Science.gov

Sample records for accurate spectrophotometric methods

  1. Development and validation of a novel, simple, and accurate spectrophotometric method for the determination of lead in human serum.

    PubMed

    Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza

    2016-01-01

    The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS. PMID:26631397

  2. Development and validation of a novel, simple, and accurate spectrophotometric method for the determination of lead in human serum.

    PubMed

    Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza

    2016-01-01

    The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS.

  3. Extractive spectrophotometric methods for determination of lercanidipine.

    PubMed

    Erk, Nevin

    2003-11-01

    Extractive spectrophotometric methods are described for the determination of lercanidipine (LER) either in pure form or in pharmaceutical formulations. The methods involve formation of coloured chloroform extractable ion-pair complexes with bromothymol blue (BTB) and bromocresol green (BCG) in acidic medium. The extracted complexes showed absorbance maxima at 417 and 416 nm for BTB and BCG, respectively. The optimization of the reaction conditions was investigated. Beer's law is obeyed in the concentration ranges 6.0-42.0 microg x ml(-1) or 7.1-43.8 microg x ml(-1) with BTB or BCG, respectively. The composition of the ion-pairs was found to be 1:1 by Job's method. The specific absorptivities, molar absorptivities, Sandell sensitivities, standard deviations and percent recoveries were evaluated. Also, LER was determined by measurement of its first derivative signals at 245 nm. Calibration graph was established for 4.2-58.0 microg x ml(-1) of LER. The methods have been applied to the determination of drug in commercial tablets. Results of analysis were validated. No interferences were observed from common pharmaceutical adjuvants.

  4. A simple UV spectrophotometric method for theophylline serum level determination.

    PubMed

    Plavsić, F

    1978-09-15

    A brief, simple and unexpensive UV spectrophotometric method for theophylline serum level determination is described. Charcoal extraction was performed for theophylline isolation from biological fluids. Coefficients of variation and recovery are similar to other parallel methods.

  5. Validation of different spectrophotometric methods for determination of vildagliptin and metformin in binary mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    New, simple, specific, accurate, precise and reproducible spectrophotometric methods have been developed and subsequently validated for determination of vildagliptin (VLG) and metformin (MET) in binary mixture. Zero order spectrophotometric method was the first method used for determination of MET in the range of 2-12 μg mL-1 by measuring the absorbance at 237.6 nm. The second method was derivative spectrophotometric technique; utilized for determination of MET at 247.4 nm, in the range of 1-12 μg mL-1. Derivative ratio spectrophotometric method was the third technique; used for determination of VLG in the range of 4-24 μg mL-1 at 265.8 nm. Fourth and fifth methods adopted for determination of VLG in the range of 4-24 μg mL-1; were ratio subtraction and mean centering spectrophotometric methods, respectively. All the results were statistically compared with the reported methods, using one-way analysis of variance (ANOVA). The developed methods were satisfactorily applied to analysis of the investigated drugs and proved to be specific and accurate for quality control of them in pharmaceutical dosage forms.

  6. Chromatography paper as a low-cost medium for accurate spectrophotometric assessment of blood hemoglobin concentration.

    PubMed

    Bond, Meaghan; Elguea, Carlos; Yan, Jasper S; Pawlowski, Michal; Williams, Jessica; Wahed, Amer; Oden, Maria; Tkaczyk, Tomasz S; Richards-Kortum, Rebecca

    2013-06-21

    Anemia affects a quarter of the world's population, and a lack of appropriate diagnostic tools often prevents treatment in low-resource settings. Though the HemoCue 201+ is an appropriate device for diagnosing anemia in low-resource settings, the high cost of disposables ($0.99 per test in Malawi) limits its availability. We investigated using spectrophotometric measurement of blood spotted on chromatography paper as a low-cost (<$0.01 per test) alternative to HemoCue cuvettes. For this evaluation, donor blood was diluted with plasma to simulate anemia, a micropipette spotted blood on paper, and a bench-top spectrophotometer validated the approach before the development of a low-cost reader. We optimized impregnating paper with chemicals to lyse red blood cells, paper type, drying time, wavelengths measured, and sensitivity to variations in volume of blood, and we validated our approach using patient samples. Lysing the blood cells with sodium deoxycholate dried in Whatman Chr4 chromatography paper gave repeatable results, and the absorbance difference between 528 nm and 656 nm was stable over time in measurements taken up to 10 min after sample preparation. The method was insensitive to the amount of blood spotted on the paper over the range of 5 μL to 25 μL. We created a low-cost, handheld reader to measure the transmission of paper cuvettes at these optimal wavelengths. Training and validating our method with patient samples on both the spectrometer and the handheld reader showed that both devices are accurate to within 2 g dL(-1) of the HemoCue device for 98% and 95% of samples, respectively.

  7. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml-1. The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml-1. The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml-1. All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  8. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments.

    PubMed

    Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml(-1). The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml(-1). The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml(-1). All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  9. Simultaneous determination of some cholesterol-lowering drugs in their binary mixture by novel spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Hegazy, Maha Abdel Monem

    2013-09-01

    Four simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of simvastatin (SM) and ezetimibe (EZ) namely; extended ratio subtraction (EXRSM), simultaneous ratio subtraction (SRSM), ratio difference (RDSM) and absorption factor (AFM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated and the specificity was assessed by analyzing synthetic mixtures containing the cited drugs. The four methods were applied for the determination of the cited drugs in tablets and the obtained results were statistically compared with each other and with those of a reported HPLC method. The comparison showed that there is no significant difference between the proposed methods and the reported method regarding both accuracy and precision.

  10. Two smart spectrophotometric methods for the simultaneous estimation of Simvastatin and Ezetimibe in combined dosage form.

    PubMed

    Magdy, Nancy; Ayad, Miriam F

    2015-02-25

    Two simple, accurate, precise, sensitive and economic spectrophotometric methods were developed for the simultaneous determination of Simvastatin and Ezetimibe in fixed dose combination products without prior separation. The first method depends on a new chemometrics-assisted ratio spectra derivative method using moving window polynomial least square fitting method (Savitzky-Golay filters). The second method is based on a simple modification for the ratio subtraction method. The suggested methods were validated according to USP guidelines and can be applied for routine quality control testing.

  11. Two smart spectrophotometric methods for the simultaneous estimation of Simvastatin and Ezetimibe in combined dosage form

    NASA Astrophysics Data System (ADS)

    Magdy, Nancy; Ayad, Miriam F.

    2015-02-01

    Two simple, accurate, precise, sensitive and economic spectrophotometric methods were developed for the simultaneous determination of Simvastatin and Ezetimibe in fixed dose combination products without prior separation. The first method depends on a new chemometrics-assisted ratio spectra derivative method using moving window polynomial least square fitting method (Savitzky-Golay filters). The second method is based on a simple modification for the ratio subtraction method. The suggested methods were validated according to USP guidelines and can be applied for routine quality control testing.

  12. A continuous spectrophotometric assay method for peptidylarginine deiminase type 4 activity.

    PubMed

    Liao, Ya-Fan; Hsieh, Hui-Chieh; Liu, Guang-Yaw; Hung, Hui-Chih

    2005-12-15

    A simple, continuous spectrophotometric assay for peptidylarginine deiminase (PAD) is described. Deimination of peptidylarginine results in the formation of peptidylcitrulline and ammonia. The ammonia released during peptidylarginine hydrolysis is coupled to the glutamate-dehydrogenase-catalyzed reductive amination of alpha-ketoglutarate to glutamate and reduced nicotinamide adenine dinucleotide (NADH) oxidation. The disappearance of absorbance at 340nm due to NADH oxidation is continuously measured. The specific activity obtained by this new protocol for highly purified human PAD is comparable to that obtained by a commonly used colorimetric procedure, which measures the ureido group of peptidylcitrulline by coupling with diacetyl monoxime. The present continuous spectrophotometric method is highly sensitive and accurate and is thus suitable for enzyme kinetic analysis of PAD. The Ca(2+) concentration for half-maximal activity of PAD obtained by this method is comparable to that previously obtained by the colorimetric procedure.

  13. Simple spectrophotometric method for estimation of disodium edetate in topical gel formulations

    PubMed Central

    Kamboj, Sunil; Sharma, Deepak; Nair, Anroop B.; Kamboj, Suman; Sharma, Rakesh Kumar; Ali, Javed; Pramod, K; Ansari, S. H.

    2011-01-01

    A simple, sensitive, cost-effective and reproducible UV-spectrophotometric method has been developed and validated for the estimation of disodium edetate in topical gel formulations. Solution of disodium edetate reacts with ferric chloride to form complex in 0.1 N HCl giving λmax at 270 nm. Beer's law was obeyed in the concentration range of 5–50 μg/mL (r2= 0.9997). The limit of detection and limit of quantitation were found to be 1.190 and 3.608 μg/mL, respectively. The results show that the procedure is accurate, precise, and reproducible (relative standard deviation < 1%), while being simple and less time consuming. The study concluded that the UV-spectrophotometric method could be used for the quantification of disodium edetate in pure form as well as in pharmaceutical formulations. PMID:23781446

  14. Enzymic method for the spectrophotometric determination of aspartame in beverages.

    PubMed

    Hamano, T; Mitsuhashi, Y; Aoki, N; Yamamoto, S; Tsuji, S; Ito, Y; Oji, Y

    1990-04-01

    A sensitive spectrophotometric method for the determination of aspartame in beverages is described. The method involves the enzymic conversion of aspartame into formaldehyde by the alpha-chymotrypsin-alcohol oxidase system, followed by the formation of a chromophore with 4-aminopent-3-en-2-one. The calibration graph was linear in the range 2.0-30.0 micrograms ml-1 of aspartame. Many common ingredients of beverages do not interfere with the proposed method. The method was applied to the determination of the aspartame content of various real samples, and the results obtained were compared with those given by high-performance liquid chromatography.

  15. Spectrophotometric method for determining gibberellic acid in fermentation broths.

    PubMed

    Berríos, Julio; Illanes, Andrés; Aroca, Germán

    2004-01-01

    A novel method for the quantitative determination of gibberellic acid in fermentation broths has been developed. It is based on the kinetic of the reaction of conversion of gibberellic acid to gibberellenic acid. The method is simple, reliable, faster than most of methods known, and free of the interferences which commonly affect spectrophotometric methods currently in use. Its threshold sensitivity is 0.1 g and its accuracy is greater than 97% for concentrations of gibberellic acid ranging from 0.1 to 1 g l(-1).

  16. Visual vs. Spectrophotometric Methods for Shade Selection.

    PubMed

    Glockner, Karl; Glockner, Karl; Haiderer, Bernd

    2015-09-01

    The differences in tooth colour are important factors in the esthetic dentistry. The aim of this study was to determine the tooth colour using visual methods under natural light and "Easy Shade" device. Five hundred patients of Dental Clinic Graz Austria were selected for this study. The results of this study showed that the shade matching using "Easy Shade" device were not better than shade matching with visual methods under natural light. No difference was found between visual and digital methods in the selection of a tooth shade.

  17. Development and validation of column high-performance liquid chromatographic and ultraviolet spectrophotometric methods for citalopram in tablets.

    PubMed

    Menegola, Júlia; Steppe, Martin; Schapoval, Elfrides E S

    2008-01-01

    Column high-performance liquid chromatographic (LC) and UV spectrophotometric methods for the quantitative determination of citalopram, a potent and selective serotonin reuptake inhibitor, in tablets were developed. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection, and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by the reversed-phase technique on an ACE C18 column with a mobile phase composed of 0.30% triethylamine solution-acetonitrile (55 + 45, v/v) adjusted to pH 6.6 with 10% ortho-phosphoric acid at a flow rate of 1.0 mL/min and 25 degrees C. The UV spectrophotometric method was performed at 239 nm. The linearity of the LC method was in the range of 10.00-70.00 microg/mL, and 2.50-17.50 microg/mL for the UV spectrophotometric method. The interday and intraday assay precision was < 1.5% (relative standard deviation) for the LC and UV spectrophotometric methods. The recoveries were in the range 100.70-101.35% for the LC method and 98.48-98.65% for the UV spectrophotometric method. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the 2 methods. The proposed methods are highly sensitive, precise, and accurate and can be used for the reliable quantitation of citalopram in tablets. PMID:18376585

  18. Spectrophotometric and spectrofluorimetric methods for analysis of tramadol, acebutolol and dothiepin in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Abdellatef, Hisham E.; El-Henawee, Magda M.; El-Sayed, Heba M.; Ayad, Magda M.

    2006-12-01

    Sensitive spectrophotometric and spectrofluorimetric methods are described for the determination of tramadol, acebutolol and dothiepin (dosulepin) hydrochlorides. The two methods are based on the condensation of the cited drugs with the mixed anhydrides of malonic and acetic acids at 60 °C for 25-40 min. The coloured condensation products are suitable for the spectrophotometric and spectrofluorimetric determination at 329-333 and 431-434 nm (excitation at 389 nm), respectively. For the spectrophotometric method, Beer's law was obeyed from 0.5 to 2.5 μg ml -1 for tramadol, dothiepin and 5-25 μg ml -1 for acebutolol. Using the spectrofluorimetric method linearity ranged from 0.25 to 1.25 μg ml -1 for tramadol, dothiepin and 1-5 μg ml -1 for acebutolol. Mean percentage recoveries for the spectrophotometric method were 99.68 ± 1.00, 99.95 ± 1.11 and 99.72 ± 1.01 for tramadol, acebutolol and dothiepin, respectively and for the spectrofluorimetric method, recoveries were 99.5 ± 0.844, 100.32 ± 0.969 and 99.82 ± 1.15 for the three drugs, respectively. The optimum experimental parameters for the reaction has been studied. The validity of the described procedures was assessed. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The proposed methods were successfully applied for the determination of the selected drugs in their pharmaceutical preparations with good recoveries. The procedures were accurate, simple and suitable for quality control application.

  19. Spectrophotometric method for determination of phosphine residues in cashew kernels.

    PubMed

    Rangaswamy, J R

    1988-01-01

    A spectrophotometric method reported for determination of phosphine (PH3) residues in wheat has been extended for determination of these residues in cashew kernels. Unlike the spectrum for wheat, the spectrum of PH3 residue-AgNO3 chromophore from cashew kernels does not show an absorption maximum at 400 nm; nevertheless, reading the absorbance at 400 nm afforded good recoveries of 90-98%. No interference occurred from crop materials, and crop controls showed low absorbance; the method can be applied for determinations as low as 0.01 ppm PH3 residue in cashew kernels.

  20. Evaluation of Perrhenate Spectrophotometric Methods in Bicarbonate and Nitrate Media.

    PubMed

    Lenell, Brian A; Arai, Yuji

    2016-04-01

    2-pyridyl thiourea and methyl-2-pyridyl ketoxime based perrhenate, Re(VII), UV-vis spectrophotometric methods were evaluated in nitrate and bicarbonate solutions ranging from 0.001 M to 0.5 M. Standard curves at [Re]=2.5-50 mg L(-1) for the Re(IV)-thiourea and the Re ketoxime complexes were constructed at 405 nm and 490 nm, respectively. Detection of limits for N-(2-pyridyl) thiourea and methyl-2-pyridyl ketoxime methods in ultrapure water are 3.06 mg/L and 4.03 mg/L, respectively. Influences of NaHCO3 and NaNO3 concentration on absorbance spectra, absorptivity, and linearity were documented. For both methods, samples in ultrapure water and NaHCO3 have an R(2) value>0.99, indicating strong linear relationships. Statistical analysis supports that NaHCO3 does not affect linearity between standards for either method. NaNO3 causes major interference with the ketoxime method above 0.001 M NaNO3. Data provides information for practical use of Re spectrophotometric methods in environmental media that is high in bicarbonate and nitrate. PMID:26838460

  1. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5 nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279 nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor 1DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291 nm, 380 nm and 274.5 nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269 nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  2. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods.

    PubMed

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form. PMID:27128521

  3. [Spectrophotometric determination of protein content in THP-1 monocytes/macrophages - description of the method].

    PubMed

    Wolska, Jolanta; Janda, Katarzyna; Gutowska, Izabela

    2015-01-01

    Proteins are the basic building block of tissue, and are part of enzymes and hormones regulating many important life processes. Changes in their concentration control the metabolic processes of the cell. Quantitative determination of the protein content is divided into indirect methods (e.g. Kjeldahl method) and direct methods (buret method, Lowry, immunoenzymatic, formol method, based on incorporation of dye in the range of ultraviolet spectrophotometry, and based on the phenomenon of selective absorption of radiation in the infrared range). One of the methods for the determination of protein content is the spectrophotometric method described by Bradford. The protein concentration assay procedure utilizes the phenomenon of formation of the dye (Coomassie Brillant Blue G-250)-protein and colour intensity is proportional to the protein content in the solution. The aim of this study was to verify the usefulness of this method for determining the protein content in THP-1 cells cultured with extracts of nettle fruit stalks (Urtica dioica L.). Aqueous and alcohol extracts at two concentrations were used. It has been shown that the spectrophotometric determination of protein content by the Bradford method is an effective and accurate method for determining the concentration of protein in THP-1 macrophages. The results indicate that this method can be recommended for the determination of the protein content in other cell cultures. PMID:27116861

  4. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; Salem, Hesham; Elbalkiny, Heba T.; Khattab, Fatma I.

    2015-04-01

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p = 0.05.

  5. [Spectrophotometric determination of protein content in THP-1 monocytes/macrophages - description of the method].

    PubMed

    Wolska, Jolanta; Janda, Katarzyna; Gutowska, Izabela

    2015-01-01

    Proteins are the basic building block of tissue, and are part of enzymes and hormones regulating many important life processes. Changes in their concentration control the metabolic processes of the cell. Quantitative determination of the protein content is divided into indirect methods (e.g. Kjeldahl method) and direct methods (buret method, Lowry, immunoenzymatic, formol method, based on incorporation of dye in the range of ultraviolet spectrophotometry, and based on the phenomenon of selective absorption of radiation in the infrared range). One of the methods for the determination of protein content is the spectrophotometric method described by Bradford. The protein concentration assay procedure utilizes the phenomenon of formation of the dye (Coomassie Brillant Blue G-250)-protein and colour intensity is proportional to the protein content in the solution. The aim of this study was to verify the usefulness of this method for determining the protein content in THP-1 cells cultured with extracts of nettle fruit stalks (Urtica dioica L.). Aqueous and alcohol extracts at two concentrations were used. It has been shown that the spectrophotometric determination of protein content by the Bradford method is an effective and accurate method for determining the concentration of protein in THP-1 macrophages. The results indicate that this method can be recommended for the determination of the protein content in other cell cultures.

  6. Development and Validation of Simultaneous Spectrophotometric Methods for Drotaverine Hydrochloride and Aceclofenac from Tablet Dosage Form

    PubMed Central

    Shah, S. A.; Shah, D. R.; Chauhan, R. S.; Jain, J. R.

    2011-01-01

    Two simple spectrophotometric methods have been developed for simultaneous estimation of drotaverine hydrochloride and aceclofenac from tablet dosage form. Method I is a simultaneous equation method (Vierodt's method), wavelengths selected are 306.5 and 276 nm. Method II is the absorbance ratio method (Q-Analysis), which employs 298.5 nm as λ1 and 276 nm as λ2 (λmax of AF) for formation of equations. Both the methods were found to be linear between the range of 8-32 μg/ml for drotaverine and 10-40 μg/ml for aceclofenac. The accuracy and precision were determined and found to comply with ICH guidelines. Both the methods showed good reproducibility and recovery with % RSD in the desired range. The methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of drotaverine and aceclofenac in their combined tablet dosage form. PMID:22457554

  7. Spectrophotometric methods for simultaneous determination of ternary mixture of amlodipine besylate, olmesartan medoxomil and hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Merey, Hanan A.; Ramadan, Nesrin K.; Diab, Sherine S.; Moustafa, Azza A.

    Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a ternary mixture containing amlodipine besylate (AM), olmesartan medoxomil (OL) and hydrochlorothiazide (HZ), where AM is determined at its λmax 364.6 nm (0D), while (OL) and (HZ) are determined by different methods. Method (A) depends on determining OL and HZ by measuring the second derivative of the ratio spectra (2DD) at 254.4 and 338.6 nm, respectively. Method (B) is first derivative of the double divisor ratio spectra (D-1DD) at 260.4 and 273.0 nm for OL and HZ, respectively. Method (C) based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method then measuring OL and HZ at their isoabsorptive point at 260.0 nm, while HZ is measured using the amplitude of first derivative at 335.2 nm. Method (D) is mean centering of the ratio spectra (MCR) at 252.0 nm and 220.0 nm for OL and HZ, respectively. The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs and their combined dosage form. The obtained results are statistically compared with those obtained by the official or reported methods, showing no significant difference with respect to accuracy and precision at p = 0.05.

  8. Simultaneous determination of some anti-hypertensive drugs in their binary mixture by novel spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Fayez, Yasmin Mohammed

    2014-11-01

    Three simple, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of Irbesartan (IRB) and Hydrochlorothiazide (HCT) without prior separation namely; ratio subtraction coupled with constant multiplication (RS-CM), ratio difference (RD) and constant center (CC). The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated and the specificity was assessed by analyzing synthetic mixtures containing the cited drugs. The three methods were applied for the determination of the cited drugs in tablets and the obtained results were statistically compared with each other and with those of official methods. The comparison showed that there is no significant difference between the proposed methods and the official methods regarding both accuracy and precision.

  9. Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of Amlodipine and Atorvastatin.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeiny, Badr A

    2011-12-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for the simultaneous determination of Amlodipine besylate (AM) and Atorvastatin calcium (AT) in tablet dosage forms. The first method is first derivative of the ratio spectra ((1)DD), the second is ratio subtraction and the third is the method of mean centering of ratio spectra. The calibration curve is linear over the concentration range of 3-40 and 8-32 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Standard deviation is <1.5 in the assay of raw materials and tablets. Methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit.

  10. Three different spectrophotometric methods manipulating ratio spectra for determination of binary mixture of Amlodipine and Atorvastatin

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeiny, Badr A.

    2011-12-01

    Three simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed for the simultaneous determination of Amlodipine besylate (AM) and Atorvastatin calcium (AT) in tablet dosage forms. The first method is first derivative of the ratio spectra ( 1DD), the second is ratio subtraction and the third is the method of mean centering of ratio spectra. The calibration curve is linear over the concentration range of 3-40 and 8-32 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. Standard deviation is <1.5 in the assay of raw materials and tablets. Methods are validated as per ICH guidelines and accuracy, precision, repeatability and robustness are found to be within the acceptable limit.

  11. Spectrophotometric estimation of tamsulosin hydrochloride by acid-dye method

    PubMed Central

    Shrivastava, Alankar; Saxena, Prachi; Gupta, Vipin B.

    2011-01-01

    A new spectrophotometric method for the estimation of tamsulosin hydrochloride in pharmaceutical dosage forms has been developed and validated. The method is based on reaction between drug and bromophenol blue and complex was measured at 421 nm. The slope, intercept and correlation coefficient was found to be 0.054, -0.020 and 0.999, respectively. Method was validated in terms of specificity, linearity, range, precision and accuracy. The developed method can be used to determine drug in both tablet and capsule formulations. Reaction was optimized using three parameters i.e., concentration of the dye, pH of the buffer, volume of the buffer and shaking time. Maximum stability of the chromophore was achieved by using pH 2 and 2 ml volume of buffer. Shaking time kept was 2 min and concentration of the dye used was 2 ml of 0.05% w/v solution. Method was validated in terms of linearity, precision, range, accuracy, LOD and LOQ and stochiometry of the method was also established using Mole ratio and Job's method of continuous variation. The dye benzonoid form (blue color) of dye ionized into quinonoid form (purple color) in presence of buffer and reacts with protonated form of drug in 1:1 ratio and forms an ion-pair complex (yellow color). PMID:23781431

  12. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  13. Investigation of combustion in a gasoline engine using spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Hunicz, Jacek; Piernikarski, Dariusz

    2001-08-01

    Spectrophotometric methods provide many new possibilities of investigation of combustion process in the automotive engine with spark ignition. Emission spectrum of the flames from the combustion chamber provides valuable information, which is difficult or even not accessible with the aid of other measurement methods. Spectral analysis allows to evaluate concentration of active compounds present in flames, which do not constitute final products of combustion. Concentration of radicals depends on some combustion parameters such as air-fuel ratio. The paper describes an engine test stand equipped with fiber-optic measurement system. The measurement system consists of an optical sensor mounted in the engine head, fiber-optic bundle for signal transmission, grating monochromator and photodetector. Voltage signal from the photodetector is recorded by the PC- based data acquisition system. The main aim of research was to verify usability of the designed fiber-optic measurement system in combustion diagnosis and to develop a method of evaluation of the air-fuel ratio on the base of simplified spectral analysis of the emission during combustion process in an automotive gasoline engine.

  14. Determination of berkelium by the method of spectrophotometric titration

    SciTech Connect

    Frolova, L.M.; Vityutnev, V.M.; Vasil'ev, V.M.

    1987-01-01

    The method that the authors propose consists of the following: berkelium is oxidized electrochemically, spectrophotometric titration of berkelium(IV) by a solution of the reducing agent is performed, and the amount of berkelium(IV) is determined according to the volume of the titrant, and considering the degree of oxidation of berkelium(III) to berkelium(IV), the total berkelium content in the sample is also determined. In this case the necessity for preliminary determination of the molar extinction coefficient of berkelium(IV) under the experimental conditions falls away. Moreover, the radiometric method of determining the berkelium content is not used. Successful titration requires selection of a reagent which, on the one hand, would rapidly reduce berkelium(VI), but on the other hand, neither itself nor the reaction products would interfere with the measurement of the optical density of berkelium(IV). As is well known, berkelium(IV) is quantitatively and rapidly reduced by hydrogen peroxide (10, 11), hydroxylamine (11), and nitrous acid (9). After preliminary experiments, they selected hydrogen peroxide and sodium nitrite as the titrants.

  15. Validation of spectrophotometric method for lactulose assay in syrup preparation

    NASA Astrophysics Data System (ADS)

    Mahardhika, Andhika Bintang; Novelynda, Yoshella; Damayanti, Sophi

    2015-09-01

    Lactulose is a synthetic disaccharide widely used in food and pharmaceutical fields. In the pharmaceutical field, lactulose is used as osmotic laxative in a syrup dosage form. This research was aimed to validate the spectrophotometric method to determine the levels of lactulose in syrup preparation and the commercial sample. Lactulose is hydrolyzed by hydrochloric acid to form fructose and galactose. The fructose was reacted with resorcinol reagent, forming compounds that give absorption peak at 485 nm. Analytical methods was validated, hereafter lactulose content in syrup preparation were determined. The calibration curve was linear in the range of 30-100 μg/mL with a correlation coefficient (r) of 0.9996, coefficient of variance (Vxo) of 1.1 %, limit of detection of 2.32 μg/mL, and limit of quantitation of 7.04 μg/mL. The result of accuracy test for the lactulose assay in the syrup preparation showed recoveries of 96.6 to 100.8 %. Repeatability test of lactulose assay in standard solution of lactulose and sample preparation syrup showed the coefficient of variation (CV) of 0.75 % and 0.7 %. Intermediate precision (interday) test resulted in coefficient of variation 1.06 % on the first day, the second day by 0.99 %, and 0.95 % for the third day. This research gave a valid analysis method and levels of lactulose in syrup preparations of samples A, B, C were 101.6, 100.5, and 100.6 %, respectively.

  16. Development and validation of spectrophotometric methods for estimating amisulpride in pharmaceutical preparations.

    PubMed

    Sharma, Sangita; Neog, Madhurjya; Prajapati, Vipul; Patel, Hiren; Dabhi, Dipti

    2010-01-01

    Five simple, sensitive, accurate and rapid visible spectrophotometric methods (A, B, C, D and E) have been developed for estimating Amisulpride in pharmaceutical preparations. These are based on the diazotization of Amisulpride with sodium nitrite and hydrochloric acid, followed by coupling with N-(1-naphthyl)ethylenediamine dihydrochloride (Method A), diphenylamine (Method B), beta-naphthol in an alkaline medium (Method C), resorcinol in an alkaline medium (Method D) and chromotropic acid in an alkaline medium (Method E) to form a colored chromogen. The absorption maxima, lambda(max), are at 523 nm for Method A, 382 and 490 nm for Method B, 527 nm for Method C, 521 nm for Method D and 486 nm for Method E. Beer's law was obeyed in the concentration range of 2.5-12.5 microg mL(-1) in Method A, 5-25 and 10-50 microg mL(-1) in Method B, 4-20 microg mL(-1) in Method C, 2.5-12.5 microg mL(-1) in Method D and 5-15 microg mL(-1) in Method E. The results obtained for the proposed methods are in good agreement with labeled amounts, when marketed pharmaceutical preparations were analyzed.

  17. Comparative study of spectrophotometric methods manipulating ratio spectra: an application on pharmaceutical binary mixture of cinnarizine and dimenhydrinate.

    PubMed

    Lamie, Nesrine T

    2015-04-15

    Four simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of cinnarizine (CIN) and dimenhydrinate (DIM) in a binary mixture with overlapping spectra, without preliminary separation. The first method is dual wavelength spectrophotometry (DW), the second is a ratio difference spectrophotometric one (RD) which measures the difference in amplitudes between 250 and 270 nm of ratio spectrum, the third one is novel constant center spectrophotometric method (CC) and the fourth method is mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 4-20 and 10-45 μg/ml for CIN and DIM, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision. PMID:25677532

  18. Comparative study of spectrophotometric methods manipulating ratio spectra: An application on pharmaceutical binary mixture of cinnarizine and dimenhydrinate

    NASA Astrophysics Data System (ADS)

    Lamie, Nesrine T.

    2015-04-01

    Four simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of cinnarizine (CIN) and dimenhydrinate (DIM) in a binary mixture with overlapping spectra, without preliminary separation. The first method is dual wavelength spectrophotometry (DW), the second is a ratio difference spectrophotometric one (RD) which measures the difference in amplitudes between 250 and 270 nm of ratio spectrum, the third one is novel constant center spectrophotometric method (CC) and the fourth method is mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 4-20 and 10-45 μg/ml for CIN and DIM, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and they are applied to commercial pharmaceutical preparation of the subjected drugs. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.

  19. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid.

    PubMed

    El-Yazbi, Fawzi A; Hammud, Hassan H; Assi, Sulaf A

    2007-10-01

    A derivative spectrophotometric method was developed for the assay of a ternary mixture of aspirin (ASP), paracetamol (PAR) and salicylic acid (SAL). The method is based on the use of the first and second derivatives of the ratio spectra and measurement at zero-crossing wavelengths. The ratio spectra were obtained by dividing the absorption spectrum of the mixture by that of one of the components. The concentration of the other components are then determined from their respective calibration curves treated similarly. The described method was applied for the determination of these combinations in synthetic mixtures and dosage forms. The results obtained were accurate and precise.

  20. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid

    NASA Astrophysics Data System (ADS)

    El-Yazbi, Fawzi A.; Hammud, Hassan H.; Assi, Sulaf A.

    2007-10-01

    A derivative spectrophotometric method was developed for the assay of a ternary mixture of aspirin (ASP), paracetamol (PAR) and salicylic acid (SAL). The method is based on the use of the first and second derivatives of the ratio spectra and measurement at zero-crossing wavelengths. The ratio spectra were obtained by dividing the absorption spectrum of the mixture by that of one of the components. The concentration of the other components are then determined from their respective calibration curves treated similarly. The described method was applied for the determination of these combinations in synthetic mixtures and dosage forms. The results obtained were accurate and precise.

  1. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: models in glyphosate-resistant and -susceptible crops.

    PubMed

    Zelaya, Ian A; Anderson, Jennifer A H; Owen, Micheal D K; Landes, Reid D

    2011-03-23

    Endogenous shikimic acid determinations are routinely used to assess the efficacy of glyphosate in plants. Numerous analytical methods exist in the public domain for the detection of shikimic acid, yet the most commonly cited comprise spectrophotometric and high-pressure liquid chromatography (HPLC) methods. This paper compares an HPLC and two spectrophotometric methods (Spec 1 and Spec 2) and assesses the effectiveness in the detection of shikimic acid in the tissues of glyphosate-treated plants. Furthermore, the study evaluates the versatility of two acid-based shikimic acid extraction methods and assesses the longevity of plant extract samples under different storage conditions. Finally, Spec 1 and Spec 2 are further characterized with respect to (1) the capacity to discern between shikimic acid and chemically related alicyclic hydroxy acids, (2) the stability of the chromophore (t1/2), (3) the detection limits, and (4) the cost and simplicity of undertaking the analytical procedure. Overall, spectrophotometric methods were more cost-effective and simpler to execute yet provided a narrower detection limit compared to HPLC. All three methods were specific to shikimic acid and detected the compound in the tissues of glyphosate-susceptible crops, increasing exponentially in concentration within 24 h of glyphosate application and plateauing at approximately 72 h. Spec 1 estimated more shikimic acid in identical plant extract samples compared to Spec 2 and, likewise, HPLC detection was more effective than spectrophotometric determinations. Given the unprecedented global adoption of glyphosate-resistant crops and concomitant use of glyphosate, an effective and accurate assessment of glyphosate efficacy is important. Endogenous shikimic acid determinations are instrumental in corroborating the efficacy of glyphosate and therefore have numerous applications in herbicide research and related areas of science as well as resolving many commercial issues as a consequence of

  2. Spectrophotometric Methods for the Determination of Sitagliptin and Vildagliptin in Bulk and Dosage Forms

    PubMed Central

    El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.

    2011-01-01

    Simple, accurate and precise spectrophotometric methods have been developed for the determination of sitagliptin and vildagliptin in bulk and dosage forms. The proposed methods are based on the charge transfer complexes of sitagliptin phosphate and vildagliptin with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-1,4-benzoquinone (p-chloranil). All the variables were studied to optimize the reactions conditions. For sitagliptin, Beer’s law was obeyed in the concentration ranges of 50-300 μg/ml, 20-120 μg/ml and 100-900 μg/ml with DDQ, TCNQ and p-chloranil, respectively. For vildagliptin, Beer’s law was obeyed in the concentration ranges of 50-300 μg/ml, 10-85 μg/ml and 50-350 μg/ml with DDQ, TCNQ and p-chloranil, respectively. The developed methods were validated and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms. PMID:23675221

  3. Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets

    NASA Astrophysics Data System (ADS)

    Ashour, Safwan; Bayram, Roula

    2015-04-01

    New, accurate, sensitive and reliable kinetic spectrophotometric method for the assay of moxifloxacin hydrochloride (MOXF) in pure form and pharmaceutical formulations has been developed. The method involves the oxidative coupling reaction of MOXF with 3-methyl-2-benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) in the presence of Ce(IV) in an acidic medium to form colored product with lambda max at 623 and 660 nm. The reaction is followed spectrophotometrically by measuring the increase in absorbance at 623 nm as a function of time. The initial rate and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1.89-40.0 μg mL-1 for initial rate and fixed time methods. The limit of detection for initial rate and fixed time methods is 0.644 and 0.043 μg mL-1, respectively. Molar absorptivity for the method was found to be 0.89 × 104 L mol-1 cm-1. Statistical treatment of the experimental results indicates that the methods are precise and accurate. The proposed method has been applied successfully for the estimation of moxifloxacin hydrochloride in tablet dosage form with no interference from the excipients. The results are compared with the official method.

  4. Simultaneous determination of Cinnarizine and Domperidone by area under curve and dual wavelength spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Maha M.

    2013-09-01

    Accurate, selective and sensitive spectrophotometric methods have been developed and validated for simultaneous determination of Cinnarizine and Domperidone, a binary mixture with overlapping spectra, without preliminary separation. These methods include area under the curve (AUC) and dual wavelength spectrophotometry. For the AUC method, the area under curve of mixture solutions in the wavelength ranges 241-258 nm and 280-292 nm were selected for determination of Cinnarizine and Domperidone and by applying Cramer's rule, concentration of each drug was obtained. In dual wavelength method, two wavelengths were selected for each drug in a way so that the difference in absorbance is zero for another drug. Domperidone shows equal absorbance at 240.2 nm and 273.2 nm, where the differences in absorbance were measured for the determination of Cinnarizine. Similarly, differences in absorbance at 230.8 nm and 259.2 nm were measured for determination of Domperidone. The proposed methods were applied for determination of Cinnarizine and Domperidone over the concentration ranges of 2-20 and 2-22 μg mL-1, respectively. The suggested methods were validated as per USP guidelines and the results revealed that they are reliable, reproducible and precise for routine use with short analysis time. The results obtained by the proposed methods were statistically compared to the reported method, and there was no significant difference between them regarding both accuracy and precision.

  5. Simultaneous determination of Cinnarizine and Domperidone by area under curve and dual wavelength spectrophotometric methods.

    PubMed

    Abdelrahman, Maha M

    2013-09-01

    Accurate, selective and sensitive spectrophotometric methods have been developed and validated for simultaneous determination of Cinnarizine and Domperidone, a binary mixture with overlapping spectra, without preliminary separation. These methods include area under the curve (AUC) and dual wavelength spectrophotometry. For the AUC method, the area under curve of mixture solutions in the wavelength ranges 241-258 nm and 280-292 nm were selected for determination of Cinnarizine and Domperidone and by applying Cramer's rule, concentration of each drug was obtained. In dual wavelength method, two wavelengths were selected for each drug in a way so that the difference in absorbance is zero for another drug. Domperidone shows equal absorbance at 240.2 nm and 273.2 nm, where the differences in absorbance were measured for the determination of Cinnarizine. Similarly, differences in absorbance at 230.8 nm and 259.2 nm were measured for determination of Domperidone. The proposed methods were applied for determination of Cinnarizine and Domperidone over the concentration ranges of 2-20 and 2-22 μg mL(-1), respectively. The suggested methods were validated as per USP guidelines and the results revealed that they are reliable, reproducible and precise for routine use with short analysis time. The results obtained by the proposed methods were statistically compared to the reported method, and there was no significant difference between them regarding both accuracy and precision. PMID:23735208

  6. Validated spectrophotometric methods for simultaneous determination of troxerutin and carbazochrome in dosage form.

    PubMed

    Khattab, Fatma I; Ramadan, Nesrin K; Hegazy, Maha A; Al-Ghobashy, Medhat A; Ghoniem, Nermine S

    2015-03-15

    Four simple, accurate, sensitive and precise spectrophotometric methods were developed and validated for simultaneous determination of Troxerutin (TXN) and Carbazochrome (CZM) in their bulk powders, laboratory prepared mixtures and pharmaceutical dosage forms. Method A is first derivative spectrophotometry (D(1)) where TXN and CZM were determined at 294 and 483.5 nm, respectively. Method B is first derivative of ratio spectra (DD(1)) where the peak amplitude at 248 for TXN and 439 nm for CZM were used for their determination. Method C is ratio subtraction (RS); in which TXN was determined at its λmax (352 nm) in the presence of CZM which was determined by D(1) at 483.5 nm. While, method D is mean centering of the ratio spectra (MCR) in which the mean centered values at 300 nm and 340.0 nm were used for the two drugs in a respective order. The two compounds were simultaneously determined in the concentration ranges of 5.00-50.00 μg mL(-1) and 0.5-10.0 μg mL(-1) for TXN and CZM, respectively. The methods were validated according to the ICH guidelines and the results were statistically compared to the manufacturer's method.

  7. A new spectrophotometric method for the determination of tianeptine in tablets using ion-pair reagents.

    PubMed

    Ulu, Sevgi Tatar; Aydogmus, Zeynep

    2008-12-01

    A new rapid and sensitive procedure assay is proposed for the spectrophotometric determination of tianeptine. The developed method involves formation of colored chloroform extractable ion-pair complexes of tianeptine with bromophenol blue (BPB), bromocresol green (BCG), bromothymol blue (BTB) and methyl orange (MO) in acidic medium. Beer's law is obeyed in the concentration ranges 3.0-12.0, 4.0-16.0, 4.0-14.0 and 2.0-10.0 microg ml(-1) with BPB, BCG, BTB and MO, respectively. The detection limit of tianeptine was found to be 1.8 microg ml(-1) for BPB, 2.0 for BCG, 2.0 microg ml(-1) for BTB and 1.0 microg ml(-1) for MO. Validation of the method was performed in terms of linearity, limit of detection (LOD), quantification (LOQ), accuracy and precision. Common excipients used as additives in pharmaceutical preparations do not interfere in the proposed method. The proposed method has been applied to determination of the examined drugs in pharmaceutical formulations and the results demonstrated that the method is equally accurate, precise, and reproducible as the official method. The t-test showed no significant difference at 95% confidence level.

  8. Validated UV-spectrophotometric method for the evaluation of the efficacy of makeup remover.

    PubMed

    Charoennit, P; Lourith, N

    2012-04-01

    A UV-spectrophotometric method for the analysis of makeup remover was developed and validated according to ICH guidelines. Three makeup removers for which the main ingredients consisted of vegetable oil (A), mineral oil and silicone (B) and mineral oil and water (C) were sampled in this study. Ethanol was the optimal solvent because it did not interfere with the maximum absorbance of the liquid foundation at 250 nm. The linearity was determined over a range of makeup concentrations from 0.540 to 1.412 mg mL⁻¹ (R² = 0.9977). The accuracy of this method was determined by analysing low, intermediate and high concentrations of the liquid foundation and gave 78.59-91.57% recoveries with a relative standard deviation of <2% (0.56-1.45%). This result demonstrates the validity and reliability of this method. The reproducibilities were 97.32 ± 1.79, 88.34 ± 2.69 and 95.63 ± 2.94 for preparations A, B and C respectively, which are within the acceptable limits set forth by the ASEAN analytical validation guidelines, which ensure the precision of the method under the same operating conditions over a short time interval and the inter-assay precision within the laboratory. The proposed method is therefore a simple, rapid, accurate, precise and inexpensive technique for the routine analysis of makeup remover efficacy.

  9. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method.

    PubMed

    Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui

    2014-05-15

    Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately.

  10. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  11. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A.

    PubMed

    Zhuang, Yafeng; Zhou, Meng; Gu, Jia; Li, Xiangmei

    2014-03-25

    A new spectrophotometric method for the determination of trace amounts of bisphenol A based on a diazotization-coupling reaction was developed. In acidic solution, clenbuterol was first diazotized with sodium nitrite, then coupled with bisphenol A to from an azo-compound [I] in NH3-NH4Cl buffer, which shows a maximum absorption at 410 nm. The effects of the amount of sodium nitrite, diazo reaction time, the amount of clenbuterol, coupling reaction time and coupling reaction temperature have been examined. Under the optional conditions, the determination of the linear range of bisphenol A is 0.24-8.4 μg/mL, correlation coefficient is 0.9905 and detection limit of this method is 0.15 μg/mL. The spectrophotometric method is simple, rapid, high sensitivity with better accuracy. High performance liquid chromatography (HPLC) technique combined with this new spectrophotometric method has been also developed for the measurement of bisphenol A. The analysis was achieved on a C18 column using water and methanol as a mobile phase and the detection was done spectrophotometrically at 410 nm. These reported methods were applied to the determination of bisphenol A in hot water in contact with commercially available table-water bottle samples.

  12. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A

    NASA Astrophysics Data System (ADS)

    Zhuang, Yafeng; Zhou, Meng; Gu, Jia; Li, Xiangmei

    2014-03-01

    A new spectrophotometric method for the determination of trace amounts of bisphenol A based on a diazotization-coupling reaction was developed. In acidic solution, clenbuterol was first diazotized with sodium nitrite, then coupled with bisphenol A to from an azo-compound [I] in NH3-NH4Cl buffer, which shows a maximum absorption at 410 nm. The effects of the amount of sodium nitrite, diazo reaction time, the amount of clenbuterol, coupling reaction time and coupling reaction temperature have been examined. Under the optional conditions, the determination of the linear range of bisphenol A is 0.24-8.4 μg/mL, correlation coefficient is 0.9905 and detection limit of this method is 0.15 μg/mL. The spectrophotometric method is simple, rapid, high sensitivity with better accuracy. High performance liquid chromatography (HPLC) technique combined with this new spectrophotometric method has been also developed for the measurement of bisphenol A. The analysis was achieved on a C18 column using water and methanol as a mobile phase and the detection was done spectrophotometrically at 410 nm. These reported methods were applied to the determination of bisphenol A in hot water in contact with commercially available table-water bottle samples.

  13. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  14. Spectrophotometric methods for simultaneous determination of betamethasone valerate and fusidic acid in their binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Salem, Hesham; Abdelkawy, Mohammad; Samir, Ahmed

    2015-04-01

    Five spectrophotometric methods were successfully developed and validated for the determination of betamethasone valerate and fusidic acid in their binary mixture. Those methods are isoabsorptive point method combined with the first derivative (ISO Point - D1) and the recently developed and well established methods namely ratio difference (RD) and constant center coupled with spectrum subtraction (CC) methods, in addition to derivative ratio (1DD) and mean centering of ratio spectra (MCR). New enrichment technique called spectrum addition technique was used instead of traditional spiking technique. The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of official methods. The statistical comparison showed that there is no significant difference between the proposed methods and the official ones regarding both accuracy and precision.

  15. Highly sensitive and selective spectrophotometric and spectrofluorimetric methods for the determination of ropinirole hydrochloride in tablets.

    PubMed

    Aydoğmuş, Zeynep

    2008-06-01

    Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 microg ml(-1). The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as pi-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 microg ml(-1). The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 microg ml(-1). The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity (epsilon), limit of detection (LOD, microg ml(-1)) and limit of quantitation (LOQ, microg ml(-1)), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically. PMID:17719838

  16. Highly sensitive and selective spectrophotometric and spectrofluorimetric methods for the determination of ropinirole hydrochloride in tablets

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Zeynep

    2008-06-01

    Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 μg ml -1. The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as π-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 μg ml -1. The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 μg ml -1. The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity ( ɛ), limit of detection (LOD, μg ml -1) and limit of quantitation (LOQ, μg ml -1), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically.

  17. Spectrophotometric measurement of carboxyhaemoglobin: An evaluation of the method of Commins and Lawther

    PubMed Central

    Lily, R. E. C.; Cole, P. V.; Hawkins, L. H.

    1972-01-01

    Lily, R. E. C., Cole, P. V., and Hawkins, L. H. (1972).Brit. J. industr. Med.,29, 454-457. Spectrophotometric measurement of carboxyhaemoglobin. An evaluation of the method of Commins and Lawther. The spectrophotometric method of Commins and Lawther for the measurement of carboxyhaemoglobin (COHb) concentration was evaluated for both accuracy and sensitivity. The method was calibrated by equilibrating diluted blood samples with known concentrations of carbon monoxide (CO) in air and measuring the resultant COHb saturations. Over the range 0-40% COHb saturation the mean error was 0·67% COHb (SD 0·65). It is considered that the accuracy of the method is more than sufficient for measurement of both the high COHb levels found in clinical situations and the lower COHb saturation resulting from exposure to urban air and cigarette smoking. PMID:4636665

  18. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  19. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  20. [Determination of iodide ions content in the edible salts and medical preparations by spectrophotometric and voltamperometric methods].

    PubMed

    Rzeszutko, W; Stolarczyk, M; Apola, A

    1999-01-01

    In this paper the spectrophotometric and voltamperometric methods for the determination of the iodide ions content are presented. The conformity of the edible table salts iodisation to the Polish Standards and to the contests declared by the producer was verified.

  1. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol fermenter.

    PubMed

    Maiti, Sampa; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Bihan, Yann Le; Drogui, Patrick; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo

    2015-08-15

    A new, simple, rapid and selective spectrophotometric method has been developed for detection and estimation of butanol in fermentation broth. The red colored compound, produced during reduction of diquat-dibromide-monohydrate with 2-mercaptoethanol in aqueous solution at high pH (>13), becomes purple on phase transfer to butanol and gives distinct absorption at λ520nm. Estimation of butanol in the fermentation broth has been performed by salting out extraction (SOE) using saturated K3PO4 solution at high pH (>13) followed by absorbance measurement using diquat reagent. Compatibility and optimization of diquat reagent concentration for detection and estimation of butanol concentration in the fermentation broth range was verified by central composite design. A standard curve was constructed to estimate butanol in acetone-ethanol-butanol (ABE) mixture under optimized conditions. The spectrophotometric results for butanol estimation, was found to have 87.5% concordance with the data from gas chromatographic analysis.

  2. Application of rapid cloud point extraction method for trace cobalt analysis coupled with spectrophotometric determination.

    PubMed

    Wen, Xiaodong; He, Lei; Shi, Chunsheng; Deng, Qingwen; Wang, Jiwei; Zhao, Xia

    2013-11-01

    In this work, the analytical performance of conventional spectrophotometer was improved through the coupling of effective preconcentration method with spectrophotometric determination. Rapidly synergistic cloud point extraction (RS-CPE) was used to pre-concentrate ultra trace cobalt and firstly coupled with spectrophotometric determination. The developed coupling was simple, rapid and efficient. The factors influencing RS-CPE and spectrophotometer were optimized. Under the optimal conditions, the limit of detection (LOD) was 0.6μgL(-1), with sensitivity enhancement factor of 23. The relative standard deviation (RSD) for seven replicate measurements of 50μgL(-1) of cobalt was 4.3%. The recoveries for the spiked samples were in the acceptable range of 93.8-105%.

  3. Application of rapid cloud point extraction method for trace cobalt analysis coupled with spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Wen, Xiaodong; He, Lei; Shi, Chunsheng; Deng, Qingwen; Wang, Jiwei; Zhao, Xia

    2013-11-01

    In this work, the analytical performance of conventional spectrophotometer was improved through the coupling of effective preconcentration method with spectrophotometric determination. Rapidly synergistic cloud point extraction (RS-CPE) was used to pre-concentrate ultra trace cobalt and firstly coupled with spectrophotometric determination. The developed coupling was simple, rapid and efficient. The factors influencing RS-CPE and spectrophotometer were optimized. Under the optimal conditions, the limit of detection (LOD) was 0.6 μg L-1, with sensitivity enhancement factor of 23. The relative standard deviation (RSD) for seven replicate measurements of 50 μg L-1 of cobalt was 4.3%. The recoveries for the spiked samples were in the acceptable range of 93.8-105%.

  4. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol fermenter.

    PubMed

    Maiti, Sampa; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Bihan, Yann Le; Drogui, Patrick; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo

    2015-08-15

    A new, simple, rapid and selective spectrophotometric method has been developed for detection and estimation of butanol in fermentation broth. The red colored compound, produced during reduction of diquat-dibromide-monohydrate with 2-mercaptoethanol in aqueous solution at high pH (>13), becomes purple on phase transfer to butanol and gives distinct absorption at λ520nm. Estimation of butanol in the fermentation broth has been performed by salting out extraction (SOE) using saturated K3PO4 solution at high pH (>13) followed by absorbance measurement using diquat reagent. Compatibility and optimization of diquat reagent concentration for detection and estimation of butanol concentration in the fermentation broth range was verified by central composite design. A standard curve was constructed to estimate butanol in acetone-ethanol-butanol (ABE) mixture under optimized conditions. The spectrophotometric results for butanol estimation, was found to have 87.5% concordance with the data from gas chromatographic analysis. PMID:25966390

  5. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Ali, Omnia I. M.; Ismail, Nahla S.; Elgohary, Rasha M.

    2016-01-01

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method (1D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry (2D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL- 1 for LCD and 4.0-20.0 μg mL- 1 for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form.

  6. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form.

    PubMed

    Ali, Omnia I M; Ismail, Nahla S; Elgohary, Rasha M

    2016-01-15

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method ((1)D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry ((2)D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL(-1) for LCD and 4.0-20.0 μg mL(-1) for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form.

  7. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form.

    PubMed

    Ali, Omnia I M; Ismail, Nahla S; Elgohary, Rasha M

    2016-01-15

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method ((1)D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry ((2)D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL(-1) for LCD and 4.0-20.0 μg mL(-1) for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form. PMID:26439526

  8. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  9. Direct spectrophotometric method for analysis of food supplements containing synthetic polyhydroquinones

    NASA Astrophysics Data System (ADS)

    Vasilevsky, A. M.; Konoplev, G. A.; Stepanova, O. S.; Toropov, D. K.; Zagorsky, A. L.

    2016-04-01

    A novel direct spectrophotometric method for quantitative determination of Oxiphore® drug substance (synthetic polyhydroquinone complex) in food supplements is developed. Absorption spectra of Oxiphore® water solutions in the ultraviolet region are presented. Samples preparation procedures and mathematical methods of spectra post-analytical procession are discussed. Basic characteristics of the automatic CCD-based UV spectrophotometer and special software implementing the developed method are described. The results of the trials of the developed method and software are analyzed: the error of determination for Oxiphore® concentration in water solutions of the isolated substance and singlecomponent food supplements did not exceed 15% (average error was 7…10%).

  10. Simple spectrophotometric method for determination of phosphine residues in wheat.

    PubMed

    Rangaswamy, J R

    1984-01-01

    A method has been developed for determination of phosphine residues in wheat, based on the reaction of phosphine with silver nitrate in aqueous solution to form an egg-yellow chromophore with an absorption maximum at 400 nm. At this wavelength, there is a linear relationship between absorbance and concentration of phosphine in the range 10-100 ng/mL. Phosphine-fumigated wheat is soaked in a known volume of AgNO3 solution, and the absorbance of the filtrate is read against a blank at 400 nm. The method is sensitive, with lower detection and estimation limits of 0.008 and 0.01 micrograms PH3, respectively. Recovery of added phosphine from a closed system was 85-100%. Accuracy for this method has been compared with that for the gas chromatographic method.

  11. Development and Validation of Different Ultraviolet-Spectrophotometric Methods for the Estimation of Besifloxacin in Different Simulated Body Fluids

    PubMed Central

    Singh, C. L.; Singh, A.; Kumar, S.; Kumar, M.; Sharma, P. K.; Majumdar, D. K.

    2015-01-01

    In the present study a simple, accurate, precise, economical and specific UV-spectrophotometric method for estimation of besifloxacin in bulk and in different pharmaceutical formulation has been developed. The drug shows maximum λmax289 nm in distilled water, simulated tears and phosphate buffer saline. The linearity range of developed methods were in the range of 3-30 μg/ml of drug with a correlation coefficient (r2) 0.9992, 0.9989 and 0.9984 with respect to distilled water, simulated tears and phosphate buffer saline, respectively. Reproducibility by repeating methods as %RSD were found to be less than 2%. The limit of detection in different media was found to be 0.62, 0.72 and 0.88 μg/ml, respectively. The limit of quantification was found to be 1.88, 2.10, 2.60 μg/ml, respectively. The proposed method was validated statically according to International Conference on Harmonization guidelines with respect to specificity, linearity, range, accuracy, precision and robustness. The proposed methods of validation were found to be accurate and highly specific for the estimation of besifloxacin in different pharmaceutical formulations. PMID:26664055

  12. Development and Validation of Different Ultraviolet-Spectrophotometric Methods for the Estimation of Besifloxacin in Different Simulated Body Fluids.

    PubMed

    Singh, C L; Singh, A; Kumar, S; Kumar, M; Sharma, P K; Majumdar, D K

    2015-01-01

    In the present study a simple, accurate, precise, economical and specific UV-spectrophotometric method for estimation of besifloxacin in bulk and in different pharmaceutical formulation has been developed. The drug shows maximum λmax289 nm in distilled water, simulated tears and phosphate buffer saline. The linearity range of developed methods were in the range of 3-30 μg/ml of drug with a correlation coefficient (r(2)) 0.9992, 0.9989 and 0.9984 with respect to distilled water, simulated tears and phosphate buffer saline, respectively. Reproducibility by repeating methods as %RSD were found to be less than 2%. The limit of detection in different media was found to be 0.62, 0.72 and 0.88 μg/ml, respectively. The limit of quantification was found to be 1.88, 2.10, 2.60 μg/ml, respectively. The proposed method was validated statically according to International Conference on Harmonization guidelines with respect to specificity, linearity, range, accuracy, precision and robustness. The proposed methods of validation were found to be accurate and highly specific for the estimation of besifloxacin in different pharmaceutical formulations. PMID:26664055

  13. Determination of niobium in rocks by an isotope dilution spectrophotometric method

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1970-01-01

    Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.

  14. Development of normalized spectra manipulating spectrophotometric methods for simultaneous determination of Dimenhydrinate and Cinnarizine binary mixture.

    PubMed

    Lamie, Nesrine T; Yehia, Ali M

    2015-01-01

    Simultaneous determination of Dimenhydrinate (DIM) and Cinnarizine (CIN) binary mixture with simple procedures were applied. Three ratio manipulating spectrophotometric methods were proposed. Normalized spectrum was utilized as a divisor for simultaneous determination of both drugs with minimum manipulation steps. The proposed methods were simultaneous constant center (SCC), simultaneous derivative ratio spectrophotometry (S(1)DD) and ratio H-point standard addition method (RHPSAM). Peak amplitudes at isoabsorptive point in ratio spectra were measured for determination of total concentrations of DIM and CIN. For subsequent determination of DIM concentration, difference between peak amplitudes at 250 nm and 267 nm were used in SCC. While the peak amplitude at 275 nm of the first derivative ratio spectra were used in S(1)DD; then subtraction of DIM concentration from the total one provided the CIN concentration. The last RHPSAM was a dual wavelength method in which two calibrations were plotted at 220 nm and 230 nm. The coordinates of intersection point between the two calibration lines were corresponding to DIM and CIN concentrations. The proposed methods were successfully applied for combined dosage form analysis, Moreover statistical comparison between the proposed and reported spectrophotometric methods was applied. PMID:26037499

  15. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  16. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region

    PubMed Central

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835

  17. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Fayez, Yasmin M.; Michael, Adel M.; Nessim, Christine K.

    2016-02-01

    Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD1) or second derivative (D2). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28 μg/mL for mebeverine hydrochloride and 1-12 μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.

  18. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  19. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  20. A new spectrophotometric method for quantification of potassium solubilized by bacterial cultures.

    PubMed

    Rajawat, Mahendra Vikram Singh; Singh, Surender; Saxena, Anil Kumar

    2014-03-01

    A new spectrophotometric method was developed for the quantification of potassium in the culture broth supernatant of K-solubilizing bacteria. The standard curve of potassium with the new method, which is based on the measurement of cobalt, showed a regression coefficient (R2) of 0.998. The quantification values of potassium obtained with flame photometric method and the newly developed method showed a significant correlation (r) of 0.978. The new method depends on the precipitation of sodium cobaltinitrite with solubilized potassium in liquid medium as potassium sodium cobaltinitrite, which develops bluish green colour by the addition of conc. HCl. The intensity of developed colour can be recorded at 623 nm. This method involves less number of steps, is easy and time saving, and can be used for the reliable estimation of available potassium in culture broth supernatant of K-solubilizing bacteria. PMID:24669669

  1. Comparison of three spectrophotometric methods for analysis of egg yolk carotenoids.

    PubMed

    Islam, K M S; Schweigert, F J

    2015-04-01

    Carotenoids accumulated in the egg yolk are of importance for two reasons. Firstly they are important pigments influencing customer acceptance and secondly they are essential components with positive health effects either as antioxidants or as precursor of vitamin A. Different analytical methods are available to quantitatively identify carotenoids from egg yolk such as spectrophotometric methods described by AOAC (Association of Official Analytical Chemists) and HPLC (High Performance Liquid Chromatography). Both methods have in common that they are time consuming, need a laboratory environment and well trained technical operators. Recently, a rapid lab-independent spectrophotometric method (iCheck, BioAnalyt GmbH, Germany) has been introduced that claims to be less time consuming and easy to operate. The aim of the current study was therefore to compare the novel method with the two standard methods. Yolks of 80 eggs were analysed as aliquots by the three methods in parallel. While both spectrometric methods are only able measure total carotenoids as total ß-carotene, HPLC enables the determination of individual carotenoids such lutein, zeaxanthin, canthaxanthin, ß-carotene and β-apocarotenoic ester. In general, total carotenoids levels as obtained by AOAC were in average 27% higher than those obtained by HPLC. Carotenoid values obtained by the reference methods AOAC and HPLC are highly correlated with the iCheck method with r(2) of 0.99 and 0.94 for iCheck vs. AOAC and iCheck vs. HPLC, respectively (both p<0.001). Bland Altman analysis showed that the novel iCheck method is comparable to the reference methods. In conclusion, the novel rapid and portable iCheck method is a valid and effective tool to determine total carotenoid of egg yolk under laboratory-independent conditions with little trained personal.

  2. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities

    NASA Astrophysics Data System (ADS)

    Saad, Ahmed S.; Abo-Talib, Nisreen F.; El-Ghobashy, Mohamed R.

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39 ± 1.60 and 100.51 ± 1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method.

  3. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. PMID:26253440

  4. Spectrophotometric method for the determination of chromium (VI) in water samples.

    PubMed

    Nagaraj, P; Aradhana, N; Shivakumar, Anantharaman; Shrestha, Ashwinee Kumar; Gowda, Avinash K

    2009-10-01

    A simple and sensitive spectrophotometric method for the determination of chromium has been developed. The method is based on the diazotization of Dapsone in hydroxylamine hydrochloride medium and coupling with N-(1-Napthyl) Ethylene Diamine Dihydrochloride by electrophilic substitution to produce an intense pink azo-dye, which has absorption maximum at 540 nm. The Beer's law is obeyed from 0.02-1.0 microg mL(-1) and the molar absorptivity is 3.4854 L mol(-1) cm(-1). The Limits of quantification and Limit of detection of the proposed method are 0.0012 microg mL(-1) and 0.0039 microg mL(-1) respectively. The method has been successfully applied for the determination of chromium in water samples and the results were statistically evaluated with that of the reference method.

  5. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater

    PubMed Central

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-01-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost. PMID:26832984

  6. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater

    NASA Astrophysics Data System (ADS)

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-02-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.

  7. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater.

    PubMed

    Wu, Jiapeng; Hong, Yiguo; Guan, Fengjie; Wang, Yan; Tan, Yehui; Yue, Weizhong; Wu, Meilin; Bin, Liying; Wang, Jiaping; Wen, Jiali

    2016-01-01

    The well-known zinc-cadmium reduction method is frequently used for determination of nitrate. However, this method is seldom to be applied on field research of nitrate due to the long time consuming and large sample volume demand. Here, we reported a modified zinc-cadmium reduction method (MZCRM) for measurement of nitrate at natural-abundance level in both seawater and freshwater. The main improvements of MZCRM include using small volume disposable tubes for reaction, a vortex apparatus for shaking to increase reduction rate, and a microplate reader for high-throughput spectrophotometric measurements. Considering salt effect, two salinity sections (5~10 psu and 20~35 psu) were set up for more accurate determination of nitrate in low and high salinity condition respectively. Under optimized experimental conditions, the reduction rates were stabilized on 72% and 63% on the salinity of 5 and 20 psu respectively. The lowest detection limit for nitrate was 0.5 μM and was linear up to 100 μM (RSDs was 4.8%). Environmental samples assay demonstrated that MZCRM was well consistent with conventional zinc-cadmium reduction method. In total, this modified method improved accuracy and efficiency of operations greatly, and would be realized a rapid and high-throughput determination of nitrate in field analysis of nitrate with low cost.

  8. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions

    NASA Astrophysics Data System (ADS)

    Belal, Tarek S.; El-Kafrawy, Dina S.; Mahrous, Mohamed S.; Abdel-Khalek, Magdi M.; Abo-Gharam, Amira H.

    2016-02-01

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524 nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490 nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415 nm. The fourth method involves the formation of a yellow complex peaking at 361 nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8 μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  9. A sensitive spectrophotometric method for the determination of sulfonamides in pharmaceutical preparations.

    PubMed

    Nagaraja, Padmarajaiah; Naik, Shailendra D; Shrestha, Ashwinee Kumar; Shivakumar, Anantharaman

    2007-09-01

    A new, simple and sensitive spectrophotometric method for the determination of some sulfonamide drugs has been developed. The method is based on the diazotization of sulfacetamide, sulfadiazine, sulfaguanidine, sulfamerazine, sulfamethazine, sulfamethoxazole, and their coupling with 8-hydroxyquinoline in alkaline media to yield red coloured products with absorption maxima at 500 nm. Beer's law is obeyed from 0.1-7.0 microg mL-1. The limits of quantification and limits of detection were 0.11-0.18 and 0.03-0.05 microg mL-1, respectively. Intraday precision (RSD 0.1-0.5%) and accuracy (recovery 97.3--100.8%) of the developed method were evaluated. No interference was observed from common adjuvants. The method has been successfully applied to the assay of sulpha drug in pharmaceutical formulations.

  10. Kinetic spectrophotometric method for the determination of morphine in biological samples

    NASA Astrophysics Data System (ADS)

    Sheibani, A.; Shishehbore, M. Reza; Mirparizi, E.

    2010-10-01

    In this paper a simple, selective and inexpensive kinetic method was developed for the determination of morphine based on its inhibitory effect on the Janus green-bromate system in sulfuric acid media. The reaction was monitored spectrophotometrically at 618 nm by a fixed time method. The effect of different parameters such as concentration of reactants and temperature on the rate of reaction was investigated and optimum conditions were obtained. The calibration curve was linear in the concentration range 0.07-7.98 mg L -1 of morphine, and detection limit of the method was 3.0 × 10 -2 mg L -1. The relative standard deviation for five determinations of 3.74 mg L -1 of morphine was 0.57%. Finally, the proposed method was successfully applied to the determination of morphine in human urine and serum as real samples.

  11. Spectrophotometric method for the determination of amlodipine besylate with ninhydrin in drug formulations.

    PubMed

    Rahman, N; Azmi, S N

    2001-10-01

    A spectrophotometric method has been developed for the determination of amlodipine besylate in pure form and in pharmaceutical preparations. The method is based on the reaction of the primary amino group of the drug with ninhydrin in N,N'-dimethylformamide (DMF) medium producing a coloured complex which absorbs maximally at 595 nm. Beer's law is obeyed in the concentration range of 10-60 microg ml(-1) with RSD of 0.66% and molar absorptivity of 6.52 x 10(3) l mol(-1) cm(-1). All variables were studied in order to optimize the reaction conditions. The proposed method has been applied successfully to the analysis of the bulk drug and its dosage forms. No interference was observed from common pharmaceutical adjuvants. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.

  12. Determination of ametryn in sugarcane and ametryn-atrazine herbicide formulations using spectrophotometric method.

    PubMed

    Shah, Jasmin; Jan, M Rasul; Ara, Behisht; Shehzad, Farhat-Un-Nisa

    2012-06-01

    A sensitive spectrophotometric method has been developed for determination of ametryn in agricultural samples. The proposed method was based on reaction with pyridine and further coupling with sulfanilic acid to form a colored product. The absorbance was measured at 400 nm with a molar absorptivity of 2.1 x 10(5) L mol(-1) cm(-1). The method shows a linear range from 0.2-20 μg mL(-1) with limit of detection and limit of quantification 0.16 and 0.54 μg mL(-1), respectively. The method has been successfully applied to the determination of ametryn in sugarcane juice and commercial formulations after separation of ametryn from triazine herbicides based on solvent extraction. Recovery values were found to be in the range of 96.0 ± 0.2% to 98.4  ±  0.1%.

  13. Validated spectrophotometric methods for simultaneous determination of Omeprazole, Tinidazole and Doxycycline in their ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-01-01

    A comparative study of smart spectrophotometric techniques for the simultaneous determination of Omeprazole (OMP), Tinidazole (TIN) and Doxycycline (DOX) without prior separation steps is developed. These techniques consist of several consecutive steps utilizing zero/or ratio/or derivative spectra. The proposed techniques adopt nine simple different methods, namely direct spectrophotometry, dual wavelength, first derivative-zero crossing, amplitude factor, spectrum subtraction, ratio subtraction, derivative ratio-zero crossing, constant center, and successive derivative ratio method. The calibration graphs are linear over the concentration range of 1-20 μg/mL, 5-40 μg/mL and 2-30 μg/mL for OMP, TIN and DOX, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and successfully applied to commercial pharmaceutical preparation. The methods that are validated according to the ICH guidelines, accuracy, precision, and repeatability, were found to be within the acceptable limits.

  14. Validated spectrophotometric methods for simultaneous determination of Omeprazole, Tinidazole and Doxycycline in their ternary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-01-15

    A comparative study of smart spectrophotometric techniques for the simultaneous determination of Omeprazole (OMP), Tinidazole (TIN) and Doxycycline (DOX) without prior separation steps is developed. These techniques consist of several consecutive steps utilizing zero/or ratio/or derivative spectra. The proposed techniques adopt nine simple different methods, namely direct spectrophotometry, dual wavelength, first derivative-zero crossing, amplitude factor, spectrum subtraction, ratio subtraction, derivative ratio-zero crossing, constant center, and successive derivative ratio method. The calibration graphs are linear over the concentration range of 1-20 μg/mL, 5-40 μg/mL and 2-30 μg/mL for OMP, TIN and DOX, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and successfully applied to commercial pharmaceutical preparation. The methods that are validated according to the ICH guidelines, accuracy, precision, and repeatability, were found to be within the acceptable limits. PMID:26322842

  15. Study on the determination of trace Ni (II) by the catalytic kinetic spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Cao, Hengxia; Xin, Huizhen; Li, Shuang

    2010-03-01

    A new kinetic spectrophotometric method has been developed for the determination of trace Ni (II) in natural water. The method is based on the catalytic effect of Ni (II) on the oxidation of weak acid brilliant blue dye (RAWL) by KIO4 in acid medium. The concentration of nickel (II) can be determined spectrophotometrically by measuring the decrease of absorbance of RAWL at λ = 626 nm using the fix-time method. The influencing factors are investigated by the orthogonal experimental design. The obtained optimum analytical conditions are: pH = 2.00, c RAWL = 5.00×10-5 mol L-1, c KIO 4 = 2.00×10-5 mol L -1, the reaction time t = 10 min and the temperature T = 25°C. Under the optimum conditions, the developed method allows the measurement of Ni (II) in a range of 0-40.0 ng mL-1. The standard deviation of eleven independent measurements of blank reaction is S = 3.08×10-3 and the limit of detection is 2.20 ng mL-1. The relative standard deviations (RSDs) in six replicate determinations of 5 ng mL-1 and 8 ng mL-1 Ni (II) are 2.87% and 1.11%, respectively. Moreover, the experiments show few cations and anions can interfere with the measurement of Ni (II). The recovery efficiencies of this method are in a range of 97.0%-102.5% in freshwater samples. But there is a decreasing effect, which is about 0.2 times the added Ni (II) in seawater medium. After reasonable calibration this processing method is used for the determination of Ni (II) in seawater samples successfully. The results show this developed method has high accuracy and precision, high sensitivity, large range of linearity and high speed. The method can, therefore, be employed at room temperature.

  16. Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine

    NASA Astrophysics Data System (ADS)

    El-Kosasy, A. M.; Abdel-Aziz, Omar; Magdy, N.; El Zahar, N. M.

    2016-03-01

    New accurate, sensitive and selective spectrophotometric and chemometric methods were developed and subsequently validated for determination of Imipenem (IMP), ciprofloxacin hydrochloride (CIPRO), dexamethasone sodium phosphate (DEX), paracetamol (PAR) and cilastatin sodium (CIL) in human urine. These methods include a new derivative ratio method, namely extended derivative ratio (EDR), principal component regression (PCR) and partial least-squares (PLS) methods. A novel EDR method was developed for the determination of these drugs, where each component in the mixture was determined by using a mixture of the other four components as divisor. Peak amplitudes were recorded at 293.0 nm, 284.0 nm, 276.0 nm, 257.0 nm and 221.0 nm within linear concentration ranges 3.00-45.00, 1.00-15.00, 4.00-40.00, 1.50-25.00 and 4.00-50.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively. PCR and PLS-2 models were established for simultaneous determination of the studied drugs in the range of 3.00-15.00, 1.00-13.00, 4.00-12.00, 1.50-9.50, and 4.00-12.00 μg mL- 1 for IMP, CIPRO, DEX, PAR and CIL, respectively, by using eighteen mixtures as calibration set and seven mixtures as validation set. The suggested methods were validated according to the International Conference of Harmonization (ICH) guidelines and the results revealed that they were accurate, precise and reproducible. The obtained results were statistically compared with those of the published methods and there was no significant difference.

  17. Spectrophotometric Methods for the Determination of Linagliptin in Binary Mixture with Metformin Hydrochloride and Simultaneous Determination of Linagliptin and Metformin Hydrochloride using High Performance Liquid Chromatography

    PubMed Central

    El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.

    2013-01-01

    Simple, accurate and precise Zero order, first derivative spectrophotometric and chromatographic methods have been developed and validated for the determination of linagliptin (LNG) and metformin HCl (MET). The zero order and first derivative spectrophotometric methods were used for the determination of LNG in the range of 5-30 μg mL−1 by measuring the absorbance at 299 nm and 311 respectively. Besides, a reversed-phase liquid chromatographic (RP-LC) method is described for the simultaneous determination of LNG and MET. Chromatographic separation was achieved on a Symmetry® Waters C18 column (150 mm × 4.6 mm, 5 μm). Isocratic elution based on potassium dihydrogen phosphate buffer pH (4.6) - methanol (30:70, v/v) at a flow rate of 1 mLmin−1 with UV detection at 260 nm was performed. Linearity, accuracy and precision were found to be acceptable over the concentration ranges of 0.125-4 μg mL−1 and 20-800 μg mL−1 for LNG and MET, respectively. The results were statistically compared using one-way analysis of variance (ANOVA). The optimized methods were validated and proved to be specific, robust, precise and accurate for the quality control of the drugs in their pharmaceutical preparation. PMID:23675288

  18. Sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts

    SciTech Connect

    Paoletti, F.; Aldinucci, D.; Mocali, A.; Caparrini, A.

    1986-05-01

    Superoxide dismutase (EC 1.15.1.1) has been assayed by a spectrophotometric method based on the inhibition of a superoxide-driven NADH oxidation. The assay consists of a purely chemical reaction sequence which involves EDTA. Mn(II), mercaptoethanol, and molecular oxygen, requiring neither auxiliary enzymes nor sophisticated equipment. The method is very flexible and rapid and is applicable with high sensitivity to the determination of both pure and crude superoxide dismutase preparations. The decrease of the rate of NADH oxidation is a function of enzyme concentration, and saturation levels are attainable. Fifty percent inhibition, corresponding to one unit of the enzyme, is produced by approximately 15 ng of pure superoxide dismutase. Experiments on rat liver cytosol have shown the specificity of the method for superoxide dismutase. Moreover, common cellular components do not interfere with the measurement, except for hemoglobin when present at relatively high concentrations. The assay is performed at physiological pH and is unaffected by catalase.

  19. Spectrophotometric method for determination parts per million levels of cyclohexylamine in water.

    PubMed

    Kumbhar, A G; Narasimhan, S V; Mathur, P K

    1998-10-01

    UV-vis spectrophotometric method for the analysis of cyclohexylamine (CHA) in aqueous medium in the range of 0.3-20 ppm was developed by coupling CHA with sodium 1,2-naphthaquinone-4-sulphonate (NQS). At 470 nm a calibration slope of 0.028 OD ppm(-1) was observed. Minimum detection limit was 0.3 ppm with standard deviation of 0.1 ppm. Reagent concentration and solution pH for the analysis are optimised by studying its effect on absorbance at 470 nm. The method was applied to analyse CHA for evaluating the performance of ion exchange resin used in condensate purification plant (CPP) of power station where, CHA is used as all volatile treatment (AVT) reagent to inhibit steam generator (SG) corrosion. Structure of the adduct formed by coupling CHA with NQS is elucidated using NMR ((1)H and (13)C) and IR spectra, CHN analysis and mole ratio variation method. PMID:18967343

  20. Development and Validation of Stability-Indicating Derivative Spectrophotometric Methods for Determination of Dronedarone Hydrochloride

    NASA Astrophysics Data System (ADS)

    Chadha, R.; Bali, A.

    2016-05-01

    Rapid, sensitive, cost effective and reproducible stability-indicating derivative spectrophotometric methods have been developed for the estimation of dronedarone HCl employing peak-zero (P-0) and peak-peak (P-P) techniques, and their stability-indicating potential assessed in forced degraded solutions of the drug. The methods were validated with respect to linearity, accuracy, precision and robustness. Excellent linearity was observed in concentrations 2-40 μg/ml ( r 2 = 0.9986). LOD and LOQ values for the proposed methods ranged from 0.42-0.46 μg/ml and 1.21-1.27 μg/ml, respectively, and excellent recovery of the drug was obtained in the tablet samples (99.70 ± 0.84%).

  1. New potentiometric and spectrophotometric methods for the determination of dextromethorphan in pharmaceutical preparations.

    PubMed

    Elmosallamy, Mohamed A F; Amin, Alaa S

    2014-01-01

    New, simple and convenient potentiometric and spectrophotometric methods are described for the determination of dextromethorphan hydrobromide (DXM) in pharmaceutical preparations. The potentiometric technique is based on developing a potentiometric sensor incorporating the dextromethorphan tetrakis(p-chlorophenyl)borate ion-pair complex as an electroactive species in a plasticized PVC matrix membrane with o-nitophenyl octyl ether or dioctyl phthalate. The sensor shows a rapid near Nernstian response of over 1 × 10(-5) - 1 × 10(-2) mol L(-1) dextromethorphan in the pH range of 3.0 - 9.0. The detection limit is 2 × 10(-6) mol L(-1) DXM and the response time is instantaneous (2 s). The proposed spectrophotometric technique involves the reaction of DXM with eriochrom black T (EBT) to form an ion-associate complex. Solvent extraction is used to improve the selectivity of the method. The optimal extraction and reaction conditions have been studied, and the analytical characteristics of the method have been obtained. Linearity is obeyed in the range of 7.37 - 73.7 × 10(-5) mol L(-1) DXM, and the detection limit of the method is 1.29 × 10(-5) mol L(-1). The relative standard deviation (RSD) and relative error for six replicate measurements of 3.685 × 10(-4) mol L(-1) are 0.672 and 0.855%, respectively. The interference effect of some excepients has also been tested. The drug contents in pharmaceutical preparations were successfully determined by the proposed methods by applying the standard-addition technique.

  2. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.

  3. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.

  4. Four Derivative Spectrophotometric Methods for the Simultaneous Determination of Carmoisine and Ponceau 4R in Drinks and Comparison with High Performance Liquid Chromatography

    PubMed Central

    Turak, Fatma; Dinç, Mithat; Dülger, Öznur; Özgür, Mahmure Ustun

    2014-01-01

    Four simple, rapid, and accurate spectrophotometric methods were developed for the simultaneous determination of two food colorants, Carmoisine (E122) and Ponceau 4R (E124), in their binary mixtures and soft drinks. The first method is based on recording the first derivative curves and determining each component using the zero-crossing technique. The second method uses the first derivative of ratio spectra. The ratio spectra are obtained by dividing the absorption spectra of the binary mixture by that of one of the components. The third method, derivative differential procedure, is based on the measurement of difference absorptivities derivatized in first order of solution of drink samples in 0,1 N NaOH relative to that of an equimolar solution in 0,1 N HCl at wavelengths of 366 and 451 nm for Carmoisine and Ponceau 4R, respectively. The last method, based on the compensation method is presented for derivative spectrophotometric determination of E122 and E124 mixtures with overlapping spectra. By using ratios of the derivative maxima, the exact compensation of either component in the mixture can be achieved, followed by its determination. These proposed methods have been successfully applied to the binary mixtures and soft drinks and the results were statistically compared with the reference HPLC method (NMKL 130). PMID:24672549

  5. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-09-01

    Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  6. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.

    PubMed

    Fukushima, Romualdo S; Hatfield, Ronald D

    2004-06-16

    Present analytical methods to quantify lignin in herbaceous plants are not totally satisfactory. A spectrophotometric method, acetyl bromide soluble lignin (ABSL), has been employed to determine lignin concentration in a range of plant materials. In this work, lignin extracted with acidic dioxane was used to develop standard curves and to calculate the derived linear regression equation (slope equals absorptivity value or extinction coefficient) for determining the lignin concentration of respective cell wall samples. This procedure yielded lignin values that were different from those obtained with Klason lignin, acid detergent acid insoluble lignin, or permanganate lignin procedures. Correlations with in vitro dry matter or cell wall digestibility of samples were highest with data from the spectrophotometric technique. The ABSL method employing as standard lignin extracted with acidic dioxane has the potential to be employed as an analytical method to determine lignin concentration in a range of forage materials. It may be useful in developing a quick and easy method to predict in vitro digestibility on the basis of the total lignin content of a sample.

  7. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  8. A study of selective spectrophotometric methods for simultaneous determination of Itopride hydrochloride and Rabeprazole sodium binary mixture: Resolving sever overlapping spectra

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.

    2015-02-01

    Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110 μg/μL for Itopride hydrochloride and 4-44 μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB.

  9. Mean centering of double divisor ratio spectra, a novel spectrophotometric method for analysis of ternary mixtures

    NASA Astrophysics Data System (ADS)

    Hassan, Said A.; Elzanfaly, Eman S.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-01-01

    A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.

  10. Development and Validation of New Spectrophotometric Methods to Determine Enrofloxacin in Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Rajendraprasad, N.; Basavaiah, K.

    2015-07-01

    Four spectrophotometric methods, based on oxidation with cerium(IV), are investigated and developed to determine EFX in pure form and in dosage forms. The frst and second methods (Method A and method B) are direct, in which after the oxidation of EFX with cerium(IV) in acid medium, the absorbance of reduced and unreacted oxidant is measured at 275 and 320 nm, respectively. In the third (C) and fourth (D) methods after the reaction between EFX and oxidant is ensured to be completed the surplus oxidant is treated with either N-phenylanthranilic acid (NPA) or Alizarin Red S (ARS) dye and the absorbance of the oxidized NPA or ARS is measured at 440 or 420 nm. The methods showed good linearity over the concentration ranges of 0.5-5.0, 1.25-12.5, 10.0-100.0, and 6.0-60.0 μg/ml, for method A, B, C and D, respectively, with apparent molar absorptivity values of 4.42 × 10 4 , 8.7 × 10 3 , 9.31 × 10 2 , and 2.28 × 10 3 l/(mol· cm). The limits of detection (LOD), quantification (LOQ), and Sandell's sensitivity values and other validation results have also been reported. The proposed methods are successfully applied to determine EFX in pure form and in dosage forms.

  11. First-order derivative UV spectrophotometric method for simultaneous measurement of delapril and manidipine in tablets.

    PubMed

    Todeschini, Vítor; Barden, Amanda Thomas; Sfair, Leticia Lenz; da Silva Sangoi, Maximiliano; Volpato, Nadia Maria

    2013-01-01

    A first-order derivative spectrophotometric (1D-UV) method was developed and validated for simultaneous determination of delapril (DEL) and manidipine (MAN) in tablets. The 1D-UV spectra were obtained using change lambda = 4.0 nm and wavelength set at 228 nm for DEL and 246 nm for MAN. The method was validated in accordance with the ICH requirements, involving the specificity, linearity, precision, accuracy, robustness and limits of detection and quantitation. The method showed high specificity in the presence of two drugs and formulation excipients and was linear over the concentration range of 18-54 microg mL(-1) (r2 = 0.9994) for DEL and 6-18 microg mL(-1) (r2 = 0.9981) for MAN with adequate results for the precision (< or = 1.47%) and accuracy (98.98% for DEL and 100.50% for MAN). Moreover, the method proved to be robust by a Plackett-Burman experimental design evaluation. The proposed 'D-UV method was successfully applied for simultaneous analysis of DEL and MAN in tablets and can be used as alternative green method to separation techniques. The results were compared with the validated liquid chromatography, capillary electrophoresis and liquid chromatography-tandem mass spectrometry methods, showing non-significant difference.

  12. Validated spectrophotometric and chromatographic methods for simultaneous determination of ketorolac tromethamine and phenylephrine hydrochloride.

    PubMed

    Belal, T S; El-Kafrawy, D S; Mahrous, M S; Abdel-Khalek, M M; Abo-Gharam, A H

    2016-07-01

    This work describes five simple and reliable spectrophotometric and chromatographic methods for analysis of the binary mixture of ketorolac tromethamine (KTR) and phenylephrine hydrochloride (PHE). Method I is based on the use of conventional Amax and derivative spectrophotometry with the zero-crossing technique where KTR was determined using its Amax and (1)D amplitudes at 323 and 341nm respectively, while PHE was determined by measuring the (1)D amplitudes at 248.5nm. Method II involves the application of the ratio spectra derivative spectrophotometry. For KTR, 12μg/mL PHE was used as a divisor and the (1)DD amplitudes at 265nm were plotted against KTR concentrations; while - by using 4μg/mL KTR as divisor - the (1)DD amplitudes at 243.5nm were found proportional to PHE concentrations. Method III depends on ratio-difference measurement where the peak to trough amplitudes between 260 and 284nm were measured and correlated to KTR concentration. Similarly, the peak to trough amplitudes between 235 and 260nm in the PHE ratio spectra were recorded. For method IV, the two compounds were separated using Merck HPTLC sheets of silica gel 60 F254 and a mobile phase composed of chloroform/methanol/ammonia (70:30:2, by volume) followed by densitometric measurement of KTR and PHE spots at 320 and 278nm respectively. Method V depends on HPLC-DAD. Effective chromatographic separation was achieved using Zorbax eclipse plus C8 column (4.6×250mm, 5μm) with a mobile phase consisting of 0.05M o-phosphoric acid and acetonitrile (50:50, by volume) at a flow rate 1mL/min and detection at 313 and 274nm for KTR and PHE respectively. Analytical performance of the developed methods was statistically validated according to the ICH guidelines with respect to linearity, ranges, precision, accuracy, detection and quantification limits. The validated spectrophotometric and chromatographic methods were successfully applied to the simultaneous analysis of KTR and PHE in synthetic mixtures

  13. Spectrophotometric method for the determination, validation, spectroscopic and thermal analysis of diphenhydramine in pharmaceutical preparation

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2010-09-01

    A sensitive, simple and rapid spectrophotometric method was developed for the determination of diphenhydramine in pharmaceutical preparation. The method was based on the charge-transfer complex of the drug, as n-electron donor, with 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), as π-acceptor. The formation of this complex was also confirmed by UV-vis, FTIR and 1H NMR spectra techniques and thermal analysis. The proposed method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and robustness. The linearity range for concentrations of diphenhydramine was found to be 12.5-150 μg/mL with acceptable correlation coefficients. The detection and quantification limits were found to be 2.09 and 6.27 μg/mL, respectively. The proposed and references methods were applied to the determination of drug in syrup. This preparation were also analyzed with an reference method and statistical comparison by t- and F-tests revealed that there was no significant difference between the results of the two methods with respect to mean values and standard deviations at the 95% confidence level.

  14. A new, sensitive, and rapid spectrophotometric method for the determination of sulfa drugs.

    PubMed

    Nagaraja, Padmarajaiah; Yathirajan, Hemmige S; Sunitha, Kallanchira R; Vasantha, Ramanathapura A

    2002-01-01

    A sensitive, rapid, and simple spectrophotometric method is described for the determination of sulfa drugs. The method is based on the formation of a red-colored product by the diazotization of sulfonamides such as sulfathiazole (SFT), sulfadiazine (SFD), sulfacetamide (SFA), sulfamethoxazole (SFMx), sulfamerazine (SFMr), sulfaguanidine (SFG), and sulfamethazine (SFMt), followed by complexation with dopamine in the presence of molybdate ions in (1 + 1) H2SO4 medium. Absorbance of the resulting red product is measured at 490-510 nm, and the product is stable for 2 days at 27 degrees C. Beer's law is obeyed in the concentration range of 0.04-8.0 microg/mL at the wavelength of maximum absorption. The method was used successfully for the determination of some sulfonamides in tablets and eye drops. Common excipients used as additives in pharmaceuticals do not interfere in the proposed method. The method offers the advantages of simplicity, rapidity, and sensitivity without the need for extraction or heating. The limits of detection and quantitation were calculated for SFT, SFD, SFA, SFMx, SFMr, SFG, and SFMt.

  15. Computation of geometric representation of novel spectrophotometric methods used for the analysis of minor components in pharmaceutical preparations.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-01-01

    Novel spectrophotometric methods were applied for the determination of the minor component tetryzoline HCl (TZH) in its ternary mixture with ofloxacin (OFX) and prednisolone acetate (PA) in the ratio of (1:5:7.5), and in its binary mixture with sodium cromoglicate (SCG) in the ratio of (1:80). The novel spectrophotometric methods determined the minor component (TZH) successfully in the two selected mixtures by computing the geometrical relationship of either standard addition or subtraction. The novel spectrophotometric methods are: geometrical amplitude modulation (GAM), geometrical induced amplitude modulation (GIAM), ratio H-point standard addition method (RHPSAM) and compensated area under the curve (CAUC). The proposed methods were successfully applied for the determination of the minor component TZH below its concentration range. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  16. A nanosilver-based spectrophotometric method for determination of malachite green in surface water samples.

    PubMed

    Sahraei, R; Farmany, A; Mortazavi, S S; Noorizadeh, H

    2013-07-01

    A new spectrophotometric method is reported for the determination of nanomolar level of malachite green in surface water samples. The method is based on the catalytic effect of silver nanoparticles on the oxidation of malachite green by hexacyanoferrate (III) in acetate-acetic acid medium. The absorbance is measured at 610 nm with the fixed-time method. Under the optimum conditions, the linear range was 8.0 × 10(-9)-2.0 × 10(-7) mol L(-1) malachite green with a correlation coefficient of 0.996. The limit of detection (S/N = 3) was 2.0 × 10(-9) mol L(-1). Relative standard deviation for ten replicate determinations of 1.0 × 10(-8) mol L(-1) malachite green was 1.86%. The method is featured with good accuracy and reproducibility for malachite green determination in surface water samples without any pre-concentration and separation step.

  17. Development and validation of sensitive spectrophotometric method for determination of two antiepileptics in pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Gouda, Ayman A.; Malah, Zakia Al

    2013-03-01

    Rapid, sensitive and validated spectrophotometric methods for the determination of two antiepileptics (gabapentin (GAB) and pregabalin (PRG)) in pure forms and in pharmaceutical formulations was developed. The method is based on the formation of charge transfer complex between drug and the chromogenic reagents quinalizarin (Quinz) and alizarin red S (ARS) producing charge transfer complexes in methanolic medium which showed an absorption maximum at 571 and 528 nm for GAB and 572 and 538 nm for PRG using Quinz and ARS, respectively. The optimization of the reaction conditions such as the type of solvent, reagent concentration and reaction time were investigated. Beer's law is obeyed in the concentration ranges 0.4-8.0 and 0.5-10 μg mL-1 for GAB and PRG using Quinz and ARS, respectively. The molar absorptivity, Sandell sensitivity, detection and quantification limits are also calculated. The correlation coefficients were ⩾0.9992 with a relative standard deviation (RSD%) of ⩽1.76. The methods are successfully applied to the determination of GAB and PRG in pharmaceutical formulations and the validity assesses by applying the standard addition technique, which compared with those obtained using the reported methods.

  18. Spectrophotometric Method for Quantitative Determination of Cefixime in Bulk and Pharmaceutical Preparation Using Ferroin Complex

    NASA Astrophysics Data System (ADS)

    Naeem Khan, M.; Qayum, A.; Ur Rehman, U.; Gulab, H.; Idrees, M.

    2015-09-01

    A method was developed for the quantitative determination of cefixime in bulk and pharmaceutical preparations using ferroin complex. The method is based on the oxidation of the cefixime with Fe(III) in acidic medium. The formed Fe(II) reacts with 1,10-phenanthroline, and the ferroin complex is measured spectrophotometrically at 510 nm against reagent blank. Beer's law was obeyed in the concentration range 0.2-10 μg/ml with a good correlation of 0.993. The molar absorptivity was calculated and was found to be 1.375×105 L/mol × cm. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.030 and 0.101 μg/ml respectively. The proposed method has reproducibility with a relative standard deviation of 5.28% (n = 6). The developed method was validated statistically by performing a recoveries study and successfully applied for the determination of cefixime in bulk powder and pharmaceutical formulations without interferences from common excipients. Percent recoveries were found to range from 98.00 to 102.05% for the pure form and 97.83 to 102.50% for pharmaceutical preparations.

  19. Simple spectrophotometric method for determination of melamine in liquid milks based on green Mannich reaction

    NASA Astrophysics Data System (ADS)

    Chansuvarn, Woravith; Panich, Sirirat; Imyim, Apichat

    2013-09-01

    A new and simple spectrophotometric method has been developed and validated for measuring the contamination of melamine in different milk products. The method is based upon measuring the absorption of the complex formed from melamine, 4-hydroxyacetophenone (Hap) and 1-pyrene carboxaldehyde (Pcd), which was adapted from the Mannich reaction. Quantitative analysis was done at a wavelength of 236 nm within a few minutes. The reaction was optimized by focusing on both obtaining high performance of the method and to concern the volatility and toxicity of used reagents. This method provided a linear dynamic range, limit of detection and limit of quantification of 0.100-3.78, 0.08 and 0.14 mg L-1, respectively. The relative standard deviation (RSD) was 3.6% (n = 10). The recoveries of melamine spiked liquid milk samples, with melamine concentrations of 0.63, 1.26, 1.89 and 2.52 mg L-1, were 87.7 ± 3.7%, 91.1 ± 8.8%, 89.2 ± 4.4% and 90.6 ± 3.6% (n = 3), respectively.

  20. Determination of vanadium in groundwater samples with an improved kinetic spectrophotometric method.

    PubMed

    Bağda, Esra

    2014-01-01

    A kinetic catalytic method has been developed for the determination of vanadium based on its catalytic effect on the redox reaction of azorubin S and bromate in the presence of a sulphuric and nitric acid mixture. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the reaction mixture at 515 nm. The fixed-time method was used for 0.5-5 min. Optimization of the reaction conditions regarding concentrations of acids, dye, oxidant, masking agent, etc. was investigated. The rate of decrease in absorbance of azorubin S was proportional to the concentration of vanadium in the range of 2.0-1.05 x 10(3) ng mL(-1). 3Sb/m was 0.0129 ng mL(-1) and 10 Sb/m was 0.0432 ng mL(-1). The catalytic method based on the oxidation reaction of azorubin S and bromate shows a good selectivity for vanadium over a wide variety of interference cations and anions. The proposed method was successfully applied to the determination of vanadium in groundwater samples and spiked-water samples.

  1. Novel Spectrophotometric Method for the Determination of Pindolol in Pharmaceutical Samples

    NASA Astrophysics Data System (ADS)

    Nagaraja, P.; Kumar, H. R. Arun; Bhaskara, B. L.; Kumar, S. Anil

    2011-10-01

    A new facile and sensitive spectrophotometric determination of Pindolol (PDL), a beta blocker drug has been developed and validated. The method was based on the reaction between pindolol and K3 [Fe(CN)6] in presence of FeCl3 to form Prussian blue. The absorbance values were recorded at 700 nm and a calibrated graph was constructed. A dynamic Beer's law range was observed in the range 0.125-2.5 μg mL-1 with a detection limit of 0.03 μg mL-1 and a quantitation limit of 0.08 μg mL-1. Various experimental parameters such as effect of solvents, stability, interference effects due to excipients etc were studied. The reproducibility of this methods were checked by six replicate determinations at 1.0 μg ml-1 PDL and the standard deviation was found to be between 0.20 and 0.42%. The results were statistically compared with those of the reference/literature method by applying Student's t-test and F-test. The sensitivity, simplicity, temperature independence and stability of the colored product are the advantages of the proposed method and it is also free from extraction steps and use of carcinogenic solvents.

  2. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  3. A rapid derivative spectrophotometric method for simultaneous determination of naphazoline and antazoline in eye drops.

    PubMed

    Souri, Effat; Amanlou, Massoud; Farsam, Hassan; Afshari, Alma

    2006-01-01

    A zero-crossing first-derivative spectrophotometric method is applied for the simultaneous determination of naphazoline hydrochloride and antazoline phosphate in eye drops. The measurements were carried out at wavelengths of 225 and 252 nm for naphazoline hydrochloride and antazoline phosphate, respectively. The method was found to be linear (r2>0.999) in the range of 0.2-1 microg/ml for naphazoline hydrochloride in the presence of 5 microg/ml antazoline phosphate at 225 nm. The same linear correlation (r2>0.999) was obtained in the range of 1-10 microg/ml of antazoline phosphate in the presence of 0.5 microg/ml of naphazoline hydrochloride at 252 nm. The limit of determination was 0.2 microg/ml and 1 microg/ml for naphazoline hydrochloride and antazoline phosphate, respectively. The method was successfully used for simultaneous analysis of naphazoline hydrochloride and antazoline phosphate in eye drops without any interference from excipients and prior separation before analysis.

  4. Validation of a spectrophotometric method for quantification of xanthone in biodegradable nanoparticles.

    PubMed

    Teixeira, M; Pinto, M M M; Barbosa, C M

    2004-04-01

    Xanthone has been incorporated for the first time in nanoparticles of poly(D,L-lactide-co-glycolide) (PLGA). For this purpose the estimation of xanthone content in the nanoparticles is a crucial tool for guaranteeing the reliability of the results. Thus, a simple spectrophotometric method was validated according to USP25 and ICH guidelines for its specificity, linearity, accuracy and precision. The method was found to be specific for xanthone in the presence of nanoparticle excipients. The calibration curve was linear over the concentration range of 0.5 to 4.0 microg/mL (r > 0.999). Recovery of xanthone from nanoparticles ranged from 86.5 to 95.9%. Repeatability (intra-assay precision) and intermediate precision were found to be acceptable with relative standard deviations values (RSD) ranging from 0.3 to 3.0% and from 1.4 to 3.1%, respectively. The method was found to be suitable for the evaluation of xanthone content in nanoparticles of PLGA.

  5. Analysis of residual solvents in ampicillin powder by headspace spectrophotometric method.

    PubMed

    Farajzadeh, Mirali; Mardani, Alireza

    2002-02-01

    In this study a headspace spectrophotometric method is proposed for analysis of dichloromethane and isobutyl methyl keton (IBMK) residues in the ampicillin powder. Ampicillin is dissolved in 1 M NaOH in the vessel of an arsenic analyzer unit of an atomic absorption spectrophotometer. After 3-min stirring, the headspace has flowed by air into the flow-through cell and its absorbance is read at 196 nm, as emitted by a selenium hollow cathode lamp. The absorbance of the headspace is read in two cases (in the presence and absence of MnO4- ion). In the former case, the absorbance is only related to dichloromethane; in the latter, it is related to both solvents. By this method both solvents are determined in the ampicillin samples. The obtained results are compared with gas chromatography (GC) data. These results have good agreement. The proposed method is very rapid, selective and repeatable. Other solvents present, such as isopropyl alcohol, ethylacetate and triethylamine, are not interfering.

  6. A Highly Sensitive Kinetic Spectrophotometric Method for the Determination of Ascorbic Acid in Pharmaceutical Samples

    PubMed Central

    Shishehbore, Masoud Reza; Aghamiri, Zahra

    2014-01-01

    In this study, a new reaction system for quantitative determination of ascorbic acid was introduced. The developed method is based on inhibitory effect of ascorbic acid on the Orange G-bromate system. The change in absorbance was followed spectrophotometrically at 478 nm. The dependence of sensitivity on the reaction variables including reagents concentration, temperature and time was investigated. Under optimum experimental conditions, calibration curve was linear over the range 0.7 – 33.5 μg mL-1 of ascorbic acid including two linear segments and the relative standard deviations (n = 6) for 5.0 and 20.0 μg mL–1 of ascorbic acid were 1.08 and 1.02%, respectively. The limit of detection was 0.21 μg mL−1 of ascorbic acid. The effect of diverse species was also investigated. The developed method was successfully applied for the determination of ascorbic acid in pharmaceutical samples. The results were in a good agreement with those of reference method. PMID:25237333

  7. Simultaneous Determination of Octinoxate, Oxybenzone, and Octocrylene in a Sunscreen Formulation Using Validated Spectrophotometric and Chemometric Methods.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Ayad, Miriam F; Mikawy, Neven N

    2015-01-01

    Accurate, reliable, and sensitive spectrophotometric and chemometric methods were developed for simultaneous determination of octinoxate (OMC), oxybenzone (OXY), and octocrylene (OCR) in a sunscreen formulation without prior separation steps, including derivative ratio spectra zero crossing (DRSZ), double divisor ratio spectra derivative (DDRD), mean centering ratio spectra (MCR), and partial least squares (PLS-2). With the DRSZ technique, the UV filters could be determined in the ranges of 0.5-13.0, 0.3-9.0, and 0.5-9.0 μg/mL at 265.2, 246.6, and 261.8 nm, respectively. By utilizing the DDRD technique, UV filters could be determined in the above ranges at 237.8, 241.0, and 254.2 nm, respectively. With the MCR technique, the UV filters could be determined in the above ranges at 381.7, 383.2, and 355.6 nm, respectively. The PLS-2 technique successfully quantified the examined UV filters in the ranges of 0.5-9.3, 0.3-7.1, and 0.5-6.9 μg/mL, respectively. All the methods were validated according to the International Conference on Harmonization guidelines and successfully applied to determine the UV filters in pure form, laboratory-prepared mixtures, and a sunscreen formulation. The obtained results were statistically compared with reference and reported methods of analysis for OXY, OMC, and OCR, and there were no significant differences with respect to accuracy and precision of the adopted techniques.

  8. Simultaneous Determination of Octinoxate, Oxybenzone, and Octocrylene in a Sunscreen Formulation Using Validated Spectrophotometric and Chemometric Methods.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Ayad, Miriam F; Mikawy, Neven N

    2015-01-01

    Accurate, reliable, and sensitive spectrophotometric and chemometric methods were developed for simultaneous determination of octinoxate (OMC), oxybenzone (OXY), and octocrylene (OCR) in a sunscreen formulation without prior separation steps, including derivative ratio spectra zero crossing (DRSZ), double divisor ratio spectra derivative (DDRD), mean centering ratio spectra (MCR), and partial least squares (PLS-2). With the DRSZ technique, the UV filters could be determined in the ranges of 0.5-13.0, 0.3-9.0, and 0.5-9.0 μg/mL at 265.2, 246.6, and 261.8 nm, respectively. By utilizing the DDRD technique, UV filters could be determined in the above ranges at 237.8, 241.0, and 254.2 nm, respectively. With the MCR technique, the UV filters could be determined in the above ranges at 381.7, 383.2, and 355.6 nm, respectively. The PLS-2 technique successfully quantified the examined UV filters in the ranges of 0.5-9.3, 0.3-7.1, and 0.5-6.9 μg/mL, respectively. All the methods were validated according to the International Conference on Harmonization guidelines and successfully applied to determine the UV filters in pure form, laboratory-prepared mixtures, and a sunscreen formulation. The obtained results were statistically compared with reference and reported methods of analysis for OXY, OMC, and OCR, and there were no significant differences with respect to accuracy and precision of the adopted techniques. PMID:26525239

  9. A New Technique for Quantitative Determination of Dexamethasone in Pharmaceutical and Biological Samples Using Kinetic Spectrophotometric Method

    PubMed Central

    Akhoundi-Khalafi, Ali Mohammad; Shishehbore, Masoud Reza

    2015-01-01

    Dexamethasone is a type of steroidal medications that is prescribed in many cases. In this study, a new reaction system using kinetic spectrophotometric method for quantitative determination of dexamethasone is proposed. The method is based on the catalytic effect of dexamethasone on the oxidation of Orange G by bromate in acidic media. The change in absorbance as a criterion of the oxidation reaction progress was followed spectrophotometrically. To obtain the maximum sensitivity, the effective reaction variables were optimized. Under optimized experimental conditions, calibration graph was linear over the range 0.2–54.0 mg L−1. The calculated detection limit (3sb/m) was 0.14 mg L−1 for six replicate determinations of blank signal. The interfering effect of various species was also investigated. The present method was successfully applied for the determination of dexamethasone in pharmaceutical and biological samples satisfactorily. PMID:25737724

  10. Spectrophotometric study of complexation equilibria with H-point standard addition and H-point curve isolation methods.

    PubMed

    Abdollahi, H; Zeinali, S

    2004-01-01

    The use of H-point curve isolation (HPCIM) and H-point standard addition methods (HPSAM) for spectrophotometric studies of complex formation equilibria are proposed. One step complex formation, two successive stepwise and mononuclear complex formation systems, and competitive complexation systems are studied successfully by the proposed methods. HPCIM is used for extracting the spectrum of complex or sum of complex species and HPSAM is used for calculation of equilibrium concentrations of ligand for each sample. The outputs of these procedures are complete concentration profiles of equilibrium system, spectral profile of intermediate components, and good estimation of conditional formation constants. The reliability of the method is evaluated using model data. Spectrophotometric studies of murexide-calcium, dithizone-nickel, methyl thymol blue (MTB)-copper, and competition of murexide and sulfate ions for complexation with zinc, are used as experimental model systems with different complexation stoichiometries and spectral overlapping of involved components.

  11. Investigation on the interaction of Safranin T with anionic polyelectrolytes by spectrophotometric method.

    PubMed

    Fradj, Anouar Ben; Lafi, Ridha; Hamouda, Sofiane Ben; Gzara, Lassaad; Hamzaoui, Ahmed Hichem; Hafiane, Amor

    2014-10-15

    Understanding the role played by chemical additives such as NaCl salt, acid and Cetylpyridinium Chloride (CPC) surfactant on the interaction between dye and polyelectrolyte contributes to optimization of processes using polyelectrolytes in the removal of dye from aqueous solution. Herein we focus in the interaction between Safranin T, a cationic dye, with two anionic polyelectrolytes, poly(ammonium acrylate) and poly(acrylic acid) using spectrophotometric method and conductivity measurement. In aqueous solution, each of anionic polyelectrolytes forms a complex with the dye and induces a metachromasy indicated by the blue shift of the absorbance of the dye. The stoichiometry of complexes evaluated by the molar ratio method are 1:1 for Safranin T poly(ammonium acrylate) and 2:1 in the case of Safranin T poly(acrylic acid). The effect of additives on the stability of complexes has been studied by varying concentrations of the salt and the surfactant and pH of the solution. The thermodynamic parameters of interaction ΔG, ΔH and ΔS at different temperatures were evaluated to determine the stability constant of the complexes.

  12. A novel visible spectrophotometric method for the determination of ethamsylate in pharmaceutical preparations and biological samples.

    PubMed

    Zhang, Meiyun; Zhang, Yan; Li, Quanmin

    2010-03-01

    A highly sensitive visible spectrophotometric method has been developed to determine ethamsylate in this paper, which is based on using Cu(II) as spectroscopic probe reagent. The study indicates that in the presence of SCN(-) and KNO(3), Cu(II) is reduced to Cu(I) by ethamsylate at pH 5.0, and the in situ formed Cu(I) reacts with SCN(-) to form into the white emulsion CuSCN that could be stayed upon the surface of water. According to the amount of residual Cu(II), the amount of ethamsylate can be indirectly determined. Under the optimal conditions, Beer's law is applicable in the range of 0.2-9.0 microg/mL (7.60x10(-7)-3.42x10(-5)mol/L) for aqueous standard solution of ethamsylate with linear correlation coefficient of 0.9998. The detection limit and relative standard deviation are 0.12 microg/mL and 1.5%, respectively. And the molar absorption coefficient of the indirect determination of ethamsylate is 1.0x10(5)L/mol cm. The method is successfully applied to determine ethamsylate in pharmaceutical preparations and biological samples.

  13. Determination of trace vanadium (V) in seawater and fresh water by the catalytic kinetic spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Sha, Yuanyuan; Xin, Huizhen; Li, Shuang

    2010-12-01

    A new kinetic spectrophotometric method has been developed for the determination of vanadium (V). The method is based on the catalytic effect of vanadium (V) on the oxidation of weak acid brilliant blue dye (RAWL) by KBrO3 using the citric acid as activation reagent. The obtained optimum conditions are: c (RAWL) = 1×10-4 molL-1, c (KBrO3) = 3×10-2 molL-1, c (citric acid) = 9×10-3 molL-1, pH = 2.50, the reaction time being 7.0 min and the temperature being 25.0°C. Under the optimum conditions, the proposed method allows the determination of vanadium (V) in the range of 0-70.0 ng mL-1 and the detection limit is down to 0.407 ng mL-1. For standard vanadium (V) solution determination, the recovery efficiency is in the range of 98.5%-102% and the RSD ranges from 0.76%-1.25%. Moreover, it is demonstrated that most cations and anions do not interfere with the determination of vanadium (V) under the analytical condition. The new method was successfully applied in the determination of vanadium (V) in fresh water and seawater samples with satisfactory results. Vanadium (V) in the seawater samples from Qingdao offshore was determined using the method and the distribution of vanadium (V) was mapped. Compared with other instrumental analytical methods, the proposed method shows good selectivity, sensitivity, simplicity, lower cost and rapidity. It can be employed on shipboard easily.

  14. A simple and highly sensitive spectrophotometric method for the determination of cyanide in equine blood.

    PubMed

    Hughes, Charlie; Lehner, Fritz; Dirikolu, Levent; Harkins, Dan; Boyles, Jeff; McDowell, Karen; Tobin, Thomas; Crutchfield, James; Sebastian, Manu; Harrison, Lenn; Baskin, Stephen I

    2003-01-01

    An epidemiological association among black cherry trees (Prunus serotina), eastern tent caterpillars (Malacosoma americana), and the spring 2001 episode of mare reproductive loss syndrome in central Kentucky focused attention on the potential role of environmental cyanogens in the causes of this syndrome. To evaluate the role of cyanide (CN (-)) in this syndrome, a simple, rapid, and highly sensitive method for determination of low parts per billion concentrations of CN (-) in equine blood and other biological fluids was developed. The analytical method is an adaptation of methods commonly in use and involves the evolution and trapping of gaseous hydrogen cyanide followed by spectrophotometric determination by autoanalyzer. The limit of quantitation of this method is 2 ng/mL in equine blood, and the standard curve shows a linear relationship between CN (-) concentration and absorbance (r >. 99). The method throughput is high, up to 100 samples per day. Normal blood CN (-) concentrations in horses at pasture in Kentucky in October 2001 ranged from 3-18 ng/mL, whereas hay-fed horses showed blood CN (-) levels of 2-7 ng/mL in January 2002. Blood samples from a small number of cattle at pasture showed broadly similar blood CN (-) concentrations. Intravenous administration of sodium cyanide and oral administration of mandelonitrile and amygdalin yielded readily detectable increases in blood CN (-) concentrations. This method is sufficiently sensitive and specific to allow the determination of normal blood CN (-) levels in horses, as well as the seasonal and pasture-dependent variations. The method should also be suitable for investigation of the toxicokinetics and disposition of subacutely toxic doses of CN (-) and its precursor cyanogens in the horse as well as in other species. PMID:20021191

  15. Novel spectrophotometric methods for simultaneous determination of Amlodipine, Valsartan and Hydrochlorothiazide in their ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany

    2015-04-01

    This work represents a comparative study of two smart spectrophotometric techniques namely; successive resolution and progressive resolution for the simultaneous determination of ternary mixtures of Amlodipine (AML), Hydrochlorothiazide (HCT) and Valsartan (VAL) without prior separation steps. These techniques consist of several consecutive steps utilizing zero and/or ratio and/or derivative spectra. By applying successive spectrum subtraction coupled with constant multiplication method, the proposed drugs were obtained in their zero order absorption spectra and determined at their maxima 237.6 nm, 270.5 nm and 250 nm for AML, HCT and VAL, respectively; while by applying successive derivative subtraction they were obtained in their first derivative spectra and determined at P230.8-246, P261.4-278.2, P233.7-246.8 for AML, HCT and VAL respectively. While in the progressive resolution, the concentrations of the components were determined progressively from the same zero order absorption spectrum using absorbance subtraction coupled with absorptivity factor methods or from the same ratio spectrum using only one divisor via amplitude modulation method can be used for the determination of ternary mixtures using only one divisor where the concentrations of the components are determined progressively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. Moreover comparative study between spectrum addition technique as a novel enrichment technique and a well established one namely spiking technique was adopted for the analysis of pharmaceutical formulations containing low concentration of AML. The methods were validated as per ICH guidelines where accuracy, precision and specificity were found to be within their acceptable limits. The results obtained from the proposed methods were statistically compared with the reported one where no significant

  16. Studies on Tinospora cordifolia monosugars and correlation analysis of uronic acids by spectrophotometric methods and GLC.

    PubMed

    Kumar, Vineet; Nagar, Shipra

    2014-01-01

    Cold water-soluble (CWSP) and hot water soluble polysaccharides (HWSP) from Tinospora cordifolia stems were isolated and purified in 2.99% and 1.99% yield respectively. Complete hydrolysis followed by paper chromatography and GLC analysis indicated the presence of L-rhamnose, L-arabinose, D-xylose, D-mannose, D-galactose and D-glucose in molar ratio of 0.857, 1.106, 0.727, 0.526, 0.708 and 95.763 in CWSP and 0.697, 0.777, 2.048, 0.777, 0.292 and 95.408 in HWSP. The uronic acid content in the polysaccharide has been studied extensively using assorted approaches. It was quantitatively estimated by GLC analysis and spectrophotometric methods using carbazole, m-hydroxydiphenyl and 3,5-dimethylphenol as colorimetric reagents. GLC analyses indicated galacturonic acid content of 3.06% and 5.16% in CWSP and HWSP respectively. Estimation of uronic acid using 3,5-dimethylphenol corroborated the above analysis. The study resulted in composition of constituent monosugars of CWSP and HWSP and co-relation analysis of uronic acid content, leading to an unambiguous structural analysis. PMID:24274509

  17. Application of the bivariate spectrophotometric method for the determination of metronidazole, furazolidone and di-iodohydroxyquinoline in pharmaceutical formulations.

    PubMed

    López-de-Alba, P L; Wróbel, K; López-Martínez, L; Wróbel, K; Yepez-Murrieta, M L; Amador-Hernández, J

    1997-10-01

    The bivariate calibration algorithm was applied to the spectrophotometric determination of metronidazole, furazolidone and di-iodohydroxyquinoline in pharmaceutical dosage forms. The results obtained were compared with the results of derivative spectrophotometry. The statistical evaluation of method bias was carried out, and it was shown that the proposed procedure may be competitive with commonly used first-derivative spectrophotometry. The advantage of the bivariate calibration is its simplicity, and the fact that there is no need to use the derivatization procedures.

  18. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  19. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction. PMID:18969896

  20. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction.

  1. Determination of Trace Amounts of Lead Using the Flotation-spectrophotometric method

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Golzadeh, Babak; Shiri, Sina

    2011-01-01

    The present study describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of extremely low concentrations of lead. It is based on flotation of a complex of Pb2+ ions and Alizarin yellow between aqueous and n-hexane interface at pH = 6. The proposed procedure is also applied for determination of lead in both tap water and prepared sea water samples. Beer’s Law was obeyed over the concentration range of 3.86 × 10–8 To 8.20 × 10–7 molL−1 (8–170 ngmL−1) with an apparent molar absorptivity of 1.33 × 106 molL−1 cm−1 for a 100 mL aliquot of the water sample. The detection limit (n = 10) was 8.7 × 10–9 molL−1 (1.0 ngmL−1) and the Relative standard deviation (R.S.D), (n = 10) for 7.2 × 10–7 molL−1 (150 ngmL−1) of Pb (II) was 4.36%. A notable advantage of the method is that the determination of Pb (II) is free from the interference of almost all cations and ions found in the environment and waste water samples. The determination of Pb (II) in tap and synthetic seawater samples was also carried out by the present method. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples.

  2. Chromium speciation in environmental samples using a solid phase spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; Kassem, Mohammed A.

    2012-10-01

    A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.

  3. A fast and accurate method for echocardiography strain rate imaging

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Sahba, Nima; Hajebi, Nima; Nambakhsh, Mohammad Saleh

    2009-02-01

    Recently Strain and strain rate imaging have proved their superiority with respect to classical motion estimation methods in myocardial evaluation as a novel technique for quantitative analysis of myocardial function. Here in this paper, we propose a novel strain rate imaging algorithm using a new optical flow technique which is more rapid and accurate than the previous correlation-based methods. The new method presumes a spatiotemporal constancy of intensity and Magnitude of the image. Moreover the method makes use of the spline moment in a multiresolution approach. Moreover cardiac central point is obtained using a combination of center of mass and endocardial tracking. It is proved that the proposed method helps overcome the intensity variations of ultrasound texture while preserving the ability of motion estimation technique for different motions and orientations. Evaluation is performed on simulated, phantom (a contractile rubber balloon) and real sequences and proves that this technique is more accurate and faster than the previous methods.

  4. A fourth order accurate adaptive mesh refinement method forpoisson's equation

    SciTech Connect

    Barad, Michael; Colella, Phillip

    2004-08-20

    We present a block-structured adaptive mesh refinement (AMR) method for computing solutions to Poisson's equation in two and three dimensions. It is based on a conservative, finite-volume formulation of the classical Mehrstellen methods. This is combined with finite volume AMR discretizations to obtain a method that is fourth-order accurate in solution error, and with easily verifiable solvability conditions for Neumann and periodic boundary conditions.

  5. Simple flow injection method for simultaneous spectrophotometric determination of Fe(II) and Fe(III).

    PubMed

    Kozak, J; Jodłowska, N; Kozak, M; Kościelniak, P

    2011-09-30

    The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO(3)) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH≅3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05-4.0 and 0.09-6.0 mg L(-1), respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.

  6. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-05-01

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures.

  7. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-05-15

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures.

  8. Spectrophotometric Method for the Determination of Two Coformulated Drugs with Highly Different Concentrations. Application on Vildagliptin and Metformin Hydrochloride

    NASA Astrophysics Data System (ADS)

    Zaazaa, H. E.; Elzanfaly, E. S.; Soudi, A. T.; Salem, M. Y.

    2016-03-01

    A new smart simple validated spectrophotometric method was developed for the determination of two drugs one of which is in a very low concentration compared to the other. The method is based on spiking and dilution then simple mathematical manipulation of the absorbance spectra. This method was applied for the determination of a binary mixture of vildagliptin and metformin hydrochloride in the ratio 50:850 in laboratory prepared mixtures containing both drugs in this ratio and in pharmaceutical dosage form with good recoveries. The developed method was validated according to ICH guidelines and can be used for routine quality control testing.

  9. Simultaneous spectrophotometric determination of Celecoxib and Diacerein in bulk and capsule by absorption correction method and chemometric methods

    NASA Astrophysics Data System (ADS)

    Patel, N. S.; Nandurbarkar, V. P.; Patel, A. J.; Patel, S. G.

    Two methods, absorption correction and multivariate spectrophotometric methods were developed for simultaneous estimation of Celecoxib (CEL) and Diacerein (DIA) in combined dosage form. Absorption correction method involves direct estimation of DIA at wavelength 341 nm in which CEL has zero absorbance and shows no interference. For estimation of CEL, corrected absorbance was calculated at 253 nm due to the interference of DIA at this wavelength. Linearity was observed in the range of 6-22 μg mL-1 for CEL and 3-11 μg mL-1 for DIA. The method was validated as per ICH guidelines. Chemometric methods including classical least square (CLS), inverse least square (ILS), principal component regression (PCR) and partial least square (PLS) were studied for simultaneous determination of CEL and DIA in capsule using spectrophotometry. A set of 25 standard mixtures containing both drugs were prepared in range of 5-25 μg mL-1 for CEL and 3-15 μg mL-1 for DIA. Analytical figure of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of detection and limit of quantitation were determined for chemometric methods. The proposed methods were applied for determination of two components from combined dosage form.

  10. Simultaneous spectrophotometric determination of celecoxib and diacerein in bulk and capsule by absorption correction method and chemometric methods.

    PubMed

    Patel, N S; Nandurbarkar, V P; Patel, A J; Patel, S G

    2014-05-01

    Two methods, absorption correction and multivariate spectrophotometric methods were developed for simultaneous estimation of Celecoxib (CEL) and Diacerein (DIA) in combined dosage form. Absorption correction method involves direct estimation of DIA at wavelength 341 nm in which CEL has zero absorbance and shows no interference. For estimation of CEL, corrected absorbance was calculated at 253 nm due to the interference of DIA at this wavelength. Linearity was observed in the range of 6-22 μg mL(-1) for CEL and 3-11 μg mL(-1) for DIA. The method was validated as per ICH guidelines. Chemometric methods including classical least square (CLS), inverse least square (ILS), principal component regression (PCR) and partial least square (PLS) were studied for simultaneous determination of CEL and DIA in capsule using spectrophotometry. A set of 25 standard mixtures containing both drugs were prepared in range of 5-25 μg mL(-1) for CEL and 3-15 μg mL(-1) for DIA. Analytical figure of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of detection and limit of quantitation were determined for chemometric methods. The proposed methods were applied for determination of two components from combined dosage form.

  11. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  12. Selective kinetic spectrophotometric method for determination of gatifloxacin based on formation of its N-vinyl chlorobenzoquinone derivative

    NASA Astrophysics Data System (ADS)

    Darwish, Ibrahim A.; Sultan, Maha A.; Al-Arfaj, Hessa A.

    2010-01-01

    A selective and simple kinetic spectrophotometric has been developed, for the first time, for the determination of gatifloxacin (GAT) in its dosage forms. The method was based on the formation of a colored N-vinyl chlorobenzoquinone derivative of GAT by its reaction with 2,3,5,6-tetrachloro-1,4-benzoquinone in presence of acetaldehyde. The formation of the colored product was monitored spectrophotometrically by measuring the absorbances at 655 nm. The factors affecting the reaction were studied and optimized. The stoichiometry of the reaction was determined, and the reaction pathway was postulated. Under the optimized conditions, the initial rate and fixed time (at 5 min) methods were utilized for constructing the calibration graphs. The graphs were linear in the concentration ranges of 2-100 and 10-140 μg ml -1 with limits of detection of 0.84 and 3.5 μg ml -1 for the initial rate and fixed time methods, respectively. The analytical performance of both methods was fully validated, and the results were satisfactory. The proposed methods were successfully applied to the determination of GAT in its commercial dosage forms. The label claim percentages were 99.7-100.5 and 98.2-99.5% for the initial rate and fixed time methods, respectively. Statistical comparison of the results with those of the reference method showed excellent agreement and proved that there was no significant difference in the accuracy and precision between the reference and the proposed methods. The proposed methods are superior to all the previously reported spectrophotometric methods in terms of the procedure simplicity and assay selectivity.

  13. An accurate method for two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.; Weigand, G. G.

    1979-01-01

    A second-order method for solving two-point boundary value problems on a uniform mesh is presented where the local truncation error is obtained for use with the deferred correction process. In this simple finite difference method the tridiagonal nature of the classical method is preserved but the magnitude of each term in the truncation error is reduced by a factor of two. The method is applied to a number of linear and nonlinear problems and it is shown to produce more accurate results than either the classical method or the technique proposed by Keller (1969).

  14. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  15. Accurate upwind-monotone (nonoscillatory) methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1992-01-01

    The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.

  16. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  17. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    NASA Technical Reports Server (NTRS)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.

  18. Simultaneous determination of iron and manganese in water using artificial neural network catalytic spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Xu, Yan; Li, Shuang; Xin, Huizhen; Cao, Hengxia

    2012-09-01

    A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is established. By conditional experiments, the optimum analytical conditions and parameters are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 15-16-2 (nodes). The initial value of gradient coefficient µ is fixed at 0.001 and the increase factor and reduction factor of µ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviation of the calculated results for iron and manganese is 2.30% and 2.67% respectively. The results of standard addition method show that for the tap water, the recoveries of iron and manganese are in the ranges of 98.0%-104.3% and 96.5%-104.5%, and the RSD is in the range of 0.23%-0.98%; for the Yellow River water (Lijin district of Shandong Province), the recoveries of iron and manganese are in the ranges of 96.0%-101.0% and 98.7%-104.2%, and the RSD is in the range of 0.13%-2.52%; for the seawater in Qingdao offshore, the recoveries of iron and manganese are in the ranges of 95.3%-104.8% and 95.3%-104.7%, and the RSD is in the range of 0.14%-2.66%. It is found that 21 common cations and anions do not interfere with the determination of iron and manganese under the optimum experimental conditions. This method exhibits good reproducibility and high accuracy in the determination of iron and manganese and can be used for the simultaneous determination of iron and manganese in tap water and natural water. By using the established ANN-catalytic spectrophotometric method, the iron and manganese concentrations of the surface seawater at 11 sites in Qingdao offshore are determined and the level distribution maps of iron and

  19. BASIC: A Simple and Accurate Modular DNA Assembly Method.

    PubMed

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S

    2017-01-01

    Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2]. PMID:27671933

  20. BASIC: A Simple and Accurate Modular DNA Assembly Method.

    PubMed

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S

    2017-01-01

    Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].

  1. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  2. Spectrophotometric Analysis of Caffeine.

    PubMed

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  3. Development and validation of a rapid stability indicating HPLC-method using monolithic stationary phase and two spectrophotometric methods for determination of antihistaminic acrivastine in capsules.

    PubMed

    Gouda, Ayman A; Hashem, Hisham; Jira, Thomas

    2014-09-15

    Simple, rapid and accurate high performance liquid chromatographic (HPLC) and spectrophotometric methods are described for determination of antihistaminic acrivastine in capsules. The first method (method A) is based on accurate, sensitive and stability indicating chromatographic separation method. Chromolith® Performance RP-18e column, a relatively new packing material consisting of monolithic rods of highly porous silica, was used as stationary phase applying isocratic binary mobile phase of ACN and 25 mM NaH2PO4 pH 4.0 in the ratio of 22.5:77.5 at flow rate of 5.0 mL/min and 40°C. A diode array detector was used at 254 nm for detection. The elution time of acrivastine was found to be 2.080±0.032. The second and third methods (methods B and C) are based on the oxidation of acrivastine with excess N-bromosuccinimide (NBS) and determination of the unconsumed NBS with, metol-sulphanilic acid (λmax: 520 nm) or amaranth dye (λmax: 530 nm). The reacted oxidant corresponds to the drug content. Beer's law is obeyed over the concentration range 1.563-50, 2.0-20 and 1.0-10 μg mL(-1) for methods A, B and C, respectively. The limits of detection and quantitation were 0.40, 0.292 and 0.113 μg mL(-1) and 0.782, 0.973 and 0.376 μg mL(-1) for methods A, B and C, respectively. The HPLC method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. Stability tests were done through exposure of the analyte solution for four different stress conditions and the results indicate no interference of degradants with HPLC-method. The proposed methods was favorably applied for determination of acrivastine in capsules formulation. Statistical comparison of the obtained results from the analysis of the studied drug to those of the reported method using t- and F-tests showed no significant difference between them.

  4. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods?

    PubMed

    Finete, Virgínia de Lourdes Mendes; Gouvêa, Marcos Martins; Marques, Flávia Ferreira de Carvalho; Netto, Annibal Duarte Pereira

    2013-12-15

    The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds.

  5. Videometric terminal guidance method and system for UAV accurate landing

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Lei, Zhihui; Yu, Qifeng; Zhang, Hongliang; Shang, Yang; Du, Jing; Gui, Yang; Guo, Pengyu

    2012-06-01

    We present a videometric method and system to implement terminal guidance for Unmanned Aerial Vehicle(UAV) accurate landing. In the videometric system, two calibrated cameras attached to the ground are used, and a calibration method in which at least 5 control points are applied is developed to calibrate the inner and exterior parameters of the cameras. Cameras with 850nm spectral filter are used to recognize a 850nm LED target fixed on the UAV which can highlight itself in images with complicated background. NNLOG (normalized negative laplacian of gaussian) operator is developed for automatic target detection and tracking. Finally, 3-D position of the UAV with high accuracy can be calculated and transfered to control system to direct UAV accurate landing. The videometric system can work in the rate of 50Hz. Many real flight and static accuracy experiments demonstrate the correctness and veracity of the method proposed in this paper, and they also indicate the reliability and robustness of the system proposed in this paper. The static accuracy experiment results show that the deviation is less-than 10cm when target is far from the cameras and lessthan 2cm in 100m region. The real flight experiment results show that the deviation from DGPS is less-than 20cm. The system implement in this paper won the first prize in the AVIC Cup-International UAV Innovation Grand Prix, and it is the only one that achieved UAV accurate landing without GPS or DGPS.

  6. Data supporting the spectrophotometric method for the estimation of catalase activity

    PubMed Central

    Hadwan, Mahmoud Hussein; Abed, Hussein Najm

    2015-01-01

    Here we provide raw and processed data and methods for the estimation of catalase activities. The method for presenting a simple and accurate colorimetric assay for catalase activities is described. This method is based on the reaction of undecomposed hydrogen peroxide with ammonium molybdate to produce a yellowish color, which has a maximum absorbance at 374 nm. The method is characterized by adding a correction factor to exclude the interference that arises from the presence of amino acids and proteins in serum. The assay acts to keep out the interferences that arose from measurement of absorbance at unsuitable wavelengths. PMID:26862558

  7. A novel automated image analysis method for accurate adipocyte quantification

    PubMed Central

    Osman, Osman S; Selway, Joanne L; Kępczyńska, Małgorzata A; Stocker, Claire J; O’Dowd, Jacqueline F; Cawthorne, Michael A; Arch, Jonathan RS; Jassim, Sabah; Langlands, Kenneth

    2013-01-01

    Increased adipocyte size and number are associated with many of the adverse effects observed in metabolic disease states. While methods to quantify such changes in the adipocyte are of scientific and clinical interest, manual methods to determine adipocyte size are both laborious and intractable to large scale investigations. Moreover, existing computational methods are not fully automated. We, therefore, developed a novel automatic method to provide accurate measurements of the cross-sectional area of adipocytes in histological sections, allowing rapid high-throughput quantification of fat cell size and number. Photomicrographs of H&E-stained paraffin sections of murine gonadal adipose were transformed using standard image processing/analysis algorithms to reduce background and enhance edge-detection. This allowed the isolation of individual adipocytes from which their area could be calculated. Performance was compared with manual measurements made from the same images, in which adipocyte area was calculated from estimates of the major and minor axes of individual adipocytes. Both methods identified an increase in mean adipocyte size in a murine model of obesity, with good concordance, although the calculation used to identify cell area from manual measurements was found to consistently over-estimate cell size. Here we report an accurate method to determine adipocyte area in histological sections that provides a considerable time saving over manual methods. PMID:23991362

  8. Accurate method of modeling cluster scaling relations in modified gravity

    NASA Astrophysics Data System (ADS)

    He, Jian-hua; Li, Baojiu

    2016-06-01

    We propose a new method to model cluster scaling relations in modified gravity. Using a suite of nonradiative hydrodynamical simulations, we show that the scaling relations of accumulated gas quantities, such as the Sunyaev-Zel'dovich effect (Compton-y parameter) and the x-ray Compton-y parameter, can be accurately predicted using the known results in the Λ CDM model with a precision of ˜3 % . This method provides a reliable way to analyze the gas physics in modified gravity using the less demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.

  9. Methods for accurate homology modeling by global optimization.

    PubMed

    Joo, Keehyoung; Lee, Jinwoo; Lee, Jooyoung

    2012-01-01

    High accuracy protein modeling from its sequence information is an important step toward revealing the sequence-structure-function relationship of proteins and nowadays it becomes increasingly more useful for practical purposes such as in drug discovery and in protein design. We have developed a protocol for protein structure prediction that can generate highly accurate protein models in terms of backbone structure, side-chain orientation, hydrogen bonding, and binding sites of ligands. To obtain accurate protein models, we have combined a powerful global optimization method with traditional homology modeling procedures such as multiple sequence alignment, chain building, and side-chain remodeling. We have built a series of specific score functions for these steps, and optimized them by utilizing conformational space annealing, which is one of the most successful combinatorial optimization algorithms currently available.

  10. A new spectrophotometric method for determination of selenium in cosmetic and pharmaceutical preparations after preconcentration with cloud point extraction.

    PubMed

    Soruraddin, Mohammad Hosein; Heydari, Rouhollah; Puladvand, Morteza; Zahedi, Mir Mehdi

    2011-01-01

    A simple, rapid, and sensitive spectrophotometric method for the determination of trace amounts of selenium (IV) was described. In this method, all selenium spices reduced to selenium (IV) using 6 M HCl. Cloud point extraction was applied as a preconcentration method for spectrophotometric determination of selenium (IV) in aqueous solution. The proposed method is based on the complexation of Selenium (IV) with dithizone at pH < 1 in micellar medium (Triton X-100). After complexation with dithizone, the analyte was quantitatively extracted to the surfactant-rich phase by centrifugation and diluted to 5 mL with methanol. Since the absorption maxima of the complex (424 nm) and dithizone (434 nm) overlap, hence, the corrected absorbance, Acorr, was used to overcome the problem. With regard to the preconcentration, the tested parameters were the pH of the extraction, the concentration of the surfactant, the concentration of dithizone, and equilibration temperature and time. The detection limit is 4.4 ng mL(-1); the relative standard deviation for six replicate measurements is 2.18% for 50 ng mL(-1) of selenium. The procedure was applied successfully to the determination of selenium in two kinds of pharmaceutical samples. PMID:21647287

  11. Rapid and direct spectrophotometric method for kinetics studies and routine assay of peroxidase based on aniline diazo substrates.

    PubMed

    Mirazizi, Fatemeh; Bahrami, Azita; Haghbeen, Kamahldin; Shahbani Zahiri, Hossein; Bakavoli, Mehdi; Legge, Raymond L

    2016-12-01

    Peroxidases are ubiquitous enzymes that play an important role in living organisms. Current spectrophotometrically based peroxidase assay methods are based on the production of chromophoric substances at the end of the enzymatic reaction. The ambiguity regarding the formation and identity of the final chromophoric product and its possible reactions with other molecules have raised concerns about the accuracy of these methods. This can be of serious concern in inhibition studies. A novel spectrophotometric assay for peroxidase, based on direct measurement of a soluble aniline diazo substrate, is introduced. In addition to the routine assays, this method can be used in comprehensive kinetics studies. 4-[(4-Sulfophenyl)azo]aniline (λmax = 390 nm, ɛ = 32 880 M(-1) cm(-1) at pH 4.5 to 9) was introduced for routine assay of peroxidase. This compound is commercially available and is indexed as a food dye. Using this method, a detection limit of 0.05 nmol mL(-1) was achieved for peroxidase.

  12. A New Spectrophotometric Method for Determination of Selenium in Cosmetic and Pharmaceutical Preparations after Preconcentration with Cloud Point Extraction

    PubMed Central

    Soruraddin, Mohammad Hosein; Heydari, Rouhollah; Puladvand, Morteza; Zahedi, Mir Mehdi

    2011-01-01

    A simple, rapid, and sensitive spectrophotometric method for the determination of trace amounts of selenium (IV) was described. In this method, all selenium spices reduced to selenium (IV) using 6 M HCl. Cloud point extraction was applied as a preconcentration method for spectrophotometric determination of selenium (IV) in aqueous solution. The proposed method is based on the complexation of Selenium (IV) with dithizone at pH < 1 in micellar medium (Triton X-100). After complexation with dithizone, the analyte was quantitatively extracted to the surfactant-rich phase by centrifugation and diluted to 5 mL with methanol. Since the absorption maxima of the complex (424 nm) and dithizone (434 nm) overlap, hence, the corrected absorbance, Acorr, was used to overcome the problem. With regard to the preconcentration, the tested parameters were the pH of the extraction, the concentration of the surfactant, the concentration of dithizone, and equilibration temperature and time. The detection limit is 4.4 ng mL−1; the relative standard deviation for six replicate measurements is 2.18% for 50 ng mL−1 of selenium. The procedure was applied successfully to the determination of selenium in two kinds of pharmaceutical samples. PMID:21647287

  13. Blood cyanide determination in two cases of fatal intoxication: comparison between headspace gas chromatography and a spectrophotometric method.

    PubMed

    Gambaro, Veniero; Arnoldi, Sebastiano; Casagni, Eleonora; Dell'acqua, Lucia; Pecoraro, Chiara; Froldi, Rino

    2007-11-01

    Blood samples of two cases were analyzed preliminarily by a classical spectrophotometric method (VIS) and by an automated headspace gas chromatographic method with nitrogen-phosphorus detector (HS-GC/NPD). In the former, hydrogen cyanide (HCN) was quantitatively determined by measuring the absorbance of chromophores forming as a result of interaction with chloramine T. In the automated HS-GC/NPD method, blood was placed in a headspace vial, internal standard (acetonitrile) and acetic acid were then added. This resulted in cyanide being liberated as HCN. The spectrophotometric (VIS) and HS-GC/NPD methods were validated on postmortem blood samples fortified with potassium cyanide in the ranges 0.5-10 and 0.05-5 mug/mL, respectively. Detection limits were 0.2 mug/mL for VIS and 0.05 mug/mL for HS-GC/NPD. This work shows that results obtained by means of the two procedures were insignificantly different and that they compared favorably. They are suitable for rapid diagnosis of cyanide in postmortem cases.

  14. A new spectrophotometric method for determination of selenium in cosmetic and pharmaceutical preparations after preconcentration with cloud point extraction.

    PubMed

    Soruraddin, Mohammad Hosein; Heydari, Rouhollah; Puladvand, Morteza; Zahedi, Mir Mehdi

    2011-01-01

    A simple, rapid, and sensitive spectrophotometric method for the determination of trace amounts of selenium (IV) was described. In this method, all selenium spices reduced to selenium (IV) using 6 M HCl. Cloud point extraction was applied as a preconcentration method for spectrophotometric determination of selenium (IV) in aqueous solution. The proposed method is based on the complexation of Selenium (IV) with dithizone at pH < 1 in micellar medium (Triton X-100). After complexation with dithizone, the analyte was quantitatively extracted to the surfactant-rich phase by centrifugation and diluted to 5 mL with methanol. Since the absorption maxima of the complex (424 nm) and dithizone (434 nm) overlap, hence, the corrected absorbance, Acorr, was used to overcome the problem. With regard to the preconcentration, the tested parameters were the pH of the extraction, the concentration of the surfactant, the concentration of dithizone, and equilibration temperature and time. The detection limit is 4.4 ng mL(-1); the relative standard deviation for six replicate measurements is 2.18% for 50 ng mL(-1) of selenium. The procedure was applied successfully to the determination of selenium in two kinds of pharmaceutical samples.

  15. Novel spectrophotometric determination of flumethasone pivalate and clioquinol in their binary mixture and pharmaceutical formulation.

    PubMed

    Abdel-Aleem, Eglal A; Hegazy, Maha A; Sayed, Nour W; Abdelkawy, M; Abdelfatah, Rehab M

    2015-02-01

    This work is concerned with development and validation of three simple, specific, accurate and precise spectrophotometric methods for determination of flumethasone pivalate (FP) and clioquinol (CL) in their binary mixture and ear drops. Method A is a ratio subtraction spectrophotometric one (RSM). Method B is a ratio difference spectrophotometric one (RDSM), while method C is a mean center spectrophotometric one (MCR). The calibration curves are linear over the concentration range of 3-45 μg/mL for FP, and 2-25 μg/mL for CL. The specificity of the developed methods was assessed by analyzing different laboratory prepared mixtures of the FP and CL. The three methods were validated as per ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits.

  16. Accurate photometric redshift probability density estimation - method comparison and application

    NASA Astrophysics Data System (ADS)

    Rau, Markus Michael; Seitz, Stella; Brimioulle, Fabrice; Frank, Eibe; Friedrich, Oliver; Gruen, Daniel; Hoyle, Ben

    2015-10-01

    We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift, which can be used to estimate the full redshift PDF of a galaxy sample. This method is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitude less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular neural network code (ANNZ). In our use case, this improvement reaches 50 per cent for high-redshift objects (z ≥ 0.75). We show that using these more accurate photometric redshift PDFs will lead to a reduction in the systematic biases by up to a factor of 4, when compared with less accurate PDFs obtained from commonly used methods. The cosmological analyses we examine and find improvement upon are the following: gravitational lensing cluster mass estimates, modelling of angular correlation functions and modelling of cosmic shear correlation functions.

  17. Simultaneous estimation of Cefixime and Erdosteine in capsule dosage form by spectrophotometric method.

    PubMed

    Dhoka, Madhura V; Gawande, Vandana T; Joshi, Pranav P; Gandhi, Santosh V; Patil, Neelam G

    2009-01-01

    Two accurate, precise, rapid and economical methods viz. Absorption correction method and Dual wavelength method were developed for the estimation of Cefixime (CEF) and Erdosteine (ERDO) in capsule dosage form. In both the methods linearity was observed in the concentration range of 2-25 microg/ml for Cefixime and 3-37.5 microg/ml for Erdosteine. The results of the analysis have been validated statistically and by recovery studies. The percentage assay was found to be 100.03 +/- 0.68 for Cefixime and 99.5 +/- 1.0 for Erdosteine (Mean +/- S.D) by method A and 99.54 +/- 0.84 for Cefixime and 100.54 +/- 1.3 for Erdosteine (Mean +/- S.D) by method B respectively.

  18. UV Spectrophotometric Method for Estimation of Polypeptide-K in Bulk and Tablet Dosage Forms

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Singh, S. Kumar; Gulati, M.; Vaidya, Y.

    2016-01-01

    An analytical method for estimation of polypeptide-k using UV spectrophotometry has been developed and validated for bulk as well as tablet dosage form. The developed method was validated for linearity, precision, accuracy, specificity, robustness, detection, and quantitation limits. The method has shown good linearity over the range from 100.0 to 300.0 μg/ml with a correlation coefficient of 0.9943. The percentage recovery of 99.88% showed that the method was highly accurate. The precision demonstrated relative standard deviation of less than 2.0%. The LOD and LOQ of the method were found to be 4.4 and 13.33, respectively. The study established that the proposed method is reliable, specific, reproducible, and cost-effective for the determination of polypeptide-k.

  19. Generalized net analyte signal standard addition as a novel method for simultaneous determination: application in spectrophotometric determination of some pesticides.

    PubMed

    Asadpour-Zeynali, Karim; Saeb, Elhameh; Vallipour, Javad; Bamorowat, Mehdi

    2014-01-01

    Simultaneous spectrophotometric determination of three neonicotinoid insecticides (acetamiprid, imidacloprid, and thiamethoxam) by a novel method named generalized net analyte signal standard addition method (GNASSAM) in some binary and ternary synthetic mixtures was investigated. For this purpose, standard addition was performed using a single standard solution consisting of a mixture of standards of all analytes. Savings in time and amount of used materials are some of the advantages of this method. All determinations showed appropriate applicability of this method with less than 5% error. This method may be applied for linearly dependent data in the presence of known interferents. The GNASSAM combines the advantages of both the generalized standard addition method and net analyte signal; therefore, it may be a proper alternative for some other multivariate methods. PMID:24672886

  20. An accurate method for the determination of carboxyhemoglobin in postmortem blood using GC-TCD.

    PubMed

    Lewis, Russell J; Johnson, Robert D; Canfield, Dennis V

    2004-01-01

    During the investigation of aviation accidents, postmortem samples from accident victims are submitted to the FAA's Civil Aerospace Medical Institute for toxicological analysis. In order to determine if an accident victim was exposed to an in-flight/postcrash fire or faulty heating/exhaust system, the analysis of carbon monoxide (CO) is conducted. Although our laboratory predominantly uses a spectrophotometric method for the determination of carboxyhemoglobin (COHb), we consider it essential to confirm with a second technique based on a different analytical principle. Our laboratory encountered difficulties with many of our postmortem samples while employing a commonly used GC method. We believed these problems were due to elevated methemoglobin (MetHb) concentration in our specimens. MetHb does not bind CO; therefore, elevated MetHb levels will result in a loss of CO-binding capacity. Because most commonly employed GC methods determine %COHb from a ratio of unsaturated blood to CO-saturated blood, a loss of CO-binding capacity will result in an erroneously high %COHb value. Our laboratory has developed a new GC method for the determination of %COHb that incorporates sodium dithionite, which will reduce any MetHb present to Hb. Using blood controls ranging from 1% to 67% COHb, we found no statistically significant differences between %COHb results from our new GC method and our spectrophotometric method. To validate the new GC method, postmortem samples were analyzed with our existing spectrophotometric method, a GC method commonly used without reducing agent, and our new GC method with the addition of sodium dithionite. As expected, we saw errors up to and exceeding 50% when comparing the unreduced GC results with our spectrophotometric method. With our new GC procedure, the error was virtually eliminated. PMID:14987426

  1. INVESTIGATION AND OPTIMIZATION OF TITRIMETRIC AND SPECTROPHOTOMETRIC METHODS FOR THE ASSAY OF FLUNARIZINE DIHYDROCHLORIDE USING IN SITU BROMINE.

    PubMed

    Prashanth, Kudige Nagaraj; Swamy, Nagaraju; Basavaiah, Kanakapura

    2016-01-01

    Three indirect methods for the assay of flunarizine dihydrochloride (FNH) in bulk drug and commercial formulation based on titrimetric and spectrophotometric techniques using bromate-bromide mixture are described. In titrimetry, a measured excess of bromate-bromide mixture is added to an acidified solution of FNH and the unreacted bromine is determined iodometrically (method A). Spectrophotometry involves the addition of a known excess of bromate-bromide mixture to FNH in acid medium followed by estimation of unreacted bromine by its reaction with excess iodide and the liberated iodine (I₃⁻) is either measured at 370 nm (method B) or liberated iodine reacted with starch followed by the measurement of the blue colored starch-iodide complex at 575 run (method C). Titrimetric method is applicable over the range 4.5-30.0 mg FNH (method A), and the reaction stoichiometry is found to be 1:2 (FNH:KBrO₃). The spectrophotometric methods are applicable over the concentration ranges 0.8-16.0 µg/mL and 0.4-8.0 µg/mL FNH for method B and method C, respectively. The molar absorptivities are calculated to be 2.83 x 10⁴ and 4.96 x 10⁴ L mol⁻¹cm⁻¹ for method B and method C, respectively, and the corresponding Sandell sensitivity values are 0.0168 and 0.0096 µg cm⁻². The proposed methods have been applied successfully for the determination of FNH in pure form and in its dosage form and the results were compared with those of a literature method by applying the Student's t-test and F-test. PMID:27008799

  2. INVESTIGATION AND OPTIMIZATION OF TITRIMETRIC AND SPECTROPHOTOMETRIC METHODS FOR THE ASSAY OF FLUNARIZINE DIHYDROCHLORIDE USING IN SITU BROMINE.

    PubMed

    Prashanth, Kudige Nagaraj; Swamy, Nagaraju; Basavaiah, Kanakapura

    2016-01-01

    Three indirect methods for the assay of flunarizine dihydrochloride (FNH) in bulk drug and commercial formulation based on titrimetric and spectrophotometric techniques using bromate-bromide mixture are described. In titrimetry, a measured excess of bromate-bromide mixture is added to an acidified solution of FNH and the unreacted bromine is determined iodometrically (method A). Spectrophotometry involves the addition of a known excess of bromate-bromide mixture to FNH in acid medium followed by estimation of unreacted bromine by its reaction with excess iodide and the liberated iodine (I₃⁻) is either measured at 370 nm (method B) or liberated iodine reacted with starch followed by the measurement of the blue colored starch-iodide complex at 575 run (method C). Titrimetric method is applicable over the range 4.5-30.0 mg FNH (method A), and the reaction stoichiometry is found to be 1:2 (FNH:KBrO₃). The spectrophotometric methods are applicable over the concentration ranges 0.8-16.0 µg/mL and 0.4-8.0 µg/mL FNH for method B and method C, respectively. The molar absorptivities are calculated to be 2.83 x 10⁴ and 4.96 x 10⁴ L mol⁻¹cm⁻¹ for method B and method C, respectively, and the corresponding Sandell sensitivity values are 0.0168 and 0.0096 µg cm⁻². The proposed methods have been applied successfully for the determination of FNH in pure form and in its dosage form and the results were compared with those of a literature method by applying the Student's t-test and F-test.

  3. Spectrophotometric and reversed-phase high-performance liquid chromatographic methods for simultaneous determination of escitalopram oxalate and clonazepam in combined tablet dosage form.

    PubMed

    Gandhi, Santosh Vilashchand; Dhavale, Nilesh Dnyandev; Jadhav, Vijay Yeshawantrao; Sabnis, Shweta Sadanand

    2008-01-01

    Simple, accurate, precise, and sensitive ultraviolet spectrophotometric and reversed-phase high-performance liquid chromatographic (RP-HPLC) methods for simultaneous estimation of escitalopram oxalate (ESC) and clonazepam (CLO) in combined tablet dosage form have been developed and validated. The spectroscopic method employs an absorbance correction method using 238.6 and 308 nm as 2 wavelengths for estimation with methanol and water as solvents. Beer's law is obeyed in the concentration range of 10.0-50.0 and 0.5-3.0 micro/mL for ESC and CLO, respectively. The RP-HPLC method uses a Jasco HPLC system with HiQ SiL C18 column (250 x 4.6 mm id) acetonitrile-0.005 M tetrabutylammonium hydrogen sulfate (55 + 45, v/v) as the mobile phase, and satranidazole as an internal standard. The detection was carried out using an ultraviolet detector set at 287 nm. For the HPLC method, Beer's law is obeyed in the concentration range of 10.0-60.0 and 0.5-3.0 microg/mL for ESC and CLO, respectively. Both methods have been successfully applied for the analysis of the drugs in a pharmaceutical formulation. Results of analysis were validated statistically and by recovery studies. PMID:18376583

  4. Application of the ratio difference spectrophotometry to the determination of ibuprofen and famotidine in their combined dosage form; Comparison with previously published spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Elzanfaly, Eman S.; Soudi, Aya T.; Salem, Maissa Y.

    2015-05-01

    Ratio difference spectrophotometric method was developed for the determination of ibuprofen and famotidine in their mixture form. Ibuprofen and famotidine were determined in the presence of each other by the ratio difference spectrophotometric (RD) method where linearity was obtained from 50 to 600 μg/mL and 2.5 to 25 μg/mL for ibuprofen and famotidine, respectively. The suggested method was validated according to ICH guidelines and successfully applied for the analysis of ibuprofen and famotidine in their pharmaceutical dosage forms without interference from any additives or excipients.

  5. Application of the ratio difference spectrophotometry to the determination of ibuprofen and famotidine in their combined dosage form: comparison with previously published spectrophotometric methods.

    PubMed

    Zaazaa, Hala E; Elzanfaly, Eman S; Soudi, Aya T; Salem, Maissa Y

    2015-05-15

    Ratio difference spectrophotometric method was developed for the determination of ibuprofen and famotidine in their mixture form. Ibuprofen and famotidine were determined in the presence of each other by the ratio difference spectrophotometric (RD) method where linearity was obtained from 50 to 600μg/mL and 2.5 to 25μg/mL for ibuprofen and famotidine, respectively. The suggested method was validated according to ICH guidelines and successfully applied for the analysis of ibuprofen and famotidine in their pharmaceutical dosage forms without interference from any additives or excipients.

  6. A method for accurate temperature measurement using infrared thermal camera.

    PubMed

    Tokunaga, Tomoharu; Narushima, Takashi; Yonezawa, Tetsu; Sudo, Takayuki; Okubo, Shuichi; Komatsubara, Shigeyuki; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2012-08-01

    The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

  7. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  8. Spectrophotometric system to develop a non-invasive method for monitoring of posidonia oceanica meadows

    NASA Astrophysics Data System (ADS)

    Menesatti, P.; Urbani, G.; Dolce, T.

    2007-09-01

    Posidonia oceanica (L.) is an endemic phanerogam of the Mediterranean Sea. It lives between 0.2 and 40 m depth and make up extensive meadows that play a fundamental role in the marine coast ecosystem. Near the coasts at higher anthropic pressure, Posidonia meadows present both quality and quantity damages (regression) due to the mechanical operations on the seabed (anchoring, drag netting, pipe lines) and the sea pollution. Nowadays, the seagrass regression is monitored by different systems: aereophotografic, side scan sonar, underwater television camera, direct underwater visual inspection. Scientific community is looking for to develop monitoring systems more reliable, rapid and non invasive. Aim of this study is to evaluate the application of a new spectrophotometric imaging system based on the acquisition of reflectance spectral images with a good optical (250 Kpixels) and spectral resolution (spectral range 400-970 nm, a total of 115 single wavelength, 5 nm step each one). First trials were made on Posidonia's leafs to evaluate the system capacity to recognize spectral differences between samples picked up at two different depths (0.3 - 4 m). High discrimination percentage (90%) were found between leaf samples as function of the different depths, analyzing the spectral data by Partial Least Squares model. Forward activities will stress the system capability also to evaluate different phenol concentrations on Posidonia leaves, an important index of physiologic vegetal damage, through direct underwater spectrophotometric monitoring.

  9. Stability-indicating spectrophotometric and spectrodensitometric methods for the determination of diacerein in the presence of its degradation product.

    PubMed

    Nebsen, Marianne; Abd El-Rahman, Mohamed K; Salem, Maissa Y; El-Kosasy, Amira M; El-Bardicy, Mohamed G

    2011-04-01

    Three sensitive, selective, and precise stability-indicating methods for the determination of the novel osteoarthritis drug, diacerein (DIA) in the presence of its alkaline degradation product (active metabolite, rhein) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D(1) ) spectrophotometric one, which allows the determination of DIA in the presence of its degradate at 322 nm (corresponding to zero crossing of the degradate) over a concentration range of 4-40 µg/mL with mean percentage recovery 100.21 ± 0.833. The second method is the first derivative of the ratio spectra (DD(1) ) by measuring the peak amplitude at 352 nm over the same concentration range as (D(1) ) spectrophotometric method, with mean percentage recovery 100.09 ± 0.912. The third method is a TLC-densitometric one, where DIA was separated from its degradate on silica gel plates using ethyl acetate:methanol:chloroform (8:1.5:0.5 v:v:v) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DIA at 340 nm over a concentration range of 1-10 µg/spot, with mean percentage recovery 100.24 ± 1.412. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DIA in pharmaceutical dosage forms without interference from other dosage form additives and the results were statistically compared with reference method. PMID:21500366

  10. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.; Lamie, Nesrine T.

    2016-02-01

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360 nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306 nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5 nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM.

  11. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Mohamed K.; Riad, Safaa M.; Abdel Gawad, Sherif A.; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-02-01

    Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95 ± 0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99 ± 1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88 ± 0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  12. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management.

    PubMed

    Mohamed, Heba M; Lamie, Nesrine T

    2016-02-15

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM.

  13. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product.

    PubMed

    Abd El-Rahman, Mohamed K; Riad, Safaa M; Abdel Gawad, Sherif A; Fawaz, Esraa M; Shehata, Mostafa A

    2015-02-01

    Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95±0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99±1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88±0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed. PMID:25456658

  14. Extractive spectrophotometric methods for determination of diltiazem HCl in pharmaceutical formulations using bromothymol blue, bromophenol blue and bromocresol green.

    PubMed

    Rahman, N; Hejaz-Azmi, S N

    2000-12-01

    Three simple and sensitive extractive spectrophotometric methods have been described for the assay of diltiazem hydrochloride either in pure form or in pharmaceutical formulations. The developed methods involve formation of coloured chloroform extractable ion-pair complexes of the drug with bromothymol blue (BTB), bromophenol blue (BPB) and bromocresol green (BCG) in acidic medium. The extracted complexes showed absorbance maxima at 415 nm for all three methods. Beer's law is obeyed in the concentration ranges 2.5-20.0, 2.5-10.0 and 2.5-12.5 microg ml(-1) with BTB, BPB and BCG, respectively. The methods have been applied to the determination of drug in commercial tablets and capsules. Results of analysis were validated statistically and through recovery studies.

  15. Evaluation of flow injection analysis method with spectrophotometric detection for the determination of atrazine in soil extracts.

    PubMed

    Martins, Elisandra C; Melo, Vander De F; Abate, Gilberto

    2016-09-01

    A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L(-1), respectively, for a linear response between 0.50 and 2.50 mg L(-1), and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils.

  16. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  17. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  18. Fourth-order derivative spectrophotometric method for simultaneous determination of pseudoephedrine and naproxen in pharmaceutical dosage forms

    PubMed Central

    Souri, Effat; Mosafer, Amir; Tehrani, Maliheh Barazandeh

    2016-01-01

    Combination dosage forms of naproxen sodium and pseudoephedrine hydrochloride are used for symptomatic treatment of cold and sinus disorders. In this study, fourth-order derivative spectrophotometric method was used for simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride. The method was linear over the range of 2-28 μg/ml for pseudoephedrine hydrochloride and 4-200 μg/ml for naproxen sodium. The within-day and between-day coefficient of variation values were less than 5.8% and 2.5% for pseudoephedrine hydrochloride and naproxen sodium, respectively. The application of the proposed method for simultaneous determination of naproxen and pseudoephedrine in dosage forms was demonstrated without any special pretreatment. PMID:27168748

  19. Fourth-order derivative spectrophotometric method for simultaneous determination of pseudoephedrine and naproxen in pharmaceutical dosage forms.

    PubMed

    Souri, Effat; Mosafer, Amir; Tehrani, Maliheh Barazandeh

    2016-01-01

    Combination dosage forms of naproxen sodium and pseudoephedrine hydrochloride are used for symptomatic treatment of cold and sinus disorders. In this study, fourth-order derivative spectrophotometric method was used for simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride. The method was linear over the range of 2-28 μg/ml for pseudoephedrine hydrochloride and 4-200 μg/ml for naproxen sodium. The within-day and between-day coefficient of variation values were less than 5.8% and 2.5% for pseudoephedrine hydrochloride and naproxen sodium, respectively. The application of the proposed method for simultaneous determination of naproxen and pseudoephedrine in dosage forms was demonstrated without any special pretreatment.

  20. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement.

    PubMed

    Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2007-02-28

    Dietary antioxidants widely found in fruits and vegetables may serve the task of reducing oxidative damage in humans induced by free radicals and reactive oxygen species under 'oxidative stress' conditions. The aim of this work is to develop a simple, low-cost, sensitive, and diversely applicable indirect spectrophotometric method for the determination of total antioxidant capacity of several plants. The method is based on the oxidation of antioxidants with cerium(IV) sulfate in dilute sulfuric acid at room temperature. The Ce(IV) reducing capacity of the sample is measured under carefully adjusted conditions of oxidant concentration and pH such that only antioxidants and not other organic compounds would be oxidized. The spectrophotometric determination of the remaining Ce(IV) was performed after completion of reaction with antioxidants. Quercetin and gallic acid were used as standards for flavonoids and phenolic acids, respectively, and results of antioxidant measurements were reported as trolox equivalents. The developed procedure was successfully applied to the assay of total antioxidant capacity due to simple compounds such as trolox, quercetin, gallic acid, ascorbic acid, catechin, naringin, naringenin, caffeic acid, chlorogenic acid, ferulic acid, and p-coumaric acid, and due to phenolic acids and flavonoids in the arieal parts of nettle (Urtica Dioica L.). Blank correction of significantly absorbing plant extracts at 320nm could be made with the aid of spectrophotometric titration. Plant selection was made in respect to high antioxidant content, and extraction was made with water. The proposed method was reproducible, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds were correlated to those found by reference methods such as ABTS and CUPRAC. Since the TEAC coefficients found with the proposed method of naringin-naringenin and rutin-catechin pairs were close to each other, this Ce(IV)-based assay

  1. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  2. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  3. Validated spectrofluorimetric and spectrophotometric methods for the determination of brimonidine tartrate in ophthalmic solutions via derivatization with NBD-Cl. Application to stability study.

    PubMed

    Ibrahim, F; El-Enany, N; El-Shaheny, R N; Mikhail, I E

    2015-05-01

    Two simple, selective and accurate methods were developed and validated for the determination of brimonidine tartrate (BT) in pure state and pharmaceutical formulations. Both methods are based on the coupling of the drug with 4-chloro-7-nitro-2,1,3-benzoxadiazole in borate buffer (pH 8.5) at 70 °C and measurement of the reaction product spectrophotometrically at 407 nm (method I) or spectrofluorimetrically at 528 nm upon excitation at 460 nm (method II). The calibration graphs were rectilinear over the concentration ranges of 1.0-16.0 and 0.1-4.0 µg/mL with lower detection limits of 0.21 and 0.03, and lower quantification limits of 0.65 and 0.09 µg/mL for methods I and II, respectively. Both methods were successfully applied to the analysis of commercial ophthalmic solution with mean recovery of 99.50 ± 1.00 and 100.13 ± 0.71%, respectively. Statistical analysis of the results obtained by the proposed methods revealed good agreement with those obtained using a comparison method. The proposed spectrofluorimetric method was extended to a stability study of BT under different ICH-outlined conditions such as alkaline, acidic, oxidative and photolytic degradation. Furthermore, the kinetics of oxidative degradation of the drug was investigated and the apparent first-order reaction rate constants, half-life times and Arrhenius equation were estimated. The proposed methods are practical and valuable for routine applications in quality control laboratories for the analysis of BT.

  4. Derivative Spectrophotometric Method for Estimation of Antiretroviral Drugs in Fixed Dose Combinations

    PubMed Central

    P.B., Mohite; R.B., Pandhare; S.G., Khanage

    2012-01-01

    Purpose: Lamivudine is cytosine and zidovudine is cytidine and is used as an antiretroviral agents. Both drugs are available in tablet dosage forms with a dose of 150 mg for LAM and 300 mg ZID respectively. Method: The method employed is based on first order derivative spectroscopy. Wavelengths 279 nm and 300 nm were selected for the estimation of the Lamovudine and Zidovudine respectively by taking the first order derivative spectra. The conc. of both drugs was determined by proposed method. The results of analysis have been validated statistically and by recovery studies as per ICH guidelines. Result: Both the drugs obey Beer’s law in the concentration range 10-50 μg mL-1,for LAM and ZID; with regression 0.9998 and 0.9999, intercept – 0.0677 and – 0.0043 and slope 0.0457 and 0.0391 for LAM and ZID, respectively.The accuracy and reproducibility results are close to 100% with 2% RSD. Conclusion: A simple, accurate, precise, sensitive and economical procedures for simultaneous estimation of Lamovudine and Zidovudine in tablet dosage form have been developed. PMID:24312779

  5. Extraction-Spectrophotometric Method for Determination of Gallium(III) in the Form of Ion Associate with a Monotetrazolium Salt

    NASA Astrophysics Data System (ADS)

    Stojnova, K. T.; Divarov, V. V.; Racheva, P. V.; Lekova, V. D.

    2015-11-01

    The possibility of application of the ternary ion-association complex of gallium(III), 4-(2-pyridyl azo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) for extraction-spectrophotometric determination of gallium(III) was studied. The liquid-liquid extraction system Ga(III)-PAR-TTC-H2O-CHCl3 was applied for this purpose. The effect of the foreign ions on the extraction was investigated. Based on the obtained results, a sensitive, relatively simple, and inexpensive method for determination of gallium(III) in a model mixture was developed, which can be implemented in industrial, biological, medical, and pharmaceutical samples.

  6. New simple method for fast and accurate measurement of volumes

    NASA Astrophysics Data System (ADS)

    Frattolillo, Antonio

    2006-04-01

    A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

  7. Simultaneous determination of atorvastatin calcium and olmesartan medoxomil in a pharmaceutical formulation by reversed phase high-performance liquid chromatography, high-performance thin-layer chromatography, and UV spectrophotometric methods.

    PubMed

    Soni, Hiral; Kothari, Charmy; Khatri, Deepak; Mehta, Priti

    2014-01-01

    Validated RP-HPLC, HPTLC, and UV spectrophotometric methods have been developed for the simultaneous determination of atorvastatin calcium (ATV) and olmesartan medoxomil (OLM) in a pharmaceutical formulation. The RP-HPLC separation was achieved on a Kromasil C18 column (250 x 4.6 mm, 5 microm particle size) using 0.01 M potassium dihydrogen o-phosphate (pH 4 adjusted with o-phosphoric acid)-acetonitrile (50 + 50, v/v) as the mobile phase at a flow rate of 1.5 mL/min. Quantification was achieved by UV detection at 276 nm. The HPTLC separation was achieved on precoated silica gel 60F254 plates using chloroform-methanol-acetonitrile (4 + 2+ 4, v/v/v) mobile phase. Quantification was achieved with UV detection at 276 nm. The UV-Vis spectrophotometric method was based on the simultaneous equation method that involves measurement of absorbance at two wavelengths, i.e., 255 nm (lambda max of OLM) and 246.2 nm (lambda max of ATV) in methanol. All three methods were validated as per International Conference on Harmonization guidelines. The proposed methods were simple, precise, accurate, and applicable for the simultaneous determination of ATV and OLM in a marketed formulation. The results obtained by applying the proposed methods were statistically analyzed and were found satisfactory.

  8. Derivative spectrophotometric method for simultaneous determination of zofenopril and fluvastatin in mixtures and pharmaceutical dosage forms.

    PubMed

    Stolarczyk, Mariusz; Maślanka, Anna; Apola, Anna; Rybak, Wojciech; Krzek, Jan

    2015-09-01

    Fast, accurate and precise method for the determination of zofenopril and fluvastatin was developed using spectrophotometry of the first (D1), second (D2), and third (D3) order derivatives in two-component mixtures and in pharmaceutical preparations. It was shown, that the developed method allows for the determination of the tested components in a direct manner, despite the apparent interference of the absorption spectra in the UV range. For quantitative determinations, "zero-crossing" method was chosen, appropriate wavelengths for zofenopril were: D1 λ=270.85 nm, D2 λ=286.38 nm, D3 λ=253.90 nm. Fluvastatin was determined at wavelengths: D1 λ=339.03 nm, D2 λ=252.57 nm, D3 λ=258.50 nm, respectively. The method was characterized by high sensitivity and accuracy, for zofenopril LOD was in the range of 0.19-0.87 μg mL(-1), for fluvastatin 0.51-1.18 μg mL(-1), depending on the class of derivative, and for zofenopril and fluvastatin LOQ was 0.57-2.64 μg mL(-1) and 1.56-3.57 μg mL(-1), respectively. The recovery of individual components was within the range of 100±5%. For zofenopril, the linearity range was estimated between 7.65 μg mL(-1) and 22.94 μg mL(-1), and for fluvastatin between 5.60 μg mL(-1) and 28.00 μg mL(-1). PMID:25863461

  9. A continuous spectrophotometric method based on enzymatic cycling for determining L-glutamate.

    PubMed

    Valero, E; Garcia-Carmona, F

    1998-06-01

    A continuous spectrophotometric assay for determining low levels of L-glutamate is described. The assay, which involves the enzymes L-glutamate oxidase and glutamic-pyruvic transaminase, is based on the recycling of L-glutamate into alpha-ketoglutarate, with the concomitant appearance of one molecule of hydrogen peroxide in each turn of the cycle. This is subsequently reduced by means of a peroxidase-coupled reaction, using 2, 2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) as substrate. In this way the interference observed in the cyclic assay using glutamic-oxalacetic transaminase, which is due to the fact that L-aspartate is also a substrate of L-glutamate oxidase, is eliminated. A kinetic study of the system is presented, with the accumulation of chromophore being seen to undergo a transient phase, which is dependent both on the cycling rate and on the auxiliary enzyme concentration. The kinetic parameters characterizing the system have been determined, making it possible to optimize costs with respect to the enzymes involved in the cycle, since the minimum amount needed for a given rate constant of the cycle can be calculated.

  10. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    NASA Astrophysics Data System (ADS)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  11. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  12. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  13. Development and Validation of UV-Visible Spectrophotometric Method for Simultaneous Determination of Eperisone and Paracetamol in Solid Dosage Form

    PubMed Central

    Khanage, Shantaram Gajanan; Mohite, Popat Baban; Jadhav, Sandeep

    2013-01-01

    Purpose: Eperisone Hydrochloride (EPE) is a potent new generation antispasmodic drug which is used in the treatment of moderate to severe pain in combination with Paracetamol (PAR). Both drugs are available in tablet dosage form in combination with a dose of 50 mg for EPE and 325 mg PAR respectively. Methods: The method is based upon Q-absorption ratio method for the simultaneous determination of the EPE and PAR. Absorption ratio method is used for the ratio of the absorption at two selected wavelength one of which is the iso-absorptive point and other being the λmax of one of the two components. EPE and PAR shows their iso-absorptive point at 260 nm in methanol, the second wavelength used is 249 nm which is the λmax of PAR in methanol. Results: The linearity was obtained in the concentration range of 5-25 μg/mL for EPE and 2-10 μg/mL for PAR. The proposed method was effectively applied to tablet dosage form for estimation of both drugs. The accuracy and reproducibility results are close to 100% with 2% RSD. Results of the analysis were validated statistically and found to be satisfactory. The results of proposed method have been validated as per ICH guidelines. Conclusion: A simple, precise and economical spectrophotometric method has been developed for the estimation of EPE and PAR in pharmaceutical formulation. PMID:24312876

  14. Validation of UV spectrophotometric methods for the determination of dothiepin hydrochloride in pharmaceutical dosage form and stress degradation studies

    NASA Astrophysics Data System (ADS)

    Abdulrahman, Sameer A. M.; Basavaiah, K.; Cijo, M. X.; Vinay, K. B.

    2012-11-01

    Spectrophotometric methods have been developed for the determination of dothiepin hydrochloride (DOTH) in both pure and tablet dosage form and their limits of detection and quantification have been evaluated. The methods are based on the measurement of the absorbance of a DOTH solution either in 0.1 N HCl at 229 nm (method A) or in methanol at 231 nm (method B). Beer's law is obeyed over a concentration range of 1-16 μg/ml DOTH for both methods. Molar absorptivity values are calculated to be 2.48 × 104 and 2.42 × 104 l/(mol × cm) with Sandell sensitivity values of 0.0134 and 0.0137 μg/cm2 for methods A and B, respectively. The degradation behavior of DOTH was investigated under different stress conditions such as acid hydrolysis, alkaline hydrolysis, water hydrolysis, oxidation, dry heat treatment, and UV-degradation. The drug undergoes significant degradation under oxidative conditions only.

  15. Spectrophotometric determination of organic nitrogen by a modified Lassaigne method and its application to meat products and baby food.

    PubMed

    Demirata, Birsen; Apak, Resat; Afsar, Hüseyin; Tor, Izzet

    2002-01-01

    A modified Lassaigne method was developed for N determination based on fusion of the organic substance with metallic Na, conversion of the cyanide in the aqueous leachate to thiocyanate by ammonium polysulfide treatment, and colorimetric measurement of the thiocyanate formed by the addition of excessive ferric ions in acidic medium. The mean molar absorptivity of the Fe(NCS)2+ complex at 480 nm is 2.96 x 10(3) L/mol x cm, enabling quantitation of 0.25-7.72 ppm N (linear range) in the final solution. The relative amounts of Na, (NH4)2S2, and Fe(III) with respect to nitrogen in the analyte were optimized. The developed method was successfully applied to the determination of N in various brands of baby food, and it was compared statistically with the conventional Kjeldahl and elemental analysis methods. Protein nitrogen in a number of meat products was also precisely determined by the developed method. Thus, the total digestion time of the conventional Kjeldahl method was reduced considerably (e.g., to approximately 15 min for a dried sample) with a relatively simple spectrophotometric method requiring no sophisticated instrumentation.

  16. Development of a spectrophotometric method for on-site analysis of peroxygens during in-situ chemical oxidation applications.

    PubMed

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Muff, Jens

    2014-01-01

    Activated peroxygens are frequently used as active agents in in-situ chemical oxidation (ISCO) contaminated site remediation applications, and fast and simple quantitative analysis of these species on site is necessary. In this work, the use of a spectrophotometric method based on classic iodometric titration is studied for quantitative analysis of S2O8(2-) and H2O2. Instead of a back-titration step, the absorbance of the yellow iodide colour was measured at 352 nm in the presence of a bicarbonate buffer. A linear calibration curve was obtained from 0 to 0.1 mM for both S2O8(2-) and H2O2. By dilution, the method can be used for all concentrations typically applied in the field. Concerning pH dependence, neutral pH levels caused no significant error whereas pH levels above 8 caused a 9% and 6% deviation from the theoretical peroxygen concentrations. Furthermore, the method showed little dependence on other matrix components, and absorbance was stable (<2% change) for more than a week. Overall, the method proved to be fast and simple, which are important features for a field method. PMID:25429454

  17. Spectrophotometric micro method for measurement of dialyzable calcium by use of cresolphthalein complexone and continuous-flow analysis.

    PubMed

    Toffaletti, J; Kirvan, K

    1980-10-01

    We adapted a method for dialyzable calcium from fluorometric detection by use of calcein to a more specific spectrophotometric determination with cresolphthalein complexone. The reagents are available commercially and perform satisfactorily with respect to noise level, drift, stability, and sensitivity. Construction of the continuous-flow manifold with commercially available components (injection blocks, coils, and dialyzer) and the use of a 9-mm pathlength flow cell in an AutoAnalyzer I colorimeter have permitted a sampling rate of 70/h, and decreased the volume of serum required to 130 microL. A comparison of 71 sera analyzed by the present and the calcein method gave means of 1.39 (SD 0.14) and 1.39 (SD 0.13) mmol/L, respectively. The regression equation was: present method = 1.016 calcein--0.022 mmol/L (r = 0.97). The CV for the new method, as determined from 46 randomized duplicate analyses, was < 1%. The reference interval, as evaluated from results for 93 different individuals, was 1.26-1.43 mmol/L. We conclude that our methods is an improvement with respect to noise level, drift, specificity, detectability, and more general availability of instrumentation. Moreover, the smaller sample volume required makes possible the routine measurement of dialyzable calcium in pediatric samples.

  18. Novel spectrophotometric method for determination of some macrolide antibiotics in pharmaceutical formulations using 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ashour, Safwan; Bayram, Roula

    2012-12-01

    New, simple and rapid spectrophotometric method has been developed and validated for the assay of two macrolide drugs, azithromycin (AZT) and erythromycin (ERY) in pure and pharmaceutical formulations. The proposed method was based on the reaction of AZT and ERY with sodium 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline medium at 25 °C to form an orange-colored product of maximum absorption peak at 452 nm. All variables were studied to optimize the reaction conditions and the reaction mechanism was postulated. Beer's law was obeyed in the concentration range 1.5-33.0 and 0.92-8.0 μg mL-1 with limit of detection values of 0.026 and 0.063 μg mL-1 for AZT and ERY, respectively. The calculated molar absorptivity values are 4.3 × 104 and 12.3 × 104 L mol-1 cm-1 for AZT and ERY, respectively. The proposed methods were successfully applied to the determination of AZT and ERY in formulations and the results tallied well with the label claim. The results were statistically compared with those of an official method by applying the Student's t-test and F-test. No interference was observed from the concomitant substances normally added to preparations.

  19. Development of sensitive spectrofluorimetric and spectrophotometric methods for the determination of duloxetine in capsule and spiked human plasma.

    PubMed

    Sagirli, Olcay; Toker, Sıdıka Erturk; Önal, Armağan

    2014-12-01

    A new, sensitive and selective spectrofluorimetric method has been developed for the determination of duloxetine (DLX) in capsule and spiked human plasma. DLX, as a secondary amine compound, reacts with 7-chloro-4-nitrobenzofurazon (NBD-Cl), a highly sensitive fluorogenic and chromogenic reagent used in many investigations. The method is based on the reaction between the drug and NBD-Cl in borate buffer at pH 8.5 to yield a highly fluorescent derivative that is measured at 523 nm after excitation at 478 nm. The fluorescence intensity was directly proportional to the concentration over the range 50-250 ng/mL. The reaction product was also measured spectrophotometrically. The relation between the absorbance at 478 nm and the concentration is rectilinear over the range 1.0-12.0 µg/mL. The methods were successfully applied for the determination of this drug in pharmaceutical dosage form. The spectrofluorimetric method was also successfully applied to the determination of duloxetine in spiked human plasma. The suggested procedures could be used for the determination of DLX in pure form, capsules and human plasma being sensitive, simple and selective.

  20. Kinetic spectrophotometric method as a new strategy for the determination of vitamin B 9 in pharmaceutical and biological samples

    NASA Astrophysics Data System (ADS)

    Shishehbore, M. Reza; Sheibani, A.; Haghdost, A.

    2011-10-01

    In this study, a new method is proposed for the determination of trace amounts of folic acid (vitamin B 9). This method is based on the inhibitory effect of folic acid on the reaction of Thionine and bromate in sulfuric acid media. The reaction can be monitored spectrophotometrically by measuring the decrease in absorbance at 601 nm ( λmax). The effective variables on the reaction rate were investigated. Under optimum experimental conditions, the method allows to determine of the folic acid in a wide linear range with two linear segments. The limit of detection was 0.36 μg mL -1 of folic acid. Relative standard deviations of six replicate determinations of 5.0 and 50.0 μg mL -1 of folic acid were 1.18 and 1.02%, respectively. The interfering effect of the different species was also investigated. The method was evaluated by quantifying of folic acid in biological and pharmaceutical samples with satisfactory assay results.

  1. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  2. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  3. Different Spectrophotometric and TLC-Densitometric Methods for Determination of Mesalazine in Presence of Its Two Toxic Impurities.

    PubMed

    Morcoss, Martha Moheb; Abdelwahab, Nada Sayed; Ali, Nouruddin Wagieh; Elsaady, Mohammed Taha

    2016-01-01

    Two selective spectrophotometric and TLC-densitometric methods were developed for determination of mesalazine (ME) and its two toxic impurities, 4-amino phenol (4AP) and salicylic acid (SA) without preliminary separation. The proposed methods are: ratio difference in the subtracted spectra (RDSS) {Method 1}, area under the curve (AUC) {Method 2} and TLC-densitometric {Method 3}. In method {1} combination of measuring the amplitude of the constant at 350 nm (using standard spectrum of 10 µg/mL ME as a divisor) and ratio difference in the subtracted ratio spectrum for determination of 4AP and SA using the ratio difference at 221.4 and 242.2 nm, 230 and 241.2 nm, respectively. In method {2} ME was determined by direct measuring the AUC in the wavelength range of 350-370 nm while the impurities could be determined by dividing their spectra by standard spectrum of 10 µg/mL ME then interference from ME was eliminated by subtracting the amplitude of the constant at 350 nm then multiplying by the divisor. AUC in the range of 220-230 and 235-245 nm was used for measuring concentrations of 4AP and SA. On the other hand, the third method {3} is TLC-densitometric method at which chromatographic separation was achieved using ethyl acetate-methanol-triethylamine (8.5 : 2 : 0.7, v/v/v) as a developing system with UV scanning at 230 nm. The validation of the proposed methods was performed according to International Conference on Harmonization (ICH) guidelines. No significant difference was found when these methods were compared to the reported one. PMID:27581631

  4. Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method.

    PubMed

    Fukushima, Romualdo S; Kerley, Monty S

    2011-04-27

    A nongravimetric acetyl bromide lignin (ABL) method was evaluated to quantify lignin concentration in a variety of plant materials. The traditional approach to lignin quantification required extraction of lignin with acidic dioxane and its isolation from each plant sample to construct a standard curve via spectrophotometric analysis. Lignin concentration was then measured in pre-extracted plant cell walls. However, this presented a methodological complexity because extraction and isolation procedures are lengthy and tedious, particularly if there are many samples involved. This work was targeted to simplify lignin quantification. Our hypothesis was that any lignin, regardless of its botanical origin, could be used to construct a standard curve for the purpose of determining lignin concentration in a variety of plants. To test our hypothesis, lignins were isolated from a range of diverse plants and, along with three commercial lignins, standard curves were built and compared among them. Slopes and intercepts derived from these standard curves were close enough to allow utilization of a mean extinction coefficient in the regression equation to estimate lignin concentration in any plant, independent of its botanical origin. Lignin quantification by use of a common regression equation obviates the steps of lignin extraction, isolation, and standard curve construction, which substantially expedites the ABL method. Acetyl bromide lignin method is a fast, convenient analytical procedure that may routinely be used to quantify lignin.

  5. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples. PMID:27040110

  6. Development of a Rapid Derivative Spectrophotometric Method for Simultaneous Determination of Acetaminophen, Diphenhydramine and Pseudoephedrine in Tablets

    PubMed Central

    Souri, Effat; Rahimi, Aghil; Shabani Ravari, Nazanin; Barazandeh Tehrani, Maliheh

    2015-01-01

    A mixture of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride is used for the symptomatic treatment of common cold. In this study, a derivative spectrophotometric method based on zero-crossing technique was proposed for simultaneous determination of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride. Determination of these drugs was performed using the 1D value of acetaminophen at 281.5 nm, 2D value of diphenhydramine hydrochloride at 226.0 nm and 4D value of pseudoephedrine hydrochloride at 218.0 nm. The analysis method was linear over the range of 5-50, 0.25-4, and 0.5-5 µg/mL for acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride, respectively. The within-day and between-day CV and error values for all three compounds were within an acceptable range (CV<2.2% and error<3%). The developed method was used for simultaneous determination of these drugs in pharmaceutical dosage forms and no interference from excipients was observed. PMID:25901150

  7. Development of a rapid derivative spectrophotometric method for simultaneous determination of acetaminophen, diphenhydramine and pseudoephedrine in tablets.

    PubMed

    Souri, Effat; Rahimi, Aghil; Shabani Ravari, Nazanin; Barazandeh Tehrani, Maliheh

    2015-01-01

    A mixture of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride is used for the symptomatic treatment of common cold. In this study, a derivative spectrophotometric method based on zero-crossing technique was proposed for simultaneous determination of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride. Determination of these drugs was performed using the (1)D value of acetaminophen at 281.5 nm, (2)D value of diphenhydramine hydrochloride at 226.0 nm and (4)D value of pseudoephedrine hydrochloride at 218.0 nm. The analysis method was linear over the range of 5-50, 0.25-4, and 0.5-5 µg/mL for acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride, respectively. The within-day and between-day CV and error values for all three compounds were within an acceptable range (CV<2.2% and error<3%). The developed method was used for simultaneous determination of these drugs in pharmaceutical dosage forms and no interference from excipients was observed.

  8. Development of a rapid derivative spectrophotometric method for simultaneous determination of acetaminophen, diphenhydramine and pseudoephedrine in tablets.

    PubMed

    Souri, Effat; Rahimi, Aghil; Shabani Ravari, Nazanin; Barazandeh Tehrani, Maliheh

    2015-01-01

    A mixture of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride is used for the symptomatic treatment of common cold. In this study, a derivative spectrophotometric method based on zero-crossing technique was proposed for simultaneous determination of acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride. Determination of these drugs was performed using the (1)D value of acetaminophen at 281.5 nm, (2)D value of diphenhydramine hydrochloride at 226.0 nm and (4)D value of pseudoephedrine hydrochloride at 218.0 nm. The analysis method was linear over the range of 5-50, 0.25-4, and 0.5-5 µg/mL for acetaminophen, diphenhydramine hydrochloride and pseudoephedrine hydrochloride, respectively. The within-day and between-day CV and error values for all three compounds were within an acceptable range (CV<2.2% and error<3%). The developed method was used for simultaneous determination of these drugs in pharmaceutical dosage forms and no interference from excipients was observed. PMID:25901150

  9. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.

  10. Development and application of a shipboard method for spectrophotometric determination of trace dissolved manganese in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Feng, Sichao; Huang, Yongming; Yuan, Dongxing; Zhu, Yong; Zhou, Tingjin

    2015-01-01

    A shipboard method for the determination of trace dissolved manganese in estuarine and coastal waters was developed using a technique of reverse flow injection analysis, which adopted a 1-m liquid waveguide capillary cell and spectrophotometric detection of manganese derivation with 1-(2-pyridylazo)-2-naphthol (PAN). The design of dual-sample-carrier speeded up the sample throughput and eliminated the Schlieren effect. The salinity of estuarine and coastal waters caused a huge increase in the blank absorption value at the maximum absorption wavelength; therefore, a less sensitive detection wavelength was selected to achieve a low blank value while the method sensitivity was not significantly decreased. Method parameters were optimized. The salinity effect from estuarine and coastal waters was carefully investigated, and interference from iron was evaluated. The proposed method had high sensitivity with a detection limit of 3.0 nmol L-1 and a wide linear range of 10-1500 nmol L-1 for dissolved manganese in seawater (S=35). The analytical results of five water samples with different salinities obtained using the proposed method showed good agreement with those using a reference ICP-MS method. The sample throughput of the proposed method was 120 h-1, which was capable of obtaining high spatial and temporal resolution data in shipboard analysis. The proposed method had the advantages of convenient application in estuarine and coastal waters with different salinities, low detection limit, as well as high sample throughput. The proposed method was successfully applied to a 24 h on-line analysis and a shipboard underway analysis of dissolved manganese in the Jiulongjiang Estuary.

  11. Comparative study of three modified numerical spectrophotometric methods: an application on pharmaceutical ternary mixture of aspirin, atorvastatin and clopedogrel.

    PubMed

    Issa, Mahmoud Mohamed; Nejem, R'afat Mahmoud; Shanab, Alaa Abu; Hegazy, Nahed Diab; Stefan-van Staden, Raluca-Ioana

    2014-07-15

    Three novel numerical methods were developed for the spectrophotometric multi-component analysis of capsules and synthetic mixtures of aspirin, atorvastatin and clopedogrel without any chemical separation. The subtraction method is based on the relationship between the difference in absorbance at four wavelengths and corresponding concentration of analyte. In this method, the linear determination ranges were 0.8-40 μg mL(-1) aspirin, 0.8-30 μg mL(-1) atorvastatin and 0.5-30 μg mL(-1) clopedogrel. In the quotient method, 0.8-40 μg mL(-1) aspirin, 0.8-30 μg mL(-1) atorvastatin and 1.0-30 μg mL(-1) clopedogrel were determine from spectral data at the wavelength pairs that show the same ratio of absorbance for other two species. Standard addition method was used for resolving ternary mixture of 1.0-40 μg mL(-1) aspirin, 0.8-30 μg mL(-1) atorvastatin and 2.0-30 μg mL(-1) clopedogrel. The proposed methods were validated. The reproducibility and repeatability were found satisfactory which evidence was by low values of relative standard deviation (<2%). Recovery was found to be in the range (99.6-100.8%). By adopting these methods, the time taken for analysis was reduced as these methods involve very limited steps. The developed methods were applied for simultaneous analysis of aspirin, atorvastatin and clopedogrel in capsule dosage forms and results were in good concordance with alternative liquid chromatography.

  12. Comparative study of three modified numerical spectrophotometric methods: An application on pharmaceutical ternary mixture of aspirin, atorvastatin and clopedogrel

    NASA Astrophysics Data System (ADS)

    Issa, Mahmoud Mohamed; Nejem, R.'afat Mahmoud; Shanab, Alaa Abu; Hegazy, Nahed Diab; Stefan-van Staden, Raluca-Ioana

    2014-07-01

    Three novel numerical methods were developed for the spectrophotometric multi-component analysis of capsules and synthetic mixtures of aspirin, atorvastatin and clopedogrel without any chemical separation. The subtraction method is based on the relationship between the difference in absorbance at four wavelengths and corresponding concentration of analyte. In this method, the linear determination ranges were 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 0.5-30 μg mL-1 clopedogrel. In the quotient method, 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 1.0-30 μg mL-1 clopedogrel were determine from spectral data at the wavelength pairs that show the same ratio of absorbance for other two species. Standard addition method was used for resolving ternary mixture of 1.0-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 2.0-30 μg mL-1 clopedogrel. The proposed methods were validated. The reproducibility and repeatability were found satisfactory which evidence was by low values of relative standard deviation (<2%). Recovery was found to be in the range (99.6-100.8%). By adopting these methods, the time taken for analysis was reduced as these methods involve very limited steps. The developed methods were applied for simultaneous analysis of aspirin, atorvastatin and clopedogrel in capsule dosage forms and results were in good concordance with alternative liquid chromatography.

  13. Spectrophotometric Determination of Certain Benzimidazole Proton Pump Inhibitors

    PubMed Central

    Syed, A. A.; Syeda, Ayesha

    2008-01-01

    Spectrophotometric method for the determination of certain proton pump inhibitors belonging to the benzimidazole class of compounds has been developed. The method is based on the reaction of omeprazole, lansoprazole, pantoprazole, rabeprazole and esomeprazole with iron (III) and subsequent reaction with ferricyanide under neutral condition which yields Prussian blue product with maximum absorption at 720–730 nm. The commonly encountered excipients and additives that often accompany pharmaceutical preparations did not interfere with the determination. The method was applied for the determination of omeprazole, lansoprazole, pantoprazole, rabeprazole and esomeprazole in pharmaceutical preparations and no difference was found statistically. Thus, the spectrophotometric method can be applied as inexpensive, rapid, easy, accurate and precise method for the routine analysis of the five proton pump inhibitors in pharmaceutical preparations. PMID:20046782

  14. Spectrophotometric methods based on 2,6-dichloroindophenol acetate and indoxylacetate for butyrylcholinesterase activity assay in plasma.

    PubMed

    Pohanka, Miroslav; Drtinova, Lucie

    2013-03-15

    Butyrylcholinesterase (BChE) is an enzyme presented in quite high level in blood plasma where it participates in detoxification reactions. Due to fact that the enzyme is constituted in livers, it is a marker of liver parenchyma function. It can be used for diagnosis of poisoning for e.g., nerve agents or carbofuran and intoxication by some drugs such as rivastigmine. The present experiment is devoted for the creation of new spectrophotometric tests for assay of BChE activity in biological samples. Standard Ellman's method was compared with use of 2,6-dichloroindophenol acetate and indoxylacetate as chromogenic substrates. Maximal velocities and Michaelis constants were calculated for the substrates. Considering calibration, 2,6-dichloroindophenol acetate provided the lowest limit of detection: 1.20 × 10(-9)kat and a long linear range. All methods were verified using pooled human plasma samples and tested for potential interferents. 2,6-dichloroindophenol acetate is recommended as suitable substrate for BChE assay in clinical diagnostics.

  15. Spectrophotometric method for the assay of steroid 5α-reductase activity of rat liver and prostate microsomes.

    PubMed

    Iwai, Atsushi; Yoshimura, Teruki; Wada, Keiji; Watabe, Satoshi; Sakamoto, Yuki; Ito, Etsuro; Miura, Toshiaki

    2013-01-01

    A simple spectrophotometric method for the assay of steroid 5α-reductase (5α-SR) was developed in which 5α-dihydrotestosterone (5α-DHT) and 5α-androstane-3α,17β-diol (5α-diol), metabolites formed in the NADPH-dependent reduction of testosterone with enzyme sources of 5α-SR, were measured by enzymatic cycling using 3α-hydroxysteroid dehydrogenase in the presence of excess thionicotinamide-adenine dinucleotide (thio-NAD) and NADH. It was found that 5α-SR activity was proportional to the accumulated thio-NADH having an absorption maximum at 400 nm. Because of the high cycling rate (> 600 cycle per min) and no interference from testosterone, enzymatic cycling can determine the sum of 5α-DHT and 5α-diol at the picomole level without separation from excess testosterone. The present method was readily applicable to the assay of 5α-SR activity of rat liver and prostate microsomes as well as to the assay of inhibitory activity of finasteride, a synthetic inhibitor of 5α-SR. PMID:23574674

  16. Simultaneous estimation of ramipril, acetylsalicylic acid and atorvastatin calcium by chemometrics assisted UV-spectrophotometric method in capsules.

    PubMed

    Sankar, A S Kamatchi; Vetrichelvan, Thangarasu; Venkappaya, Devashya

    2011-09-01

    In the present work, three different spectrophotometric methods for simultaneous estimation of ramipril, aspirin and atorvastatin calcium in raw materials and in formulations are described. Overlapped data was quantitatively resolved by using chemometric methods, viz. inverse least squares (ILS), principal component regression (PCR) and partial least squares (PLS). Calibrations were constructed using the absorption data matrix corresponding to the concentration data matrix. The linearity range was found to be 1-5, 10-50 and 2-10 μg mL-1 for ramipril, aspirin and atorvastatin calcium, respectively. The absorbance matrix was obtained by measuring the zero-order absorbance in the wavelength range between 210 and 320 nm. A training set design of the concentration data corresponding to the ramipril, aspirin and atorvastatin calcium mixtures was organized statistically to maximize the information content from the spectra and to minimize the error of multivariate calibrations. By applying the respective algorithms for PLS 1, PCR and ILS to the measured spectra of the calibration set, a suitable model was obtained. This model was selected on the basis of RMSECV and RMSEP values. The same was applied to the prediction set and capsule formulation. Mean recoveries of the commercial formulation set together with the figures of merit (calibration sensitivity, selectivity, limit of detection, limit of quantification and analytical sensitivity) were estimated. Validity of the proposed approaches was successfully assessed for analyses of drugs in the various prepared physical mixtures and formulations.

  17. A simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Zarabi, Sanaz

    2015-01-01

    In this paper, a simple and cost effective method was developed for extraction and pre-concentration of carmine in food samples by using cloud point extraction (CPE) prior to its spectrophotometric determination. Carmine was extracted from aqueous solution using Triton X-100 as extracting solvent. The effects of main parameters such as solution pH, surfactant and salt concentrations, incubation time and temperature were investigated and optimized. Calibration graph was linear in the range of 0.04-5.0 μg mL(-1) of carmine in the initial solution with regression coefficient of 0.9995. The limit of detection (LOD) and limit of quantification were 0.012 and 0.04 μg mL(-1), respectively. Relative standard deviation (RSD) at low concentration level (0.05 μg mL(-1)) of carmine was 4.8% (n=7). Recovery values in different concentration levels were in the range of 93.7-105.8%. The obtained results demonstrate the proposed method can be applied satisfactory to determine the carmine in food samples.

  18. Developing a new micro cloud point extraction method for simultaneous preconcentration and spectrophotometric determination of uranium and vanadium in brine.

    PubMed

    Ghasemi, Elham; Kaykhaii, Massoud

    2015-01-01

    A fast, simple, and economical method was developed for simultaneous spectrophotometric determination of uranium(VI) and vanadium(V) in water samples based on micro cloud point extraction (MCPE) at room temperature. This is the first report on the simultaneous extraction and determination of U(VI) and V(V). In this method, Triton X114 was employed as a non-ionic surfactant for the cloud point procedure and 4-(2-pyridylazo) resorcinol (PAR) was used as the chelating agent for both analytes. To reach the cloud point at room temperature, the MCPE procedure was carried out in brine. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, the linear calibration curve was found to be in the concentration range between 100 - 750 and 50 - 600 μg L(-1) for U(VI) and V(V), respectively, with a limit of detection of 17.03 μg L(-1) (U) and 5.51 μg L(-1) (V). Total analysis time including microextraction was less than 5 min.

  19. Development and validation of a UV-spectrophotometric method for the determination of pheniramine maleate and its stability studies

    NASA Astrophysics Data System (ADS)

    Raghu, M. S.; Basavaiah, K.; Ramesh, P. J.; Abdulrahman, Sameer A. M.; Vinay, K. B.

    2012-03-01

    A sensitive, precise, and cost-effective UV-spectrophotometric method is described for the determination of pheniramine maleate (PAM) in bulk drug and tablets. The method is based on the measurement of absorbance of a PAM solution in 0.1 N HCl at 264 nm. As per the International Conference on Harmonization (ICH) guidelines, the method was validated for linearity, accuracy, precision, limits of detection (LOD) and quantification (LOQ), and robustness and ruggedness. A linear relationship between absorbance and concentration of PAM in the range of 2-40 μg/ml with a correlation coefficient (r) of 0.9998 was obtained. The LOD and LOQ values were found to be 0.18 and 0.39 μg/ml PAM, respectively. The precision of the method was satisfactory: the value of relative standard deviation (RSD) did not exceed 3.47%. The proposed method was applied successfully to the determination of PAM in tablets with good accuracy and precision. Percentages of the label claims ranged from 101.8 to 102.01% with the standard deviation (SD) from 0.64 to 0.72%. The accuracy of the method was further ascertained by recovery studies via a standard addition procedure. In addition, the forced degradation of PAM was conducted in accordance with the ICH guidelines. Acidic and basic hydrolysis, thermal stress, peroxide, and photolytic degradation were used to assess the stability-indicating power of the method. A substantial degradation was observed during oxidative and alkaline degradations. No degradation was observed under other stress conditions.

  20. Spectrophotometric determination of ascorbic acid by the modified CUPRAC method with extractive separation of flavonoids-La(III) complexes.

    PubMed

    Ozyürek, Mustafa; Güçlü, Kubilay; Bektaşoğlu, Burcu; Apak, Reşat

    2007-04-01

    The proposed method for ascorbic acid: AA (Vitamin C) determination is based on the oxidation of AA to dehydroascorbic acid with the CUPRAC reagent of total antioxidant capacity assay, i.e., Cu(II)-neocuproine (Nc), in ammonium acetate-containing medium at pH 7, where the absorbance of the formed bis(Nc)-copper(I) chelate is measured at 450 nm. The flavonoids (essentially flavones and flavonols) normally interfering with the CUPRAC procedure were separated with preliminary extraction as their La(III) chelates into ethylacetate (EtAc). The Cu(I)-Nc chelate responsible for color development was formed immediately with AA oxidation. Beer's law was obeyed between 8.0 x 10(-6) and 8.0 x 10(-5) M concentration range, with the equation of the linear calibration curve: A(450 nm)=1.60 x 10(4)C (mol dm(-3))-0.0596. The relative standard deviation (R.S.D.) in the analysis of N=45 synthetic mixtures containing 1.25 x 10(-2) mM AA with flavonoids was 5.3%. The Cu(II)-Nc reagent is a lower redox-potential and therefore more selective oxidant than the Fe(III)-1,10-phenanthroline reagent conventionally used for the same assay. This feature makes the proposed method superior for real samples such as fruit juices containing weak reductants such as citrate, oxalate and tartarate that may otherwise produce positive errors in the Fe(III)-phen method when equilibrium is achieved. The developed method was applied to some commercial fruit juices and pharmaceutical preparations containing Vitamin C+bioflavonoids. The findings of the developed method for fruit juices and pharmaceuticals were statistically alike with those of HPLC. The proposed spectrophotometric method was practical, low-cost, rapid, and could reliably assay AA in the presence of flavonoids without enzymatic procedures open to interferences by enzyme inhibitors.

  1. Spectrophotometric methods for the simultaneous analysis of meclezine hydrochloride and pyridoxine hydrochloride in bulk drug and pharmaceutical formulations.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Siddiqui, Farhan Ahmed; Zuberi, M Hashim; Mirza, Agha Zeeshan

    2007-04-01

    Three new spectrophotometric procedures for the simultaneous determination of pyridoxine hydrochloride and meclezine hydrochloride are described. The first method depends on the application of simultaneous equation to resolve the interference due to spectral overlapping. The analytical signals were measured at 231 and 220 nm. Calibration graphs were established for 1 to 20 microGmL(-1) for pyridoxine hydrochloride and 0.5 to 10 microGmL(-1) for meclezine hydrochloride in binary mixture. In the second method, the determination of pyridoxine hydrochloride and meclezine hydrochloride was performed by measuring the absorbances at 290 and 235 nm in the simple absorbance spectra of their mixture. In third method a yellowish orange complex of pyridoxine hydrochloride was formed with ferric chloride, which absorbs in the visible region with lambda(max) at 445 nm. Calibration curve of complex formation range was conducted in between 20 to 250 microGmL(-1). These methods were validated with respect to accuracy, precision, linearity, limit of detection and quantification. Regression analysis of Beer's plot showed good correlation in a general concentration range of 1 to 20 microGml(-1) with correlation coefficient (r = 0.9999 and 0.9999; CV < 0.858) for pyridoxine hydrochloride, whereas meclezine hydrochloride concentration range 0.5 to 10 microGmL(-1) with correlation coefficient (r = 0.9998 and 0.9998; CV < 0.826). These methods can be readily applied, without any interference from the excipients. The suggested procedures were successfully applied to the determination of these compounds in synthetic mixtures and in pharmaceutical preparations, with high percentage of recovery, good accuracy and precision. PMID:17416572

  2. Spectrophotometric, difference spectroscopic, and high-performance liquid chromatographic methods for the determination of cefixime in pharmaceutical formulations.

    PubMed

    Shah, Paresh B; Pundarikakshudu, Kilambi

    2006-01-01

    Three simple and sensitive spectrophotometric, difference spectroscopic, and liquid chromatographic (LC) methods are described for the determination of cefixime. The first method is based on the oxidative coupling reaction of cefixime with 3-methyl-2-benzothiazolinon hydrazone HCI in presence of ferric chloride. The absorbance of reaction product was measured at the maximum absorbance wavelength (wavelength(max)), 630 nm. The difference spectroscopic method is based on the measurement of absorbance of cefixime at the absorbance maximum, 268 nm, and minimum, 237 nm. The measured value was the amplitude of maxima and minima between 2 equimolar solutions of the analyte in different chemical forms, which exhibited different spectral characteristics. The conditions were optimized, and Beer's law was obeyed for cefixime at 1 to 16 microg/mL and 10 to 50 microg/mL, respectively. The third method, high-performance LC, was developed for the determination of cefixime using 50 mM potassium dihydrogen phosphate (pH 3.0)-methanol (78 + 22, v/v) as the mobile phase and measuring the response at wavelength(max) 286 nm. The analysis was performed on a Lichrospher RPC18 column. The calibration curve was obtained for cefixime at 5 to 250 microg/mL, and the mean recovery was 99.71 +/- 0.01%. The methods were validated according to the guidelines of the U.S. Pharmacopoeia and also assessed by applying the standard addition technique. The results obtained in the analysis of dosage forms agreed well with the contents stated on the labels.

  3. [Comparative Analysis of Spectrophotometric Methods of the Protein Measurement in the Pectic Polysaccharide Samples].

    PubMed

    Ponomareva, S A; Golovchenko, V V; Patova, O A; Vanchikova, E V; Ovodov, Y S

    2015-01-01

    For the assay to reliability of determination of the protein content in the pectic polysaccharide samples by absorbance in the ultraviolet and visible regions of the spectrum a comparison of the eleven techniques called Flores, Lovry, Bradford, Sedmak, Rueman (ninhydrin reaction) methods, the method of ultraviolet spectrophotometry, the method Benedict's reagent, the method Nessler's reagent, the method with amide black, the bicinchoninic reagent and the biuret method was carried out. The data obtained show that insufficient sensitivity of the seven methods from the listed techniques doesn't allow their usage for determination of protein content in pectic polysaccharide samples. But the Lowry, Bradford, Sedmak methods, and the method Nessler's reagent may be used for determination of protein content in pectic polysaccharide samples, and the Bradford method is advisable for protein contaminants content determination in pectic polysaccharide samples in case protein content is less than 15%, and the Lowry method--for samples is more than 15%. PMID:26165122

  4. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  5. A new approach to constructing efficient stiffly accurate EPIRK methods

    NASA Astrophysics Data System (ADS)

    Rainwater, G.; Tokman, M.

    2016-10-01

    The structural flexibility of the exponential propagation iterative methods of Runge-Kutta type (EPIRK) enables construction of particularly efficient exponential time integrators. While the EPIRK methods have been shown to perform well on stiff problems, all of the schemes proposed up to now have been derived using classical order conditions. In this paper we extend the stiff order conditions and the convergence theory developed for the exponential Rosenbrock methods to the EPIRK integrators. We derive stiff order conditions for the EPIRK methods and develop algorithms to solve them to obtain specific schemes. Moreover, we propose a new approach to constructing particularly efficient EPIRK integrators that are optimized to work with an adaptive Krylov algorithm. We use a set of numerical examples to illustrate the computational advantages that the newly constructed EPIRK methods offer compared to previously proposed exponential integrators.

  6. Fluorescence quenching and spectrophotometric methods for the determination of daunorubicin with meso-tera (4-sulphophenyl) porphyrin as probe.

    PubMed

    Tian, Jing; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Zhu, Jinghui; Qiao, Man; Hu, Xiaoli

    2014-01-01

    In this work, a synthetic meso-tera (4-sulfophenyl) porphyrin (TPPS4) was used as a probe to determine daunorubicin (DNR) by fluorescence quenching and spectrophotometric methods. At pH 4.6 potassium acid phthalate-NaOH buffer solution, a 1:1 complex of DNR interacted with TPPS4 formed via the electrostatic attractions and hydrophobic interactions, thus resulted in TPPS4 fluorescence quenching and absorption spectra change. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 435 nm and 672 nm, respectively. The fluorescence quenching values (ΔF) are the good linear relationship to the concentration of DNR in the range of 0.8-6.0 mgL(-1). The method exhibits high sensitivity with the detection limit (3σ) being 27.0 ng mL(-1). Meanwhile, a decrease of absorbance is detected at 433 nm with the appearance of a new absorption peak at 420 nm. The optimum reaction conditions, influencing factors and the effect of coexisting substances have been investigated in our experiment. The results showed that the method had a good selectivity and could be applied to determine DNR in serum and urine samples. In addition, the combine ratio between DNR and TPPS4 was measured and the charge distribution before and after reaction was calculated by quantum chemistry calculation AM1 method. The type of fluorescence quenching was discussed by the absorption spectra change, Stern-Volmer plots and fluorescence lifetime determination. PMID:24177862

  7. Construction of higher order accurate vortex and particle methods

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.

    1986-01-01

    The standard point vortex method has recently been shown to be of high order of accuracy for problems on the whole plane, when using a uniform initial subdivision for assigning the vorticity to the points. If obstacles are present in the flow, this high order deteriorates to first or second order. New vortex methods are introduced which are of arbitrary accuracy (under regularity assumptions) regardless of the presence of bodies and the uniformity of the initial subdivision.

  8. Comparative analysis of radical scavenging and antioxidant activity of phenolic compounds present in everyday use spice plants by means of spectrophotometric and chromatographic methods.

    PubMed

    Stankevičius, Mantas; Akuņeca, Ieva; Jãkobsone, Ida; Maruška, Audrius

    2011-06-01

    Comparative analysis of radical scavenging and antioxidant activities of phenolic compounds present in everyday use spice plants was carried out by means of spectrophotometric and chromatographic methods. Six spice plant samples, namely onion (Allium cepa), parsley (Petroselinum crispum) roots and leaves, celery (Apium graveolens) roots and leaves and leaves of dill (Anethum graveolens) were analyzed. Total amount of phenolic compounds and radical scavenging activity (RSA) was the highest in celery leaves and dill extracts and was the lowest in celery roots. Comparing commonly used spectrophotometric analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH) RSA of extracts with the results obtained using reversed-phase chromatographic separation with on-line post-column radical scavenging reaction detection, good correlation was obtained (R(2)=0.848). Studies using HPLC system with electrochemical detector showed that bioactive phytochemicals can be separated and antioxidant activities of individual compounds evaluated without the need of a complex HPLC system with reaction detector. The results obtained using electrochemical detection correlate with the RSA assayed using spectrophotometric method (R(2)=0.893).

  9. The chain collocation method: A spectrally accurate calculus of forms

    NASA Astrophysics Data System (ADS)

    Rufat, Dzhelil; Mason, Gemma; Mullen, Patrick; Desbrun, Mathieu

    2014-01-01

    Preserving in the discrete realm the underlying geometric, topological, and algebraic structures at stake in partial differential equations has proven to be a fruitful guiding principle for numerical methods in a variety of fields such as elasticity, electromagnetism, or fluid mechanics. However, structure-preserving methods have traditionally used spaces of piecewise polynomial basis functions for differential forms. Yet, in many problems where solutions are smoothly varying in space, a spectral numerical treatment is called for. In an effort to provide structure-preserving numerical tools with spectral accuracy on logically rectangular grids over periodic or bounded domains, we present a spectral extension of the discrete exterior calculus (DEC), with resulting computational tools extending well-known collocation-based spectral methods. Its efficient implementation using fast Fourier transforms is provided as well.

  10. A highly accurate method for determination of dissolved oxygen: gravimetric Winkler method.

    PubMed

    Helm, Irja; Jalukse, Lauri; Leito, Ivo

    2012-09-01

    A high-accuracy Winkler titration method has been developed for determination of dissolved oxygen concentration. Careful analysis of uncertainty sources relevant to the Winkler method was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. The most important improvements were: gravimetric measurement of all solutions, pre-titration to minimize the effect of iodine volatilization, accurate amperometric end point detection and careful accounting for dissolved oxygen in the reagents. As a result, the developed method is possibly the most accurate method of determination of dissolved oxygen available. Depending on measurement conditions and on the dissolved oxygen concentration the combined standard uncertainties of the method are in the range of 0.012-0.018 mg dm(-3) corresponding to the k=2 expanded uncertainty in the range of 0.023-0.035 mg dm(-3) (0.27-0.38%, relative). This development enables more accurate calibration of electrochemical and optical dissolved oxygen sensors for routine analysis than has been possible before.

  11. An accurate and simple method for measurement of paw edema.

    PubMed

    Fereidoni, M; Ahmadiani, A; Semnanian, S; Javan, M

    2000-01-01

    Several methods for measuring inflammation are available that rely on the parameters changing during inflammation. The most commonly used methods estimate the volume of edema formed. In this study, we present a novel method for measuring the volume of pathologically or artificially induced edema. In this model, a liquid column is placed on a balance. When an object is immersed, the liquid applies a force F to attempt its expulsion. Physically, F is the weight (W) of the volume of liquid displaced by that part of the object inserted into the liquid. A balance is used to measure this force (F=W).Therefore, the partial or entire volume of any object, for example, the inflamed hind paw of a rat, can be calculated thus, using the specific gravity of the immersion liquid, at equilibrium mass/specific gravity=volume (V). The extent of edema at time t (measured as V) will be V(t)-V(o). This method is easy to use, materials are of low cost and readily available. It is important that the rat paw (or any object whose volume is being measured) is kept from contacting the wall of the column containing the fluid whilst the value on the balance is read.

  12. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    PubMed

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-01

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude. PMID:22017500

  13. Automation of a spectrophotometric method for measuring L -carnitine in human blood serum.

    PubMed

    Galan, A; Padros, A; Arambarri, M; Martin, S

    1998-01-01

    A spectrometric method for the determination of L-carnitine has been developed based on the reaction of the 5,5' dithiobis-(2-nitrobenzoic) acid (DTNB) and adapted to a Technicon RA-2000 automatic analyser Química Farmacéutica Bayer, S.A.). The detection limit of the method is 13.2 mumol/l, with a measurement interval ranging from 30 to 320 mumoll1. Imprecision and accuracy are good even at levels close to the detection limit (coeffcient of variation of 5.4% for within-run imprecision for a concentration of 35 mumol/l). A good correlation was observed between the method studied and the radiometric method. The method evaluated has suffcient analytical sensitivity to diagnose carnitine deficiencies. The short time period required for sample processing (30 samples in 40min), the simple methodology and apparatus, the ease of personnel training and the low cost of the reagents make this method a good alternative to the classical radiometric method for evaluating serum L-carnitine in clinical laboratories without radioactive installations.

  14. [Research into simultaneous spectrophotometric determination of components in cough syrup by principal component regression method].

    PubMed

    Zhang, Li-qing; Wu, Xiao-hua; Tang, Xi; Zhu, Xian-liang; Su, Wen-ting

    2002-06-01

    Principal component regression (PCR) method is used to analyse five components: acetaminophen, p-aminophenol, caffeine, chlorphenamine maleate and guaifenesin. The basic principle and the analytical step of the approach are described in detail. The computer program of LHG is based on VB language. The experimental result shows that the PCR method has no systematical error as compared to classical method. The experimental result shows that the average recovery of each component is all in the range from 96.43% to 107.14%. Each component obtains satisfactory result without any pre-separation. The approach is simple, rapid and suitable for the computer-aid analysis. PMID:12938324

  15. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach

    NASA Astrophysics Data System (ADS)

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH 7.78, contact time 5 min, initial MB concentration 22 mg L- 1, initial MG concentration 12 mg L- 1 and adsorbent dosage 0.0055 g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85 mg g- 1 was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes.

  16. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach.

    PubMed

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH7.78, contact time 5min, initial MB concentration 22mgL(-1), initial MG concentration 12mgL(-1) and adsorbent dosage 0.0055g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85mgg(-1) was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes. PMID:26890205

  17. A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids.

    PubMed

    Chen, Yimin; Vaidyanathan, Seetharaman

    2012-04-29

    Quantification of total lipids is a necessity for any study of lipid production by microalgae, especially given the current interest in microalgal carbon capture and biofuels. In this study, we employed a simple yet sensitive method to indirectly measure the lipids in microalgae by measuring the fatty acids (FA) after saponification. The fatty acids were reacted with triethanolamine-copper salts (TEA-Cu) and the ternary TEA-Cu-FA complex was detected at 260 nm using a UV-visible spectrometer without any colour developer. The results showed that this method could be used to analyse low levels of lipids in the range of nano-moles from as little as 1 mL of microalgal culture. Furthermore, the structure of the TEA-Cu-FA complex and related reaction process are proposed to better understand this assay. There is no special instrument required and the method is very reproducible. To the best of our knowledge, this is the first report of the use of UV absorbance of copper salts with FA as a method to estimate lipids in algal cultures. It will pave the way for a more convenient assay of lipids in microalgae and can readily be expanded for estimating lipids in other biological systems.

  18. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  19. Simultaneous determination of calcium and magnesium in water using artificial neural network spectro-photometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Li, Shuang; Xin, Huizhen; Cao, Hengxia

    2010-09-01

    A new analytical method using Back-Propagation (BP) artificial neural networks and spectrophotometry for simultaneous determination of calcium and magnesium in tap water, the Yellow River water and seawater is established. By condition experiment, the optimum analytical conditions for calcium, magnesium and Arsenazo (III) color reactions are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 11-10-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of μ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviations of the calculated results for calcium and magnesium are 2.31% and 2.14%, respectively. The results of standard addition method show that the recoveries of calcium and magnesium are 103.6% and 100.8% in the tap water, 103.2% and 96.6% in the Yellow River water (Lijin district of Shandong Province), and 98.8%-103.3% and 98.43%-103.4% in seawater from Jiaozhou Bay of Qingdao. It is found that 14 common cations and anions do not interfere with the determination of calcium and magnesium under the optimum experimental conditions. The comparative experiments do not show any obvious difference between the results obtained by this new method and those obtained by the classical complexometric titration method in seawater medium. This method exhibits good reproducibility and high accuracy in the determination of calcium and magnesium and can be used for the simultaneous determination of Ca2+ and Mg2+ in tap water and natural water.

  20. Extractive spectrophotometric method for the determination of vanadium(V) in steels and titanium base alloy

    SciTech Connect

    Yerramilli, A.; Kavipurapu, C.S.; Manda, R.R.; Pillutla, C.M.

    1986-06-01

    Vanadium(V) forms anionic chelates with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5.0-7.8, which can be quantitatively extracted into nitrobenzene as an ion pair with xylometazolonium cation (XMH). The ternary system has an absorption maximum at 540 nm and obeys Beer's law in the range 0-1.8 /sup +/g of vanadium/mL with a molar absorptivity 4.56 x 10/sup 4/ L mol/sup -1/ cm/sup -1/. The Job's method of continuous variations indicated a composition of 1:1:1 for vanadium: PAR:XMH for the extracting species. In the presence of 1,3-diaminocyclohexanetetraacetic acid as a masking agent, the extraction becomes highly selective, and this method can be applied for the determination of vanadium(V), in the presence of various metal ions in synthetic mixtures, in steels, and in titanium base alloy.

  1. The Spectrophotometric Method of Determining the Transmission of Solar Energy in Salt Gradient Solar Ponds

    NASA Technical Reports Server (NTRS)

    Giulianelli, J.

    1984-01-01

    In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.

  2. The spectrophotometric method of determining the transmission of solar energy in salt gradient solar ponds

    NASA Astrophysics Data System (ADS)

    Giulianelli, J.

    1984-09-01

    In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.

  3. Sensitive indirect spectrophotometric determination of isoniazid

    NASA Astrophysics Data System (ADS)

    Safavi, A.; Karimi, M. A.; Hormozi Nezhad, M. R.; Kamali, R.; Saghir, N.

    2004-03-01

    A simple, rapid, sensitive and accurate indirect spectrophotometric method for the microdetermination of isoniazid (INH) in pure form and pharmaceutical formulations is developed. The procedure is based on the reaction of copper(II) with isoniazid in the presence of neocuproine (NC). In the presence of neocuproine, copper(II) is reduced easily by isoniazid to a Cu(I)-neocuproine complex, which shows an absorption maximum at 454 nm. By measuring the absorbance of the complex at this wavelength, isoniazid can be determined in the range 0.3-3.5 μg ml -1. This method was applied to the determination of isoniazid in pharmaceutical formulation and enabled the determination of the isoniazid in microgram quantities (0.3-3.5 μg ml -1). The results obtained for the assay of pharmaceutical preparations compared well with those obtained by the official method and demonstrated good accuracy and precision.

  4. Sensitive indirect spectrophotometric determination of isoniazid.

    PubMed

    Safavi, A; Karimi, M A; Hormozi Nezhad, M R; Kamali, R; Saghir, N

    2004-03-01

    A simple, rapid, sensitive and accurate indirect spectrophotometric method for the microdetermination of isoniazid (INH) in pure form and pharmaceutical formulations is developed. The procedure is based on the reaction of copper(II) with isoniazid in the presence of neocuproine (NC). In the presence of neocuproine, copper(II) is reduced easily by isoniazid to a Cu(I)-neocuproine complex, which shows an absorption maximum at 454 nm. By measuring the absorbance of the complex at this wavelength, isoniazid can be determined in the range 0.3-3.5 microgml-1. This method was applied to the determination of isoniazid in pharmaceutical formulation and enabled the determination of the isoniazid in microgram quantities (0.3-3.5 microgml-1). The results obtained for the assay of pharmaceutical preparations compared well with those obtained by the official method and demonstrated good accuracy and precision.

  5. Spectrophotometric and TLC-densitometric methods for the simultaneous determination of Ezetimibe and Atorvastatin calcium.

    PubMed

    Baghdady, Yehia Z; Al-Ghobashy, Medhat A; Abdel-Aleem, Abdel-Aziz E; Weshahy, Soheir A

    2013-01-01

    Three sensitive methods were developed for simultaneous determination of Ezetimibe (EZB) and Atorvastatin calcium (ATVC) in binary mixtures. First derivative (D(1)) spectrophotometry was employed for simultaneous determination of EZB (223.8 nm) and ATVC (233.0 nm) with a mean percentage recovery of 100.23 ± 1.62 and 99.58 ± 0.84, respectively. Linearity ranges were 10.00-30.00 μg mL(-1) and 10.00-35.00 μg mL(-1), respectively. Isosbestic point (IS) spectrophotometry, in conjunction with second derivative (D(2)) spectrophotometry was employed for analysis of the same mixture. Total concentration was determined at IS, 224.6 nm and 238.6 nm over a concentration range of 10.00-35.00 μg mL(-1) and 5.00-30.00 μg mL(-1), respectively. ATVC concentration was determined using D(2) at 313.0 nm (10.00-35.00 μg mL(-1)) with a mean recovery percentage of 99.72 ± 1.36, while EZB was determined mathematically at 224.6 nm (99.75 ± 1.43) and 238.6 nm (99.80 ± 0.95). TLC-densitometry was employed for the determination of the same mixture; 0.10-0.60 μg band(-1) for both drugs. Separation was carried out on silica gel plates using diethyl ether-ethyl acetate (7:3 v/v). EZB and ATVC were resolved with Rf values of 0.78 and 0.13. Determination was carried out at 254.0 nm with a mean percentage recovery of 99.77 ± 1.30 and 99.86 ± 0.97, respectively. Methods were validated according to ICH guidelines and successfully applied for analysis of bulk powder and pharmaceutical formulations. Results were statistically compared to a reported method and no significant difference was noticed regarding accuracy and precision.

  6. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-04-01

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  7. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating.

    PubMed

    Hegazy, Maha A; Lotfy, Hayam M; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2015-04-01

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  8. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    PubMed

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures.

  9. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  10. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

    PubMed

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  11. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

    PubMed Central

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt’s method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  12. Validated spectrophotometric method for the determination, spectroscopic characterization and thermal structural analysis of duloxetine with 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2012-03-01

    A novel, selective, sensitive and simple spectrophotometric method was developed and validated for the determination of the antidepressant duloxetine hydrochloride in pharmaceutical preparation. The method was based on the reaction of duloxetine hydrochloride with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media to yield orange colored product. The formation of this complex was also confirmed by UV-visible, FTIR, 1H NMR, Mass spectra techniques and thermal analysis. This method was validated for various parameters according to ICH guidelines. Beer's law is obeyed in a range of 5.0-60 μg/mL at the maximum absorption wavelength of 480 nm. The detection limit is 0.99 μg/mL and the recovery rate is in a range of 98.10-99.57%. The proposed methods was validated and applied to the determination of duloxetine hydrochloride in pharmaceutical preparation. The results were statistically analyzed and compared to those of a reference UV spectrophotometric method.

  13. Spectrophotometric methods for the determination of benazepril hydrochloride in its single and multi-component dosage forms.

    PubMed

    El-Yazbi, F A; Abdine, H H; Shaalan, R A

    1999-06-01

    Three sensitive and accurate methods are presented for the determination of benazepril in its dosage forms. The first method uses derivative spectrophotometry to resolve the interference due to formulation matrix. The second method depends on the color formed by the reaction of the drug with bromocresol green (BCG). The third one utilizes the reaction of benazepril, after alkaline hydrolysis, with 3-methylbenzothialozone (MBTH) hydrazone where the produced color is measured at 593 nm. The latter method was extended to develop a stability-indicating method for this drug. Moreover, the derivative method was applied for the determination of benazepril in its combination with hydrochlorothiazide. The proposed methods were applied for the analysis of benazepril in the pure form and in tablets. The coefficient of variation was less than 2%.

  14. A comparative study between three stability indicating spectrophotometric methods for the determination of diatrizoate sodium in presence of its cytotoxic degradation product based on two-wavelength selection

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; El-Rahman, Mohamed K. Abd; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-06-01

    Three sensitive, selective, and precise stability indicating spectrophotometric methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA) in the presence of its acidic degradation product (highly cytotoxic 3,5-diamino metabolite) and in pharmaceutical formulation, were developed and validated. The first method is ratio difference, the second one is the bivariate method, and the third one is the dual wavelength method. The calibration curves for the three proposed methods are linear over a concentration range of 2-24 μg/mL. The selectivity of the proposed methods was tested using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  15. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  16. Comparison of a silver nanoparticle-based method and the modified spectrophotometric methods for assessing antioxidant capacity of rapeseed varieties.

    PubMed

    Szydłowska-Czerniak, Aleksandra; Tułodziecka, Agnieszka

    2013-12-01

    The antioxidant capacity of 15 rapeseed varieties was determined by the proposed silver nanoparticle-based (AgNP) method and three modified assays: ferric reducing antioxidant power (FRAP), 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu reducing capacity (FC). The average antioxidant capacities of the studied rapeseed cultivars ranged between 5261-9462, 3708-7112, 18864-31245 and 5816-9937 μmol sinapic acid (SA)/100g for AgNP, FRAP, DPPH and FC methods, respectively. There are significant, positive correlations between antioxidant capacities of the studied rapeseed cultivars determined by four analytical methods (r=0.5971-0.9149, p<0.05). The comparable precision for the proposed AgNP method (RSD=1.4-4.4%) and the modified FRAP, DPPH and FC methods (RSD=1.0-4.4%, 0.7-2.1% and 0.8-3.6%, respectively), demonstrate the benefit of the AgNP method in the routine analysis of antioxidant capacity of rapeseed cultivars. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used for discrimination the quality of the studied rapeseed varieties based on their antioxidant potential determined by different analytical methods. Three main groups were identified by HCA, while the classification and characterisation of rapeseed varieties within each of these groups were obtained from PCA. The chemometric analyses demonstrated that, rapeseed variety S13 had the highest antioxidant capacity, thus this cultivar should be considered as the richest source of natural antioxidants.

  17. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future.

  18. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  19. Validated spectrophotometric methods for the determination of amlodipine besylate in drug formulations using 2,3-dichloro 5,6-dicyano 1,4-benzoquinone and ascorbic acid.

    PubMed

    Rahman, Nafisur; Nasrul Hoda, Md

    2003-02-26

    Two simple and sensitive spectrophotometric methods have been proposed for the determination of amlodipine besylate either in pure form or in pharmaceutical formulations. The first method is based on the charge transfer complexation reaction of the drug with 2,3-dichloro 5,6-dicyano 1,4-benzoquinone (DDQ) to give coloured product having maximum absorbance at 580 nm. The second procedure depends on the measurement of purple red colour produced by the interaction of drug with ascorbic acid in N,N-dimethylformamide medium (DMF) which absorbed maximally at 530 nm. Under the optimized experimental conditions, Beer's law was obeyed in the concentration ranges of 1-125 and 10-140 microg ml(-1) with DDQ and ascorbic acid, respectively. Both the methods were applied successfully for the analysis of amlodipine besylate in dosage forms. Results of analyses were validated statistically and through recovery studies.

  20. Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods.

    PubMed

    Zielinska, Danuta; Wiczkowski, Wieslaw; Piskula, Mariusz Konrad

    2008-05-28

    This paper describes the use of cyclic voltammetry (CV), spectrophotometric methods [Trolox equivalent antioxidant capacity (TEAC), peroxyl radical trapping capacity (PRTC), DPPH radical scavenging activity (RSA), and Folin-Ciocalteu reagent (FCR) reducing capacity], and photochemiluminescence (PCL) for the measurement of the antioxidant capacity of onion var. Sochaczewska and var. Szalotka. The antioxidant and reducing activity of the dominant onion flavonoids quercetin (Q), quercetin-3- O-beta-glucoside (Q3G), quercetin-4'- O-beta-glucoside (Q4'G), and quercetin-3,4'-di- O-beta-glucoside (Q3,4'G) were determined by spectrophotometric (TEAC and PRTC) and CV methods, respectively. The contribution of quercetin and its glucosides to the antioxidant capacity of onion was calculated in consequence of the qualitative and quantitative analysis of onion flavonoids by high-performance liquid chromatography-ultraviolet-mass spectrometry. The dominant forms of quercetin in the onion var. Sochaczewska and Szalotka included Q4'G (61 and 54%), Q3,4'G (37 and 44%), Q3G (1.4 and 1.1%), and free quercetin (1.1 and 0.7%), respectively. The CV experiment showed the highest reducing activity of Q while Q3G, Q4'G, and Q3,4'G exhibited about 68, 51, and 30% of the reducing power noted for Q. The order of the reducing activity of onion flavonoids was confirmed by their free radical scavenging activity and evaluated by TEAC and PRTC assays as follows: Q > Q3G > Q4'G > Q3,4'G. The Q4'G and Q3,4'G showed poor antioxidant activity under both applied spectrophotometric assays but still exhibited reducing activity based on CV experiments. The reducing capacity of onions determined by CV method was twice higher than the antioxidant capacity formed by water-soluble compounds (ACW) evaluated by PCL, and it was about 50% higher than PRTC and DPPH RSA results and the converted FCR reducing capacity. In contrast, the reducing capacity of onions determined by the CV method was 3-fold and about four

  1. The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms.

    PubMed

    Săndulescu, R; Mirel, S; Oprean, R

    2000-08-01

    The electroanalytical study of ascorbic acid, acetaminophen and of several mixtures of these compounds in different ratios has been made by using a carbon paste electrode (CPE-graphite:solid paraffin 2:1) as working electrode and an Ag/AgCl reference electrode. The potential curves were recorded using different concentrations of ascorbic acid and acetaminophen by measuring samples between 10 and 50 microl. The oxidation reactions were studied in a potential range from -0.1 to +1.3 V with different sweep rates, at different current sensitivities, in stationary working conditions and stirring before each replicate. The oxidation of ascorbic acid occurs at +0.31 +/- 0.02 V and the oxidation of acetaminophen at +0.60 +/- 0.05 V; meanwhile, the current has a linear variation for the following concentration ranges: 10(-3)-10(-2) M for the ascorbic acid and 3 x 10(-6)-7.5 x 10(-3) M for acetaminophen (r2 = 0.999 for both ascorbic acid and acetaminophen). The mixtures of ascorbic acid and acetaminophen were made as follows: 1:1, 1:2, 1:3, 2:1, and 3:1. The studies revealed the alteration of the voltammograms processed according to the validation methodology. The best potential variation range for different current sensitivities, the influence of the sweep rate, of the solvent volume and of the pH were studied. The mutual interferences of the compounds in the mixtures and the electroactive compounds in the pharmaceutical dosage forms, especially effervescent ones, also made the object of the research. The same mixtures were studied using the direct spectrophotometric method that revealed a lot of spectral interferences. In order to solve this problem, an appropriate separation or an indirect spectrophotometric method (the apparent content curves method) were used. The spectrophotometric and voltammetric methods developed were used to determine ascorbic acid and acetaminophen in different dosage forms (vials, tablets, suppositories and effervescent dosage forms). The results

  2. Spectrophotometric catalogs and databases

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.

    2014-06-01

    An overview is given of different spectrophotometric catalogs, including a brief description of the applications of absolute spectrophotometry in evolutionary population synthesis. Observational data for different stars are given. A list of catalogs is presented, including those containing intrinsic energy distributions for stars of different temperatures and luminosities, spectrophotometric standards, extragalactic sources, and theoretically calculated spectra. A number of useful links and Internet resources are provided.

  3. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-01

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (24) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL-1 with detection limit of 6.7 ng mL-1 (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n = 7, c = 50 ng mL-1). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination.

  4. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods.

    PubMed

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-25

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (2(4)) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL(-1) with detection limit of 6.7 ng mL(-1) (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n=7, c=50 ng mL(-1)). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination. PMID:25062051

  5. Development of Simultaneous Derivative Spectrophotometric and HPLC Methods for Determination of 17-Beta-Estradiol and Drospirenone in Combined Dosage Form

    PubMed Central

    Aydoğmuş, Zeynep; Yılmaz, Ece Merve; Yörüsün, Sevgi; Akpınar, Samet

    2015-01-01

    Simple, rapid spectrophotometric, and reverse-phase high performance liquid chromatographic methods were developed for the concurrent analysis of 17-beta-estradiol (ESR) and drospirenone (DRS). The spectrophotometric method was based on the determination of first derivative spectra and determined ESR and DRS using the zero-crossing technique at 208 and 282 nm, respectively, in methanol. The linear range was 0.5–32.0 µg·mL−1 for DRS and 0.5–8.0 µg·mL−1 for EST. The limit of detection (LOD) values were 0.14 µg·mL−1 and 0.10 µg·mL−1 and limit of quantification (LOQ) values were 0.42 µg·mL−1 and 0.29 µg·mL−1 for ESR and DRS, respectively. The chromatographic method was based on the separation of both analytes on a C18 column with a mobile phase containing acetonitrile and water (70 : 30, v/v). Detection was performed with a UV-photodiode array detector at 279 nm. The linear range was 0.08–2.5 µg·mL−1 for DRS and 0.23–7.5 µg·mL−1 for EST. LOD values were 0.05 µg·mL−1 and 0.02 µg·mL−1 and LOQ values were 0.15 µg·mL−1 and 0.05 µg·mL−1 for ESR and DRS, respectively. These recommended methods have been applied for the simultaneous determination of ESR and DRS in their tablets. PMID:27347530

  6. Development of Simultaneous Derivative Spectrophotometric and HPLC Methods for Determination of 17-Beta-Estradiol and Drospirenone in Combined Dosage Form.

    PubMed

    Aydoğmuş, Zeynep; Yılmaz, Ece Merve; Yörüsün, Sevgi; Akpınar, Samet

    2015-01-01

    Simple, rapid spectrophotometric, and reverse-phase high performance liquid chromatographic methods were developed for the concurrent analysis of 17-beta-estradiol (ESR) and drospirenone (DRS). The spectrophotometric method was based on the determination of first derivative spectra and determined ESR and DRS using the zero-crossing technique at 208 and 282 nm, respectively, in methanol. The linear range was 0.5-32.0 µg·mL(-1) for DRS and 0.5-8.0 µg·mL(-1) for EST. The limit of detection (LOD) values were 0.14 µg·mL(-1) and 0.10 µg·mL(-1) and limit of quantification (LOQ) values were 0.42 µg·mL(-1) and 0.29 µg·mL(-1) for ESR and DRS, respectively. The chromatographic method was based on the separation of both analytes on a C18 column with a mobile phase containing acetonitrile and water (70 : 30, v/v). Detection was performed with a UV-photodiode array detector at 279 nm. The linear range was 0.08-2.5 µg·mL(-1) for DRS and 0.23-7.5 µg·mL(-1) for EST. LOD values were 0.05 µg·mL(-1) and 0.02 µg·mL(-1) and LOQ values were 0.15 µg·mL(-1) and 0.05 µg·mL(-1) for ESR and DRS, respectively. These recommended methods have been applied for the simultaneous determination of ESR and DRS in their tablets. PMID:27347530

  7. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  8. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  9. Degradation studies of azithromycin and its spectrophotometric determination in pharmaceutical dosage forms.

    PubMed

    Sultana, Najma; Arayne, M Saeed; Hussain, Fida; Fatima, Aizaz

    2006-04-01

    A simple, accurate and rapid spectrophotometric method for the estimation of azithromycin has been developed by the acidic hydrolysis of the drug with sulfuric acid and monitoring the absorbance at 482 nm. All variables affecting the reaction conditions such as sulfuric acid concentration, heating time, temperature and dilution solvents were carefully studied. Analytical parameters such as stability, selectivity, accuracy and precision have been established for the method and evaluated statistically to assess the application of the method. The method was applied successfully for the assay of azithromycin dihydrate in pure and pharmaceutical dosage forms as tablets, capsules and suspensions. The method was found to have the advantages for simplicity, stability, sensitivity, reproducibility and accuracy for using as an alternate to the existing non-spectrophotometric methods for the routine analysis of the drug in pharmaceutical formulations and also in pharmaceutical investigations involving azithromycin dihydrate.

  10. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  11. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  12. Liquid propellant rocket engine combustion simulation with a time-accurate CFD method

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Shang, H. M.; Liaw, Paul; Hutt, J.

    1993-01-01

    Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm.

  13. Comparative study for determination of some polycyclic aromatic hydrocarbons 'PAHs' by a new spectrophotometric method and multivariate calibration coupled with dispersive liquid-liquid extraction.

    PubMed

    Abdel-Aziz, Omar; El Kosasy, A M; El-Sayed Okeil, S M

    2014-12-10

    A modified dispersive liquid-liquid extraction (DLLE) procedure coupled with spectrophotometric techniques was adopted for simultaneous determination of naphthalene, anthracene, benzo(a)pyrene, alpha-naphthol and beta-naphthol in water samples. Two different methods were used, partial least-squares (PLS) method and a new derivative ratio method, namely extended derivative ratio (EDR). A PLS-2 model was established for simultaneous determination of the studied pollutants in methanol, by using twenty mixtures as calibration set and five mixtures as validation set. Also, in methanol a novel (EDR) method was developed for determination of the studied pollutants, where each component in the mixture of the five PAHs was determined by using a mixture of the other four components as divisor. Chemometric and EDR methods could be also adopted for determination of the studied PAH in water samples after transferring them from aqueous medium to the organic one by utilizing dispersive liquid-liquid extraction technique, where different parameters were investigated using a full factorial design. Both methods were compared and the proposed method was validated according to ICH guidelines and successfully applied to determine these PAHs simultaneously in spiked water samples, where satisfactory results were obtained. All the results obtained agreed with those of published methods, where no significant difference was observed. PMID:24934969

  14. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand.

    PubMed

    Kamble, Ganesh S; Ghare, Anita A; Kolekar, Sanjay S; Han, Sung H; Anuse, Mansing A

    2011-12-15

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL(-1) of cobalt(II) and optimum concentration range was 5-12.5 μg mL(-1) of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109×10(3) L mol(-1) cm(-1) and 0.053 μg cm(-2), respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22×10(2) L mol(-1) cm(-1) and 0.096 μg cm(-2), respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n=5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer. PMID:21978559

  15. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Ghare, Anita A.; Kolekar, Sanjay S.; Han, Sung H.; Anuse, Mansing A.

    2011-12-01

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL -1 of cobalt(II) and optimum concentration range was 5-12.5 μg mL -1 of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109 × 10 3 L mol -1 cm -1 and 0.053 μg cm -2, respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22 × 10 2 L mol -1 cm -1 and 0.096 μg cm -2, respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n = 5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.

  16. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods.

    PubMed

    Al Okab, Riyad Ahmed

    2013-02-15

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml(-1) and molar absorptivity 1.41 × 10(4) L mol(-1)cm(-1). All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  17. Kinetic spectrophotometric H-point standard addition method for the simultaneous determination of diloxanide furoate and metronidazole in binary mixtures and biological fluids.

    PubMed

    Issa, Mahmoud Mohamed; Nejem, R'afat Mahmoud; Abu Shanab, Alaa Mohamed; Shaat, Nahed Talab

    2013-10-01

    Simple, reliable, and sensitive kinetic spectrophotometric method has been developed for the simultaneous determination of diloxanide furoate and metronidazole using H-point standard addition method (HPSAM). The method is based on the oxidation rate difference of diloxanide and metronidazole by potassium permanganate in basic medium. A green color has been developed and measured at 610 nm. Different experimental parameters were carefully optimized. The limiting logarithmic and the initial-rate methods were adopted for the construction of the calibration curve of each individual reaction with potassium permanganate. Under the optimum conditions, Beer's law was obeyed in the range of 1.0-20.0 and 5.0-25.0 μg ml(-1) for diloxanide furoate and metronidazole, respectively. The detection limits were 0.22 μg ml(-1) for diloxanide furoate and 0.83 μg ml(-1) for metronidazole. Correlation coefficients of the regression equations were greater than 0.9970 in all cases. The precision of the method was satisfactory; the maximum value of relative standard deviation did not exceed 1.06% (n=5). The accuracy, expressed as recovery was between 99.4% and 101.4% with relative error of 0.12 and 0.14 for diloxanide furoate and metronidazole, respectively. The proposed method was successfully applied for the simultaneous determination of both drugs in pharmaceutical dosage forms and human urine samples and compared with alternative HPLC method.

  18. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Al Okab, Riyad Ahmed

    2013-02-01

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  19. An Accurate Scene Segmentation Method Based on Graph Analysis Using Object Matching and Audio Feature

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Haseyama, Miki

    A method for accurate scene segmentation using two kinds of directed graph obtained by object matching and audio features is proposed. Generally, in audiovisual materials, such as broadcast programs and movies, there are repeated appearances of similar shots that include frames of the same background, object or place, and such shots are included in a single scene. Many scene segmentation methods based on this idea have been proposed; however, since they use color information as visual features, they cannot provide accurate scene segmentation results if the color features change in different shots for which frames include the same object due to camera operations such as zooming and panning. In order to solve this problem, scene segmentation by the proposed method is realized by using two novel approaches. In the first approach, object matching is performed between two frames that are each included in different shots. By using these matching results, repeated appearances of shots for which frames include the same object can be successfully found and represented as a directed graph. The proposed method also generates another directed graph that represents the repeated appearances of shots with similar audio features in the second approach. By combined use of these two directed graphs, degradation of scene segmentation accuracy, which results from using only one kind of graph, can be avoided in the proposed method and thereby accurate scene segmentation can be realized. Experimental results performed by applying the proposed method to actual broadcast programs are shown to verify the effectiveness of the proposed method.

  20. Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations

    NASA Astrophysics Data System (ADS)

    Li, Yonghui; He, Shenglai; Russakoff, Arthur; Varga, Kálmán

    2016-08-01

    An accurate method for time propagation of the coupled Maxwell and time-dependent Kohn-Sham (TDKS) equation is presented. The new approach uses a simultaneous fourth-order Runge-Kutta-based propagation of the vector potential and the Kohn-Sham orbitals. The approach is compared to the conventional fourth-order Taylor propagation and predictor-corrector methods. The calculations show several computational and numerical advantages, including higher computational performance, greater stability, better accuracy, and faster convergence.

  1. Accurate determination of specific heat at high temperatures using the flash diffusivity method

    NASA Technical Reports Server (NTRS)

    Vandersande, J. W.; Zoltan, A.; Wood, C.

    1989-01-01

    The flash diffusivity method of Parker et al. (1961) was used to measure accurately the specific heat of test samples simultaneously with thermal diffusivity, thus obtaining the thermal conductivity of these materials directly. The accuracy of data obtained on two types of materials (n-type silicon-germanium alloys and niobium), was + or - 3 percent. It is shown that the method is applicable up to at least 1300 K.

  2. Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations.

    PubMed

    Li, Yonghui; He, Shenglai; Russakoff, Arthur; Varga, Kálmán

    2016-08-01

    An accurate method for time propagation of the coupled Maxwell and time-dependent Kohn-Sham (TDKS) equation is presented. The new approach uses a simultaneous fourth-order Runge-Kutta-based propagation of the vector potential and the Kohn-Sham orbitals. The approach is compared to the conventional fourth-order Taylor propagation and predictor-corrector methods. The calculations show several computational and numerical advantages, including higher computational performance, greater stability, better accuracy, and faster convergence. PMID:27627419

  3. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGES

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  4. A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria.

    PubMed

    Back, Patricia; Matthijssens, Filip; Vanfleteren, Jacques R; Braeckman, Bart P

    2012-04-01

    Because superoxide is involved in various physiological processes, many efforts have been made to improve its accurate quantification. We optimized and validated a superoxide-specific and -sensitive detection method. The protocol is based on fluorescence detection of the superoxide-specific hydroethidine (HE) oxidation product, 2-hydroxyethidium. We established a method for the quantification of superoxide production in isolated mitochondria without the need for acetone extraction and purification chromatography as described in previous studies.

  5. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974). PMID:23106487

  6. Comparative Study of Novel Ratio Spectra and Isoabsorptive Point Based Spectrophotometric Methods: Application on a Binary Mixture of Ascorbic Acid and Rutin

    PubMed Central

    Darwish, Hany W.; Bakheit, Ahmed H.; Naguib, Ibrahim A.

    2016-01-01

    This paper presents novel methods for spectrophotometric determination of ascorbic acid (AA) in presence of rutin (RU) (coformulated drug) in their combined pharmaceutical formulation. The seven methods are ratio difference (RD), isoabsorptive_RD (Iso_RD), amplitude summation (A_Sum), isoabsorptive point, first derivative of the ratio spectra (1DD), mean centering (MCN), and ratio subtraction (RS). On the other hand, RU was determined directly by measuring the absorbance at 358 nm in addition to the two novel Iso_RD and A_Sum methods. The work introduced in this paper aims to compare these different methods, showing the advantages for each and making a comparison of analysis results. The calibration curve is linear over the concentration range of 4–50 μg/mL for AA and RU. The results show the high performance of proposed methods for the analysis of the binary mixture. The optimum assay conditions were established and the proposed methods were successfully applied for the assay of the two drugs in laboratory prepared mixtures and combined pharmaceutical tablets with excellent recoveries. No interference was observed from common pharmaceutical additives. PMID:26885440

  7. A New Spectrophotometric Method for Determination of Phenylpropanolamine HCl in its Pharmaceutical Formulations via Reaction with 2,3,5,6-tetrachloro-1,4-benzoquinone

    PubMed Central

    Walash, M. I.; El-Enany, N.; Saad, S.

    2010-01-01

    A selective and simple spectrophotometric method has been developed for the determination of phenylpropanolamine HCl (PPA) in its dosage forms. The method was based on the formation of a colored N-vinyl chlorobenzoquinone derivative of PPA through its reaction with 2,3,5,6-tetrachloro-1,4-benzoquinone in presence of acetaldehyde. The colored product exhibits maximum absorbance at 650 nm. Different experimental parameters affecting formation and stability of the product were carefully studied and optimized. The stoichiometry of the reaction was determined, and the reaction pathway was postulated. The absorbance concentration plot was rectilinear over the range of 5-100 μg/mL with Limit of Detection (LOD) and Limit of Quantitation (LOQ) of 0.244 μg/mL and 0.74 μg/mL respectively. The analytical performance of the method was fully validated, and the results were satisfactory. The proposed method was successfully applied to the determination of PPA in its commercial dosage forms including tablets, capsules and syrups with good recoveries. Statistical comparison of the results with those of the comparison method showed good agreement and proved that there was no significant difference in the accuracy and precision between the reference and the proposed methods. The mechanism of the reaction pathway was postulated. PMID:23675189

  8. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis.

    PubMed Central

    Sieracki, M E; Reichenbach, S E; Webb, K L

    1989-01-01

    The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and

  9. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    NASA Astrophysics Data System (ADS)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  10. Spectrophotometric method for the determination of manganese with phenylfluorone in the presence of Triton X-100 and cetylpyridinium chloride in pharmacological preparations and vegetable fertilizers.

    PubMed

    Winkler, Wanda; Buhl, Franciszek; Arenhövel-Pacuła, Agata; Hachuła, Urszula

    2003-07-01

    A simple and very sensitive method for the spectrophotometric determination of manganese in pharmacological preparations and vegetable fertilizers is proposed. The method is based on the formation of a blue coloured complex of Mn (II) with 9-phenyl-2,3,7-trihydroxy-6-fluorone (PF) in the presence of cetylpyridinium chloride (CP) and Triton X-100. Optimum concentrations of PF, CP, Triton X-100 and pH ensuring maximum absorbance were defined. The complex Mn(II)-PF-CP-Triton X-100 shows maximum absorbance at 591 nm with the molar absorptivity value 1.77x10(5 )L mol(-1 )cm(-1). The detection limit of the method is 0.004 microg mL(-1). The Beer's law is obeyed for manganese concentrations in the range 0.02-0.2 microg mL(-1). The effect of foreign ions was elucidated. The statistical evaluation of the method was carried out for six determination using 5 microg Mn and the following results were obtained: standard deviation 0.021, confidence interval 5.05+/-0.05 microg Mn. The method has been applied for the determination of manganese in pharmacological preparations (Biovital, Kinder Biovital) and vegetable fertilizers (Hydrovit 100, Florovit). PMID:12861432

  11. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben.

    PubMed

    Elghobashy, Mohamed R; Bebawy, Lories I; Shokry, Rafeek F; Abbas, Samah S

    2016-03-15

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL(-1) for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method. PMID:26745510

  12. Automatic flow analysis method to determine traces of Mn²⁺ in sea and drinking waters by a kinetic catalytic process using LWCC-spectrophotometric detection.

    PubMed

    Chaparro, Laura; Ferrer, Laura; Leal, Luz O; Cerdà, Víctor

    2016-02-01

    A new automatic kinetic catalytic method has been developed for the measurement of Mn(2+) in drinking and seawater samples. The method is based on the catalytic effect of Mn(2+) on the oxidation of tiron by hydrogen peroxide in presence of Pb(2+) as an activator. The optimum conditions were obtained at pH 10 with 0.019 mol L(-1) 2'2 bipyridyl, 0.005 mol L(-1) tiron and 0.38 mol L(-1) hydrogen peroxide. Flow system is based on multisyringe flow injection analysis (MSFIA) coupled with a lab-on-valve (LOV) device exploiting on line spectrophotometric detection by a Liquid Waveguide Capillary Cell (LWCC), 1m optical length and performed at 445 nm. Under the optimized conditions by a multivariate approach, the method allowed the measurement of Mn(2+) in a range of 0.03-35 µg L(-1) with a detection limit of 0.010 µg L(-1), attaining a repeatability of 1.4% RSD. The method was satisfactorily applied to the determination of Mn(2+) in environmental water samples. The reliability of method was also verified by determining the manganese content of the certified standard reference seawater sample, CASS-4.

  13. Extension of dry ash atomic absorption and spectrophotometric methods to determination of minerals and phosphorus in soy-based, whey-based, and enteral formulae (modification of AOAC Official Methods 985.35 and 986.24): collaborative study.

    PubMed

    Cook, K K

    1997-01-01

    Eight laboratories participated in a collaborative study of AOAC Official Method 985.35, Minerals in Ready-to-Feed Milk-Based infant Formula and Pet Foods, Atomic Absorption Spectrophotometric Method; and 7 laboratories participated in a study of AOAC Official Method 986.24, Phosphorus in Milk-Based infant Formula, Spectrophotometric Method, to extend these methods to infant formulae (other than milk-based) and enteral products. Three ready-to-feed soy-based formulae and 2 soy-based powder formulae were chosen to represent the plant matrix. A whey-based formula and a casein-based enteral formula were also included in the study. Soy formulae containing nearly identical concentrations of particular elements were matched, and an application of the Youden "closely matched pair" approach was used to estimate repeatability parameters. Average reproducibility values were as follows: calcium, 9.3%; copper, 9.7%; Iron, 5.5%; potassium, 4.0%; magnesium, 5.2%; manganese, 10.6%; sodium, 4.7%; phosphorus, 10.5%; and zinc, 7.3%. At similar analyte concentrations, the between-laboratory variabilities compared well with those reported for the official methods. Most repeatability and reproducibility parameters compared well with the original collaborative study. AOAC Official Methods 985.35 and 966.24 have been modified to extend their applicability to infant formulae (other than milk-based) and enteral products.

  14. Spectrophotometric estimation of ambroxol and cetirizine hydrochloride from tablet dosage form.

    PubMed

    Gowekar, N M; Pande, V V; Kasture, A V; Tekade, A R; Chandorkar, J G

    2007-07-01

    Fixed dose combination tablets containing ambroxol HCl and cetirizine HCl are clinically used as mucolytic and antiallergic. Several spectrophotometric and HPLC methods have been reported for simultaneous estimation of these drugs with other drugs. The drugs individually and in mixture obeys Beer's law over conc. range 1.2-4.4 microg/mL for cetirizine HCL and for ambroxol HCL 15-52 microg/mL at all five sampling wavelengths (correlation coeff. well above 0.995). The mean recoveries from tablet by standard addition method were 100.18% (+/-2.4) and 100.66 % (+/-2.31). The present work reports simple, accurate and precise spectrophotometric methods for their simultaneous estimation from tablet dosage form.

  15. Spectrophotometric determination of oxiconazole in topical lotion using methyl orange.

    PubMed

    Milano, Julie; Cardoso, Simone Gonçalves

    2005-04-01

    A spectrophotometric method is described for the determination of oxiconazole in raw material and in topical lotion. This method is based on the reaction of the oxiconazole with methyl orange in buffered aqueous solution of citric acid at pH 2.3. The chromogen, being extractable with dichloromethane, could be measured quantitatively with maximum absorption at 427 nm. The Lambert-Beer law was obeyed in the concentration range of 4.0-14.0 microg ml(-1). A prospective validation of the method showed that the method was linear (r=0.9995), precise (intra-day: CV=1.57% and inter-day: CV=1.50%) and accurate (mean recoveries: 99.69%). The results compared favourably with those of the HPLC method.

  16. Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures.

    PubMed

    Goicoechea, H C; Olivieri, A C

    2001-07-01

    A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.

  17. Direct and selective flow-injection method for the simultaneous spectrophotometric determination of calcium and magnesium in red and white wines using online dilution based on "Zone Sampling".

    PubMed

    Themelis, D G; Tzanavaras, P D; Trellopoulos, A V; Sofoniou, M C

    2001-11-01

    The present work reports a selective and simple flow injection method for the direct and simultaneous determination of calcium and magnesium ions in red, rose, and white wines. Both ions react with methylthymol blue (MTB) at a strongly basic medium to form colored complexes that are monitored spectrophotometrically (lambda(max) = 610 nm). The simultaneous determination is achieved by online masking of magnesium by 8-hydroxyquinoline (8-HQ). Incorporating an online dilution mode based on the "zone sampling" technique in the FI system, the determination of both analytes was achieved without any pretreatment of the samples, in the range 0-350 mg L(-1) and 0-200 mg L(-1) for Ca(II) and Mg(II), respectively. The 3 sigma detection limits were quite satisfactory (2.1 and 1.8 mg L(-1) for Ca(II) and Mg(II) respectively), and the precision was 1.2% (at a mixture of 100.0 mg L(-1) Ca(II) + 100.0 mg L(-1) Mg(II), n = 12). A detailed study of interferences proved that the proposed method is highly selective. The application of the method to the direct analysis of red, rose, and white wines yielded excellent results compared with those obtained by using FAAS as a reference method (e(r) < 2.8%).

  18. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples.

  19. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples. PMID:27498635

  20. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  1. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics.

    PubMed

    Stanley, Jeffrey R; Adkins, Joshua N; Slysz, Gordon W; Monroe, Matthew E; Purvine, Samuel O; Karpievitch, Yuliya V; Anderson, Gordon A; Smith, Richard D; Dabney, Alan R

    2011-08-15

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, because this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referenced as Statistical Tools for AMT Tag Confidence (STAC). STAC additionally provides a uniqueness probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download, as both a command line and a Windows graphical application.

  2. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    SciTech Connect

    Groeneboom, N. E.; Dahle, H.

    2014-03-10

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  3. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method

    NASA Astrophysics Data System (ADS)

    Kruglyakov, M.; Geraskin, A.; Kuvshinov, A.

    2016-11-01

    We present a novel, open source 3-D MT forward solver based on a method of integral equations (IE) with contracting kernel. Special attention in the solver is paid to accurate calculations of Green's functions and their integrals which are cornerstones of any IE solution. The solver supports massive parallelization and is able to deal with highly detailed and contrasting models. We report results of a 3-D numerical experiment aimed at analyzing the accuracy and scalability of the code.

  4. Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Ayoub, Bassam M.

    2016-11-01

    New univariate spectrophotometric method and multivariate chemometric approach were developed and compared for simultaneous determination of empagliflozin and metformin manipulating their zero order absorption spectra with application on their pharmaceutical preparation. Sample enrichment technique was used to increase concentration of empagliflozin after extraction from tablets to allow its simultaneous determination with metformin without prior separation. Validation parameters according to ICH guidelines were satisfactory over the concentration range of 2-12 μg mL- 1 for both drugs using simultaneous equation with LOD values equal to 0.20 μg mL- 1 and 0.19 μg mL- 1, LOQ values equal to 0.59 μg mL- 1 and 0.58 μg mL- 1 for empagliflozin and metformin, respectively. While the optimum results for the chemometric approach using partial least squares method (PLS-2) were obtained using concentration range of 2-10 μg mL- 1. The optimized validated methods are suitable for quality control laboratories enable fast and economic determination of the recently approved pharmaceutical combination Synjardy® tablets.

  5. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  6. Under proper control, oxidation of proteins with known chemical structure provides an accurate and absolute method for the determination of their molar concentration.

    PubMed

    Guermant, C; Azarkan, M; Smolders, N; Baeyens-Volant, D; Nijs, M; Paul, C; Brygier, J; Vincentelli, J; Looze, Y

    2000-01-01

    Oxidation at 120 degrees C of inorganic and organic (including amino acids, di- and tripeptides) model compounds by K(2)Cr(2)O(7) in the presence of H(2)SO(4) (mass fraction: 0.572), Ag(2)SO(4) (catalyst), and HgSO(4) results in the quantitative conversion of their C-atoms into CO(2) within 24 h or less. Under these stressed, well-defined conditions, the S-atoms present in cysteine and cystine residues are oxidized into SO(3) while, interestingly, the oxidation states of all the other (including the N-) atoms normally present in a protein do remain quite unchanged. When the chemical structure of a given protein is available, the total number of electrons the protein is able to transfer to K(2)Cr(2)O(7) and thereof, the total number of moles of Cr(3+) ions which the protein is able to generate upon oxidation can be accurately calculated. In such cases, unknown protein molar concentrations can thus be determined through straightforward spectrophotometric measurements of Cr(3+) concentrations. The values of molar absorption coefficients for several well-characterized proteins have been redetermined on this basis and observed to be in excellent agreement with the most precise values reported in the literature, which fully assesses the validity of the method. When applied to highly purified proteins of known chemical structure (more generally of known atomic composition), this method is absolute and accurate (+/-1%). Furthermore, it is well adapted to series measurements since available commercial kits for chemical oxygen demand (COD) measurements can readily be adapted to work under the experimental conditions recommended here for the protein assay. PMID:10610688

  7. Selective and sensitive spectrophotometric method for the determination of trace amounts of zirconium in environmental and biological samples using 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide

    NASA Astrophysics Data System (ADS)

    Al-Kady, Ahmed S.

    2012-11-01

    A simple, selective and sensitive spectrophotometric method for the determination of trace amounts of Zr(IV) in aqueous samples was performed, based on complexation reaction between Zr(IV) and 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide (xipamide). The important analytical parameters and their effects on the reported system were investigated. Zr(IV) react with xipamide in the ratio 1:1 in the pH range 8 to form a complex with an absorption maximum 333 nm. The apparent stability constant (log βn) and the free energy change (ΔG∗) of formation of the complex was calculated using the results of mole ratio and continuous variation methods. Beer's law was obeyed in the concentration range 0.2-3.6 μg/mL. For more accurate analysis, Ringbom optimum concentration range was found from 0.3 to 3.5 μg/mL. The molar absorptivity, Sandell sensitivity, detection and quantification limits were also calculated. Taking a constant concentration of Zr(IV) and determining its concentration in the presence of large number of foreign ions tested the effect of foreign ions. The practical applicability of the elaborated method was examined using for determination of mentioned ion in water samples, biological, plant leaves and soil samples where excellent agreements between reported and obtained results were achieved. The relative standard deviation (n = 6) were 0.195%. The precision and accuracy of the results were comparable via F and t test at the 95% confidence level.

  8. Spectrophotometric and HPLC determination of secnidazole in pharmaceutical tablets.

    PubMed

    El Wallily, A F; Abdine, H H; Razak, O A; Zamel, S

    2000-07-01

    Simple and accurate spectrophotometric and HPLC methods were developed for the determination of secnidazole in tablets dosage form. The first spectrophotometric method depends on the reduction of secnidazole molecule with zinc dust and hydrochloric acid followed by condensation with either p-dimethylaminobenzaldehyde or anisaldehyde to give colored chromogens having absorbance at 494 and 398 nm, respectively. The second method was based on the reaction of the drug with sodium nitroprusside in the presence or absence of hydroxylammonium hydrochloride. The formed colored chromogens were measured at 584 and 508 nm, respectively. The experimental conditions were optimized and Beer's law was obeyed over the applicable concentration ranges. The application of HPLC procedures depended on using either a conventional or microbore reverse-phase (C18) column along with mobile phases consisting of water and methanol (30:70), at pH of 3.5. Both techniques were applied successfully for the analysis of secnidazole in tablets form. The results obtained from both procedures were statistically compared using the Student's-t and F-variance ratio tests. PMID:10857557

  9. Comparison of methods for accurate end-point detection of potentiometric titrations

    NASA Astrophysics Data System (ADS)

    Villela, R. L. A.; Borges, P. P.; Vyskočil, L.

    2015-01-01

    Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.

  10. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    PubMed Central

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  11. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  12. Multifrequency excitation method for rapid and accurate dynamic test of micromachined gyroscope chips.

    PubMed

    Deng, Yan; Zhou, Bin; Xing, Chao; Zhang, Rong

    2014-10-17

    A novel multifrequency excitation (MFE) method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE) method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  13. A second order accurate embedded boundary method for the wave equation with Dirichlet data

    SciTech Connect

    Kreiss, H O; Petersson, N A

    2004-03-02

    The accuracy of Cartesian embedded boundary methods for the second order wave equation in general two-dimensional domains subject to Dirichlet boundary conditions is analyzed. Based on the analysis, we develop a numerical method where both the solution and its gradient are second order accurate. We avoid the small-cell stiffness problem without sacrificing the second order accuracy by adding a small artificial term to the Dirichlet boundary condition. Long-time stability of the method is obtained by adding a small fourth order dissipative term. Several numerical examples are provided to demonstrate the accuracy and stability of the method. The method is also used to solve the two-dimensional TM{sub z} problem for Maxwell's equations posed as a second order wave equation for the electric field coupled to ordinary differential equations for the magnetic field.

  14. Multifrequency Excitation Method for Rapid and Accurate Dynamic Test of Micromachined Gyroscope Chips

    PubMed Central

    Deng, Yan; Zhou, Bin; Xing, Chao; Zhang, Rong

    2014-01-01

    A novel multifrequency excitation (MFE) method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE) method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes. PMID:25330052

  15. Accurate near-field calculation in the rigorous coupled-wave analysis method

    NASA Astrophysics Data System (ADS)

    Weismann, Martin; Gallagher, Dominic F. G.; Panoiu, Nicolae C.

    2015-12-01

    The rigorous coupled-wave analysis (RCWA) is one of the most successful and widely used methods for modeling periodic optical structures. It yields fast convergence of the electromagnetic far-field and has been adapted to model various optical devices and wave configurations. In this article, we investigate the accuracy with which the electromagnetic near-field can be calculated by using RCWA and explain the observed slow convergence and numerical artifacts from which it suffers, namely unphysical oscillations at material boundaries due to the Gibbs phenomenon. In order to alleviate these shortcomings, we also introduce a mathematical formulation for accurate near-field calculation in RCWA, for one- and two-dimensional straight and slanted diffraction gratings. This accurate near-field computational approach is tested and evaluated for several representative test-structures and configurations in order to illustrate the advantages provided by the proposed modified formulation of the RCWA.

  16. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  17. Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: Application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline

    SciTech Connect

    Kosaka, Koji; Yamada, Harumi; Matsui, Saburo; Echigo, Shinya; Shishida, Kenichi

    1998-12-01

    Hydrogen peroxide (H{sub 2}O{sub 2}) in the range of several tens to several hundreds of micromoles per liter is usually added to the process water in advanced oxidation processes (AOPs). In this study, a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1, 10-phenanthroline (DMP) for measuring H{sub 2}O{sub 2} concentration was compared with other methods [i.e., spectrophotometric methods using titanium oxalate and N,N-diethyl-p-phenylenediamine (DPD) and a fluorometric method using p-hydroxyphenyl acetic acid (POHPAA)]. Particular attention was paid to sensitivities and effects of coexisting substances. The most sensitive method was the fluorometric method, followed in order by DPD, DMP, and the titanium oxalate colorimetric method; their detection limits in 1-cm cells were 0.16, 0.77, 0.80, and 29 {micro}M, respectively. Therefore, the DMP method was found to be reasonably sensitive when applied to AOPs. In the DMP method, copper(II)-DMP complexes react with humic acid, and colored chemicals are produced. However, the slopes of the calibration curves of H{sub 2}O{sub 2} containing up to 10 mg of C L{sup {minus}1} from humic acid did not change significantly as compared to that in ultrapure water. The effect of chlorine on the DMP method was not observed up to at least 23 {micro}M (0.8 mg of Cl L{sup {minus}1}) of free chlorine, although the DPD and fluorometric methods are known to be interfered by chlorine. From this study, it was concluded that the DMP method is suitable to be used in AOPs.

  18. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  19. Accurate Wind Characterization in Complex Terrain Using the Immersed Boundary Method

    SciTech Connect

    Lundquist, K A; Chow, F K; Lundquist, J K; Kosovic, B

    2009-09-30

    This paper describes an immersed boundary method (IBM) that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Two different interpolation methods, trilinear and inverse distance weighting, are used at the core of the IBM algorithm. Functional aspects of the algorithm's implementation and the accuracy of results are considered. Simulations of flow over a three-dimensional hill with shallow terrain slopes are preformed with both WRF's native terrain-following coordinate and with both IB methods. Comparisons of flow fields from the three simulations show excellent agreement, indicating that both IB methods produce accurate results. However, when ease of implementation is considered, inverse distance weighting is superior. Furthermore, inverse distance weighting is shown to be more adept at handling highly complex urban terrain, where the trilinear interpolation algorithm breaks down. This capability is demonstrated by using the inverse distance weighting core of the IBM to model atmospheric flow in downtown Oklahoma City.

  20. A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane

    NASA Astrophysics Data System (ADS)

    Kara, Derya; Karadaş, Cennet

    2015-08-01

    The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 103 L mol-1 cm-1. Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL-1. The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL-1 molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L-1 for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL-1 Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml-1 with a standard derivation of 0.002 μg ml-1 molybdenum(VI).

  1. A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane.

    PubMed

    Kara, Derya; Karadaş, Cennet

    2015-08-01

    The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 10(3)L mol(-1)cm(-1). Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL(-1). The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL(-1) molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L(-1) for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL(-1) Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml(-1) with a standard derivation of 0.002 μg ml(-1) molybdenum(VI).

  2. A new high-order accurate continuous Galerkin method for linear elastodynamics problems

    NASA Astrophysics Data System (ADS)

    Idesman, Alexander V.

    2007-07-01

    A new high-order accurate time-continuous Galerkin (TCG) method for elastodynamics is suggested. The accuracy of the new implicit TCG method is increased by a factor of two in comparison to that of the standard TCG method and is one order higher than the accuracy of the standard time-discontinuous Galerkin (TDG) method at the same number of degrees of freedom. The new method is unconditionally stable and has controllable numerical dissipation at high frequencies. An iterative predictor/multi-corrector solver that includes the factorization of the effective mass matrix of the same dimension as that of the mass matrix for the second-order methods is developed for the new TCG method. A new strategy combining numerical methods with small and large numerical dissipation is developed for elastodynamics. Simple numerical tests show a significant reduction in the computation time (by 5 25 times) for the new TCG method in comparison to that for second-order methods, and the suppression of spurious high-frequency oscillations.

  3. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms.

    PubMed

    Saccà, Alessandro

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes' principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of 'unellipticity' introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  4. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  5. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  6. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  7. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  8. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  9. A fast GNU method to draw accurate scientific illustrations for taxonomy.

    PubMed

    Montesanto, Giuseppe

    2015-01-01

    Nowadays only digital figures are accepted by the most important journals of taxonomy. These may be produced by scanning conventional drawings, made with high precision technical ink-pens, which normally use capillary cartridge and various line widths. Digital drawing techniques that use vector graphics, have already been described in literature to support scientists in drawing figures and plates for scientific illustrations; these techniques use many different software and hardware devices. The present work gives step-by-step instructions on how to make accurate line drawings with a new procedure that uses bitmap graphics with the GNU Image Manipulation Program (GIMP). This method is noteworthy: it is very accurate, producing detailed lines at the highest resolution; the raster lines appear as realistic ink-made drawings; it is faster than the traditional way of making illustrations; everyone can use this simple technique; this method is completely free as it does not use expensive and licensed software and it can be used with different operating systems. The method has been developed drawing figures of terrestrial isopods and some examples are here given.

  10. A fast GNU method to draw accurate scientific illustrations for taxonomy

    PubMed Central

    Montesanto, Giuseppe

    2015-01-01

    Abstract Nowadays only digital figures are accepted by the most important journals of taxonomy. These may be produced by scanning conventional drawings, made with high precision technical ink-pens, which normally use capillary cartridge and various line widths. Digital drawing techniques that use vector graphics, have already been described in literature to support scientists in drawing figures and plates for scientific illustrations; these techniques use many different software and hardware devices. The present work gives step-by-step instructions on how to make accurate line drawings with a new procedure that uses bitmap graphics with the GNU Image Manipulation Program (GIMP). This method is noteworthy: it is very accurate, producing detailed lines at the highest resolution; the raster lines appear as realistic ink-made drawings; it is faster than the traditional way of making illustrations; everyone can use this simple technique; this method is completely free as it does not use expensive and licensed software and it can be used with different operating systems. The method has been developed drawing figures of terrestrial isopods and some examples are here given. PMID:26261449

  11. Joint iris boundary detection and fit: a real-time method for accurate pupil tracking.

    PubMed

    Barbosa, Marconi; James, Andrew C

    2014-08-01

    A range of applications in visual science rely on accurate tracking of the human pupil's movement and contraction in response to light. While the literature for independent contour detection and fitting of the iris-pupil boundary is vast, a joint approach, in which it is assumed that the pupil has a given geometric shape has been largely overlooked. We present here a global method for simultaneously finding and fitting of an elliptic or circular contour against a dark interior, which produces consistently accurate results even under non-ideal recording conditions, such as reflections near and over the boundary, droopy eye lids, or the sudden formation of tears. The specific form of the proposed optimization problem allows us to write down closed analytic formulae for the gradient and the Hessian of the objective function. Moreover, both the objective function and its derivatives can be cast into vectorized form, making the proposed algorithm significantly faster than its closest relative in the literature. We compare methods in multiple ways, both analytically and numerically, using real iris images as well as idealizations of the iris for which the ground truth boundary is precisely known. The method proposed here is illustrated under challenging recording conditions and it is shown to be robust. PMID:25136477

  12. A new cation-exchange method for accurate field speciation of hexavalent chromium

    USGS Publications Warehouse

    Ball, J.W.; McCleskey, R.B.

    2003-01-01

    A new method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The method consists of passing a water sample through strong acid cation-exchange resin at the field site, where Cr(III) is retained while Cr(VI) passes into the effluent and is preserved for later determination. The method is simple, rapid, portable, and accurate, and makes use of readily available, inexpensive materials. Cr(VI) concentrations are determined later in the laboratory using any elemental analysis instrument sufficiently sensitive to measure the Cr(VI) concentrations of interest. The new method allows measurement of Cr(VI) concentrations as low as 0.05 ??g 1-1, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. Cr(VI) can be separated from Cr(III) between pH 2 and 11 at Cr(III)/Cr(VI) concentration ratios as high as 1000. The new method has demonstrated excellent comparability with two commonly used methods, the Hach Company direct colorimetric method and USEPA method 218.6. The new method is superior to the Hach direct colorimetric method owing to its relative sensitivity and simplicity. The new method is superior to USEPA method 218.6 in the presence of Fe(II) concentrations up to 1 mg 1-1 and Fe(III) concentrations up to 10 mg 1-1. Time stability of preserved samples is a significant advantage over the 24-h time constraint specified for USEPA method 218.6.

  13. Quick and accurate estimation of the elastic constants using the minimum image method

    NASA Astrophysics Data System (ADS)

    Tretiakov, Konstantin V.; Wojciechowski, Krzysztof W.

    2015-04-01

    A method for determining the elastic properties using the minimum image method (MIM) is proposed and tested on a model system of particles interacting by the Lennard-Jones (LJ) potential. The elastic constants of the LJ system are determined in the thermodynamic limit, N → ∞, using the Monte Carlo (MC) method in the NVT and NPT ensembles. The simulation results show that when determining the elastic constants, the contribution of long-range interactions cannot be ignored, because that would lead to erroneous results. In addition, the simulations have revealed that the inclusion of further interactions of each particle with all its minimum image neighbors even in case of small systems leads to results which are very close to the values of elastic constants in the thermodynamic limit. This enables one for a quick and accurate estimation of the elastic constants using very small samples.

  14. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.

    PubMed

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; Kong, Dezhao; Jin, Guofan

    2015-10-01

    Fast calculation and correct depth cue are crucial issues in the calculation of computer-generated hologram (CGH) for high quality three-dimensional (3-D) display. An angular-spectrum based algorithm for layer-oriented CGH is proposed. Angular spectra from each layer are synthesized as a layer-corresponded sub-hologram based on the fast Fourier transform without paraxial approximation. The proposed method can avoid the huge computational cost of the point-oriented method and yield accurate predictions of the whole diffracted field compared with other layer-oriented methods. CGHs of versatile formats of 3-D digital scenes, including computed tomography and 3-D digital models, are demonstrated with precise depth performance and advanced image quality. PMID:26480062

  15. Indirect spectrophotometric determination of traces of bromide in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1963-01-01

    A rapid, accurate, and sensitive indirect spectrophotometric method for the determination of bromide in natural waters is based on the catalytic effect of bromide on the oxidation of iodine to iodate by potassium permanganate in sulfuric acid solution. The method is applicable to concentrations ranging from 1 to 100 ??g. of bromide per liter, but may be modified to extend the concentration range. Most ions commonly occurring in water do not interfere. The standard deviation is 2.9 at bromide concentrations of 100 ??g. per liter and less at lower concentrations. The determination of bromide in samples containing known added amounts gave values ranging from 99 to 105% of the concentration calculated to be present.

  16. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  17. Development of a highly sensitive extractive spectrophotometric method for the determination of nickel(II) from environmental matrices using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone.

    PubMed

    Ramachandraiah, C; Rajesh Kumar, J; Janardhan Reddy, K; Lakshmi Narayana, S; Varada Reddy, A

    2008-09-01

    Nickel(II) reacts with N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone (ECCT) and forms a yellow colored complex, which was extracted into n-butanol from sodium acetate and acetic acid buffer at pH 6.0. The absorbance value of the Ni(II)-ECCT complex was measured at different intervals of time at 400 nm, to ascertain the time stability of the complex. The extraction of the complex into the solvent was instantaneous and stable for more than 72 h. The system obeyed Beer's law in the concentration range of 1.2-5.6 microg ml(-1) of nickel(II), with an excellent linearity and a correlation coefficient of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species were found to be 1.114 x 10(4)L mol(-1)cm(-1) and 5.29 x 10(-3)microg cm(-2) at 400 nm, respectively. Hence, a detailed study of the extraction of nickel(II) with ECCT has been undertaken with a view to developing a rapid and sensitive extractive spectrophotometric method for the determination of nickel(II) when present alone or in the presence of diverse ions which are usually associated with nickel(II) in environmental matrices like soil and industrial effluents. Various standard alloy samples (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are comparable with those from atomic absorption spectrometry and were found to be in good agreement.

  18. 3'READS+, a sensitive and accurate method for 3' end sequencing of polyadenylated RNA.

    PubMed

    Zheng, Dinghai; Liu, Xiaochuan; Tian, Bin

    2016-10-01

    Sequencing of the 3' end of poly(A)(+) RNA identifies cleavage and polyadenylation sites (pAs) and measures transcript expression. We previously developed a method, 3' region extraction and deep sequencing (3'READS), to address mispriming issues that often plague 3' end sequencing. Here we report a new version, named 3'READS+, which has vastly improved accuracy and sensitivity. Using a special locked nucleic acid oligo to capture poly(A)(+) RNA and to remove the bulk of the poly(A) tail, 3'READS+ generates RNA fragments with an optimal number of terminal A's that balance data quality and detection of genuine pAs. With improved RNA ligation steps for efficiency, the method shows much higher sensitivity (over two orders of magnitude) compared to the previous version. Using 3'READS+, we have uncovered a sizable fraction of previously overlooked pAs located next to or within a stretch of adenylate residues in human genes and more accurately assessed the frequency of alternative cleavage and polyadenylation (APA) in HeLa cells (∼50%). 3'READS+ will be a useful tool to accurately study APA and to analyze gene expression by 3' end counting, especially when the amount of input total RNA is limited. PMID:27512124

  19. 3'READS+, a sensitive and accurate method for 3' end sequencing of polyadenylated RNA.

    PubMed

    Zheng, Dinghai; Liu, Xiaochuan; Tian, Bin

    2016-10-01

    Sequencing of the 3' end of poly(A)(+) RNA identifies cleavage and polyadenylation sites (pAs) and measures transcript expression. We previously developed a method, 3' region extraction and deep sequencing (3'READS), to address mispriming issues that often plague 3' end sequencing. Here we report a new version, named 3'READS+, which has vastly improved accuracy and sensitivity. Using a special locked nucleic acid oligo to capture poly(A)(+) RNA and to remove the bulk of the poly(A) tail, 3'READS+ generates RNA fragments with an optimal number of terminal A's that balance data quality and detection of genuine pAs. With improved RNA ligation steps for efficiency, the method shows much higher sensitivity (over two orders of magnitude) compared to the previous version. Using 3'READS+, we have uncovered a sizable fraction of previously overlooked pAs located next to or within a stretch of adenylate residues in human genes and more accurately assessed the frequency of alternative cleavage and polyadenylation (APA) in HeLa cells (∼50%). 3'READS+ will be a useful tool to accurately study APA and to analyze gene expression by 3' end counting, especially when the amount of input total RNA is limited.

  20. Direct quantification of lycopene in products derived from thermally processed tomatoes: optothermal window as a selective, sensitive, and accurate analytical method without the need for preparatory steps.

    PubMed

    Bicanic, Dane; Swarts, Jan; Luterotti, Svjetlana; Pietraperzia, Giangaetano; Dóka, Otto; de Rooij, Hans

    2004-09-01

    The concept of the optothermal window (OW) is proposed as a reliable analytical tool to rapidly determine the concentration of lycopene in a large variety of commercial tomato products in an extremely simple way (the determination is achieved without the need for pretreatment of the sample). The OW is a relative technique as the information is deduced from the calibration curve that relates the OW data (i.e., the product of the absorption coefficient beta and the thermal diffusion length micro) with the lycopene concentration obtained from spectrophotometric measurements. The accuracy of the method has been ascertained with a high correlation coefficient (R = 0.98) between the OW data and results acquired from the same samples by means of the conventional extraction spectrophotometric method. The intrinsic precision of the OW method is quite high (better than 1%), whereas the repeatability of the determination (RSD = 0.4-9.5%, n= 3-10) is comparable to that of spectrophotometry.

  1. A comparative study of validated spectrophotometric and TLC- spectrodensitometric methods for the determination of sodium cromoglicate and fluorometholone in ophthalmic solution

    PubMed Central

    Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Elgizawy, Samia M.

    2013-01-01

    The determination of sodium cromoglicate (SCG) and fluorometholone (FLU) in ophthalmic solution was developed by simple, sensitive and precise methods. Three spectrophotometric methods were applied: absorptivity factor (a-Factor method), absorption factor (AFM) and mean centering of ratio spectra (MCR). The linearity ranges of SCG were found to be (2.5–35 μg/mL) for (a-Factor method) and (MCR); while for (AFM), it was found to be (7.5–50 μg/mL). The linearity ranges of FLU were found to be (4–16 μg/mL) for (a-Factor method) and (AFM); while for (MCR), it was found to be (2–16 μg/mL). The mean percentage recoveries/RSD for SCG were found to be 100.31/0.90, 100.23/0.57 and 100.43/1.21; while for FLU, they were found to be 100.11/0.56, 99.97/0.35 and 99.94/0.88 using (a-Factor method), (AFM) and (MCR), respectively. A TLC-spectrodensitometric method was developed by separation of SCG and FLU on silica gel 60 F254 using chloroform:methanol:toluene:triethylamine in the ratio of (5:2:4:1 v/v/v/v) as developing system, followed by spectrodensitometric measurement of the bands at 241 nm. The linearity ranges and the mean percentage recoveries/RSD were found to be (0.4–4.4 μg/band), 100.24/1.44 and (0.2–1.6 μg/band), 99.95/1.50 for SCG and FLU, respectively. A comparative study was conducted between the proposed methods to discuss the advantage of each method. The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for the determination of SCG and FLU in their laboratory prepared mixtures and commercial ophthalmic solution in the presence of benzalkonium chloride as a preservative. These methods could be an alternative to different HPLC techniques in quality control laboratories lacking the required facilities for those expensive techniques. PMID:24227962

  2. Extractive Spectrophotometric Methods for the Determination of Zolmitriptan in Bulk Drug and Pharmaceutical Formulation Using Bromocresol Green

    NASA Astrophysics Data System (ADS)

    Prashanth, K. N.; Swamy, N.; Basavaiah, K.

    2013-11-01

    Considering the basic property of zolmitriptan (ZMT) to generate ion-pairs with sulfonephthalein dyes two methods have been developed for its assay in bulk drug and dosage form. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug:dye) of ZMT with bromocresol green (BCG) at pH 4.20 ± 0.01 and extraction of the complex into chloroform followed by measurement of the yellow ion-pair complex at 435 nm. In the second method (method B), the drug-dye ion-pair complex was treated with ethanolic potassium hydroxide in ethanolic medium and the resulting base form of the dye was measured at 630 nm. Beer's law was obeyed in the concentration range of 0.8-18.0 and 0.08-1.4 μg/ml for method A and B, respectively, and the corresponding molar absorptivity values were 1.50ṡ104 and 1.52ṡ105 l/(molṡcm). The Sandell sensitivity values were 0.0191 and 0.0019 μg/cm2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the drug and dye (1:1) was determined by Job's continuous variation method and the stability constant of the complex was also calculated. The proposed method was successfully extended to dosage form (tablets).

  3. Accurate and efficient method for many-body van der Waals interactions.

    PubMed

    Tkatchenko, Alexandre; DiStasio, Robert A; Car, Roberto; Scheffler, Matthias

    2012-06-01

    An efficient method is developed for the microscopic description of the frequency-dependent polarizability of finite-gap molecules and solids. This is achieved by combining the Tkatchenko-Scheffler van der Waals (vdW) method [Phys. Rev. Lett. 102, 073005 (2009)] with the self-consistent screening equation of classical electrodynamics. This leads to a seamless description of polarization and depolarization for the polarizability tensor of molecules and solids. The screened long-range many-body vdW energy is obtained from the solution of the Schrödinger equation for a system of coupled oscillators. We show that the screening and the many-body vdW energy play a significant role even for rather small molecules, becoming crucial for an accurate treatment of conformational energies for biomolecules and binding of molecular crystals. The computational cost of the developed theory is negligible compared to the underlying electronic structure calculation.

  4. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  5. Odontoma-associated tooth impaction: accurate diagnosis with simple methods? Case report and literature review.

    PubMed

    Troeltzsch, Matthias; Liedtke, Jan; Troeltzsch, Volker; Frankenberger, Roland; Steiner, Timm; Troeltzsch, Markus

    2012-10-01

    Odontomas account for the largest fraction of odontogenic tumors and are frequent causes of tooth impaction. A case of a 13-year-old female patient with an odontoma-associated impaction of a mandibular molar is presented with a review of the literature. Preoperative planning involved simple and convenient methods such as clinical examination and panoramic radiography, which led to a diagnosis of complex odontoma and warranted surgical removal. The clinical diagnosis was confirmed histologically. Multidisciplinary consultation may enable the clinician to find the accurate diagnosis and appropriate therapy based on the clinical and radiographic appearance. Modern radiologic methods such as cone-beam computed tomography or computed tomography should be applied only for special cases, to decrease radiation.

  6. Accurate and computationally efficient mixing models for the simulation of turbulent mixing with PDF methods

    NASA Astrophysics Data System (ADS)

    Meyer, Daniel W.; Jenny, Patrick

    2013-08-01

    Different simulation methods are applicable to study turbulent mixing. When applying probability density function (PDF) methods, turbulent transport, and chemical reactions appear in closed form, which is not the case in second moment closure methods (RANS). Moreover, PDF methods provide the entire joint velocity-scalar PDF instead of a limited set of moments. In PDF methods, however, a mixing model is required to account for molecular diffusion. In joint velocity-scalar PDF methods, mixing models should also account for the joint velocity-scalar statistics, which is often under appreciated in applications. The interaction by exchange with the conditional mean (IECM) model accounts for these joint statistics, but requires velocity-conditional scalar means that are expensive to compute in spatially three dimensional settings. In this work, two alternative mixing models are presented that provide more accurate PDF predictions at reduced computational cost compared to the IECM model, since no conditional moments have to be computed. All models are tested for different mixing benchmark cases and their computational efficiencies are inspected thoroughly. The benchmark cases involve statistically homogeneous and inhomogeneous settings dealing with three streams that are characterized by two passive scalars. The inhomogeneous case clearly illustrates the importance of accounting for joint velocity-scalar statistics in the mixing model. Failure to do so leads to significant errors in the resulting scalar means, variances and other statistics.

  7. Accurate geometric characterization of gold nanorod ensemble by an inverse extinction/scattering spectroscopic method.

    PubMed

    Xu, Ninghan; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan

    2013-09-01

    Aspect ratio, width, and end-cap factor are three critical parameters defined to characterize the geometry of metallic nanorod (NR). In our previous work [Opt. Express 21, 2987 (2013)], we reported an optical extinction spectroscopic (OES) method that can measure the aspect ratio distribution of gold NR ensembles effectively and statistically. However, the measurement accuracy was found to depend on the estimate of the width and end-cap factor of the nanorod, which unfortunately cannot be determined by the OES method itself. In this work, we propose to improve the accuracy of the OES method by applying an auxiliary scattering measurement of the NR ensemble which can help to estimate the mean width of the gold NRs effectively. This so-called optical extinction/scattering spectroscopic (OESS) method can fast characterize the aspect ratio distribution as well as the mean width of gold NR ensembles simultaneously. By comparing with the transmission electron microscopy experimentally, the OESS method shows the advantage of determining two of the three critical parameters of the NR ensembles (i.e., the aspect ratio and the mean width) more accurately and conveniently than the OES method.

  8. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal.

  9. Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection.

    PubMed

    Schiff, Dillon; Aviv, Hagit; Rosenbaum, Efraim; Tischler, Yaakov R

    2016-02-16

    Rapid and accurate detection of pathogens is paramount to human health. Spectroscopic techniques have been shown to be viable methods for detecting various pathogens. Enhanced methods of Raman spectroscopy can discriminate unique bacterial signatures; however, many of these require precise conditions and do not have in vivo replicability. Common biological detection methods such as rapid antigen detection tests have high specificity but do not have high sensitivity. Here we developed a new method of bacteria detection that is both highly specific and highly sensitive by combining the specificity of antibody staining and the sensitivity of spectroscopic characterization. Bacteria samples, treated with a fluorescent antibody complex specific to Streptococcus pyogenes, were volumetrically normalized according to their Raman bacterial signal intensity and characterized for fluorescence, eliciting a positive result for samples containing Streptococcus pyogenes and a negative result for those without. The normalized fluorescence intensity of the Streptococcus pyogenes gave a signal that is up to 16.4 times higher than that of other bacteria samples for bacteria stained in solution and up to 12.7 times higher in solid state. This method can be very easily replicated for other bacteria species using suitable antibody-dye complexes. In addition, this method shows viability for in vivo detection as it requires minute amounts of bacteria, low laser excitation power, and short integration times in order to achieve high signal. PMID:26752013

  10. [A New Method of Accurately Extracting Spectral Values for Discrete Sampling Points].

    PubMed

    Lü, Zhen-zhen; Liu, Guang-ming; Yang, Jin-song

    2015-08-01

    In the establishment of remote sensing information inversion model, the actual measured data of discrete sampling points and the corresponding spectrum data to pixels of remote sensing image, are used to establish the relation, thus to realize the goal of information retrieval. Accurate extraction of spectrum value is very important to establish the remote sensing inversion mode. Converting target spot layer to ROI (region of interest) and then saving the ROI as ASCII is one of the methods that researchers often used to extract the spectral values. Analyzing the coordinate and spectrum values extracted using original coordinate in ENVI, we found that the extracted and original coordinate were not inconsistent and part of spectrum values not belong to the pixel containing the sampling point. The inversion model based on the above information cannot really reflect relationship between the target properties and spectral values; so that the model is meaningless. We equally divided the pixel into four parts and summed up the law. It was found that only when the sampling points distributed in the upper left corner of pixels, the extracted values were correct. On the basis of the above methods, this paper systematically studied the principle of extraction target coordinate and spectral values, and summarized the rule. A new method for extracting spectral parameters of the pixel that sampling point located in the environment of ENVI software. Firstly, pixel sampling point coordinates for any of the four corner points were extracted by the sample points with original coordinate in ENVI. Secondly, the sampling points were judged in which partition of pixel by comparing the absolute values of difference longitude and latitude of the original and extraction coordinates. Lastly, all points were adjusted to the upper left corner of pixels by symmetry principle and spectrum values were extracted by the same way in the first step. The results indicated that the extracted spectrum

  11. Simultaneous determination of antazoline and naphazoline by the net analyte signal standard addition method and spectrophotometric technique.

    PubMed

    Asadpour-Zeynali, Karim; Ghavami, Raoof; Esfandiari, Roghayeh; Soheili-Azad, Payam

    2010-01-01

    A novel net analyte signal standard addition method (NASSAM) was used for simultaneous determination of the drugs anthazoline and naphazoline. The NASSAM can be applied for determination of analytes in the presence of known interferents. The proposed method is used to eliminate the calibration and prediction steps of multivariate calibration methods; the determination is carried out in a single step for each analyte. The accuracy of the predictions against the H-point standard addition method is independent of the shape of the analyte and interferent spectra. The net analyte signal concept was also used to calculate multivariate analytical figures of merit, such as LOD, selectivity, and sensitivity. The method was successfully applied to the simultaneous determination of anthazoline and naphazoline in a commercial eye drop sample.

  12. A highly accurate method for the determination of mass and center of mass of a spacecraft

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Trubert, M. R.; Egwuatu, A.

    1978-01-01

    An extremely accurate method for the measurement of mass and the lateral center of mass of a spacecraft has been developed. The method was needed for the Voyager spacecraft mission requirement which limited the uncertainty in the knowledge of lateral center of mass of the spacecraft system weighing 750 kg to be less than 1.0 mm (0.04 in.). The method consists of using three load cells symmetrically located at 120 deg apart on a turntable with respect to the vertical axis of the spacecraft and making six measurements for each load cell. These six measurements are taken by cyclic rotations of the load cell turntable and of the spacecraft, about the vertical axis of the measurement fixture. This method eliminates all alignment, leveling, and load cell calibration errors for the lateral center of mass determination, and permits a statistical best fit of the measurement data. An associated data reduction computer program called MASCM has been written to implement this method and has been used for the Voyager spacecraft.

  13. An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images.

    PubMed

    Galdames, Francisco J; Jaillet, Fabrice; Perez, Claudio A

    2012-01-01

    Skull stripping methods are designed to eliminate the non-brain tissue in magnetic resonance (MR) brain images. Removal of non-brain tissues is a fundamental step in enabling the processing of brain MR images. The aim of this study is to develop an automatic accurate skull stripping method based on deformable models and histogram analysis. A rough-segmentation step is used to find the optimal starting point for the deformation and is based on thresholds and morphological operators. Thresholds are computed using comparisons with an atlas, and modeling by Gaussians. The deformable model is based on a simplex mesh and its deformation is controlled by the image local gray levels and the information obtained on the gray level modeling of the rough-segmentation. Our Simplex Mesh and Histogram Analysis Skull Stripping (SMHASS) method was tested on the following international databases commonly used in scientific articles: BrainWeb, Internet Brain Segmentation Repository (IBSR), and Segmentation Validation Engine (SVE). A comparison was performed against three of the best skull stripping methods previously published: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), and Hybrid Watershed Algorithm (HWA). Performance was measured using the Jaccard index (J) and Dice coefficient (κ). Our method showed the best performance and differences were statistically significant (p<0.05): J=0.904 and κ=0.950 on BrainWeb; J=0.905 and κ=0.950 on IBSR; J=0.946 and κ=0.972 on SVE.

  14. Efficient and accurate numerical methods for the Klein-Gordon-Schroedinger equations

    SciTech Connect

    Bao, Weizhu . E-mail: bao@math.nus.edu.sg; Yang, Li . E-mail: yangli@nus.edu.sg

    2007-08-10

    In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein-Gordon-Schroedinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schroedinger-type equation in KGS (ii) the utilization of Fourier pseudospectral discretization for spatial derivatives in the Klein-Gordon equation in KGS (iii) the adoption of solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear terms for time derivatives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as well as dynamics of a 2D problem in KGS.

  15. An accurate clone-based haplotyping method by overlapping pool sequencing

    PubMed Central

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-01-01

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. PMID:27095193

  16. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  17. Spectrophotometric determination of metronidazole and secnidazole in pharmaceutical preparations.

    PubMed

    Saffaj, T; Charrouf, M; Abourriche, A; Abboud, Y; Bennamara, A; Berrada, M

    2004-10-01

    A rapid and sensitive spectrophotometric method is proposed for determination of metronidazole and secnidazole. The method depends on the reduction of metronidazole and secnidazole molecule with zinc dust and hydrochloric acid flowed by diazotization and coupling with 8-quinolinol to give red colored chromogens easily measured spectrophotometrically which has lambda(max) = 500 nm. The experimental conditions were optimized and Berr's law was obeyed over the applicable concentration ranges both techniques were applied successfully to a wide variety of pharmaceutical preparations. PMID:15474063

  18. Chemometric-assisted spectrophotometric methods and high performance liquid chromatography for simultaneous determination of seven β-blockers in their pharmaceutical products: A comparative study

    NASA Astrophysics Data System (ADS)

    Abdel Hameed, Eman A.; Abdel Salam, Randa A.; Hadad, Ghada M.

    2015-04-01

    Chemometric-assisted spectrophotometric methods and high performance liquid chromatography (HPLC) were developed for the simultaneous determination of the seven most commonly prescribed β-blockers (atenolol, sotalol, metoprolol, bisoprolol, propranolol, carvedilol and nebivolol). Principal component regression PCR, partial least square PLS and PLS with previous wavelength selection by genetic algorithm (GA-PLS) were used for chemometric analysis of spectral data of these drugs. The compositions of the mixtures used in the calibration set were varied to cover the linearity ranges 0.7-10 μg ml-1 for AT, 1-15 μg ml-1 for ST, 1-15 μg ml-1 for MT, 0.3-5 μg ml-1 for BS, 0.1-3 μg ml-1 for PR, 0.1-3 μg ml-1 for CV and 0.7-5 μg ml-1 for NB. The analytical performances of these chemometric methods were characterized by relative prediction errors and were compared with each other. GA-PLS showed superiority over the other applied multivariate methods due to the wavelength selection. A new gradient HPLC method had been developed using statistical experimental design. Optimum conditions of separation were determined with the aid of central composite design. The developed HPLC method was found to be linear in the range of 0.2-20 μg ml-1 for AT, 0.2-20 μg ml-1 for ST, 0.1-15 μg ml-1 for MT, 0.1-15 μg ml-1 for BS, 0.1-13 μg ml-1 for PR, 0.1-13 μg ml-1 for CV and 0.4-20 μg ml-1 for NB. No significant difference between the results of the proposed GA-PLS and HPLC methods with respect to accuracy and precision. The proposed analytical methods did not show any interference of the excipients when applied to pharmaceutical products.

  19. Chemometric-assisted spectrophotometric methods and high performance liquid chromatography for simultaneous determination of seven β-blockers in their pharmaceutical products: a comparative study.

    PubMed

    Abdel Hameed, Eman A; Abdel Salam, Randa A; Hadad, Ghada M

    2015-04-15

    Chemometric-assisted spectrophotometric methods and high performance liquid chromatography (HPLC) were developed for the simultaneous determination of the seven most commonly prescribed β-blockers (atenolol, sotalol, metoprolol, bisoprolol, propranolol, carvedilol and nebivolol). Principal component regression PCR, partial least square PLS and PLS with previous wavelength selection by genetic algorithm (GA-PLS) were used for chemometric analysis of spectral data of these drugs. The compositions of the mixtures used in the calibration set were varied to cover the linearity ranges 0.7-10 μg ml(-1) for AT, 1-15 μg ml(-1) for ST, 1-15 μg ml(-1) for MT, 0.3-5 μg ml(-1) for BS, 0.1-3 μg ml(-1) for PR, 0.1-3 μg ml(-1) for CV and 0.7-5 μg ml(-1) for NB. The analytical performances of these chemometric methods were characterized by relative prediction errors and were compared with each other. GA-PLS showed superiority over the other applied multivariate methods due to the wavelength selection. A new gradient HPLC method had been developed using statistical experimental design. Optimum conditions of separation were determined with the aid of central composite design. The developed HPLC method was found to be linear in the range of 0.2-20 μg ml(-1) for AT, 0.2-20 μg ml(-1) for ST, 0.1-15 μg ml(-1) for MT, 0.1-15 μg ml(-1) for BS, 0.1-13 μg ml(-1) for PR, 0.1-13 μg ml(-1) for CV and 0.4-20 μg ml(-1) for NB. No significant difference between the results of the proposed GA-PLS and HPLC methods with respect to accuracy and precision. The proposed analytical methods did not show any interference of the excipients when applied to pharmaceutical products.

  20. Liquid chromatography and chemometric-assisted spectrophotometric methods for the analysis of two multicomponent mixtures containing cough suppressant drugs.

    PubMed

    El-Gindy, Alaa; Emara, Samy; Mesbah, Mostafa K; Hadad, Ghada M

    2005-01-01

    Three methods were applied for the analysis of 2 multicomponent mixtures containing dextromethorphan hydrobromide, phenylephrine hydrochloride, chlorpheniramine maleate, methylparaben, and propylparaben, together with either sodium benzoate (Mix 1) or ephedrine hydrochloride and benzoic acid (Mix 2). In the first method, liquid chromatography was used for their simultaneous determination using an ODS column with a mobile phase consisting of acetonitrile-phosphate buffer, pH 2.7 (40 + 60, v/v), containing 5mM heptanesulfonic acid sodium salt and ultraviolet (UV) detection at 214 nm. Also, 2 chemometric methods, principal component regression, and partial least squares were used. For both chemometric calibrations, a concentration set of the mixture consisting of each compound in each mixture was prepared in distilled water. The absorbance data in the UV spectra were measured for the 76 or 71 wavelength points in the spectral region 210-240 or 210-224 nm considering the intervals of deltagamma = 0.4 or 0.2 nm for Mix 1 and Mix 2, respectively. The 2 chemometric methods did not require any separation step. These methods were successfully applied for the analysis of the 2 multicomponent combinations in synthetic mixtures and in commercial syrups, and the results were compared with each other. PMID:16152922

  1. Number of Nanoparticles per Cell through a Spectrophotometric Method - A key parameter to Assess Nanoparticle-based Cellular Assays

    PubMed Central

    Unciti-Broceta, Juan D.; Cano-Cortés, Victoria; Altea-Manzano, Patricia; Pernagallo, Salvatore; Díaz-Mochón, Juan J.; Sánchez-Martín, Rosario M.

    2015-01-01

    Engineered nanoparticles (eNPs) for biological and biomedical applications are produced from functionalised nanoparticles (NPs) after undergoing multiple handling steps, giving rise to an inevitable loss of NPs. Herein we present a practical method to quantify nanoparticles (NPs) number per volume in an aqueous suspension using standard spectrophotometers and minute amounts of the suspensions (up to 1 μL). This method allows, for the first time, to analyse cellular uptake by reporting NPs number added per cell, as opposed to current methods which are related to solid content (w/V) of NPs. In analogy to the parameter used in viral infective assays (multiplicity of infection), we propose to name this novel parameter as multiplicity of nanofection. PMID:25976173

  2. Number of Nanoparticles per Cell through a Spectrophotometric Method - A key parameter to Assess Nanoparticle-based Cellular Assays.

    PubMed

    Unciti-Broceta, Juan D; Cano-Cortés, Victoria; Altea-Manzano, Patricia; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Sánchez-Martín, Rosario M

    2015-05-15

    Engineered nanoparticles (eNPs) for biological and biomedical applications are produced from functionalised nanoparticles (NPs) after undergoing multiple handling steps, giving rise to an inevitable loss of NPs. Herein we present a practical method to quantify nanoparticles (NPs) number per volume in an aqueous suspension using standard spectrophotometers and minute amounts of the suspensions (up to 1 μL). This method allows, for the first time, to analyse cellular uptake by reporting NPs number added per cell, as opposed to current methods which are related to solid content (w/V) of NPs. In analogy to the parameter used in viral infective assays (multiplicity of infection), we propose to name this novel parameter as multiplicity of nanofection.

  3. A more accurate method for measurement of tuberculocidal activity of disinfectants.

    PubMed Central

    Ascenzi, J M; Ezzell, R J; Wendt, T M

    1987-01-01

    The current Association of Official Analytical Chemists method for testing tuberculocidal activity of disinfectants has been shown to be inaccurate and to have a high degree of variability. An alternate test method is proposed which is more accurate, more precise, and quantitative. A suspension of Mycobacterium bovis BCG was exposed to a variety of disinfectant chemicals and a kill curve was constructed from quantitative data. Data are presented that show the discrepancy between current claims, determined by the Association of Official Analytical Chemists method, of selected commercially available products and claims generated by the proposed method. The effects of different recovery media were examined. The data indicated that Mycobacteria 7H11 and Middlebrook 7H10 agars were equal in recovery of the different chemically treated cells, with Lowenstein-Jensen agar having approximately the same recovery rate but requiring incubation for up to 3 weeks longer for countability. The kill curves generated for several different chemicals were reproducible, as indicated by the standard deviations of the slopes and intercepts of the linear regression curves. PMID:3314707

  4. Aeroacoustic Flow Phenomena Accurately Captured by New Computational Fluid Dynamics Method

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    2002-01-01

    One of the challenges in the computational fluid dynamics area is the accurate calculation of aeroacoustic phenomena, especially in the presence of shock waves. One such phenomenon is "transonic resonance," where an unsteady shock wave at the throat of a convergent-divergent nozzle results in the emission of acoustic tones. The space-time Conservation-Element and Solution-Element (CE/SE) method developed at the NASA Glenn Research Center can faithfully capture the shock waves, their unsteady motion, and the generated acoustic tones. The CE/SE method is a revolutionary new approach to the numerical modeling of physical phenomena where features with steep gradients (e.g., shock waves, phase transition, etc.) must coexist with those having weaker variations. The CE/SE method does not require the complex interpolation procedures (that allow for the possibility of a shock between grid cells) used by many other methods to transfer information between grid cells. These interpolation procedures can add too much numerical dissipation to the solution process. Thus, while shocks are resolved, weaker waves, such as acoustic waves, are washed out.

  5. Temperature dependent effective potential method for accurate free energy calculations of solids

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Steneteg, Peter; Abrikosov, I. A.; Simak, S. I.

    2013-03-01

    We have developed a thorough and accurate method of determining anharmonic free energies, the temperature dependent effective potential technique (TDEP). It is based on ab initio molecular dynamics followed by a mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects of the technique are described in detail. A number of practical examples are given, and results are presented, which confirm the usefulness of TDEP within ab initio and classical molecular dynamics frameworks. In particular, we examine from first principles the behavior of force constants upon the dynamical stabilization of the body centered phase of Zr, and show that they become more localized. We also calculate the phase diagram for 4He modeled with the Aziz potential and obtain results which are in favorable agreement both with respect to experiment and established techniques.

  6. Distance scaling method for accurate prediction of slowly varying magnetic fields in satellite missions

    NASA Astrophysics Data System (ADS)

    Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.

    2016-07-01

    In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.

  7. An inexpensive, accurate, and precise wet-mount method for enumerating aquatic viruses.

    PubMed

    Cunningham, Brady R; Brum, Jennifer R; Schwenck, Sarah M; Sullivan, Matthew B; John, Seth G

    2015-05-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the "filter mount" method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5×10(7) viruses ml(-1). The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17×10(6) to 1.37×10(8) viruses ml(-1) when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1×10(6) viruses ml(-1)) encountered in field and laboratory samples.

  8. An Inexpensive, Accurate, and Precise Wet-Mount Method for Enumerating Aquatic Viruses

    PubMed Central

    Cunningham, Brady R.; Brum, Jennifer R.; Schwenck, Sarah M.; Sullivan, Matthew B.

    2015-01-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the “filter mount” method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5 × 107 viruses ml−1. The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17 × 106 to 1.37 × 108 viruses ml−1 when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1 × 106 viruses ml−1) encountered in field and laboratory samples. PMID:25710369

  9. An inexpensive, accurate, and precise wet-mount method for enumerating aquatic viruses.

    PubMed

    Cunningham, Brady R; Brum, Jennifer R; Schwenck, Sarah M; Sullivan, Matthew B; John, Seth G

    2015-05-01

    Viruses affect biogeochemical cycling, microbial mortality, gene flow, and metabolic functions in diverse environments through infection and lysis of microorganisms. Fundamental to quantitatively investigating these roles is the determination of viral abundance in both field and laboratory samples. One current, widely used method to accomplish this with aquatic samples is the "filter mount" method, in which samples are filtered onto costly 0.02-μm-pore-size ceramic filters for enumeration of viruses by epifluorescence microscopy. Here we describe a cost-effective (ca. 500-fold-lower materials cost) alternative virus enumeration method in which fluorescently stained samples are wet mounted directly onto slides, after optional chemical flocculation of viruses in samples with viral concentrations of <5×10(7) viruses ml(-1). The concentration of viruses in the sample is then determined from the ratio of viruses to a known concentration of added microsphere beads via epifluorescence microscopy. Virus concentrations obtained by using this wet-mount method, with and without chemical flocculation, were significantly correlated with, and had precision equivalent to, those obtained by the filter mount method across concentrations ranging from 2.17×10(6) to 1.37×10(8) viruses ml(-1) when tested by using cultivated viral isolates and natural samples from marine and freshwater environments. In summary, the wet-mount method is significantly less expensive than the filter mount method and is appropriate for rapid, precise, and accurate enumeration of aquatic viruses over a wide range of viral concentrations (≥1×10(6) viruses ml(-1)) encountered in field and laboratory samples. PMID:25710369

  10. General Subject 1. Report to ICUMSA on the determination of commercial alpha-amylase activity by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of the activity or strength of commercial alpha-amylase at a sugarcane factory or refinery, as well as a recommendation. At the present time, the activities or strengths of commercial alpha-amylases cannot be directly compared becau...

  11. A new spectrophotometric method for determination of EDTA in water using its complex with Mn(III).

    PubMed

    Andrade, Carlos Eduardo O; Oliveira, André F; Neves, Antônio A; Queiroz, Maria Eliana L R

    2016-11-01

    EDTA is an important ligand used in many industrial products as well as in agriculture, where it is employed to assist in phytoextraction procedures and the absorption of nutrients by plants. Due to its intensive use and recalcitrance, it is now considered an emerging pollutant in water, so there is great interest in techniques suitable for its monitoring. This work proposes a method based on formation of the Mn(III)-EDTA complex after oxidation of the Mn(II)-EDTA complex by PbO2 immobilized on cyanoacrylate spheres. A design of experiments (DOE) based on the Doehlert matrix was used to determine the optimum conditions of the method, and the influence of the variables was evaluated using a multiple linear regression (MLR) model. The optimized method presented a linear response in the range from 0.77 to 100.0μmolL(-1), with analytical sensitivity of 7.7×10(3)Lmol(-1), a coefficient of determination of 0.999, and a limit of detection of 0.23μmolL(-1). The method was applied using samples fortified at different concentration levels, and the recoveries achieved were between 97.0 and 104.9%. PMID:27305647

  12. A new spectrophotometric method for determination of EDTA in water using its complex with Mn(III)

    NASA Astrophysics Data System (ADS)

    Andrade, Carlos Eduardo O.; Oliveira, André F.; Neves, Antônio A.; Queiroz, Maria Eliana L. R.

    2016-11-01

    EDTA is an important ligand used in many industrial products as well as in agriculture, where it is employed to assist in phytoextraction procedures and the absorption of nutrients by plants. Due to its intensive use and recalcitrance, it is now considered an emerging pollutant in water, so there is great interest in techniques suitable for its monitoring. This work proposes a method based on formation of the Mn(III)-EDTA complex after oxidation of the Mn(II)-EDTA complex by PbO2 immobilized on cyanoacrylate spheres. A design of experiments (DOE) based on the Doehlert matrix was used to determine the optimum conditions of the method, and the influence of the variables was evaluated using a multiple linear regression (MLR) model. The optimized method presented a linear response in the range from 0.77 to 100.0 μmol L- 1, with analytical sensitivity of 7.7 × 103 L mol- 1, a coefficient of determination of 0.999, and a limit of detection of 0.23 μmol L- 1. The method was applied using samples fortified at different concentration levels, and the recoveries achieved were between 97.0 and 104.9%.

  13. Simplified reversed-phase HPLC method with spectrophotometric detection for the assay of verapamil in rat plasma.

    PubMed

    Lau-Cam, C A; Piemontese, D

    1998-02-01

    A high-performance liquid chromatographic (HPLC) method was developed for the assay of verapamil in rat plasma. After deproteinization of the plasma sample with an acetonitrile-perchloric acid (8:2) mixture containing dextromethorphan, the internal standard, an aliquot of the supernatant was directly analyzed on a cyanopropylsilane column with methanol-acetonitrile-triethylamine acetate buffer (10:30:60) as the mobile phase and detection at 235 mm. At a flow rate of 1.5 ml min-1, a complete analysis was completed in less than 6 min. The method was linear for verapamil concentrations in the range 0.5-10 micrograms ml-1 (r = 0.9999). Recoveries for the same drug concentrations from spiked rat plasma ranged from 85.6-93.0% (n = 8). The mean RSD values for intraday and interday assay reproducibility (n = 3) were, in both cases, less than 0.9%. The limit of detectability was about 0.1 microgram ml-1. The method was found useful to monitor the plasma levels of verapamil in rats that had received this drug by the nasal, oral and intravenous routes of administration.

  14. Keeping the edge: an accurate numerical method to solve the stream power law

    NASA Astrophysics Data System (ADS)

    Campforts, B.; Govers, G.

    2015-12-01

    Bedrock rivers set the base level of surrounding hill slopes and mediate the dynamic interplay between mountain building and denudation. The propensity of rivers to preserve pulses of increased tectonic uplift also allows to reconstruct long term uplift histories from longitudinal river profiles. An accurate reconstruction of river profile development at different timescales is therefore essential. Long term river development is typically modeled by means of the stream power law. Under specific conditions this equation can be solved analytically but numerical Finite Difference Methods (FDMs) are most frequently used. Nonetheless, FDMs suffer from numerical smearing, especially at knickpoint zones which are key to understand transient landscapes. Here, we solve the stream power law by means of a Finite Volume Method (FVM) which is Total Variation Diminishing (TVD). Total volume methods are designed to simulate sharp discontinuities making them very suitable to model river incision. In contrast to FDMs, the TVD_FVM is well capable of preserving knickpoints as illustrated for the fast propagating Niagara falls. Moreover, we show that the TVD_FVM performs much better when reconstructing uplift at timescales exceeding 100 Myr, using Eastern Australia as an example. Finally, uncertainty associated with parameter calibration is dramatically reduced when the TVD_FVM is applied. Therefore, the use of a TVD_FVM to understand long term landscape evolution is an important addition to the toolbox at the disposition of geomorphologists.

  15. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided. PMID:26099201

  16. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  17. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  18. An accurate conservative level set/ghost fluid method for simulating turbulent atomization

    SciTech Connect

    Desjardins, Olivier Moureau, Vincent; Pitsch, Heinz

    2008-09-10

    This paper presents a novel methodology for simulating incompressible two-phase flows by combining an improved version of the conservative level set technique introduced in [E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246] with a ghost fluid approach. By employing a hyperbolic tangent level set function that is transported and re-initialized using fully conservative numerical schemes, mass conservation issues that are known to affect level set methods are greatly reduced. In order to improve the accuracy of the conservative level set method, high order numerical schemes are used. The overall robustness of the numerical approach is increased by computing the interface normals from a signed distance function reconstructed from the hyperbolic tangent level set by a fast marching method. The convergence of the curvature calculation is ensured by using a least squares reconstruction. The ghost fluid technique provides a way of handling the interfacial forces and large density jumps associated with two-phase flows with good accuracy, while avoiding artificial spreading of the interface. Since the proposed approach relies on partial differential equations, its implementation is straightforward in all coordinate systems, and it benefits from high parallel efficiency. The robustness and efficiency of the approach is further improved by using implicit schemes for the interface transport and re-initialization equations, as well as for the momentum solver. The performance of the method is assessed through both classical level set transport tests and simple two-phase flow examples including topology changes. It is then applied to simulate turbulent atomization of a liquid Diesel jet at Re=3000. The conservation errors associated with the accurate conservative level set technique are shown to remain small even for this complex case.

  19. A Monte Carlo Method for Making the SDSS u-Band Magnitude More Accurate

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Du, Cuihua; Zuo, Wenbo; Jing, Yingjie; Wu, Zhenyu; Ma, Jun; Zhou, Xu

    2016-10-01

    We develop a new Monte Carlo-based method to convert the Sloan Digital Sky Survey (SDSS) u-band magnitude to the south Galactic Cap of the u-band Sky Survey (SCUSS) u-band magnitude. Due to the increased accuracy of SCUSS u-band measurements, the converted u-band magnitude becomes more accurate compared with the original SDSS u-band magnitude, in particular at the faint end. The average u-magnitude error (for both SDSS and SCUSS) of numerous main-sequence stars with 0.2\\lt g-r\\lt 0.8 increases as the g-band magnitude becomes fainter. When g = 19.5, the average magnitude error of the SDSS u is 0.11. When g = 20.5, the average SDSS u error rises to 0.22. However, at this magnitude, the average magnitude error of the SCUSS u is just half as much as that of the SDSS u. The SDSS u-band magnitudes of main-sequence stars with 0.2\\lt g-r\\lt 0.8 and 18.5\\lt g\\lt 20.5 are converted, therefore the maximum average error of the converted u-band magnitudes is 0.11. The potential application of this conversion is to derive a more accurate photometric metallicity calibration from SDSS observations, especially for the more distant stars. Thus, we can explore stellar metallicity distributions either in the Galactic halo or some stream stars.

  20. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  1. A colorimetric-based accurate method for the determination of enterovirus 71 titer.

    PubMed

    Pourianfar, Hamid Reza; Javadi, Arman; Grollo, Lara

    2012-12-01

    The 50 % tissue culture infectious dose (TCID50) is still one of the most commonly used techniques for estimating virus titers. However, the traditional TCID50 assay is time consuming, susceptible to subjective errors and generates only quantal data. Here, we describe a colorimetric-based approach for the titration of Enterovirus 71 (EV71) using a modified method for making virus dilutions. In summary, the titration of EV71 using MTT or MTS staining with a modified virus dilution method decreased the time of the assay and eliminated the subjectivity of observational results, improving accuracy, reproducibility and reliability of virus titration, in comparison with the conventional TCID50 approach (p < 0.01). In addition, the results provided evidence that there was better correlation between a plaquing assay and our approach when compared to the traditional TCID50 approach. This increased accuracy also improved the ability to predict the number of virus plaque forming units present in a solution. These improvements could be of use for any virological experimentation, where a quick accurate titration of a virus capable of causing cell destruction is required or a sensible estimation of the number of viral plaques based on TCID50 of a virus is desired.

  2. A Statistical Method for Assessing Peptide Identification Confidence in Accurate Mass and Time Tag Proteomics

    SciTech Connect

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-07-15

    High-throughput proteomics is rapidly evolving to require high mass measurement accuracy for a variety of different applications. Increased mass measurement accuracy in bottom-up proteomics specifically allows for an improved ability to distinguish and characterize detected MS features, which may in turn be identified by, e.g., matching to entries in a database for both precursor and fragmentation mass identification methods. Many tools exist with which to score the identification of peptides from LC-MS/MS measurements or to assess matches to an accurate mass and time (AMT) tag database, but these two calculations remain distinctly unrelated. Here we present a statistical method, Statistical Tools for AMT tag Confidence (STAC), which extends our previous work incorporating prior probabilities of correct sequence identification from LC-MS/MS, as well as the quality with which LC-MS features match AMT tags, to evaluate peptide identification confidence. Compared to existing tools, we are able to obtain significantly more high-confidence peptide identifications at a given false discovery rate and additionally assign confidence estimates to individual peptide identifications. Freely available software implementations of STAC are available in both command line and as a Windows graphical application.

  3. Accurate computation of surface stresses and forces with immersed boundary methods

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim

    2016-09-01

    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.

  4. A new method of accurate hand- and arm-tracking for small primates

    NASA Astrophysics Data System (ADS)

    Schaffelhofer, S.; Scherberger, H.

    2012-04-01

    The investigation of grasping movements in cortical motor areas depends heavily on the measurement of hand kinematics. Currently used methods for small primates need either a large number of sensors or provide insufficient accuracy. Here, we present both a novel glove based on electromagnetic tracking sensors that can operate at a rate of 100 Hz and a new modeling method that allows to monitor 27 degrees of freedom (DOF) of the hand and arm using only seven sensors. A rhesus macaque was trained to wear the glove while performing precision and power grips during a delayed grasping task in the dark without noticeable hindrance. During five recording sessions all 27 joint angles and their positions could be tracked reliably. Furthermore, the field generator did not interfere with electrophysiological recordings below 1 kHz and did not affect single-cell separation. Measurements with the glove proved to be accurate during static and dynamic testing (mean absolute error below 2° and 3°, respectively). This makes the glove a suitable solution for characterizing electrophysiological signals with respect to hand grasping and in particular for brain-machine interface applications.

  5. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    NASA Astrophysics Data System (ADS)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  6. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  7. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-01-01

    A process for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H.sub.2 O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg.sub.2 Cl.sub.2. The method for doing this involves dissolving a precise amount of Hg.sub.2 Cl.sub.2 in an electrolyte solution comprised of concentrated HCl and H.sub.2 O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg.

  8. MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images.

    PubMed

    Chu, Chengwen; Bai, Junjie; Wu, Xiaodong; Zheng, Guoyan

    2015-12-01

    This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

  9. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  10. Accurate method to study static volume-pressure relationships in small fetal and neonatal animals.

    PubMed

    Suen, H C; Losty, P D; Donahoe, P K; Schnitzer, J J

    1994-08-01

    We designed an accurate method to study respiratory static volume-pressure relationships in small fetal and neonatal animals on the basis of Archimedes' principle. Our method eliminates the error caused by the compressibility of air (Boyle's law) and is sensitive to a volume change of as little as 1 microliters. Fetal and neonatal rats during the period of rapid lung development from day 19.5 of gestation (term = day 22) to day 3.5 postnatum were studied. The absolute lung volume at a transrespiratory pressure of 30-40 cmH2O increased 28-fold from 0.036 +/- 0.006 (SE) to 0.994 +/- 0.042 ml, the volume per gram of lung increased 14-fold from 0.39 +/- 0.07 to 5.59 +/- 0.66 ml/g, compliance increased 12-fold from 2.3 +/- 0.4 to 27.3 +/- 2.7 microliters/cmH2O, and specific compliance increased 6-fold from 24.9 +/- 4.5 to 152.3 +/- 22.8 microliters.cmH2O-1.g lung-1. This technique, which allowed us to compare changes during late gestation and the early neonatal period in small rodents, can be used to monitor and evaluate pulmonary functional changes after in utero pharmacological therapies in experimentally induced abnormalities such as pulmonary hypoplasia, surfactant deficiency, and congenital diaphragmatic hernia. PMID:8002489

  11. Precision and accuracy of spectrophotometric pH measurements at environmental conditions in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2014-06-01

    The increasing uptake of anthropogenic CO2 by the oceans has raised an interest in precise and accurate pH measurement in order to assess the impact on the marine CO2-system. Spectrophotometric pH measurements were refined during the last decade yielding a precision and accuracy that cannot be achieved with the conventional potentiometric method. However, until now the method was only tested in oceanic systems with a relative stable and high salinity and a small pH range. This paper describes the first application of such a pH measurement system at conditions in the Baltic Sea which is characterized by a wide salinity and pH range. The performance of the spectrophotometric system at pH values as low as 7.0 (“total” scale) and salinities between 0 and 35 was examined using TRIS-buffer solutions, certified reference materials, and tests of consistency with measurements of other parameters of the marine CO2 system. Using m-cresol purple as indicator dye and a spectrophotometric measurement system designed at Scripps Institution of Oceanography (B. Carter, A. Dickson), a precision better than ±0.001 and an accuracy between ±0.01 and ±0.02 was achieved within the observed pH and salinity ranges in the Baltic Sea. The influence of the indicator dye on the pH of the sample was determined theoretically and is presented as a pH correction term for the different alkalinity regimes in the Baltic Sea. Because of the encouraging tests, the ease of operation and the fact that the measurements refer to the internationally accepted “total” pH scale, it is recommended to use the spectrophotometric method also for pH monitoring and trend detection in the Baltic Sea.

  12. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect

    Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  13. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  14. On-line spectrophotometric method for monitoring weak residual absorption of CaMoO{sub 4} single crystals near the intrinsic luminescence peak

    SciTech Connect

    Buzanov, O. A.; Kanevskii, V. M.; Kornoukhov, V. N.; Nabatov, B. V.; Nabatov, V. V.; Fedorov, V. A.

    2013-11-15

    The optical and spectral characteristics of isotopically enriched Czochralski-grown {sup 40}Ca{sup 100}MoO{sub 4} single crystals have been investigated. This material is promising for detecting double neutrinoless {beta} decay. The possibility and the technique of spectrophotometric monitoring of weak residual absorption near the intrinsic luminescence peak of this scintillation material, which is designed for developing new-generation detectors of elementary particles, are considered.

  15. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  16. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  17. Method for accurate sizing of pulmonary vessels from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2015-03-01

    Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.

  18. Fast, accurate and easy-to-pipeline methods for amplicon sequence processing

    NASA Astrophysics Data System (ADS)

    Antonielli, Livio; Sessitsch, Angela

    2016-04-01

    Next generation sequencing (NGS) technologies established since years as an essential resource in microbiology. While on the one hand metagenomic studies can benefit from the continuously increasing throughput of the Illumina (Solexa) technology, on the other hand the spreading of third generation sequencing technologies (PacBio, Oxford Nanopore) are getting whole genome sequencing beyond the assembly of fragmented draft genomes, making it now possible to finish bacterial genomes even without short read correction. Besides (meta)genomic analysis next-gen amplicon sequencing is still fundamental for microbial studies. Amplicon sequencing of the 16S rRNA gene and ITS (Internal Transcribed Spacer) remains a well-established widespread method for a multitude of different purposes concerning the identification and comparison of archaeal/bacterial (16S rRNA gene) and fungal (ITS) communities occurring in diverse environments. Numerous different pipelines have been developed in order to process NGS-derived amplicon sequences, among which Mothur, QIIME and USEARCH are the most well-known and cited ones. The entire process from initial raw sequence data through read error correction, paired-end read assembly, primer stripping, quality filtering, clustering, OTU taxonomic classification and BIOM table rarefaction as well as alternative "normalization" methods will be addressed. An effective and accurate strategy will be presented using the state-of-the-art bioinformatic tools and the example of a straightforward one-script pipeline for 16S rRNA gene or ITS MiSeq amplicon sequencing will be provided. Finally, instructions on how to automatically retrieve nucleotide sequences from NCBI and therefore apply the pipeline to targets other than 16S rRNA gene (Greengenes, SILVA) and ITS (UNITE) will be discussed.

  19. An automated, fast and accurate registration method to link stranded seeds in permanent prostate implants

    NASA Astrophysics Data System (ADS)

    Westendorp, Hendrik; Nuver, Tonnis T.; Moerland, Marinus A.; Minken, André W.

    2015-10-01

    The geometry of a permanent prostate implant varies over time. Seeds can migrate and edema of the prostate affects the position of seeds. Seed movements directly influence dosimetry which relates to treatment quality. We present a method that tracks all individual seeds over time allowing quantification of seed movements. This linking procedure was tested on transrectal ultrasound (TRUS) and cone-beam CT (CBCT) datasets of 699 patients. These datasets were acquired intraoperatively during a dynamic implantation procedure, that combines both imaging modalities. The procedure was subdivided in four automatic linking steps. (I) The Hungarian Algorithm was applied to initially link seeds in CBCT and the corresponding TRUS datasets. (II) Strands were identified and optimized based on curvature and linefits: non optimal links were removed. (III) The positions of unlinked seeds were reviewed and were linked to incomplete strands if within curvature- and distance-thresholds. (IV) Finally, seeds close to strands were linked, also if the curvature-threshold was violated. After linking the seeds an affine transformation was applied. The procedure was repeated until the results were stable or the 6th iteration ended. All results were visually reviewed for mismatches and uncertainties. Eleven implants showed a mismatch and in 12 cases an uncertainty was identified. On average the linking procedure took 42 ms per case. This accurate and fast method has the potential to be used for other time spans, like Day 30, and other imaging modalities. It can potentially be used during a dynamic implantation procedure to faster and better evaluate the quality of the permanent prostate implant.

  20. Spectrophotometric determination of carminic acid in human plasma and fruit juices by second order calibration of the absorbance spectra-pH data matrices coupled with standard addition method.

    PubMed

    Samari, Fayezeh; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2010-05-14

    A simple analytical method based on the second-order calibration of the pH gradient spectrophotometric data was developed for assay of carminic acid (CA) in human plasma and orange juice over the concentration range of 1.5-14.0microM. The multi-way data analysis method was coupled with standard addition to encounter the significant effects of plasma and juices matrices on the acid-base behavior and UV-vis. absorbance spectra of CA. Thus, the standard addition three-way calibration data of plasma or fruit juices samples were analyzed by parallel factor analysis (PARAFAC) and the concentration related scores were used to derive a standard addition plot such as one obtained in univariate standard addition method. The number of PARAFAC components was obtained utilizing different criteria such as core consistency and residual errors through pf-test implementation. The applicability of the proposed method was evaluated by analysis of human plasma and fruit juices spiked with different levels of standard CA solutions. The results confirmed the success of the proposed method in the analysis of pH gradient spectrophotometric data for determination of CA. The recoveries were between 86.7 and 106.7. PMID:20441865

  1. Spectrophotometric Investigations of Macrolide Antibiotics: A Brief Review

    PubMed Central

    Keskar, Mrudul R; Jugade, Ravin M

    2015-01-01

    Macrolides, one of the most commonly used class of antibiotics, are a group of drugs produced by Streptomyces species. They belong to the polyketide class of natural products. Their activity is due to the presence of a large macrolide lactone ring with deoxy sugar moieties. They are protein synthesis inhibitors and broad-spectrum antibiotics, active against both gram-positive and gram-negative bacteria. Different analytical techniques have been reported for the determination of macrolides such as chromatographic methods, flow injection methods, spectrofluorometric methods, spectrophotometric methods, and capillary electrophoresis methods. Among these methods, spectrophotometric methods are sensitive and cost effective for the analysis of various antibiotics in pharmaceutical formulations as well as biological samples. This article reviews different spectrophotometric methods for the determination of macrolide antibiotics. PMID:26609215

  2. Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-02-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of metronidazole as interference. The methods under study are area under the curve, simultaneous equation in addition to smart signal processing techniques of manipulating ratio spectra namely Savitsky-Golay filters and continuous wavelet transform. All the methods were validated according to the ICH guidelines where accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can therefore be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  3. Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-02-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of metronidazole as interference. The methods under study are area under the curve, simultaneous equation in addition to smart signal processing techniques of manipulating ratio spectra namely Savitsky-Golay filters and continuous wavelet transform. All the methods were validated according to the ICH guidelines where accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can therefore be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  4. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    NASA Astrophysics Data System (ADS)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  5. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride

    NASA Astrophysics Data System (ADS)

    Barsoom, B. N.; Abdelsamad, A. M. E.; Adib, N. M.

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. ( n = 3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically.

  6. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride.

    PubMed

    Barsoom, B N; Abdelsamad, A M E; Adib, N M

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. (n=3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically. PMID:16458577

  7. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  8. Comparison of a spectrophotometric microdilution method with RPMI-2% glucose with the National Committee for Clinical Laboratory Standards reference macrodilution method M27-P for in vitro susceptibility testing of amphotericin B, flucytosine, and fluconazole against Candida albicans.

    PubMed Central

    Rodríguez-Tudela, J L; Berenguer, J; Martínez-Suárez, J V; Sanchez, R

    1996-01-01

    The National Committee for Clinical Laboratory Standards has proposed a reference broth macrodilution method for in vitro antifungal susceptibility testing of yeasts (the M27-P method). This method is cumbersome and time-consuming and includes MIC endpoint determination by visual and subjective inspection of growth inhibition after 48 h of incubation. An alternative microdilution procedure was compared with the M27-P method for determination of the amphotericin B, flucytosine, and fluconazole susceptibilities of 8 American Type Culture Collection strains (6 of them were quality control or reference strains) and 50 clinical isolates of candida albicans. This microdilution method uses as culture medium RPMI 1640 supplemented with 18 g of glucose per liter (RPMI-2% glucose). Preparation of drugs, basal medium, and inocula was done by following the recommendations of the National Committee for Clinical Laboratory Standards. The MIC endpoint was calculated objectively from the turbidimetric data read at 24 h. Increased growth of C. albicans in RPMI-2% glucose and its spectrophotometric reading allowed for the rapid (24 h) and objective calculation of MIC endpoints compared with previous microdilution methods with standard RPMI 1640. Nevertheless, good agreement was shown between the M27-P method and this microdilution test. The MICs obtained for the quality control or reference strains by the microdilution method were in the ranges published for those strains. For clinical isolates, the percentages of agreement were 100% for amphotericin B and fluconazole and 98.1% for flucytosine. These data suggest that this microdilution method may serve as a less subjective and more rapid alternative to the M27-P method for antifungal susceptibility testing of yeasts. PMID:8878570

  9. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: An Accurate Image Simulation Method for High-Order Laue Zone Effects

    NASA Astrophysics Data System (ADS)

    Cai, Can-Ying; Zeng, Song-Jun; Liu, Hong-Rong; Yang, Qi-Bin

    2008-05-01

    A completely different formulation for simulation of the high order Laue zone (HOLZ) diffractions is derived. It refers to the new method, i.e. the Taylor series (TS) method. To check the validity and accuracy of the TS method, we take polyvinglidene fluoride (PVDF) crystal as an example to calculate the exit wavefunction by the conventional multi-slice (CMS) method and the TS method. The calculated results show that the TS method is much more accurate than the CMS method and is independent of the slice thicknesses. Moreover, the pure first order Laue zone wavefunction by the TS method can reflect the major potential distribution of the first reciprocal plane.

  10. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  11. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  12. Two different spectrophotometric determinations of potential anticancer drug and its toxic metabolite

    NASA Astrophysics Data System (ADS)

    Farid, Nehal F.; Abdelwahab, Nada S.

    2015-06-01

    Flutamide is a hormone therapy used for men with advanced prostate cancer. Flutamide is highly susceptible to hydrolysis with the production of 3-(trifluoromethyl)aniline, which is reported to be one of its toxic metabolites, impurities and related substances according to BP and USP. Flutamide was found to be stable when exposed to oxidation by 30% hydrogen peroxide and direct sunlight for up to 4 h. Two accurate and sensitive spectrophotometric methods were used for determination of flutamide in bulk and in pharmaceutical formulations. Method (I) is the area under curve (AUC) spectrophotometric method that depends on measuring the AUC in the wavelength ranges of 275-305 nm and 350-380 nm and using Cramer's rule. The linearity range was found to be 1-35 μg/mL and 0.5-16 μg/mL for the drug and the degradate, respectively. In method (II), combination of the isoabsorptive and dual wavelength spectrophotometric methods was used for resolving the binary mixture. The absorbance at 249.2 nm (λiso) was used for determination of total mixture concentration, while the difference in absorbance between 232 nm and 341.2 nm was used for measuring the drug concentration. By subtraction, the degradate concentration was obtained. Beer's law was obeyed in the range of 2-35 μg/mL and 0.5-20 μg/mL for the drug and its degradate, respectively. The two methods were validated according to USP guidelines and were applied for determination of the drug in its pharmaceutical dosage form. Moreover AUC method was used for the kinetic study of the hydrolytic degradation of flutamide. The kinetic degradation of flutamide was found to follow pseudo-first order kinetics and is pH and temperature dependent. Activation energy, kinetic rate constants and t1/2 at different temperatures and pH values were calculated.

  13. Two different spectrophotometric determinations of potential anticancer drug and its toxic metabolite.

    PubMed

    Farid, Nehal F; Abdelwahab, Nada S

    2015-06-15

    Flutamide is a hormone therapy used for men with advanced prostate cancer. Flutamide is highly susceptible to hydrolysis with the production of 3-(trifluoromethyl)aniline, which is reported to be one of its toxic metabolites, impurities and related substances according to BP and USP. Flutamide was found to be stable when exposed to oxidation by 30% hydrogen peroxide and direct sunlight for up to 4h. Two accurate and sensitive spectrophotometric methods were used for determination of flutamide in bulk and in pharmaceutical formulations. Method (I) is the area under curve (AUC) spectrophotometric method that depends on measuring the AUC in the wavelength ranges of 275-305 nm and 350-380nm and using Cramer's rule. The linearity range was found to be 1-35 μg/mL and 0.5-16 μg/mL for the drug and the degradate, respectively. In method (II), combination of the isoabsorptive and dual wavelength spectrophotometric methods was used for resolving the binary mixture. The absorbance at 249.2 nm (λiso) was used for determination of total mixture concentration, while the difference in absorbance between 232 nm and 341.2 nm was used for measuring the drug concentration. By subtraction, the degradate concentration was obtained. Beer's law was obeyed in the range of 2-35 μg/mL and 0.5-20 μg/mL for the drug and its degradate, respectively. The two methods were validated according to USP guidelines and were applied for determination of the drug in its pharmaceutical dosage form. Moreover AUC method was used for the kinetic study of the hydrolytic degradation of flutamide. The kinetic degradation of flutamide was found to follow pseudo-first order kinetics and is pH and temperature dependent. Activation energy, kinetic rate constants and t1/2 at different temperatures and pH values were calculated.

  14. Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by alpha-benzoin oxime modified Amberlite XAD-2000 resin.

    PubMed

    Ghasemi, Jahan B; Zolfonoun, E

    2010-01-15

    A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples. PMID:20006073

  15. Spectrophotometric estimation of cobalt with ninhydrin.

    PubMed

    Mahmood, Karamat; Wattoo, Feroza Hamid; Wattoo, Muhammad Hamid Sarwar; Imran, Muhammad; Asad, Muhammad Javaid; Tirmizi, Syed Ahmed; Wadood, Abdul

    2012-04-01

    A violet coloured complex was developed when cobalt metal reacts with ninhydrin at pH 8.2, using sodium acetate buffer solution. Absorbance of the complex was measured at 395 nm. Various factors, such as volume of the ligand used, solution pH, stability of the complex with time and interference of other metals, which effect the complex formation have been studied in detail. Present developed method can be used for the spectrophotometric estimation of cobalt with ninhydrin complex. The method is simple, selective and cheap for the determination of cobalt in very less time.

  16. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  17. The Rigorous Evaluation of Spectrophotometric Data to Obtain an Equilibrium Constant.

    ERIC Educational Resources Information Center

    Long, John R.; Drago, Russell S.

    1982-01-01

    Most students do not know how to determine the equilibrium constant and estimate the error in it from spectrophotometric data that contain experimental errors. This "dry-lab" experiment describes a method that may be used to determine the "best-fit" value of the 1:1 equilibrium constant to spectrophotometric data. (Author/JN)

  18. Fast and accurate determination of 3D temperature distribution using fraction-step semi-implicit method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Hoppe, Ralph; Gu, Ning

    2016-09-01

    In this paper, we proposed a method to numerically determinate 3-dimensional thermal response due to electromagnetic exposure quickly and accurately. Due to the stability criterion the explicit finite-difference time-domain (FDTD) method works fast only if the spatial step is not set very small. In this paper, the semi-implicit Crank-Nicholson method for time domain discretization with unconditional time stability is proposed, where the idea of fractional steps method was utilized in 3-dimension so that an efficient numerical implementation is obtained. Compared with the explicit FDTD, with similar numerical precision, the proposed method takes less than 1/200 of the execution time.

  19. Estimation method of point spread function based on Kalman filter for accurately evaluating real optical properties of photonic crystal fibers.

    PubMed

    Shen, Yan; Lou, Shuqin; Wang, Xin

    2014-03-20

    The evaluation accuracy of real optical properties of photonic crystal fibers (PCFs) is determined by the accurate extraction of air hole edges from microscope images of cross sections of practical PCFs. A novel estimation method of point spread function (PSF) based on Kalman filter is presented to rebuild the micrograph image of the PCF cross-section and thus evaluate real optical properties for practical PCFs. Through tests on both artificially degraded images and microscope images of cross sections of practical PCFs, we prove that the proposed method can achieve more accurate PSF estimation and lower PSF variance than the traditional Bayesian estimation method, and thus also reduce the defocus effect. With this method, we rebuild the microscope images of two kinds of commercial PCFs produced by Crystal Fiber and analyze the real optical properties of these PCFs. Numerical results are in accord with the product parameters.

  20. A time-accurate implicit method for chemically reacting flows at all Mach numbers

    NASA Technical Reports Server (NTRS)

    Withington, J. P.; Yang, V.; Shuen, J. S.

    1991-01-01

    The objective of this work is to develop a unified solution algorithm capable of treating time-accurate chemically reacting flows at all Mach numbers, ranging from molecular diffusion velocities to supersonic speeds. A rescaled pressure term is used in the momentum equation to circumvent the singular behavior of pressure at low Mach numbers. A dual time-stepping integration procedure is established. The system eigenvalues become well behaved and have the same order of magnitude, even in the very low Mach number regime. The computational efficiency for moderate and high speed flow is competitive with the conventional density-based scheme. The capabilities of the algorithm are demonstrated by applying it to selected model problems including nozzle flows and flame dynamics.

  1. Retention Projection Enables Accurate Calculation of Liquid Chromatographic Retention Times Across Labs and Methods

    PubMed Central

    Abate-Pella, Daniel; Freund, Dana M.; Ma, Yan; Simón-Manso, Yamil; Hollender, Juliane; Broeckling, Corey D.; Huhman, David V.; Krokhin, Oleg V.; Stoll, Dwight R.; Hegeman, Adrian D.; Kind, Tobias; Fiehn, Oliver; Schymanski, Emma L.; Prenni, Jessica E.; Sumner, Lloyd W.; Boswell, Paul G.

    2015-01-01

    Identification of small molecules by liquid chromatography-mass spectrometry (LC-MS) can be greatly improved if the chromatographic retention information is used along with mass spectral information to narrow down the lists of candidates. Linear retention indexing remains the standard for sharing retention data across labs, but it is unreliable because it cannot properly account for differences in the experimental conditions used by various labs, even when the differences are relatively small and unintentional. On the other hand, an approach called “retention projection” properly accounts for many intentional differences in experimental conditions, and when combined with a “back-calculation” methodology described recently, it also accounts for unintentional differences. In this study, the accuracy of this methodology is compared with linear retention indexing across eight different labs. When each lab ran a test mixture under a range of multi-segment gradients and flow rates they selected independently, retention projections averaged 22-fold more accurate for uncharged compounds because they properly accounted for these intentional differences, which were more pronounced in steep gradients. When each lab ran the test mixture under nominally the same conditions, which is the ideal situation to reproduce linear retention indices, retention projections still averaged 2-fold more accurate because they properly accounted for many unintentional differences between the LC systems. To the best of our knowledge, this is the most successful study to date aiming to calculate (or even just to reproduce) LC gradient retention across labs, and it is the only study in which retention was reliably calculated under various multi-segment gradients and flow rates chosen independently by labs. PMID:26292625

  2. Kinetic Spectrophotometric Determination of Biotin in Pharmaceutical Preparations

    PubMed Central

    Walash, M. I.; Rizk, M.; Sheribah, Z. A.; Salim, M. M.

    2008-01-01

    A simple accurate kinetic spectrophotometric method was developed for the determination of biotin in pure form and pharmaceutical preparations. The proposed method is based on a catalytic acceleration of biotin on the reaction between sodium azide and tri-iodide in an aqueous solution. Concentration range of 4-16 μg/mL for biotin was determined by measuring the decrease in the absorbance of tri-iodide at 348 nm by a fixed time method. The decrease in absorbance after 14 min from the initiation of the reaction was markedly correlated to the concentration with correlation coefficient of 0.9999. The detection limit (LOD) of biotin was 0.18 μg/mL while quantitation limit (LOQ) was 0.54 μg/mL. The percentage recovery of the spiked samples was 100.08 ± 0.761. The proposed procedure was successfully applied for the determination of biotin in its pharmaceutical preparations with mean recoveries of 101.17 ± 2.05 and 97.87 ± 1.50 for biotin ampoules and capsules, respectively. The results obtained were in good agreement with those obtained using official method. PMID:23675096

  3. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  4. Automated methods for accurate determination of the critical velocity of packed bed chromatography.

    PubMed

    Chang, Yu-Chih; Gerontas, Spyridon; Titchener-Hooker, Nigel J

    2012-01-01

    Knowing the critical velocity (ucrit) of a chromatography column is an important part of process development as it allows the optimization of chromatographic flow conditions. The conventional flow step method for determining ucrit is prone to error as it depends heavily on human judgment. In this study, two automated methods for determining ucrit have been developed: the automatic flow step (AFS) method and the automatic pressure step (APS) method. In the AFS method, the column pressure drop is monitored upon application of automated incremental increases in flow velocity, whereas in the APS method the flow velocity is monitored upon application of automated incremental increases in pressure drop. The APS method emerged as the one with the higher levels of accuracy, efficiency and ease of application having the greater potential to assist defining the best operational parameters of a chromatography column.

  5. Amperometric Enzyme Sensor to Check the Total Antioxidant Capacity of Several Mixed Berries. Comparison with Two Other Spectrophotometric and Fluorimetric Methods

    PubMed Central

    Tomassetti, Mauro; Serone, Maruschka; Angeloni, Riccardo; Campanella, Luigi; Mazzone, Elisa

    2015-01-01

    The aim of this research was to test the correctness of response of a superoxide dismutase amperometric biosensor used for the purpose of measuring and ranking the total antioxidant capacity of several systematically analysed mixed berries. Several methods are described in the literature for determining antioxidant capacity, each culminating in the construction of an antioxidant capacity scale and each using its own unit of measurement. It was therefore endeavoured to correlate and compare the results obtained using the present amperometric biosensor method with those resulting from two other different methods for determining the total antioxidant capacity selected from among those more frequently cited in the literature. The purpose was to establish a methodological approach consisting in the simultaneous application of different methods that it would be possible to use to obtain an accurate estimation of the total antioxidant capacity of different mixed berries and the food products containing them. Testing was therefore extended to also cover jams, yoghurts and juices containing mixed berries. PMID:25654720

  6. An Accurate Solution to the Lotka-Volterra Equations by Modified Homotopy Perturbation Method

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. S. H.; Rahman, M. M.

    In this paper, we suggest a method to solve the multispecies Lotka-Voltera equations. The suggested method, which we call modified homotopy perturbation method, can be considered as an extension of the homotopy perturbation method (HPM) which is very efficient in solving a varety of differential and algebraic equations. The HPM is modified in order to obtain the approximate solutions of Lotka-Voltera equation response in a sequence of time intervals. In particular, the example of two species is considered. The accuracy of this method is examined by comparison with the numerical solution of the Runge-Kutta-Verner method. The results prove that the modified HPM is a powerful tool for the solution of nonlinear equations.

  7. A New Cation-Exchange Method for Accurate Field Speciation of Hexavalent Chromium

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine

    2003-01-01

    A new cation-exchange method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The new method allows measurement of Cr(VI) concentrations as low as 0.05 micrograms per liter, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. The sensitivity, accuracy, and precision of the determination in waters over the pH range of 2 to 11 and Fe concentrations up to 1 milligram per liter are equal to or better than existing methods such as USEPA method 218.6. Time stability of preserved samples is a significant advantage over the 24-hour time constraint specified for USEPA method 218.6.

  8. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  9. Accurate and efficient Nyström volume integral equation method for the Maxwell equations for multiple 3-D scatterers

    NASA Astrophysics Data System (ADS)

    Chen, Duan; Cai, Wei; Zinser, Brian; Cho, Min Hyung

    2016-09-01

    In this paper, we develop an accurate and efficient Nyström volume integral equation (VIE) method for the Maxwell equations for a large number of 3-D scatterers. The Cauchy Principal Values that arise from the VIE are computed accurately using a finite size exclusion volume together with explicit correction integrals consisting of removable singularities. Also, the hyper-singular integrals are computed using interpolated quadrature formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that are frequently encountered in the design of meta-materials. The resulting Nyström VIE method is shown to have high accuracy with a small number of collocation points and demonstrates p-convergence for computing the electromagnetic scattering of these objects. Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes validate the efficiency and accuracy of the proposed method.

  10. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods.

    PubMed

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Wilkinson, A G; Macnaught, Gillian; Semple, Scott I; Boardman, James P

    2016-01-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases 'uniformly' distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course. PMID:27010238

  11. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    PubMed Central

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Wilkinson, A. G.; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.

    2016-01-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course. PMID:27010238

  12. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    NASA Astrophysics Data System (ADS)

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Wilkinson, A. G.; MacNaught, Gillian; Semple, Scott I.; Boardman, James P.

    2016-03-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  13. A method for accurate determination of terminal sequences of viral genomic RNA.

    PubMed

    Weng, Z; Xiong, Z

    1995-09-01

    A combination of ligation-anchored PCR and anchored cDNA cloning techniques were used to clone the termini of the saguaro cactus virus (SCV) RNA genome. The terminal sequences of the viral genome were subsequently determined from the clones. The 5' terminus was cloned by ligation-anchored PCR, whereas the 3' terminus was obtained by a technique we term anchored cDNA cloning. In anchored cDNA cloning, an anchor oligonucleotide was prepared by phosphorylation at the 5' end, followed by addition of a dideoxynucleotide at the 3' end to block the free hydroxyl group. The 5' end of the anchor was subsequently ligated to the 3' end of SCV RNA. The anchor-ligated, chimerical viral RNA was then reverse-transcribed into cDNA using a primer complementary to the anchor. The cDNA containing the complete 3'-terminal sequence was converted into ds-cDNA, cloned, and sequenced. Two restriction sites, one within the viral sequence and one within the primer sequence, were used to facilitate cloning. The combination of these techniques proved to be an easy and accurate way to determine the terminal sequences of SCV RNA genome and should be applicable to any other RNA molecules with unknown terminal sequences. PMID:9132274

  14. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  15. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC

    2009-06-19

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.

  16. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    SciTech Connect

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  17. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  18. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  19. New methods determine pour point more accurately than ASTM D-97

    SciTech Connect

    Khan, H.U.; Dilawar, S.V.K.; Nautiyal, S.P.; Srivastava, S.P. )

    1993-11-01

    A new, alternative method determines petroleum fluid pour points with [+-] 1 C. precision and better accuracy than the standard ASTM D-97 procedure. The new method measures the pour point of transparent fluids by determining wax appearance temperature (WAT). Also, pour points of waxy crude oils can be determined by measuring a flow characteristic called restart pressure.

  20. An Accurate Method for Computing the Absorption of Solar Radiation by Water Vapor

    NASA Technical Reports Server (NTRS)

    Chou, M. D.

    1980-01-01

    The method is based upon molecular line parameters and makes use of a far wing scaling approximation and k distribution approach previously applied to the computation of the infrared cooling rate due to water vapor. Taking into account the wave number dependence of the incident solar flux, the solar heating rate is computed for the entire water vapor spectrum and for individual absorption bands. The accuracy of the method is tested against line by line calculations. The method introduces a maximum error of 0.06 C/day. The method has the additional advantage over previous methods in that it can be applied to any portion of the spectral region containing the water vapor bands. The integrated absorptances and line intensities computed from the molecular line parameters were compared with laboratory measurements. The comparison reveals that, among the three different sources, absorptance is the largest for the laboratory measurements.

  1. A second-order accurate kinetic-theory-based method for inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Deshpande, Suresh M.

    1986-01-01

    An upwind method for the numerical solution of the Euler equations is presented. This method, called the kinetic numerical method (KNM), is based on the fact that the Euler equations are moments of the Boltzmann equation of the kinetic theory of gases when the distribution function is Maxwellian. The KNM consists of two phases, the convection phase and the collision phase. The method is unconditionally stable and explicit. It is highly vectorizable and can be easily made total variation diminishing for the distribution function by a suitable choice of the interpolation strategy. The method is applied to a one-dimensional shock-propagation problem and to a two-dimensional shock-reflection problem.

  2. Direct spectrophotometric detection of the endpoint in metachromatic titration of polydiallyldimethylammonium chloride in water

    NASA Astrophysics Data System (ADS)

    Gumbi, B.; Ngila, J. C.; Ndungu, P. G.

    Polydiallyldimethylammonium chloride (poly-DADMAC) is a water soluble polymer that easily ionizes when dissolved in water. This cationic polyelectrolyte is mainly used as a flocculant within the water treatment industry, but little is known of its toxicological properties or its fate in the environment. It is often assumed that the polyelectrolyte sorbs onto solid surfaces in the water treatment stream and may be removed with the sludge or by a sand bed filter; which may not always be the case. In any event, reliable analytical techniques are needed for the determination of poly-DADMAC in matrices of environmental relevance. Metachromatic polyelectrolyte titration was used to quantify poly-DADMAC in model and tap water samples. We compared a routine visual titration method with a direct spectrophotometric technique that uses a dip probe, spectrometer, and computer. The direct spectrophotometric technique allowed for the determination of titration curves at 634 nm and 510 nm, whereby the later value has never been successfully utilised in the literature. The method simplifies the data analysis, and our recovery and matrix interference experiments demonstrate that the method is accurate, precise, and robust. The detection limit for this method was 0.1 mg L-1 in model water and 0.5 mg L-1 in tap water. The limit of quantification for both water matrices was 0.5 mg L-1.

  3. Efficient and accurate linear algebraic methods for large-scale electronic structure calculations with nonorthogonal atomic orbitals

    NASA Astrophysics Data System (ADS)

    Teng, H.; Fujiwara, T.; Hoshi, T.; Sogabe, T.; Zhang, S.-L.; Yamamoto, S.

    2011-04-01

    The need for large-scale electronic structure calculations arises recently in the field of material physics, and efficient and accurate algebraic methods for large simultaneous linear equations become greatly important. We investigate the generalized shifted conjugate orthogonal conjugate gradient method, the generalized Lanczos method, and the generalized Arnoldi method. They are the solver methods of large simultaneous linear equations of the one-electron Schrödinger equation and map the whole Hilbert space to a small subspace called the Krylov subspace. These methods are applied to systems of fcc Au with the NRL tight-binding Hamiltonian [F. Kirchhoff , Phys. Rev. BJCOMEL1098-012110.1103/PhysRevB.63.195101 63, 195101 (2001)]. We compare results by these methods and the exact calculation and show them to be equally accurate. The system size dependence of the CPU time is also discussed. The generalized Lanczos method and the generalized Arnoldi method are the most suitable for the large-scale molecular dynamics simulations from the viewpoint of CPU time and memory size.

  4. Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels.

    PubMed

    Cubas, Javier; Pindado, Santiago; Sanz-Andrés, Ángel

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions.

  5. An adaptive grid method for computing time accurate solutions on structured grids

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Smith, Robert E.; Eiseman, Peter R.

    1991-01-01

    The solution method consists of three parts: a grid movement scheme; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the Euler solver. The grid movement scheme is an algebraic method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling is performed with a grid prediction correction procedure that is simple to implement and provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one dimensional shock tube and a two dimensional shock vortex iteraction.

  6. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-01

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  7. Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels.

    PubMed

    Cubas, Javier; Pindado, Santiago; Sanz-Andrés, Ángel

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions. PMID:25874262

  8. Accurate Simulation of MPPT Methods Performance When Applied to Commercial Photovoltaic Panels

    PubMed Central

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions. PMID:25874262

  9. Is photometry an accurate and reliable method to assess boar semen concentration?

    PubMed

    Camus, A; Camugli, S; Lévêque, C; Schmitt, E; Staub, C

    2011-02-01

    Sperm concentration assessment is a key point to insure appropriate sperm number per dose in species subjected to artificial insemination (AI). The aim of the present study was to evaluate the accuracy and reliability of two commercially available photometers, AccuCell™ and AccuRead™ pre-calibrated for boar semen in comparison to UltiMate™ boar version 12.3D, NucleoCounter SP100 and Thoma hemacytometer. For each type of instrument, concentration was measured on 34 boar semen samples in quadruplicate and agreement between measurements and instruments were evaluated. Accuracy for both photometers was illustrated by mean of percentage differences to the general mean. It was -0.6% and 0.5% for Accucell™ and Accuread™ respectively, no significant differences were found between instrument and mean of measurement among all equipment. Repeatability for both photometers was 1.8% and 3.2% for AccuCell™ and AccuRead™ respectively. Low differences were observed between instruments (confidence interval 3%) except when hemacytometer was used as a reference. Even though hemacytometer is considered worldwide as the gold standard, it is the more variable instrument (confidence interval 7.1%). The conclusion is that routine photometry measures of raw semen concentration are reliable, accurate and precise using AccuRead™ or AccuCell™. There are multiple steps in semen processing that can induce sperm loss and therefore increase differences between theoretical and real sperm numbers in doses. Potential biases that depend on the workflow but not on the initial photometric measure of semen concentration are discussed.

  10. Methods for applying accurate digital PCR analysis on low copy DNA samples.

    PubMed

    Whale, Alexandra S; Cowen, Simon; Foy, Carole A; Huggett, Jim F

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.

  11. Improved light microscopy counting method for accurately counting Plasmodium parasitemia and reticulocytemia.

    PubMed

    Lim, Caeul; Pereira, Ligia; Shardul, Pritish; Mascarenhas, Anjali; Maki, Jennifer; Rixon, Jordan; Shaw-Saliba, Kathryn; White, John; Silveira, Maria; Gomes, Edwin; Chery, Laura; Rathod, Pradipsinh K; Duraisingh, Manoj T

    2016-08-01

    Even with the advances in molecular or automated methods for detection of red blood cells of interest (such as reticulocytes or parasitized cells), light microscopy continues to be the gold standard especially in laboratories with limited resources. The conventional method for determination of parasitemia and reticulocytemia uses a Miller reticle, a grid with squares of different sizes. However, this method is prone to errors if not used correctly and counts become inaccurate and highly time-consuming at low frequencies of target cells. In this report, we outline the correct guidelines to follow when using a reticle for counting, and present a new counting protocol that is a modified version of the conventional method for increased accuracy in the counting of low parasitemias and reticulocytemias. Am. J. Hematol. 91:852-855, 2016. © 2016 Wiley Periodicals, Inc. PMID:27074559

  12. MODERN REGRESSION METHODS THAT CAN SUBSTANTIALLY INCREASE POWER AND PROVIDE A MORE ACCURATE UNDERSTANDING OF ASSOCIATIONS.

    PubMed

    Wilcox, Rand R; Keselman, H J

    2012-05-01

    During the last half century hundreds of papers published in statistical journals have documented general conditions where reliance on least squares regression and Pearson's correlation can result in missing even strong associations between variables. Moreover, highly misleading conclusions can be made, even when the sample size is large. There are, in fact, several fundamental concerns related to non-normality, outliers, heteroscedasticity, and curvature that can result in missing a strong association. Simultaneously, a vast array of new methods have been derived for effectively dealing with these concerns. The paper (1) reviews why least squares regression and classic inferential methods can fail, (2) provides an overview of the many modern strategies for dealing with known problems, including some recent advances, and (3) illustrates that modern robust methods can make a practical difference in our understanding of data. Included are some general recommendations regarding how modern methods might be used.

  13. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  14. a High-Accurate and Efficient Obrechkoff Five-Step Method for Undamped Duffing's Equation

    NASA Astrophysics Data System (ADS)

    Zhao, Deyin; Wang, Zhongcheng; Dai, Yongming; Wang, Yuan

    In this paper, we present a five-step Obrechkoff method to improve the previous two-step one for a second-order initial-value problem with the oscillatory solution. We use a special structure to construct the iterative formula, in which the higher-even-order derivatives are placed at central four nodes, and show there existence of periodic solutions in it with a remarkably wide interval of periodicity, H02 ˜ 16.28. By using a proper first-order derivative (FOD) formula to make this five-step method to have two advantages (a) a very high accuracy since the local truncation error (LTE) of both the main structure and the FOD formula are the same as O (h14); (b) a high efficiency because it avoids solving a polynomial equation with degree-nine by Picard iterative. By applying the new method to the well-known problem, the nonlinear Duffing's equation without damping, we can show that our numerical solution is four to five orders higher than the one by the previous Obrechkoff two-step method and it takes only 25% of CPU time required by the previous method to fulfil the same task. By using the new method, a better "exact" solution is found by fitting, whose error tolerance is below 5×10-15, than the one widely used in the lectures, whose error tolerance is below 10-11.

  15. Fast and accurate numerical method for predicting gas chromatography retention time.

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-08-01

    Predictive modeling for gas chromatography compound retention depends on the retention factor (ki) and on the flow of the mobile phase. Thus, different approaches for determining an analyte ki in column chromatography have been developed. The main one is based on the thermodynamic properties of the component and on the characteristics of the stationary phase. These models can be used to estimate the parameters and to optimize the programming of temperatures, in gas chromatography, for the separation of compounds. Different authors have proposed the use of numerical methods for solving these models, but these methods demand greater computational time. Hence, a new method for solving the predictive modeling of analyte retention time is presented. This algorithm is an alternative to traditional methods because it transforms its attainments into root determination problems within defined intervals. The proposed approach allows for tr calculation, with accuracy determined by the user of the methods, and significant reductions in computational time; it can also be used to evaluate the performance of other prediction methods.

  16. An accurate method for evaluating the kernel of the integral equation relating lift to downwash in unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1982-01-01

    The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.

  17. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    SciTech Connect

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  18. An accurate and efficient computation method of the hydration free energy of a large, complex molecule.

    PubMed

    Yoshidome, Takashi; Ekimoto, Toru; Matubayasi, Nobuyuki; Harano, Yuichi; Kinoshita, Masahiro; Ikeguchi, Mitsunori

    2015-05-01

    The hydration free energy (HFE) is a crucially important physical quantity to discuss various chemical processes in aqueous solutions. Although an explicit-solvent computation with molecular dynamics (MD) simulations is a preferable treatment of the HFE, huge computational load has been inevitable for large, complex solutes like proteins. In the present paper, we propose an efficient computation method for the HFE. In our method, the HFE is computed as a sum of 〈UUV〉/2 (〈UUV〉 is the ensemble average of the sum of pair interaction energy between solute and water molecule) and the water reorganization term mainly reflecting the excluded volume effect. Since 〈UUV〉 can readily be computed through a MD of the system composed of solute and water, an efficient computation of the latter term leads to a reduction of computational load. We demonstrate that the water reorganization term can quantitatively be calculated using the morphometric approach (MA) which expresses the term as the linear combinations of the four geometric measures of a solute and the corresponding coefficients determined with the energy representation (ER) method. Since the MA enables us to finish the computation of the solvent reorganization term in less than 0.1 s once the coefficients are determined, the use of the MA enables us to provide an efficient computation of the HFE even for large, complex solutes. Through the applications, we find that our method has almost the same quantitative performance as the ER method with substantial reduction of the computational load. PMID:25956125

  19. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    NASA Astrophysics Data System (ADS)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  20. Accurate low-cost methods for performance evaluation of cache memory systems

    NASA Technical Reports Server (NTRS)

    Laha, Subhasis; Patel, Janak H.; Iyer, Ravishankar K.

    1988-01-01

    Methods of simulation based on statistical techniques are proposed to decrease the need for large trace measurements and for predicting true program behavior. Sampling techniques are applied while the address trace is collected from a workload. This drastically reduces the space and time needed to collect the trace. Simulation techniques are developed to use the sampled data not only to predict the mean miss rate of the cache, but also to provide an empirical estimate of its actual distribution. Finally, a concept of primed cache is introduced to simulate large caches by the sampling-based method.

  1. Interpolation method for accurate affinity ranking of arrayed ligand-analyte interactions.

    PubMed

    Schasfoort, Richard B M; Andree, Kiki C; van der Velde, Niels; van der Kooi, Alex; Stojanović, Ivan; Terstappen, Leon W M M

    2016-05-01

    The values of the affinity constants (kd, ka, and KD) that are determined by label-free interaction analysis methods are affected by the ligand density. This article outlines a surface plasmon resonance (SPR) imaging method that yields high-throughput globally fitted affinity ranking values using a 96-plex array. A kinetic titration experiment without a regeneration step has been applied for various coupled antibodies binding to a single antigen. Globally fitted rate (kd and ka) and dissociation equilibrium (KD) constants for various ligand densities and analyte concentrations are exponentially interpolated to the KD at Rmax = 100 RU response level (KD(R100)).

  2. Which Method Is Most Precise; Which Is Most Accurate? An Undergraduate Experiment

    ERIC Educational Resources Information Center

    Jordan, A. D.

    2007-01-01

    A simple experiment, the determination of the density of a liquid by several methods, is presented. Since the concept of density is a familiar one, the experiment is suitable for the introductory laboratory period of a first- or second-year course in physical or analytical chemistry. The main objective of the experiment is to familiarize students…

  3. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  4. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    NASA Astrophysics Data System (ADS)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  5. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  6. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding

  7. A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures.

    PubMed

    Mangipudi, K R; Radisch, V; Holzer, L; Volkert, C A

    2016-04-01

    We present an automated focused ion beam nanotomography method for nanoporous microstructures with open porosity, and apply it to reconstruct nanoporous gold (np-Au) structures with ligament sizes on the order of a few tens of nanometers. This method uses serial sectioning of a well-defined wedge-shaped geometry to determine the thickness of individual slices from the changes in the sample width in successive cross-sectional images. The pore space of a selected region of the np-Au is infiltrated with ion-beam-deposited Pt composite before serial sectioning. The cross-sectional images are binarized and stacked according to the individual slice thicknesses, and then processed using standard reconstruction methods. For the image conditions and sample geometry used here, we are able to determine the thickness of individual slices with an accuracy much smaller than a pixel. The accuracy of the new method based on actual slice thickness is assessed by comparing it with (i) a reconstruction using the same cross-sectional images but assuming a constant slice thickness, and (ii) a reconstruction using traditional FIB-tomography method employing constant slice thickness. The morphology and topology of the structures are characterized using ligament and pore size distributions, interface shape distribution functions, interface normal distributions, and genus. The results suggest that the morphology and topology of the final reconstructions are significantly influenced when a constant slice thickness is assumed. The study reveals grain-to-grain variations in the morphology and topology of np-Au. PMID:26906523

  8. A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Philip C. E.

    2007-01-01

    A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.

  9. An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng

    2016-01-01

    An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.

  10. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method

    SciTech Connect

    Sinha, Debalina; Pavanello, Michele

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  11. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    SciTech Connect

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered

  12. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  13. A rapid and accurate method for calculation of stratospheric photolysis rates with molecular scattering

    NASA Technical Reports Server (NTRS)

    Boughner, Robert E.

    1986-01-01

    A method for calculating the photodissociation rates needed for photochemical modeling of the stratosphere, which includes the effects of molecular scattering, is described. The procedure is based on Sokolov's method of averaging functional correction. The radiation model and approximations used to calculate the radiation field are examined. The approximated diffuse fields and photolysis rates are compared with exact data. It is observed that the approximate solutions differ from the exact result by 10 percent or less at altitudes above 15 km; the photolysis rates differ from the exact rates by less than 5 percent for altitudes above 10 km and all zenith angles, and by less than 1 percent for altitudes above 15 km.

  14. Finite element method for accurate 3D simulation of plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Burger, Sven; Zschiedrich, Lin; Pomplun, Jan; Schmidt, Frank

    2010-02-01

    Optical properties of hybrid plasmonic waveguides and of low-Q cavities, formed by waveguides of finite length are investigated numerically. These structures are of interest as building-blocks of plasmon lasers. We use a time-harmonic finite-element package including a propagation-mode solver, a resonance-mode solver and a scattering solver for studying various properties of the system. Numerical convergence of all used methods is demonstrated.

  15. High Resolution Melting Analysis: A Rapid and Accurate Method to Detect CALR Mutations

    PubMed Central

    Moreno, Melania; Torres, Laura; Santana-Lopez, Gonzalo; Rodriguez-Medina, Carlos; Perera, María; Bellosillo, Beatriz; de la Iglesia, Silvia; Molero, Teresa; Gomez-Casares, Maria Teresa

    2014-01-01

    Background The recent discovery of CALR mutations in essential thrombocythemia (ET) and primary myelofibrosis (PMF) patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN). We tested the feasibility of high-resolution melting (HRM) as a screening method for rapid detection of CALR mutations. Methods CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET. Results Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34), 14% of persistent thrombocytosis suggestive of MPN (3/21) and none of the secondary thrombocytosis (0/98). Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%. Conclusions This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations. PMID:25068507

  16. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  17. Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method

    NASA Astrophysics Data System (ADS)

    Małolepsza, Edyta; Witek, Henryk A.; Morokuma, Keiji

    2005-09-01

    An optimization technique for enhancing the quality of repulsive two-body potentials of the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented and tested. The new, optimized potentials allow for significant improvement of calculated harmonic vibrational frequencies. Mean absolute deviation from experiment computed for a group of 14 hydrocarbons is reduced from 59.0 to 33.2 cm -1 and maximal absolute deviation, from 436.2 to 140.4 cm -1. A drawback of the new family of potentials is a lower quality of reproduced geometrical and energetic parameters.

  18. Accurate predictions of C-SO2R bond dissociation enthalpies using density functional theory methods.

    PubMed

    Yu, Hai-Zhu; Fu, Fang; Zhang, Liang; Fu, Yao; Dang, Zhi-Min; Shi, Jing

    2014-10-14

    The dissociation of the C-SO2R bond is frequently involved in organic and bio-organic reactions, and the C-SO2R bond dissociation enthalpies (BDEs) are potentially important for understanding the related mechanisms. The primary goal of the present study is to provide a reliable calculation method to predict the different C-SO2R bond dissociation enthalpies (BDEs). Comparing the accuracies of 13 different density functional theory (DFT) methods (such as B3LYP, TPSS, and M05 etc.), and different basis sets (such as 6-31G(d) and 6-311++G(2df,2p)), we found that M06-2X/6-31G(d) gives the best performance in reproducing the various C-S BDEs (and especially the C-SO2R BDEs). As an example for understanding the mechanisms with the aid of C-SO2R BDEs, some primary mechanistic studies were carried out on the chemoselective coupling (in the presence of a Cu-catalyst) or desulfinative coupling reactions (in the presence of a Pd-catalyst) between sulfinic acid salts and boryl/sulfinic acid salts.

  19. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  20. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983