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision.

  6. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-02-05

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  7. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  8. Direct spectrophotometric method for analysis of food supplements containing synthetic polyhydroquinones

    NASA Astrophysics Data System (ADS)

    Vasilevsky, A. M.; Konoplev, G. A.; Stepanova, O. S.; Toropov, D. K.; Zagorsky, A. L.

    2016-04-01

    A novel direct spectrophotometric method for quantitative determination of Oxiphore® drug substance (synthetic polyhydroquinone complex) in food supplements is developed. Absorption spectra of Oxiphore® water solutions in the ultraviolet region are presented. Samples preparation procedures and mathematical methods of spectra post-analytical procession are discussed. Basic characteristics of the automatic CCD-based UV spectrophotometer and special software implementing the developed method are described. The results of the trials of the developed method and software are analyzed: the error of determination for Oxiphore® concentration in water solutions of the isolated substance and singlecomponent food supplements did not exceed 15% (average error was 7…10%).

  9. Development and Validation of Different Ultraviolet-Spectrophotometric Methods for the Estimation of Besifloxacin in Different Simulated Body Fluids.

    PubMed

    Singh, C L; Singh, A; Kumar, S; Kumar, M; Sharma, P K; Majumdar, D K

    2015-01-01

    In the present study a simple, accurate, precise, economical and specific UV-spectrophotometric method for estimation of besifloxacin in bulk and in different pharmaceutical formulation has been developed. The drug shows maximum λmax289 nm in distilled water, simulated tears and phosphate buffer saline. The linearity range of developed methods were in the range of 3-30 μg/ml of drug with a correlation coefficient (r(2)) 0.9992, 0.9989 and 0.9984 with respect to distilled water, simulated tears and phosphate buffer saline, respectively. Reproducibility by repeating methods as %RSD were found to be less than 2%. The limit of detection in different media was found to be 0.62, 0.72 and 0.88 μg/ml, respectively. The limit of quantification was found to be 1.88, 2.10, 2.60 μg/ml, respectively. The proposed method was validated statically according to International Conference on Harmonization guidelines with respect to specificity, linearity, range, accuracy, precision and robustness. The proposed methods of validation were found to be accurate and highly specific for the estimation of besifloxacin in different pharmaceutical formulations.

  10. Different Spectrophotometric and Chromatographic Methods for Determination of Mepivacaine and Its Toxic Impurity.

    PubMed

    Abdelwahab, Nada S; Fared, Nehal F; Elagawany, Mohamed; Abdelmomen, Esraa H

    2017-02-21

    Stability-indicating spectrophotometric, TLC-densitometric, and ultra-performance LC (UPLC) methods were developed forthe determination of mepivacaine HCl (MEP) in the presence of its toxic impurity, 2,6-dimethylanaline (DMA). Different spectrophotometric methods were developed for the determination of MEP and DMA. In a dual-wavelength method combined with direct spectrophotometric measurement, the absorbance difference between 221.4 and 240 nm was used for MEP measurements, whereas the absorbance at 283 nm was used for measuring DMA in the binary mixture. In the second-derivative method, amplitudes at 272.2 and 232.6 nm were recorded and used for the determination of MEP and DMA, respectively. The developed TLC-densitometric method depended on chromatographic separation using silica gel 60 F254 TLC plates as a stationary phase and methanol-water-acetic acid (9 + 1 + 0.1, v/v/v) as a developing system, with UV scanning at 230 nm. The developed UPLC method depended on separation using a C18 column (250 × 4.6 mm id, 5 μm particle size) as a stationary phase and acetonitrile-water (40 + 60, v/v; pH 4 with phosphoric acid) as a mobile phase at a flow rate of 0.4 mL/min, with UV detection at 215 nm. The chromatographic run time was approximately 1 min. The proposed methods were validated with respect to International Conference on Harmonization guidelines regarding precision, accuracy, ruggedness, robustness, and specificity.

  11. Quantitative determination of zopiclone and its impurity by four different spectrophotometric methods.

    PubMed

    Abdelrahman, Maha M; Naguib, Ibrahim A; El Ghobashy, Mohamed R; Ali, Nesma A

    2015-02-25

    Four simple, sensitive and selective spectrophotometric methods are presented for determination of Zopiclone (ZPC) and its impurity, one of its degradation products, namely; 2-amino-5-chloropyridine (ACP). Method A is a dual wavelength spectrophotometry; where two wavelengths (252 and 301 nm for ZPC, and 238 and 261 nm for ACP) were selected for each component in such a way that difference in absorbance is zero for the second one. Method B is isoabsorptive ratio method by combining the isoabsorptive point (259.8 nm) in the ratio spectrum using ACP as a divisor and the ratio difference for a single step determination of both components. Method C is third derivative (D(3)) spectrophotometric method which allows determination of both ZPC at 283.6 nm and ACP at 251.6 nm without interference of each other. Method D is based on measuring the peak amplitude of the first derivative of the ratio spectra (DD(1)) at 263.2 nm for ZPC and 252 nm for ACP. The suggested methods were validated according to ICH guidelines and can be applied for routine analysis in quality control laboratories. Statistical analysis of the results obtained from the proposed methods and those obtained from the reported method has been carried out revealing high accuracy and good precision.

  12. Quantitative determination of zopiclone and its impurity by four different spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Maha M.; Naguib, Ibrahim A.; El Ghobashy, Mohamed R.; Ali, Nesma A.

    2015-02-01

    Four simple, sensitive and selective spectrophotometric methods are presented for determination of Zopiclone (ZPC) and its impurity, one of its degradation products, namely; 2-amino-5-chloropyridine (ACP). Method A is a dual wavelength spectrophotometry; where two wavelengths (252 and 301 nm for ZPC, and 238 and 261 nm for ACP) were selected for each component in such a way that difference in absorbance is zero for the second one. Method B is isoabsorptive ratio method by combining the isoabsorptive point (259.8 nm) in the ratio spectrum using ACP as a divisor and the ratio difference for a single step determination of both components. Method C is third derivative (D3) spectrophotometric method which allows determination of both ZPC at 283.6 nm and ACP at 251.6 nm without interference of each other. Method D is based on measuring the peak amplitude of the first derivative of the ratio spectra (DD1) at 263.2 nm for ZPC and 252 nm for ACP. The suggested methods were validated according to ICH guidelines and can be applied for routine analysis in quality control laboratories. Statistical analysis of the results obtained from the proposed methods and those obtained from the reported method has been carried out revealing high accuracy and good precision.

  13. Atomic absorption spectrophotometric method for determination of polydimethylsiloxane residues in pineapple juice: collaborative study.

    PubMed

    Parker, R D

    1990-01-01

    An atomic absorption spectrophotometric method for determination of polydimethylsiloxane (PDMS) residues in pineapple juice was collaboratively studied by 9 laboratories. PDMS residues are extracted from pineapple juice with 4-methyl-2-pentanone and the extracted silicone is measured by atomic absorption spectrophotometry using a nitrous oxide/acetylene flame. Collaborators analyzed 5 samples including 1 blind duplicate. Reproducibility relative standard deviations (RSDR) were 13.1% at 31 ppm, 6.9% at 18 ppm, 14.8% at 7.9 ppm, and 16.1% at 4.9 ppm PDMS. The method has been approved interim official first action by AOAC.

  14. Determination of niobium in rocks by an isotope dilution spectrophotometric method

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1970-01-01

    Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.

  15. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  16. Second Order Accurate Finite Difference Methods

    DTIC Science & Technology

    1984-08-20

    a study of the idealized material has direct applications to some polymer structures (4, 5). Wave propagation studies in hyperelastic materials have...34Acceleration Wave Propagation in Hyperelastic Rods of Variable Cross- section. Wave Motion, V4, pp. 173-180, 1982. 9. M. Hirao and N. Sugimoto...Waves in Hyperelastic Road," Quart. Appl. Math., V37, pp. 377-399, 1979. 11. G. A. Sod. "A Survey of Several Finite Difference Methods for Systems of

  17. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region

    PubMed Central

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835

  18. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region.

    PubMed

    Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10-30 mg L(-1) with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L(-1), respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment.

  19. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride.

    PubMed

    Abdellaziz, Lobna M; Hosny, Mervat M

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe(3+) ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2' bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange-red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations

  20. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical

  1. Analysis of some antifungal drugs by spectrophotometric and spectrofluorimetric methods in different pharmaceutical dosage forms.

    PubMed

    Khashaba, P Y; El-Shabouri, S R; Emara, K M; Mohamed, A M

    2000-03-01

    Simple spectrophotometric and spectrofluorimetric methods are suggested for the determination of antifungal drugs; clotrimazole, econazole nitrate, ketoconazole, miconazole and tolnaftate. Spectrophotometric one depends on the interaction between imidazole antifungal drugs as n-electron donor with the pi acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in methanol or with p-chloranilic acid (p-CA) in acetonitrile. The produced chromogens obey Beer's law at lambda(max) 460, and 520 nm in the concentration range 22.5-200 and 7.9-280 microg ml(-1) for DDQ, and p-CA, respectively. Spectrofluorimetric method is based on the measurement of the native fluorescence of ketoconazole at 375 nm with excitation at 288 nm and or the induced fluorescence after alkaline hydrolysis of tolnaftate with 5 M NaOH solution at 420 nm with excitation at 344 nm. Fluorescence intensity versus concentration is linear for ketoconazole at 49.7-800 ng ml(-1) while for tolnaftate, it is in the range of 20.4-400 ng ml(-1). The proposed methods were applied successfully for the determination of all the studied drugs in their pharmaceutical formulations.

  2. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-05

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method.

  3. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries.

  4. Novel spectrophotometric method for selective determination of compounds in ternary mixtures (dual wavelength in ratio spectra).

    PubMed

    Saad, Ahmed S

    2015-08-05

    A simple selective spectrophotometric method for determination of compounds in ternary mixture was developed by combining the resolution power of two well-known methods that are commonly used for binary mixtures; namely ratio difference method and dual wavelength. The new method (dual wavelength in ratio spectra) was successfully applied for the determination of a ternary mixture of betamethasone dipropionate (BM), clotrimazole (CT) and benzyl alcohol (BA) in pure powder form and in their pharmaceutical preparation. The difference in amplitudes (ΔP) in the ratio spectra at 252.0 and 258.0 nm (ΔP(252.0-258.0 nm)) corresponds to BM, while ΔP(266.8-255.4 nm) and ΔP(254.2-243.5 nm) corresponds to CT and BA, respectively. The method was validated as per the USP 2005 guidelines. The developed method can be used in quality control laboratories for routine analysis of compounds in ternary mixtures.

  5. Comparison of three spectrophotometric methods for analysis of egg yolk carotenoids.

    PubMed

    Islam, K M S; Schweigert, F J

    2015-04-01

    Carotenoids accumulated in the egg yolk are of importance for two reasons. Firstly they are important pigments influencing customer acceptance and secondly they are essential components with positive health effects either as antioxidants or as precursor of vitamin A. Different analytical methods are available to quantitatively identify carotenoids from egg yolk such as spectrophotometric methods described by AOAC (Association of Official Analytical Chemists) and HPLC (High Performance Liquid Chromatography). Both methods have in common that they are time consuming, need a laboratory environment and well trained technical operators. Recently, a rapid lab-independent spectrophotometric method (iCheck, BioAnalyt GmbH, Germany) has been introduced that claims to be less time consuming and easy to operate. The aim of the current study was therefore to compare the novel method with the two standard methods. Yolks of 80 eggs were analysed as aliquots by the three methods in parallel. While both spectrometric methods are only able measure total carotenoids as total ß-carotene, HPLC enables the determination of individual carotenoids such lutein, zeaxanthin, canthaxanthin, ß-carotene and β-apocarotenoic ester. In general, total carotenoids levels as obtained by AOAC were in average 27% higher than those obtained by HPLC. Carotenoid values obtained by the reference methods AOAC and HPLC are highly correlated with the iCheck method with r(2) of 0.99 and 0.94 for iCheck vs. AOAC and iCheck vs. HPLC, respectively (both p<0.001). Bland Altman analysis showed that the novel iCheck method is comparable to the reference methods. In conclusion, the novel rapid and portable iCheck method is a valid and effective tool to determine total carotenoid of egg yolk under laboratory-independent conditions with little trained personal.

  6. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater.

    PubMed

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-02-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.

  7. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions

    NASA Astrophysics Data System (ADS)

    Belal, Tarek S.; El-Kafrawy, Dina S.; Mahrous, Mohamed S.; Abdel-Khalek, Magdi M.; Abo-Gharam, Amira H.

    2016-02-01

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524 nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490 nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415 nm. The fourth method involves the formation of a yellow complex peaking at 361 nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8 μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  8. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions.

    PubMed

    Belal, Tarek S; El-Kafrawy, Dina S; Mahrous, Mohamed S; Abdel-Khalek, Magdi M; Abo-Gharam, Amira H

    2016-02-15

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415nm. The fourth method involves the formation of a yellow complex peaking at 361nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  9. A continuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase.

    PubMed

    Espín, J C; Morales, M; Varón, R; Tudela, J; García-Cánovas, F

    1995-10-10

    A continuous spectrophotometric method for the determination of the monophenolase and diphenolase activities of apple polyphenol oxidase is described. The method is based on the coupling reaction between 3-methyl-2-benzothiazolinone hydrazone (MBTH) and the quinone product of the oxidation of p-hydroxyphenyl propionic acid and 3,4-dihydroxyphenyl propionic acid in the presence of polyphenol oxidase. The lambda(max) and molar absorptivity (epsilon) for the MBTH-quinone adduct have been calculated. The presence of MBTH in the reaction medium decreases the lag period during the expression of monophenolase activity. The high value of V(mas) suggests the existence of a high catalytic constant. This, together with the value of epsilon for the MBTH-quinone adduct, makes this method more sensitive than other continuous methods.

  10. Kinetic spectrophotometric method for the determination of morphine in biological samples

    NASA Astrophysics Data System (ADS)

    Sheibani, A.; Shishehbore, M. Reza; Mirparizi, E.

    2010-10-01

    In this paper a simple, selective and inexpensive kinetic method was developed for the determination of morphine based on its inhibitory effect on the Janus green-bromate system in sulfuric acid media. The reaction was monitored spectrophotometrically at 618 nm by a fixed time method. The effect of different parameters such as concentration of reactants and temperature on the rate of reaction was investigated and optimum conditions were obtained. The calibration curve was linear in the concentration range 0.07-7.98 mg L -1 of morphine, and detection limit of the method was 3.0 × 10 -2 mg L -1. The relative standard deviation for five determinations of 3.74 mg L -1 of morphine was 0.57%. Finally, the proposed method was successfully applied to the determination of morphine in human urine and serum as real samples.

  11. Validated spectrophotometric methods for simultaneous determination of Omeprazole, Tinidazole and Doxycycline in their ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-01-01

    A comparative study of smart spectrophotometric techniques for the simultaneous determination of Omeprazole (OMP), Tinidazole (TIN) and Doxycycline (DOX) without prior separation steps is developed. These techniques consist of several consecutive steps utilizing zero/or ratio/or derivative spectra. The proposed techniques adopt nine simple different methods, namely direct spectrophotometry, dual wavelength, first derivative-zero crossing, amplitude factor, spectrum subtraction, ratio subtraction, derivative ratio-zero crossing, constant center, and successive derivative ratio method. The calibration graphs are linear over the concentration range of 1-20 μg/mL, 5-40 μg/mL and 2-30 μg/mL for OMP, TIN and DOX, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and successfully applied to commercial pharmaceutical preparation. The methods that are validated according to the ICH guidelines, accuracy, precision, and repeatability, were found to be within the acceptable limits.

  12. Novel selective kinetic spectrophotometric method for determination of norfloxacin in its pharmaceutical formulations.

    PubMed

    Darwish, Ibrahim A; Sultan, Maha A; Al-Arfaj, Hessa A

    2009-06-15

    Novel selective and simple kinetic spectrophotometric method has been developed and validated for the determination of norfloxacin (NOR) in its pharmaceutical formulations. The method was based on the reaction of N-vinylpiprazine formed from the interaction of the mono-substituted piprazinyl group in NOR and acetaldehyde with 2,3,5,6-tetrachloro-1,4-benzoquinone to give colored N-vinylpiprazino-substituted benzoquinone derivative. The formation of the colored product was monitored spectrophotometrically by measuring the absorbance at 625 nm. The factors affecting the reaction was studied and optimized. The stoichiometry of the reaction was determined and the reaction pathway was postulated. The activation energy of the reaction was calculated and found to be 5.072 kJ mol(-1). The initial rate and fixed time (at 5min) methods were utilized for constructing the calibration graphs. The graphs were linear in concentration ranges of 20-150 and 10-180 microg mL(-1) with limits of detection of 8.4 and 3.2 microg mL(-1) for the initial rate and fixed time methods, respectively. The analytical performance of both methods was fully validated, and the results were satisfactory. No interferences were observed from the excipients that are commonly present in the pharmaceutical formulations, as well as from tinidazole that is co-formulated with NOR in some of its formulations. The proposed methods were successfully applied to the determination of NOR in its commercial pharmaceutical formulations. The label claim percentages were 98.4-100.4+/-0.52-1.04%. Statistical comparison of the results with those of the official method showed excellent agreement and proved that there was no significant difference in the accuracy and precision between the official and the proposed methods.

  13. Spectrophotometric Methods for the Determination of Linagliptin in Binary Mixture with Metformin Hydrochloride and Simultaneous Determination of Linagliptin and Metformin Hydrochloride using High Performance Liquid Chromatography

    PubMed Central

    El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.

    2013-01-01

    Simple, accurate and precise Zero order, first derivative spectrophotometric and chromatographic methods have been developed and validated for the determination of linagliptin (LNG) and metformin HCl (MET). The zero order and first derivative spectrophotometric methods were used for the determination of LNG in the range of 5-30 μg mL−1 by measuring the absorbance at 299 nm and 311 respectively. Besides, a reversed-phase liquid chromatographic (RP-LC) method is described for the simultaneous determination of LNG and MET. Chromatographic separation was achieved on a Symmetry® Waters C18 column (150 mm × 4.6 mm, 5 μm). Isocratic elution based on potassium dihydrogen phosphate buffer pH (4.6) - methanol (30:70, v/v) at a flow rate of 1 mLmin−1 with UV detection at 260 nm was performed. Linearity, accuracy and precision were found to be acceptable over the concentration ranges of 0.125-4 μg mL−1 and 20-800 μg mL−1 for LNG and MET, respectively. The results were statistically compared using one-way analysis of variance (ANOVA). The optimized methods were validated and proved to be specific, robust, precise and accurate for the quality control of the drugs in their pharmaceutical preparation. PMID:23675288

  14. Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine

    NASA Astrophysics Data System (ADS)

    El-Kosasy, A. M.; Abdel-Aziz, Omar; Magdy, N.; El Zahar, N. M.

    2016-03-01

    New accurate, sensitive and selective spectrophotometric and chemometric methods were developed and subsequently validated for determination of Imipenem (IMP), ciprofloxacin hydrochloride (CIPRO), dexamethasone sodium phosphate (DEX), paracetamol (PAR) and cilastatin sodium (CIL) in human urine. These methods include a new derivative ratio method, namely extended derivative ratio (EDR), principal component regression (PCR) and partial least-squares (PLS) methods. A novel EDR method was developed for the determination of these drugs, where each component in the mixture was determined by using a mixture of the other four components as divisor. Peak amplitudes were recorded at 293.0 nm, 284.0 nm, 276.0 nm, 257.0 nm and 221.0 nm within linear concentration ranges 3.00-45.00, 1.00-15.00, 4.00-40.00, 1.50-25.00 and 4.00-50.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively. PCR and PLS-2 models were established for simultaneous determination of the studied drugs in the range of 3.00-15.00, 1.00-13.00, 4.00-12.00, 1.50-9.50, and 4.00-12.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively, by using eighteen mixtures as calibration set and seven mixtures as validation set. The suggested methods were validated according to the International Conference of Harmonization (ICH) guidelines and the results revealed that they were accurate, precise and reproducible. The obtained results were statistically compared with those of the published methods and there was no significant difference.

  15. Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine.

    PubMed

    El-Kosasy, A M; Abdel-Aziz, Omar; Magdy, N; El Zahar, N M

    2016-03-15

    New accurate, sensitive and selective spectrophotometric and chemometric methods were developed and subsequently validated for determination of Imipenem (IMP), ciprofloxacin hydrochloride (CIPRO), dexamethasone sodium phosphate (DEX), paracetamol (PAR) and cilastatin sodium (CIL) in human urine. These methods include a new derivative ratio method, namely extended derivative ratio (EDR), principal component regression (PCR) and partial least-squares (PLS) methods. A novel EDR method was developed for the determination of these drugs, where each component in the mixture was determined by using a mixture of the other four components as divisor. Peak amplitudes were recorded at 293.0 nm, 284.0 nm, 276.0 nm, 257.0 nm and 221.0 nm within linear concentration ranges 3.00-45.00, 1.00-15.00, 4.00-40.00, 1.50-25.00 and 4.00-50.00 μg mL(-1) for IMP, CIPRO, DEX, PAR and CIL, respectively. PCR and PLS-2 models were established for simultaneous determination of the studied drugs in the range of 3.00-15.00, 1.00-13.00, 4.00-12.00, 1.50-9.50, and 4.00-12.00 μg mL(-1) for IMP, CIPRO, DEX, PAR and CIL, respectively, by using eighteen mixtures as calibration set and seven mixtures as validation set. The suggested methods were validated according to the International Conference of Harmonization (ICH) guidelines and the results revealed that they were accurate, precise and reproducible. The obtained results were statistically compared with those of the published methods and there was no significant difference.

  16. New method for spectrophotometric determination of quinones and barbituric acid through their reaction. A kinetic study

    NASA Astrophysics Data System (ADS)

    Medien, H. A. A.

    1996-11-01

    A new and sensitive spectrophotometric method is described for the determination of p-benzoquinone, p-chloranil and 1.4-naphthoquinone. The method is based on the reaction between quinones and barbituric acid, by which a color is developed with maximum absorption between 485 and 555 nm in 50% methyl alcohol-water mixture. The absorption of the product obeys Beer's law within the concentration range 0.025-05 mM of orginal quinone. The kinetics of the reaction between p-benzoquinone and barbituric acid was studied in a range of methyl alcohol-water mixtures. The reaction follows overall second order kinetics, first order in each of the reactants. The rate increases with increasing dielectric constant. The method was applied for determination of barbituric acid with p-benzoquinone in the concentration range of 0.025-0.345 mM. Other barbiturates do not interfere.

  17. Spectrophotometric method for the determination of nifedipine with 4-(methylamino)phenol and potassium dichromate.

    PubMed

    Rahman, Nafisur; Hoda, Md Nasrul

    2002-06-01

    A new simple, sensitive and reproducible spectrophotometric method for the determination of nifedipine in pure and dosage forms has been proposed. It is based on the reduction of nifedipine with Zn/NNH4Cl, followed by coupling with N-methyl-1,4-benzoquinoneimine--the oxidation product of 4-(methylamino)phenol, to give a chromophore which absorbed maximally at 525 nm. The experimental conditions were optimised and Beer's law was obeyed over the concentration range of 5-175 microg ml(-1). The molar absorptivity, detection limit, recovery and RSD were found to be 1.9 x 10(3) l mol(-1) cm(-1), 1.1 microg ml(-1), 99.7-100.5% and 0.3-0.8%, respectively. The proposed method was compared favourably with the official B.P. method.

  18. Derivative spectrophotometric method for simultaneous determination of clindamycin phosphate and tretinoin in pharmaceutical dosage forms.

    PubMed

    Barazandeh Tehrani, Maliheh; Namadchian, Melika; Fadaye Vatan, Sedigheh; Souri, Effat

    2013-04-10

    A derivative spectrophotometric method was proposed for the simultaneous determination of clindamycin and tretinoin in pharmaceutical dosage forms. The measurement was achieved using the first and second derivative signals of clindamycin at (1D) 251 nm and (2D) 239 nm and tretinoin at (1D) 364 nm and (2D) 387 nm.The proposed method showed excellent linearity at both first and second derivative order in the range of 60-1200 and 1.25-25 μg/ml for clindamycin phosphate and tretinoin respectively. The within-day and between-day precision and accuracy was in acceptable range (CV<3.81%, error<3.20%). Good agreement between the found andadded concentrations indicates successful application of the proposed method for simultaneous determination of clindamycin and tretinoin in synthetic mixtures and pharmaceutical dosage form.

  19. Spectrophotometric method for determination parts per million levels of cyclohexylamine in water.

    PubMed

    Kumbhar, A G; Narasimhan, S V; Mathur, P K

    1998-10-01

    UV-vis spectrophotometric method for the analysis of cyclohexylamine (CHA) in aqueous medium in the range of 0.3-20 ppm was developed by coupling CHA with sodium 1,2-naphthaquinone-4-sulphonate (NQS). At 470 nm a calibration slope of 0.028 OD ppm(-1) was observed. Minimum detection limit was 0.3 ppm with standard deviation of 0.1 ppm. Reagent concentration and solution pH for the analysis are optimised by studying its effect on absorbance at 470 nm. The method was applied to analyse CHA for evaluating the performance of ion exchange resin used in condensate purification plant (CPP) of power station where, CHA is used as all volatile treatment (AVT) reagent to inhibit steam generator (SG) corrosion. Structure of the adduct formed by coupling CHA with NQS is elucidated using NMR ((1)H and (13)C) and IR spectra, CHN analysis and mole ratio variation method.

  20. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.

  1. New potentiometric and spectrophotometric methods for the determination of dextromethorphan in pharmaceutical preparations.

    PubMed

    Elmosallamy, Mohamed A F; Amin, Alaa S

    2014-01-01

    New, simple and convenient potentiometric and spectrophotometric methods are described for the determination of dextromethorphan hydrobromide (DXM) in pharmaceutical preparations. The potentiometric technique is based on developing a potentiometric sensor incorporating the dextromethorphan tetrakis(p-chlorophenyl)borate ion-pair complex as an electroactive species in a plasticized PVC matrix membrane with o-nitophenyl octyl ether or dioctyl phthalate. The sensor shows a rapid near Nernstian response of over 1 × 10(-5) - 1 × 10(-2) mol L(-1) dextromethorphan in the pH range of 3.0 - 9.0. The detection limit is 2 × 10(-6) mol L(-1) DXM and the response time is instantaneous (2 s). The proposed spectrophotometric technique involves the reaction of DXM with eriochrom black T (EBT) to form an ion-associate complex. Solvent extraction is used to improve the selectivity of the method. The optimal extraction and reaction conditions have been studied, and the analytical characteristics of the method have been obtained. Linearity is obeyed in the range of 7.37 - 73.7 × 10(-5) mol L(-1) DXM, and the detection limit of the method is 1.29 × 10(-5) mol L(-1). The relative standard deviation (RSD) and relative error for six replicate measurements of 3.685 × 10(-4) mol L(-1) are 0.672 and 0.855%, respectively. The interference effect of some excepients has also been tested. The drug contents in pharmaceutical preparations were successfully determined by the proposed methods by applying the standard-addition technique.

  2. Direct and selective spectrophotometric method for the determination of vanadium in steel, environmental and biological samples

    NASA Astrophysics Data System (ADS)

    Mathew, Sunitha B.; Pataila, Girija; Pillai, Ajai K.; Gupta, V. K.

    2011-10-01

    A simple, direct and selective spectrophotometric method for determination of vanadium is described. The present methodology is based on the strong oxidizing power of vanadium (V). Vanadium (V) selectively oxidizes leucocrystal violet (LCV) to crystal violet in the presence of phosphoric acid. The violet colored dye obtained shows maximum absorbance at 590 nm. Beer's law is obeyed in the concentration range 0.06-0.6 μg ml -1. The molar absorptivity and Sandell's sensitivity are found to be 6.78 × 10 4 l mol -1 cm -1 and 0.0044 μg cm -2, respectively. The proposed method is simple, direct, and sensitive. It has been successfully applied for the determination of vanadium in various environmental, biological and steel samples.

  3. A spectrophotometric method for the determination of organic soluble matter in bitumen fumes.

    PubMed

    Vu-Duc, T; Huynh, C K; Lafontaine, M; Bonnet, P; Binet, S

    2002-07-01

    A UV spectrophotometric procedure was validated for the determination of organic soluble matter in bitumen fumes collected by filtration technique. Ultrasonic extraction was carried out with toluene, an efficient extraction solvent for polycyclic aromatic hydrocarbons, followed by UV absorbance measurements at 320 nm. A calibration curve is plotted from the same set of samples determined by classical weighing method. Further determinations can also be made using the slope factor of the calibration curve. The procedure presents obvious simplicity and rapidity advantages and is less prone to losses than the measurements of weight. Inter-method comparisons of samples collected from experimental laboratory-generated penetration bitumen fumes commonly used in road paving showed that the three available procedures-weighing, infrared, and UV--described for the determination of organic soluble matter yield equivalent results.

  4. Spectrophotometric method for determination and kinetics of amino acids through their reaction with syringaldehyde

    NASA Astrophysics Data System (ADS)

    Medien, H. A. A.

    1998-02-01

    A spectrophotometric method is described for the determination of amino acids. The method is based on the reaction between amino acids and syringaldehyde at pH 9.0, by which a color is developed with maximum absorption at 420 nm in aqueous methyl alcohol. The absorption of the product obeys Beer's law within the concentration range of 0.025-0.5 mM of original amino acid. The kinetics of the reaction follows overall second order kinetics, first order in each of the reactants. The rates of the reaction were investigated as a function of pH of the reaction medium and structure of the amino compounds. Logarithms of the second-order rate constants increased with amino acid anion concentration as the pH was increased. The mechanisms of the reaction have been discussed.

  5. Four Derivative Spectrophotometric Methods for the Simultaneous Determination of Carmoisine and Ponceau 4R in Drinks and Comparison with High Performance Liquid Chromatography.

    PubMed

    Turak, Fatma; Dinç, Mithat; Dülger, Oznur; Ozgür, Mahmure Ustun

    2014-01-01

    Four simple, rapid, and accurate spectrophotometric methods were developed for the simultaneous determination of two food colorants, Carmoisine (E122) and Ponceau 4R (E124), in their binary mixtures and soft drinks. The first method is based on recording the first derivative curves and determining each component using the zero-crossing technique. The second method uses the first derivative of ratio spectra. The ratio spectra are obtained by dividing the absorption spectra of the binary mixture by that of one of the components. The third method, derivative differential procedure, is based on the measurement of difference absorptivities derivatized in first order of solution of drink samples in 0,1 N NaOH relative to that of an equimolar solution in 0,1 N HCl at wavelengths of 366 and 451 nm for Carmoisine and Ponceau 4R, respectively. The last method, based on the compensation method is presented for derivative spectrophotometric determination of E122 and E124 mixtures with overlapping spectra. By using ratios of the derivative maxima, the exact compensation of either component in the mixture can be achieved, followed by its determination. These proposed methods have been successfully applied to the binary mixtures and soft drinks and the results were statistically compared with the reference HPLC method (NMKL 130).

  6. A Novel Spectrophotometric Method for Estimation of Fe in Metallurgical Samples Using Cyanex 301 as Extractant

    NASA Astrophysics Data System (ADS)

    Biswas, R. K.; Karmakar, K.; Mondal, T. K.

    2014-09-01

    Iron(III) has been estimated spectrophotometrically at 425 nm following its quantitative extraction from Cl- medium by Cyanex 301 in redistilled colorless kerosene. Beer's law is valid provided (i) a 10-min phase agitation is allowed in extraction, (ii) [HCl] in the aqueous phase during extraction is kept at 0.10 mol/l or less, (iii) [Cyanex 301] is kept over 0.5% (v/v). It is observed that the linearity range of Beer's plot is increased with increasing (v/v)% of the Cyanex 301 used; the optimum ([Fe(III)], mg/l)/[Cyanex 301] in ((v/v)%) is 20:1. The color is stable for at least 10 days. The molar extinction coefficient ɛ is 7111 l/molṡcm. The method has been applied in the analysis of some metallurgical samples.

  7. Kinetic spectrophotometric methods for the determination of artificial sweetener (sucralose) in tablets.

    PubMed

    Youssef, Rasha M; Korany, Mohamed A; Khamis, Essam F; Mahgoub, Hoda; Kamal, Miranda F

    2011-04-01

    Two simple and sensitive kinetic spectrophotometric methods for the determination of sucralose are described. The first method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time of 30 min. The absorbance of the green coloured manganate ions produced was measured at 610 nm. The second method is based on the reaction of sucralose with cerium (IV) ammonium sulfate in the presence of perchloric acid with the subsequent measurement of the excess unreacted cerium (IV) ammonium sulfate at 320 nm at a fixed time of 30 min in a thermostated water bath at 60 ± 1 °C. This principle is adopted to develop a kinetic method for sucralose determination. The absorbance concentration plots in both methods were rectilinear over the range 4-16 and 10-30 µg ml(-1) , for the first and second methods, respectively. The different experimental parameters affecting the development and stability of the colours were carefully studied and optimized. The determination of sucralose by rate constant method, fixed concentration method, and fixed-time method was also feasible with calibration equations obtained but the latter method was found to be more applicable. The two methods have been applied successfully to commercial tablets.

  8. Spectrophotometric methods for quantifying pigmentation in human hair-influence of MC1R genotype and environment.

    PubMed

    Shekar, Sri N; Duffy, David L; Frudakis, Tony; Montgomery, Grant W; James, Michael R; Sturm, Richard A; Martin, Nicholas G

    2008-01-01

    Eumelanin (brown/black melanin) and pheomelanin (red/yellow melanin) in human hair can be quantified using chemical methods or approximated using spectrophotometric methods. Chemical methods consume greater resources, making them less attractive for epidemiological studies. This investigation sought to identify the spectrophotometric measures that best explain the light-dark continuum of hair color and the measure that is best able to distinguish red hair from nonred hair. Genetic analysis was performed on these two measures to determine the proportion of genetic and environmental influences on variation in these traits. Reflectance curves along the visible spectrum and subjective ratings of hair color were collected from 1730 adolescent twin individuals. Discriminant class analyses were performed to determine the spectrophotometric measure that could best proxy for eumelanin and pheomelanin quantities. The ratio of light reflected in the green portion of the spectrum to that reflected in the red portion of the spectrum was best able to distinguish red hair from nonred hair. Melanocortin 1 receptor (MC1R) genotype explained some, but not all, variation in this measure. Light absorbed in the red portion of the spectrum was best able to explain the light-dark continuum of hair color. Variance components analysis showed that there were qualitatively different genetic influences between males and females for the light-dark continuum of hair. Our results show that spectrophotometric measures approximating variation in eumelanin and pheomelanin may be considered as an alternative to chemical methods in larger epidemiological studies.

  9. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2015-09-05

    Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  10. Simple, sensitive, selective and validated spectrophotometric methods for the estimation of a biomarker trigonelline from polyherbal gels

    NASA Astrophysics Data System (ADS)

    Chopra, Shruti; Motwani, Sanjay K.; Ahmad, Farhan J.; Khar, Roop K.

    2007-11-01

    Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20 μg mL -1 ( r2 = 0.9999) in deionised water and 1-24 μg mL -1 ( r2 = 0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 × 10 3 L mol -1 cm -1 and 0.0422 μg cm -2/0.001A in deionised water; and 3.05 × 10 3 L mol -1 cm -1 and 0.0567 μg cm -2/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 μg mL -1 in deionised water and 0.13 and 0.40 μg mL -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.

  11. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  12. Trace determination and chemical speciation of selenium in environmental water samples using catalytic kinetic spectrophotometric method.

    PubMed

    Chand, Vimlesh; Prasad, Surendra

    2009-06-15

    A catalytic kinetic method is described for the determination of Se(IV), Se(VI) and total inorganic selenium in water based on the catalytic effect of Se(IV) on the reduction of bromate by hydrazine dihydrochloride in acidic media. The generated bromine decolorized methyl orange (MO) and the reaction was monitored spectrophotometrically at 507 nm as a function of time. The initial rate and fixed time methods were adopted for the determination and speciation of inorganic selenium. Under two optimum conditions, the calibration graphs are linear in the range 0-126.3 and 0-789.6 microg L(-1) of Se(IV) for the initial rate method and 0-315.8 and 0-789.6 microg L(-1) of Se(IV) for the fixed time method. The detection limits were 1.3 and 14.7 microg L(-1) for the initial rate and fixed time methods, respectively. The proposed methods were validated statistically and through recovery studies in environmental water samples. The relative standard deviation in the determination of 31.6-94.8 microg L(-1) of Se(IV) and Se(VI) was less than 6%. Analyses of standard reference materials for selenium using initial rate and fixed time methods showed that the proposed methods have good accuracy. Se(IV), Se(VI) and total inorganic selenium in environmental water samples have been successfully determined by this method after selective reduction of Se(VI) to Se(IV).

  13. Extractive spectrophotometric methods for the determination of nifedipine in pharmaceutical formulations using bromocresol green, bromophenol blue, bromothymol blue and eriochrome black T.

    PubMed

    Rahman, Nafisur; Ahmad Khan, Nadeem; Hejaz Azmi, Syed Najmul

    2004-01-01

    Four simple, sensitive and accurate spectrophotometric methods have been developed for the determination of nifedipine in pharmaceutical formulations. These methods are based on the formation of ion-pair complexes of amino derivative of the nifedipine with bromocresol green (BCG), bromophenol blue (BPB), bromothymol blue (BTB) and eriochrome black T (EBT) in acidic medium. The coloured products are extracted with chloroform and measured spectrophotometrically at 415 nm (BCG, BPB and BTB) and 520 nm (EBT). Beer's law was obeyed in the concentration range of 5.0-32.5, 4.0-37.5, 6.5-33.0 and 4.5-22.5 microg ml(-1) with molar absorptivity of 6.41 x 10(3), 4.85 x 10(3), 5.26 x 10(3) and 7.69 x 10(3) l mol(-1) cm(-1) and relative standard deviation of 0.82%, 0.72%, 0.66% and 0.68% for BCG, BPB, BTB and EBT methods, respectively. These methods have been successfully applied for the assay of drug in pharmaceutical formulations. No interference was observed from common pharmaceutical adjuvants. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.

  14. Kinetic spectrophotometric method for trace determination of thiocyanate based on its inhibitory effect

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Kumar, Basant; Asthana, Abhas

    2010-03-01

    A kinetic spectrophotometric method for the determination of thiocyanate, based on its inhibitory effect on silver(I) catalyzed substitution of cyanide ion, by phenylhydrazine in hexacyanoferrate(II) is described. Thiocyanate ions form strong complexes with silver(I) catalyst which is used as the basis for its determination at trace level. The progress of reaction was monitored, spectrophotometrically, at 488 nm ( λmax of [Fe(CN) 5PhNHNH 2] 3-, complex) under the optimum reaction conditions at: 2.5 × 10 -3 M [Fe(CN) 6] 4-, 1.0 × 10 -3 M [PhNHNH 2], 8.0 × 10 -7 M [Ag +], pH 2.8 ± 0.02, ionic strength ( μ) 0.02 M (KNO 3) and temperature 30 ± 0.1 °C. A linear relationship obtained between absorbance (measured at 488 nm at different times) and inhibitor concentration, under specified conditions, has been used for the determination of [thiocyanate] in the range of 0.8-8.0 × 10 -8 M with a detection limit of 2 × 10 -9 M. The standard deviation and percentage error have been calculated and reported with each datum. A most plausible mechanistic scheme has been proposed for the reaction. The values of equilibrium constants for complex formation between catalyst-inhibitor ( KCI), catalyst-substrate ( Ks) and Michaelis-Menten constant ( Km) have been computed from the kinetic data. The influence of possible interference by major cations and anions on the determination of thiocyanate and their limits has been investigated.

  15. Kinetic spectrophotometric method for trace determination of thiocyanate based on its inhibitory effect.

    PubMed

    Naik, Radhey M; Kumar, Basant; Asthana, Abhas

    2010-03-01

    A kinetic spectrophotometric method for the determination of thiocyanate, based on its inhibitory effect on silver(I) catalyzed substitution of cyanide ion, by phenylhydrazine in hexacyanoferrate(II) is described. Thiocyanate ions form strong complexes with silver(I) catalyst which is used as the basis for its determination at trace level. The progress of reaction was monitored, spectrophotometrically, at 488 nm (lambda(max) of [Fe(CN)(5)PhNHNH(2)](3-), complex) under the optimum reaction conditions at: 2.5x10(-3)M [Fe(CN)(6)](4-), 1.0x10(-3)M [PhNHNH(2)], 8.0x10(-7)M [Ag(+)], pH 2.8+/-0.02, ionic strength (mu) 0.02 M (KNO(3)) and temperature 30+/-0.1 degrees C. A linear relationship obtained between absorbance (measured at 488 nm at different times) and inhibitor concentration, under specified conditions, has been used for the determination of [thiocyanate] in the range of 0.8-8.0x10(-8)M with a detection limit of 2x10(-9)M. The standard deviation and percentage error have been calculated and reported with each datum. A most plausible mechanistic scheme has been proposed for the reaction. The values of equilibrium constants for complex formation between catalyst-inhibitor (K(CI)), catalyst-substrate (K(s)) and Michaelis-Menten constant (K(m)) have been computed from the kinetic data. The influence of possible interference by major cations and anions on the determination of thiocyanate and their limits has been investigated.

  16. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  17. Mean centering of double divisor ratio spectra, a novel spectrophotometric method for analysis of ternary mixtures

    NASA Astrophysics Data System (ADS)

    Hassan, Said A.; Elzanfaly, Eman S.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-01-01

    A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.

  18. Smart stability-indicating spectrophotometric methods for determination of binary mixtures without prior separation.

    PubMed

    El-Bardicy, Mohammad G; Lotfy, Hayam M; El-Sayed, Mohammad A; El-Tarras, Mohammad F

    2008-01-01

    Ratio subtraction and isosbestic point methods are 2 innovating spectrophotometric methods used to determine vincamine in the presence of its acid degradation product and a mixture of cinnarizine (CN) and nicergoline (NIC). Linear correlations were obtained in the concentration range from 8-40 microg/mL for vincamine (I), 6-22 microg/mL for CN (II), and 6-36 microg/mL for NIC (III), with mean accuracies 99.72 +/- 0.917% for I, 99.91 +/- 0.703% for II, and 99.58 +/- 0.847 and 99.83 +/- 1.039% for III. The ratio subtraction method was utilized for the analysis of laboratory-prepared mixtures containing different ratios of vincamine and its degradation product, and it was valid in the presence of up to 80% degradation product. CN and NIC in synthetic mixtures were analyzed by the 2 proposed methods with the total content of the mixture determined at their respective isosbestic points of 270.2 and 235.8 nm, and the content of CN was determined by the ratio subtraction method. The proposed method was validated and found to be suitable as a stability-indicating assay method for vincamine in pharmaceutical formulations. The standard addition technique was applied to validate the results and to ensure the specificity of the proposed methods.

  19. Mean centering of double divisor ratio spectra, a novel spectrophotometric method for analysis of ternary mixtures.

    PubMed

    Hassan, Said A; Elzanfaly, Eman S; Salem, Maissa Y; El-Zeany, Badr A

    2016-01-15

    A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.

  20. Validated spectrophotometric and chromatographic methods for simultaneous determination of ketorolac tromethamine and phenylephrine hydrochloride.

    PubMed

    Belal, T S; El-Kafrawy, D S; Mahrous, M S; Abdel-Khalek, M M; Abo-Gharam, A H

    2016-07-01

    This work describes five simple and reliable spectrophotometric and chromatographic methods for analysis of the binary mixture of ketorolac tromethamine (KTR) and phenylephrine hydrochloride (PHE). Method I is based on the use of conventional Amax and derivative spectrophotometry with the zero-crossing technique where KTR was determined using its Amax and (1)D amplitudes at 323 and 341nm respectively, while PHE was determined by measuring the (1)D amplitudes at 248.5nm. Method II involves the application of the ratio spectra derivative spectrophotometry. For KTR, 12μg/mL PHE was used as a divisor and the (1)DD amplitudes at 265nm were plotted against KTR concentrations; while - by using 4μg/mL KTR as divisor - the (1)DD amplitudes at 243.5nm were found proportional to PHE concentrations. Method III depends on ratio-difference measurement where the peak to trough amplitudes between 260 and 284nm were measured and correlated to KTR concentration. Similarly, the peak to trough amplitudes between 235 and 260nm in the PHE ratio spectra were recorded. For method IV, the two compounds were separated using Merck HPTLC sheets of silica gel 60 F254 and a mobile phase composed of chloroform/methanol/ammonia (70:30:2, by volume) followed by densitometric measurement of KTR and PHE spots at 320 and 278nm respectively. Method V depends on HPLC-DAD. Effective chromatographic separation was achieved using Zorbax eclipse plus C8 column (4.6×250mm, 5μm) with a mobile phase consisting of 0.05M o-phosphoric acid and acetonitrile (50:50, by volume) at a flow rate 1mL/min and detection at 313 and 274nm for KTR and PHE respectively. Analytical performance of the developed methods was statistically validated according to the ICH guidelines with respect to linearity, ranges, precision, accuracy, detection and quantification limits. The validated spectrophotometric and chromatographic methods were successfully applied to the simultaneous analysis of KTR and PHE in synthetic mixtures

  1. An indirect spectrophotometric method for the determination of silicon in serum, whole blood and erythrocytes.

    PubMed

    Tamada, Tomoko

    2003-09-01

    An indirect method for the determination of silicon in blood samples has been developed. The proposed method overcame interference from a large amount of salts and phosphate in blood samples, and enabled us to determine the silicon contents in serum and whole blood by the same operation. After blood samples were digested by microwave heating, silicon, present as silicate in the sample solution, was reacted with molybdate to form a silicomolybdate complex. The complex was then separated from unreacted molybdate by a cation-exchange resin column. The molybdate liberated from the complex was spectrophotometrically determined in place of silicon. Since the method is not affected the composition of matrices between serum and whole blood, it could achieve good precision and accuracy, and could also estimate the silicon contents in erythrocytes from those in serum and whole blood. The sensitivity of the method was almost equal to that of the conventional silicomolybdenum blue method, and the calibration curve was linear up to 50 micromol l(-1) of silicon with a detection limit of 1.1 micromol l(-1) in whole blood. The mean concentrations of silicon in five healthy subjects were 11 micromol l(-1) for serum, 28 micromol l(-1) for whole blood and 50 micromol l(-1) for erythrocytes. Thus, the obtained distribution ratio between serum and erythrocytes was in the range of 0.15-0.39, and was found to be included in a narrow range.

  2. First order derivative spectrophotometric method for the determination of benidipine hydrochloride pharmaceutical preparations and forced degradation study

    NASA Astrophysics Data System (ADS)

    Karasaka, Ayça

    2015-06-01

    A simple and rapid first order derivative spectrophotometric method was developed for the determination of benidipine hydrochloride in pure form and pharmaceutical preparations. For the first derivative spectrophotometric method, the distances between two extremum values l (peak-to-peak amplitudes), 230.2/241.5 nm. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision (intra- and inter-day) and recovery were evaluated. The linearity of the method was in the range of 0.2-2.0 μg/mL. Limits of detection and quantification were 0.58 and 1.73 μg/mL, respectively. The proposed method was successfully applied to the analysis of pharmaceutical preparations. In addition, forced degradation studies were performed on the benidipine hydrochloride drag substance. The drug substance was exposed to the stress conditions of hydrolysis (acid and base).

  3. Computation of geometric representation of novel spectrophotometric methods used for the analysis of minor components in pharmaceutical preparations.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-01-01

    Novel spectrophotometric methods were applied for the determination of the minor component tetryzoline HCl (TZH) in its ternary mixture with ofloxacin (OFX) and prednisolone acetate (PA) in the ratio of (1:5:7.5), and in its binary mixture with sodium cromoglicate (SCG) in the ratio of (1:80). The novel spectrophotometric methods determined the minor component (TZH) successfully in the two selected mixtures by computing the geometrical relationship of either standard addition or subtraction. The novel spectrophotometric methods are: geometrical amplitude modulation (GAM), geometrical induced amplitude modulation (GIAM), ratio H-point standard addition method (RHPSAM) and compensated area under the curve (CAUC). The proposed methods were successfully applied for the determination of the minor component TZH below its concentration range. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  4. A simple spectrophotometric method for the determination of beta-blockers in dosage forms.

    PubMed

    Al-Ghannam, S M

    2006-01-23

    A simple, extraction-free spectrophotometric method is proposed for the analysis of some beta-blockers, namely atenolol, timolol and nadolol. The method is based on the interaction of the drugs in chloroform with 0.1% chloroformic solutions of acidic sulphophthalein dyes to form stable, yellow-coloured, ion-pair complexes peaking at 415 nm. The dyes used were bromophenol blue (BPB), bromothymol blue (BTB) and bromocresol purple (BCP). Under the optimum conditions, the three drugs could be assayed in the concentration range 1-10 microg ml(-1) with correlation coefficient (n = 5) more than 0.999 in all cases. The stoichiometry of the reaction was found to be 1:1 in all cases and the conditional stability constant (K(F)) of the complexes have been calculated. The free energy changes (DeltaG) were determined for all complexes formed. The interference likely to be introduced from co-formulated drugs was studied and their tolerance limits were determined. The proposed method was then applied to dosage-forms the percentage recoveries ranges from 99.12-100.95, and the results obtained were compared favorably with those given with the official methods.

  5. Spectrophotometric Method for Quantitative Determination of Cefixime in Bulk and Pharmaceutical Preparation Using Ferroin Complex

    NASA Astrophysics Data System (ADS)

    Naeem Khan, M.; Qayum, A.; Ur Rehman, U.; Gulab, H.; Idrees, M.

    2015-09-01

    A method was developed for the quantitative determination of cefixime in bulk and pharmaceutical preparations using ferroin complex. The method is based on the oxidation of the cefixime with Fe(III) in acidic medium. The formed Fe(II) reacts with 1,10-phenanthroline, and the ferroin complex is measured spectrophotometrically at 510 nm against reagent blank. Beer's law was obeyed in the concentration range 0.2-10 μg/ml with a good correlation of 0.993. The molar absorptivity was calculated and was found to be 1.375×105 L/mol × cm. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.030 and 0.101 μg/ml respectively. The proposed method has reproducibility with a relative standard deviation of 5.28% (n = 6). The developed method was validated statistically by performing a recoveries study and successfully applied for the determination of cefixime in bulk powder and pharmaceutical formulations without interferences from common excipients. Percent recoveries were found to range from 98.00 to 102.05% for the pure form and 97.83 to 102.50% for pharmaceutical preparations.

  6. Determination of vanadium in groundwater samples with an improved kinetic spectrophotometric method.

    PubMed

    Bağda, Esra

    2014-01-01

    A kinetic catalytic method has been developed for the determination of vanadium based on its catalytic effect on the redox reaction of azorubin S and bromate in the presence of a sulphuric and nitric acid mixture. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the reaction mixture at 515 nm. The fixed-time method was used for 0.5-5 min. Optimization of the reaction conditions regarding concentrations of acids, dye, oxidant, masking agent, etc. was investigated. The rate of decrease in absorbance of azorubin S was proportional to the concentration of vanadium in the range of 2.0-1.05 x 10(3) ng mL(-1). 3Sb/m was 0.0129 ng mL(-1) and 10 Sb/m was 0.0432 ng mL(-1). The catalytic method based on the oxidation reaction of azorubin S and bromate shows a good selectivity for vanadium over a wide variety of interference cations and anions. The proposed method was successfully applied to the determination of vanadium in groundwater samples and spiked-water samples.

  7. Development and validation of sensitive spectrophotometric method for determination of two antiepileptics in pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Gouda, Ayman A.; Malah, Zakia Al

    2013-03-01

    Rapid, sensitive and validated spectrophotometric methods for the determination of two antiepileptics (gabapentin (GAB) and pregabalin (PRG)) in pure forms and in pharmaceutical formulations was developed. The method is based on the formation of charge transfer complex between drug and the chromogenic reagents quinalizarin (Quinz) and alizarin red S (ARS) producing charge transfer complexes in methanolic medium which showed an absorption maximum at 571 and 528 nm for GAB and 572 and 538 nm for PRG using Quinz and ARS, respectively. The optimization of the reaction conditions such as the type of solvent, reagent concentration and reaction time were investigated. Beer's law is obeyed in the concentration ranges 0.4-8.0 and 0.5-10 μg mL-1 for GAB and PRG using Quinz and ARS, respectively. The molar absorptivity, Sandell sensitivity, detection and quantification limits are also calculated. The correlation coefficients were ⩾0.9992 with a relative standard deviation (RSD%) of ⩽1.76. The methods are successfully applied to the determination of GAB and PRG in pharmaceutical formulations and the validity assesses by applying the standard addition technique, which compared with those obtained using the reported methods.

  8. Novel Spectrophotometric Method for the Determination of Pindolol in Pharmaceutical Samples

    NASA Astrophysics Data System (ADS)

    Nagaraja, P.; Kumar, H. R. Arun; Bhaskara, B. L.; Kumar, S. Anil

    2011-10-01

    A new facile and sensitive spectrophotometric determination of Pindolol (PDL), a beta blocker drug has been developed and validated. The method was based on the reaction between pindolol and K3 [Fe(CN)6] in presence of FeCl3 to form Prussian blue. The absorbance values were recorded at 700 nm and a calibrated graph was constructed. A dynamic Beer's law range was observed in the range 0.125-2.5 μg mL-1 with a detection limit of 0.03 μg mL-1 and a quantitation limit of 0.08 μg mL-1. Various experimental parameters such as effect of solvents, stability, interference effects due to excipients etc were studied. The reproducibility of this methods were checked by six replicate determinations at 1.0 μg ml-1 PDL and the standard deviation was found to be between 0.20 and 0.42%. The results were statistically compared with those of the reference/literature method by applying Student's t-test and F-test. The sensitivity, simplicity, temperature independence and stability of the colored product are the advantages of the proposed method and it is also free from extraction steps and use of carcinogenic solvents.

  9. Development of surfactant assisted spectrophotometric method for determination of selenium in waste water samples.

    PubMed

    Agrawal, Kavita; Patel, Khageshwar Singh; Shrivas, Kamlesh

    2009-01-30

    A new, simple and highly selective method for spectrophotometric determination of selenium in waste water samples is described. Selenium(IV) oxidizes I(-) ions into I(2) which subsequently reacts with excess of I(-) ion in the acidic media to give tri-iodide ions (I(3)(-)), and it further reacts with cetylpyridinium cation (CP(+)) to give a violet colored species. The value of molar absorptivity of the ion-associate species in terms of selenium is 1.80 x 10(4) L mol(-1)cm(-1) at lambda(max) 510 nm. The detection limit of the method is 10 ng mL(-1) Se. The calibration curve is linear over 50-1000 ng mL(-1) Se with slope, intercept and co-relation coefficient of 0.23, -4.0 x 10(-4) and +0.99, respectively. None of the tested diverse ions interfered in the present method. The method has been tested for the determination of selenium in waste water samples.

  10. A nanosilver-based spectrophotometric method for determination of malachite green in surface water samples.

    PubMed

    Sahraei, R; Farmany, A; Mortazavi, S S; Noorizadeh, H

    2013-07-01

    A new spectrophotometric method is reported for the determination of nanomolar level of malachite green in surface water samples. The method is based on the catalytic effect of silver nanoparticles on the oxidation of malachite green by hexacyanoferrate (III) in acetate-acetic acid medium. The absorbance is measured at 610 nm with the fixed-time method. Under the optimum conditions, the linear range was 8.0 × 10(-9)-2.0 × 10(-7) mol L(-1) malachite green with a correlation coefficient of 0.996. The limit of detection (S/N = 3) was 2.0 × 10(-9) mol L(-1). Relative standard deviation for ten replicate determinations of 1.0 × 10(-8) mol L(-1) malachite green was 1.86%. The method is featured with good accuracy and reproducibility for malachite green determination in surface water samples without any pre-concentration and separation step.

  11. Pregabalin and Tranexamic Acid Evaluation by Two Simple and Sensitive Spectrophotometric Methods

    PubMed Central

    Sher, Nawab; Fatima, Nasreen; Perveen, Shahnaz; Siddiqui, Farhan Ahmed; Wafa Sial, Alisha

    2015-01-01

    This paper demonstrates colorimetric visible spectrophotometric quantification methods for amino acid, namely, tranexamic acid and pregabalin. Both drugs contain the amino group, and when they are reacted with 2,4-dinitrophenol and 2,4,6-trinitrophenol, they give rise to yellow colored complexes showing absorption maximum at 418 nm and 425 nm, respectively, based on the Lewis acid base reaction. Detailed optimization process and stoichiometric studies were conducted along with investigation of thermodynamic features, that is, association constant and standard free energy changes. The method was linear over the concentration range of 0.02–200 µgmL−1 with correlation coefficient of more than 0.9990 in all of the cases. Limit of detection was in range from 0.0041 to 0.0094 µgmL−1 and limit of quantification was in the range from 0.0137 to 0.0302 µgmL−1. Excellent recovery in Placebo spiked samples indicated that there is no interference from common excipients. The analytical methods under proposal were successfully applied to determine tranexamic acid and pregabalin in commercial products. t-test and F ratio were evaluated without noticeable difference between the proposed and reference methods. PMID:25873964

  12. An automated sequential injection spectrophotometric method for evaluation of tyramine oxidase inhibitory activity of some flavonoids.

    PubMed

    Moonrungsee, Nuntaporn; Shimamura, Tomoko; Kashiwagi, Takehiro; Jakmunee, Jaroon; Higuchi, Keiro; Ukeda, Hiroyuki

    2014-05-01

    An automated sequential injection (SI) spectrophotometric system has been developed for evaluation of tyramine oxidase (TOD) inhibitory activity. The method is based on the inhibition of TOD that catalyzes the oxidation of tyramine substrate to produce aldehyde and hydrogen peroxide (H₂O₂). The produced H₂O₂ reacts with vanillic acid and 4-aminoantipyrine (4-AA) in the presence of peroxidase (POD) to form a quinoneimine dye, the absorbance of which is measured of absorbance at wavelength of 490 nm. The decrease of the quinoneimine dye is related to an increase of TOD inhibitory activity. Under the optimum conditions: 1.0 mM tyramine, 8 U mL(-1) TOD, 1.0 mM vanillic acid, 1.0 mM 4-AA and delay time of 10 s, some flavonoid compounds were examined for the TOD inhibitory activity expressed as IC₅₀ value. It was found that flavonols (quercetin and myricetin) and flavans (epicatechin gallate (ECG) and epigallocatechin (EGC)) showed higher TOD inhibitory activity than flavones and flavanones. The results of IC₅₀ values obtained from the proposed method and a batch-wise method were not significantly different from each other. Moreover, the SI system enabled automation of the analysis, leading to more convenient, more sensitive and faster analysis than the batch-wise method. A precise timing of the system also improves precision and accuracy of the assay, especially when the measurement of absorbance at non-steady state condition is involved.

  13. HPLC methods for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone.

    PubMed

    Chen, Jing; Chen, Jianhua; Zhou, Changlin

    2008-01-01

    High-performance liquid chromatographic (HPLC) methods were respectively developed for the quantitative determination of dihydroxyacetone (DHA) and glycerol in the fermentation broth. Validation parameters such as linearity, precision, accuracy, and specificity, limit of detection (LOD), and limit of quantitation (LOQ) were determined. Both HPLC methods were carried out on a Lichrospher 5-NH2 column with a mobile phase constituted of acetonitrile and water (90:10, v/v). The linearity range for DHA was 2.00-12.00 mg/mL with a correlation coefficient (r) of 0.9994. The LOD and LOQ were 0.06 and 1.20 mg/mL, respectively. The linearity range for glycerol was 0.50-20.00 mg/mL with a correlation coefficient of 0.9998. The LOD and LOQ were 0.22 and 0.50 mg/mL, respectively. Also, the HPLC method to determine DHA was compared with an existing visible spectrophotometric method. Statistical analysis by F-test and t-test showed no significant difference at 95% confidence level between the two methods when applied to low DHA concentrations while a large deviation existed in the determinations of high DHA concentrations. The HPLC method was more accurate to determine high DHA concentrations.

  14. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  15. Spectrophotometric method for quantitative measuring essential oil in aromatic water and distillate with rose smell

    NASA Astrophysics Data System (ADS)

    Semenova, E.; Presnyakova, V.; Goncharov, D.; Goncharov, M.; Presnyakova, E.; Presnyakov, S.; Moiseeva, I.; Kolesnikova, S.

    2017-01-01

    In this connection, we improved the express methods of determining the mixture of volatile aromatic substances by the spectrophotometry of aromatic water and steam distillate of essential oil raw materials (traditional or biotechnological with rose smell). Direct spectrophotometry of distillation water is impossible because it is a colloid of liquid oil and law is not observed. Therefore, it is necessary to dissolve 1 ml of distillate in ethanol in the ratio 1:4, in this case we take real solution with no lipophilic fall-out on the walls of cuvette, also the light absorption law is observed. There are stable maximums in spectrums of studied oils. Optical density of these maximums is a result of summary absorption of terpenoid components (aromatic and monoterpene alcohols, its ethers). Optical density of tested and standard solutions is measured in appropriate wavelengths. Spectrophotometric method of determination of essential oil quantity in aromatic water with rose smell differs with high sensitivity (10-5-10-6 gmol/l) and allows to determine oil concentration from 0,900 to 0,008 mg with an error less than 1%. At that, 1 ml is enough for analysis. It’s expedient to apply this method while operating with small quantity of water distillate in biochemical and biotechnological researches and also as express control for extraction and hydrodistillation of essential oil raw material (rose petals and flowers from different origin, eremothecium cultural liquid etc.).

  16. A rapid derivative spectrophotometric method for simultaneous determination of naphazoline and antazoline in eye drops.

    PubMed

    Souri, Effat; Amanlou, Massoud; Farsam, Hassan; Afshari, Alma

    2006-01-01

    A zero-crossing first-derivative spectrophotometric method is applied for the simultaneous determination of naphazoline hydrochloride and antazoline phosphate in eye drops. The measurements were carried out at wavelengths of 225 and 252 nm for naphazoline hydrochloride and antazoline phosphate, respectively. The method was found to be linear (r2>0.999) in the range of 0.2-1 microg/ml for naphazoline hydrochloride in the presence of 5 microg/ml antazoline phosphate at 225 nm. The same linear correlation (r2>0.999) was obtained in the range of 1-10 microg/ml of antazoline phosphate in the presence of 0.5 microg/ml of naphazoline hydrochloride at 252 nm. The limit of determination was 0.2 microg/ml and 1 microg/ml for naphazoline hydrochloride and antazoline phosphate, respectively. The method was successfully used for simultaneous analysis of naphazoline hydrochloride and antazoline phosphate in eye drops without any interference from excipients and prior separation before analysis.

  17. A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups.

    PubMed

    de Andrade, Jucimara Kulek; de Andrade, Camila Kulek; Komatsu, Emy; Perreault, Hélène; Torres, Yohandra Reyes; da Rosa, Marcos Roberto; Felsner, Maria Lurdes

    2017-08-01

    Corn syrups, important ingredients used in food and beverage industries, often contain high levels of 5-hydroxymethyl-2-furfural (HMF), a toxic contaminant. In this work, an in house validation of a difference spectrophotometric method for HMF analysis in corn syrups was developed using sophisticated statistical tools by the first time. The methodology showed excellent analytical performance with good selectivity, linearity (R(2)=99.9%, r>0.99), accuracy and low limits (LOD=0.10mgL(-1) and LOQ=0.34mgL(-1)). An excellent precision was confirmed by repeatability (RSD (%)=0.30) and intermediate precision (RSD (%)=0.36) estimates and by Horrat value (0.07). A detailed study of method precision using a nested design demonstrated that variation sources such as instruments, operators and time did not interfere in the variability of results within laboratory and consequently in its intermediate precision. The developed method is environmentally friendly, fast, cheap and easy to implement resulting in an attractive alternative for corn syrups quality control in industries and official laboratories.

  18. New spectrofluorimetric and spectrophotometric methods for the determination of the analgesic drug, nalbuphine in pharmaceutical and biological fluids.

    PubMed

    El-Didamony, Akram M; Ali, Ismail I

    2013-01-01

    We describe the first studies of a simple and sensitive spectrofluorimetric and spectrophotometric methods for the analysis of nalbuphine (NLB) in dosage form and biological fluids. The spectrofluorimetric method was based on the oxidation of NLB with Ce(IV) to produce Ce(III) and its fluorescence was monitored at 352 nm after excitation at 250 nm. The spectrophotometric method involves addition of a known excess of Ce(IV) to NLB in acid medium, followed by determination of residual Ce(IV) by reacting with a fixed amount of methyl orange and measuring absorbance at 510 nm. In both methods, the amount of Ce(IV) reacted corresponds to the amount of NLB and measured fluorescence or absorbance were found to increase linearly with the concentration of NLB, which are corroborated by correlation coefficients of 0.9997 and 0.9999 for spectrofluorimetric and spectrophotometric methods, respectively. Different variables affecting the reaction conditions such as concentrations of Ce(IV), type and concentration of acid medium, reaction time, temperature, and diluting solvents were carefully studied and optimized. The accuracy and precision of the methods were evaluated on intra-day and inter-day basis. The proposed methods were successfully applied for the determination of NLB in pharmaceutical formulation and biological samples with good recoveries.

  19. Simultaneous Determination of Octinoxate, Oxybenzone, and Octocrylene in a Sunscreen Formulation Using Validated Spectrophotometric and Chemometric Methods.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Ayad, Miriam F; Mikawy, Neven N

    2015-01-01

    Accurate, reliable, and sensitive spectrophotometric and chemometric methods were developed for simultaneous determination of octinoxate (OMC), oxybenzone (OXY), and octocrylene (OCR) in a sunscreen formulation without prior separation steps, including derivative ratio spectra zero crossing (DRSZ), double divisor ratio spectra derivative (DDRD), mean centering ratio spectra (MCR), and partial least squares (PLS-2). With the DRSZ technique, the UV filters could be determined in the ranges of 0.5-13.0, 0.3-9.0, and 0.5-9.0 μg/mL at 265.2, 246.6, and 261.8 nm, respectively. By utilizing the DDRD technique, UV filters could be determined in the above ranges at 237.8, 241.0, and 254.2 nm, respectively. With the MCR technique, the UV filters could be determined in the above ranges at 381.7, 383.2, and 355.6 nm, respectively. The PLS-2 technique successfully quantified the examined UV filters in the ranges of 0.5-9.3, 0.3-7.1, and 0.5-6.9 μg/mL, respectively. All the methods were validated according to the International Conference on Harmonization guidelines and successfully applied to determine the UV filters in pure form, laboratory-prepared mixtures, and a sunscreen formulation. The obtained results were statistically compared with reference and reported methods of analysis for OXY, OMC, and OCR, and there were no significant differences with respect to accuracy and precision of the adopted techniques.

  20. Determination of lead and cadmium in soils, sludges, and fertilizers by an ion-exchange/spectrophotometric method

    SciTech Connect

    Heinzig, M.; DeYong, G.D.; Anglin, R.J.; Bowden, B.K.; Brayton, S.V.

    1993-12-01

    The MetalTrace method, which consists of an anion-exchange separation coupled with a spectrophotometric quantification, was used to determine lead and cadmium in sulfuric acid-hydrogen peroxide digests of soils and sludges and hydrobromic acid extracts of soils. Cadmium only was determined in sulfuric acid-hydrogen peroxide digests of fertilizers because no standards were available with certified lead contents. The selectivity provided by the anion-exchange separation allowed the use of a spectrophotometric indicator with an extremely high extinction coefficient so that detection limits in the low parts per million range could be attained. The results obtained using this method compared favorably with those obtained using much more expensive methods requiring more specialized training and equipment.

  1. Determination of lanthanide(III) ions by using a flotation-spectrophotometric method

    SciTech Connect

    Kang Jingwan; Zhang Xiaoling; Yang Huiling; Gao Jingzhang; Bai Guangbi )

    1990-01-01

    This paper reports the authors' attempt at determining Ln(III) ions by using a flotation-spectrophotometric method and their findings. When a ternary ion-association complex of Ln(III) coordinated by thiocyanate (SCN{sup {minus}}) and diantipyryl methane (DAM) is separated by a mixed solvent containing benzene and chloroform at pH 3.1 - 4.2, a third phase is observed between the aqueous and organic phases. The solid ternary complex can be dissolved in acetone that contains thenoyltrifluoroacetone (TTA). The individual Ln(III) ion can be determined by using the 4th derivative spectra directly. The equilibrium constant of the ternary composition ratio of Ln(III) to ligand is estimated by the equilibrium shift method. The mole ratio of Ln(III) to DAM and to SCN{sup {minus}} is 1:3 each. The composition of the ternary complex seems to be Ln(III):DAM:SCN{sup {minus}} = 1:3:3.

  2. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon.

    PubMed

    Säbel, Crystal E; Neureuther, Joseph M; Siemann, Stefan

    2010-02-15

    Zincon (2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene) has long been known as an excellent colorimetric reagent for the detection of zinc and copper ions in aqueous solution. To extend the chelator's versatility to the quantification of metal ions in metalloproteins, the spectral properties of Zincon and its complexes with Zn(2+), Cu(2+), and Co(2+) were investigated in the presence of guanidine hydrochloride and urea, two common denaturants used to labilize metal ions in proteins. These studies revealed the detection of metals to be generally more sensitive with urea. In addition, pH profiles recorded for these metals indicated the optimal pH for complex formation and stability to be 9.0. As a consequence, an optimized method that allows the facile determination of Zn(2+), Cu(2+), and Co(2+) with detection limits in the high nanomolar range is presented. Furthermore, a simple two-step procedure for the quantification of both Zn(2+) and Cu(2+) within the same sample is described. Using the prototypical Cu(2+)/Zn(2+)-protein superoxide dismutase as an example, the effectiveness of this method of dual metal quantification in metalloproteins is demonstrated. Thus, the spectrophotometric determination of metal ions with Zincon can be exploited as a rapid and inexpensive means of assessing the metal contents of zinc-, copper-, cobalt-, and zinc/copper-containing proteins.

  3. Investigation on the interaction of Safranin T with anionic polyelectrolytes by spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Fradj, Anouar Ben; Lafi, Ridha; Hamouda, Sofiane Ben; Gzara, Lassaad; Hamzaoui, Ahmed Hichem; Hafiane, Amor

    2014-10-01

    Understanding the role played by chemical additives such as NaCl salt, acid and Cetylpyridinium Chloride (CPC) surfactant on the interaction between dye and polyelectrolyte contributes to optimization of processes using polyelectrolytes in the removal of dye from aqueous solution. Herein we focus in the interaction between Safranin T, a cationic dye, with two anionic polyelectrolytes, poly(ammonium acrylate) and poly(acrylic acid) using spectrophotometric method and conductivity measurement. In aqueous solution, each of anionic polyelectrolytes forms a complex with the dye and induces a metachromasy indicated by the blue shift of the absorbance of the dye. The stoichiometry of complexes evaluated by the molar ratio method are 1:1 for Safranin T poly(ammonium acrylate) and 2:1 in the case of Safranin T poly(acrylic acid). The effect of additives on the stability of complexes has been studied by varying concentrations of the salt and the surfactant and pH of the solution. The thermodynamic parameters of interaction ΔG, ΔH and ΔS at different temperatures were evaluated to determine the stability constant of the complexes.

  4. A novel visible spectrophotometric method for the determination of ethamsylate in pharmaceutical preparations and biological samples.

    PubMed

    Zhang, Meiyun; Zhang, Yan; Li, Quanmin

    2010-03-01

    A highly sensitive visible spectrophotometric method has been developed to determine ethamsylate in this paper, which is based on using Cu(II) as spectroscopic probe reagent. The study indicates that in the presence of SCN(-) and KNO(3), Cu(II) is reduced to Cu(I) by ethamsylate at pH 5.0, and the in situ formed Cu(I) reacts with SCN(-) to form into the white emulsion CuSCN that could be stayed upon the surface of water. According to the amount of residual Cu(II), the amount of ethamsylate can be indirectly determined. Under the optimal conditions, Beer's law is applicable in the range of 0.2-9.0 microg/mL (7.60x10(-7)-3.42x10(-5)mol/L) for aqueous standard solution of ethamsylate with linear correlation coefficient of 0.9998. The detection limit and relative standard deviation are 0.12 microg/mL and 1.5%, respectively. And the molar absorption coefficient of the indirect determination of ethamsylate is 1.0x10(5)L/mol cm. The method is successfully applied to determine ethamsylate in pharmaceutical preparations and biological samples.

  5. Simultaneous determination of piracetam and vincamine by spectrophotometric and high-performance liquid chromatographic methods.

    PubMed

    El-Saharty, Yasser Shaker Ibrahim

    2008-01-01

    A mixture of piracetam and vincamine was determined by 3 different methods. The first was the determination of piracetam and vincamine using the ratio-spectra first-derivative (DD1) spectrophotometric technique at 209 and 293 nm in concentration ranges of 10-45 and 2-14 microg/mL with mean recoveries of 99.22 +/- 0.72 and 99.67 +/- 0.79%, respectively. The second method was based on the resolution of the 2 components by bivariate calibration depending on a mathematic algorithm that provides simplicity and rapidity. The method depended on quantitative evaluation of the absorbencies at 210 and 225 nm in concentration ranges of 5-45 and 2-14 microg/mL, with mean recoveries of 100.33 +/- 0.54 and 100.44 +/- 0.98% for piracetam and vincamine, respectively. The third method was reversed-phase liquid chromatography using 0.05 M potassium dihydrogen phosphate-methanol (50 + 50, v/v) as the mobile phase, with the pH adjusted to 3.5 with phosphoric acid. The eluent was monitored at 215 nm in concentration ranges of 5-100 and 2-200 microg/mL, with mean recoveries of 99.62 +/- 0.67 and 99.32 +/- 0.85% for piracetam and vincamine, respectively. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of their pharmaceutical preparation. The methods retained their accuracy and precision when applying the standard addition technique. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.

  6. A simple Ultraviolet spectrophotometric method for the determination of etoricoxib in dosage formulations

    PubMed Central

    Singh, Shipra; Mishra, Amrita; Verma, Anurag; Ghosh, Ashoke K.; Mishra, Arun K.

    2012-01-01

    The present study was undertaken to develop a validated, rapid, simple, and low-cost ultraviolet (UV) spectrophotometric method for estimating Etoricoxib (ETX) in pharmaceutical formulations. The analysis was performed on λ max 233 nm using 0.1 M HCl as blank/diluent. The proposed method was validated on International Conference on Harmonization (ICH) guidelines including parameters as linearity, accuracy, precision, reproducibility, and specificity. The proposed method was also used to access the content of the ETX in two commercial brands of Indian market. Beer's law was obeyed in concentration range of 0.1–0.5 μg/ml, and the regression equation was Y = 0.418x + 0.018. The mean accuracy values for 0.1 μg/ml and 0.2 μg/ml concentration of ETX were found to be 99.76 ± 0.52% and 99.12 ± 0.84, respectively, and relative standard deviation (RSD) of interday and intraday was less than 2%. The developed method was suitable and specific to the analysis of ETX even in the presence of common excipients. The method was applied on two different marketed brands and ETX contents were 98.5 ± 0.56 and 99.33 ± 0.44, respectively, of labeled claim. The proposed method was validated as per ICH guidelines and statistically good results were obtained. This method can be employed for routine analysis of ETX in bulk and commercial formulations. PMID:23378945

  7. Novel spectrophotometric methods for simultaneous determination of Amlodipine, Valsartan and Hydrochlorothiazide in their ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany

    2015-04-01

    This work represents a comparative study of two smart spectrophotometric techniques namely; successive resolution and progressive resolution for the simultaneous determination of ternary mixtures of Amlodipine (AML), Hydrochlorothiazide (HCT) and Valsartan (VAL) without prior separation steps. These techniques consist of several consecutive steps utilizing zero and/or ratio and/or derivative spectra. By applying successive spectrum subtraction coupled with constant multiplication method, the proposed drugs were obtained in their zero order absorption spectra and determined at their maxima 237.6 nm, 270.5 nm and 250 nm for AML, HCT and VAL, respectively; while by applying successive derivative subtraction they were obtained in their first derivative spectra and determined at P230.8-246, P261.4-278.2, P233.7-246.8 for AML, HCT and VAL respectively. While in the progressive resolution, the concentrations of the components were determined progressively from the same zero order absorption spectrum using absorbance subtraction coupled with absorptivity factor methods or from the same ratio spectrum using only one divisor via amplitude modulation method can be used for the determination of ternary mixtures using only one divisor where the concentrations of the components are determined progressively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. Moreover comparative study between spectrum addition technique as a novel enrichment technique and a well established one namely spiking technique was adopted for the analysis of pharmaceutical formulations containing low concentration of AML. The methods were validated as per ICH guidelines where accuracy, precision and specificity were found to be within their acceptable limits. The results obtained from the proposed methods were statistically compared with the reported one where no significant

  8. A selective spectrophotometric method for determination of rosoxacin antibiotic using sodium nitroprusside as a chromogenic reagent.

    PubMed

    Askal, Hassan F; Refaat, Ibrahim H; Darwish, Ibrahim A; Marzouq, Mostafa A

    2008-04-01

    A selective spectrophotometric method for the determination of rosoxacin (ROS), a 4-quinolone antimicrobial agent, has been developed and validated. The method was based on the reaction of ROS with alkaline sodium nitroprusside (SNP) reagent at room temperature forming a red colored chromogen measured at 455 nm. The conditions affecting the reaction (SNP concentration, pH, color-developing time, temperature, diluting solvent and chromogen stability time) were optimized. Under the optimum conditions, good linear relationship (r=0.9987) was obtained between the absorbance and the concentration of ROS in the range of 20-50 microg ml(-1). The assay limits of detection and quantitation were 2.5 and 8.4 microg ml(-1), respectively. The method was successfully applied to the analysis of bulk drug and laboratory-prepared tablets; the mean percentage recoveries were 100.1+/-0.33 and 101.24+/-1.28%, respectively. The results were compared favourably with those obtained by the reported method; no significant difference in the accuracy and precision as revealed by the accepted values of t- and F-tests, respectively. The robustness and ruggedness of the method was checked and satisfactory results were obtained. The proposed method was found to be highly selective for ROS among the fluoroquinolone antibiotics. The reaction mechanism was proposed and it proceeded in two steps; the formation of nitroferrocyanide by the action of sodium hydroxide alkalinity on SNP and the subsequent formation of the colored nitrosyl-ROS derivative by the attack at position 6 of ROS.

  9. A selective spectrophotometric method for determination of rosoxacin antibiotic using sodium nitroprusside as a chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Askal, Hassan F.; Refaat, Ibrahim H.; Darwish, Ibrahim A.; Marzouq, Mostafa A.

    2008-04-01

    A selective spectrophotometric method for the determination of rosoxacin (ROS), a 4-quinolone antimicrobial agent, has been developed and validated. The method was based on the reaction of ROS with alkaline sodium nitroprusside (SNP) reagent at room temperature forming a red colored chromogen measured at 455 nm. The conditions affecting the reaction (SNP concentration, pH, color-developing time, temperature, diluting solvent and chromogen stability time) were optimized. Under the optimum conditions, good linear relationship ( r = 0.9987) was obtained between the absorbance and the concentration of ROS in the range of 20-50 μg ml -1. The assay limits of detection and quantitation were 2.5 and 8.4 μg ml -1, respectively. The method was successfully applied to the analysis of bulk drug and laboratory-prepared tablets; the mean percentage recoveries were 100.1 ± 0.33 and 101.24 ± 1.28%, respectively. The results were compared favourably with those obtained by the reported method; no significant difference in the accuracy and precision as revealed by the accepted values of t- and F-tests, respectively. The robustness and ruggedness of the method was checked and satisfactory results were obtained. The proposed method was found to be highly selective for ROS among the fluoroquinolone antibiotics. The reaction mechanism was proposed and it proceeded in two steps; the formation of nitroferrocyanide by the action of sodium hydroxide alkalinity on SNP and the subsequent formation of the colored nitrosyl-ROS derivative by the attack at position 6 of ROS.

  10. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  11. Spectrophotometric and thermodynamic study on the dimerization equilibrium of ionic dyes in water by chemometrics method

    NASA Astrophysics Data System (ADS)

    Niazi, Ali; Yazdanipour, Ateesa; Ghasemi, Jahanbakhsh; Kubista, Mikael

    2006-09-01

    The monomer-dimer equilibrium and thermodynamic of several ionic dyes (Neutral Red, Nile Blue A, Safranine T and Thionine) has been investigated by means of spectrophotometric and chemometrics methods. The dimerization constants of these ionic dyes have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-75 °C at concentrations of Neutral Red (1.73 × 10 -5 M), Nile Blue A (3.94 × 10 -5 M), Safranine (6.59 × 10 -5 M) and Thionine (6.60 × 10 -5 M). The monomer-dimer equilibrium of these dyes has been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed. The processing of the data carried out for quantitative analysis of undefined mixtures, based on simultaneous resolution of the overlapping bands in the whole set of absorption spectra. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants to the temperature (van't Hoff equation).

  12. Development and validation of a near infrared spectrophotometric method to determine total antioxidant activity of milk.

    PubMed

    Niero, G; Penasa, M; Currò, S; Masi, A; Trentin, A R; Cassandro, M; De Marchi, M

    2017-04-01

    In the present study a spectrophotometric method for the determination of total antioxidant activity (TAA) based on ABTS assay was developed and validated on raw milk (RM), whole UHT milk (WUM), partially skimmed UHT milk (SUM), whole pasteurised milk (WM) and partially skimmed pasteurised milk (SM). The most suitable solvent for antioxidant extraction was 80% acetone. Regardless of the type of milk, the coefficient of determination from the linearity test was greater than 0.95. The limit of detection ranged from 0.74 to 6.07μmoll(-1) Trolox equivalents. Repeatability, calculated as relative standard deviation of twenty measurements within a day, and reproducibility, calculated as relative standard deviation of sixty measurements across three days, ranged from 1.24 to 4.04% and from 2.18 to 3.52%, respectively. Preservative added to RM had negligible effects on the TAA of milk. The greatest TAA was measured for SM followed by SUM, RM, WM and WUM.

  13. Simultaneous determination of Allura Red and Ponceau 4R in drinks with the use of four derivative spectrophotometric methods and comparison with high-performance liquid chromatography.

    PubMed

    Turak, Fatma; Ozgur, Mahmure Ustun

    2013-01-01

    Four simple, rapid, sensitive, and accurate spectrophotometric methods were developed for the simultaneous determination of Allura Red (AR) and Ponceau 4R (P) without previous chemical separation. The first method, derivative spectrophotometry, depends on first derivative spectrophotometry with zero-crossing and peak-to-base measurement. The second method, derivative ratio spectrophotometry, uses the first derivative of the ratio spectra. The ratio spectra are obtained by dividing the absorption spectra of a binary mixture by that of one of the components. The third method, differential derivative spectrophotometry, is based on the measurement of the difference absorptivities derivatized in the first order of a sample extract in 0.1 M NaOH relative to that of an equimolar solution in 0.1 M HCl. The fourth method, based on the compensation technique, is presented for the derivative spectrophotometric determination of binary mixtures with overlapping spectra by using ratios of the derivative maximum or minimum; the exact compensation of either component in the mixture can be achieved, followed by its determination. All the proposed methods were successfully applied to the determination of the colorants in their laboratory mixtures and granulated drinks without any interference by the ingredients. AR and P showed good linearity, with regression coefficients of 0.9994-0.9999. The LOD and LOQ values ranged from 0.059 to 0.102 and 0.198 to 0.341 microg/mL, respectively. The intraday and interday precision tests produced good RSD values (<1.37%); recoveries ranged from 98.75 to 100.37% for all four methods. The common ingredients and additives did not interfere in the AR and P determination. The results of the proposed methods were statistically compared with the results of an HPLC method given in the literature (Nordic Committee on Food Analysis; NMKL 130) at the 95% confidence level by Student's test and the variance ratio F-test. No statistically significant difference

  14. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  15. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  16. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  17. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction.

  18. Determination of Trace Amounts of Lead Using the Flotation-spectrophotometric method

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Golzadeh, Babak; Shiri, Sina

    2010-01-01

    The present study describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of extremely low concentrations of lead. It is based on flotation of a complex of Pb2+ ions and Alizarin yellow between aqueous and n-hexane interface at pH = 6. The proposed procedure is also applied for determination of lead in both tap water and prepared sea water samples. Beer’s Law was obeyed over the concentration range of 3.86 × 10−8 To 8.20 × 10−7 molL−1 (8–170 ngmL−1) with an apparent molar absorptivity of 1.33 × 106 molL−1 cm−1 for a 100 mL aliquot of the water sample. The detection limit (n = 10) was 8.7 × 10−9 molL−1 (1.0 ngmL−1) and the Relative standard deviation (R.S.D), (n = 10) for 7.2 × 10−7 molL−1 (150 ngmL−1) of Pb (II) was 4.36%. A notable advantage of the method is that the determination of Pb (II) is free from the interference of almost all cations and ions found in the environment and waste water samples. The determination of Pb (II) in tap and synthetic seawater samples was also carried out by the present method. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples. PMID:21234287

  19. Determination of Trace Amounts of Lead Using the Flotation-spectrophotometric method

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Golzadeh, Babak; Shiri, Sina

    2011-01-01

    The present study describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of extremely low concentrations of lead. It is based on flotation of a complex of Pb2+ ions and Alizarin yellow between aqueous and n-hexane interface at pH = 6. The proposed procedure is also applied for determination of lead in both tap water and prepared sea water samples. Beer’s Law was obeyed over the concentration range of 3.86 × 10–8 To 8.20 × 10–7 molL−1 (8–170 ngmL−1) with an apparent molar absorptivity of 1.33 × 106 molL−1 cm−1 for a 100 mL aliquot of the water sample. The detection limit (n = 10) was 8.7 × 10–9 molL−1 (1.0 ngmL−1) and the Relative standard deviation (R.S.D), (n = 10) for 7.2 × 10–7 molL−1 (150 ngmL−1) of Pb (II) was 4.36%. A notable advantage of the method is that the determination of Pb (II) is free from the interference of almost all cations and ions found in the environment and waste water samples. The determination of Pb (II) in tap and synthetic seawater samples was also carried out by the present method. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples.

  20. Mapping methods for computationally efficient and accurate structural reliability

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1992-01-01

    Mapping methods are developed to improve the accuracy and efficiency of probabilistic structural analyses with coarse finite element meshes. The mapping methods consist of: (1) deterministic structural analyses with fine (convergent) finite element meshes, (2) probabilistic structural analyses with coarse finite element meshes, (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes, and (4) a probabilistic mapping. The results show that the scatter of the probabilistic structural responses and structural reliability can be accurately predicted using a coarse finite element model with proper mapping methods. Therefore, large structures can be analyzed probabilistically using finite element methods.

  1. Spectrophotometric method for the quantitative assay of N-hydroxysulfosuccinimide esters including extinction coefficients and reaction kinetics.

    PubMed

    Presentini, Rivo

    2017-05-15

    A quantitative spectrophotometric method has been developed for the analysis of N-hydroxysulfosuccinimide (sulfo-NHS), a chromophore with a maximum absorbance at 268 nm. The extinction coefficients were determined between pH 6.0 and 8.0 and found to vary in a nonlinear manner. This spectrophotometric profile is not present in its esters which however release an equimolar amount of sulfo-NHS when they react with nucleophilic groups or hydrolyze in aqueous solution. This fact facilitates the determination in solution of the concentration and purity of bis(sulfosuccinimidyl) suberate (BS3) used as a model, as well as the examination of hydrolysis and aminolysis half-lives in different reaction conditions, these parameters being valuable in optimization of the use of the active esters.

  2. Chromium speciation in environmental samples using a solid phase spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; Kassem, Mohammed A.

    2012-10-01

    A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.

  3. Development and validation of simultaneous spectrophotometric and TLC-spectrodensitometric methods for determination of beclomethasone dipropionate and salbutamol in combined dosage form

    NASA Astrophysics Data System (ADS)

    Samir, Ahmed; Lotfy, Hayam M.; Salem, Hesham; Abdelkawy, Mohammed

    2014-07-01

    Spectrophotometric and TLC-spectrodensitometric methods were developed and validated for the simultaneous determination of beclomethasone dipropionate (BEC) and salbutamol (SAL). The spectrophotometric methods include dual wavelength, ratio difference, constant center coupled with a novel method namely, spectrum subtraction and mean centering with mean percentage recoveries and RSD 99.72 ± 1.07 and 99.70 ± 1.12, 100.25 ± 1.12 and 99.89 ± 1.12, 99.66 ± 1.85 and 99.19 ± 1.32, 100.74 ± 1.26 and 101.06 ± 0.90 for BEC and SAL respectively. The TLC-spectrodensitometric method was based on separation of both drugs on TLC aluminum plates of silica gel 60 F254, using benzene: methanol: triethylamine (10:1.5:0.5 v/v/v) as a mobile phase, followed by densitometric measurements of their bands at 230 nm. The mean percentage recoveries and RSD were 99.07 ± 1.25 and 101.35 ± 1.50 for BEC and SAL respectively. The proposed methods were validated according to ICH guidelines and were applied for the simultaneous analysis of the cited drugs in synthetic mixtures and pharmaceutical preparation. The methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of BEC and SAL in their pharmaceutical formulation with no need for prior separation. The results obtained were statistically compared to each other and to that of the reported HPLC method. The statistical comparison showed that there is no significant difference regarding both accuracy and precision.

  4. Development and validation of simultaneous spectrophotometric and TLC-spectrodensitometric methods for determination of beclomethasone dipropionate and salbutamol in combined dosage form.

    PubMed

    Samir, Ahmed; Lotfy, Hayam M; Salem, Hesham; Abdelkawy, Mohammed

    2014-07-15

    Spectrophotometric and TLC-spectrodensitometric methods were developed and validated for the simultaneous determination of beclomethasone dipropionate (BEC) and salbutamol (SAL). The spectrophotometric methods include dual wavelength, ratio difference, constant center coupled with a novel method namely, spectrum subtraction and mean centering with mean percentage recoveries and RSD 99.72±1.07 and 99.70±1.12, 100.25±1.12 and 99.89±1.12, 99.66±1.85 and 99.19±1.32, 100.74±1.26 and 101.06±0.90 for BEC and SAL respectively. The TLC-spectrodensitometric method was based on separation of both drugs on TLC aluminum plates of silica gel 60 F254, using benzene: methanol: triethylamine (10:1.5:0.5 v/v/v) as a mobile phase, followed by densitometric measurements of their bands at 230 nm. The mean percentage recoveries and RSD were 99.07±1.25 and 101.35±1.50 for BEC and SAL respectively. The proposed methods were validated according to ICH guidelines and were applied for the simultaneous analysis of the cited drugs in synthetic mixtures and pharmaceutical preparation. The methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of BEC and SAL in their pharmaceutical formulation with no need for prior separation. The results obtained were statistically compared to each other and to that of the reported HPLC method. The statistical comparison showed that there is no significant difference regarding both accuracy and precision.

  5. Simple flow injection method for simultaneous spectrophotometric determination of Fe(II) and Fe(III).

    PubMed

    Kozak, J; Jodłowska, N; Kozak, M; Kościelniak, P

    2011-09-30

    The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO(3)) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH≅3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05-4.0 and 0.09-6.0 mg L(-1), respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.

  6. Simultaneous spectrophotometric determination of Celecoxib and Diacerein in bulk and capsule by absorption correction method and chemometric methods

    NASA Astrophysics Data System (ADS)

    Patel, N. S.; Nandurbarkar, V. P.; Patel, A. J.; Patel, S. G.

    Two methods, absorption correction and multivariate spectrophotometric methods were developed for simultaneous estimation of Celecoxib (CEL) and Diacerein (DIA) in combined dosage form. Absorption correction method involves direct estimation of DIA at wavelength 341 nm in which CEL has zero absorbance and shows no interference. For estimation of CEL, corrected absorbance was calculated at 253 nm due to the interference of DIA at this wavelength. Linearity was observed in the range of 6-22 μg mL-1 for CEL and 3-11 μg mL-1 for DIA. The method was validated as per ICH guidelines. Chemometric methods including classical least square (CLS), inverse least square (ILS), principal component regression (PCR) and partial least square (PLS) were studied for simultaneous determination of CEL and DIA in capsule using spectrophotometry. A set of 25 standard mixtures containing both drugs were prepared in range of 5-25 μg mL-1 for CEL and 3-15 μg mL-1 for DIA. Analytical figure of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of detection and limit of quantitation were determined for chemometric methods. The proposed methods were applied for determination of two components from combined dosage form.

  7. Simultaneous spectrophotometric determination of celecoxib and diacerein in bulk and capsule by absorption correction method and chemometric methods.

    PubMed

    Patel, N S; Nandurbarkar, V P; Patel, A J; Patel, S G

    2014-05-05

    Two methods, absorption correction and multivariate spectrophotometric methods were developed for simultaneous estimation of Celecoxib (CEL) and Diacerein (DIA) in combined dosage form. Absorption correction method involves direct estimation of DIA at wavelength 341 nm in which CEL has zero absorbance and shows no interference. For estimation of CEL, corrected absorbance was calculated at 253 nm due to the interference of DIA at this wavelength. Linearity was observed in the range of 6-22 μg mL(-1) for CEL and 3-11 μg mL(-1) for DIA. The method was validated as per ICH guidelines. Chemometric methods including classical least square (CLS), inverse least square (ILS), principal component regression (PCR) and partial least square (PLS) were studied for simultaneous determination of CEL and DIA in capsule using spectrophotometry. A set of 25 standard mixtures containing both drugs were prepared in range of 5-25 μg mL(-1) for CEL and 3-15 μg mL(-1) for DIA. Analytical figure of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of detection and limit of quantitation were determined for chemometric methods. The proposed methods were applied for determination of two components from combined dosage form.

  8. Spectrophotometric Method for the Determination of Two Coformulated Drugs with Highly Different Concentrations. Application on Vildagliptin and Metformin Hydrochloride

    NASA Astrophysics Data System (ADS)

    Zaazaa, H. E.; Elzanfaly, E. S.; Soudi, A. T.; Salem, M. Y.

    2016-03-01

    A new smart simple validated spectrophotometric method was developed for the determination of two drugs one of which is in a very low concentration compared to the other. The method is based on spiking and dilution then simple mathematical manipulation of the absorbance spectra. This method was applied for the determination of a binary mixture of vildagliptin and metformin hydrochloride in the ratio 50:850 in laboratory prepared mixtures containing both drugs in this ratio and in pharmaceutical dosage form with good recoveries. The developed method was validated according to ICH guidelines and can be used for routine quality control testing.

  9. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-05-15

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures.

  10. CT Scan Method Accurately Assesses Humeral Head Retroversion

    PubMed Central

    Boileau, P.; Mazzoleni, N.; Walch, G.; Urien, J. P.

    2008-01-01

    Humeral head retroversion is not well described with the literature controversial regarding accuracy of measurement methods and ranges of normal values. We therefore determined normal humeral head retroversion and assessed the measurement methods. We measured retroversion in 65 cadaveric humeri, including 52 paired specimens, using four methods: radiographic, computed tomography (CT) scan, computer-assisted, and direct methods. We also assessed the distance between the humeral head central axis and the bicipital groove. CT scan methods accurately measure humeral head retroversion, while radiographic methods do not. The retroversion with respect to the transepicondylar axis was 17.9° and 21.5° with respect to the trochlear tangent axis. The difference between the right and left humeri was 8.9°. The distance between the central axis of the humeral head and the bicipital groove was 7.0 mm and was consistent between right and left humeri. Humeral head retroversion may be most accurately obtained using the patient’s own anatomic landmarks or, if not, identifiable retroversion as measured by those landmarks on contralateral side or the bicipital groove. PMID:18264854

  11. Development and validation of a rapid stability indicating HPLC-method using monolithic stationary phase and two spectrophotometric methods for determination of antihistaminic acrivastine in capsules.

    PubMed

    Gouda, Ayman A; Hashem, Hisham; Jira, Thomas

    2014-09-15

    Simple, rapid and accurate high performance liquid chromatographic (HPLC) and spectrophotometric methods are described for determination of antihistaminic acrivastine in capsules. The first method (method A) is based on accurate, sensitive and stability indicating chromatographic separation method. Chromolith® Performance RP-18e column, a relatively new packing material consisting of monolithic rods of highly porous silica, was used as stationary phase applying isocratic binary mobile phase of ACN and 25 mM NaH2PO4 pH 4.0 in the ratio of 22.5:77.5 at flow rate of 5.0 mL/min and 40°C. A diode array detector was used at 254 nm for detection. The elution time of acrivastine was found to be 2.080±0.032. The second and third methods (methods B and C) are based on the oxidation of acrivastine with excess N-bromosuccinimide (NBS) and determination of the unconsumed NBS with, metol-sulphanilic acid (λmax: 520 nm) or amaranth dye (λmax: 530 nm). The reacted oxidant corresponds to the drug content. Beer's law is obeyed over the concentration range 1.563-50, 2.0-20 and 1.0-10 μg mL(-1) for methods A, B and C, respectively. The limits of detection and quantitation were 0.40, 0.292 and 0.113 μg mL(-1) and 0.782, 0.973 and 0.376 μg mL(-1) for methods A, B and C, respectively. The HPLC method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. Stability tests were done through exposure of the analyte solution for four different stress conditions and the results indicate no interference of degradants with HPLC-method. The proposed methods was favorably applied for determination of acrivastine in capsules formulation. Statistical comparison of the obtained results from the analysis of the studied drug to those of the reported method using t- and F-tests showed no significant difference between them.

  12. Development and validation of a rapid stability indicating HPLC-method using monolithic stationary phase and two spectrophotometric methods for determination of antihistaminic acrivastine in capsules

    NASA Astrophysics Data System (ADS)

    Gouda, Ayman A.; Hashem, Hisham; Jira, Thomas

    2014-09-01

    Simple, rapid and accurate high performance liquid chromatographic (HPLC) and spectrophotometric methods are described for determination of antihistaminic acrivastine in capsules. The first method (method A) is based on accurate, sensitive and stability indicating chromatographic separation method. Chromolith® Performance RP-18e column, a relatively new packing material consisting of monolithic rods of highly porous silica, was used as stationary phase applying isocratic binary mobile phase of ACN and 25 mM NaH2PO4 pH 4.0 in the ratio of 22.5:77.5 at flow rate of 5.0 mL/min and 40 °C. A diode array detector was used at 254 nm for detection. The elution time of acrivastine was found to be 2.080 ± 0.032. The second and third methods (methods B and C) are based on the oxidation of acrivastine with excess N-bromosuccinimide (NBS) and determination of the unconsumed NBS with, metol-sulphanilic acid (λmax: 520 nm) or amaranth dye (λmax: 530 nm). The reacted oxidant corresponds to the drug content. Beer’s law is obeyed over the concentration range 1.563-50, 2.0-20 and 1.0-10 μg mL-1 for methods A, B and C, respectively. The limits of detection and quantitation were 0.40, 0.292 and 0.113 μg mL-1 and 0.782, 0.973 and 0.376 μg mL-1 for methods A, B and C, respectively. The HPLC method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. Stability tests were done through exposure of the analyte solution for four different stress conditions and the results indicate no interference of degradants with HPLC-method. The proposed methods was favorably applied for determination of acrivastine in capsules formulation. Statistical comparison of the obtained results from the analysis of the studied drug to those of the reported method using t- and F-tests showed no significant difference between them.

  13. Spectrophotometric and Spectrofluorimetric Methods for the Determination of Dothiepin Hydrochloride in its Pure and Dosage Forms using Eosin

    PubMed Central

    Walash, M. I.; Belal, F.; El-Enany, N.; Elmansi, H.

    2010-01-01

    Spectrophotometric and spectrofluorimetric methods were developed for the determination of dothiepin hydrochloride (DOP) in different dosage forms. The spectrophotometric method (Method I) is based on formation of a binary complex with eosin at 540 nm in acetate buffer of pH3.7. The absorbance-concentration plot is rectilinear over the range 1–10 μg/mL with LOD of 0.18 μg/mL and LOQ of 0.54 μg/mL. The spectroflurimetric method (Method II) is based on the quantitative quenching effect of Dothiepin on the native fluorescence of eosin at the same pH. The quenching of the fluorescence of eosin was measured at 543 nm after excitation at 304 nm. The fluorescence-concentration plot is rectilinear over the range 0.3–8 μg/ mL with LOD of 0.11 μg/mL and LOQ of 0.34 μg/mL. The proposed methods were successfully applied to the analysis of commercial tablets and capsules containing the drug. Statistical comparison of the results with those of the reference method revealed good agreement and proved that there were no significant differences in the accuracy and precision between the two methods respectively. PMID:23675210

  14. Net analyte signal standard addition method (NASSAM) as a novel spectrofluorimetric and spectrophotometric technique for simultaneous determination, application to assay of melatonin and pyridoxine

    NASA Astrophysics Data System (ADS)

    Asadpour-Zeynali, Karim; Bastami, Mohammad

    2010-02-01

    In this work a new modification of the standard addition method called "net analyte signal standard addition method (NASSAM)" is presented for the simultaneous spectrofluorimetric and spectrophotometric analysis. The proposed method combines the advantages of standard addition method with those of net analyte signal concept. The method can be applied for the determination of analyte in the presence of known interferents. The accuracy of the predictions against H-point standard addition method is not dependent on the shape of the analyte and interferent spectra. The method was successfully applied to simultaneous spectrofluorimetric and spectrophotometric determination of pyridoxine (PY) and melatonin (MT) in synthetic mixtures and in a pharmaceutical formulation.

  15. An Accurate and Efficient Method of Computing Differential Seismograms

    NASA Astrophysics Data System (ADS)

    Hu, S.; Zhu, L.

    2013-12-01

    Inversion of seismic waveforms for Earth structure usually requires computing partial derivatives of seismograms with respect to velocity model parameters. We developed an accurate and efficient method to calculate differential seismograms for multi-layered elastic media, based on the Thompson-Haskell propagator matrix technique. We first derived the partial derivatives of the Haskell matrix and its compound matrix respect to the layer parameters (P wave velocity, shear wave velocity and density). We then derived the partial derivatives of surface displacement kernels in the frequency-wavenumber domain. The differential seismograms are obtained by using the frequency-wavenumber double integration method. The implementation is computationally efficient and the total computing time is proportional to the time of computing the seismogram itself, i.e., independent of the number of layers in the model. We verified the correctness of results by comparing with differential seismograms computed using the finite differences method. Our results are more accurate because of the analytical nature of the derived partial derivatives.

  16. Accurate optical CD profiler based on specialized finite element method

    NASA Astrophysics Data System (ADS)

    Carrero, Jesus; Perçin, Gökhan

    2012-03-01

    As the semiconductor industry is moving to very low-k1 patterning solutions, the metrology problems facing process engineers are becoming much more complex. Choosing the right optical critical dimension (OCD) metrology technique is essential for bridging the metrology gap and achieving the required manufacturing volume throughput. The critical dimension scanning electron microscope (CD-SEM) measurement is usually distorted by the high aspect ratio of the photoresist and hard mask layers. CD-SEM measurements cease to correlate with complex three-dimensional profiles, such as the cases for double patterning and FinFETs, thus necessitating sophisticated, accurate and fast computational methods to bridge the gap. In this work, a suite of computational methods that complement advanced OCD equipment, and enabling them to operate at higher accuracies, are developed. In this article, a novel method for accurately modeling OCD profiles is presented. A finite element formulation in primal form is used to discretize the equations. The implementation uses specialized finite element spaces to solve Maxwell equations in two dimensions.

  17. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods?

    PubMed

    Finete, Virgínia de Lourdes Mendes; Gouvêa, Marcos Martins; Marques, Flávia Ferreira de Carvalho; Netto, Annibal Duarte Pereira

    2013-12-15

    The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds.

  18. Method for Accurate Surface Temperature Measurements During Fast Induction Heating

    NASA Astrophysics Data System (ADS)

    Larregain, Benjamin; Vanderesse, Nicolas; Bridier, Florent; Bocher, Philippe; Arkinson, Patrick

    2013-07-01

    A robust method is proposed for the measurement of surface temperature fields during induction heating. It is based on the original coupling of temperature-indicating lacquers and a high-speed camera system. Image analysis tools have been implemented to automatically extract the temporal evolution of isotherms. This method was applied to the fast induction treatment of a 4340 steel spur gear, allowing the full history of surface isotherms to be accurately documented for a sequential heating, i.e., a medium frequency preheating followed by a high frequency final heating. Three isotherms, i.e., 704, 816, and 927°C, were acquired every 0.3 ms with a spatial resolution of 0.04 mm per pixel. The information provided by the method is described and discussed. Finally, the transformation temperature Ac1 is linked to the temperature on specific locations of the gear tooth.

  19. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  20. Spectrophotometric Analysis of Caffeine.

    PubMed

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine.

  1. Novel dispersion tolerant interferometry method for accurate measurements of displacement

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Maria, Michael; Leick, Lasse; Podoleanu, Adrian G.

    2015-05-01

    We demonstrate that the recently proposed master-slave interferometry method is able to provide true dispersion free depth profiles in a spectrometer-based set-up that can be used for accurate displacement measurements in sensing and optical coherence tomography. The proposed technique is based on correlating the channelled spectra produced by the linear camera in the spectrometer with previously recorded masks. As such technique is not based on Fourier transformations (FT), it does not require any resampling of data and is immune to any amounts of dispersion left unbalanced in the system. In order to prove the tolerance of technique to dispersion, different lengths of optical fiber are used in the interferometer to introduce dispersion and it is demonstrated that neither the sensitivity profile versus optical path difference (OPD) nor the depth resolution are affected. In opposition, it is shown that the classical FT based methods using calibrated data provide less accurate optical path length measurements and exhibit a quicker decays of sensitivity with OPD.

  2. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  3. Peptide reactivity assay using spectrophotometric method for high-throughput screening of skin sensitization potential of chemical haptens.

    PubMed

    Jeong, Yun Hyeok; An, Susun; Shin, Kyeho; Lee, Tae Ryong

    2013-02-01

    Haptens must react with cellular proteins to be recognized by antigen presenting cells. Therefore, monitoring reactivity of chemicals with peptide/protein has been considered an in vitro skin sensitization testing method. The reactivity of peptides with chemicals (peptide reactivity) has usually been monitored by chromatographic methods like HPLC or LC/MS, which are robust tools for monitoring common chemical reactions but are rather expensive and time consuming. Here, we examined the possibility of using spectrophotometric methods to monitor peptide reactivity. Two synthetic peptides, Ac-RWAACAA and Ac-RWAAKAA, were reacted with 48 chemicals (34 sensitizers and 14 non-sensitizers). Peptide reactivity was measured by monitoring unreacted peptides with UV-Vis spectrophotometer using 5,5'-dithiobis-2-nitrobenzoic acid as a detection reagent for the free thiol group of cysteine-containing peptide or fluorometer using fluorescamine™ as a detection reagent for the free amine group of lysine-containing peptide. Chemicals were categorized as sensitizers when they induced more than 10% depletion of cysteine-containing peptide or 20% depletion of lysine-containing peptide. The sensitivity, specificity, and accuracy of this method were 82.4%, 85.7%, and 83.3%, respectively. These results demonstrate that spectrophotometric methods can be easy, fast, and high-throughput screening tools for the prediction of the skin sensitization potential of chemical haptens.

  4. A rapid extractive spectrophotometric method for the determination of tin in canned foods with 5,7-dichloro-8-quinolinol.

    PubMed

    Gutierrez, A M; Perez-Conde, C; Rebollar, M P; Diez, L M

    1985-09-01

    A rapid method for the spectrophotometric determination of tin in canned foods, based on formation of the binary Sn(IV)-5,7-dichloro-8-quinolinol complex and extraction into chloroform has been developed. The absorption maximum at 390nm ( = 1.26 x 10(4) l.mole(-1).cm(-1)) is used for the determination. Beer's law is obeyed up to 6mug of tin per ml. Organic matter is destroyed by digestion with acid. Potential interferences have been studied. The detection limit for tin is 2.5mg kg .

  5. Novel spectrophotometric determination of flumethasone pivalate and clioquinol in their binary mixture and pharmaceutical formulation.

    PubMed

    Abdel-Aleem, Eglal A; Hegazy, Maha A; Sayed, Nour W; Abdelkawy, M; Abdelfatah, Rehab M

    2015-02-05

    This work is concerned with development and validation of three simple, specific, accurate and precise spectrophotometric methods for determination of flumethasone pivalate (FP) and clioquinol (CL) in their binary mixture and ear drops. Method A is a ratio subtraction spectrophotometric one (RSM). Method B is a ratio difference spectrophotometric one (RDSM), while method C is a mean center spectrophotometric one (MCR). The calibration curves are linear over the concentration range of 3-45 μg/mL for FP, and 2-25 μg/mL for CL. The specificity of the developed methods was assessed by analyzing different laboratory prepared mixtures of the FP and CL. The three methods were validated as per ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits.

  6. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  7. Rapid and direct spectrophotometric method for kinetics studies and routine assay of peroxidase based on aniline diazo substrates.

    PubMed

    Mirazizi, Fatemeh; Bahrami, Azita; Haghbeen, Kamahldin; Shahbani Zahiri, Hossein; Bakavoli, Mehdi; Legge, Raymond L

    2016-12-01

    Peroxidases are ubiquitous enzymes that play an important role in living organisms. Current spectrophotometrically based peroxidase assay methods are based on the production of chromophoric substances at the end of the enzymatic reaction. The ambiguity regarding the formation and identity of the final chromophoric product and its possible reactions with other molecules have raised concerns about the accuracy of these methods. This can be of serious concern in inhibition studies. A novel spectrophotometric assay for peroxidase, based on direct measurement of a soluble aniline diazo substrate, is introduced. In addition to the routine assays, this method can be used in comprehensive kinetics studies. 4-[(4-Sulfophenyl)azo]aniline (λmax = 390 nm, ɛ = 32 880 M(-1) cm(-1) at pH 4.5 to 9) was introduced for routine assay of peroxidase. This compound is commercially available and is indexed as a food dye. Using this method, a detection limit of 0.05 nmol mL(-1) was achieved for peroxidase.

  8. Blood cyanide determination in two cases of fatal intoxication: comparison between headspace gas chromatography and a spectrophotometric method.

    PubMed

    Gambaro, Veniero; Arnoldi, Sebastiano; Casagni, Eleonora; Dell'acqua, Lucia; Pecoraro, Chiara; Froldi, Rino

    2007-11-01

    Blood samples of two cases were analyzed preliminarily by a classical spectrophotometric method (VIS) and by an automated headspace gas chromatographic method with nitrogen-phosphorus detector (HS-GC/NPD). In the former, hydrogen cyanide (HCN) was quantitatively determined by measuring the absorbance of chromophores forming as a result of interaction with chloramine T. In the automated HS-GC/NPD method, blood was placed in a headspace vial, internal standard (acetonitrile) and acetic acid were then added. This resulted in cyanide being liberated as HCN. The spectrophotometric (VIS) and HS-GC/NPD methods were validated on postmortem blood samples fortified with potassium cyanide in the ranges 0.5-10 and 0.05-5 mug/mL, respectively. Detection limits were 0.2 mug/mL for VIS and 0.05 mug/mL for HS-GC/NPD. This work shows that results obtained by means of the two procedures were insignificantly different and that they compared favorably. They are suitable for rapid diagnosis of cyanide in postmortem cases.

  9. UV Spectrophotometric Method for Estimation of Polypeptide-K in Bulk and Tablet Dosage Forms

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Singh, S. Kumar; Gulati, M.; Vaidya, Y.

    2016-01-01

    An analytical method for estimation of polypeptide-k using UV spectrophotometry has been developed and validated for bulk as well as tablet dosage form. The developed method was validated for linearity, precision, accuracy, specificity, robustness, detection, and quantitation limits. The method has shown good linearity over the range from 100.0 to 300.0 μg/ml with a correlation coefficient of 0.9943. The percentage recovery of 99.88% showed that the method was highly accurate. The precision demonstrated relative standard deviation of less than 2.0%. The LOD and LOQ of the method were found to be 4.4 and 13.33, respectively. The study established that the proposed method is reliable, specific, reproducible, and cost-effective for the determination of polypeptide-k.

  10. Simultaneous estimation of Cefixime and Erdosteine in capsule dosage form by spectrophotometric method.

    PubMed

    Dhoka, Madhura V; Gawande, Vandana T; Joshi, Pranav P; Gandhi, Santosh V; Patil, Neelam G

    2009-01-01

    Two accurate, precise, rapid and economical methods viz. Absorption correction method and Dual wavelength method were developed for the estimation of Cefixime (CEF) and Erdosteine (ERDO) in capsule dosage form. In both the methods linearity was observed in the concentration range of 2-25 microg/ml for Cefixime and 3-37.5 microg/ml for Erdosteine. The results of the analysis have been validated statistically and by recovery studies. The percentage assay was found to be 100.03 +/- 0.68 for Cefixime and 99.5 +/- 1.0 for Erdosteine (Mean +/- S.D) by method A and 99.54 +/- 0.84 for Cefixime and 100.54 +/- 1.3 for Erdosteine (Mean +/- S.D) by method B respectively.

  11. Generalized net analyte signal standard addition as a novel method for simultaneous determination: application in spectrophotometric determination of some pesticides.

    PubMed

    Asadpour-Zeynali, Karim; Saeb, Elhameh; Vallipour, Javad; Bamorowat, Mehdi

    2014-01-01

    Simultaneous spectrophotometric determination of three neonicotinoid insecticides (acetamiprid, imidacloprid, and thiamethoxam) by a novel method named generalized net analyte signal standard addition method (GNASSAM) in some binary and ternary synthetic mixtures was investigated. For this purpose, standard addition was performed using a single standard solution consisting of a mixture of standards of all analytes. Savings in time and amount of used materials are some of the advantages of this method. All determinations showed appropriate applicability of this method with less than 5% error. This method may be applied for linearly dependent data in the presence of known interferents. The GNASSAM combines the advantages of both the generalized standard addition method and net analyte signal; therefore, it may be a proper alternative for some other multivariate methods.

  12. Ad hoc methods for accurate determination of Bader's atomic boundary

    NASA Astrophysics Data System (ADS)

    Polestshuk, Pavel M.

    2013-08-01

    In addition to the recently published triangulation method [P. M. Polestshuk, J. Comput. Chem. 34, 206 (2013)], 10.1002/jcc.23121, two new highly accurate approaches, ZFSX and SINTY, for the integration over an atomic region covered by a zero-flux surface (zfs) were developed and efficiently interfaced into the TWOE program. ZFSX method was realized as three independent modules (ZFSX-1, ZFSX-3, and ZFSX-5) handling interatomic surfaces of a different complexity. Details of algorithmic implementation of ZFSX and SINTY are discussed. A special attention to an extended analysis of errors in calculations of atomic properties is paid. It was shown that uncertainties in zfs determination caused by ZFSX and SINTY approaches contribute negligibly (less than 10-6 a.u.) to the total atomic integration errors. Moreover, the new methods are able to evaluate atomic integrals with a reasonable time and can be universally applied for the systems of any complexity. It is suggested, therefore, that ZFSX and SINTY can be regarded as benchmark methods for the computation of any Quantum Theory of Atoms in Molecules atomic property.

  13. An accurate moving boundary formulation in cut-cell methods

    NASA Astrophysics Data System (ADS)

    Schneiders, Lennart; Hartmann, Daniel; Meinke, Matthias; Schröder, Wolfgang

    2013-02-01

    A cut-cell method for Cartesian meshes to simulate viscous compressible flows with moving boundaries is presented. We focus on eliminating unphysical oscillations occurring in Cartesian grid methods extended to moving-boundary problems. In these methods, cells either lie completely in the fluid or solid region or are intersected by the boundary. For the latter cells, the time dependent volume fraction lying in the fluid region can be so small that explicit time-integration schemes become unstable and a special treatment of these cells is necessary. When the boundary moves, a fluid cell may become a cut cell or a solid cell may become a small cell at the next time level. This causes an abrupt change in the discretization operator and a suddenly modified truncation error of the numerical scheme. This temporally discontinuous alteration is shown to act like an unphysical source term, which deteriorates the numerical solution, i.e., it generates unphysical oscillations in the hydrodynamic forces exerted on the moving boundary. We develop an accurate moving boundary formulation based on the varying discretization operators yielding a cut-cell method which avoids these discontinuities. Results for canonical two- and three-dimensional test cases evidence the accuracy and robustness of the newly developed scheme.

  14. Ad hoc methods for accurate determination of Bader's atomic boundary.

    PubMed

    Polestshuk, Pavel M

    2013-08-07

    In addition to the recently published triangulation method [P. M. Polestshuk, J. Comput. Chem. 34, 206 (2013)], two new highly accurate approaches, ZFSX and SINTY, for the integration over an atomic region covered by a zero-flux surface (zfs) were developed and efficiently interfaced into the TWOE program. ZFSX method was realized as three independent modules (ZFSX-1, ZFSX-3, and ZFSX-5) handling interatomic surfaces of a different complexity. Details of algorithmic implementation of ZFSX and SINTY are discussed. A special attention to an extended analysis of errors in calculations of atomic properties is paid. It was shown that uncertainties in zfs determination caused by ZFSX and SINTY approaches contribute negligibly (less than 10(-6) a.u.) to the total atomic integration errors. Moreover, the new methods are able to evaluate atomic integrals with a reasonable time and can be universally applied for the systems of any complexity. It is suggested, therefore, that ZFSX and SINTY can be regarded as benchmark methods for the computation of any Quantum Theory of Atoms in Molecules atomic property.

  15. The Applied Validated Ultraviolet-Visible Spectrophotometric Method and the Kinetic Model of the Release of Gedunin from a Chitosan-Coated Liposome

    NASA Astrophysics Data System (ADS)

    Sahu, A. Kumar; Jain, V.

    2016-11-01

    The aim of this study is to develop a simple and cost-effective ultraviolet-visible spectrophotometric method, validated according to the International Harmonization Guidelines for the determination of gedunin from a chitosan-coated liposome. The liposome was prepared using the conventional thin film hydration method. The absorption maximum in methanol was found to be 220 nm. The linearity was followed in the concentration from 5-25 μg/mL with a high correlation coefficient of 0.999. The detection and quantification limits were found to be 0.2062 and 0.6250 μg/mL. This method was shown to be precise at the intraday (relative standard deviation <0.3%) and interday (relative standard deviation <1.0539%) level and accurate with recoveries between 98.6540-99.9123% (relative standard deviation <0.4%). The results of the method robustness study indicate that the method was robust. The method was used to determine encapsulation efficiency and the release profile from a coated liposome. Kinetic models (zero order, first order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas) were used to fit the obtained release profile and to predict the in vivo performance of a Gedunin containing coated liposome.

  16. INVESTIGATION AND OPTIMIZATION OF TITRIMETRIC AND SPECTROPHOTOMETRIC METHODS FOR THE ASSAY OF FLUNARIZINE DIHYDROCHLORIDE USING IN SITU BROMINE.

    PubMed

    Prashanth, Kudige Nagaraj; Swamy, Nagaraju; Basavaiah, Kanakapura

    2016-01-01

    Three indirect methods for the assay of flunarizine dihydrochloride (FNH) in bulk drug and commercial formulation based on titrimetric and spectrophotometric techniques using bromate-bromide mixture are described. In titrimetry, a measured excess of bromate-bromide mixture is added to an acidified solution of FNH and the unreacted bromine is determined iodometrically (method A). Spectrophotometry involves the addition of a known excess of bromate-bromide mixture to FNH in acid medium followed by estimation of unreacted bromine by its reaction with excess iodide and the liberated iodine (I₃⁻) is either measured at 370 nm (method B) or liberated iodine reacted with starch followed by the measurement of the blue colored starch-iodide complex at 575 run (method C). Titrimetric method is applicable over the range 4.5-30.0 mg FNH (method A), and the reaction stoichiometry is found to be 1:2 (FNH:KBrO₃). The spectrophotometric methods are applicable over the concentration ranges 0.8-16.0 µg/mL and 0.4-8.0 µg/mL FNH for method B and method C, respectively. The molar absorptivities are calculated to be 2.83 x 10⁴ and 4.96 x 10⁴ L mol⁻¹cm⁻¹ for method B and method C, respectively, and the corresponding Sandell sensitivity values are 0.0168 and 0.0096 µg cm⁻². The proposed methods have been applied successfully for the determination of FNH in pure form and in its dosage form and the results were compared with those of a literature method by applying the Student's t-test and F-test.

  17. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  18. Application of the ratio difference spectrophotometry to the determination of ibuprofen and famotidine in their combined dosage form: comparison with previously published spectrophotometric methods.

    PubMed

    Zaazaa, Hala E; Elzanfaly, Eman S; Soudi, Aya T; Salem, Maissa Y

    2015-05-15

    Ratio difference spectrophotometric method was developed for the determination of ibuprofen and famotidine in their mixture form. Ibuprofen and famotidine were determined in the presence of each other by the ratio difference spectrophotometric (RD) method where linearity was obtained from 50 to 600μg/mL and 2.5 to 25μg/mL for ibuprofen and famotidine, respectively. The suggested method was validated according to ICH guidelines and successfully applied for the analysis of ibuprofen and famotidine in their pharmaceutical dosage forms without interference from any additives or excipients.

  19. Application of the ratio difference spectrophotometry to the determination of ibuprofen and famotidine in their combined dosage form; Comparison with previously published spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Elzanfaly, Eman S.; Soudi, Aya T.; Salem, Maissa Y.

    2015-05-01

    Ratio difference spectrophotometric method was developed for the determination of ibuprofen and famotidine in their mixture form. Ibuprofen and famotidine were determined in the presence of each other by the ratio difference spectrophotometric (RD) method where linearity was obtained from 50 to 600 μg/mL and 2.5 to 25 μg/mL for ibuprofen and famotidine, respectively. The suggested method was validated according to ICH guidelines and successfully applied for the analysis of ibuprofen and famotidine in their pharmaceutical dosage forms without interference from any additives or excipients.

  20. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product.

    PubMed

    Tantawy, Mahmoud A; El-Ragehy, Nariman A; Hassan, Nagiba Y; Abdelkawy, Mohamed

    2016-04-15

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D(1)), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form.

  1. The measurement of acetanilide in plasma by spectrophotometric and selected ion monitoring methods.

    PubMed

    Baty, J D; Playfer, J; Evans, D A; Lamb, J

    1977-08-01

    Plasma samples from volunteers who had received an oral dose of acetanilide have been analysed by gas chromatography mass spectrometry and ultraviolet absorption techniques. The gas chromatography mass spectrometry method involved extraction of the plasma and analysis of the acetanilide using selected ion monitoring with a deuterated internal standard. In the ultraviolet method the plasma was hydrolysed with acid to convert the acetanilide to aniline, and this compound was diazotized and coupled with N-1-naphthylethylene-diamine. The absorbance of the resulting complex was read at 550 nm. Acetanilide levels in plasma determined by the selected ion monitoring method were significantly lower than those measured by spectrophotometry. Pharmacokinetic data calculated from the results obtained using these two assays are very different and illustrate the need for an accurate and specific method of analysis. The major metabolites of acetanilide are shown not to interfere with these assays and the results suggest the possible presence of a new metabolite of acetanilide.

  2. Extractive spectrophotometric methods for the determination of oxomemazine hydrochloride in bulk and pharmaceutical formulations using bromocresol green, bromocresol purple and bromophenol blue.

    PubMed

    El-Didamony, Akram M

    2005-04-01

    Three simple, sensitive and accurate spectrophotometric methods have been developed for the determination of oxomemazine hydrochloride in bulk and pharmaceutical formulations. These methods are based on the formation of yellow ion-pair complexes between the examined drug and bromocresol green (BCG), bromocresol purple (BCP), and bromophenol blue (BPB) as sulphophthalein dyes in acetate-HCl buffer of pH 3.6, 3.4, and 4.0, respectively. The formed complexes were extracted with dichloromethane and measured at 405 nm for all three systems. The best conditions of the reactions were studied and optimized. Beer's law was obeyed in the concentration ranges 2.0-12, 2.0-13, and 2.0-14 microg mL(-1) with molar absorptivities of 3.2 x 10(4), 3.7 x 10(4), and 3.1 x 10(4) L mol(-1) cm(-1) for the BCG, BCP, and BPB methods, respectively. Sandell's sensitivity, correlation coefficient, detection and quantification limits are also calculated. The proposed methods have been applied successfully for the analysis of the drug in pure form and in its dosage forms. No interference was observed from common pharmaceutical excipients. Statistical comparison of the results with those obtained by HPLC method shows excellent agreement and indicates no significant difference in accuracy and precision.

  3. Spectrophotometric system to develop a non-invasive method for monitoring of posidonia oceanica meadows

    NASA Astrophysics Data System (ADS)

    Menesatti, P.; Urbani, G.; Dolce, T.

    2007-09-01

    Posidonia oceanica (L.) is an endemic phanerogam of the Mediterranean Sea. It lives between 0.2 and 40 m depth and make up extensive meadows that play a fundamental role in the marine coast ecosystem. Near the coasts at higher anthropic pressure, Posidonia meadows present both quality and quantity damages (regression) due to the mechanical operations on the seabed (anchoring, drag netting, pipe lines) and the sea pollution. Nowadays, the seagrass regression is monitored by different systems: aereophotografic, side scan sonar, underwater television camera, direct underwater visual inspection. Scientific community is looking for to develop monitoring systems more reliable, rapid and non invasive. Aim of this study is to evaluate the application of a new spectrophotometric imaging system based on the acquisition of reflectance spectral images with a good optical (250 Kpixels) and spectral resolution (spectral range 400-970 nm, a total of 115 single wavelength, 5 nm step each one). First trials were made on Posidonia's leafs to evaluate the system capacity to recognize spectral differences between samples picked up at two different depths (0.3 - 4 m). High discrimination percentage (90%) were found between leaf samples as function of the different depths, analyzing the spectral data by Partial Least Squares model. Forward activities will stress the system capability also to evaluate different phenol concentrations on Posidonia leaves, an important index of physiologic vegetal damage, through direct underwater spectrophotometric monitoring.

  4. A new spectrophotometric method for the determination of finasteride in tablets.

    PubMed

    Ulu, Sevgi Tatar

    2007-07-01

    A simple, rapid, accurate, precise and sensitive colorimetric method for the determination of finasteride in tablets is described. The proposed methods are based on the formation of ion-pair complexes between the examined drug with bromophenol blue (BPB), bromocresol green (BCG) and bromothymol blue (BTB), which can be measured at the optimum lambda(max). Beer's law is obeyed in the concentration ranges 3.0-15.0, 3.0-15.0 and 5.0-20 microg/mL with BPB, BCG and BTB, respectively. The detection limits of FIN was found to be 1.16 microg/mL for BPB, 1.17 for BCG, 1.76 microg/mL for BTB. All the methods gave similar results and were validated for selectivity, linearity, precision and sensitivity. The proposed methods were directly and easily applied to the pharmaceutical preparation with accuracy, resulting from recovery experiments between 100.11 and 100.33% for BPB, 100.17 and 100.67% for BCG and 100.33 and 100.60% for BTB methods. The low relative standard deviation values indicate good precision and high recovery values indicate accuracy of the proposed methods. The proposed methods have been applied to the determination of drug in commercial tablets. Results obtained from the analysis of commercial preparations with the proposed methods are in good agreement with those obtained with the official HPLC method.

  5. A new spectrophotometric method for the determination of finasteride in tablets

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar

    2007-07-01

    A simple, rapid, accurate, precise and sensitive colorimetric method for the determination of finasteride in tablets is described. The proposed methods are based on the formation of ion-pair complexes between the examined drug with bromophenol blue (BPB), bromocresol green (BCG) and bromothymol blue (BTB), which can be measured at the optimum λmax. Beer's law is obeyed in the concentration ranges 3.0-15.0, 3.0-15.0 and 5.0-20 μg/mL with BPB, BCG and BTB, respectively. The detection limits of FIN was found to be 1.16 μg/mL for BPB, 1.17 for BCG, 1.76 μg/mL for BTB. All the methods gave similar results and were validated for selectivity, linearity, precision and sensitivity. The proposed methods were directly and easily applied to the pharmaceutical preparation with accuracy, resulting from recovery experiments between 100.11 and 100.33% for BPB, 100.17 and 100.67% for BCG and 100.33 and 100.60% for BTB methods. The low relative standard deviation values indicate good precision and high recovery values indicate accuracy of the proposed methods. The proposed methods have been applied to the determination of drug in commercial tablets. Results obtained from the analysis of commercial preparations with the proposed methods are in good agreement with those obtained with the official HPLC method.

  6. Spectrophotometric and spectrofluorometric methods for the assay of lisinopril in single and multicomponent pharmaceutical dosage forms.

    PubMed

    El-Yazbi, F A; Abdine, H H; Shaalan, R A

    1999-05-01

    Simple and sensitive methods are described for the assay of lisinopril in tablets. The first method (A) is based on the reaction of the drug with chloranil in aqueous solution of pH 9.5 to give yellow colour measured at 346 nm. The second method (B) is based upon the interaction of lisinopril with dichlone resulting in the formation of an intense purple colour measured at 580 nm. The third method (C) depends on the reaction of the drug with acetylacetone and formaldehyde to form a coloured condensation product measured at 356 nm and also has a strong fluorescence at 475 nm (lambda(ex) 410 nm). This method is extended to determine lisinopril in binary mixtures with hydrochlorothiazide. The last method (D) depends on measuring the first and second derivative spectra of lisinopril. Moreover, the derivative method is used as stability-indicating method where lisinopril can be determined in presence of its degradation products. The proposed methods proved to be suitable for a rapid quality control of commercial dosage forms. The results obtained were precise and accurate.

  7. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Mohamed K.; Riad, Safaa M.; Abdel Gawad, Sherif A.; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-02-01

    Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95 ± 0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99 ± 1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88 ± 0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  8. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.; Lamie, Nesrine T.

    2016-02-01

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360 nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306 nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5 nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM.

  9. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management.

    PubMed

    Mohamed, Heba M; Lamie, Nesrine T

    2016-02-15

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM.

  10. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product.

    PubMed

    Abd El-Rahman, Mohamed K; Riad, Safaa M; Abdel Gawad, Sherif A; Fawaz, Esraa M; Shehata, Mostafa A

    2015-02-05

    Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95±0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99±1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88±0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  11. Extractive spectrophotometric methods for determination of diltiazem HCl in pharmaceutical formulations using bromothymol blue, bromophenol blue and bromocresol green.

    PubMed

    Rahman, N; Hejaz-Azmi, S N

    2000-12-01

    Three simple and sensitive extractive spectrophotometric methods have been described for the assay of diltiazem hydrochloride either in pure form or in pharmaceutical formulations. The developed methods involve formation of coloured chloroform extractable ion-pair complexes of the drug with bromothymol blue (BTB), bromophenol blue (BPB) and bromocresol green (BCG) in acidic medium. The extracted complexes showed absorbance maxima at 415 nm for all three methods. Beer's law is obeyed in the concentration ranges 2.5-20.0, 2.5-10.0 and 2.5-12.5 microg ml(-1) with BTB, BPB and BCG, respectively. The methods have been applied to the determination of drug in commercial tablets and capsules. Results of analysis were validated statistically and through recovery studies.

  12. Evaluation of flow injection analysis method with spectrophotometric detection for the determination of atrazine in soil extracts.

    PubMed

    Martins, Elisandra C; Melo, Vander De F; Abate, Gilberto

    2016-09-01

    A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L(-1), respectively, for a linear response between 0.50 and 2.50 mg L(-1), and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils.

  13. Simultaneous ultraviolet spectrophotometric determination of nitrate and nitrite in water

    SciTech Connect

    Dong Huiru; Zhang Qing ); Jiang Meiyu )

    1991-02-01

    A rapid and accurate method for the direct simultaneous determination of nitrate and nitrite is proposed. The method is applied to the determination of nitrate and nitrite in rainwater and wastewater without preliminary separation. The determinations are performed by a CPA matrix method with ultraviolet spectrophotometric detection. The results obtained are in agreement with those obtained by conventional methods for the determination of nitrate and nitrite.

  14. Application of spectrophotometric, densitometric, and HPLC techniques as stability indicating methods for determination of Zaleplon in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Metwally, Fadia H.; Abdelkawy, M.; Abdelwahab, Nada S.

    2007-12-01

    Spectrophotometric, spectrodensitometric and HPLC are stability indicating methods described for determination of Zaleplon in pure and dosage forms. As Zaleplon is easily degradable, the proposed techniques in this manuscript are adopted for its determination in presence of its alkaline degradation product, namely N-[4-(3-cyano-pyrazolo[1,5a]pyridin-7-yl)-phenyl]- N-ethyl-acetamide. These approaches are successfully applied to quantify Zaleplon using the information included in the absorption spectra of appropriate solutions. The second derivative (D 2) spectrophotometric method, allows determination of Zaleplon without interference of its degradate at 235.2 nm using 0.01N HCl as a solvent with obedience to Beer's law over a concentration range of 1-10 μg ml -1 with mean percentage recovery 100.24 ± 0.86%. The first derivative of the ratio spectra ( 1DD) based on the simultaneous use of ( 1DD) and measurement at 241.8 nm using the same solvent and over the same concentration range as (D 2) spectrophotometric method, with mean percentage recovery 99.9 ± 1.07%. The spectrodensitometric analysis allows the separation and quantitation of Zaleplon from its degradate on silica gel plates using chloroform:acetone:ammonia solution (9:1:0.2 by volume) as a mobile phase. This method depends on quantitave densitometric evaluation of thin layer chromatogram of Zaleplon at 338 nm over a concentration range of 0.2-1 μg band -1, with mean percentage recovery 99.73 ± 1.35. Also a reversed-phase liquid chromatographic method using 5-C8 (22 cm × 4.6 mm i.d. 5 μm particle size) column was described and validated for quantitation of Zaleplon using acetonitrile:deionised water (35:65, v/v) as a mobile phase using Paracetamol as internal standard and a flow rate of 1.5 ml min -1 with UV detection of the effluent at 232 nm at ambient temperature over a concentration range of 2-20 μg ml -1 with mean percentage recovery 100.19 ± 1.15%. The insignificance difference of the proposed

  15. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  16. An atomic absorption spectrophotometric method for the determination of trace amounts of zinc in canned juices after ion exchange separation.

    PubMed

    Aziz-Alrahman, A M

    1984-01-01

    An atomic absorption spectrophotometric method is described for the determination of microgram quantities of zinc in canned juices. After sample digestion in concentrated nitric acid, the solution is evaporated till near dryness, and then a solution of 2 M HCl is added to form tetrachlorozincate (II) ion. This acid solution, containing the zinc complex is passed through an ion-exchange column (anion exchange resin, chloride form, which is preconditioned by passing 1 M HCl solution). Zinc is eluted from the column with 0.01 M HCl solution. After evaporation to dryness, the residue is dissolved in 1% (v/v) HNO3, and then atomized into an air-acetylene flame. The limit of detection of the method is 0.15 micrograms ml-1 Zn. The analytical aspects of the proposed method, including the standard addition technique are discussed.

  17. Fourth-order derivative spectrophotometric method for simultaneous determination of pseudoephedrine and naproxen in pharmaceutical dosage forms

    PubMed Central

    Souri, Effat; Mosafer, Amir; Tehrani, Maliheh Barazandeh

    2016-01-01

    Combination dosage forms of naproxen sodium and pseudoephedrine hydrochloride are used for symptomatic treatment of cold and sinus disorders. In this study, fourth-order derivative spectrophotometric method was used for simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride. The method was linear over the range of 2-28 μg/ml for pseudoephedrine hydrochloride and 4-200 μg/ml for naproxen sodium. The within-day and between-day coefficient of variation values were less than 5.8% and 2.5% for pseudoephedrine hydrochloride and naproxen sodium, respectively. The application of the proposed method for simultaneous determination of naproxen and pseudoephedrine in dosage forms was demonstrated without any special pretreatment. PMID:27168748

  18. Kinetic spectrophotometric method for the determination of oxalic acid by its catalytic effect on the oxidation of safranine by dichromate

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Abbasi, S.; Rezaei, B.

    2001-08-01

    A new catalytic kinetic spectrophotometric method for the determination of oxalic acid has been described based on its catalytic effect on the redox reaction between safranine and dichromate in dilute sulfuric acid media. The reaction is monitored photometrically by measuring the decrease in absorbance of safranine at the maximum wavelength of 530 nm. Under the optimum conditions, a calibration graph from 0.10 to 10.00 μg ml -1 of oxalic acid with a detection limit of 0.08 μg ml -1 was obtained. The relative standard deviation (R.S.D.) for ten replicate measurements of 1.0 and 5.0 μg ml -1 oxalic acid was 2.7 and 2.5%, respectively. The purposed method is simple, sensitive, selective and inexpensive. The applicability of the proposed method was determined by the determination of oxalic acid in spinach and wastewater samples with satisfactory results.

  19. Kinetic spectrophotometric method for the determination of oxalic acid by its catalytic effect on the oxidation of safranine by dichromate.

    PubMed

    Ensafi, A A; Abbasi, S; Rezaei, B

    2001-08-01

    A new catalytic kinetic spectrophotometric method for the determination of oxalic acid has been described based on its catalytic effect on the redox reaction between safranine and dichromate in dilute sulfuric acid media. The reaction is monitored photometrically by measuring the decrease in absorbance of safranine at the maximum wavelength of 530 nm. Under the optimum conditions, a calibration graph from 0.10 to 10.00 microg ml(-1) of oxalic acid with a detection limit of 0.08 microg ml(-1) was obtained. The relative standard deviation (R.S.D.) for ten replicate measurements of 1.0 and 5.0 microg ml(-1) oxalic acid was 2.7 and 2.5%, respectively. The purposed method is simple, sensitive, selective and inexpensive. The applicability of the proposed method was determined by the determination of oxalic acid in spinach and wastewater samples with satisfactory results.

  20. Fourth-order derivative spectrophotometric method for simultaneous determination of pseudoephedrine and naproxen in pharmaceutical dosage forms.

    PubMed

    Souri, Effat; Mosafer, Amir; Tehrani, Maliheh Barazandeh

    2016-01-01

    Combination dosage forms of naproxen sodium and pseudoephedrine hydrochloride are used for symptomatic treatment of cold and sinus disorders. In this study, fourth-order derivative spectrophotometric method was used for simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride. The method was linear over the range of 2-28 μg/ml for pseudoephedrine hydrochloride and 4-200 μg/ml for naproxen sodium. The within-day and between-day coefficient of variation values were less than 5.8% and 2.5% for pseudoephedrine hydrochloride and naproxen sodium, respectively. The application of the proposed method for simultaneous determination of naproxen and pseudoephedrine in dosage forms was demonstrated without any special pretreatment.

  1. Simultaneous spectrophotometric determination of chromium(VI) and iron (III) by H-point standard addition method

    NASA Astrophysics Data System (ADS)

    Larionova, E. V.; Bulygina, K. A.

    2016-02-01

    In this work the possibility of simultaneous spectrophotometric determination of chromium (VI) and iron (III) in alloys with help of the mixed organic reagent (diphenylcarbazide and 1,10-phenanthroline) is studied. We have applied H-point standard addition method to determine concentrations of chromium (VI) and iron (III) from the mixture. The pure signals of complexes of chromium (VI) with diphenylcarbazide and iron (III) with the 1,10-phenanthroline and their calibration plots are previously carried out. We established the possibility of simultaneous determination of chromium (VI) and iron (III) in the different concentration ranges by H-point standard addition method. Correctness of determination of concentration by means of the offered technique is proved by "added-found" method for a series of mixtures with different ratios of concentration of chromium (VI) and iron (III). It is founded that the error of determination of concentration doesn't exceed 33%.

  2. Novel spectrophotometric method for determination of cinacalcet hydrochloride in its tablets via derivatization with 1,2-naphthoquinone-4-sulphonate

    PubMed Central

    2012-01-01

    This study represents the first report on the development of a novel spectrophotometric method for determination of cinacalcet hydrochloride (CIN) in its tablet dosage forms. Studies were carried out to investigate the reaction between CIN and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 8.5), an orange red-colored product exhibiting maximum absorption peak (λmax) at 490 nm was produced. The stoichiometry and kinetic of the reaction were investigated and the reaction mechanism was postulated. This color-developing reaction was employed in the development of a simple and rapid visible-spectrophotometric method for determination of CIN in its tablets. Under the optimized reaction conditions, Beer's law correlating the absorbance with CIN concentration was obeyed in the range of 3 - 100 μg/ml with good correlation coefficient (0.9993). The molar absorptivity (ε) was 4.2 × 105 l/mol/cm. The limits of detection and quantification were 1.9 and 5.7 μg/ml, respectively. The precision of the method was satisfactory; the values of relative standard deviations (RSD) did not exceed 2%. No interference was observed from the excipients that are present in the tablets. The proposed method was applied successfully for the determination of CIN in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.80 - 102.23 ± 1.27 - 1.62%. The results were compared favorably with those of a reference pre-validated method. The method is practical and valuable in terms of its routine application in quality control laboratories. PMID:22305461

  3. Spectrophotometric methods for the determination of anti-emetic drugs in bulk and in pharmaceutical preparations.

    PubMed

    Amin, Alaa S; Ragab, Gamal H

    2003-05-01

    Four rapid, simple, reproducible and sensitive methods (A-D) for assaying domperidone (I) and metoclopramide (II) in a bulk sample and in dosage forms were investigated. The first and second methods, A and B, are based on the oxidation of I and/or II by Fe3+ in the presence of o-phenanthroline (o-phen) or bipyridyl (bipy). The formation of tris-complex upon reactions with Fe3+-o-phen and/or Fe3+-bipy mixture in an acetate buffer solution of the optimum pH-values was demonstrated. Methods C and D involve the addition of excess Ce4+ and the determination of unreacted oxidant by a decrease of the red color of chromotrope 2R (C2R) at a suitable lambda(max) of 528 nm for method C, or a decrease in the orange pink color of Rhodamine 6G (Rh6G) at a suitable lambda(max) value of 525 nm for method D. A regression analysis of Beer-Lambert plots showed a good correlation in the concentration range of 0.2-5.8 microg ml(-1). The apparent molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. For a more accurate analysis, the Ringbom optimum concentration ranges are 0.35-5.6 microg ml(-1). The developed methods were successfully applied to the determination of domperidone and metoclopramide in bulk and pharmaceutical preparations without any interference from common excipients.

  4. Absolute flux calibration of optical spectrophotometric standard stars

    NASA Technical Reports Server (NTRS)

    Colina, Luis; Bohlin, Ralph C.

    1994-01-01

    A method based on Landolt photometry in B and V is developed to correct for a wavelength independent offset of the absolute flux level of optical spectrophotometric standards. The method is based on synthetic photometry techniques in B and V and is accurate to approximately 1%. The correction method is verified by Hubble Space Telescope Faint Object Spectrograph absolute fluxes for five calibration stars, which agree with Landolt photometry to 0.5% in B and V.

  5. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    NASA Astrophysics Data System (ADS)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  6. Validated spectrofluorimetric and spectrophotometric methods for the determination of brimonidine tartrate in ophthalmic solutions via derivatization with NBD-Cl. Application to stability study.

    PubMed

    Ibrahim, F; El-Enany, N; El-Shaheny, R N; Mikhail, I E

    2015-05-01

    Two simple, selective and accurate methods were developed and validated for the determination of brimonidine tartrate (BT) in pure state and pharmaceutical formulations. Both methods are based on the coupling of the drug with 4-chloro-7-nitro-2,1,3-benzoxadiazole in borate buffer (pH 8.5) at 70 °C and measurement of the reaction product spectrophotometrically at 407 nm (method I) or spectrofluorimetrically at 528 nm upon excitation at 460 nm (method II). The calibration graphs were rectilinear over the concentration ranges of 1.0-16.0 and 0.1-4.0 µg/mL with lower detection limits of 0.21 and 0.03, and lower quantification limits of 0.65 and 0.09 µg/mL for methods I and II, respectively. Both methods were successfully applied to the analysis of commercial ophthalmic solution with mean recovery of 99.50 ± 1.00 and 100.13 ± 0.71%, respectively. Statistical analysis of the results obtained by the proposed methods revealed good agreement with those obtained using a comparison method. The proposed spectrofluorimetric method was extended to a stability study of BT under different ICH-outlined conditions such as alkaline, acidic, oxidative and photolytic degradation. Furthermore, the kinetics of oxidative degradation of the drug was investigated and the apparent first-order reaction rate constants, half-life times and Arrhenius equation were estimated. The proposed methods are practical and valuable for routine applications in quality control laboratories for the analysis of BT.

  7. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  8. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2014-05-21

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  9. Quantitative analysis of chlorpheniramine maleate and phenylephrine hydrochloride in nasal drops by differential-derivative spectrophotometric, zero-crossing first derivative UV spectrophotometric and absorbance ratio methods.

    PubMed

    Erk, N

    2000-11-01

    Three simple, rapid and accurate methods are described for the simultaneous determination of chlorpheniramine maleate and phenylephrine hydrochloride in two component mixtures. The first method comprised of measurement of difference absorptivities derivatized in first order of a nasal drops in 0.1 N NaOH relative to that of an equimolar solution in methanol at wavelengths of 271.6 and 250.2 nm, respectively. The second method, zero-crossing derivative spectrophotometry, is based on recording the first derivative curves and determining each component using the zero-crossing technique. Using first derivative spectrophotometry, the amplitudes in the first derivative spectra at 246.5 and 238.6 nm were selected to simultaneously determine chlorpheniramine maleate and phenylephrine hydrochloride in the mixture. The presence of identical zero-crossing points for pure drugs and nasal drop solutions established the non-interference of the excipients in the absorption at these wavelengths. Absorbance ratio method was also developed for a comparison method. The proposed procedures were successfully applied to the determination of chlorpheniramine maleate and phenylephrine hydrochloride in nasal drops, with a high percentage of recovery, good accuracy and precision.

  10. Simultaneous Determination and Stability Studies on Diminazene Diaceturate and Phenazone Using Developed Derivative Spectrophotometric Method

    PubMed Central

    Ahmed Gadkariem, Elrasheed; Awadalla Mohamed, Magdi

    2017-01-01

    This work presents UV first derivative spectrophotometry as a precise, accurate, and feasible method for simultaneous determination of diminazene diaceturate and phenazone in bulk and dosage forms. The absorbance values of diminazene diaceturate and phenazone aqueous mixture were obtained at 398 nm and 273 nm, respectively. The developed method was proved to be linear over the concentration ranges (2–10) μg/mL and (2.496–12.48) μg/mL for diminazene diaceturate and phenazone, respectively, with good correlation coefficients (not less than 0.997). The detection and quantitation limits were found to be (LOD = 0.63 and 0.48 μg/mL; LOQ = 1.92 and 1.47 μg/mL, resp.). The developed method was employed for stability studies of both drugs under different stress conditions. Diminazene diaceturate was prone to degrade at acidic pH via first-order kinetics. The degradation process was found to be temperature dependent with an activation energy of 7.48 kcal/mole. Photo-stability was also investigated for this drug. PMID:28246529

  11. Simultaneous determination of atorvastatin calcium and olmesartan medoxomil in a pharmaceutical formulation by reversed phase high-performance liquid chromatography, high-performance thin-layer chromatography, and UV spectrophotometric methods.

    PubMed

    Soni, Hiral; Kothari, Charmy; Khatri, Deepak; Mehta, Priti

    2014-01-01

    Validated RP-HPLC, HPTLC, and UV spectrophotometric methods have been developed for the simultaneous determination of atorvastatin calcium (ATV) and olmesartan medoxomil (OLM) in a pharmaceutical formulation. The RP-HPLC separation was achieved on a Kromasil C18 column (250 x 4.6 mm, 5 microm particle size) using 0.01 M potassium dihydrogen o-phosphate (pH 4 adjusted with o-phosphoric acid)-acetonitrile (50 + 50, v/v) as the mobile phase at a flow rate of 1.5 mL/min. Quantification was achieved by UV detection at 276 nm. The HPTLC separation was achieved on precoated silica gel 60F254 plates using chloroform-methanol-acetonitrile (4 + 2+ 4, v/v/v) mobile phase. Quantification was achieved with UV detection at 276 nm. The UV-Vis spectrophotometric method was based on the simultaneous equation method that involves measurement of absorbance at two wavelengths, i.e., 255 nm (lambda max of OLM) and 246.2 nm (lambda max of ATV) in methanol. All three methods were validated as per International Conference on Harmonization guidelines. The proposed methods were simple, precise, accurate, and applicable for the simultaneous determination of ATV and OLM in a marketed formulation. The results obtained by applying the proposed methods were statistically analyzed and were found satisfactory.

  12. Derivative spectrophotometric method for simultaneous determination of zofenopril and fluvastatin in mixtures and pharmaceutical dosage forms

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Mariusz; Maślanka, Anna; Apola, Anna; Rybak, Wojciech; Krzek, Jan

    2015-09-01

    Fast, accurate and precise method for the determination of zofenopril and fluvastatin was developed using spectrophotometry of the first (D1), second (D2), and third (D3) order derivatives in two-component mixtures and in pharmaceutical preparations. It was shown, that the developed method allows for the determination of the tested components in a direct manner, despite the apparent interference of the absorption spectra in the UV range. For quantitative determinations, "zero-crossing" method was chosen, appropriate wavelengths for zofenopril were: D1 λ = 270.85 nm, D2 λ = 286.38 nm, D3 λ = 253.90 nm. Fluvastatin was determined at wavelengths: D1 λ = 339.03 nm, D2 λ = 252.57 nm, D3 λ = 258.50 nm, respectively. The method was characterized by high sensitivity and accuracy, for zofenopril LOD was in the range of 0.19-0.87 μg mL-1, for fluvastatin 0.51-1.18 μg mL-1, depending on the class of derivative, and for zofenopril and fluvastatin LOQ was 0.57-2.64 μg mL-1 and 1.56-3.57 μg mL-1, respectively. The recovery of individual components was within the range of 100 ± 5%. For zofenopril, the linearity range was estimated between 7.65 μg mL-1 and 22.94 μg mL-1, and for fluvastatin between 5.60 μg mL-1 and 28.00 μg mL-1.

  13. Derivative spectrophotometric method for simultaneous determination of zofenopril and fluvastatin in mixtures and pharmaceutical dosage forms.

    PubMed

    Stolarczyk, Mariusz; Maślanka, Anna; Apola, Anna; Rybak, Wojciech; Krzek, Jan

    2015-09-05

    Fast, accurate and precise method for the determination of zofenopril and fluvastatin was developed using spectrophotometry of the first (D1), second (D2), and third (D3) order derivatives in two-component mixtures and in pharmaceutical preparations. It was shown, that the developed method allows for the determination of the tested components in a direct manner, despite the apparent interference of the absorption spectra in the UV range. For quantitative determinations, "zero-crossing" method was chosen, appropriate wavelengths for zofenopril were: D1 λ=270.85 nm, D2 λ=286.38 nm, D3 λ=253.90 nm. Fluvastatin was determined at wavelengths: D1 λ=339.03 nm, D2 λ=252.57 nm, D3 λ=258.50 nm, respectively. The method was characterized by high sensitivity and accuracy, for zofenopril LOD was in the range of 0.19-0.87 μg mL(-1), for fluvastatin 0.51-1.18 μg mL(-1), depending on the class of derivative, and for zofenopril and fluvastatin LOQ was 0.57-2.64 μg mL(-1) and 1.56-3.57 μg mL(-1), respectively. The recovery of individual components was within the range of 100±5%. For zofenopril, the linearity range was estimated between 7.65 μg mL(-1) and 22.94 μg mL(-1), and for fluvastatin between 5.60 μg mL(-1) and 28.00 μg mL(-1).

  14. Spectrophotometric Methods for Simultaneous Determination of Sofosbuvir and Ledipasvir (HARVONI Tablet): Comparative Study with Two Generic Products.

    PubMed

    Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R; Tammam, Marwa H

    2017-02-10

    Sofosbuvir and ledipasvir are the first drugs in a combination pill to treat chronic hepatitis C virus. Simple, sensitive, and rapid spectrophotometric methods are presented for the determination of sofosbuvir and ledipasvir in their combined dosage form. These methods were based on direct measurement of ledipasvir at 333 nm (due to the lack of interference of sofosbuvir) over a concentration range of 4.0–14.0 μg/mL, with a mean recovery of 100.78 ± 0.64%. Sofosbuvir was determined, without prior separation, by third-derivative values at 281 nm; derivative ratio values at 265.8 nm utilizing 5.0 μg/mL ledipasvir as a divisor; the ratio difference method using values at 270 and 250 nm using 5.0 μg/mL ledipasvir as a divisor; and the ratio subtraction method using values at 261 nm. These methods were found to be linear for sofosbuvir over a concentration range of 5.0–35.0 μg/mL. The suggested methods were validated according to International Conference on Harmonization guidelines. Statistical analysis of the results showed no significant difference between the proposed methods and the manufacturer’s LC method of determination with respect to accuracy and precision. These methods were used to compare the equivalence of an innovator drug dosage form and two generic drug dosage forms of the same strength.

  15. Spectrophotometric study of total protein-albumin methods applied to cerebrospinal fluid.

    PubMed

    Artiss, J D; Thibert, R J; Zak, B

    1981-02-01

    A spectrophotometric study was carried out for three proteins assays when modification of their serum procedures using bromcresol green, bromcresol purple and biuret reagents were applied to the determinations of total proteins and albumin in cerebrospinal fluids. A novel concentration device wherein the sample itself was used as the primary diluent for the three reagents concentrated to contain the proper amounts of chemicals in smaller volumes than suggested in their serum procedures allowed reasonable absorbance signals to be obtained. Low molecular weight molecules were separated from the albumin and globulins of the fluids by centrifugal ultrafiltration using a 25K cutoff and spectra were obtained for both high and low molecular weight fractions. Some materials were obtained in the separated ultrafiltrates which gave reactions with all three reagents, reactions which either overlapped the spectra of the albumin reactions or superimposed the spectra obtained with the total protein reaction. A screening procedure for cerebrospinal fluid total proteins or centrifugally ultrafiltered albumin appears reasonable as an inference from studies made, although further elucidation of the low molecular weight fractions in needed as a confirmation device.

  16. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  17. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  18. Rapid and simple stability indicating HPLC method for the determination of cilazapril in pure substance and pharmaceutical formulation in comparison with classic and derivative spectrophotometric methods.

    PubMed

    Paszun, Sylwia K; Stanisz, Beata; Pawłowski, Wojciech

    2012-01-01

    The present study describes development and subsequent validation of high performance liquid chromatographic method (HPLC) in comparison with spectrophotometric methods (classic, first, second and third order derivative) for determination of pure cilazapril in substance and pharmaceutical preparation. The main aim of this study was to find the method suitable not only for determination of cilazapril, but additionally useful in degradation kinetic study. Only the HPLC method is stability indicating. The HPLC method utilizes LiChroCART 250-4 HPLC-Cartridge, LiChrospher 100 RP-18 (5 μm) column, at ambient temperature, eluted at the flow rate 1.0 mL/min. The mobile phase consists of acetonitrile, methanol and phosphate buffer (pH 2.0) (60:10:30, v/v/v). Wavelength of detection is set at 212 nm. Benzocaine is used as an internal standard. The second and third order derivative spectrophotometric methods can be applied for the cilazapril analysis in substance and tablet, but not for stability evaluation (the lack of selectivity towards degradation product).

  19. Development and Validation of UV-Visible Spectrophotometric Method for Simultaneous Determination of Eperisone and Paracetamol in Solid Dosage Form

    PubMed Central

    Khanage, Shantaram Gajanan; Mohite, Popat Baban; Jadhav, Sandeep

    2013-01-01

    Purpose: Eperisone Hydrochloride (EPE) is a potent new generation antispasmodic drug which is used in the treatment of moderate to severe pain in combination with Paracetamol (PAR). Both drugs are available in tablet dosage form in combination with a dose of 50 mg for EPE and 325 mg PAR respectively. Methods: The method is based upon Q-absorption ratio method for the simultaneous determination of the EPE and PAR. Absorption ratio method is used for the ratio of the absorption at two selected wavelength one of which is the iso-absorptive point and other being the λmax of one of the two components. EPE and PAR shows their iso-absorptive point at 260 nm in methanol, the second wavelength used is 249 nm which is the λmax of PAR in methanol. Results: The linearity was obtained in the concentration range of 5-25 μg/mL for EPE and 2-10 μg/mL for PAR. The proposed method was effectively applied to tablet dosage form for estimation of both drugs. The accuracy and reproducibility results are close to 100% with 2% RSD. Results of the analysis were validated statistically and found to be satisfactory. The results of proposed method have been validated as per ICH guidelines. Conclusion: A simple, precise and economical spectrophotometric method has been developed for the estimation of EPE and PAR in pharmaceutical formulation. PMID:24312876

  20. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  1. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  2. Validation of UV spectrophotometric methods for the determination of dothiepin hydrochloride in pharmaceutical dosage form and stress degradation studies

    NASA Astrophysics Data System (ADS)

    Abdulrahman, Sameer A. M.; Basavaiah, K.; Cijo, M. X.; Vinay, K. B.

    2012-11-01

    Spectrophotometric methods have been developed for the determination of dothiepin hydrochloride (DOTH) in both pure and tablet dosage form and their limits of detection and quantification have been evaluated. The methods are based on the measurement of the absorbance of a DOTH solution either in 0.1 N HCl at 229 nm (method A) or in methanol at 231 nm (method B). Beer's law is obeyed over a concentration range of 1-16 μg/ml DOTH for both methods. Molar absorptivity values are calculated to be 2.48 × 104 and 2.42 × 104 l/(mol × cm) with Sandell sensitivity values of 0.0134 and 0.0137 μg/cm2 for methods A and B, respectively. The degradation behavior of DOTH was investigated under different stress conditions such as acid hydrolysis, alkaline hydrolysis, water hydrolysis, oxidation, dry heat treatment, and UV-degradation. The drug undergoes significant degradation under oxidative conditions only.

  3. Sensitive kinetic-catalytic spectrophotometric method for cobalt determination using a chip coupled to a multisyringe flow injection analysis system.

    PubMed

    Abouhiat, Fatima Zohra; Henríquez, Camelia; El Yousfi, Farida; Cerdà, Víctor

    2017-05-01

    The development of an automated kinetic-catalytic spectrophotometric method for cobalt determination is presented. The method is based on the catalytic effect of Co in the oxidation of hydroxybenzoic acid by H2O2 in basic media. The method has been automated using a multisyringe flow injection system coupled to a monolithic flow conduit called chip (chip-MSFIA). All reagents and sample are simultaneously propelled into the chip to achieve an efficient mixing. The reaction product is monitored at 482nm. The reaction takes place very fast at room temperature, thus the fixed-time method is applied to quantify Co concentration in samples. Variables such as, reagents concentration, pH, flow rate and reaction time have been optimized to improve the selectivity and sensitivity of the proposed system. Under optimal conditions, Co may be determined in the range 0.02-10.00μgL(-1) achieving a limit of detection of 0.02μgL(-1) and an injection throughput of 68h(-1). Relative standard deviations are below 3%. The method has been successfully applied to water samples and a pharmaceutical formulation. The accuracy of the method has been validated by add-recovery tests and satisfactory recoveries from 91% to 97% were obtained.

  4. Spectrophotometric determination of organic nitrogen by a modified Lassaigne method and its application to meat products and baby food.

    PubMed

    Demirata, Birsen; Apak, Resat; Afsar, Hüseyin; Tor, Izzet

    2002-01-01

    A modified Lassaigne method was developed for N determination based on fusion of the organic substance with metallic Na, conversion of the cyanide in the aqueous leachate to thiocyanate by ammonium polysulfide treatment, and colorimetric measurement of the thiocyanate formed by the addition of excessive ferric ions in acidic medium. The mean molar absorptivity of the Fe(NCS)2+ complex at 480 nm is 2.96 x 10(3) L/mol x cm, enabling quantitation of 0.25-7.72 ppm N (linear range) in the final solution. The relative amounts of Na, (NH4)2S2, and Fe(III) with respect to nitrogen in the analyte were optimized. The developed method was successfully applied to the determination of N in various brands of baby food, and it was compared statistically with the conventional Kjeldahl and elemental analysis methods. Protein nitrogen in a number of meat products was also precisely determined by the developed method. Thus, the total digestion time of the conventional Kjeldahl method was reduced considerably (e.g., to approximately 15 min for a dried sample) with a relatively simple spectrophotometric method requiring no sophisticated instrumentation.

  5. [Spectrophotometric determination of phenol and sodium tosylchloramide].

    PubMed

    Kovacević, G; Bodiroga, M; Jasminka, O

    1991-01-01

    A possible quantitative analysis of oil injections of phenol and tosylchloramide sodium solution using the spectrophotometric method in the UV field has been examined. The results have been compared with results of official methods, bromometry and iodometry. The proposed spectrophotometric method is suitable due to its speed and simplicity in work giving precise and reproducible results.

  6. Preconcentration of trace arsenite and arsenate with titanium dioxide nanoparticles and subsequent determination by silver diethyldithiocarbamate spectrophotometric method.

    PubMed

    Xiao, Yabing; Ling, Jie; Qian, Shahua; Lin, Anqing; Zheng, Wenjie; Xu, Weiya; Luo, Yuxuan; Zhang, Man

    2007-09-01

    A novel method of preconcentration of trace arsenite and arsenate by using titanium dioxide nanoparticles as adsorbent was described. The concentrations of preconcentrated arsenite and arsenate were determined by a silver diethyldithiocarbamate spectrophotometric method without desorption. Batch adsorption experiments were carried out as a function of the pH, contact time, amount of titanium dioxide nanoparticles, and solution volume. In the pH range 5 to 6, adsorption rates of arsenite and arsenate were higher than 98%. The calibration coefficient was 0.9991, and the linear range was 0 to 100 microg/L. The developed method was precise, with the relative standard deviation <5% at concentration level of 10 microg/L, with a detection limit (3sigma, n=6) of 0.44 microg/L. The accuracy of the method for total arsenic was validated by standard reference materials (SRM 3103a) (National Institute of Standards and Technology, Gaithersburg, Maryland). The method was also applied to the analysis of arsenite and arsenate in natural water samples to verify the accuracy. The recovery values remained in a narrow range, from 95 to 103%.

  7. Spectrophotometric and reversed-phase high-performance liquid chromatographic method for the determination of doxophylline in pharmaceutical formulations.

    PubMed

    Joshi, Hr; Patel, Ah; Captain, Ad

    2010-07-01

    Two methods are described for determination of Doxophylline in a solid dosage form. The first method was based on ultraviolet (UV)-spectrophotometric determination of the drug. It involves absorbance measurement at 274 nm (λ(max) of Doxophylline) in 0.1 N hydrochloric acid. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.20-30 mg/ml for the drug. The second method was based on high-performance liquid chromatography (HPLC) separation of the drug in reverse-phase mode using the Hypersil ODS C(18) column (250 × 4.6 mm, 5 mm). The mobile phase constituted of buffer acetonitrile (80:20) and pH adjusted to 3.0, with dilute orthophosphoric acid delivered at a flow rate 1.0 ml/min. Detection was performed at 210 nm. Separation was completed within 7 min. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.165-30 mg/ml for the drug. The relative standard deviation was found to be <2.0% for the UV-spectrophotometry and HPLC methods. Both these methods have been successively applied to the solid dosage pharmaceutical formulation, and were fully validated according to ICH guidelines.

  8. Development and validation of spectrophotometric methods for determination of fluoxetine, sertraline, and paroxetine in pharmaceutical dosage forms.

    PubMed

    Darwish, Ibrahim A

    2005-01-01

    Three simple and sensitive spectrophotometric methods were developed and validated for determination of the hydrochloride salts of fluoxetine, sertraline, and paroxetine in their pharmaceutical dosage forms. These methods were based on the reaction of the N-alkylvinylamine formed from the interaction of the free secondary amino group in the investigated drugs and acetaldehyde with each of 3 haloquinones, i.e., chloranil, bromanil, and 2,3-dichloronaphthoquinone, to give colored vinylamino-substituted quinones. The colored products obtained with chloranil, bromanil, and 2,3-dichloronaphthoquinone exhibit absorption maxima at 665, 655, and 580 nm, respectively. The factors affecting the reactions were studied and optimized. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9986-0.9999) were found between the absorbances and the concentrations of the investigated drugs in the range of 4-120 microg/mL. The limits of detection for the assays ranged from 1.19 to 2.98 microg/mL. The precision values of the methods were satisfactory; the relative standard deviations were 0.56-1.24%. The proposed methods were successfully applied to the determination of the 3 drugs in pure and pharmaceutical dosage forms with good accuracy; the recoveries ranged from 99.1 to 101.3% with standard deviations of 1.15-1.92%. The results compared favorably with those of reported methods.

  9. Development and Validation of Chemometric-Assisted Spectrophotometric Methods for Simultaneous Determination of Phenylephrine Hydrochloride and Ketorolac Tromethamine in Binary Combinations.

    PubMed

    Elfatatry, Hamed M; Mabrouk, Mokhtar M; Hammad, Sherin F; Mansour, Fotouh R; Kamal, Amira H; Alahmad, Shoeb

    2016-09-01

    The present work describes new spectrophotometric methods for the simultaneous determination of phenylephrine hydrochloride and ketorolac tromethamine in their synthetic mixtures. The applied chemometric techniques are multivariate methods including classical least squares, principal component regression, and partial least squares. In these techniques, the concentration data matrix was prepared by using the synthetic mixtures containing these drugs dissolved in distilled water. The absorbance data matrix corresponding to the concentration data was obtained by measuring the absorbances at 16 wavelengths in the range 244-274 nm at 2 nm intervals in the zero-order spectra. The spectrophotometric procedures do not require any separation steps. The accuracy, precision, and linearity ranges of the methods have been determined, and analyzing synthetic mixtures containing the studied drugs has validated them. The developed methods were successfully applied to the synthetic mixtures and the results were compared to those obtained by a reported HPLC method.

  10. Novel spectrophotometric method for determination of some macrolide antibiotics in pharmaceutical formulations using 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ashour, Safwan; Bayram, Roula

    2012-12-01

    New, simple and rapid spectrophotometric method has been developed and validated for the assay of two macrolide drugs, azithromycin (AZT) and erythromycin (ERY) in pure and pharmaceutical formulations. The proposed method was based on the reaction of AZT and ERY with sodium 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline medium at 25 °C to form an orange-colored product of maximum absorption peak at 452 nm. All variables were studied to optimize the reaction conditions and the reaction mechanism was postulated. Beer's law was obeyed in the concentration range 1.5-33.0 and 0.92-8.0 μg mL-1 with limit of detection values of 0.026 and 0.063 μg mL-1 for AZT and ERY, respectively. The calculated molar absorptivity values are 4.3 × 104 and 12.3 × 104 L mol-1 cm-1 for AZT and ERY, respectively. The proposed methods were successfully applied to the determination of AZT and ERY in formulations and the results tallied well with the label claim. The results were statistically compared with those of an official method by applying the Student's t-test and F-test. No interference was observed from the concomitant substances normally added to preparations.

  11. Bivariate versus multivariate smart spectrophotometric calibration methods for the simultaneous determination of a quaternary mixture of mosapride, pantoprazole and their degradation products.

    PubMed

    Hegazy, M A; Yehia, A M; Moustafa, A A

    2013-05-01

    The ability of bivariate and multivariate spectrophotometric methods was demonstrated in the resolution of a quaternary mixture of mosapride, pantoprazole and their degradation products. The bivariate calibrations include bivariate spectrophotometric method (BSM) and H-point standard addition method (HPSAM), which were able to determine the two drugs, simultaneously, but not in the presence of their degradation products, the results showed that simultaneous determinations could be performed in the concentration ranges of 5.0-50.0 microg/ml for mosapride and 10.0-40.0 microg/ml for pantoprazole by bivariate spectrophotometric method and in the concentration ranges of 5.0-45.0 microg/ml for both drugs by H-point standard addition method. Moreover, the applied multivariate calibration methods were able for the determination of mosapride, pantoprazole and their degradation products using concentration residuals augmented classical least squares (CRACLS) and partial least squares (PLS). The proposed multivariate methods were applied to 17 synthetic samples in the concentration ranges of 3.0-12.0 microg/ml mosapride, 8.0-32.0 microg/ml pantoprazole, 1.5-6.0 microg/ml mosapride degradation products and 2.0-8.0 microg/ml pantoprazole degradation products. The proposed bivariate and multivariate calibration methods were successfully applied to the determination of mosapride and pantoprazole in their pharmaceutical preparations.

  12. Spectrophotometric reaction rate method for the determination of trace amounts of vanadium(V) by its catalytic effect on the oxidation of Nile blue with bromate

    SciTech Connect

    Ensafi, A.A.; Amini, M.K.; Mazloum, M.

    1999-07-01

    A kinetic spectrophotometric method for the determination of trace amounts of vanadium(V) is described. It is based on the catalytic action of this ion on the oxidation of Nile blue by bromate, which yields a colorless product in acidic media. The reaction is followed spectrophotometrically by measuring the rate of decrease in absorbance at 585 nm and 30 C. A fixed time method of 4.0 min from initiation of the reaction was used. Vanadium(V) in the range of 0.004--0.520 {micro}g/ml can be determined. The proposed method is hardly subject to interference. The parameters affecting the sensitivity were optimized. The proposed method was used for the determination of vanadium in water and in milk samples.

  13. Different Spectrophotometric and TLC-Densitometric Methods for Determination of Mesalazine in Presence of Its Two Toxic Impurities.

    PubMed

    Morcoss, Martha Moheb; Abdelwahab, Nada Sayed; Ali, Nouruddin Wagieh; Elsaady, Mohammed Taha

    2016-01-01

    Two selective spectrophotometric and TLC-densitometric methods were developed for determination of mesalazine (ME) and its two toxic impurities, 4-amino phenol (4AP) and salicylic acid (SA) without preliminary separation. The proposed methods are: ratio difference in the subtracted spectra (RDSS) {Method 1}, area under the curve (AUC) {Method 2} and TLC-densitometric {Method 3}. In method {1} combination of measuring the amplitude of the constant at 350 nm (using standard spectrum of 10 µg/mL ME as a divisor) and ratio difference in the subtracted ratio spectrum for determination of 4AP and SA using the ratio difference at 221.4 and 242.2 nm, 230 and 241.2 nm, respectively. In method {2} ME was determined by direct measuring the AUC in the wavelength range of 350-370 nm while the impurities could be determined by dividing their spectra by standard spectrum of 10 µg/mL ME then interference from ME was eliminated by subtracting the amplitude of the constant at 350 nm then multiplying by the divisor. AUC in the range of 220-230 and 235-245 nm was used for measuring concentrations of 4AP and SA. On the other hand, the third method {3} is TLC-densitometric method at which chromatographic separation was achieved using ethyl acetate-methanol-triethylamine (8.5 : 2 : 0.7, v/v/v) as a developing system with UV scanning at 230 nm. The validation of the proposed methods was performed according to International Conference on Harmonization (ICH) guidelines. No significant difference was found when these methods were compared to the reported one.

  14. Mapping methods for computationally efficient and accurate structural reliability

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1992-01-01

    Mapping methods are developed to improve the accuracy and efficiency of probabilistic structural analyses with coarse finite element meshes. The mapping methods consist of the following: (1) deterministic structural analyses with fine (convergent) finite element meshes; (2) probabilistic structural analyses with coarse finite element meshes; (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes; and (4) a probabilistic mapping. The results show that the scatter in the probabilistic structural responses and structural reliability can be efficiently predicted using a coarse finite element model and proper mapping methods with good accuracy. Therefore, large structures can be efficiently analyzed probabilistically using finite element methods.

  15. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  16. Development of a Rapid Derivative Spectrophotometric Method for Simultaneous Determination of Acetaminophen, Diphenhydramine and Pseudoephedrine in Tablets

    PubMed Central

    Souri, Effat; Rahimi, Aghil; Shabani Ravari, Nazanin; Barazandeh Tehrani, Maliheh

    2015-01-01

    A mixture of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride is used for the symptomatic treatment of common cold. In this study, a derivative spectrophotometric method based on zero-crossing technique was proposed for simultaneous determination of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride. Determination of these drugs was performed using the 1D value of acetaminophen at 281.5 nm, 2D value of diphenhydramine hydrochloride at 226.0 nm and 4D value of pseudoephedrine hydrochloride at 218.0 nm. The analysis method was linear over the range of 5-50, 0.25-4, and 0.5-5 µg/mL for acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride, respectively. The within-day and between-day CV and error values for all three compounds were within an acceptable range (CV<2.2% and error<3%). The developed method was used for simultaneous determination of these drugs in pharmaceutical dosage forms and no interference from excipients was observed. PMID:25901150

  17. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.

  18. A novel flow injection spectrophotometric method using plant extracts as green reagent for the determination of doxycycline.

    PubMed

    Palamy, Sysay; Ruengsitagoon, Wirat

    2017-01-15

    A novel flow injection spectrophotometric method was developed for the determination of doxycycline in pharmaceutical preparations using iron(III) contained in extracts from plants. The assay was based on the complex formed between doxycycline and iron(III) characterized by an absorption maximum at 435nm. The calibration graphs obtained over the doxycycline concentration range 5-250μgmL(-1) gave correlation coefficients of 0.9979, 0.9987 and 0.9987 with the three green reagents prepared from Senna alata (L.) Roxb. (S. alata), Polygonum hydropiper L. (P. hydropiper) or Diplazium esculentum (Retz.) Sw. (D. esculentum), respectively. The relative standard deviations of the repeatability was <2.00%. The percentage recoveries were in the range of 98.27-101.03%. Doxycycline contents obtained by this new method and by the reference methods reported in literature were in agreement at 95% confidence level with the paired t-test. The sample throughput was 36h(-1) for each green reagent.

  19. Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements.

    PubMed

    Gómez Ruiz, Braulio; Roux, Stéphanie; Courtois, Francis; Bonazzi, Catherine

    2016-11-15

    A simple, rapid and reliable method was developed for quantifying ascorbic (AA) and dehydroascorbic (DHAA) acids and validated in 20mM malate buffer (pH 3.8). It consists in a spectrophotometric measurement of AA, either directly on the solution added with metaphosphoric acid or after reduction of DHAA into AA by dithiothreitol. This method was developed with real time measurement of reactions kinetics in bulk reactors in mind, and was checked in terms of linearity, limits of detection and quantification, fidelity and accuracy. The linearity was found satisfactory on the range of 0-6.95mM with limits of detection and quantification of 0.236mM and 0.467mM, respectively. The method was found acceptable in terms of fidelity and accuracy with a coefficient of variation for repeatability and reproducibility below 6% for AA and below 15% for DHAA, and with a recovery range of 97-102% for AA and 88-112% for DHAA.

  20. A novel flow injection spectrophotometric method using plant extracts as green reagent for the determination of doxycycline

    NASA Astrophysics Data System (ADS)

    Palamy, Sysay; Ruengsitagoon, Wirat

    2017-01-01

    A novel flow injection spectrophotometric method was developed for the determination of doxycycline in pharmaceutical preparations using iron(III) contained in extracts from plants. The assay was based on the complex formed between doxycycline and iron(III) characterized by an absorption maximum at 435 nm. The calibration graphs obtained over the doxycycline concentration range 5-250 μg mL- 1 gave correlation coefficients of 0.9979, 0.9987 and 0.9987 with the three green reagents prepared from Senna alata (L.) Roxb. (S. alata), Polygonum hydropiper L. (P. hydropiper) or Diplazium esculentum (Retz.) Sw. (D. esculentum), respectively. The relative standard deviations of the repeatability was < 2.00%. The percentage recoveries were in the range of 98.27-101.03%. Doxycycline contents obtained by this new method and by the reference methods reported in literature were in agreement at 95% confidence level with the paired t-test. The sample throughput was 36 h- 1 for each green reagent.

  1. Express method of construction of accurate inverse pole figures

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu; Isaenkova, M.; Fesenko, V.

    2016-04-01

    With regard to metallic materials with the FCC and BCC crystal lattice a new method for constructing the X-ray texture inverse pole figures (IPF) by using tilt curves of spinning sample, characterized by high accuracy and rapidity (express), was proposed. In contrast to the currently widespread method to construct IPF using orientation distribution function (ODF), synthesized in several partial direct pole figures, the proposed method is based on a simple geometrical interpretation of a measurement procedure, requires a minimal operating time of the X-ray diffractometer.

  2. Comparative study of three modified numerical spectrophotometric methods: An application on pharmaceutical ternary mixture of aspirin, atorvastatin and clopedogrel

    NASA Astrophysics Data System (ADS)

    Issa, Mahmoud Mohamed; Nejem, R.'afat Mahmoud; Shanab, Alaa Abu; Hegazy, Nahed Diab; Stefan-van Staden, Raluca-Ioana

    2014-07-01

    Three novel numerical methods were developed for the spectrophotometric multi-component analysis of capsules and synthetic mixtures of aspirin, atorvastatin and clopedogrel without any chemical separation. The subtraction method is based on the relationship between the difference in absorbance at four wavelengths and corresponding concentration of analyte. In this method, the linear determination ranges were 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 0.5-30 μg mL-1 clopedogrel. In the quotient method, 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 1.0-30 μg mL-1 clopedogrel were determine from spectral data at the wavelength pairs that show the same ratio of absorbance for other two species. Standard addition method was used for resolving ternary mixture of 1.0-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 2.0-30 μg mL-1 clopedogrel. The proposed methods were validated. The reproducibility and repeatability were found satisfactory which evidence was by low values of relative standard deviation (<2%). Recovery was found to be in the range (99.6-100.8%). By adopting these methods, the time taken for analysis was reduced as these methods involve very limited steps. The developed methods were applied for simultaneous analysis of aspirin, atorvastatin and clopedogrel in capsule dosage forms and results were in good concordance with alternative liquid chromatography.

  3. Comparative study of three modified numerical spectrophotometric methods: an application on pharmaceutical ternary mixture of aspirin, atorvastatin and clopedogrel.

    PubMed

    Issa, Mahmoud Mohamed; Nejem, R'afat Mahmoud; Shanab, Alaa Abu; Hegazy, Nahed Diab; Stefan-van Staden, Raluca-Ioana

    2014-07-15

    Three novel numerical methods were developed for the spectrophotometric multi-component analysis of capsules and synthetic mixtures of aspirin, atorvastatin and clopedogrel without any chemical separation. The subtraction method is based on the relationship between the difference in absorbance at four wavelengths and corresponding concentration of analyte. In this method, the linear determination ranges were 0.8-40 μg mL(-1) aspirin, 0.8-30 μg mL(-1) atorvastatin and 0.5-30 μg mL(-1) clopedogrel. In the quotient method, 0.8-40 μg mL(-1) aspirin, 0.8-30 μg mL(-1) atorvastatin and 1.0-30 μg mL(-1) clopedogrel were determine from spectral data at the wavelength pairs that show the same ratio of absorbance for other two species. Standard addition method was used for resolving ternary mixture of 1.0-40 μg mL(-1) aspirin, 0.8-30 μg mL(-1) atorvastatin and 2.0-30 μg mL(-1) clopedogrel. The proposed methods were validated. The reproducibility and repeatability were found satisfactory which evidence was by low values of relative standard deviation (<2%). Recovery was found to be in the range (99.6-100.8%). By adopting these methods, the time taken for analysis was reduced as these methods involve very limited steps. The developed methods were applied for simultaneous analysis of aspirin, atorvastatin and clopedogrel in capsule dosage forms and results were in good concordance with alternative liquid chromatography.

  4. Spectrophotometric Determination of Certain Benzimidazole Proton Pump Inhibitors

    PubMed Central

    Syed, A. A.; Syeda, Ayesha

    2008-01-01

    Spectrophotometric method for the determination of certain proton pump inhibitors belonging to the benzimidazole class of compounds has been developed. The method is based on the reaction of omeprazole, lansoprazole, pantoprazole, rabeprazole and esomeprazole with iron (III) and subsequent reaction with ferricyanide under neutral condition which yields Prussian blue product with maximum absorption at 720–730 nm. The commonly encountered excipients and additives that often accompany pharmaceutical preparations did not interfere with the determination. The method was applied for the determination of omeprazole, lansoprazole, pantoprazole, rabeprazole and esomeprazole in pharmaceutical preparations and no difference was found statistically. Thus, the spectrophotometric method can be applied as inexpensive, rapid, easy, accurate and precise method for the routine analysis of the five proton pump inhibitors in pharmaceutical preparations. PMID:20046782

  5. Evaluation of the parameters of 1:1 charge transfer complexes from spectrophotometric data by non-linear numerical method

    NASA Astrophysics Data System (ADS)

    Grebenyuk, Serhiy A.; Perepichka, Igor F.; Popov, Anatolii F.

    2002-11-01

    The non-linear numerical method for evaluation of equilibrium constants and molar extinction coefficients of molecular complexes from a spectrophotometric experiment is described, which in contrast to linear models has no limitations with respect to concentrations of the components. The proposed procedure is applied to donor-acceptor interaction in solution between N-ethyl carbazole (EtCz) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) or n-hexyl 2,5,7-trinitro-9-dicyanomethylenefluorene-4-carboxylate (HexDTFC) to evaluate the method and to obtain the parameters of charge transfer complexes (CTCs) formation. Association constants ( K) and molar extinction coefficients ( ɛ) of CTCs derived from non-linear approach (EtCz-TCNQ: K=2.49±0.19 M -1; ɛ=2950±160 M -1 cm -1. EtCz-HexDTFC: K=12.1±0.3 M -1; ɛ=1335±24 M -1 cm -1) are close to that from linear models but show lower standard errors in parameter estimations.

  6. A simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Zarabi, Sanaz

    2015-01-01

    In this paper, a simple and cost effective method was developed for extraction and pre-concentration of carmine in food samples by using cloud point extraction (CPE) prior to its spectrophotometric determination. Carmine was extracted from aqueous solution using Triton X-100 as extracting solvent. The effects of main parameters such as solution pH, surfactant and salt concentrations, incubation time and temperature were investigated and optimized. Calibration graph was linear in the range of 0.04-5.0 μg mL(-1) of carmine in the initial solution with regression coefficient of 0.9995. The limit of detection (LOD) and limit of quantification were 0.012 and 0.04 μg mL(-1), respectively. Relative standard deviation (RSD) at low concentration level (0.05 μg mL(-1)) of carmine was 4.8% (n=7). Recovery values in different concentration levels were in the range of 93.7-105.8%. The obtained results demonstrate the proposed method can be applied satisfactory to determine the carmine in food samples.

  7. Simultaneous estimation of ramipril, acetylsalicylic acid and atorvastatin calcium by chemometrics assisted UV-spectrophotometric method in capsules.

    PubMed

    Sankar, A S Kamatchi; Vetrichelvan, Thangarasu; Venkappaya, Devashya

    2011-09-01

    In the present work, three different spectrophotometric methods for simultaneous estimation of ramipril, aspirin and atorvastatin calcium in raw materials and in formulations are described. Overlapped data was quantitatively resolved by using chemometric methods, viz. inverse least squares (ILS), principal component regression (PCR) and partial least squares (PLS). Calibrations were constructed using the absorption data matrix corresponding to the concentration data matrix. The linearity range was found to be 1-5, 10-50 and 2-10 μg mL-1 for ramipril, aspirin and atorvastatin calcium, respectively. The absorbance matrix was obtained by measuring the zero-order absorbance in the wavelength range between 210 and 320 nm. A training set design of the concentration data corresponding to the ramipril, aspirin and atorvastatin calcium mixtures was organized statistically to maximize the information content from the spectra and to minimize the error of multivariate calibrations. By applying the respective algorithms for PLS 1, PCR and ILS to the measured spectra of the calibration set, a suitable model was obtained. This model was selected on the basis of RMSECV and RMSEP values. The same was applied to the prediction set and capsule formulation. Mean recoveries of the commercial formulation set together with the figures of merit (calibration sensitivity, selectivity, limit of detection, limit of quantification and analytical sensitivity) were estimated. Validity of the proposed approaches was successfully assessed for analyses of drugs in the various prepared physical mixtures and formulations.

  8. The chain collocation method: A spectrally accurate calculus of forms

    NASA Astrophysics Data System (ADS)

    Rufat, Dzhelil; Mason, Gemma; Mullen, Patrick; Desbrun, Mathieu

    2014-01-01

    Preserving in the discrete realm the underlying geometric, topological, and algebraic structures at stake in partial differential equations has proven to be a fruitful guiding principle for numerical methods in a variety of fields such as elasticity, electromagnetism, or fluid mechanics. However, structure-preserving methods have traditionally used spaces of piecewise polynomial basis functions for differential forms. Yet, in many problems where solutions are smoothly varying in space, a spectral numerical treatment is called for. In an effort to provide structure-preserving numerical tools with spectral accuracy on logically rectangular grids over periodic or bounded domains, we present a spectral extension of the discrete exterior calculus (DEC), with resulting computational tools extending well-known collocation-based spectral methods. Its efficient implementation using fast Fourier transforms is provided as well.

  9. Development and validation of a UV-spectrophotometric method for the determination of pheniramine maleate and its stability studies

    NASA Astrophysics Data System (ADS)

    Raghu, M. S.; Basavaiah, K.; Ramesh, P. J.; Abdulrahman, Sameer A. M.; Vinay, K. B.

    2012-03-01

    A sensitive, precise, and cost-effective UV-spectrophotometric method is described for the determination of pheniramine maleate (PAM) in bulk drug and tablets. The method is based on the measurement of absorbance of a PAM solution in 0.1 N HCl at 264 nm. As per the International Conference on Harmonization (ICH) guidelines, the method was validated for linearity, accuracy, precision, limits of detection (LOD) and quantification (LOQ), and robustness and ruggedness. A linear relationship between absorbance and concentration of PAM in the range of 2-40 μg/ml with a correlation coefficient (r) of 0.9998 was obtained. The LOD and LOQ values were found to be 0.18 and 0.39 μg/ml PAM, respectively. The precision of the method was satisfactory: the value of relative standard deviation (RSD) did not exceed 3.47%. The proposed method was applied successfully to the determination of PAM in tablets with good accuracy and precision. Percentages of the label claims ranged from 101.8 to 102.01% with the standard deviation (SD) from 0.64 to 0.72%. The accuracy of the method was further ascertained by recovery studies via a standard addition procedure. In addition, the forced degradation of PAM was conducted in accordance with the ICH guidelines. Acidic and basic hydrolysis, thermal stress, peroxide, and photolytic degradation were used to assess the stability-indicating power of the method. A substantial degradation was observed during oxidative and alkaline degradations. No degradation was observed under other stress conditions.

  10. An accurate fuzzy edge detection method using wavelet details subimages

    NASA Astrophysics Data System (ADS)

    Sedaghat, Nafiseh; Pourreza, Hamidreza

    2010-02-01

    Edge detection is a basic and important subject in computer vision and image processing. An edge detector is defined as a mathematical operator of small spatial extent that responds in some way to these discontinuities, usually classifying every image pixel as either belonging to an edge or not. Many researchers have been spent attempting to develop effective edge detection algorithms. Despite this extensive research, the task of finding the edges that correspond to true physical boundaries remains a difficult problem.Edge detection algorithms based on the application of human knowledge show their flexibility and suggest that the use of human knowledge is a reasonable alternative. In this paper we propose a fuzzy inference system with two inputs: gradient and wavelet details. First input is calculated by Sobel operator and the second is calculated by wavelet transform of input image and then reconstruction of image only with details subimages by inverse wavelet transform. There are many fuzzy edge detection methods, but none of them utilize wavelet transform as it is used in this paper. For evaluating our method, we detect edges of images with different brightness characteristics and compare results with canny edge detector. The results show the high performance of our method in finding true edges.

  11. Mapping methods for computationally efficient and accurate structural reliability

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1991-01-01

    The influence of mesh coarseness in the structural reliability is evaluated. The objectives are to describe the alternatives and to demonstrate their effectiveness. The results show that special mapping methods can be developed by using: (1) deterministic structural responses from a fine (convergent) finite element mesh; (2) probabilistic distributions of structural responses from a coarse finite element mesh; (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes; and (4) probabilistic mapping. The structural responses from different finite element meshes are highly correlated.

  12. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    PubMed

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-06

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude.

  13. Spectrophotometric determination of etidocaine in pharmaceutical (dental) formulation.

    PubMed

    Silva, Nelson; Schapoval, Elfrides E S

    2002-07-20

    A spectrophotometric method was developed for the determination of etidocaine hydrochloride (EH) in injectable pharmaceutical preparation. The proposal of this work was to develop a rapid, simple, inexpensive, precise and accurate visible spectrophotometric method. The method is based on the formation of the ion-pair complex by the EH reaction with bromocresol green in the pH 4.6 which after chloroform extraction gives a yellow color that in basic medium change to blue color and exhibits a maximum absorbance at 625 nm. The calibration graph was linear over the range 2.0-6.0 microg ml(-1) EH calculated on the final yellow solution. The R.S.D. of the slope of the four lines was 0.73%. This method can be applied to injectable pharmaceutical preparation dosage studied.

  14. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    PubMed Central

    Shi, Laishun; Wang, Xiaomei; Li, Na; Liu, Jie; Yan, Chunying

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction. PMID:22454614

  15. Determination of trace nitrite ion in water by spectrophotometric method after preconcentration on an organic solvent-soluble membrane filter.

    PubMed

    Gu, X; Zhou, T; Qi, D

    1996-02-01

    A simple and rapid preconcentration technique, based on collecting trace nitrite on a membrane filter and dissolving the membrane filter in an organic solvent, has been applied to its spectrophotometric determination in water. At pH 2.0, nitrous acid diazotizes with p-aminoacetophenone. which is then coupled with N-(1-naphthyl)ethylenediamine, at the same pH. The azo dye formed is collected on a 0.45 urn nitrocellulose filter at pH 4.7 as its ion associate with dodecyl sulfate. The ion associate and filter are dissolved in a small volume of 2-methoxyethanol (methylcellosolve), and acidized with 0.05 ml of 2 M hydrochloric acid and the absorbance of the resulting solution is measured at 555 nm against a reagent blank. Detection limits better than O.1 mug/dm(-3) as NO(2)(-) can be achieved. The ions normally present in water do not interfere when sodium metaphosphate is added as a masking agent. The proposed method has been applied to the analysis of water samples from several sources, the recoveries of the nitrite added to the samples are quantitative, and results found are satisfactory.

  16. Chlorine dioxide-iodide-methyl acetoacetate oscillation reaction investigated by UV-vis and online FTIR spectrophotometric method.

    PubMed

    Shi, Laishun; Wang, Xiaomei; Li, Na; Liu, Jie; Yan, Chunying

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  17. Simultaneous determination of imipramine hydrochloride and chlordiazepoxide in pharmaceutical preparations by spectrophotometric, RP-HPLC, and HPTLC methods.

    PubMed

    Patel, Sejal K; Patel, Natvarlal J

    2010-01-01

    A binary mixture of imipramine HCl and chlordiazepoxide was determined by three different methods. The first involved determination of imipramine HCl and chlordiazepoxide using the first derivative spectrophotometric technique at 219 and 231.5 nm over the concentration ranges of 1-20 and 2-24 microg/mL with mean accuracies of 99.47 +/- 0.78 and 101.43 +/- 1.20%, respectively. The second method utilized RP-HPLC with methanol-acetonitrile-0.065 M ammonium acetate buffer (45 + 25 + 30, v/v/v, pH adjusted to 5.6 +/- 0.02 with phosphoric acid) as the mobile phase pumped at a flow rate of 1.0 mL/min. Quantification was achieved using UV detection at 240 nm over concentration ranges of 0.25-4.0 and 0.1-1.6 microg/mL, with mean accuracies of 101.17 +/- 0.56 and 100.67 +/- 0.40% for imipramine HCl and chlordiazepoxide, respectively. The third method was HPTLC with carbon tetrachloride-acetone-triethylamine (pH 8.3; 6 + 3 + 0.3, v/v/v) as the mobile phase. Quantification was achieved with UV detection at 240 nm over concentration ranges of 50-600 and 20-240 ng/spot with mean accuracies of 99.51 +/- 0.59 and 100.59 +/- 0.84% for imipramine HCl and chlordiazepoxide, respectively. The suggested procedures were checked using prepared mixtures, and were successfully applied for the analysis of pharmaceutical preparations. The accuracy and precision of the methods were confirmed when the standard addition technique was applied. The results obtained by applying the proposed methods were statistically analyzed.

  18. Individualizing amikacin regimens: accurate method to achieve therapeutic concentrations.

    PubMed

    Zaske, D E; Cipolle, R J; Rotschafer, J C; Kohls, P R; Strate, R G

    1991-11-01

    Amikacin's pharmacokinetics and dosage requirements were studied in 98 patients receiving treatment for gram-negative infections. A wide interpatient variation in the kinetic parameters of the drug occurred in all patients and in patients who had normal serum creatinine levels or normal creatinine clearance. The half-life ranged from 0.7 to 14.4 h in 74 patients who had normal serum creatinine levels and from 0.7 to 7.2 h in 37 patients who had normal creatinine clearance. The necessary daily dose to obtain therapeutic serum concentrations ranged from 1.25 to 57 mg/kg in patients with normal serum creatinine levels and from 10 to 57 mg/kg in patients with normal creatinine clearance. In four patients (4%), a significant change in baseline serum creatinine level (greater than 0.5 mg/dl) occurred during or after treatment, which may have been amikacin-associated toxicity. Overt ototoxicity occurred in one patient. The method of individualizing dosage regimens provided a clinically useful means of rapidly attaining therapeutic peak and trough serum concentrations.

  19. [Comparative Analysis of Spectrophotometric Methods of the Protein Measurement in the Pectic Polysaccharide Samples].

    PubMed

    Ponomareva, S A; Golovchenko, V V; Patova, O A; Vanchikova, E V; Ovodov, Y S

    2015-01-01

    For the assay to reliability of determination of the protein content in the pectic polysaccharide samples by absorbance in the ultraviolet and visible regions of the spectrum a comparison of the eleven techniques called Flores, Lovry, Bradford, Sedmak, Rueman (ninhydrin reaction) methods, the method of ultraviolet spectrophotometry, the method Benedict's reagent, the method Nessler's reagent, the method with amide black, the bicinchoninic reagent and the biuret method was carried out. The data obtained show that insufficient sensitivity of the seven methods from the listed techniques doesn't allow their usage for determination of protein content in pectic polysaccharide samples. But the Lowry, Bradford, Sedmak methods, and the method Nessler's reagent may be used for determination of protein content in pectic polysaccharide samples, and the Bradford method is advisable for protein contaminants content determination in pectic polysaccharide samples in case protein content is less than 15%, and the Lowry method--for samples is more than 15%.

  20. A kinetic spectrophotometric method for simultaneous determination of phenol and its three derivatives with the aid of artificial neural network.

    PubMed

    Ni, Yongnian; Xia, Zhenzhen; Kokot, Serge

    2011-08-30

    A novel kinetic spectrophotometric method was developed for determination of pyrocatechol, resorcin, hydroquinone and phenol based on their inhibitory effect on the oxidation of Rhodamine B (RhB) in acid medium at pH=3.0. A linear relationship was observed between the inhibitory effect and the concentrations of the compounds. The absorbance associated with the kinetic reactions was monitored at the maximum wavelength of 557nm. The effects of different parameters such as pH, concentration of RhB and KBrO(3), and temperature of the reaction were investigated and optimum conditions were established. The linear ranges were 0.22-3.30, 0.108-0.828, 0.36-3.96 and 1.52-19.76μg mL(-1) for pyrocatechol, resorcin, hydroquinone and phenol, respectively, and their corresponding detection limits were 0.15, 0.044, 0.16 and 0.60μg mL(-1). The measured data were processed by several chemometrics methods, such as principal component regression (PCR), partial least squares (PLS) and artificial neural network (ANN), and a set of synthetic mixtures of these compounds was used to verify the established models. It was found that the prediction ability of PLS, PCR and RBF-ANN was similar, however, the RBF-ANN model did perform somewhat better than the other methods. The proposed method was also applied satisfactorily for the simultaneous determination of pyrocatechol, resorcin, hydroquinone and phenol in real water samples.

  1. Detection of cytochrome b5 from the house-fly, Musca domestica: comparison of immunological and spectrophotometric methods.

    PubMed

    Wheelock, G D; Scott, J G

    1994-06-01

    Spectrophotometric assay of microsomal cytochrome b5 in house-flies produces different results depending on whether sodium dithionite or NADH is used as the reducing agent and whether or not detergent is present. Microsomes assayed for cytochrome b5 with dithionite in the presence of detergent gave the highest values, followed by dithionite alone, NADH plus detergent, and then NADH alone. Isopropanol treatment of microsomes extracted cytochrome b5 free of spectrophotometrically interfering cytochrome P-450. Studies using immunoblotting and rocket immunoelectrophoresis with polyclonal antisera raised against the purified cytochrome b5 showed that isopropanol treatment quantitatively extracted cytochrome b5.

  2. Comparative analysis of radical scavenging and antioxidant activity of phenolic compounds present in everyday use spice plants by means of spectrophotometric and chromatographic methods.

    PubMed

    Stankevičius, Mantas; Akuņeca, Ieva; Jãkobsone, Ida; Maruška, Audrius

    2011-06-01

    Comparative analysis of radical scavenging and antioxidant activities of phenolic compounds present in everyday use spice plants was carried out by means of spectrophotometric and chromatographic methods. Six spice plant samples, namely onion (Allium cepa), parsley (Petroselinum crispum) roots and leaves, celery (Apium graveolens) roots and leaves and leaves of dill (Anethum graveolens) were analyzed. Total amount of phenolic compounds and radical scavenging activity (RSA) was the highest in celery leaves and dill extracts and was the lowest in celery roots. Comparing commonly used spectrophotometric analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH) RSA of extracts with the results obtained using reversed-phase chromatographic separation with on-line post-column radical scavenging reaction detection, good correlation was obtained (R(2)=0.848). Studies using HPLC system with electrochemical detector showed that bioactive phytochemicals can be separated and antioxidant activities of individual compounds evaluated without the need of a complex HPLC system with reaction detector. The results obtained using electrochemical detection correlate with the RSA assayed using spectrophotometric method (R(2)=0.893).

  3. Chemical amplification methods for the sequential determination of trace amounts of ruthenium by titrimetric and spectrophotometric procedures.

    PubMed

    El-Shahawi, M S; Barakat, S A

    1995-11-01

    Two simple, inexpensive and rapid iodometric and spectrophotometric procedures were developed for trace amount determination of ruthenium. The proposed methods were based on the oxidation of ruthenium(II or III) with sodium periodate at pH 2.4-3.6, masking the excess periodate with sodium molybdate. The released iodate was then allowed to react with KI at pH 3, with subsequent determination of the released iodine spectrophotometry as triiodide at 350 nm or iodometry with 0.005 M sodium thiosulphate. This procedure offers an 18- and 15-fold amplification per Ru(II) or Ru(III) ion, respectively. Alternatively, the produced iodine was extracted with CHCl(3), shaken with an aqueous solution of sodium sulphite and the produced iodide ion was then allowed to react with bromine (or sodium periodate). The released iodate was subsequently determined by iodometry or spectrophotometry after addition of KI. The bromine and sodium periodate oxidation procedures offered 90- and 360-fold amplification per ruthenium(III) ion, and 108- and 432-fold amplification per ruthenium(II) ion. Ruthenium(IV) content was determined by these procedures after prior reduction to Ru(III) with sulphurous acid. The binary mixtures Ru(II)-Ru(III); Ru(III)-Ru(IV) and Ru(II)-Ru(IV) in aqueous solution at concentration 0.05 mug ml(-1) were successfully analyzed by the developed procedures. The utility of the proposed methods for the analysis of ruthenium in its complexes was demonstrated. Natural seawater and seawater spiked with ruthenium were analyzed satisfactorily.

  4. Automation of a spectrophotometric method for measuring L -carnitine in human blood serum

    PubMed Central

    Galan, Amparo; Padros, Anna; Arambarri, Marta; Martin, Silvia

    1998-01-01

    A spectrometric method for the determination of L-carnitine has been developed based on the reaction of the 5, 5 ′ dithiobis-(2-nitrobenzoic) acid (DTNB) and adapted to a Technicon RA-2000 automatic analyser Química Farmacéutica Bayer, S.A.). The detection limit of the method is 13.2 μmol/l, with a measurement interval ranging from 30 to 320 μmoll1. Imprecision and accuracy are good even at levels close to the detection limit (coeffcient of variation of 5.4% for within-run imprecision for a concentration of 35 μmol/l). A good correlation was observed between the method studied and the radiometric method. The method evaluated has suffcient analytical sensitivity to diagnose carnitine deficiencies. The short time period required for sample processing (30 samples in 40min), the simple methodology and apparatus, the ease of personnel training and the low cost of the reagents make this method a good alternative to the classical radiometric method for evaluating serum L-carnitine in clinical laboratories without radioactive installations. PMID:18924818

  5. A new second-derivative spectrophotometric method for the determination of permethrin in shampoo.

    PubMed

    Kazemipour, Maryam; Noroozian, Ebrahim; Saber Tehrani, Mohammad; Mahmoudian, Massoud

    2002-11-07

    Permethrin, a highly effective insecticide agent, has been widely used for the pest control in agriculture and the treatment of lice in human. A fast and reliable method for the determination of permethrin was highly desirable to support formulation screening and quality control. A second-derivative UV spectroscopic method was developed for the determination of permethrin in the shampoo dosage form after extraction. The second-derivative spectrum recorded between 250 and 310 nm, and a zero-crossing technique for second-derivative measurement at 279 nm was selected. It is found that the selectivity and sensitivity of the method to be in desirable range. In comparison with the direct UV method, second-derivative UV spectroscopy eliminates the interference from UV absorbing excipients. This method is also fast and economical in comparison with the more time-consuming GC method regularly used for formulation screening and quality control and can be used routinely by any laboratory possessing a spectrophotometer with a derivative accessory. The linear concentration ranges were 0.25-1.5 ppm (D2=0.00042Conc.+0.0018, r=0.9972, n=10). Between day of CV%method for determination in quality control.

  6. Automation of a spectrophotometric method for measuring L -carnitine in human blood serum.

    PubMed

    Galan, A; Padros, A; Arambarri, M; Martin, S

    1998-01-01

    A spectrometric method for the determination of L-carnitine has been developed based on the reaction of the 5,5' dithiobis-(2-nitrobenzoic) acid (DTNB) and adapted to a Technicon RA-2000 automatic analyser Química Farmacéutica Bayer, S.A.). The detection limit of the method is 13.2 mumol/l, with a measurement interval ranging from 30 to 320 mumoll1. Imprecision and accuracy are good even at levels close to the detection limit (coeffcient of variation of 5.4% for within-run imprecision for a concentration of 35 mumol/l). A good correlation was observed between the method studied and the radiometric method. The method evaluated has suffcient analytical sensitivity to diagnose carnitine deficiencies. The short time period required for sample processing (30 samples in 40min), the simple methodology and apparatus, the ease of personnel training and the low cost of the reagents make this method a good alternative to the classical radiometric method for evaluating serum L-carnitine in clinical laboratories without radioactive installations.

  7. A multi-wavelength spectrophotometric method for the simultaneous determination of five haemoglobin derivatives.

    PubMed

    Zwart, A; Buursma, A; van Kampen, E J; Oeseburg, B; van der Ploeg, P H; Zijlstra, W G

    1981-07-01

    A method is described by which the concentration of deoxyhaemoglobin, oxyhaemoglobin, carboxyhaemoglobin, haemoglobin and sulfhaemoglobin in a human blood sample is determined by passing the haemolysate without air contact through a coarse filter and subsequently measuring the absorbance at lambda = 500, 569, 577, 620 and 760 nm. The ensuing set of equations is solved by matrix calculation with the aid of a simple computer program. The method has been tested by comparing it with conventional methods for the determination of the various haemoglobin derivatives separately.

  8. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach

    NASA Astrophysics Data System (ADS)

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH 7.78, contact time 5 min, initial MB concentration 22 mg L- 1, initial MG concentration 12 mg L- 1 and adsorbent dosage 0.0055 g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85 mg g- 1 was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes.

  9. Image-based detection of oligonucleotides--a low cost alternative to spectrophotometric or fluorometric methods.

    PubMed

    Ahirwar, Rajesh; Tanwar, Swati; Parween, Shahila; Kumar, Ashok; Nahar, Pradip

    2014-05-07

    Herein, we report a sensitive and low cost image-based (photocolorimetric) method for the detection of oligonucleotides on an activated polypropylene microtest plate (APPμTP). The assay was developed on the APPμTP by covalently immobilising 20-mer amino-modified oligonucleotides. Biotin-tagged complementary target sequences were then hybridised with the immobilised oligonucleotides. Colour was developed by streptavidin-HRP conjugate and the image of the coloured assay solution was taken by a desktop scanner and analysed using colour saturation. The developed method was analysed for its detection limit, accuracy, sensitivity and interference. The linearity range was found to be 1.7-170 ng mL(-1) while the lower limit of detection and limit of quantification were 1.7 and 5.6 ng mL(-1) respectively. The method showed comparable sensitivity to fluorometric methods, and was found to be correlated to fluorescence (R(2) = 0.8081, p-value < 0.0001) and absorbance (R(2) = 0.9394, p-value < 0.0001)-based quantification. It discriminates mismatched base sequences from perfectly matched sequences efficiently. Validation of the method was carried out by detecting por A DNA of Neisseria meningitidis in bacterial meningitis samples. The por A-specific probe having a 6-carbon spacer at its 5'-NH2 terminus was immobilised covalently to the APPμTP and hybridised with different samples of biotinylated single-stranded por A DNA.

  10. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  11. A rapid spectrophotometric method to determine B-carotene content in Cucumis melo germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The compound B -carotene is the predominant carotenoid in cantaloupe. Because of its antioxidant properties and health benefits, B-carotene content in fruits and vegetables is of interest to the food industry. Current methods to assay B-carotene content in fruit are time consuming, expensive and u...

  12. Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods

    NASA Astrophysics Data System (ADS)

    Khoshayand, M. R.; Abdollahi, H.; Shariatpanahi, M.; Saadatfard, A.; Mohammadi, A.

    2008-08-01

    In this study, the simultaneous determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric approaches using UV spectrophotometry has been reported as a simple alternative to using separate models for each component. Spectra of paracetamol, ibuprofen and caffeine were recorded at several concentrations within their linear ranges and were used to compute the calibration mixture between wavelengths 200 and 400 nm at an interval of 1 nm in methanol:0.1 HCl (3:1). Partial least squares regression (PLS), genetic algorithm coupled with PLS (GA-PLS), and principal component-artificial neural network (PC-ANN) were used for chemometric analysis of data and the parameters of the chemometric procedures were optimized. The analytical performances of these chemometric methods were characterized by relative prediction errors and recoveries (%) and were compared with each other. The GA-PLS shows superiority over other applied multivariate methods due to the wavelength selection in PLS calibration using a genetic algorithm without loss of prediction capacity. Although the components show an important degree of spectral overlap, they have been determined simultaneously and rapidly requiring no separation step. These three methods were successfully applied to pharmaceutical formulation, capsule, with no interference from excipients as indicated by the recovery study results. The proposed methods are simple and rapid and can be easily used in the quality control of drugs as alternative analysis tools.

  13. InfraRed Standards Used for Spectrophotometric Calibration - Application to the Medium Resolution Spectrometer of {MIRI}

    NASA Astrophysics Data System (ADS)

    Decin, L.; Bauwens, E.; Blommaert, J. A. D. L.

    2007-04-01

    One of the main ingredients in establishing the relation between input signal and output flux from a spectrometer, is the accurate determination of the {spectrophotometric calibration}. In case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the reliability of the candidate calibrators as being fiducial. In this contribution, we deal with the spectrophotometric calibration of {infrared} spectrometers in the 2-200 μm wavelength range. We outline a general selection procedure to arrive at a set of fiducial IR calibrators, and apply the method to the Medium Resolution Spectrometer of MIRI which will be onboard the James Webb Space Telescope.

  14. The Spectrophotometric Method of Determining the Transmission of Solar Energy in Salt Gradient Solar Ponds

    NASA Technical Reports Server (NTRS)

    Giulianelli, J.

    1984-01-01

    In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.

  15. Microdetermination of nitrogen in organic compounds by the sodium fusion-spectrophotometric method

    SciTech Connect

    Breda, E.J.

    1985-04-01

    In the absence of the preferred Dumas nitrogen apparatus or the more sophisticated nitrogen analyzers, a micro-Parr bomb can serve to determine microquantities of nitrogen in organic compounds. The sample or compound, either solid or nonaqueous liquid, is decomposed by fusing with metallic sodium in a sealed nickel bomb. The nitrogen is converted to sodium cyanide. The excess sodium is decomposed with absolute ethanol. The solution is adjusted to pH 7.1-7.2 with dilute hydrochloric acid and analyzed for cyanide by the Chloramine-T and mixed pyridine/pyrazolone reagent method. The absorbance of the blue color formed is measured with a spectrophotometer at 615 nm. The amount of cyanide found is converted to the equivalent nitrogen in the compound. The method is not as rapid as desired but it is handy, simple, and economical. As with any micro or semimicro method, this procedure is sensitive to technique. Compounds must contain carbon and be essentially free of moisture. 5 references, 1 table.

  16. Complete theoretical treatment of the transmittance ratio ultraviolet/visible spectrophotometric stray radiant energy test method.

    PubMed

    Fleming, Paddy

    2009-10-01

    This paper develops the theoretical basis behind the transmittance ratio test method for determining the relative stray radiant energy level in a double-beam dispersive spectrophotometer so as to allow for the non-transparency of a test solution towards the stray radiant energy for all sample beam-to-reference beam cuvette path length ratios. Non-transparency is defined as the transmittance of the reference beam solution, whose monochromatic absorbance is unity, towards stray radiant energy. The proposed method has the same concentration absorbing sample placed in the beams of the scanning spectrophotometer, the sample-beam cuvette being a known factor longer than the reference-beam cuvette. While scanning towards shorter wavelengths, an apparent differential absorbance Mielenz peak is recorded. An exact formula is derived in this paper relating the relative stray radiant energy level to the Mielenz peak absorbance, to the known cuvette path length ratio, to the observed monochromatic absorbance of the test sample at the Mielenz peak wavelength, and to the sample transmittance towards the stray radiant energy. Sample transmittance towards stray radiant energy cannot be determined experimentally. However, the derived formula only allows the other experimental quantities to tie in together for a single numerically calculated value for the sample-transmittance towards stray radiant energy. The formulae are tedious to derive and cumbersome to handle, but their application is facilitated greatly by a Microsoft Office Excel 2007 spreadsheet. The test method was applied to an ultraviolet-visible (UV/VIS) scanning spectrophotometer at nine wavelengths in the range 713 > lambda (nm) >; 649 for a sample beam-to-reference beam cuvette path length ratio of 10 mm/5 mm and using blue food dye (E123) as the test material. Sample transparency to stray radiant energy fluctuated in wavelength between 0.819 and 0.948, while the relative stray radiant energy level fluctuated between 1

  17. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating.

    PubMed

    Hegazy, Maha A; Lotfy, Hayam M; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2015-04-05

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  18. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-04-01

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  19. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    PubMed

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures.

  20. Comparative in vivo study of the efficacy and tolerance of exfoliating agents using reflectance spectrophotometric methods.

    PubMed

    Rizza, Luisa; Frasca, Giuseppina; Bonina, Claudia; Puglia, Carmelo

    2010-01-01

    The aim of the present study was to compare the effectiveness and the safety of different topical agents (glycolic acid, mandelic acid, and grape juice acid mixture) in skin exfoliation by objective instrumental methods. To evaluate the exfoliating effects of these substances, a new experimental in vivo protocol based on DHA (dihydroxyacetone)-induced skin pigmentation was used. Skin acceptability towards acid application was investigated by the evaluation of skin erythema induced by topical application of these substances at increased concentrations. Furthermore, their photosensitizing effects were evaluated by determining the increase in sensitivity to UV-light exposure in cutaneous sites previously treated with acids. These in vivo evaluations were monitored by reflectance spectophotometry. From the results obtained, we observed the differing capacities of the tested acids to increase the rate of skin regeneration, with a significant reduction in the time required to obtain skin renewal. The study pointed out that glycolic acid (10% w/w) induced a faster skin exfoliation, a more intense erythema, and a higher photosensitizing effect in comparison with the mandelic acid and grape juice acid mixtures. Further evidence showed that the mandelic acid and grape juice acid mixtures were able to induce a slower and safer peeling action in comparison with glycolic acid. Finally, our results suggest that the methodologies and protocols used in this study may help in choosing the most appropriate topical agents for skin exfoliating treatments.

  1. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  2. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

    PubMed

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts.

  3. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

    PubMed Central

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt’s method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  4. Semi-empirical spectrophotometric (SESp) method for the indirect determination of the ratio of cationic micellar binding constants of counterions X⁻ and Br⁻(K(X)/K(Br)).

    PubMed

    Khan, Mohammad Niyaz; Yusof, Nor Saadah Mohd; Razak, Norazizah Abdul

    2013-01-01

    The semi-empirical spectrophotometric (SESp) method, for the indirect determination of ion exchange constants (K(X)(Br)) of ion exchange processes occurring between counterions (X⁻ and Br⁻) at the cationic micellar surface, is described in this article. The method uses an anionic spectrophotometric probe molecule, N-(2-methoxyphenyl)phthalamate ion (1⁻), which measures the effects of varying concentrations of inert inorganic or organic salt (Na(v)X, v = 1, 2) on absorbance, (A(ob)) at 310 nm, of samples containing constant concentrations of 1⁻, NaOH and cationic micelles. The observed data fit satisfactorily to an empirical equation which gives the values of two empirical constants. These empirical constants lead to the determination of K(X)(Br) (= K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X and Br⁻). This method gives values of K(X)(Br) for both moderately hydrophobic and hydrophilic X⁻. The values of K(X)(Br), obtained by using this method, are comparable with the corresponding values of K(X)(Br), obtained by the use of semi-empirical kinetic (SEK) method, for different moderately hydrophobic X. The values of K(X)(Br) for X = Cl⁻ and 2,6-Cl₂C6H₃CO₂⁻, obtained by the use of SESp and SEK methods, are similar to those obtained by the use of other different conventional methods.

  5. Spectrofluorimetric and spectrophotometric stability-indicating methods for determination of some oxicams using 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl).

    PubMed

    Taha, Elham Anwer; Salama, Nahla Nour; Fattah, Laila El-Sayed Abdel

    2006-05-01

    Two sensitive and selective spectrofluorimetric and spectrophotometric stability-indicating methods have been developed for the determination of some non-steroidal anti-inflammatory oxicam derivatives namely lornoxicam (Lx), tenoxicam (Tx) and meloxicam (Mx) after their complete alkaline hydrolysis. The methods are based on derivatization of alkaline hydrolytic products with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). The products showed an absorption maximum at 460 nm for the three studied drugs and fluorescence emission peak at 535 nm in methanol. The color was stable for at least 48 h. The optimum conditions of the reaction were investigated and it was found that the reaction proceeds quantitatively at pH 8, after heating in a boiling water bath for 30 min. The methods were found to be linear in the ranges of 1-10 microg ml(-1) for Lx and Tx and 0.5-4.0 microg ml(-1) for Mx for spectrophotometric method, while 0.05-1.0 microg ml(-1) for Lx and Tx and 0.025-0.4 microg ml(-1) for Mx for the spectrofluorimetric method. The validity of the methods was assessed according to USP guidelines. Statistical analysis of the results revealed high accuracy and good precision. The suggested procedures could be used for the determination of the above mentioned drugs in pure and dosage forms as well as in the presence of their degradation products.

  6. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  7. Validated spectrophotometric method for the determination, spectroscopic characterization and thermal structural analysis of duloxetine with 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2012-03-01

    A novel, selective, sensitive and simple spectrophotometric method was developed and validated for the determination of the antidepressant duloxetine hydrochloride in pharmaceutical preparation. The method was based on the reaction of duloxetine hydrochloride with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media to yield orange colored product. The formation of this complex was also confirmed by UV-visible, FTIR, 1H NMR, Mass spectra techniques and thermal analysis. This method was validated for various parameters according to ICH guidelines. Beer's law is obeyed in a range of 5.0-60 μg/mL at the maximum absorption wavelength of 480 nm. The detection limit is 0.99 μg/mL and the recovery rate is in a range of 98.10-99.57%. The proposed methods was validated and applied to the determination of duloxetine hydrochloride in pharmaceutical preparation. The results were statistically analyzed and compared to those of a reference UV spectrophotometric method.

  8. A comparative study between three stability indicating spectrophotometric methods for the determination of diatrizoate sodium in presence of its cytotoxic degradation product based on two-wavelength selection

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; El-Rahman, Mohamed K. Abd; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-06-01

    Three sensitive, selective, and precise stability indicating spectrophotometric methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA) in the presence of its acidic degradation product (highly cytotoxic 3,5-diamino metabolite) and in pharmaceutical formulation, were developed and validated. The first method is ratio difference, the second one is the bivariate method, and the third one is the dual wavelength method. The calibration curves for the three proposed methods are linear over a concentration range of 2-24 μg/mL. The selectivity of the proposed methods was tested using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  9. Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone.

    PubMed

    Devi, V S Anusuya; Reddy, V Krishna

    2012-01-01

    Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH) reacts with iron(II) and cobalt(II) to form reddish-brown and yellow-coloured [Fe(II)-HNAHBH] and [Co(II)-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405 nm and 425 nm, respectively. For [Fe(II)-HNAHBH], Beer's law is obeyed over the concentration range of 0.055-1.373 μg mL(-1) with a detection limit of 0.095 μg mL(-1) and molar absorptivity ɛ, 5.6 × 10(4) L mol(-1) cm(-1). [Co(II)-HNAHBH] complex obeys Beer's law in 0.118-3.534 μg mL(-1) range with a detection limit of 0.04 μg mL(-1) and molar absorptivity, ɛ of 2.3 × 10(4) L mol(-1) cm(-1). Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content.

  10. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  11. Spectrophotometric determination of sparfloxacin in pharmaceutical formulations using bromothymol blue.

    PubMed

    Marona, H R; Schapoval, E E

    2001-10-01

    A visible light spectrophotometric method is described for the determination of sparfloxacin in tablets. The procedure is based on the complexation of bromothymol blue 0.5% and sparfloxacin to form a compound of yellow colour with maximum absorption at 385 nm. The Lambert-Beer law was obeyed in the concentration range of 2-12 mg/l. The present study describes a sensitive and accurate method for the determination of the concentration of sparfloxacin in tablets. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay.

  12. Determination of Lutein and Zeaxanthin Esters and Their Geometric Isomers in Carotenoid Ester Concentrates Used as Ingredients in Nutritional Supplements: Validation of a Combined Spectrophotometric-HPLC Method.

    PubMed

    Lombeida, Wagner O; Rubio, Fernando; Levy, Luis W

    2016-11-01

    A combined spectrophotometric-LC method is described for the determination of total lutein and zeaxanthin ester content in carotenoid ester concentrates, including their main geometrical isomers. The concept of composite-specific absorbance is introduced for this purpose. The method is applicable to carotenoid ester concentrates used as ingredients in oil suspensions and dosage forms. The sample is dissolved in a hexane-2-propanol mixture (95 + 5, v/v) for spectrophotometric measurement at a maximum absorption of ~445 nm. Subsequently, in parallel, a sample is saponified and chromatographed on a normal-phase HPLC column to determine the relative percentage profile of the main geometrical isomers of both carotenoid esters. This, in turn, is used to calculate the composite-specific absorbance of the sample for the final calculation of results. The method, which solely uses reference standards to validate chromatographic conditions, avoids the common error of applying the specific absorbance of only the trans isomer for the calculation of total carotenoid content when cis isomers are present.

  13. Simple, flexible, and accurate phase retrieval method for generalized phase-shifting interferometry.

    PubMed

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2017-01-01

    This paper presents a non-iterative phase retrieval method from randomly phase-shifted fringe images. By combining the hyperaccurate least squares ellipse fitting method with the subspace method (usually called the principal component analysis), a fast and accurate phase retrieval algorithm is realized. The proposed method is simple, flexible, and accurate. It can be easily coded without iteration, initial guess, or tuning parameter. Its flexibility comes from the fact that totally random phase-shifting steps and any number of fringe images greater than two are acceptable without any specific treatment. Finally, it is accurate because the hyperaccurate least squares method and the modified subspace method enable phase retrieval with a small error as shown by the simulations. A MATLAB code, which is used in the experimental section, is provided within the paper to demonstrate its simplicity and easiness.

  14. Comparison of a silver nanoparticle-based method and the modified spectrophotometric methods for assessing antioxidant capacity of rapeseed varieties.

    PubMed

    Szydłowska-Czerniak, Aleksandra; Tułodziecka, Agnieszka

    2013-12-01

    The antioxidant capacity of 15 rapeseed varieties was determined by the proposed silver nanoparticle-based (AgNP) method and three modified assays: ferric reducing antioxidant power (FRAP), 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu reducing capacity (FC). The average antioxidant capacities of the studied rapeseed cultivars ranged between 5261-9462, 3708-7112, 18864-31245 and 5816-9937 μmol sinapic acid (SA)/100g for AgNP, FRAP, DPPH and FC methods, respectively. There are significant, positive correlations between antioxidant capacities of the studied rapeseed cultivars determined by four analytical methods (r=0.5971-0.9149, p<0.05). The comparable precision for the proposed AgNP method (RSD=1.4-4.4%) and the modified FRAP, DPPH and FC methods (RSD=1.0-4.4%, 0.7-2.1% and 0.8-3.6%, respectively), demonstrate the benefit of the AgNP method in the routine analysis of antioxidant capacity of rapeseed cultivars. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used for discrimination the quality of the studied rapeseed varieties based on their antioxidant potential determined by different analytical methods. Three main groups were identified by HCA, while the classification and characterisation of rapeseed varieties within each of these groups were obtained from PCA. The chemometric analyses demonstrated that, rapeseed variety S13 had the highest antioxidant capacity, thus this cultivar should be considered as the richest source of natural antioxidants.

  15. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  16. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  17. Pyrocatechol violet in pharmaceutical analysis. Part I. A spectrophotometric method for the determination of some beta-lactam antibiotics in pure and in pharmaceutical dosage forms.

    PubMed

    Amin, A S

    2001-03-01

    A fairly sensitive, simple and rapid spectrophotometric method for the determination of some beta-lactam antibiotics, namely ampicillin (Amp), amoxycillin (Amox), 6-aminopenicillanic acid (6APA), cloxacillin (Clox), dicloxacillin (Diclox) and flucloxacillin sodium (Fluclox) in bulk samples and in pharmaceutical dosage forms is described. The proposed method involves the use of pyrocatechol violet as a chromogenic reagent. These drugs produce a reddish brown coloured ion pair with absorption maximum at 604, 641, 645, 604, 649 and 641 nm for Amp, Amox, 6APA, Clox, Diclox and Flucolx, respectively. The colours produced obey Beer's law and are suitable for the quantitative determination of the named compounds. The optimization of different experimental conditions is described. The molar ratio of the ion pairs was established and a proposal for the reaction pathway is given. The procedure described was applied successfully to determine the examined drugs in dosage forms and the results obtained were comparable to those obtained with the official methods.

  18. Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods.

    PubMed

    Zielinska, Danuta; Wiczkowski, Wieslaw; Piskula, Mariusz Konrad

    2008-05-28

    This paper describes the use of cyclic voltammetry (CV), spectrophotometric methods [Trolox equivalent antioxidant capacity (TEAC), peroxyl radical trapping capacity (PRTC), DPPH radical scavenging activity (RSA), and Folin-Ciocalteu reagent (FCR) reducing capacity], and photochemiluminescence (PCL) for the measurement of the antioxidant capacity of onion var. Sochaczewska and var. Szalotka. The antioxidant and reducing activity of the dominant onion flavonoids quercetin (Q), quercetin-3- O-beta-glucoside (Q3G), quercetin-4'- O-beta-glucoside (Q4'G), and quercetin-3,4'-di- O-beta-glucoside (Q3,4'G) were determined by spectrophotometric (TEAC and PRTC) and CV methods, respectively. The contribution of quercetin and its glucosides to the antioxidant capacity of onion was calculated in consequence of the qualitative and quantitative analysis of onion flavonoids by high-performance liquid chromatography-ultraviolet-mass spectrometry. The dominant forms of quercetin in the onion var. Sochaczewska and Szalotka included Q4'G (61 and 54%), Q3,4'G (37 and 44%), Q3G (1.4 and 1.1%), and free quercetin (1.1 and 0.7%), respectively. The CV experiment showed the highest reducing activity of Q while Q3G, Q4'G, and Q3,4'G exhibited about 68, 51, and 30% of the reducing power noted for Q. The order of the reducing activity of onion flavonoids was confirmed by their free radical scavenging activity and evaluated by TEAC and PRTC assays as follows: Q > Q3G > Q4'G > Q3,4'G. The Q4'G and Q3,4'G showed poor antioxidant activity under both applied spectrophotometric assays but still exhibited reducing activity based on CV experiments. The reducing capacity of onions determined by CV method was twice higher than the antioxidant capacity formed by water-soluble compounds (ACW) evaluated by PCL, and it was about 50% higher than PRTC and DPPH RSA results and the converted FCR reducing capacity. In contrast, the reducing capacity of onions determined by the CV method was 3-fold and about four

  19. [Visible spectrophotometric assay of ranitidine].

    PubMed

    Apostu, M; Dorneanu, V; Bibire, Nela

    2003-01-01

    Ranitidine, belonging to H2-antagonist group, is a compound containing a furanic moiety and is used in peptic ulcer therapy. This paper debates the possibility of developing a new visible spectrophotometric assessment by using the reaction between ranitidine and eosine. We carried out our determinations at 505 nm, where the absorbency of ranitidine-eosine complex is maximal, and we have established the optimal reaction conditions. This method was successfully applied for ranitidine assay from pharmaceutical dosage forms.

  20. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  1. A new method to synthesize competitor RNAs for accurate analyses by competitive RT-PCR.

    PubMed

    Ishibashi, O

    1997-12-03

    A method to synthesize competitor RNAs as internal standards for competitive RT-PCR is improved by using the long accurate PCR (LA-PCR) technique. Competitor templates synthesized by the new method are almost the same in length, and possibly in secondary structure, as target mRNAs to be quantified except that they include the short deletion within the segments to be amplified. This allows the reverse transcription to be achieved with almost the same efficiency from both target mRNAs and competitor RNAs. Therefore, more accurate quantification can be accomplished by using such competitor RNAs.

  2. Validated Spectrophotometric and RP-HPLC-DAD Methods for the Determination of Ursodeoxycholic Acid Based on Derivatization with 2-Nitrophenylhydrazine.

    PubMed

    El-Kafrawy, Dina S; Belal, Tarek S; Mahrous, Mohamed S; Abdel-Khalek, Magdi M; Abo-Gharam, Amira H

    2016-12-23

    This work describes the development, validation, and application of two simple, accurate, and reliable methods for thedetermination of ursodeoxycholic acid (UDCA) in bulk powder and in pharmaceutical dosage forms. The carboxylic acid group in UDCA was exploited for the development of these novel methods. Method 1 is the colorimetric determination of the drug based on its reaction with 2-nitrophenylhydrazine hydrochloride in the presence of a water-soluble carbodiimide coupler [1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride] and pyridine to produce an acid hydrazide derivative, which ionizes to yield an intense violet color with maximum absorption at 553 nm. Method 2 uses reversed-phase HPLC with diode-array detection for the determination of UDCA after precolumn derivatization using the same reaction mentioned above. The acid hydrazide reaction product was separated using a Pinnacle DB C8 column (4.6 × 150 mm, 5 μm particle size) and a mobile phase consisting of 0.01 M acetate buffer (pH 3)-methanol-acetonitrile (30 + 30 + 40, v/v/v) isocratically pumped at a flow rate of 1 mL/min. Ibuprofen was used as the internal standard (IS). The peaks of the reaction product and IS were monitored at 400 nm. Different experimental parameters for both methods were carefully optimized. Analytical performance of the developed methods were statistically validated for linearity, range, precision, accuracy, specificity, robustness, LOD, and LOQ. Calibration curves showed good linear relationships for concentration ranges 32-192 and 60-600 μg/mL for methods 1 and 2, respectively. The proposed methods were successfully applied for the assay of UDCA in bulk form, capsules, and oral suspension with good accuracy and precision. Assay results were statistically compared with a reference pharmacopeial HPLC method, and no significant differences were observed between proposed and reference methods.

  3. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  4. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-01

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (24) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL-1 with detection limit of 6.7 ng mL-1 (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n = 7, c = 50 ng mL-1). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination.

  5. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods.

    PubMed

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-25

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (2(4)) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL(-1) with detection limit of 6.7 ng mL(-1) (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n=7, c=50 ng mL(-1)). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination.

  6. Development of Simultaneous Derivative Spectrophotometric and HPLC Methods for Determination of 17-Beta-Estradiol and Drospirenone in Combined Dosage Form

    PubMed Central

    Aydoğmuş, Zeynep; Yılmaz, Ece Merve; Yörüsün, Sevgi; Akpınar, Samet

    2015-01-01

    Simple, rapid spectrophotometric, and reverse-phase high performance liquid chromatographic methods were developed for the concurrent analysis of 17-beta-estradiol (ESR) and drospirenone (DRS). The spectrophotometric method was based on the determination of first derivative spectra and determined ESR and DRS using the zero-crossing technique at 208 and 282 nm, respectively, in methanol. The linear range was 0.5–32.0 µg·mL−1 for DRS and 0.5–8.0 µg·mL−1 for EST. The limit of detection (LOD) values were 0.14 µg·mL−1 and 0.10 µg·mL−1 and limit of quantification (LOQ) values were 0.42 µg·mL−1 and 0.29 µg·mL−1 for ESR and DRS, respectively. The chromatographic method was based on the separation of both analytes on a C18 column with a mobile phase containing acetonitrile and water (70 : 30, v/v). Detection was performed with a UV-photodiode array detector at 279 nm. The linear range was 0.08–2.5 µg·mL−1 for DRS and 0.23–7.5 µg·mL−1 for EST. LOD values were 0.05 µg·mL−1 and 0.02 µg·mL−1 and LOQ values were 0.15 µg·mL−1 and 0.05 µg·mL−1 for ESR and DRS, respectively. These recommended methods have been applied for the simultaneous determination of ESR and DRS in their tablets. PMID:27347530

  7. The U.S. Department of Agriculture Automated Multiple-Pass Method accurately assesses sodium intakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and practical methods to monitor sodium intake of the U.S. population are critical given current sodium reduction strategies. While the gold standard for estimating sodium intake is the 24 hour urine collection, few studies have used this biomarker to evaluate the accuracy of a dietary ins...

  8. LSimpute: accurate estimation of missing values in microarray data with least squares methods.

    PubMed

    Bø, Trond Hellem; Dysvik, Bjarte; Jonassen, Inge

    2004-02-20

    Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as

  9. Degradation studies of azithromycin and its spectrophotometric determination in pharmaceutical dosage forms.

    PubMed

    Sultana, Najma; Arayne, M Saeed; Hussain, Fida; Fatima, Aizaz

    2006-04-01

    A simple, accurate and rapid spectrophotometric method for the estimation of azithromycin has been developed by the acidic hydrolysis of the drug with sulfuric acid and monitoring the absorbance at 482 nm. All variables affecting the reaction conditions such as sulfuric acid concentration, heating time, temperature and dilution solvents were carefully studied. Analytical parameters such as stability, selectivity, accuracy and precision have been established for the method and evaluated statistically to assess the application of the method. The method was applied successfully for the assay of azithromycin dihydrate in pure and pharmaceutical dosage forms as tablets, capsules and suspensions. The method was found to have the advantages for simplicity, stability, sensitivity, reproducibility and accuracy for using as an alternate to the existing non-spectrophotometric methods for the routine analysis of the drug in pharmaceutical formulations and also in pharmaceutical investigations involving azithromycin dihydrate.

  10. On an efficient and accurate method to integrate restricted three-body orbits

    NASA Technical Reports Server (NTRS)

    Murison, Marc A.

    1989-01-01

    This work is a quantitative analysis of the advantages of the Bulirsch-Stoer (1966) method, demonstrating that this method is certainly worth considering when working with small N dynamical systems. The results, qualitatively suspected by many users, are quantitatively confirmed as follows: (1) the Bulirsch-Stoer extrapolation method is very fast and moderately accurate; (2) regularization of the equations of motion stabilizes the error behavior of the method and is, of course, essential during close approaches; and (3) when applicable, a manifold-correction algorithm reduces numerical errors to the limits of machine accuracy. In addition, for the specific case of the restricted three-body problem, even a small eccentricity for the orbit of the primaries drastically affects the accuracy of integrations, whether regularized or not; the circular restricted problem integrates much more accurately.

  11. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGES

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  12. Accurate determination of specific heat at high temperatures using the flash diffusivity method

    NASA Technical Reports Server (NTRS)

    Vandersande, J. W.; Zoltan, A.; Wood, C.

    1989-01-01

    The flash diffusivity method of Parker et al. (1961) was used to measure accurately the specific heat of test samples simultaneously with thermal diffusivity, thus obtaining the thermal conductivity of these materials directly. The accuracy of data obtained on two types of materials (n-type silicon-germanium alloys and niobium), was + or - 3 percent. It is shown that the method is applicable up to at least 1300 K.

  13. Spectrophotometric determination of tilidine using bromocresol green and bromophenol blue.

    PubMed

    Dobrila, Z S; Ljiljana, S; Ljiljana, Z

    1990-11-01

    A spectrophotometric method is described for the determination of tilidine in its dosage forms (injection, drops, suppositories). The method is based on ion-pair extraction with chloroform at pH 3.5 using bromocresol green or bromophenol blue as the ion-pairing reagents. The spectrophotometric measurements are carried out at the absorption maxima at 415 and 411 nm, respectively.

  14. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974).

  15. An effective method for accurate prediction of the first hyperpolarizability of alkalides.

    PubMed

    Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min

    2012-01-15

    The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.

  16. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    NASA Astrophysics Data System (ADS)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m‑3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m‑3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  17. The research of spectrophotometric color matching based on multi-peaks Gaussian fit

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Lv, Xuliang; Wang, Jing; Yang, Gaofeng; Jiang, Xiaojun

    2013-08-01

    Spectrophotometric color matching is an important method for computer color matching, which is more accurate but difficult than tri-stimulus values color matching, because which will result in metamerism. The fundamental theory of computer color matching is the linear relationship between Kubelka-Munk function and concentration of dye. In fact, the spectral reflectivity of every pixel in hyperspectral image composed of subpixel mixing in instantaneous field of view. According to the Glassman laws of color mixing, the mixed pixel's spectral reflectivity equals to the algebra sum of each reflectivity of subpixel multiply its area percentage. In this case, spectrophotometric color matching match the spectral reflectivity curve by adjusting the combined form of subpixel which constitute the pixel. According to numerical methods for Multi-peaks Guassian fitting, the spectral reflectivity curve can be fit as the sum of several characteristic peak, which accord with Normal Distribution. Then the spectrophotometric color matching can simplify the solution with infinite wavelength into solving the linear equations with finite known peak intensity. By using Imaging Spectrometer measure the color samples in standard color cards from different distance, the spectral reflectivity curve of each single color sample and the mixed color samples can be gotten, and the experiments results show that the spectrophotometric color matching based on Multi-peaks Gaussian fitting is superior to the tri-stimulus values color matching, and which is easy to operate.

  18. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples.

  19. Comparative study for determination of some polycyclic aromatic hydrocarbons 'PAHs' by a new spectrophotometric method and multivariate calibration coupled with dispersive liquid-liquid extraction.

    PubMed

    Abdel-Aziz, Omar; El Kosasy, A M; El-Sayed Okeil, S M

    2014-12-10

    A modified dispersive liquid-liquid extraction (DLLE) procedure coupled with spectrophotometric techniques was adopted for simultaneous determination of naphthalene, anthracene, benzo(a)pyrene, alpha-naphthol and beta-naphthol in water samples. Two different methods were used, partial least-squares (PLS) method and a new derivative ratio method, namely extended derivative ratio (EDR). A PLS-2 model was established for simultaneous determination of the studied pollutants in methanol, by using twenty mixtures as calibration set and five mixtures as validation set. Also, in methanol a novel (EDR) method was developed for determination of the studied pollutants, where each component in the mixture of the five PAHs was determined by using a mixture of the other four components as divisor. Chemometric and EDR methods could be also adopted for determination of the studied PAH in water samples after transferring them from aqueous medium to the organic one by utilizing dispersive liquid-liquid extraction technique, where different parameters were investigated using a full factorial design. Both methods were compared and the proposed method was validated according to ICH guidelines and successfully applied to determine these PAHs simultaneously in spiked water samples, where satisfactory results were obtained. All the results obtained agreed with those of published methods, where no significant difference was observed.

  20. Comparative study for determination of some polycyclic aromatic hydrocarbons ‘PAHs' by a new spectrophotometric method and multivariate calibration coupled with dispersive liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; El Kosasy, A. M.; El-Sayed Okeil, S. M.

    2014-12-01

    A modified dispersive liquid-liquid extraction (DLLE) procedure coupled with spectrophotometric techniques was adopted for simultaneous determination of naphthalene, anthracene, benzo(a)pyrene, alpha-naphthol and beta-naphthol in water samples. Two different methods were used, partial least-squares (PLS) method and a new derivative ratio method, namely extended derivative ratio (EDR). A PLS-2 model was established for simultaneous determination of the studied pollutants in methanol, by using twenty mixtures as calibration set and five mixtures as validation set. Also, in methanol a novel (EDR) method was developed for determination of the studied pollutants, where each component in the mixture of the five PAHs was determined by using a mixture of the other four components as divisor. Chemometric and EDR methods could be also adopted for determination of the studied PAH in water samples after transferring them from aqueous medium to the organic one by utilizing dispersive liquid-liquid extraction technique, where different parameters were investigated using a full factorial design. Both methods were compared and the proposed method was validated according to ICH guidelines and successfully applied to determine these PAHs simultaneously in spiked water samples, where satisfactory results were obtained. All the results obtained agreed with those of published methods, where no significant difference was observed.

  1. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand.

    PubMed

    Kamble, Ganesh S; Ghare, Anita A; Kolekar, Sanjay S; Han, Sung H; Anuse, Mansing A

    2011-12-15

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL(-1) of cobalt(II) and optimum concentration range was 5-12.5 μg mL(-1) of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109×10(3) L mol(-1) cm(-1) and 0.053 μg cm(-2), respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22×10(2) L mol(-1) cm(-1) and 0.096 μg cm(-2), respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n=5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.

  2. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Ghare, Anita A.; Kolekar, Sanjay S.; Han, Sung H.; Anuse, Mansing A.

    2011-12-01

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL -1 of cobalt(II) and optimum concentration range was 5-12.5 μg mL -1 of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109 × 10 3 L mol -1 cm -1 and 0.053 μg cm -2, respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22 × 10 2 L mol -1 cm -1 and 0.096 μg cm -2, respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n = 5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.

  3. A safe and accurate method to perform esthetic mandibular contouring surgery for Far Eastern Asians.

    PubMed

    Hsieh, A M-C; Huon, L-K; Jiang, H-R; Liu, S Y-C

    2017-05-01

    A tapered mandibular contour is popular with Far Eastern Asians. This study describes a safe and accurate method of using preoperative virtual surgical planning (VSP) and an intraoperative ostectomy guide to maximize the esthetic outcomes of mandibular symmetry and tapering while mitigating injury to the inferior alveolar nerve (IAN). Twelve subjects with chief complaints of a wide and square lower face underwent this protocol from January to June 2015. VSP was used to confirm symmetry and preserve the IAN while maximizing the surgeon's ability to taper the lower face via mandibular inferior border ostectomy. The accuracy of this method was confirmed by superimposition of the perioperative computed tomography scans in all subjects. No subjects complained of prolonged paresthesia after 3 months. A safe and accurate protocol for achieving an esthetic lower face in indicated Far Eastern individuals is described.

  4. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  5. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Al Okab, Riyad Ahmed

    2013-02-01

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  6. Kinetic spectrophotometric H-point standard addition method for the simultaneous determination of diloxanide furoate and metronidazole in binary mixtures and biological fluids.

    PubMed

    Issa, Mahmoud Mohamed; Nejem, R'afat Mahmoud; Abu Shanab, Alaa Mohamed; Shaat, Nahed Talab

    2013-10-01

    Simple, reliable, and sensitive kinetic spectrophotometric method has been developed for the simultaneous determination of diloxanide furoate and metronidazole using H-point standard addition method (HPSAM). The method is based on the oxidation rate difference of diloxanide and metronidazole by potassium permanganate in basic medium. A green color has been developed and measured at 610 nm. Different experimental parameters were carefully optimized. The limiting logarithmic and the initial-rate methods were adopted for the construction of the calibration curve of each individual reaction with potassium permanganate. Under the optimum conditions, Beer's law was obeyed in the range of 1.0-20.0 and 5.0-25.0 μg ml(-1) for diloxanide furoate and metronidazole, respectively. The detection limits were 0.22 μg ml(-1) for diloxanide furoate and 0.83 μg ml(-1) for metronidazole. Correlation coefficients of the regression equations were greater than 0.9970 in all cases. The precision of the method was satisfactory; the maximum value of relative standard deviation did not exceed 1.06% (n=5). The accuracy, expressed as recovery was between 99.4% and 101.4% with relative error of 0.12 and 0.14 for diloxanide furoate and metronidazole, respectively. The proposed method was successfully applied for the simultaneous determination of both drugs in pharmaceutical dosage forms and human urine samples and compared with alternative HPLC method.

  7. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods.

    PubMed

    Al Okab, Riyad Ahmed

    2013-02-15

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml(-1) and molar absorptivity 1.41 × 10(4) L mol(-1)cm(-1). All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  8. Kinetic spectrophotometric H-point standard addition method for the simultaneous determination of diloxanide furoate and metronidazole in binary mixtures and biological fluids

    NASA Astrophysics Data System (ADS)

    Issa, Mahmoud Mohamed; Nejem, R.'afat Mahmoud; Shanab, Alaa Mohamed Abu; Shaat, Nahed Talab

    2013-10-01

    Simple, reliable, and sensitive kinetic spectrophotometric method has been developed for the simultaneous determination of diloxanide furoate and metronidazole using H-point standard addition method (HPSAM). The method is based on the oxidation rate difference of diloxanide and metronidazole by potassium permanganate in basic medium. A green color has been developed and measured at 610 nm. Different experimental parameters were carefully optimized. The limiting logarithmic and the initial-rate methods were adopted for the construction of the calibration curve of each individual reaction with potassium permanganate. Under the optimum conditions, Beer's law was obeyed in the range of 1.0-20.0 and 5.0-25.0 μg ml-1 for diloxanide furoate and metronidazole, respectively. The detection limits were 0.22 μg ml-1 for diloxanide furoate and 0.83 μg ml-1 for metronidazole. Correlation coefficients of the regression equations were greater than 0.9970 in all cases. The precision of the method was satisfactory; the maximum value of relative standard deviation did not exceed 1.06% (n = 5). The accuracy, expressed as recovery was between 99.4% and 101.4% with relative error of 0.12 and 0.14 for diloxanide furoate and metronidazole, respectively. The proposed method was successfully applied for the simultaneous determination of both drugs in pharmaceutical dosage forms and human urine samples and compared with alternative HPLC method.

  9. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  10. Comparative Study of Novel Ratio Spectra and Isoabsorptive Point Based Spectrophotometric Methods: Application on a Binary Mixture of Ascorbic Acid and Rutin

    PubMed Central

    Darwish, Hany W.; Bakheit, Ahmed H.; Naguib, Ibrahim A.

    2016-01-01

    This paper presents novel methods for spectrophotometric determination of ascorbic acid (AA) in presence of rutin (RU) (coformulated drug) in their combined pharmaceutical formulation. The seven methods are ratio difference (RD), isoabsorptive_RD (Iso_RD), amplitude summation (A_Sum), isoabsorptive point, first derivative of the ratio spectra (1DD), mean centering (MCN), and ratio subtraction (RS). On the other hand, RU was determined directly by measuring the absorbance at 358 nm in addition to the two novel Iso_RD and A_Sum methods. The work introduced in this paper aims to compare these different methods, showing the advantages for each and making a comparison of analysis results. The calibration curve is linear over the concentration range of 4–50 μg/mL for AA and RU. The results show the high performance of proposed methods for the analysis of the binary mixture. The optimum assay conditions were established and the proposed methods were successfully applied for the assay of the two drugs in laboratory prepared mixtures and combined pharmaceutical tablets with excellent recoveries. No interference was observed from common pharmaceutical additives. PMID:26885440

  11. A high-order accurate embedded boundary method for first order hyperbolic equations

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; Almquist, Martin

    2017-04-01

    A stable and high-order accurate embedded boundary method for first order hyperbolic equations is derived. Where the grid-boundaries and the physical boundaries do not coincide, high order interpolation is used. The boundary stencils are based on a summation-by-parts framework, and the boundary conditions are imposed by the SAT penalty method, which guarantees linear stability for one-dimensional problems. Second-, fourth-, and sixth-order finite difference schemes are considered. The resulting schemes are fully explicit. Accuracy and numerical stability of the proposed schemes are demonstrated for both linear and nonlinear hyperbolic systems in one and two spatial dimensions.

  12. The Block recursion library: accurate calculation of resolvent submatrices using the block recursion method

    NASA Astrophysics Data System (ADS)

    Godin, T. J.; Haydock, Roger

    1991-04-01

    The Block Recursion Library, a collection of FORTRAN subroutines, calculates submatrices of the resolvent of a linear operator. The resolvent, in matrix theory, is a powerful tool for extracting information about solutions of linear systems. The routines use the block recursion method and achieve high accuracy for very large systems of coupled equations. This technique is a generalization of the scalar recursion method, an accurate technique for finding the local density of states. A sample program uses these routines to find the quantum mechanical transmittance of a randomly disordered two-dimensional cluster of atoms.

  13. Investigation of low frequency electrolytic solution behavior with an accurate electrical impedance method

    NASA Astrophysics Data System (ADS)

    Ho, Kung-Chu; Su, Vin-Cent; Huang, Da-Yo; Lee, Ming-Lun; Chou, Nai-Kuan; Kuan, Chieh-Hsiung

    2017-01-01

    This paper reports the investigation of strong electrolytic solutions operated in low frequency regime through an accurate electrical impedance method realized with a specific microfluidic device and high resolution instruments. Experimental results show the better repeatability and accuracy of the proposed impedance method. Moreover, all electrolytic solutions appear the so-called relaxation frequency at each peak value of dielectric loss due to relaxing total polarization inside the device. The relaxation frequency of concentrated electrolytes becomes higher owing to the stronger total polarization behavior coming from the higher conductivity as well as the lower resistance in the electrolytic solutions.

  14. [A accurate identification method for Chinese materia medica--systematic identification of Chinese materia medica].

    PubMed

    Wang, Xue-Yong; Liao, Cai-Li; Liu, Si-Qi; Liu, Chun-Sheng; Shao, Ai-Juan; Huang, Lu-Qi

    2013-05-01

    This paper put forward a more accurate identification method for identification of Chinese materia medica (CMM), the systematic identification of Chinese materia medica (SICMM) , which might solve difficulties in CMM identification used the ordinary traditional ways. Concepts, mechanisms and methods of SICMM were systematically introduced and possibility was proved by experiments. The establishment of SICMM will solve problems in identification of Chinese materia medica not only in phenotypic characters like the mnorphous, microstructure, chemical constituents, but also further discovery evolution and classification of species, subspecies and population in medical plants. The establishment of SICMM will improve the development of identification of CMM and create a more extensive study space.

  15. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  16. Spectrophotometric determination of acidity and tautomeric constants and hydrogen bonding strength for a new Schiff base using hard modeling and multivariate curve resolution alternative least squares methods.

    PubMed

    Afkhami, Abbas; Khajavi, Farzad; Khanmohammadi, Hamid

    2009-02-23

    The equilibria of a new Schiff base derived from 3,6-bis((aminoethyl)thio)pyridazine were studied spectrophotometrically with the aid of factor-analytical methods. Hard modeling program was used for determination of the acidity constants of the Schiff base in dimethylformamide (DMF)/water mixture (30:70 v/v). In this method acidity constant equations act as hard models and the score vectors obtained by decomposing of absorbance data matrix will be linear combinations of equilibrium concentrations of species that exist in the absorption matrix. Two rank annihilation factor analysis (TRAFA) was used as a standard method to investigate the accuracy of the method. The tautomerization constant, K(t), of the Schiff base solution in various DMF/water mixtures has also been determined using spectral variations of the Schiff base solutions in various volume ratios of water with the aid of evolving factor analysis (EFA) and multivariate curve resolution alternative least squares (MCR-ALS) methods. In addition the intramolecular hydrogen bonding strength and its related thermodynamic parameters have been determined using MCR-ALS and spectral variation of the Schiff base solutions in different temperatures.

  17. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben.

    PubMed

    Elghobashy, Mohamed R; Bebawy, Lories I; Shokry, Rafeek F; Abbas, Samah S

    2016-03-15

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL(-1) for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  18. Automatic flow analysis method to determine traces of Mn²⁺ in sea and drinking waters by a kinetic catalytic process using LWCC-spectrophotometric detection.

    PubMed

    Chaparro, Laura; Ferrer, Laura; Leal, Luz O; Cerdà, Víctor

    2016-02-01

    A new automatic kinetic catalytic method has been developed for the measurement of Mn(2+) in drinking and seawater samples. The method is based on the catalytic effect of Mn(2+) on the oxidation of tiron by hydrogen peroxide in presence of Pb(2+) as an activator. The optimum conditions were obtained at pH 10 with 0.019 mol L(-1) 2'2 bipyridyl, 0.005 mol L(-1) tiron and 0.38 mol L(-1) hydrogen peroxide. Flow system is based on multisyringe flow injection analysis (MSFIA) coupled with a lab-on-valve (LOV) device exploiting on line spectrophotometric detection by a Liquid Waveguide Capillary Cell (LWCC), 1m optical length and performed at 445 nm. Under the optimized conditions by a multivariate approach, the method allowed the measurement of Mn(2+) in a range of 0.03-35 µg L(-1) with a detection limit of 0.010 µg L(-1), attaining a repeatability of 1.4% RSD. The method was satisfactorily applied to the determination of Mn(2+) in environmental water samples. The reliability of method was also verified by determining the manganese content of the certified standard reference seawater sample, CASS-4.

  19. Development and validation of high performance liquid chromatography with a spectrophotometric detection method for the chemical purity and assay of nepafenac.

    PubMed

    Lipiec-Abramska, Elżbieta; Jedynak, Łukasz; Formela, Adam; Roszczyński, Jacek; Cybulski, Marcin; Puchalska, Maria; Zagrodzka, Joanna

    2014-03-01

    The study is a proposition of the application of high performance liquid chromatography (HPLC) with a spectrophotometric UV range detector to analyze the chemical purity and assay of nepafenac, an active pharmaceutical ingredient (API). During literature search only a few publications were found about nepafenac. HPLC UV methods were mainly presented in patent documents about nepafenac synthesis and chemical purity. The presented method allows to separate all potential related compounds from nepafenac and to quantitate the nepafenac amount. As there is no official monograph in the pharmacopeias about nepafenac, the performed full validation procedure makes the method ready to use in routine analysis. The composition of the mobile phase (10mM ammonium formate, pH 4.1) and the HPLC column (Phenomenex Gemini-NX C18) were selected during the development step. Presented data confirm the benefits of the developed method. Four of the most potential impurities were validated as for the quantitative test and the rest of impurities were validated as for the limit test - according to ICH Q2(R1). The accuracy/recovery results for the chemical purity method are within 90-108%, in the case of assay studies from 99% to 101%; the limit of detection is as low as 15-30ng/mL. The linearity passes all statistical tests.

  20. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    NASA Astrophysics Data System (ADS)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  1. Multifrequency excitation method for rapid and accurate dynamic test of micromachined gyroscope chips.

    PubMed

    Deng, Yan; Zhou, Bin; Xing, Chao; Zhang, Rong

    2014-10-17

    A novel multifrequency excitation (MFE) method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE) method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  2. An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods

    NASA Astrophysics Data System (ADS)

    Sudhakar, Y.; Moitinho de Almeida, J. P.; Wall, Wolfgang A.

    2014-09-01

    We present an accurate method for the numerical integration of polynomials over arbitrary polyhedra. Using the divergence theorem, the method transforms the domain integral into integrals evaluated over the facets of the polyhedra. The necessity of performing symbolic computation during such transformation is eliminated by using one dimensional Gauss quadrature rule. The facet integrals are computed with the help of quadratures available for triangles and quadrilaterals. Numerical examples, in which the proposed method is used to integrate the weak form of the Navier-Stokes equations in an embedded interface method (EIM), are presented. The results show that our method is as accurate and generalized as the most widely used volume decomposition based methods. Moreover, since the method involves neither volume decomposition nor symbolic computations, it is much easier for computer implementation. Also, the present method is more efficient than other available integration methods based on the divergence theorem. Efficiency of the method is also compared with the volume decomposition based methods and moment fitting methods. To our knowledge, this is the first article that compares both accuracy and computational efficiency of methods relying on volume decomposition and those based on the divergence theorem.

  3. Spectrophotometric estimation of ambroxol and cetirizine hydrochloride from tablet dosage form.

    PubMed

    Gowekar, N M; Pande, V V; Kasture, A V; Tekade, A R; Chandorkar, J G

    2007-07-01

    Fixed dose combination tablets containing ambroxol HCl and cetirizine HCl are clinically used as mucolytic and antiallergic. Several spectrophotometric and HPLC methods have been reported for simultaneous estimation of these drugs with other drugs. The drugs individually and in mixture obeys Beer's law over conc. range 1.2-4.4 microg/mL for cetirizine HCL and for ambroxol HCL 15-52 microg/mL at all five sampling wavelengths (correlation coeff. well above 0.995). The mean recoveries from tablet by standard addition method were 100.18% (+/-2.4) and 100.66 % (+/-2.31). The present work reports simple, accurate and precise spectrophotometric methods for their simultaneous estimation from tablet dosage form.

  4. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  5. Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1996-01-01

    An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.

  6. Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures.

    PubMed

    Goicoechea, H C; Olivieri, A C

    2001-07-01

    A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.

  7. Accurate method for including solid-fluid boundary interactions in mesoscopic model fluids

    SciTech Connect

    Berkenbos, A. Lowe, C.P.

    2008-04-20

    Particle models are attractive methods for simulating the dynamics of complex mesoscopic fluids. Many practical applications of this methodology involve flow through a solid geometry. As the system is modeled using particles whose positions move continuously in space, one might expect that implementing the correct stick boundary condition exactly at the solid-fluid interface is straightforward. After all, unlike discrete methods there is no mapping onto a grid to contend with. In this article we describe a method that, for axisymmetric flows, imposes both the no-slip condition and continuity of stress at the interface. We show that the new method then accurately reproduces correct hydrodynamic behavior right up to the location of the interface. As such, computed flow profiles are correct even using a relatively small number of particles to model the fluid.

  8. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  9. Accurate Wind Characterization in Complex Terrain Using the Immersed Boundary Method

    SciTech Connect

    Lundquist, K A; Chow, F K; Lundquist, J K; Kosovic, B

    2009-09-30

    This paper describes an immersed boundary method (IBM) that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Two different interpolation methods, trilinear and inverse distance weighting, are used at the core of the IBM algorithm. Functional aspects of the algorithm's implementation and the accuracy of results are considered. Simulations of flow over a three-dimensional hill with shallow terrain slopes are preformed with both WRF's native terrain-following coordinate and with both IB methods. Comparisons of flow fields from the three simulations show excellent agreement, indicating that both IB methods produce accurate results. However, when ease of implementation is considered, inverse distance weighting is superior. Furthermore, inverse distance weighting is shown to be more adept at handling highly complex urban terrain, where the trilinear interpolation algorithm breaks down. This capability is demonstrated by using the inverse distance weighting core of the IBM to model atmospheric flow in downtown Oklahoma City.

  10. A new class of accurate, mesh-free hydrodynamic simulation methods

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2015-06-01

    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.

  11. Evaluation of spectrophotometric methods for screening of green rooibos (Aspalathus linearis) and green honeybush (Cyclopia genistoides) extracts for high levels of Bio-active compounds.

    PubMed

    Joubert, Elizabeth; Manley, Marena; Botha, Mariza

    2008-01-01

    The potential of UV spectrophotometry and an aluminium chloride (AlCl(3)) colorimetric method to determine the dihydrochalcone (DHC) and mangiferin contents of green rooibos and honeybush (C. genistoides) extracts, respectively, was investigated. The DHC content of rooibos water extracts, determined using UV spectroscopy, correlated with the sum of the aspalathin and nothofagin contents as quantified using HPLC (r = 0.98). A correlation coefficient of 0.91 was obtained when correlating the mangiferin content of C. genistoides methanol extracts, determined by the AlCl(3) colorimetric method, with the results obtained by HPLC. Using the linear equations from the correlations it was possible to predict the DHC and mangiferin contents of extracts from the respective spectrophotometric measurements to a reasonable accuracy as an alternative to HPLC. The total polyphenol (TP) content of rooibos water extracts can also be determined using UV spectrophotometry and aspalathin as a standard (r = 0.99) as an alternative to the Folin-Ciocalteau method. The TP content of rooibos extracts correlated (r = 0.99) with its total antioxidant activity (TAA) as determined with the ABTS radical cation scavenging assay, but the TP content of C. genistoides water extracts is not a good indication of their TAA (r = 0.27). The aspalathin content of rooibos extracts correlated with their TAA (r = 0.96), but the mangiferin content of honeybush water extracts only gave a moderate correlation with their TAA (r = 0.75).

  12. Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Ayoub, Bassam M.

    2016-11-01

    New univariate spectrophotometric method and multivariate chemometric approach were developed and compared for simultaneous determination of empagliflozin and metformin manipulating their zero order absorption spectra with application on their pharmaceutical preparation. Sample enrichment technique was used to increase concentration of empagliflozin after extraction from tablets to allow its simultaneous determination with metformin without prior separation. Validation parameters according to ICH guidelines were satisfactory over the concentration range of 2-12 μg mL- 1 for both drugs using simultaneous equation with LOD values equal to 0.20 μg mL- 1 and 0.19 μg mL- 1, LOQ values equal to 0.59 μg mL- 1 and 0.58 μg mL- 1 for empagliflozin and metformin, respectively. While the optimum results for the chemometric approach using partial least squares method (PLS-2) were obtained using concentration range of 2-10 μg mL- 1. The optimized validated methods are suitable for quality control laboratories enable fast and economic determination of the recently approved pharmaceutical combination Synjardy® tablets.

  13. Simultaneous Determination of Cobalt(II) and Nickel(II) by Fourth-Order Derivative Spectrophotometric Method Using 2-Hydroxy-3-Methoxy Benzaldehyde Thiosemicarbazone

    PubMed Central

    Kumar, A. Praveen; Reddy, P. Raveendra; Reddy, V. Krishna

    2007-01-01

    A simple and new simultaneous fourth derivative spectrophotometric method is proposed for the analysis of a two-component system containing cobalt(II) and nickel(II) without separation using 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone (HMBATSC) as a chromophoric reagent. The reagent reacts with cobalt(II) and nickel(II) at pH 6.0, forming soluble brown and yellow colored species, respectively. Cobalt(II) and nickel(II) present in themixture are simultaneously determined without solving the simultaneous equations bymeasuring the fourth derivative amplitudes at 468.5 nm and 474.5 nm, respectively. The derivative amplitudes obey Beer's law at 468.5 nm and 474.5 nm for Co(II) and Ni(II) in the range 0.059–3.299 μg mL−1 and 0.058–3.285 μg mL−1 respectively. A large number of foreign ions do not interfere in the present method. The present simultaneous method is used for the determination of micro amounts of cobalt in biological samples, nickel in plant samples, and in some alloy steels and soil sample. PMID:17671609

  14. A rapid spectrophotometric method for the determination of molybdenum in industrial, environmental, biological and soil samples using 5,7-dibromo-8-hydroxyquinoline.

    PubMed

    Ahmed, M Jamaluddin; Haque, M Enamul

    2002-04-01

    A very simple, ultra-sensitive and highly selective non-extractive spectrophotometric method for the determination of trace amount of molybdenum(VI) using 5,7-dibromo-8-hydroxyquinoline (DBHQ) has been developed. 5,7-Dibromo-8-hydroxyquinoline reacts in a slightly acidic solution (0.05 - 1.0 M H2SO4) with molybdenum(VI) to give a deep greenish-yellow chelate which has an absorption maximum at 401 nm. The reaction is instantaneous and the absorbance remains stable for over 24 h. The average molar absorption coefficient and Sandell's sensitivity were found to be 4.13 x 10(3) L mol(-1) cm(-1) and 7 ng cm(-2) of molybdenum(VI), respectively. Linear calibration graphs were obtained for 0.1 - 50 microg mL(-1) of molybdenum(VI). The stoichiometric composition of the chelate is 1:3 (Mo:DBHQ). A large excess of over 50 cations, anions and some common complexing agents (e.g. EDTA, oxalate, citrate, phosphate, thiourea, SCN-) do not interfere with the determination. The method was successfully used in the determination of molybdenum in several Standard Reference Materials (alloys, steels and waters) as well as in some environmental waters (inland and surface), biological samples (human blood and urine), soil samples, solution containing both molybdenum(V) and molybdenum(VI) and complex synthetic mixtures. The method has high precision and accuracy (S = +/-0.01 for 0.5 microg mL(-1)).

  15. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  16. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  17. Selective and sensitive spectrophotometric method for the determination of trace amounts of zirconium in environmental and biological samples using 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide

    NASA Astrophysics Data System (ADS)

    Al-Kady, Ahmed S.

    2012-11-01

    A simple, selective and sensitive spectrophotometric method for the determination of trace amounts of Zr(IV) in aqueous samples was performed, based on complexation reaction between Zr(IV) and 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide (xipamide). The important analytical parameters and their effects on the reported system were investigated. Zr(IV) react with xipamide in the ratio 1:1 in the pH range 8 to form a complex with an absorption maximum 333 nm. The apparent stability constant (log βn) and the free energy change (ΔG∗) of formation of the complex was calculated using the results of mole ratio and continuous variation methods. Beer's law was obeyed in the concentration range 0.2-3.6 μg/mL. For more accurate analysis, Ringbom optimum concentration range was found from 0.3 to 3.5 μg/mL. The molar absorptivity, Sandell sensitivity, detection and quantification limits were also calculated. Taking a constant concentration of Zr(IV) and determining its concentration in the presence of large number of foreign ions tested the effect of foreign ions. The practical applicability of the elaborated method was examined using for determination of mentioned ion in water samples, biological, plant leaves and soil samples where excellent agreements between reported and obtained results were achieved. The relative standard deviation (n = 6) were 0.195%. The precision and accuracy of the results were comparable via F and t test at the 95% confidence level.

  18. Method for accurate optical alignment using diffraction rings from lenses with spherical aberration.

    PubMed

    Gwynn, R B; Christensen, D A

    1993-03-01

    A useful alignment method is presented that exploits the closely spaced concentric fringes that form in the longitudinal spherical aberration region of positive spherical lenses imaging a point source. To align one or more elements to a common axis, spherical lenses are attached precisely to the elements and the resulting diffraction rings are made to coincide. We modeled the spherical aberration of the lenses by calculating the diffraction patterns of converging plane waves passing through concentric narrow annular apertures. The validity of the model is supported by experimental data and is determined to be accurate for a prototype penumbral imaging alignment system developed at Lawrence Livermore National Laboratory.

  19. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  20. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  1. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking.

    PubMed

    Barbosa, Marconi; James, Andrew C

    2014-08-01

    A range of applications in visual science rely on accurate tracking of the human pupil's movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust.

  2. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  3. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking

    PubMed Central

    Barbosa, Marconi; James, Andrew C.

    2014-01-01

    A range of applications in visual science rely on accurate tracking of the human pupil’s movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust. PMID:25136477

  4. Spectrophotometric studies of 4-[N'-(4-imino-2-oxo-thiazolidin-5-ylidene)-hydrazino]-benzenesulfonic acid as a reagent for the determination of palladium.

    PubMed

    Lozynska, Lesya; Tymoshuk, Oleksandr; Chaban, Taras

    2015-01-01

    The spectrophotometric behavior of a new, first-time synthesized reagent - 4-[N'-(4-imino-2-oxo-thiazolidin-5-ylidene)hydrazino]-benzenesulfonic acid (ITHBA), has been investigated. A simple, rapid, accurate, selective and sensitive method for the spectrophotometric determination of Pd(II) ions using this reagent was developed. The optimal conditions for the formation of the complexes were found. The molar absorptivity at λ = 438 nm is 7.5 × 10(3) L mol(-1) cm(-1), and Beer's law is observed for the concentrations ranging from 0.2-2.2 µg mL-1Pd(II). The effects of extraneous ions were investigated. The method proved to be successful in determination of palladium in the intermetallides and resistor. The accuracy of spectrophotometric palladium assay in real objects with 4-[N'-(4-imino-2-oxo-thiazolidin-5-ylidene)-hydrazino]-benzenesulfonic acid has been confirmed by voltammetric or atomic absorption spectroscopy method.

  5. Stiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator

    NASA Astrophysics Data System (ADS)

    Emmrich, Etienne; Thalhammer, Mechthild

    2010-04-01

    Stiffly accurate implicit Runge-Kutta methods are studied for the time discretisation of nonlinear first-order evolution equations. The equation is supposed to be governed by a time-dependent hemicontinuous operator that is (up to a shift) monotone and coercive, and fulfills a certain growth condition. It is proven that the piecewise constant as well as the piecewise linear interpolant of the time-discrete solution converges towards the exact weak solution, provided the Runge-Kutta method is consistent and satisfies a stability criterion that implies algebraic stability; examples are the Radau IIA and Lobatto IIIC methods. The convergence analysis is also extended to problems involving a strongly continuous perturbation of the monotone main part.

  6. New spectrophotometric estimation of indomethacin capsules with niacinamide as hydrotropic solubilizing agent

    PubMed Central

    Maheshwari, R. K.; Rathore, Amit; Agrawal, Archana; Gupta, Megha A.

    2011-01-01

    Background: Hydrotropic solubilization process involves cooperative intermolecular interaction with several balancing molecular forces, rather than either a specific complexation event or a process dominated by a medium effect, such as co-solvency or salting-in. Materials and Methods: In the present investigation, hydrotropic solution of 2 M niacinamide was employed as the solubilizing agent to solubilize the poorly water-soluble drug, indomethacin, from the capsule dosage form for spectrophotometric determination in ultraviolet region. Results: Hydrotropic agent used did not interfere in the spectrophotometric analysis. In preliminary solubility studies, it was found that there was more than fivefold enhancement in the aqueous solubility of indomethacin (poorly water-soluble drug) in 2 M niacinamide solution as compared to its aqueous solubility at 28 ± 1°C. Conclusion: The proposed method is new, simple, safe, environmentally friendly, economic, accurate and cost-effective and can be successfully employed in routine analysis. PMID:23781453

  7. Stable and accurate difference methods for seismic wave propagation on locally refined meshes

    NASA Astrophysics Data System (ADS)

    Petersson, A.; Rodgers, A.; Nilsson, S.; Sjogreen, B.; McCandless, K.

    2006-12-01

    To overcome some of the shortcomings of previous numerical methods for the elastic wave equation subject to stress-free boundary conditions, we are incorporating recent results from numerical analysis to develop a new finite difference method which discretizes the governing equations in second order displacement formulation. The most challenging aspect of finite difference methods for time dependent hyperbolic problems is clearly stability and some previous methods are known to be unstable when the material has a compressional velocity which exceeds about three times the shear velocity. Since the material properties in seismic applications often vary rapidly on the computational grid, the most straight forward approach for guaranteeing stability is through an energy estimate. For a hyperbolic system in second order formulation, the key to an energy estimate is a spatial discretization which is self-adjoint, i.e. corresponds to a symmetric or symmetrizable matrix. At the same time we want the scheme to be efficient and fully explicit, so only local operations are necessary to evolve the solution in the interior of the domain as well as on the free-surface boundary. Furthermore, we want the solution to be accurate when the data is smooth. Using these specifications, we developed an explicit second order accurate discretization where stability is guaranteed through an energy estimate for all ratios Cp/Cs. An implementation of our finite difference method was used to simulate ground motions during the 1906 San Francisco earthquake on a uniform grid with grid sizes down to 100 meters corresponding to over 4 Billion grid points. These simulations were run on 1024 processors on one of the supercomputers at Lawrence Livermore National Lab. To reduce the computational requirements for these simulations, we are currently extending the numerical method to use a locally refined mesh where the mesh size approximately follows the velocity structure in the domain. Some

  8. REVIEW ARTICLE: Spectrophotometric applications of digital signal processing

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.

    2006-09-01

    Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.

  9. Novel method for accurate g measurements in electron-spin resonance

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Van Gorp, G.

    1989-09-01

    In high-accuracy work, electron-spin-resonance (ESR) g values are generally determined by calibrating against the accurately known proton nuclear magnetic resonance (NMR). For that method—based on leakage of microwave energy out of the ESR cavity—a convenient technique is presented to obtain accurate g values without needing conscientious precalibration procedures or cumbersome constructions. As main advantages, the method allows the easy monitoring of the positioning of the ESR and NMR samples while they are mounted as close as physically realizable at all time during their simultaneous resonances. Relative accuracies on g of ≊2×10-6 are easily achieved for ESR signals of peak-to-peak width ΔBpp≲0.3 G. The method has been applied to calibrate the g value of conduction electrons of small Li particles embedded in LiF—a frequently used g marker—resulting in gLiF: Li=2.002 293±0.000 002.

  10. Indirect viscosimetric method is less accurate than ektacytometry for the measurement of red blood cell deformability.

    PubMed

    Vent-Schmidt, Jens; Waltz, Xavier; Pichon, Aurélien; Hardy-Dessources, Marie-Dominique; Romana, Marc; Connes, Philippe

    2015-01-01

    The aim of this study was to test the accuracy of viscosimetric method to estimate the red blood cell (RBC) deformability properties. Thirty-three subjects were enrolled in this study: 6 healthy subjects (AA), 11 patients with sickle cell-hemoglobin C disease (SC) and 16 patients with sickle cell anemia (SS). Two methods were used to assess RBC deformability: 1) indirect viscosimetric method and 2) ektacytometry. The indirect viscosimetric method was based on the Dintenfass equation where blood viscosity, plasma viscosity and hematocrit are measured and used to calculate an index of RBC rigidity (Tk index). The RBC deformability/rigidity of the three groups was compared using the two methods. Tk index was not different between SS and SC patients and the two groups had higher values than AA group. When ektacytometry was used, RBC deformability was lower in SS and SC groups compared to the AA group and SS and SC patients were different. Although the two measures of RBC deformability were correlated, the association was not very high. Bland and Altman analysis demonstrated a 3.25 bias suggesting a slight difference between the two methods. In addition, the limit of agreement represented 28% (>15%) of the mean values of RBC deformability, showing no interchangeability between the two methods. In conclusion, measuring RBC deformability by indirect viscosimetry is less accurate than by ektacytometry, which is considered the gold standard.

  11. Chemometrics-Assisted UV Spectrophotometric and RP-HPLC Methods for the Simultaneous Determination of Tolperisone Hydrochloride and Diclofenac Sodium in their Combined Pharmaceutical Formulation

    PubMed Central

    Gohel, Nikunj Rameshbhai; Patel, Bhavin Kiritbhai; Parmar, Vijaykumar Kunvarji

    2013-01-01

    Chemometrics-assisted UV spectrophotometric and RP-HPLC methods are presented for the simultaneous determination of tolperisone hydrochloride (TOL) and diclofenac sodium (DIC) from their combined pharmaceutical dosage form. Chemometric methods are based on principal component regression and partial least-square regression models. Two sets of standard mixtures, calibration sets, and validation sets were prepared. Both models were optimized to quantify each drug in the mixture using the information included in the UV absorption spectra of the appropriate solution in the range 241–290 nm with the intervals λ = 1 nm at 50 wavelengths. The optimized models were successfully applied to the simultaneous determination of these drugs in synthetic mixture and pharmaceutical formulation. In addition, an HPLC method was developed using a reversed-phase C18 column at ambient temperature with a mobile phase consisting of methanol:acetonitrile:water (60:30:10 v/v/v), pH-adjusted to 3.0, with UV detection at 275 nm. The methods were validated in terms of linearity, accuracy, precision, sensitivity, specificity, and robustness in the range of 3–30 μg/mL for TOL and 1–10 μg/mL for DIC. The robustness of the HPLC method was tested using an experimental design approach. The developed HPLC method, and the PCR and PLS models were used to determine the amount of TOL and DIC in tablets. The data obtained from the PCR and PLS models were not significantly different from those obtained from the HPLC method at 95% confidence limit. PMID:24482768

  12. Chemometrics-Assisted UV Spectrophotometric and RP-HPLC Methods for the Simultaneous Determination of Tolperisone Hydrochloride and Diclofenac Sodium in their Combined Pharmaceutical Formulation.

    PubMed

    Gohel, Nikunj Rameshbhai; Patel, Bhavin Kiritbhai; Parmar, Vijaykumar Kunvarji

    2013-01-01

    Chemometrics-assisted UV spectrophotometric and RP-HPLC methods are presented for the simultaneous determination of tolperisone hydrochloride (TOL) and diclofenac sodium (DIC) from their combined pharmaceutical dosage form. Chemometric methods are based on principal component regression and partial least-square regression models. Two sets of standard mixtures, calibration sets, and validation sets were prepared. Both models were optimized to quantify each drug in the mixture using the information included in the UV absorption spectra of the appropriate solution in the range 241-290 nm with the intervals λ = 1 nm at 50 wavelengths. The optimized models were successfully applied to the simultaneous determination of these drugs in synthetic mixture and pharmaceutical formulation. In addition, an HPLC method was developed using a reversed-phase C18 column at ambient temperature with a mobile phase consisting of methanol:acetonitrile:water (60:30:10 v/v/v), pH-adjusted to 3.0, with UV detection at 275 nm. The methods were validated in terms of linearity, accuracy, precision, sensitivity, specificity, and robustness in the range of 3-30 μg/mL for TOL and 1-10 μg/mL for DIC. The robustness of the HPLC method was tested using an experimental design approach. The developed HPLC method, and the PCR and PLS models were used to determine the amount of TOL and DIC in tablets. The data obtained from the PCR and PLS models were not significantly different from those obtained from the HPLC method at 95% confidence limit.

  13. An adaptive, formally second order accurate version of the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Griffith, Boyce E.; Hornung, Richard D.; McQueen, David M.; Peskin, Charles S.

    2007-04-01

    Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method. This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed boundary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509-534] and is based on a formally second order accurate (i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75-105]. Actual second order convergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incompressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the method, but the flow in the vicinity of the model heart valves

  14. Optical Coherence Tomography as a Rapid, Accurate, Noncontact Method of Visualizing the Palisades of Vogt

    PubMed Central

    Gupta, Divya; Kagemann, Larry; Schuman, Joel S.; SundarRaj, Nirmala

    2012-01-01

    Purpose. This study explored the efficacy of optical coherence tomography (OCT) as a high-resolution, noncontact method for imaging the palisades of Vogt by correlating OCT and confocal microscopy images. Methods. Human limbal rims were acquired and imaged with OCT and confocal microscopy. The area of the epithelial basement membrane in each of these sets was digitally reconstructed, and the models were compared. Results. OCT identified the palisades within the limbus and exhibited excellent structural correlation with immunostained tissue imaged by confocal microscopy. Conclusions. OCT successfully identified the limbal palisades of Vogt that constitute the corneal epithelial stem cell niche. These findings offer the exciting potential to characterize the architecture of the palisades in vivo, to harvest stem cells for transplantation more accurately, to track palisade structure for better diagnosis, follow-up and staging of treatment, and to assess and intervene in the progression of stem cell depletion by monitoring changes in the structure of the palisades. PMID:22266521

  15. A Fully Implicit Time Accurate Method for Hypersonic Combustion: Application to Shock-induced Combustion Instability

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Radhakrishnan, Krishnan

    1994-01-01

    A new fully implicit, time accurate algorithm suitable for chemically reacting, viscous flows in the transonic-to-hypersonic regime is described. The method is based on a class of Total Variation Diminishing (TVD) schemes and uses successive Gauss-Siedel relaxation sweeps. The inversion of large matrices is avoided by partitioning the system into reacting and nonreacting parts, but still maintaining a fully coupled interaction. As a result, the matrices that have to be inverted are of the same size as those obtained with the commonly used point implicit methods. In this paper we illustrate the applicability of the new algorithm to hypervelocity unsteady combustion applications. We present a series of numerical simulations of the periodic combustion instabilities observed in ballistic-range experiments of blunt projectiles flying at subdetonative speeds through hydrogen-air mixtures. The computed frequencies of oscillation are in excellent agreement with experimental data.

  16. Odontoma-associated tooth impaction: accurate diagnosis with simple methods? Case report and literature review.

    PubMed

    Troeltzsch, Matthias; Liedtke, Jan; Troeltzsch, Volker; Frankenberger, Roland; Steiner, Timm; Troeltzsch, Markus

    2012-10-01

    Odontomas account for the largest fraction of odontogenic tumors and are frequent causes of tooth impaction. A case of a 13-year-old female patient with an odontoma-associated impaction of a mandibular molar is presented with a review of the literature. Preoperative planning involved simple and convenient methods such as clinical examination and panoramic radiography, which led to a diagnosis of complex odontoma and warranted surgical removal. The clinical diagnosis was confirmed histologically. Multidisciplinary consultation may enable the clinician to find the accurate diagnosis and appropriate therapy based on the clinical and radiographic appearance. Modern radiologic methods such as cone-beam computed tomography or computed tomography should be applied only for special cases, to decrease radiation.

  17. Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: Application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline

    SciTech Connect

    Kosaka, Koji; Yamada, Harumi; Matsui, Saburo; Echigo, Shinya; Shishida, Kenichi

    1998-12-01

    Hydrogen peroxide (H{sub 2}O{sub 2}) in the range of several tens to several hundreds of micromoles per liter is usually added to the process water in advanced oxidation processes (AOPs). In this study, a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1, 10-phenanthroline (DMP) for measuring H{sub 2}O{sub 2} concentration was compared with other methods [i.e., spectrophotometric methods using titanium oxalate and N,N-diethyl-p-phenylenediamine (DPD) and a fluorometric method using p-hydroxyphenyl acetic acid (POHPAA)]. Particular attention was paid to sensitivities and effects of coexisting substances. The most sensitive method was the fluorometric method, followed in order by DPD, DMP, and the titanium oxalate colorimetric method; their detection limits in 1-cm cells were 0.16, 0.77, 0.80, and 29 {micro}M, respectively. Therefore, the DMP method was found to be reasonably sensitive when applied to AOPs. In the DMP method, copper(II)-DMP complexes react with humic acid, and colored chemicals are produced. However, the slopes of the calibration curves of H{sub 2}O{sub 2} containing up to 10 mg of C L{sup {minus}1} from humic acid did not change significantly as compared to that in ultrapure water. The effect of chlorine on the DMP method was not observed up to at least 23 {micro}M (0.8 mg of Cl L{sup {minus}1}) of free chlorine, although the DPD and fluorometric methods are known to be interfered by chlorine. From this study, it was concluded that the DMP method is suitable to be used in AOPs.

  18. Direct quantification of lycopene in products derived from thermally processed tomatoes: optothermal window as a selective, sensitive, and accurate analytical method without the need for preparatory steps.

    PubMed

    Bicanic, Dane; Swarts, Jan; Luterotti, Svjetlana; Pietraperzia, Giangaetano; Dóka, Otto; de Rooij, Hans

    2004-09-01

    The concept of the optothermal window (OW) is proposed as a reliable analytical tool to rapidly determine the concentration of lycopene in a large variety of commercial tomato products in an extremely simple way (the determination is achieved without the need for pretreatment of the sample). The OW is a relative technique as the information is deduced from the calibration curve that relates the OW data (i.e., the product of the absorption coefficient beta and the thermal diffusion length micro) with the lycopene concentration obtained from spectrophotometric measurements. The accuracy of the method has been ascertained with a high correlation coefficient (R = 0.98) between the OW data and results acquired from the same samples by means of the conventional extraction spectrophotometric method. The intrinsic precision of the OW method is quite high (better than 1%), whereas the repeatability of the determination (RSD = 0.4-9.5%, n= 3-10) is comparable to that of spectrophotometry.

  19. A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane.

    PubMed

    Kara, Derya; Karadaş, Cennet

    2015-08-05

    The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 10(3)L mol(-1)cm(-1). Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL(-1). The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL(-1) molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L(-1) for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL(-1) Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml(-1) with a standard derivation of 0.002 μg ml(-1) molybdenum(VI).

  20. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method.

    PubMed

    Ito, Shosuke; Kikuta, Marina; Koike, Shota; Szewczyk, Grzegorz; Sarna, Michal; Zadlo, Andrzej; Sarna, Tadeusz; Wakamatsu, Kazumasa

    2016-05-01

    Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence.

  1. A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane

    NASA Astrophysics Data System (ADS)

    Kara, Derya; Karadaş, Cennet

    2015-08-01

    The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 103 L mol-1 cm-1. Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL-1. The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL-1 molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L-1 for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL-1 Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml-1 with a standard derivation of 0.002 μg ml-1 molybdenum(VI).

  2. Development and validation of spectrophotometric and HPTLC methods for simultaneous determination of rosiglitazone maleate and metformin hydrochloride in the presence of interfering matrix excipients.

    PubMed

    Mahgoub, Hoda; Youssef, Rasha M; Korany, Mohamed A; Khamis, Essam F; Kamal, Miranda F

    2014-09-01

    Two simple methods have been developed and validated for the simultaneous determination of rosiglitazone maleate (ROS) and metformin hydrochloride (MET) in synthetic mixtures and coated tablets in a ratio of 1:250 (ROS:MET). The first method was a spectrophotometric one. The minor component, ROS was determined by measuring the values of absorbance at λmax 312 nm and the D1 amplitudes at 331 nm where MET shows no absorption contribution. However, absorbance interferences from tablet excipients were successfully corrected by D1 at 331 nm zero-crossing technique. Study of spectral interference from tablet excipients was included in the text. Standard curves for Amax and D1 methods were in the concentration range 20.0-80.0 μg mL(-1). The major component, MET was determined both in binary mixtures and tablets by measuring its Amax at 236 nm. Extensive dilution eliminated any absorption contribution from the coexisting ROS or tablet matrix. Standard curves showed linearity in the concentration range 4.0-12.8 μg mL(-1). The second method was based on high performance thin layer chromatography (HPTLC) separation of the two drugs followed by densitometric measurements of their spots at 230 nm. The separation was carried out on Merck HPTLC aluminium sheets of silica gel 60 F254 using methanol:water:NH4Cl 1% w/v (5:4:1 v/v/v) as the mobile phase. Linear calibration graphs of peak area values were obtained versus concentrations in the range of 0.4-2.0 μg band(-1) and 20.0-100.0 μg band(-1) for ROS and MET, respectively. According to International Conference on Harmonisation (ICH) guidelines, different validation parameters were verified for the two methods and presented.

  3. Development and validation of spectrophotometric and high-performance column liquid chromatographic methods for the simultaneous determination of dienogest and estradiol valerate in pharmaceutical preparations.

    PubMed

    Cağlayan, Mehmet Gökhan; Palabiyik, Ismail Murat; Onur, Feyyaz

    2010-01-01

    Simultaneous determination of dienogest (DIE) and estradiol valerate (EST) in sugar-coated tablets was performed by using HPLC and spectrophotometry. In HPLC, the separation was achieved on an ACE C8 column using the mobile phase acetonitrile-NH4NO3 (0.03 M, pH 5.4; 70 + 30, v/v) at a flow rate of 2 mL/min. The detection wavelength was 280 nm, and cyproterone acetate was selected as an internal standard. The linearity range was 3.0-45.0 microg/mL for DIE and 18.0-100.0 microg/mL for EST. As spectrophotometric methods, two chemometric methods, principal component regression and partial least-squares, were developed. In the chemometric techniques, the concentration data matrix was prepared by using mixtures containing these drugs in methanol-water (3 + 1, v/v). The absorbance data matrix corresponding to the concentration data matrix in these methods was obtained by the measurement of absorbances in their zero-order spectra; then, the calibration was obtained by using the data matrix for the prediction of unknown concentrations of DIE and EST in their binary mixture. Working ranges were found as 2.0-24.0 microg/mL for DIE and 20.0-270.0 microg/mL EST in the methods. These three developed methods were validated and successfully applied to a pharmaceutical preparation, a sugar-coated tablet, and the results were compared with each other.

  4. A highly accurate method for the determination of mass and center of mass of a spacecraft

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Trubert, M. R.; Egwuatu, A.

    1978-01-01

    An extremely accurate method for the measurement of mass and the lateral center of mass of a spacecraft has been developed. The method was needed for the Voyager spacecraft mission requirement which limited the uncertainty in the knowledge of lateral center of mass of the spacecraft system weighing 750 kg to be less than 1.0 mm (0.04 in.). The method consists of using three load cells symmetrically located at 120 deg apart on a turntable with respect to the vertical axis of the spacecraft and making six measurements for each load cell. These six measurements are taken by cyclic rotations of the load cell turntable and of the spacecraft, about the vertical axis of the measurement fixture. This method eliminates all alignment, leveling, and load cell calibration errors for the lateral center of mass determination, and permits a statistical best fit of the measurement data. An associated data reduction computer program called MASCM has been written to implement this method and has been used for the Voyager spacecraft.

  5. Efficient and accurate numerical methods for the Klein-Gordon-Schroedinger equations

    SciTech Connect

    Bao, Weizhu . E-mail: bao@math.nus.edu.sg; Yang, Li . E-mail: yangli@nus.edu.sg

    2007-08-10

    In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein-Gordon-Schroedinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schroedinger-type equation in KGS (ii) the utilization of Fourier pseudospectral discretization for spatial derivatives in the Klein-Gordon equation in KGS (iii) the adoption of solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear terms for time derivatives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as well as dynamics of a 2D problem in KGS.

  6. An accurate and efficient bayesian method for automatic segmentation of brain MRI.

    PubMed

    Marroquin, J L; Vemuri, B C; Botello, S; Calderon, F; Fernandez-Bouzas, A

    2002-08-01

    Automatic three-dimensional (3-D) segmentation of the brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of attention lately. Of the techniques reported in the literature, very few are fully automatic. In this paper, we present an efficient and accurate, fully automatic 3-D segmentation procedure for brain MR scans. It has several salient features; namely, the following. 1) Instead of a single multiplicative bias field that affects all tissue intensities, separate parametric smooth models are used for the intensity of each class. 2) A brain atlas is used in conjunction with a robust registration procedure to find a nonrigid transformation that maps the standard brain to the specimen to be segmented. This transformation is then used to: segment the brain from nonbrain tissue; compute prior probabilities for each class at each voxel location and find an appropriate automatic initialization. 3) Finally, a novel algorithm is presented which is a variant of the expectation-maximization procedure, that incorporates a fast and accurate way to find optimal segmentations, given the intensity models along with the spatial coherence assumption. Experimental results with both synthetic and real data are included, as well as comparisons of the performance of our algorithm with that of other published methods.

  7. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  8. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    PubMed Central

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-01-01

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705

  9. A novel method for accurate collagen and biochemical assessment of pulmonary tissue utilizing one animal

    PubMed Central

    Kliment, Corrine R; Englert, Judson M; Crum, Lauren P; Oury, Tim D

    2011-01-01

    Aim: The purpose of this study was to develop an improved method for collagen and protein assessment of fibrotic lungs while decreasing animal use. methods: 8-10 week old, male C57BL/6 mice were given a single intratracheal instillation of crocidolite asbestos or control titanium dioxide. Lungs were collected on day 14 and dried as whole lung, or homogenized in CHAPS buffer, for hydroxyproline analysis. Insoluble and salt-soluble collagen content was also determined in lung homogenates using a modified Sirius red colorimetric 96-well plate assay. results: The hydroxyproline assay showed significant increases in collagen content in the lungs of asbestos-treated mice. Identical results were present between collagen content determined on dried whole lung or whole lung homogenates. The Sirius red plate assay showed a significant increase in collagen content in lung homogenates however, this assay grossly over-estimated the total amount of collagen and underestimated changes between control and fibrotic lungs, conclusions: The proposed method provides accurate quantification of collagen content in whole lungs and additional homogenate samples for biochemical analysis from a single animal. The Sirius-red colorimetric plate assay provides a complementary method for determination of the relative changes in lung collagen but the values tend to overestimate absolute values obtained by the gold standard hydroxyproline assay and underestimate the overall fibrotic injury. PMID:21577320

  10. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers.

    PubMed

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-12-09

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  11. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    PubMed

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure.

  12. Accurate description of the electronic structure of organic semiconductors by GW methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa

    2017-03-01

    Electronic properties associated with charged excitations, such as the ionization potential (IP), the electron affinity (EA), and the energy level alignment at interfaces, are critical parameters for the performance of organic electronic devices. To computationally design organic semiconductors and functional interfaces with tailored properties for target applications it is necessary to accurately predict these properties from first principles. Many-body perturbation theory is often used for this purpose within the GW approximation, where G is the one particle Green’s function and W is the dynamically screened Coulomb interaction. Here, the formalism of GW methods at different levels of self-consistency is briefly introduced and some recent applications to organic semiconductors and interfaces are reviewed.

  13. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  14. Methods to achieve accurate projection of regional and global raster databases

    USGS Publications Warehouse

    Usery, E. Lynn; Seong, Jeong Chang; Steinwand, Dan

    2002-01-01

    Modeling regional and global activities of climatic and human-induced change requires accurate geographic data from which we can develop mathematical and statistical tabulations of attributes and properties of the environment. Many of these models depend on data formatted as raster cells or matrices of pixel values. Recently, it has been demonstrated that regional and global raster datasets are subject to significant error from mathematical projection and that these errors are of such magnitude that model results may be jeopardized (Steinwand, et al., 1995; Yang, et al., 1996; Usery and Seong, 2001; Seong and Usery, 2001). There is a need to develop methods of projection that maintain the accuracy of these datasets to support regional and global analyses and modeling

  15. Methods for accurate analysis of galaxy clustering on non-linear scales

    NASA Astrophysics Data System (ADS)

    Vakili, Mohammadjavad

    2017-01-01

    Measurements of galaxy clustering with the low-redshift galaxy surveys provide sensitive probe of cosmology and growth of structure. Parameter inference with galaxy clustering relies on computation of likelihood functions which requires estimation of the covariance matrix of the observables used in our analyses. Therefore, accurate estimation of the covariance matrices serves as one of the key ingredients in precise cosmological parameter inference. This requires generation of a large number of independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast method based on low-resolution N-body simulations and approximate galaxy biasing technique for generating mock catalogs. Using a reference catalog that was created using the high resolution Big-MultiDark N-body simulation, we show that our method is able to produce catalogs that describe galaxy clustering at a percentage-level accuracy down to highly non-linear scales in both real-space and redshift-space.In most large-scale structure analyses, modeling of galaxy bias on non-linear scales is performed assuming a halo model. Clustering of dark matter halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies assume that halo mass alone is sufficient in characterizing the connection between galaxies and halos. However, modeling of galaxy bias can face systematic effects if the number of galaxies are correlated with other halo properties. Using the Small MultiDark-Planck high resolution N-body simulation and the clustering measurements of Sloan Digital Sky Survey DR7 main galaxy sample, we investigate the extent to which the dependence of galaxy bias on halo concentration can improve our modeling of galaxy clustering.

  16. Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2017-04-01

    I start by providing an updated summary of the penalized pixel-fitting (PPXF) method that is used to extract the stellar and gas kinematics, as well as the stellar population of galaxies, via full spectrum fitting. I then focus on the problem of extracting the kinematics when the velocity dispersion σ is smaller than the velocity sampling ΔV that is generally, by design, close to the instrumental dispersion σinst. The standard approach consists of convolving templates with a discretized kernel, while fitting for its parameters. This is obviously very inaccurate when σ ≲ ΔV/2, due to undersampling. Oversampling can prevent this, but it has drawbacks. Here I present a more accurate and efficient alternative. It avoids the evaluation of the undersampled kernel and instead directly computes its well-sampled analytic Fourier transform, for use with the convolution theorem. A simple analytic transform exists when the kernel is described by the popular Gauss-Hermite parametrization (which includes the Gaussian as special case) for the line-of-sight velocity distribution. I describe how this idea was implemented in a significant upgrade to the publicly available PPXF software. The key advantage of the new approach is that it provides accurate velocities regardless of σ. This is important e.g. for spectroscopic surveys targeting galaxies with σ ≪ σinst, for galaxy redshift determinations or for measuring line-of-sight velocities of individual stars. The proposed method could also be used to fix Gaussian convolution algorithms used in today's popular software packages.

  17. An Inexpensive, Accurate, and Precise Wet-Mount Method for Enumerating Aquatic Viruses

    PubMed Central

    Cunningham, Brady R.; Brum, Jennifer R.; Schwenck, Sarah M.; Sullivan, Matthew B.

    2015-01-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the “filter mount” method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5 × 107 viruses ml−1. The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17 × 106 to 1.37 × 108 viruses ml−1 when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1 × 106 viruses ml−1) encountered in field and laboratory samples. PMID:25710369

  18. An inexpensive, accurate, and precise wet-mount method for enumerating aquatic viruses.

    PubMed

    Cunningham, Brady R; Brum, Jennifer R; Schwenck, Sarah M; Sullivan, Matthew B; John, Seth G

    2015-05-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the "filter mount" method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5×10(7) viruses ml(-1). The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17×10(6) to 1.37×10(8) viruses ml(-1) when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1×10(6) viruses ml(-1)) encountered in field and laboratory samples.

  19. A time-accurate finite volume method valid at all flow velocities

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.

    1993-07-01

    A finite volume method to solve the Navier-Stokes equations at all flow velocities (e.g., incompressible, subsonic, transonic, supersonic and hypersonic flows) is presented. The numerical method is based on a finite volume method that incorporates a pressure-staggered mesh and an incremental pressure equation for the conservation of mass. Comparison of three generally accepted time-advancing schemes, i.e., Simplified Marker-and-Cell (SMAC), Pressure-Implicit-Splitting of Operators (PISO), and Iterative-Time-Advancing (ITA) scheme, are made by solving a lid-driven polar cavity flow and self-sustained oscillatory flows over circular and square cylinders. Calculated results show that the ITA is the most stable numerically and yields the most accurate results. The SMAC is the most efficient computationally and is as stable as the ITA. It is shown that the PISO is the most weakly convergent and it exhibits an undesirable strong dependence on the time-step size. The degenerated numerical results obtained using the PISO are attributed to its second corrector step that cause the numerical results to deviate further from a divergence free velocity field. The accurate numerical results obtained using the ITA is attributed to its capability to resolve the nonlinearity of the Navier-Stokes equations. The present numerical method that incorporates the ITA is used to solve an unsteady transitional flow over an oscillating airfoil and a chemically reacting flow of hydrogen in a vitiated supersonic airstream. The turbulence fields in these flow cases are described using multiple-time-scale turbulence equations. For the unsteady transitional over an oscillating airfoil, the fluid flow is described using ensemble-averaged Navier-Stokes equations defined on the Lagrangian-Eulerian coordinates. It is shown that the numerical method successfully predicts the large dynamic stall vortex (DSV) and the trailing edge vortex (TEV) that are periodically generated by the oscillating airfoil

  20. Indirect spectrophotometric determination of traces of bromide in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1963-01-01

    A rapid, accurate, and sensitive indirect spectrophotometric method for the determination of bromide in natural waters is based on the catalytic effect of bromide on the oxidation of iodine to iodate by potassium permanganate in sulfuric acid solution. The method is applicable to concentrations ranging from 1 to 100 ??g. of bromide per liter, but may be modified to extend the concentration range. Most ions commonly occurring in water do not interfere. The standard deviation is 2.9 at bromide concentrations of 100 ??g. per liter and less at lower concentrations. The determination of bromide in samples containing known added amounts gave values ranging from 99 to 105% of the concentration calculated to be present.

  1. The extended Koopmans' theorem for orbital-optimized methods: accurate computation of ionization potentials.

    PubMed

    Bozkaya, Uğur

    2013-10-21

    The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials (IPs) from any level of theory, in principle. However, for non-variational methods, such as Møller-Plesset perturbation and coupled-cluster theories, the EKT computations can only be performed as by-products of analytic gradients as the relaxed generalized Fock matrix (GFM) and one- and two-particle density matrices (OPDM and TPDM, respectively) are required [J. Cioslowski, P. Piskorz, and G. Liu, J. Chem. Phys. 107, 6804 (1997)]. However, for the orbital-optimized methods both the GFM and OPDM are readily available and symmetric, as opposed to the standard post Hartree-Fock (HF) methods. Further, the orbital optimized methods solve the N-representability problem, which may arise when the relaxed particle density matrices are employed for the standard methods, by disregarding the orbital Z-vector contributions for the OPDM. Moreover, for challenging chemical systems, where spin or spatial symmetry-breaking problems are observed, the abnormal orbital response contributions arising from the numerical instabilities in the HF molecular orbital Hessian can be avoided by the orbital-optimization. Hence, it appears that the orbital-optimized methods are the most natural choice for the study of the EKT. In this research, the EKT for the orbital-optimized methods, such as orbital-optimized second- and third-order Møller-Plesset perturbation [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)] and coupled-electron pair theories [OCEPA(0)] [U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104 (2013)], are presented. The presented methods are applied to IPs of the second- and third-row atoms, and closed- and open-shell molecules. Performances of the orbital-optimized methods are compared with those of the counterpart standard methods. Especially, results of the OCEPA(0) method (with the aug-cc-pVTZ basis set) for the lowest IPs of the considered atoms and closed

  2. Conservative high-order-accurate finite-difference methods for curvilinear grids

    NASA Technical Reports Server (NTRS)

    Rai, Man M.; Chakrvarthy, Sukumar

    1993-01-01

    Two fourth-order-accurate finite-difference methods for numerically solving hyperbolic systems of conservation equations on smooth curvilinear grids are presented. The first method uses the differential form of the conservation equations; the second method uses the integral form of the conservation equations. Modifications to these schemes, which are required near boundaries to maintain overall high-order accuracy, are discussed. An analysis that demonstrates the stability of the modified schemes is also provided. Modifications to one of the schemes to make it total variation diminishing (TVD) are also discussed. Results that demonstrate the high-order accuracy of both schemes are included in the paper. In particular, a Ringleb-flow computation demonstrates the high-order accuracy and the stability of the boundary and near-boundary procedures. A second computation of supersonic flow over a cylinder demonstrates the shock-capturing capability of the TVD methodology. An important contribution of this paper is the dear demonstration that higher order accuracy leads to increased computational efficiency.

  3. A Method for Accurate Reconstructions of the Upper Airway Using Magnetic Resonance Images

    PubMed Central

    Xiong, Huahui; Huang, Xiaoqing; Li, Yong; Li, Jianhong; Xian, Junfang; Huang, Yaqi

    2015-01-01

    Objective The purpose of this study is to provide an optimized method to reconstruct the structure of the upper airway (UA) based on magnetic resonance imaging (MRI) that can faithfully show the anatomical structure with a smooth surface without artificial modifications. Methods MRI was performed on the head and neck of a healthy young male participant in the axial, coronal and sagittal planes to acquire images of the UA. The level set method was used to segment the boundary of the UA. The boundaries in the three scanning planes were registered according to the positions of crossing points and anatomical characteristics using a Matlab program. Finally, the three-dimensional (3D) NURBS (Non-Uniform Rational B-Splines) surface of the UA was constructed using the registered boundaries in all three different planes. Results A smooth 3D structure of the UA was constructed, which captured the anatomical features from the three anatomical planes, particularly the location of the anterior wall of the nasopharynx. The volume and area of every cross section of the UA can be calculated from the constructed 3D model of UA. Conclusions A complete scheme of reconstruction of the UA was proposed, which can be used to measure and evaluate the 3D upper airway accurately. PMID:26066461

  4. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided.

  5. Keeping the edge: an accurate numerical method to solve the stream power law

    NASA Astrophysics Data System (ADS)

    Campforts, B.; Govers, G.

    2015-12-01

    Bedrock rivers set the base level of surrounding hill slopes and mediate the dynamic interplay between mountain building and denudation. The propensity of rivers to preserve pulses of increased tectonic uplift also allows to reconstruct long term uplift histories from longitudinal river profiles. An accurate reconstruction of river profile development at different timescales is therefore essential. Long term river development is typically modeled by means of the stream power law. Under specific conditions this equation can be solved analytically but numerical Finite Difference Methods (FDMs) are most frequently used. Nonetheless, FDMs suffer from numerical smearing, especially at knickpoint zones which are key to understand transient landscapes. Here, we solve the stream power law by means of a Finite Volume Method (FVM) which is Total Variation Diminishing (TVD). Total volume methods are designed to simulate sharp discontinuities making them very suitable to model river incision. In contrast to FDMs, the TVD_FVM is well capable of preserving knickpoints as illustrated for the fast propagating Niagara falls. Moreover, we show that the TVD_FVM performs much better when reconstructing uplift at timescales exceeding 100 Myr, using Eastern Australia as an example. Finally, uncertainty associated with parameter calibration is dramatically reduced when the TVD_FVM is applied. Therefore, the use of a TVD_FVM to understand long term landscape evolution is an important addition to the toolbox at the disposition of geomorphologists.

  6. A fast, accurate, and reliable reconstruction method of the lumbar spine vertebrae using positional MRI.

    PubMed

    Simons, Craig J; Cobb, Loren; Davidson, Bradley S

    2014-04-01

    In vivo measurement of lumbar spine configuration is useful for constructing quantitative biomechanical models. Positional magnetic resonance imaging (MRI) accommodates a larger range of movement in most joints than conventional MRI and does not require a supine position. However, this is achieved at the expense of image resolution and contrast. As a result, quantitative research using positional MRI has required long reconstruction times and is sensitive to incorrectly identifying the vertebral boundary due to low contrast between bone and surrounding tissue in the images. We present a semi-automated method used to obtain digitized reconstructions of lumbar vertebrae in any posture of interest. This method combines a high-resolution reference scan with a low-resolution postural scan to provide a detailed and accurate representation of the vertebrae in the posture of interest. Compared to a criterion standard, translational reconstruction error ranged from 0.7 to 1.6 mm and rotational reconstruction error ranged from 0.3 to 2.6°. Intraclass correlation coefficients indicated high interrater reliability for measurements within the imaging plane (ICC 0.97-0.99). Computational efficiency indicates that this method may be used to compile data sets large enough to account for population variance, and potentially expand the use of positional MRI as a quantitative biomechanics research tool.

  7. A comparative study of validated spectrophotometric and TLC- spectrodensitometric methods for the determination of sodium cromoglicate and fluorometholone in ophthalmic solution.

    PubMed

    Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Elgizawy, Samia M

    2013-10-01

    The determination of sodium cromoglicate (SCG) and fluorometholone (FLU) in ophthalmic solution was developed by simple, sensitive and precise methods. Three spectrophotometric methods were applied: absorptivity factor (a-Factor method), absorption factor (AFM) and mean centering of ratio spectra (MCR). The linearity ranges of SCG were found to be (2.5-35 μg/mL) for (a-Factor method) and (MCR); while for (AFM), it was found to be (7.5-50 μg/mL). The linearity ranges of FLU were found to be (4-16 μg/mL) for (a-Factor method) and (AFM); while for (MCR), it was found to be (2-16 μg/mL). The mean percentage recoveries/RSD for SCG were found to be 100.31/0.90, 100.23/0.57 and 100.43/1.21; while for FLU, they were found to be 100.11/0.56, 99.97/0.35 and 99.94/0.88 using (a-Factor method), (AFM) and (MCR), respectively. A TLC-spectrodensitometric method was developed by separation of SCG and FLU on silica gel 60 F254 using chloroform:methanol:toluene:triethylamine in the ratio of (5:2:4:1 v/v/v/v) as developing system, followed by spectrodensitometric measurement of the bands at 241 nm. The linearity ranges and the mean percentage recoveries/RSD were found to be (0.4-4.4 μg/band), 100.24/1.44 and (0.2-1.6 μg/band), 99.95/1.50 for SCG and FLU, respectively. A comparative study was conducted between the proposed methods to discuss the advantage of each method. The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for the determination of SCG and FLU in their laboratory prepared mixtures and commercial ophthalmic solution in the presence of benzalkonium chloride as a preservative. These methods could be an alternative to different HPLC techniques in quality control laboratories lacking the required facilities for those expensive techniques.

  8. An automatic method for fast and accurate liver segmentation in CT images using a shape detection level set method

    NASA Astrophysics Data System (ADS)

    Lee, Jeongjin; Kim, Namkug; Lee, Ho; Seo, Joon Beom; Won, Hyung Jin; Shin, Yong Moon; Shin, Yeong Gil

    2007-03-01

    Automatic liver segmentation is still a challenging task due to the ambiguity of liver boundary and the complex context of nearby organs. In this paper, we propose a faster and more accurate way of liver segmentation in CT images with an enhanced level set method. The speed image for level-set propagation is smoothly generated by increasing number of iterations in anisotropic diffusion filtering. This prevents the level-set propagation from stopping in front of local minima, which prevails in liver CT images due to irregular intensity distributions of the interior liver region. The curvature term of shape modeling level-set method captures well the shape variations of the liver along the slice. Finally, rolling ball algorithm is applied for including enhanced vessels near the liver boundary. Our approach are tested and compared to manual segmentation results of eight CT scans with 5mm slice distance using the average distance and volume error. The average distance error between corresponding liver boundaries is 1.58 mm and the average volume error is 2.2%. The average processing time for the segmentation of each slice is 5.2 seconds, which is much faster than the conventional ones. Accurate and fast result of our method will expedite the next stage of liver volume quantification for liver transplantations.

  9. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  10. Accurate, precise, and efficient theoretical methods to calculate anion-π interaction energies in model structures.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei

    2015-01-13

    A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta

  11. Extractive Spectrophotometric Methods for the Determination of Zolmitriptan in Bulk Drug and Pharmaceutical Formulation Using Bromocresol Green

    NASA Astrophysics Data System (ADS)

    Prashanth, K. N.; Swamy, N.; Basavaiah, K.

    2013-11-01

    Considering the basic property of zolmitriptan (ZMT) to generate ion-pairs with sulfonephthalein dyes two methods have been developed for its assay in bulk drug and dosage form. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug:dye) of ZMT with bromocresol green (BCG) at pH 4.20 ± 0.01 and extraction of the complex into chloroform followed by measurement of the yellow ion-pair complex at 435 nm. In the second method (method B), the drug-dye ion-pair complex was treated with ethanolic potassium hydroxide in ethanolic medium and the resulting base form of the dye was measured at 630 nm. Beer's law was obeyed in the concentration range of 0.8-18.0 and 0.08-1.4 μg/ml for method A and B, respectively, and the corresponding molar absorptivity values were 1.50ṡ104 and 1.52ṡ105 l/(molṡcm). The Sandell sensitivity values were 0.0191 and 0.0019 μg/cm2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the drug and dye (1:1) was determined by Job's continuous variation method and the stability constant of the complex was also calculated. The proposed method was successfully extended to dosage form (tablets).

  12. A Monte Carlo Method for Making the SDSS u-Band Magnitude More Accurate

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Du, Cuihua; Zuo, Wenbo; Jing, Yingjie; Wu, Zhenyu; Ma, Jun; Zhou, Xu

    2016-10-01

    We develop a new Monte Carlo-based method to convert the Sloan Digital Sky Survey (SDSS) u-band magnitude to the south Galactic Cap of the u-band Sky Survey (SCUSS) u-band magnitude. Due to the increased accuracy of SCUSS u-band measurements, the converted u-band magnitude becomes more accurate compared with the original SDSS u-band magnitude, in particular at the faint end. The average u-magnitude error (for both SDSS and SCUSS) of numerous main-sequence stars with 0.2\\lt g-r\\lt 0.8 increases as the g-band magnitude becomes fainter. When g = 19.5, the average magnitude error of the SDSS u is 0.11. When g = 20.5, the average SDSS u error rises to 0.22. However, at this magnitude, the average magnitude error of the SCUSS u is just half as much as that of the SDSS u. The SDSS u-band magnitudes of main-sequence stars with 0.2\\lt g-r\\lt 0.8 and 18.5\\lt g\\lt 20.5 are converted, therefore the maximum average error of the converted u-band magnitudes is 0.11. The potential application of this conversion is to derive a more accurate photometric metallicity calibration from SDSS observations, especially for the more distant stars. Thus, we can explore stellar metallicity distributions either in the Galactic halo or some stream stars.

  13. A Weight-Averaged Interpolation Method for Coupling Time-Accurate Rarefied and Continuum Flows

    NASA Astrophysics Data System (ADS)

    Diaz, Steven William

    A novel approach to coupling rarefied and continuum flow regimes as a single, hybrid model is introduced. The method borrows from techniques used in the simulation of spray flows to interpolate Lagrangian point-particles onto an Eulerian grid in a weight-averaged sense. A brief overview of traditional methods for modeling both rarefied and continuum domains is given, and a review of the literature regarding rarefied/continuum flow coupling is presented. Details of the theoretical development of the method of weighted interpolation are then described. The method evaluates macroscopic properties at the nodes of a CFD grid via the weighted interpolation of all simulated molecules in a set surrounding the node. The weight factor applied to each simulated molecule is the inverse of the linear distance between it and the given node. During development, the method was applied to several preliminary cases, including supersonic flow over an airfoil, subsonic flow over tandem airfoils, and supersonic flow over a backward facing step; all at low Knudsen numbers. The main thrust of the research centered on the time-accurate expansion of a rocket plume into a near-vacuum. The method proves flexible enough to be used with various flow solvers, demonstrated by the use of Fluent as the continuum solver for the preliminary cases and a NASA-developed Large Eddy Simulation research code, WRLES, for the full lunar model. The method is applicable to a wide range of Mach numbers and is completely grid independent, allowing the rarefied and continuum solvers to be optimized for their respective domains without consideration of the other. The work presented demonstrates the validity, and flexibility of the method of weighted interpolation as a novel concept in the field of hybrid flow coupling. The method marks a significant divergence from current practices in the coupling of rarefied and continuum flow domains and offers a kernel on which to base an ongoing field of research. It has the

  14. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  15. Development and Validation of a HPLC and an UV Spectrophotometric Methods for Determination of Dexibuprofen in Pharmaceutical Preparations.

    PubMed

    Muralidharan, Selvadurai; Meyyanathan, Subramania Nainar

    2011-01-01

    A high-performance liquid chromatographic (HPLC) and a ultraviolet (UV) methods were developed and validated for the quantitative determination of Dexibuprofen (DI) in pharmaceutical dosage form. HPLC was carried out by reversed phase technique on a RP-18 column with a mobile phase composed of acetonitrile and 0.5% triethylamine (pH 7.5 adjusted with orthophosphoric acid (30 : 70, v/v)). UV method was performed with the λ max at 222.0 nm. Both the methods showed good linearity, reproducibility and precision. No spectral or chromatographic interferences from the tablet excipients were found in UV and HPLC. The method was successfully applied to commercial DEXIFEN tablets. Validation parameters such as linearity, precision, accuracy, and specificity were determined. The proposed method could be applicable for routine analysis of DI and monitoring of the quality of marketed drugs.

  16. Adaptive and accurate color edge extraction method for one-shot shape acquisition

    NASA Astrophysics Data System (ADS)

    Yin, Wei; Cheng, Xiaosheng; Cui, Haihua; Li, Dawei; Zhou, Lei

    2016-09-01

    This paper presents an approach to extract accurate color edge information using encoded patterns in hue, saturation, and intensity (HSI) color space. This method is applied to one-shot shape acquisition. Theoretical analysis shows that the hue transition between primary and secondary colors in a color edge is based on light interference and diffraction. We set up a color transition model to illustrate the hue transition on an edge and then define the segmenting position of two stripes. By setting up an adaptive HSI color space, the colors of the stripes and subpixel edges are obtained precisely without a dark laboratory environment, in a low-cost processing algorithm. Since this method does not have any constraints for colors of neighboring stripes, the encoding is an easy procedure. The experimental results show that the edges of dense modulation patterns can be obtained under a complicated environment illumination, and the precision can ensure that the three-dimensional shape of the object is obtained reliably with only one image.

  17. Efficient and Accurate Multiple-Phenotype Regression Method for High Dimensional Data Considering Population Structure.

    PubMed

    Joo, Jong Wha J; Kang, Eun Yong; Org, Elin; Furlotte, Nick; Parks, Brian; Hormozdiari, Farhad; Lusis, Aldons J; Eskin, Eleazar

    2016-12-01

    A typical genome-wide association study tests correlation between a single phenotype and each genotype one at a time. However, single-phenotype analysis might miss unmeasured aspects of complex biological networks. Analyzing many phenotypes simultaneously may increase the power to capture these unmeasured aspects and detect more variants. Several multivariate approaches aim to detect variants related to more than one phenotype, but these current approaches do not consider the effects of population structure. As a result, these approaches may result in a significant amount of false positive identifications. Here, we introduce a new methodology, referred to as GAMMA for generalized analysis of molecular variance for mixed-model analysis, which is capable of simultaneously analyzing many phenotypes and correcting for population structure. In a simulated study using data implanted with true genetic effects, GAMMA accurately identifies these true effects without producing false positives induced by population structure. In simulations with this data, GAMMA is an improvement over other methods which either fail to detect true effects or produce many false positive identifications. We further apply our method to genetic studies of yeast and gut microbiome from mice and show that GAMMA identifies several variants that are likely to have true biological mechanisms.

  18. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  19. MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images.

    PubMed

    Chu, Chengwen; Bai, Junjie; Wu, Xiaodong; Zheng, Guoyan

    2015-12-01

    This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

  20. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.