Science.gov

Sample records for accurate spectroscopic parameters

  1. Accurate calculations of spectroscopic parameters, transition properties of 17 Λ-S states and 32 Ω states of SiB+ cation

    NASA Astrophysics Data System (ADS)

    Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2017-02-01

    This work computed the potential energy curves of 17 Λ-S states, which came from the first three dissociation limits, Si+(2Pu) + B(2Pu), Si(3Pg) + B+(1Sg), and Si(1Dg) + B+(1Sg), of the SiB+ cation. The potential energy curves were also calculated for the 32 Ω states generated from these Λ-S states. The calculations were done using the CASSCF method, which was followed by internally contracted MRCI approach with Davidson correction. To obtain the reliable and accurate spectroscopic parameters and vibrational properties, core-valence correlation and scalar relativistic corrections were included. Of these 17 Λ-S states, the C3Σ+, E3Π, 33Π, 23Σ+, 21Π, and 31Σ+ states had double wells. The 31Π state had three wells. The D3Σ-, E3Π, 33Π, and B3Δ states were inverted with the spin-orbit coupling effect accounted for. The 21Δ state, the first well of 31Σ+ state, the second wells of 33Π, 23Σ+, and 21Π states and the second and third wells of 31Π state were weakly bound, which well depths were within several hundreds cm-1. The second well of 31Π state had no vibrational states. The first wells of E3Π and 31Σ+ states had only one vibrational state. The spectroscopic parameters were evaluated. The vibrational properties of some weaklybound states were predicted. Franck-Condon factors of some transitions between different two Λ-S states were determined. The spin-orbit coupling effect on the spectroscopic parameters and vibrational properties was discussed. These results reported here can be expected to be reliably predicted ones.

  2. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    SciTech Connect

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina; Alonso, José Luis; Gauss, Jürgen

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.

  3. Accurate calculations on 9 Λ-S and 28 Ω states of NSe radical in the gas phase: Potential energy curves, spectroscopic parameters and spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Li, Peiling; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of 28 Ω states generated from 9 Λ-S states (X2Π, 14Π, 16Π, 12Σ+, 14Σ+, 16Σ+, 14Σ-, 24Π and 14Δ) are studied for the first time using an ab initio quantum chemical method. All the 9 Λ-S states correlate to the first two dissociation limits, N(4Su) + Se(3Pg) and N(4Su) + Se(3Dg), of NSe radical. Of these Λ-S states, the 16Σ+, 14Σ+, 16Π, 24Π and 14Δ are found to be rather weakly bound states. The 12Σ+ is found to be unstable and has double wells. And the 16Σ+, 14Σ+, 14Π and 16Π are found to be the inverted ones with the SO coupling included. The PEC calculations are made by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification. The spin-orbit coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. The convergence of the present calculations is discussed with respect to the basis set and the level of theory. Core-valence correlation corrections are included with a cc-pCVTZ basis set. Scalar relativistic corrections are calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of spin-orbit coupling constants is discussed in brief for some Λ-S states with one shallow well on each PEC. The spectroscopic parameters of 9 Λ-S and 28 Ω states are determined by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation with Numerov's method. The splitting energy in the X2Π Λ-S state is determined to be about 864.92 cm-1, which agrees favorably with the measurements of 891.80 cm-1. Moreover, other spectroscopic parameters of Λ-S and Ω states involved here are also in fair agreement with available measurements. It

  4. Accurate fundamental parameters for 23 bright solar-type stars

    NASA Astrophysics Data System (ADS)

    Bruntt, H.; Bedding, T. R.; Quirion, P.-O.; Lo Curto, G.; Carrier, F.; Smalley, B.; Dall, T. H.; Arentoft, T.; Bazot, M.; Butler, R. P.

    2010-07-01

    We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar-type stars, from spectral type F5 to K2 and luminosity classes III-V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4-15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (~ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of -40 +/- 20K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H] = -1.7 to +0.4, and there is clear evidence for α-element enhancement in the metal-poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v sin i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log g and [Fe/H] with absolute accuracies of 80K, 0.08 and 0.07dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry

  5. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  6. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  7. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF PROTONATED OXIRANE: A POTENTIAL PREBIOTIC SPECIES IN TITAN’S ATMOSPHERE

    PubMed Central

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2015-01-01

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm−1 for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan’s atmosphere but also in the interstellar medium. PMID:26543241

  8. Orbital Parameters for Two Young Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Karnath, Nicole

    I report orbital parameters for two low-mass, pre-main sequence spectroscopic binaries VSB 111 and VSB 126. These systems were originally identified as single-lined on the basis of visible-light spectral observations. High-resolution, infrared spectra were obtained to detect absorption lines of the secondary stars and measure radial velocities of both components in the systems. The combination of the visible and infrared observations of VSB 111 leads to a period of 902.1+/-0.9 days, an eccentricity of 0.788+/-0.008, and a mass ratio of 0.52+/-0.05. VSB 126 has a period of 12.9244+/-0.0002 days, an eccentricity of 0.18+/-0.02, and a mass ratio of 0.29+/-0.02. Visible-light photometry using the 0.8-m telescope at Lowell Observatory provided rotation periods for the primary stars in both systems, 3.74+/-0.02 days for VSB 111 and 5.71+/-0.07 days for VSB 126. Based on the vsini values, the primary rotation periods, and estimates for the primary radii, I find inclinations for the primary-star rotation axes, 42+47 -16° for VSB 111 and 54+36-29° for VSB 126, and compare these to the inclination angle of the binary orbits, iorb = 36+/-4° for VSB 111 and i orb = 45+/-4° for VSB 126, estimated from the orbital solutions. Both binaries are located in the young, star- forming cluster NGC 2264 with a complex and clumpy gas and dust structure at a distance of ~800 pc. The center-of-mass velocities of the two systems are consistent with distinct CO clouds within NGC 2264.

  9. Review of spectroscopic parameters for upper atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H. (Editor)

    1985-01-01

    The workshop included communication of spectroscopic data requirements for the planned upper atmosphere research satellite (UARS) mission, review of the status of currently available spectroscopic parameters, and recommendation of additional studies. The objectives were accomplished and resulted in a series of general and specific recommendations for laboratory spectroscopy research to meet the needs of UARS and other atmospheric remote sensing programs.

  10. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

    PubMed Central

    2015-01-01

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules. PMID:26146493

  11. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  12. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  13. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.

    PubMed

    Dral, Pavlo O; von Lilienfeld, O Anatole; Thiel, Walter

    2015-05-12

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  14. Direct computation of parameters for accurate polarizable force fields

    SciTech Connect

    Verstraelen, Toon Vandenbrande, Steven; Ayers, Paul W.

    2014-11-21

    We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham Density Functional Theory (DFT), approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization, and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.

  15. Accurate 3D quantification of the bronchial parameters in MDCT

    NASA Astrophysics Data System (ADS)

    Saragaglia, A.; Fetita, C.; Preteux, F.; Brillet, P. Y.; Grenier, P. A.

    2005-08-01

    The assessment of bronchial reactivity and wall remodeling in asthma plays a crucial role in better understanding such a disease and evaluating therapeutic responses. Today, multi-detector computed tomography (MDCT) makes it possible to perform an accurate estimation of bronchial parameters (lumen and wall areas) by allowing a quantitative analysis in a cross-section plane orthogonal to the bronchus axis. This paper provides the tools for such an analysis by developing a 3D investigation method which relies on 3D reconstruction of bronchial lumen and central axis computation. Cross-section images at bronchial locations interactively selected along the central axis are generated at appropriate spatial resolution. An automated approach is then developed for accurately segmenting the inner and outer bronchi contours on the cross-section images. It combines mathematical morphology operators, such as "connection cost", and energy-controlled propagation in order to overcome the difficulties raised by vessel adjacencies and wall irregularities. The segmentation accuracy was validated with respect to a 3D mathematically-modeled phantom of a pair bronchus-vessel which mimics the characteristics of real data in terms of gray-level distribution, caliber and orientation. When applying the developed quantification approach to such a model with calibers ranging from 3 to 10 mm diameter, the lumen area relative errors varied from 3.7% to 0.15%, while the bronchus area was estimated with a relative error less than 5.1%.

  16. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study

    PubMed Central

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2015-01-01

    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  17. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF OXIRANE: A VALUABLE ROUTE TO ITS IDENTIFICATION IN TITAN’S ATMOSPHERE AND THE ASSIGNMENT OF UNIDENTIFIED INFRARED BANDS

    PubMed Central

    Puzzarini, Cristina; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2015-01-01

    In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm−1 for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%–3%, and 3%–4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan’s atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz). PMID:26543240

  18. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    SciTech Connect

    Ng, Cheuk-Yiu

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  19. Accurate spectroscopic calculations of 21 electronic states of ClO radical including transition properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-08-01

    The potential energy curves were calculated for the 21 states (X2Π, A2Π, 32Π, 42Π, 52Π, 12Σ+, 22Σ+, 32Σ+, 12Σ-, 22Σ-, 32Σ-, 12Δ, 22Δ, 32Δ, 12Φ, 14Σ+, a4Σ-, 24Σ-, 14Π, 24Π and 14Δ), which originated from the two lowest dissociation channels of ClO radical. The calculations were done for internuclear separations approximately from 0.08 to 1.10 nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV5Z basis set. Of these 21 states, the 14Π, 24Π, 32Δ, 42Π, 52Π, 12Φ, 32Σ+, 14Δ and 24Σ- states are repulsive. The 12Δ, 12Σ-, 14Σ+, 22Σ-, 12Σ+, 22Σ+, 22Δ and 32Σ- states are very weakly bound. Only the A2Π state has one barrier. The avoided crossing exists between the A2Π and the 32Π state. However, the avoided crossing does not generate any double wells. Core- valence correlation correction was accounted for at the level of an aug-cc-pCVQZ basis set. Scalar relativistic correction was included by the third-order Douglas-Kroll Hamiltonian approximation at the level of an aug-cc-pVQZ basis set. All the potential energy curves were extrapolated to the complete basis set limit. The spectroscopic parameters were determined. The 12Σ-, 22Σ-, 32Σ- and 14Σ+ states may be very difficult to be detected in an experiment, since each of these Λ-S states has only one or two vibrational states. The Franck-Condon factors and radiative lifetimes were calculated for several low vibrational levels of the A2Π - X2Π, 32Π - a4Σ-, 22Δ - a4Σ- and 32Σ- - 12Σ- transitions. The spin-orbit coupling effect on the spectroscopic parameters of the X2Π, A2Π, 32Π, a4Σ- and 22Σ+ states were discussed. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  20. The SDSS-II/SEGUE Spectroscopic Parameter Pipeline

    NASA Astrophysics Data System (ADS)

    Lee, Young S.; Beers, T. C.; Sivarani, T.; Wilhelm, R.; Allende Prieto, C.; Norris, J. E.; Fiorentin, P. R.; Bailer-Jones, C. A.; SEGUE Calibration Team

    2006-12-01

    The Sloan Extension for Galactic Understanding and Exploration (SEGUE) is one of three key projects in SDSS-II. SEGUE is in the process of obtaining ugriz imaging of some 3500 square degrees of sky outside of the SDSS-I footprint, with special attention being given to scans of lower galactic latitudes in order to better probe the disk/halo interface in the Galaxy. Over one-third of the imaging has already been completed. SEGUE is also obtaining R = 2000 sectroscopy over the wavelenth range 380 900 nm for 250,000 stars in 200 selected areas over the sky available from Apache Point, New Mexico. The spectroscopic candidates are selected on the basis of ugriz photometry to populate some 16 target categories of stars chosen to explore the nature of the stellar populations in the Galaxy as a function of distance from the Sun (from 0.5 kpc to over 100 kpc). The SEGUE data clearly require automated analysis tools in order to extract the maximum amount of useful information. In this contribution we describe the development and execution of the SEGUE spectroscopic analysis pipeline, which makes use of multiple approaches (including spectral matching, neural network analysis, line index calculations, etc.) in order to estimate the fundamental stellar atmospheric parameters (effective temperature, surface gravity, and [Fe/H]). These approaches are in the process of being extended to include determinations of other elemental abundances (e.g., C, Na, Mg) that the SDSS spectra probe. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

  1. Orbital Parameters for Two Young Spectroscopic Binary Systems

    NASA Astrophysics Data System (ADS)

    Karnath, Nicole; Prato, L. A.; Wasserman, L. H.; Torres, G.; Mathieu, R. D.

    2013-01-01

    Orbital parameters for two young, low-mass, pre-main sequence binary systems are described. Originally, VSB 111 and VSB 126 had parameters reported based on single-lined spectroscopic solutions. High-resolution, infrared spectra were obtained with the Keck II telescope on Mauna Kea and used to identify the lines of the secondary stars, yielding double-lined orbital solutions that include the systems' mass ratios. VSB 126 has a period of 12.9247±0.0001 days, an eccentricity of 0.184±0.015, and a mass ratio of 0.27±0.01. VSB 111 has a period of 901.3062±1.1792 days, an eccentricity of 0.791±0.008, and a mass ratio of 0.60±0.06. The two systems are located in the ~3 Myr old star forming region NGC 2264, at a distance of ~800 pc. We compare the cluster age and dynamical properties of the stars in these systems with the masses and ages predicted by models of pre-main sequence evolution. Partial support for this work was provided by NSF grant AST-1009136 (to LP).

  2. Integration of an intensified charge-coupled device (ICCD) camera for accurate spectroscopic measurements.

    PubMed

    Peláez, Ramón Javier; Mar, Santiago; Aparicio, Juan Antonio; Belmonte, María Teresa

    2012-08-01

    Intensified charge-coupled devices (ICCD) are used in a great variety of spectroscopic applications, some of them requiring high sensitivity and spectral resolution. The setup, configuration, and featuring of these cameras are fundamental issues in order to acquire high quality spectra. In this work a critical assessment of these detectors is performed and the specific configuration, the optical alignment, featuring, and the dark and shot noise are described and analyzed. Spatial response of the detector usually shows a significant lack of spatial homogeneity and a map of interferences may appear in certain ranges of wavelengths, which damages the quality of the recorded spectra. In this work the spectral resolution and the spatial and spectral sensitivity are also studied. The analysis of the dark current reveals the existence of a smooth but clear spatial dependence. As a final conclusion, the spectra registered with the spectrometer equipped with our ICCD camera allow us to explore and measure accurately spectral line shapes emitted by pulsed plasmas in the visible range and particularly in the ultraviolet (UV) range.

  3. Accurate Critical Parameters for the Modified Lennard-Jones Model

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuma; Fuchizaki, Kazuhiro

    2017-03-01

    The critical parameters of the modified Lennard-Jones system were examined. The isothermal-isochoric ensemble was generated by conducting a molecular dynamics simulation for the system consisting of 6912, 8788, 10976, and 13500 particles. The equilibrium between the liquid and vapor phases was judged from the chemical potential of both phases upon establishing the coexistence envelope, from which the critical temperature and density were obtained invoking the renormalization group theory. The finite-size scaling enabled us to finally determine the critical temperature, pressure, and density as Tc = 1.0762(2), pc = 0.09394(17), and ρc = 0.331(3), respectively.

  4. The spectroscopic orbits and physical parameters of GG Carinae

    NASA Astrophysics Data System (ADS)

    Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.

    2012-04-01

    Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of

  5. Spectroscopic parameters for solar-type stars with moderate-to-high rotation. New parameters for ten planet hosts

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S. G.; Santos, N. C.; Montalto, M.; Delgado-Mena, E.; Mortier, A.; Adibekyan, V.; Israelian, G.

    2014-10-01

    Context. Planetary studies demand precise and accurate stellar parameters as input for inferring the planetary properties. Different methods often provide different results that could lead to biases in the planetary parameters. Aims: In this work, we present a refinement of the spectral synthesis technique designed to treat fast rotating stars better. This method is used to derive precise stellar parameters, namely effective temperature, surface gravity, metallicity, and rotational velocity. The procedure is tested for FGK stars with low and moderate-to-high rotation rates. Methods: The spectroscopic analysis is based on the spectral synthesis package Spectroscopy Made Easy (SME), which assumes Kurucz model atmospheres in LTE. The line list where the synthesis is conducted is comprised of iron lines, and the atomic data are derived after solar calibration. Results: The comparison of our stellar parameters shows good agreement with literature values, both for slowly and for fast rotating stars. In addition, our results are on the same scale as the parameters derived from the iron ionization and excitation method presented in our previous works. We present new atmospheric parameters for 10 transiting planet hosts as an update to the SWEET-Cat catalog. We also re-analyze their transit light curves to derive new updated planetary properties. Based on observations collected at the La Silla Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 089.C-0444(A), 088.C-0892(A)) and with the HARPS spectrograph at the 3.6 m telescope (ESO runs ID 072.C-0488(E), 079.C-0127(A)); at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France, with the SOPHIE spectrograph at the 1.93 m telescope and at the Observatoire Midi-Pyrénées (CNRS), France, with the NARVAL spectrograph at the 2 m Bernard Lyot Telescope (Run ID L131N11).Appendix A is available in electronic form at http://www.aanda.org

  6. A Novel Tool for the Spectroscopic Inference of Fundamental Stellar Parameters

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Andrews, Sean M.; Latham, David W.; Torres, Guillermo

    2014-06-01

    We present a novel approach for making accurate and unbiased inferences of fundamental stellar parameters (e.g., effective temperature, surface gravity, metallicity) from spectroscopic observations, with reference to a library of synthetic spectra. The forward-modeling formalism we have developed is generic (easily adaptable to data from any instrument or covering any wavelength range) and modular, in that it can incorporate external prior knowledge or additional data (e.g., broadband photometry) and account for instrumental and non-stellar effects on the spectrum (e.g., parametric treatments of extinction, spots, etc.). An approach that employs adaptive correlated noise is used to account for systematic discrepancies between the observations and the synthetic spectral library, ensuring that issues like uncertainties in atomic or molecular constants do not strongly bias the parameter inferences. In addition to extracting a set of unbiased inferences of the (posterior) probability distributions for basic stellar parameters, our modeling approach also "maps" out problematic spectral regions in the synthetic libraries that could be used as a basis for improving the models. As a demonstration, we present some preliminary results from modeling optical spectra of well-characterized exoplanet host stars and nearby pre-main sequence stars. A basic set of adaptable software that performs this modeling approach will be released publicly.

  7. Precise spectroscopic parameters for solar-type stars with moderate-to-high rotation

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S.; Santos, N. C.; Montalto, M.

    2014-07-01

    One of the primary objectives of Gaia is to survey billions stars and build the most precise 3D map of the Milky Way. Automated techniques of spectral analysis are needed to perform a rapid and homogeneous processing of the data to provide precise and accurate stellar parameters, such as for the GAIA-ESO survey. In this context, our recent work is based on the spectral synthesis technique to derive parameters for both slowly and fast rotating stars (Tsantaki et al. 2014). The spectroscopic analysis was performed using the package Spectroscopy Made Easy (SME; Valenti & Piskunov 1996) and a specific methodology to deal with fast rotators (υsini up to 50 km/s). The spectral regions, including the atomic data of all the lines in our analysis are available online in SME readable format http://mariatsantaki.weebly.com;. A comparison between the parameters derived with our methodology and with the iron ionization and excitation method (e.g. Sousa et al. 2008; Tsantaki et al. 2013) shows that both results are on the same scale. Additionally, for fast rotating stars, our results are in good agreement with literature values when comparing to other methods. We are now able to provide parameters for a very wide group of stars: from giants to dwarfs and from slowly to fast rotating stars. Except for galactic studies, stellar parameters are important for the planetary characterization. We provided updated stellar and planetary properties for ten systems. The stellar parameters were compiled in the SWEET-Catalogue (https://www.astro.up.pt/resources/sweet-cat/).

  8. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  9. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  10. Accurate spectroscopic characterization of ethyl mercaptan and dimethyl sulfide isotopologues: a route toward their astrophysical detection

    SciTech Connect

    Puzzarini, C.; Senent, M. L.; Domínguez-Gómez, R.; Carvajal, M.; Hochlaf, M.; Al-Mogren, M. Mogren E-mail: senent@iem.cfmac.csic.es E-mail: miguel.carvajal@dfa.uhu.es E-mail: mmogren@ksu.edu.sa

    2014-11-20

    Using state-of-the-art computational methodologies, we predict a set of reliable rotational and torsional parameters for ethyl mercaptan and dimethyl sulfide monosubstituted isotopologues. This includes rotational, quartic, and sextic centrifugal-distortion constants, torsional levels, and torsional splittings. The accuracy of the present data was assessed from a comparison to the available experimental data. Generally, our computed parameters should help in the characterization and the identification of these organo-sulfur molecules in laboratory settings and in the interstellar medium.

  11. Construction of Spectroscopically Accurate IR Linelists for NH3 and CO2

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D. W.; Lee, T. J.

    2011-05-01

    The strategy of using the best theory together with high-resolution experi-ment was applied to NH3 and CO2: that is, refine a highly accurate ab initio PES with the most reliable HITRAN or pure experimental data. With 0.01 - 0.02 cm-1 accuracy, our calculations are clearly far beyond simply reproducing experimental data, but are also capable of revealing many deficiencies in the cur- rent experimental analysis of the various isotopologues, as well as provide reliable predictions with similar accuracy.

  12. Highly Accurate Quartic Force Fields, Vibrational Frequencies, and Spectroscopic Constants for Cyclic and Linear C3H3(+)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Taylor, Peter R.; Lee, Timothy J.

    2011-01-01

    High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C H + molecular cation, referred to as c-C H + and I-C H +. Specifically the 33 3333 singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants using both vibrational 2nd-order perturbation theory and variational methods to solve the nuclear Schroedinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C H +, 33 obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C H + 33 and I-C H + are the most reliable available for the free gas-phase species and it is hoped that 33 these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations.

  13. Development of a new, robust and accurate, spectroscopic metric for scatterer size estimation in optical coherence tomography (OCT) images

    NASA Astrophysics Data System (ADS)

    Kassinopoulos, Michalis; Pitris, Costas

    2016-03-01

    The modulations appearing on the backscattering spectrum originating from a scatterer are related to its diameter as described by Mie theory for spherical particles. Many metrics for Spectroscopic Optical Coherence Tomography (SOCT) take advantage of this observation in order to enhance the contrast of Optical Coherence Tomography (OCT) images. However, none of these metrics has achieved high accuracy when calculating the scatterer size. In this work, Mie theory was used to further investigate the relationship between the degree of modulation in the spectrum and the scatterer size. From this study, a new spectroscopic metric, the bandwidth of the Correlation of the Derivative (COD) was developed which is more robust and accurate, compared to previously reported techniques, in the estimation of scatterer size. The self-normalizing nature of the derivative and the robustness of the first minimum of the correlation as a measure of its width, offer significant advantages over other spectral analysis approaches especially for scatterer sizes above 3 μm. The feasibility of this technique was demonstrated using phantom samples containing 6, 10 and 16 μm diameter microspheres as well as images of normal and cancerous human colon. The results are very promising, suggesting that the proposed metric could be implemented in OCT spectral analysis for measuring nuclear size distribution in biological tissues. A technique providing such information would be of great clinical significance since it would allow the detection of nuclear enlargement at the earliest stages of precancerous development.

  14. Reliable Spectroscopic Constants for CCH-, NH2- and Their Isotopomers from an Accurate Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Schwenke, David W.; Chaban, Galina M.

    2005-01-01

    Accurate quartic force fields have been determined for the CCH- and NH2- molecular anions using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T). Very large one-particle basis sets have been used including diffuse functions and up through g-type functions. Correlation of the nitrogen and carbon core electrons has been included, as well as other "small" effects, such as the diagonal Born-Oppenheimer correction, and basis set extrapolation, and corrections for higher-order correlation effects and scalar relativistic effects. Fundamental vibrational frequencies have been computed using standard second-order perturbation theory as well as variational methods. Comparison with the available experimental data is presented and discussed. The implications of our research for the astronomical observation of molecular anions will be discussed.

  15. Characterising molecules for fundamental physics: an accurate spectroscopic model of methyltrioxorhenium derived from new infrared and millimetre-wave measurements.

    PubMed

    Asselin, Pierre; Berger, Yann; Huet, Thérèse R; Margulès, Laurent; Motiyenko, Roman; Hendricks, Richard J; Tarbutt, Michael R; Tokunaga, Sean K; Darquié, Benoît

    2017-02-08

    Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CH3(187)ReO3 and CH3(185)ReO3 isotopologues in the gas phase with unprecedented precision. By extending the rotational spectra to the 150-300 GHz range, we characterize the ground state rotational and hyperfine structure up to J = 43 and K = 41, resulting in refinements to the rotational, quartic and hyperfine parameters, and the determination of sextic parameters and a centrifugal distortion correction to the quadrupolar hyperfine constant. We obtain rovibrational data for temperatures between 6 and 300 K in the 970-1015 cm(-1) range, at resolutions down to 8 MHz and accuracies of 30 MHz. We use these data to determine more precise excited-state rotational, Coriolis and quartic parameters, as well as the ground-state centrifugal distortion parameter DK of the (187)Re isotopologue. We also account for hyperfine structure in the rovibrational transitions and hence determine the upper state rhenium atom quadrupole coupling constant eQq'.

  16. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  17. Impact of finite density on spectroscopic parameters of decuplet baryons

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.; Sundu, H.

    2016-12-01

    The decuplet baryons, Δ , Σ*, Ξ*, and Ω-, are studied in nuclear matter by using the in-medium QCD sum rules. By fixing the three-momentum of the particles under consideration at the rest frame of the medium, the negative energy contributions are removed. It is obtained that the parameters of the Δ baryon are more affected by the medium against the Ω- state, containing three strange quarks, whose mass and residue are not considerably affected by the medium. We also find the vector and scalar self-energies of these baryons in nuclear matter. By the recent progresses at the P ¯ ANDA experiment at the FAIR and NICA facility, it may be possible to study the in-medium properties of such states, even the multistrange Ξ* and Ω- systems, in the near future.

  18. Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations.

    PubMed

    Tyuterev, Vladimir; Tashkun, Sergei; Rey, Michael; Kochanov, Roman; Nikitin, Andrei; Delahaye, Thibault

    2013-12-19

    A new spectroscopic model is developed for theoretical predictions of vibration-rotation line positions and line intensities of the methane molecule. Resonance coupling parameters of the effective polyad Hamiltionians were obtained via high-order contact transformations (CT) from ab initio potential energy surface. This allows converging vibrational and rotational levels to the accuracy of best variational calculations. Average discrepancy with centers of 100 reliably assigned experimental bands up to the triacontad range was 0.74 cm(-1) and 0.001 cm(-1) for GS rotational levels up to J = 17 in direct CT calculations without adjustable parameters. A subsequent "fine tuning" of the diagonal parameters allows achieving experimental accuracy for about 5600 Dyad and Pentad line positions, whereas all resonance coupling parameters were held fixed to ab initio values. Dipole transition moment parameters were determined from selected ab initio line strengths previously computed from a dipole moment surface by variational method. New polyad model allows generating a spectral line list for the Dyad and Pentad bands with the accuracy ~10(-3) cm(-1) for line positions combined with ab initio predictions for line intensities. The overall integrated intensity agreement with Hitran-2008 empirical database is of 4.4% for the Dyad and of 1.8% for the Pentad range.

  19. Spectroscopic study of the environment of two time-delay lenses for accurate cosmology

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Suyu, Sherry; Fassnacht, Chris; Hilbert, Stefan; Sluse, Dominique; Courbin, Frederic

    2013-02-01

    We are conducting a program to achieve compelling and robust cosmographic measurements from five gravitationally lensed quasars with exquisite time-delays and HST images. We aim with this analysis to measure H_0 with an accuracy better than 3.8%, resulting in constraints on cosmological parameters comparable to the one from current BAO and SN work when combined with CMB data. To reach this goal, we need to track any source of errors. The analysis of the first two systems has shown that H_0 can be derived from a single lens with better than 7% accuracy, and that the main source of uncertainty come from the lens environment. In this proposal, we propose to obtain multi-object spectroscopy of the galaxies in the field of two time-delays lenses in order to measure their redshift (spread over 2013A/B). This will pin down the error from the environment to a few percent, allowing us to deliver state of the art constraints on cosmological parameters.

  20. Accurate spectroscopic calculations of the 14 Λ-S and 30 Ω states of BF+ cation including the spin-orbit coupling effect

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjie; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2017-01-01

    This paper studied the potential energy curves of 30 Ω states yielded from the 14 Λ-S states (X2Σ+, 12Π, 22Π, 32Π, 12Σ-, 22Σ+, 32Σ+, 12Δ, 14Σ-, 14Σ+, 24Σ+, 14Π, 24Π, and 14Δ) of the BF+ cation. The potential energy curves were calculated for internuclear separations from approximately 0.08 to 1.1 nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV6Z basis set. Of these 14 Λ-S states, the 24Σ+ and 24Π states were repulsive. The 22Π and 32Π states had double wells. The avoided crossings were found between the 12Π and the 22Π state, and between the 32Π and the 42Π state. The 12Π, 22Π, 32Π, and 14Π states were inverted with the spin-orbit coupling effect taken into account. The 14Π state and the second wells of 22Π and 32Π states were weakly bound. Each of the 12Π, 22Π, and 32Π states had one barrier. The potential energy curves of all the Λ-S and Ω states were extrapolated to the complete basis set limit. Core-valence correlation and scalar relativistic corrections were included at the level of an aug-cc-pV5Z basis set. The spin-orbit coupling effect was included by the state interaction approach with the Breit-Pauli Hamiltonian and the all-electron cc-pCV5Z set. The spectroscopic parameters were determined and compared with available experimental and other theoretical ones. The spin-orbit coupling effect on the spectroscopic parameters was evaluated in detail. Comparison with available experimental data show that the methodology used in this paper is highly accurate for this system.

  1. Parameters of tensile strength, elongation, and tenacity of 70mm IIaO spectroscopic film

    NASA Astrophysics Data System (ADS)

    Hammond, Ernest C., Jr.; Peters, Kevin A.

    The 70mm IIaO spectroscopic film was tested to determine its tensile strength, elongation, and breaking strength, using an Instron (strength and compression) 4201 Test Instrument. These data provide information leading to the upper and lower limits of the above parameters for 70mm IIaO spectroscopic film. This film will be developed by a commercial developing machine after the Ultraviolet Telescope Space Shuttle Mission returns to the Earth in the early 1990's; thus, it is necessary to understand these force parameters. Several test strips of approximately 200mm in length were used. The results indicate that when a stress load of 100 kg was applied, the film elongated approximately 1.06mm and the break strength was 19.45 kilograms.

  2. Parameters of tensile strength, elongation, and tenacity of 70mm IIaO spectroscopic film

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Peters, Kevin A.

    1989-01-01

    The 70mm IIaO spectroscopic film was tested to determine its tensile strength, elongation, and breaking strength, using an Instron (strength and compression) 4201 Test Instrument. These data provide information leading to the upper and lower limits of the above parameters for 70mm IIaO spectroscopic film. This film will be developed by a commercial developing machine after the Ultraviolet Telescope Space Shuttle Mission returns to the Earth in the early 1990's; thus, it is necessary to understand these force parameters. Several test strips of approximately 200mm in length were used. The results indicate that when a stress load of 100 kg was applied, the film elongated approximately 1.06mm and the break strength was 19.45 kilograms.

  3. Extending the molecular size in accurate quantum-chemical calculations: the equilibrium structure and spectroscopic properties of uracil.

    PubMed

    Puzzarini, Cristina; Barone, Vincenzo

    2011-04-21

    The equilibrium structure of uracil has been investigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level in conjunction with a triple-zeta basis set have been carried out. Extrapolation to the basis set limit, performed employing the second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections have also been considered. Based on the available rotational constants for various isotopic species together with corresponding computed vibrational corrections, the semi-experimental equilibrium structure of uracil has been determined for the first time. Theoretical and semi-experimental structures have been found in remarkably good agreement, thus pointing out the limitations of previous experimental determinations. Molecular and spectroscopic properties of uracil have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the revision of the dipole moment. On the whole, it has been proved that the computational procedure presented is able to provide parameters with the proper accuracy to support experimental investigations of large molecules of biological interest.

  4. Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery

    PubMed Central

    Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid

    2016-01-01

    A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation. PMID:27699137

  5. Accurate Structure Parameters for Tunneling Ionization Rates of Gas-Phase Linear Molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Li, Jian-Ke; Wang, Guo-Li; Li, Peng-Cheng; Zhou, Xiao-Xin

    2017-03-01

    In the molecular Ammosov–Delone–Krainov (MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402], the ionization rate depends on the structure parameters of the molecular orbital from which the electron is removed. We determine systematically and tabulate accurate structure parameters of the highest occupied molecular orbital (HOMO) for 123 gas-phase linear molecules by solving time-independent Schrödinger equation with B-spline functions and molecular potentials which are constructed numerically using the modified Leeuwen–Baerends (LBα) model. Supported by National Natural Science Foundation of China under Grant Nos. 11664035, 11674268, 11465016, 11364038, 11364039, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001 and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  6. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  7. Determination of electron transfer kinetic parameters by fourier transform electrochemical impedance spectroscopic analysis.

    PubMed

    Chang, Byoung-Yong; Hong, Sung-Young; Yoo, Jung-Suk; Park, Su-Moon

    2006-10-05

    A new attempt to obtain electron transfer kinetic parameters at an electrified electrode/electrolyte interface using Fourier transform electrochemical impedance spectroscopic (FTEIS) analyses of small potential step chronoamperometric currents is presented. The kinetic parameters thus obtained allowed mass transport free voltammograms to be constructed in an overpotential region, where the diffusion limits the electron transfer reaction, using the Butler-Volmer (B-V) relation. The B-V voltammograms clearly distinguish electrode reactions that are not much different in their electron transfer kinetic parameters, thus showing very similar normal linear sweep voltammetric (SCV) behaviors. Electrochemical reduction of p-benzoquinone, which displays nearly the same SCV responses at a gold electrode regardless whether the electrode is covered by a thiolated beta-cyclodextrin self-assembled monolayer, was taken as an example for the demonstration. The results show that the two voltametrically similar systems display very different electron transfer characteristics.

  8. Extension of the AMBER force field for nitroxide radicals and combined QM/MM/PCM approach to the accurate determination of EPR parameters of DMPOH in solution

    PubMed Central

    Hermosilla, Laura; Prampolini, Giacomo; Calle, Paloma; García de la Vega, José Manuel; Brancato, Giuseppe; Barone, Vincenzo

    2015-01-01

    A computational strategy that combines both time-dependent and time-independent approaches is exploited to accurately model molecular dynamics and solvent effects on the isotropic hyperfine coupling constants of the DMPO-H nitroxide. Our recent general force field for nitroxides derived from AMBER ff99SB is further extended to systems involving hydrogen atoms in β-positions with respect to NO. The resulting force-field has been employed in a series of classical molecular dynamics simulations, comparing the computed EPR parameters from selected molecular configurations to the corresponding experimental data in different solvents. The effect of vibrational averaging on the spectroscopic parameters is also taken into account, by second order vibrational perturbation theory involving semi-diagonal third energy derivatives together first and second property derivatives. PMID:26584116

  9. Accurate parameters for HD 209458 and its planet from HST spectrophotometry

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2016-12-01

    We present updated parameters for the star HD 209458 and its transiting giant planet. The stellar angular diameter θ = 0.2254 ± 0.0017 mas is obtained from the average ratio between the absolute flux observed with the Hubble Space Telescope and that of the best-fitting Kurucz model atmosphere. This angular diameter represents an improvement in precision of more than four times compared to available interferometric determinations. The stellar radius R⋆ = 1.20 ± 0.05 R⊙ is ascertained by combining the angular diameter with the Hipparcos trigonometric parallax, which is the main contributor to its uncertainty, and therefore the radius accuracy should be significantly improved with Gaia's measurements. The radius of the exoplanet Rp = 1.41 ± 0.06 RJ is derived from the corresponding transit depth in the light curve and our stellar radius. From the model fitting, we accurately determine the effective temperature, Teff = 6071 ± 20 K, which is in perfect agreement with the value of 6070 ± 24 K calculated from the angular diameter and the integrated spectral energy distribution. We also find precise values from recent Padova isochrones, such as R⋆ = 1.20 ± 0.06 R⊙ and Teff = 6099 ± 41 K. We arrive at a consistent picture from these methods and compare the results with those from the literature.

  10. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    SciTech Connect

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-09-15

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.

  11. New method for determination of the photoresist Dill parameters using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Defranoux, Christophe; Piel, Jean-Philippe; Stehle, Jean-Louis P.

    1999-04-01

    In this paper a new method to determine photoresist Dill parameters is presented. Based on spectroscopic ellipsometry (SE) measurements, this new method is more precise than standard techniques based on transmittance measurements. Indeed, compared to photometry, SE technique is a self calibrated technique which provide directly two independent parameters Tan (Psi) and Cos (Delta) which can be used to extract directly thickness but also optical indices of a layer inside a multilayer structure. Moreover, the wavelength dependence introduces more restrictions for the data analysis since thickness and optical indices can be deduced directly in many cases. We apply this technique to different kinds of photoresist designed for 365nm and 248nm. At each wavelength ellipsometric parameters are simulated directly versus the exposure dose without any assumption on the thickness and on the index of refraction evolution. On 365nm photoresist this new method provides Dill parameters in good agreement with the standard method. On 248nm photoresist we show that the influence of the exposure is more important on the refractive index and on the thickness of the layer than on its absorption.

  12. New method for determination of the photoresist Dill parameters using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Defranoux, Christophe; Piel, Jean-Philippe; Stehle, Jean-Louis P.

    1999-06-01

    In this paper a new method to determine photoresist DIll parameters is presented. Based on spectroscopic ellipsometry (SE) measurements, this new method is more precise than standard techniques based on transmittance measurements. Indeed, compared to photometry, SE technique is a self calibrated technique which provide directly two independent parameters Tan (Psi) and Cos (Delta) which can be used to extract directly thickness but also optical indices of a layer inside a multilayer structure. Moreover, the wavelength dependence introduces more restrictions for the data analysis since thickness and optical indices can be deduced directly in many cases. We apply this technique to different kinds of photoresist designed for 365nm and 248nm. At each wavelength ellipsometric parameters are simulate directly versus the exposure dose without any assumption on the thickness and on the index of refraction evolution. On 365nm photoresist this new method provides Dill parameters in good agreement with the standard method. On 248nm photoresist we show that the influence of the exposure is more important on the refractive index and on the thickness of the layer than on its absorption.

  13. Spectroscopic parameters of the cuticle and ethanol extracts of the fluorescent cave isopod Mesoniscusgraniger (Isopoda, Oniscidea).

    PubMed

    Giurginca, Andrei; Šustr, Vladimír; Tajovský, Karel; Giurginca, Maria; Matei, Iulia

    2015-01-01

    The body surface of the terrestrial isopod Mesoniscusgraniger (Frivaldsky, 1863) showed blue autofluorescence under UV light (330-385 nm), using epifluorescence microscopy and also in living individuals under a UV lamp with excitation light of 365 nm. Some morphological cuticular structures expressed a more intense autofluorescence than other body parts. For this reason, only the cuticle was analyzed. The parameters of autofluorescence were investigated using spectroscopic methods (molecular spectroscopy in infrared, ultraviolet-visible, fluorescence, and X-ray fluorescence spectroscopy) in samples of two subspecies of Mesoniscusgraniger preserved in ethanol. Samples excited by UV light (from 350 to 380 nm) emitted blue light of wavelengths 419, 420, 441, 470 and 505 nm (solid phase) and 420, 435 and 463 (ethanol extract). The results showed that the autofluorescence observed from living individuals may be due to some β-carboline or coumarin derivatives, some crosslinking structures, dityrosine, or due to other compounds showing similar excitation-emission characteristics.

  14. Electronic states and spectroscopic parameters of selenium monoiodide, SeI: A theoretical contribution

    NASA Astrophysics Data System (ADS)

    Belinassi, Antonio Ricardo; Alves, Tiago Vinicius; Ornellas, Fernando R.

    2017-03-01

    A new species, selenium monoiodide (SeI), was investigated for the first time at a high level of theoretical approach, SA-CASSCF/MRCI. The overall picture of all doublet and quartet (Λ + S) states correlating with the three lowest dissociation channels and the associated Ω states provide reliable results to help understand the lack of experimental data on its transitions and to plan the investigation and determination of spectroscopic parameters. Transition probabilities were computed for the transitions X2 - X1, A1 - X1, A2 - X1, and A2 - X2, originated from the spin-forbidden 1 4Σ- - X 2Π system, and the corresponding radiative lifetimes evaluated.

  15. Spectroscopic survey of γ Doradus stars - I. Comprehensive atmospheric parameters and abundance analysis of γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Niemczura, E.; De Cat, P.; Soydugan, E.; Kołaczkowski, Z.; Ostrowski, J.; Telting, J. H.; Uytterhoeven, K.; Poretti, E.; Rainer, M.; Suárez, J. C.; Mantegazza, L.; Kilmartin, P.; Pollard, K. R.

    2016-05-01

    We present a spectroscopic survey of known and candidate γ Doradus stars. The high-resolution, high signal-to-noise spectra of 52 objects were collected by five different spectrographs. The spectral classification, atmospheric parameters (Teff, log g, ξ), vsin i and chemical composition of the stars were derived. The stellar spectral and luminosity classes were found between G0-A7 and IV-V, respectively. The initial values for Teff and log g were determined from the photometric indices and spectral energy distribution. Those parameters were improved by the analysis of hydrogen lines. The final values of Teff, log g and ξ were derived from the iron lines analysis. The Teff values were found between 6000 K and 7900 K, while log g values range from 3.8 to 4.5 dex. Chemical abundances and vsin i values were derived by the spectrum synthesis method. The vsin i values were found between 5 and 240 km s-1. The chemical abundance pattern of γ Doradus stars were compared with the pattern of non-pulsating stars. It turned out that there is no significant difference in abundance patterns between these two groups. Additionally, the relations between the atmospheric parameters and the pulsation quantities were checked. A strong correlation between the vsin i and the pulsation periods of γ Doradus variables was obtained. The accurate positions of the analysed stars in the Hertzsprung-Russell diagram have been shown. Most of our objects are located inside or close to the blue edge of the theoretical instability strip of γ Doradus.

  16. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation.

    PubMed

    Ralph, Duncan K; Matsen, Frederick A

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM.

  17. Study on spectroscopic parameters and molecular constants of HC1(X1Σ+) molecule by using multireference configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Niu; Shi, De-Heng; Zhang, Jin-Ping; Zhu, Zun-Lüe; Sun, Jin-Feng

    2010-05-01

    Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HC1(X1Σ+) molecule are investigated by using the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with a series of correlation-consistent basis sets in the valence range. The PECs are all fitted to the Murrell-Sorbie function, and they are used to accurately derive the spectroscopic parameters (De, D0, ωeχe, αe and Be). Compared with the available measurements, the PEC obtained at the basis set, aug-cc-pV5Z, is selected to investigate the vibrational manifolds. The constants D0, De, Re, ωe, ωeχe, αe and Be at this basis set are 4.4006 eV, 4.5845 eV, 0.12757 nm, 2993.33 cm-1, 52.6273 cm-1, 0.2981 cm-1 and 10.5841 cm-1, respectively, which almost perfectly conform to the available experimental results. With the potential determined at the MRCI/aug-cc-pV5Z level of theory, by numerically solving the radial Schrödinger equation of nuclear motion in the adiabatic approximation, a total of 21 vibrational levels are predicted. Complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced, which are in excellent agreement with the available Rydberg-Klein-Rees data. Most of these theoretical vibrational manifolds are reported for the first time to the best of our knowledge.

  18. Polarization propagators: A powerful theoretical tool for a deeper understanding of NMR spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Aucar, Gustavo A.; Romero, Rodolfo H.; Maldonado, Alejandro F.

    Magnetic molecular spectroscopic properties, like NMR J-coupling and magnetic shielding σ, have been studied by non-relativistic quantum methods since their discovery. When they were found to depend strongly on relativistic effects in molecules containing heavy atoms, this started a new area of intensive research into the development of methods that include such effects. In most cases non-relativistic concepts were extended to the new field though keeping the previous non-relativistic point of view. Quantum mechanics can be formulated by two different formal approaches. Molecular physics and quantum chemistry were developed mostly within the Schrödinger or Heisenberg approaches. The path integral formalism of Feynman is less well known. This may be the reason why propagators are not broadly known in this field of research. Polarization propagators were developed in the early 1970s. Since that time they have been successfully applied to calculate NMR spectroscopic parameters. They are special theoretical devices from which one can do a deep analysis of the electronic mechanisms that underly any molecular response property from basic theoretical elements, like molecular orbitals, electronic excitation energies, coupling pathways, entanglement, contributions within different levels of theory, etc. All this is obtained in a natural way in both regimes: relativistic and non-relativistic. Its relativistic generalization in the early 1990s and the finding of a quantum electrodynamic (QED)-based theory for them, has given us the opportunity to improve our understanding of the physics behind such parameters. In this paper we give a presentation of polarization propagators that start in non-relativistic quantum physics and end up with the introduction of QED effects. The same and powerful basic quantum ideas are applied throughout this review, so that coherence and beauty arise in a natural way. We will give a new understanding that comes from the three levels of theory

  19. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  20. Accurate and in situ monitoring of bacterial concentration using a real time all-fibre spectroscopic device

    NASA Astrophysics Data System (ADS)

    Tao, W.; McGoverin, C.; Lydiard, S.; Song, Y.; Cheng, M.; Swift, S.; Singhal, N.; Vanholsbeeck, F.

    2015-07-01

    Accurate in situ monitoring of bacterial transport is important for increased understanding and improvement of bioremediation processes where microorganisms convert toxic compounds to more benign compounds. Bioremediation methods have become the preferred mechanism for the rehabilitation of hard to reach contaminated environments. In this study, we have used fluorescence spectroscopy to monitor the movement of fluorescently labelled bacteria (Rhodococcus erythropolis and Pseudomonas putida) within a bench-top column filled with a porous medium. In situ fluorescence measurements made using a fibre optic based instrument (`optrode') were compared to ex situ measurements made using a plate reader. In situ monitoring using this fibre optic based instrument is a promising alternative to ex situ measurements as the initial flow of bacteria is reliably observed. However, a greater understanding of the effect of the porous medium on fluorescence measurements is required to develop an accurate calibration for bacterial concentration based in situ measurements.

  1. Computing Highly Accurate Spectroscopic Line Lists that Cover a Large Temperature Range for Characterization of Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Huang, X.; Schwenke, D. W.

    2013-12-01

    Over the last decade, it has become apparent that the most effective approach for determining highly accurate rotational and rovibrational line lists for molecules of interest in planetary atmospheres is through a combination of high-resolution laboratory experiments coupled with state-of-the art ab initio quantum chemistry methods. The approach involves computing the most accurate potential energy surface (PES) possible using state-of-the art electronic structure methods, followed by computing rotational and rovibrational energy levels using an exact variational method to solve the nuclear Schrödinger equation. Then, reliable experimental data from high-resolution experiments is used to refine the ab initio PES in order to improve the accuracy of the computed energy levels and transition energies. From the refinement step, we have been able to achieve an accuracy of approximately 0.015 cm-1 for rovibrational transition energies, and even better for purely rotational transitions. This combined 'experiment / theory' approach allows for determination of essentially a complete line list, with hundreds of millions of transitions, and having the transition energies and intensities be highly accurate. Our group has successfully applied this approach to determine highly accurate line lists for NH3 and CO2 (and isotopologues), and very recently for SO2 and isotopologues. Here I will report our latest results for SO2 including all isotopologues. Comparisons to the available data in HITRAN2012 and other available databases will be shown, though we note that our line lists SO2 are significantly more complete than any other databases. Since it is important to span a large temperature range in order to model the spectral signature of exoplanets, we will also demonstrate how the spectra change on going from low temperatures (100 K) to higher temperatures (500 K).

  2. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function

    SciTech Connect

    Bondu, Francois; Debieu, Olivier

    2007-05-10

    It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.

  3. Revised spectroscopic parameters of SH(+) from ALMA and IRAM 30m observations.

    PubMed

    Müller, Holger S P; Goicoechea, Javier R; Cernicharo, José; Agúndez, Marcelino; Pety, Jérôme; Cuadrado, Sara; Gerin, Maryvonne; Dumas, Gaëlle; Chapillon, Edwige

    2014-09-19

    Hydrides represent the first steps of interstellar chemistry. Sulfanylium (SH(+)), in particular, is a key tracer of energetic processes. We used ALMA and the IRAM 30 m telescope to search for the lowest frequency rotational lines of SH(+) toward the Orion Bar, the prototypical photo-dissociation region illuminated by a strong UV radiation field. On the basis of previous Herschel/HIFI observations of SH(+), we expected to detect emission of the two SH(+) hyperfine structure (HFS) components of the NJ = 10-01 fine structure (FS) component near 346 GHz. While we did not observe any lines at the frequencies predicted from laboratory data, we detected two emission lines, each ~15 MHz above the SH(+) predictions and with relative intensities and HFS splitting expected for SH(+). The rest frequencies of the two newly detected lines are more compatible with the remainder of the SH(+) laboratory data than the single line measured in the laboratory near 346 GHz and previously attributed to SH(+). Therefore, we assign these new features to the two SH(+) HFS components of the NJ = 10-01 FS component and re-determine its spectroscopic parameters, which will be useful for future observations of SH(+), in particular if its lowest frequency FS components are studied. Our observations demonstrate the suitability of these lines for SH(+) searches at frequencies easily accessible from the ground.

  4. Accurate Analytic Potential Energy Function and Spectroscopic Study for G1Πg State of Dimer 7Li2

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Ma, Heng; Sun, Jin-Feng; Zhu, Zun-Lue

    2007-06-01

    The reasonable dissociation limit for the G1Πg state of dimer 7Li2 is determined. The equilibrium internuclear distance, dissociation energy, harmonic frequency, vibrational zero energy, and adiabatic excitation energy are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space in Gaussian03 program package at such numerous basis sets as 6-311++G, 6-311++G(2df,2pd), 6-311++G(2df,p), cc-PVTZ, 6-311++G(3df,3pd), CEP-121G, 6-311++G(2df,pd), 6-311++G(d,p),6-311G(3df,3pd), D95(3df,3pd), 6-311++G(3df,2p), 6-311++G(2df), 6-311++G(df,pd) D95V++, and DGDZVP. The complete potential energy curves are obtained at these sets over a wide internuclear distance range and have least squares fitted to Murrell-Sorbie function. The conclusion shows that the basis set 6-311++G(2df,p) is a most suitable one for the G1Πg state. At this basis set, the calculated spectroscopic constants Te, De, E0, Re, ωe, ωeχe, αe, and Be are of 3.9523 eV, 0.813 06 eV, 113.56 cm-1, 0.320 15 nm, 227.96 cm-1, 1.6928 cm-1, 0.004 436 cm-1, and 0.4689 cm-1, respectively, which are in good agreement with measurements whenever available. The total 50 vibrational levels and corresponding inertial rotation constants are for the first time calculated and compared with available RKR data. And good agreement with measurements is obtained.

  5. The effect of spectroscopic parameter inaccuracies on ground-based millimeter wave remote sensing of the atmosphere

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Walker, Kaley A.

    2015-08-01

    A sensitivity study was performed to assess the impact that uncertainties in the spectroscopic parameters of atmospheric species have on the retrieval of gas concentrations using the 265-280 GHz region of the electromagnetic spectrum. Errors in the retrieval of O3, N2O, HNO3, and ClO from spectra measured by ground-based radiometers were investigated. The goal of the study was to identify the spectroscopic parameters of these target species, and other interfering species, available in the JPL and HITRAN 2008 catalogues, which contribute the largest error to retrieved atmospheric concentration profiles in order to provide recommendations for new laboratory measurements. The parameters investigated were the line position, line strength, broadening coefficients and their temperature dependence, and pressure shift. Uncertainties in the air broadening coefficients of gases tend to contribute the largest error to retrieved atmospheric concentration profiles. For O3 and N2O, gases with relatively strong spectral signatures, the retrieval is sensitive to uncertainties in the parameters of the main spectral line that is observed. For HNO3, the uncertainties in many closely spaced HNO3 lines can cause large errors in the retrieved profile, and for ClO, the error in the profile is dominated by uncertainties in nearby, stronger O3 lines. Fourteen spectroscopic parameters are identified, for which updated measurements would have the most impact on the accuracy of ground-based remote sensing of the target species at 265-280 GHz.

  6. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters.

    PubMed

    Damon, Bruce M; Heemskerk, Anneriet M; Ding, Zhaohua

    2012-06-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.

  7. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  8. The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; González, J. F.; Cincunegui, C.; Mauas, P. J. D.

    2007-11-01

    Aims:We study the spectroscopic binary system Gl 375 to characterise its orbit and the spectral types and chromospheric activity levels of the components. Methods: We employed medium-resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. Results: We have separated the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin3 i = 0.35 {M}_⊙ and M_2 sin3 i =0.33 {M}_⊙), and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpreted this as signs of active regions carried along with rotation in a tidally synchronised system, and studied the evolution of the amplitude of the modulation on longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also found in the flux of the Ca II K lines of both components, which seem to be in phase. Conclusions: The periodic changes in the three observables are interpreted as a sign of a stellar activity cycle. Both components appear to be in phase, which implies that they are magnetically connected. The measured cycle of ≈2.2 years (≈800 days) is consistent with previous determinations of activity cycles in similar stars. The authors are visiting astronomers of the Complejo Astronómico El Leoncito, operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  9. Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes.

    PubMed

    Ziska, Austin D; Park, Minkyu; Anumol, Tarun; Snyder, Shane A

    2016-08-01

    The removal of trace organic compounds (TOrCs) is of growing interest in water research and society. Powdered activated carbon (PAC) has been proven to be an effective method of removal for TOrCs in water, with the degree of effectiveness depending on dosage, contact time, and activated carbon type. In this study, the attenuation of TOrCs in three different secondary wastewater effluents using four PAC materials was studied in order to elucidate the effectiveness and efficacy of PAC for TOrC removal. With the notable exception of hydrochlorothiazide, all 14 TOrC indicators tested in this study exhibited a positive correlation of removal rate with their log Dow values, demonstrating that the main adsorption mechanism was hydrophobic interaction. As a predictive model, the modified Chick-Watson model, often used for the prediction of microorganism inactivation by disinfectants, was applied. The applied model exhibited good predictive power for TOrC attenuation by PAC in wastewater. In addition, surrogate models based upon spectroscopic measurements including UV absorbance at 254 nm and total fluorescence were applied to predict TOrC removal by PAC. The surrogate model was found to provide an excellent prediction of TOrC attenuation for all combinations of water quality and PAC type included in this study. The success of spectrometric parameters as surrogates in predicting TOrC attenuation by PAC are particularly useful because of their potential application in real-time on-line sensor monitoring and process control at full-scale water treatment plants, which could lead to significantly reduced operator response times and PAC operational optimization.

  10. Refined parameters and spectroscopic transit of the super-massive planet HD 147506b

    NASA Astrophysics Data System (ADS)

    Loeillet, B.; Shporer, A.; Bouchy, F.; Pont, F.; Mazeh, T.; Beuzit, J. L.; Boisse, I.; Bonfils, X.; da Silva, R.; Delfosse, X.; Desort, M.; Ecuvillon, A.; Forveille, T.; Galland, F.; Gallenne, A.; Hébrard, G.; Lagrange, A.-M.; Lovis, C.; Mayor, M.; Moutou, C.; Pepe, F.; Perrier, C.; Queloz, D.; Ségransan, D.; Sivan, J. P.; Santos, N. C.; Tsodikovich, Y.; Udry, S.; Vidal-Madjar, A.

    2008-04-01

    In this paper, we report a refined determination of the orbital parameters and the detection of the Rossiter-McLaughlin effect of the recently discovered transiting exoplanet HD 147506b (HAT-P-2b). The large orbital eccentricity at the short orbital period of this exoplanet is unexpected and is distinguishing from other known transiting exoplanets. We performed high-precision radial velocity spectroscopic observations of HD 147506 (HAT-P-2) with the new spectrograph SOPHIE, mounted on the 1.93 m telescope at the Haute-Provence observatory (OHP). We obtained 63 new measurements, including 35 on May 14 and 20 on June 11, when the planet was transiting its parent star. The radial velocity (RV) anomaly observed illustrates that HAT-P-2b orbital motion is set in the same direction as its parent star spin. The sky-projected angle between the normal of the orbital plane and the stellar spin axis, λ = 0.2+12.2-12.5°, is consistent with zero. The planetary and stellar radii were re-determined, yielding Rp = 0.951+0.039-0.053 R_Jup , Rs = 1.416+0.040-0.062 R⊙. The mass (Mp = 8.62+0.39-0.55 M_Jup) and radius of HAT-P-2b indicate a density of 12.5+2.6-3.6 g cm-3, suggesting an object in between the known close-in planets with typical density of the order of 1 g cm-3, and the very low-mass stars, with density greater than 50 g cm-3. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at OHP, France (programs 07A.PNP.MAZE and 07A.PNP.CONS).

  11. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production.

    PubMed

    Goudar, Chetan T

    2011-10-01

    We have identified an error in the published integral form of the modified Michaelis-Menten equation that accounts for endogenous substrate production. The correct solution is presented and the error in both the substrate concentration, S, and the kinetic parameters Vm , Km , and R resulting from the incorrect solution was characterized. The incorrect integral form resulted in substrate concentration errors as high as 50% resulting in 7-50% error in kinetic parameter estimates. To better reflect experimental scenarios, noise containing substrate depletion data were analyzed by both the incorrect and correct integral equations. While both equations resulted in identical fits to substrate depletion data, the final estimates of Vm , Km , and R were different and Km and R estimates from the incorrect integral equation deviated substantially from the actual values. Another observation was that at R = 0, the incorrect integral equation reduced to the correct form of the Michaelis-Menten equation. We believe this combination of excellent fits to experimental data, albeit with incorrect kinetic parameter estimates, and the reduction to the Michaelis-Menten equation at R = 0 is primarily responsible for the incorrectness to go unnoticed. However, the resulting error in kinetic parameter estimates will lead to incorrect biological interpretation and we urge the use of the correct integral form presented in this study.

  12. Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited

    SciTech Connect

    Fogtmann-Schulz, Alexandra; Hinrup, Brian; Van Eylen, Vincent; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Silva Aguirre, Víctor; Tingley, Brandon

    2014-02-01

    Since the discovery of Kepler-10, the system has received considerable interest because it contains a small, rocky planet which orbits the star in less than a day. The system's parameters, announced by the Kepler team and subsequently used in further research, were based on only five months of data. We have reanalyzed this system using the full span of 29 months of Kepler photometric data, and obtained improved information about its star and the planets. A detailed asteroseismic analysis of the extended time series provides a significant improvement on the stellar parameters: not only can we state that Kepler-10 is the oldest known rocky-planet-harboring system at 10.41 ± 1.36 Gyr, but these parameters combined with improved planetary parameters from new transit fits gives us the radius of Kepler-10b to within just 125 km. A new analysis of the full planetary phase curve leads to new estimates on the planetary temperature and albedo, which remain degenerate in the Kepler band. Our modeling suggests that the flux level during the occultation is slightly lower than at the transit wings, which would imply that the nightside of this planet has a non-negligible temperature.

  13. Accurate Parameters for the Most Massive Stars in the Local Universe: the Brightest Eclipsing Binaries in M33

    NASA Astrophysics Data System (ADS)

    Prieto, José L.; Bonanos, Alceste; Stanek, Krzysztof

    2007-08-01

    Eclipsing binaries are the only systems that provide accurate fundamental parameters of distant stars. Currently, only a handful of accurate measurements of stars with masses between 40-80 Msun have been made. We propose to make accurate measurements of the masses, radii and luminosities of the most massive eclipsing binaries in M33. The results of this study will provide much needed constraints on theories that model the formation and evolution of massive stars and binary systems. Furthermore, it will provide vital statistics on the occurrence of massive binary twins, like the 80+80 solar masses WR 20a system and the 30+30 solar masses detached eclipsing binary in M33.

  14. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1990-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  15. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1991-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  16. Accurate predictions of spectroscopic and molecular properties of 27 Λ-S and 73 Ω states of AsS radical.

    PubMed

    Shi, Deheng; Song, Ziyue; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2016-01-15

    The PECs are calculated for the 27 Λ-S states and their corresponding 73 Ω states of AsS radical. Of these Λ-S states, only the 2(2)Δ and 5(4)Π states are replulsive. The 1(2)Σ(+), 2(2)Σ(+), 4(2)Π, 3(4)Δ, 3(4)Σ(+), and 4(4)Π states possess double wells. The 3(2)Σ(+) state possesses three wells. The A(2)Π, 3(2)Π, 1(2)Φ, 2(4)Π, 3(4)Π, 2(4)Δ, 3(4)Δ, 1(6)Σ(+), and 1(6)Π states are inverted with the SO coupling effect included. The 1(4)Σ(+), 2(4)Σ(+), 2(4)Σ(-), 2(4)Δ, 1(4)Φ, 1(6)Σ(+), and 1(6)Π states, the second wells of 1(2)Σ(+), 3(4)Σ(+), 4(2)Π, 4(4)Π, and 3(4)Δ states, and the third well of 3(2)Σ(+) state are very weakly-bound states. The PECs are extrapolated to the CBS limit. The effect of SO coupling on the PECs is discussed. The spectroscopic parameters are evaluated, and compared with available measurements and other theoretical ones. The vibrational properties of several weakly-bound states are determined. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  17. Accurate predictions of spectroscopic and molecular properties of 27 Λ-S and 73 Ω states of AsS radical

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Song, Ziyue; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2016-01-01

    The PECs are calculated for the 27 Λ-S states and their corresponding 73 Ω states of AsS radical. Of these Λ-S states, only the 22Δ and 54Π states are replulsive. The 12Σ+, 22Σ+, 42Π, 34Δ, 34Σ+, and 44Π states possess double wells. The 32Σ+ state possesses three wells. The A2Π, 32Π, 12Φ, 24Π, 34Π, 24Δ, 34Δ, 16Σ+, and 16Π states are inverted with the SO coupling effect included. The 14Σ+, 24Σ+, 24Σ-, 24Δ, 14Φ, 16Σ+, and 16Π states, the second wells of 12Σ+, 34Σ+, 42Π, 44Π, and 34Δ states, and the third well of 32Σ+ state are very weakly-bound states. The PECs are extrapolated to the CBS limit. The effect of SO coupling on the PECs is discussed. The spectroscopic parameters are evaluated, and compared with available measurements and other theoretical ones. The vibrational properties of several weakly-bound states are determined. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  18. Revised Charge Equilibration Parameters for More Accurate Hydration Free Energies of Alkanes.

    PubMed

    Davis, Joseph E; Patel, Sandeep

    2010-01-01

    We present a refined alkane charge equilibration (CHEQ) force field, improving our previously reported CHEQ alkane force field[1] to better reproduce experimental hydration free energies. Experimental hydration free energies of ethane, propane, butane, pentane, hexane, and heptane are reproduced to within 3.6% on average. We demonstrate that explicit polarization results in a shift in molecular dipole moment for water molecules associated with the alkane molecule. We also show that our new parameters do not have a significant effect on the alkane-water interactions as measured by the radial distribution function (RDF).

  19. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    PubMed

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  20. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  1. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    PubMed Central

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-01-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154

  2. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS.

    PubMed

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-04

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.

  3. Accurate spectroscopic properties of 10 Λ-S states and 25 Ω states of BS+ cation including the electronic transition properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Shi, Deheng; Zhou, Dan; Zhu, Zunlue; Sun, Jinfeng

    2015-11-01

    The potential energy curves of 10 Λ-S states of BS+ yielded from the first four dissociation limits are calculated by the internally contracted multireference configuration interaction approach with the Davidson correction. The core-valence correlation and scalar relativistic corrections are included. Basis on the calculated potential energy curves, the spectroscopic parameters are evaluated. All the PECs are extrapolated to the complete basis set limit. The spin-orbit coupling are taken into account by the state interaction method with the Breit-Pauli Hamiltonian. Finally, the transition dipole moments, Franck-Condon Factors and radiative lifetimes of transitions from the 23Π0-, 23Π0+, 23Σ0- and 23Σ1- states to ground state 13Π2 are predicted for future experiment.

  4. Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals.

    PubMed

    Hansen, D Flemming; Westler, William M; Kunze, Micha B A; Markley, John L; Weinhold, Frank; Led, Jens J

    2012-03-14

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal-ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal-ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for (15)N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of (15)N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of (15)N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site.

  5. Theoretical spectroscopic parameters for the low-lying states of the second-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1987-01-01

    A systematic analysis of the low-lying states of all of the second-row transition metal (TM) hydrides except CdH is reported. The calculations included the dominant relativistic contributions through the use of the relativistic effective core potentials of Hay and Wadt (1985). Electron correlation was incorporated, using single-plus-double configuration interaction, the coupled pair functional (CPF) formalism of Ahlrichs et al. (1985), and the Chong and Langhoff (1986) modified version of the CPF method. The spectroscopic parameters D(e), r(e), and mu(e) determined for the low-lying states are compared with the available experimental data and previous theoretical results. In contrast to the first-row TM hydrides studied earlier (Chong et al., 1986), the spectroscopic constants for the second-row TM hydrides were found to be much less sensitive to the level of correlation treatment.

  6. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere . The impact on stellar and planetary mass

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.

    2015-04-01

    Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).

  7. Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2

    SciTech Connect

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; Windus, Theresa L.

    2013-12-07

    The diatomic carbon molecule has a complex electronic structure with a large number of low-lying electronic excited states. In this work, the potential energy curves (PECs) of the four lowest lying singlet states (X-1 Sigma(+)(g), A(1)Pi(u), B-1 Delta(g), and B'(1)Sigma(+)(g)) were obtained by high-level ab initio calculations. Valence electron correlation was accounted for by the correlation energy extrapolation by intrinsic scaling (CEEIS) method. Additional corrections to the PECs included core-valence correlation and relativistic effects. Spin-orbit corrections were found to be insignificant. The impact of using dynamically weighted reference wave functions in conjunction with CEEIS was examined and found to give indistinguishable results from the even weighted method. The PECs showed multiple curve crossings due to the B-1 Delta(g) state as well as an avoided crossing between the two (1)Sigma(+)(g) states. Vibrational energy levels were computed for each of the four electronic states, as well as rotational constants and spectroscopic parameters. Comparison between the theoretical and experimental results showed excellent agreement overall. Equilibrium bond distances are reproduced to within 0.05 %. The dissociation energies of the states agree with experiment to within similar to 0.5 kcal/mol, achieving "chemical accuracy." Vibrational energy levels show average deviations of similar to 20 cm(-1) or less. The B-1 Delta(g) state shows the best agreement with a mean absolute deviation of 2.41 cm(-1). Calculated rotational constants exhibit very good agreement with experiment, as do the spectroscopic constants.

  8. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  9. Spectroscopic Parameters of H2S Polyads Between 3400 and 8000 cm x 10 to -1 exponent

    NASA Technical Reports Server (NTRS)

    Bykov, A. D.; Naumenko, O. V.; Smirnov, M. A.; Sinitsa, L. N.; Perrin, A.; Crisp, J.; Crisp, D.; Brown, L. R.

    1995-01-01

    The absorption spectra of hydrogen sulfide from 0.8 to 5 micro- meters were recorded with three spectral resolutions using the Fourier transform spectrometer at Kitt Peak National Observatory. Twenty bands were previously assigned so that accurate band origins and vi- brational parameters could be determined. Described are the analyses of the rotational structure of resonating hydrogen sulfide states.

  10. Pair Identity and Smooth Variation Rules Applicable for the Spectroscopic Parameters of H2O Transitions Involving High-J States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2010-01-01

    Two basic rules (i.e. the pair identity and the smooth variation) applicable for H2O transitions involving high-J states have been discovered. The origins of these rules are the properties of the energy levels and wavefunctions of H2O states with the quantum number J above certain boundaries. As a result, for lines involving high-J states in individually defined groups, all their spectroscopic parameters (i.e. the transition wavenumber, intensity, pressure-broadened half-width, pressure-induced shift, and temperature exponent) must follow these rules. One can use these rules to screen spectroscopic data provided by databases and to identify possible errors. In addition, by using extrapolation methods within the individual groups, one is able to predict the spectroscopic parameters for lines in this group involving very high-J states. The latter are required in developing high-temperature molecular spectroscopic databases such as HITEMP.

  11. Correlation of spectroscopic parameters with ligand basicity for uranyl bis(hexafluoroacetylacetonate) adducts

    SciTech Connect

    Bray, R.G.; Kramer, G.M.

    1983-06-22

    The infrared transition frequencies (vapor and solution phases) of the uranyl and hexafluoroacetylacetonate (hfacac) moieties, as well as /sup 13/C and /sup 1/H NMR shifts, correlate linearly with the relative basicity of the neutral bases (B) for 15 UO/sub 2/(hfacac)/sub 2/ adducts. Solvation effects and relative entropy changes appear to be minimal for the base-exchange equilibrium, suggesting that the observed shifts in thes easily measurable spectroscopic properties predominantly reflect the Lewis acid-base relative bond strengths. We interpret the observed shifts in terms of electronic structure perturbations of both the uranyl and hfacac moieties arising from changes in neutral base (L-M) bonding. 6 figures, 2 tables.

  12. Linear-In-The-Parameters Oblique Least Squares (LOLS) Provides More Accurate Estimates of Density-Dependent Survival

    PubMed Central

    Vieira, Vasco M. N. C. S.; Engelen, Aschwin H.; Huanel, Oscar R.; Guillemin, Marie-Laure

    2016-01-01

    Survival is a fundamental demographic component and the importance of its accurate estimation goes beyond the traditional estimation of life expectancy. The evolutionary stability of isomorphic biphasic life-cycles and the occurrence of its different ploidy phases at uneven abundances are hypothesized to be driven by differences in survival rates between haploids and diploids. We monitored Gracilaria chilensis, a commercially exploited red alga with an isomorphic biphasic life-cycle, having found density-dependent survival with competition and Allee effects. While estimating the linear-in-the-parameters survival function, all model I regression methods (i.e, vertical least squares) provided biased line-fits rendering them inappropriate for studies about ecology, evolution or population management. Hence, we developed an iterative two-step non-linear model II regression (i.e, oblique least squares), which provided improved line-fits and estimates of survival function parameters, while robust to the data aspects that usually turn the regression methods numerically unstable. PMID:27936048

  13. Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Qiao, Yao-Bin; Qi, Hong; Zhao, Fang-Zhou; Ruan, Li-Ming

    2016-12-01

    Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure. Project supported by the National Natural Science Foundation of China (Grant No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  14. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  15. How Much Can We Trust High-Resolution Spectroscopic Stellar Atmospheric Parameters?

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, Sergi; Nordlander, Thomas; Heiter, Ulrike; Jofré, Paula; Masseron, Thomas; Casamiquela, Laia; Tabernero, Hugo M.; Bhat, Shruthi S.; Casey, Andrew R.; Meléndez, Jorge; Ramírez, Ivan

    2016-09-01

    The determination of atmospheric parameters depends on the use of radiative transfer codes (among other elements such as model atmospheres) to compute synthetic spectra and/or derive abundances from equivalent widths. However, it is common to mix results from different surveys/studies where different setups were used to derive the parameters. These inhomogeneities can lead us to inaccurate conclusions. In this work, we studied one aspect of the problem: When deriving atmospheric parameters from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  16. Accurate characterization of the stellar and orbital parameters of the exoplanetary system WASP-33 b from orbital dynamics

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2016-01-01

    By using the most recently published Doppler tomography measurements and accurate theoretical modelling of the oblateness-driven orbital precessions, we tightly constrain some of the physical and orbital parameters of the planetary system hosted by the fast rotating star WASP-33. In particular, the measurements of the orbital inclination ip to the plane of the sky and of the sky-projected spin-orbit misalignment λ at two epochs about six years apart allowed for the determination of the longitude of the ascending node Ω and of the orbital inclination I to the apparent equatorial plane at the same epochs. As a consequence, average rates of change dot{Ω }_exp, dot{I}_exp of this two orbital elements, accurate to a ≈10-2 deg yr-1 level, were calculated as well. By comparing them to general theoretical expressions dot{Ω }_{J_2}, dot{I}_{J_2} for their precessions induced by an oblate star whose symmetry axis is arbitrarily oriented, we were able to determine the angle i⋆ between the line of sight the star's spin {S}^{star } and its first even zonal harmonic J_2^{star } obtaining i^{star } = {142}^{+10}_{-11} deg, J_2^{star } = 2.1^{+0.8}_{-0.5}times; 10^{-4}. As a by-product, the angle between {S}^{star } and the orbital angular momentum L is as large as about ψ ≈ 100 ° psi; ^{2008} = 99^{+5}_{-4} deg, ψ ^{{2014}} = 103^{+5}_{-4} deg and changes at a rate dot{ψ }= 0.{7}^{+1.5}_{-1.6} deg {yr}^{-1}. The predicted general relativistic Lense-Thirring precessions, of the order of ≈10-3deg yr-1, are, at present, about one order of magnitude below the measurability threshold.

  17. Spectroscopic line parameters for the nu6 band of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron; Blatherwick, Ronald D.; Bonomo, Francis S.; Rinsland, Curtis P.

    1990-01-01

    New measurements and analysis of high-resolution (0.0025/cm) laboratory spectra of the carbonyl fluoride nu6 band are described. The data are used to generate line parameters suitable for high-resolution atmospheric studies.

  18. HIGH-PRECISION ORBITAL AND PHYSICAL PARAMETERS OF DOUBLE-LINED SPECTROSCOPIC BINARY STARS-HD78418, HD123999, HD160922, HD200077, AND HD210027

    SciTech Connect

    Konacki, Maciej; Helminiak, Krzysztof G.; Muterspaugh, Matthew W.; Kulkarni, Shrinivas R.

    2010-08-20

    We present high-precision radial velocities (RVs) of double-lined spectroscopic binary stars HD78418, HD123999, HD160922, HD200077, and HD210027. They were obtained based on the high-resolution echelle spectra collected with the Keck I/HIRES, Shane/CAT/Hamspec, and TNG/Sarge telescopes/spectrographs over the years 2003-2008 as part of the TATOOINE search for circumbinary planets. The RVs were computed using our novel iodine cell technique for double-line binary stars, which relies on tomographically disentangled spectra of the components of the binaries. The precision of the RVs is of the order of 1-10 m s{sup -1}, and to properly model such measurements one needs to account for the light-time effect within the binary's orbit, relativistic effects, and RV variations due to tidal distortions of the components of the binaries. With such proper modeling, our RVs combined with the archival visibility measurements from the Palomar Testbed Interferometer (PTI) allow us to derive very precise spectroscopic/astrometric orbital and physical parameters of the binaries. In particular, we derive the masses, the absolute K- and H-band magnitudes, and the parallaxes. The masses together with the absolute magnitudes in the K and H bands enable us to estimate the ages of the binaries. These RVs allow us to obtain some of the most accurate mass determinations of binary stars. The fractional accuracy in msin i only, and hence based on the RVs alone, ranges from 0.02% to 0.42%. When combined with the PTI astrometry, the fractional accuracy in the masses in the three best cases ranges from 0.06% to 0.5%. Among them, the masses of HD210027 components rival in precision the mass determination of the components of the relativistic double pulsar system PSR J0737 - 3039. In the near future, for double-lined eclipsing binary stars we expect to derive masses with a fractional accuracy of the order of up to {approx}0.001% with our technique. This level of precision is an order of magnitude

  19. Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis

    SciTech Connect

    Domgmo-Momo, Gilles; /Towson U. /SLAC

    2012-09-05

    The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.

  20. Effect of thermal annealing on the spectroscopic parameters of Er3+-doped sodium silicate glass

    NASA Astrophysics Data System (ADS)

    de Morais, Rodrigo F.; Serqueira, Elias Oliveira; Dantas, Noelio Oliveira

    2013-10-01

    This paper presents the optical characteristics of Er3+ ions in sodium silicate glass (SiO2-Na2O), synthesized by the fusion method and later annealed for 0, 30, 60 and 90 min. Thermograms, X-ray diffraction, optical absorption, luminescence spectroscopy measurements were performed in order to determine the thermal and structural of the samples and the radiative characteristics of Er3+ ions under influence of thermal annealing of the samples. Differential thermal analysis provided evidence of a phase change in the system. This phase change was confirmed by X-ray diffraction, which showed the formation and growth of Na2SiO3 crystals for the annealed samples. These crystals affect the neighborhood (from second vicinity) of Er3+ ions. These effects were noted by the J-O parameters (Ω2 and Ω4), which were calculated from the optical absorption spectra. Judd-Ofelt calculations also confirmed that heat treatment induced structural rearrangement of the samples that was dependent on Er2O3 concentration. This resulted in changes in the optical and physical properties of the samples, including stimulated emission cross section and rigidity. Analysis of the spectroscopy parameters after of thermal annealing indicate samples are potential materials for in optical device applications.

  1. Impact of Spectroscopic Line Parameters on Carbon Monoxide Column Density Retrievals from Shortwave Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Schmidt, Denise; Gimeno Garcia, Sebastian; Schreier, Franz; Lichtenberg, Gunter

    2015-11-01

    Among the various input data required for the retrieval of atmospheric state parameters from infrared remote sensing observations molecular spectroscopy line data have a central role, because their quality is critical for the quality of the final product. Here we discuss the impact of the line parameters on vertical column densities (VCD) estimated from short wave infrared nadir observations. Using BIRRA (the Beer InfraRed Retrieval Algorithm) comprising a line-by-line radiative transfer code (forward model) and a separable nonlinear least squares solver for inversion we retrieve carbon monoxide from observations of SCIAMACHY aboard Envisat. Retrievals using recent versions of HITRAN und GEISA have been performed and the results are compared in terms of residual norms, molecular density scaling factors, their corresponding errors, and the final VCD product. The retrievals turn out to be quite similar for all three databases, so a definite recommendation in favor of one of these databases is difficult for the considered spectral range around 2.3 μm. Nevertheless, HITRAN 2012 appears to be advantageous when evaluating the different quality criteria.

  2. [Calculation of spectroscopic parameters of highly doped Er3+ in lithium niobate].

    PubMed

    Sun, Dun-lu; Zhang, Qing-li; Wang, Ai-hua; Hang, Yin; Zhang, Lian-han; Qian, Xiao-bo; Zhu, Shi-ning; Yin, Shao-tang

    2005-09-01

    A highly doped Er3+: LiNbO3 (concentration 6 mol%) crystal was grown successfully by Czochralski method. The crystal is higher than that of the lowly doped Er3+ in LiNbO3 crystal, which is helpful to improve absorption coefficient of the grown the pumping efficiency. The absorption spectra at two unpolarized directions (X and Z) and two polarized directions (E parallel Z, E perpendicular Z) were measured. Using the Judd-Ofelt theory, and according to the measured absorption spectra, the intensity parameters omegalambda of Er3+ were fitted. The results of root-mean square (r. m. s) deviation show that the error of polarized fitting is less than that of unpolarized one. Thus fluorescence transition probabilities (Ajj), radioactive lifetime (tau), fluorescence branching ratio (beta), and integrated emission cross section (sigmap) were calculated and accepted according to the polarized results, and were also discussed and compared with the ones reported in the literature.

  3. Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Steinfeld, J. I.; Foy, B.; Hetzler, J.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Coy, S.

    1990-05-01

    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia.

  4. Spectroscopic Investigation of a Dielectric Barrier Discharge Over a Wide Range of Pulse Parameters

    NASA Astrophysics Data System (ADS)

    Picard, Julian; Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Hashim, Akel

    2015-09-01

    Most high voltage pulser used to drive dielectric barrier discharges (DBDs), produce a single pulse shape (width and voltage), thus making it challenging to assess the effect of pulse shape on the production of different chemical species during a discharge. Eagle Harbor Technologies (EHT), Inc. has developed a nanosecond pulser that allows for independent control of the output voltage, pulse width, and pulse repetition frequency. Through the utilization of this technology, presented here is a precise characterization of reactive species generated by the DBD under the independent variation of voltage (0-20 kV), frequency (0-20 kHz) and pulse width (20-260 ns). A better understanding of this parameter dependency can allow for more targeted and effective application of plasma in medical, environmental, industrial, and other applications.

  5. Comparisons of measured rate constants with spectroscopically determined electron-transfer parameters.

    PubMed

    Nelsen, Stephen F; Konradsson, Asgeir E; Weaver, Michael N; Stephenson, Rachel M; Lockard, Jenny V; Zink, Jeffrey I; Zhao, Yi

    2007-06-21

    This work involves comparison of rate constants measured for an intervalence (IV) compound with electron-transfer parameters derived from its optical absorption spectrum. The temperature-dependent rate constants for the radical cation having 3-tert-butyl-2,3-diazabicyclo[2.2.2]oct-2-yl (hydrazine) charge-bearing units attached para to a tetramethylbenzene bridge (1+) were previously measured. In this study, resonance Raman is used to calculate the magnitudes of the distortions of normal modes of vibration caused by excitation into the intervalence absorption band. These data produce a vibrational reorganization energy lambdavsym of 9250 cm(-1), and averaged single-mode omegav for use in the Golden Rule equation of 697 cm(-1). Zhu-Nakamura theory has been used to calculate preexponential factors for analysis of the previously measured variable temperature optical spectra using quartic-enhanced intervalence bands to extract the total reorganization energy and the intramolecular electron-transfer rate constants for intramolecular electron transfer using electron spin resonance. In contrast to using the Golden Rule equation, separation of lambda into solvent and vibrational components is not significant for these data. The Zhu-Nakamura theory calculations produce ln(k/T) versus 1/T slopes that are consistent with the experimental data for electronic couplings that are somewhat larger than the values obtained from the optical spectra using Hush's method.

  6. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    PubMed Central

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-01-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials. PMID:24852112

  7. Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses.

    PubMed

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-23

    Er3+-doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+:4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+-doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  8. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  9. Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2015-11-01

    A sophisticated radiative transfer model that considers absorption, emission, and multiple scattering by gaseous and particulate constituents over the broad spectral range 0.125-1000 μm is applied to calculate radiative fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km). Responses of these quantities to spectroscopic and atmospheric parameter variations are examined in great detail. Spectroscopic parameter studies include the definition of an optimum spectral grid for monochromatic calculations as well as comparisons for different input data with respect to spectral line databases, continuum absorption, line shape factors, and solar irradiance spectra. Atmospheric parameter studies are based on distinct variations of an initial model data set. Analyses of actual variations of the radiative energy budget using atmospheric features that have been recently retrieved from Venus Express data will be subject of a subsequent paper. The calculated cooling (heating) rates are very reliable at altitudes below 95 (85) km with maximum uncertainties of about 0.25 K/day. Heating uncertainties may reach 3-5 K/day at 100 km. Using equivalent Planck radiation as solar insolation source in place of measured spectra is not recommended. Cooling rates strongly respond to variations of atmospheric thermal structure, while heating rates are less sensitive. The influence of mesospheric minor gas variations is small, but may become more important near the cloud base and in case of episodic SO2 boosts. Responses to cloud mode 1 particle abundance changes are weak, but variations of other mode parameters (abundances, cloud top and base altitudes) may significantly alter radiative temperature change rates up to 50% in Venus' lower mesosphere and upper troposphere. A new model for the unknown UV absorber for two altitude domains is proposed. It is not directly linked to cloud particle modes and permits an investigation of radiative effects regardless of

  10. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  11. Numerical parameter constraints for accurate PIC-DSMC simulation of breakdown from arc initiation to stable arcs

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Hopkins, Matthew; Moore, Stan; Boerner, Jeremiah; Cartwright, Keith

    2015-09-01

    Simulation of breakdown is important for understanding and designing a variety of applications such as mitigating undesirable discharge events. Such simulations need to be accurate through early time arc initiation to late time stable arc behavior. Here we examine constraints on the timestep and mesh size required for arc simulations using the particle-in-cell (PIC) method with direct simulation Monte Carlo (DMSC) collisions. Accurate simulation of electron avalanche across a fixed voltage drop and constant neutral density (reduced field of 1000 Td) was found to require a timestep ~ 1/100 of the mean time between collisions and a mesh size ~ 1/25 the mean free path. These constraints are much smaller than the typical PIC-DSMC requirements for timestep and mesh size. Both constraints are related to the fact that charged particles are accelerated by the external field. Thus gradients in the electron energy distribution function can exist at scales smaller than the mean free path and these must be resolved by the mesh size for accurate collision rates. Additionally, the timestep must be small enough that the particle energy change due to the fields be small in order to capture gradients in the cross sections versus energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Line parameter study of ozone at 5 and 10 μm using atmospheric FTIR spectra from the ground: A spectroscopic database and wavelength region comparison

    NASA Astrophysics Data System (ADS)

    Janssen, Christof; Boursier, Corinne; Jeseck, Pascal; Té, Yao

    2016-08-01

    Atmospheric ozone concentration measurements mostly depend on spectroscopic methods that cover different spectral regions. Despite long years of measurement efforts, the uncertainty goal of 1% in absolute line intensities has not yet been reached. Multispectral inter-comparisons using both laboratory and atmospheric studies reveal that important discrepancies exist when ozone columns are retrieved from different spectral regions. Here, we use ground based FTIR to study the sensitivity of ozone columns on different spectroscopic parameters as a function of individual bands for identifying necessary improvements of the spectroscopic databases. In particular, we examine the degree of consistency that can be reached in ozone retrievals using spectral windows in the 5 and 10 μm bands of ozone. Based on the atmospheric spectra, a detailed database inter-comparison between HITRAN (version 2012), GEISA (version 2011) and S&MPO (as retrieved from the website at the end of 2015) is made. Data from the 10 μm window are consistent to better than 1%, but there are larger differences when the windows at 5 μm are included. The 5 μm results agree with the results from 10 μm within ±2% for all databases. Recent S&MPO data are even more consistent with the desired level of 1%, but spectroscopic data from HITRAN give about 4% higher ozone columns than those from GEISA. If four sub-windows in the 5 μm band are checked for consistency, retrievals using GEISA or S&MPO parameters show less dispersion than those using HITRAN, where one window in the P-branch of the ν1 + ν3 band gives about 2% lower results than the other three. The atmospheric observations are corroborated by a direct comparison of the spectroscopic databases, using a simple statistical analysis based on intensity weighted spectroscopic parameters. The bias introduced by the weighted average approach is investigated and it is negligible if relative differences between databases do not correlate with line

  13. Interpretation and application of reaction class transition state theory for accurate calculation of thermokinetic parameters using isodesmic reaction method.

    PubMed

    Wang, Bi-Yao; Li, Ze-Rong; Tan, Ning-Xin; Yao, Qian; Li, Xiang-Yuan

    2013-04-25

    We present a further interpretation of reaction class transition state theory (RC-TST) proposed by Truong et al. for the accurate calculation of rate coefficients for reactions in a class. It is found that the RC-TST can be interpreted through the isodesmic reaction method, which is usually used to calculate reaction enthalpy or enthalpy of formation for a species, and the theory can also be used for the calculation of the reaction barriers and reaction enthalpies for reactions in a class. A correction scheme based on this theory is proposed for the calculation of the reaction barriers and reaction enthalpies for reactions in a class. To validate the scheme, 16 combinations of various ab initio levels with various basis sets are used as the approximate methods and CCSD(T)/CBS method is used as the benchmarking method in this study to calculate the reaction energies and energy barriers for a representative set of five reactions from the reaction class: R(c)CH(R(b))CR(a)CH2 + OH(•) → R(c)C(•)(R(b))CR(a)CH2 + H2O (R(a), R(b), and R(c) in the reaction formula represent the alkyl or hydrogen). Then the results of the approximate methods are corrected by the theory. The maximum values of the average deviations of the energy barrier and the reaction enthalpy are 99.97 kJ/mol and 70.35 kJ/mol, respectively, before correction and are reduced to 4.02 kJ/mol and 8.19 kJ/mol, respectively, after correction, indicating that after correction the results are not sensitive to the level of the ab initio method and the size of the basis set, as they are in the case before correction. Therefore, reaction energies and energy barriers for reactions in a class can be calculated accurately at a relatively low level of ab initio method using our scheme. It is also shown that the rate coefficients for the five representative reactions calculated at the BHandHLYP/6-31G(d,p) level of theory via our scheme are very close to the values calculated at CCSD(T)/CBS level. Finally, reaction

  14. Calculation of spectroscopic constants and radiative parameters for the A 1Σ+- X 1Σ+ electronic transitions of the CsLi and CsRb molecules

    NASA Astrophysics Data System (ADS)

    Smirnov, A. D.

    2016-12-01

    Vibrational, rotational, and centrifugal spectroscopic constants; radiative parameters (the Einstein coefficients for spontaneous emission, the oscillator strengths for absorption, and the Franck-Condon factors), the r v' v″-centroids; the wavenumbers of rotational lines of rovibronic transitions in the systems of bands A 1Σ+- X 1Σ+ of CsLi (0 ≤ v' ≤ 25, 0 ≤ v″ ≤ 51, j = 0, 30, 50, 70, 100) and CsRb (0 ≤ v' ≤ 30, 0 ≤ v″ ≤ 64, j = 0, 50, 100) molecules; and the radiative lifetimes for excited electronic states are calculated. The calculations are carried out on the basis of semiempirical potential curves constructed in this work. The calculated spectroscopic constants are compared with the experimental data. The lifetimes have been obtained for the first time.

  15. Accurate extraction of WSe2 FETs parameters by using pulsed I-V method at various temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Sung Tae; Cho, In Tak; Kang, Won Mook; Park, Byung Gook; Lee, Jong-Ho

    2016-11-01

    This work investigates the intrinsic characteristics of multilayer WSe2 field effect transistors (FETs) by analysing Pulsed I- V (PIV) and DC characteristics measured at various temperatures. In DC measurement, unwanted charge trapping due to the gate bias stress results in I- V curves different from the intrinsic characteristic. However, PIV reduces the effect of gate bias stress so that intrinsic characteristic of WSe2 FETs is obtained. The parameters such as hysteresis, field effect mobility (μeff), subthreshold slope ( SS), and threshold voltage ( V th) measured by PIV are significantly different from those obtained by DC measurement. In PIV results, the hysteresis is considerably reduced compared with DC measurement, because the charge trapping effect is significantly reduced. With increasing temperature, the field effect mobility (μeff) and subthreshold swing ( SS) are deteriorated, and threshold voltage ( V th) decreases.

  16. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  17. Coupling 1D Navier Stokes equation with autoregulation lumped parameter networks for accurate cerebral blood flow modeling

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2014-11-01

    The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is critical to cerebral blood flow modeling, as well as investigations into pathological conditions. We discuss a one-dimensional nonlinear model of blood flow in the cerebral arteries that includes coupling of autoregulatory lumped parameter networks. The model is tested to reproduce a common clinical test to assess autoregulatory function - the carotid artery compression test. The change in the flow velocity at the middle cerebral artery (MCA) during carotid compression and release demonstrated strong agreement with published measurements. The model is then used to investigate vasospasm of the MCA, a common clinical concern following subarachnoid hemorrhage. Vasospasm was modeled by prescribing vessel area reduction in the middle portion of the MCA. Our model showed similar increases in velocity for moderate vasospasms, however, for serious vasospasm (~ 90% area reduction), the blood flow velocity demonstrated decrease due to blood flow rerouting. This demonstrates a potentially important phenomenon, which otherwise would lead to false-negative decisions on clinical vasospasm if not properly anticipated.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements from DR12 galaxy clustering – towards an accurate model

    SciTech Connect

    Chia -Hsun Chuang; Pellejero-Ibanez, Marco; Rodriguez-Torres, Sergio; Ross, Ashley J.; Zhao, Gong Bo; Wang, Yuting; Antonio J. Cuesta; Rubino-Martin, J. A.; Prada, Francisco; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J.; Gil-Martin, Hector; Grieb, Jan Kiklas; Ho, Shirley; Kitaura, Francisco -Shu; Percival, Will J.; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sanchez, Ariel G.; Satpathy, Siddharth; Slosar, Anze; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A.; Brownstein, Joel R.; Nichol, Robert C.; Olmstead, Matthew D.

    2016-08-08

    We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ8(z), and the physical matter density Ωmh2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.

  19. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements from DR12 galaxy clustering – towards an accurate model

    DOE PAGES

    Chia -Hsun Chuang; Pellejero-Ibanez, Marco; Rodriguez-Torres, Sergio; ...

    2016-08-08

    We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ8(z), and the physical matter density Ωmh2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationallymore » expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.« less

  20. A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol.

    PubMed

    Gast, P; Mance, D; Zurlo, E; Ivanov, K L; Baldus, M; Huber, M

    2017-02-01

    To understand the dynamic nuclear polarization (DNP) enhancements of biradical polarizing agents, the magnetic resonance parameters need to be known. We describe a tailored EPR approach to accurately determine electron spin-spin coupling parameters using a combination of standard (9 GHz), high (95 GHz) and ultra-high (275 GHz) frequency EPR. Comparing liquid- and frozen-solution continuous-wave EPR spectra provides accurate anisotropic dipolar interaction D and isotropic exchange interaction J parameters of the DNP biradical AMUPol. We found that D was larger by as much as 30% compared to earlier estimates, and that J is 43 MHz, whereas before it was considered to be negligible. With the refined data, quantum mechanical calculations confirm that an increase in dipolar electron-electron couplings leads to higher cross-effect DNP efficiencies. Moreover, the DNP calculations qualitatively reproduce the difference of TOTAPOL and AMUPol DNP efficiencies found experimentally and suggest that AMUPol is particularly effective in improving the DNP efficiency at magnetic fields higher than 500 MHz. The multi-frequency EPR approach will aid in predicting the optimal structures for future DNP agents.

  1. Potential energy curves and spectroscopic parameters of the 24 Λ-S states and 54 Ω states of the F2 + cation including the spin-orbit coupling effect*

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-11-01

    This work calculated the PECs of 24 Λ-S states and 54 Ω states of F2+ cation. The calculations were done with the CASSCF method, which was followed by the internally contracted MRCI approach. Core-valence correlation correction, scalar relativistic correction and basis set extrapolation were taken into account. Of these 24 Λ-S states, the 22Σg-, 22Σu-, 24Σg-, 14Δu, and 24Πg states were found to be repulsive. The X2Πg, A2Πu 14Δg, 14Πg and 24Πg states were found to be inverted with the spin-orbit coupling effect included. The 12Δg, 24Πu, 14Πg, 14Σu+, 22Πu, 14Σg-, 24Σu-, and 12Σg+ states were found to be weakly bound. The 24Σu- state had double wells. The avoided crossings of PECs were observed between the A2Πu and 22Πu states, the X2Πg and 22Πg states, the 12Σu- and 22Σu- states, the 14Πu and 24Πu states, and the 14Σ-g and 24Σ-g states. Some spectroscopic parameters were determined and the vibrational properties of several weakly-bound states were predicted. The spin-orbit coupling effect on the spectroscopic parameters was evaluated. Comparison with available experimental data shows that the methodology used in this paper is highly accurate for this system. Supplementary material in the form of one pdf file available from the Journal web page at: http://dx.doi.org/10.1140/epjd/e2016-70388-9

  2. Molecular imaging through 1H MRS and MRSI in everyday routine: Improvements in various clinical applications and parameter optimization of spectroscopic imaging sequences

    NASA Astrophysics Data System (ADS)

    Karatopis, Anastasios; Benekos, Odysseas; Efstathopoulos, Efstathios; Valais, Ioannis; Kandarakis, Ioannis; Kelekis, Nikolaos

    2007-02-01

    In the era of molecular imaging, in vivo 1H magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are impacting dramatically upon virtually all areas of clinical medicine. MRS and MRSI should be able to identify key biochemical changes, much before the tumour becomes detectable by other functional imaging methods that mainly rely upon single markers that are not entirely sensitive or specific for malignant activity. Combined with other imaging techniques a rapidly advancing modality like MRI offer the ability to estimate the presence of metabolites yields much information regarding tissue. Molecular imaging through magnetic resonance could be potentially suited for screening and repeated monitoring since it entails no exposure to ionizing radiation. Incorporation of these tools in clinical practice is, however, limited due to the considerable amount of user intervention. In this work, various acquisition parameters and their effects in spectrum quality are investigated. In order to assess the quality of various spectroscopic techniques (2D and multi-slice MRSI, multiple echo SI), a series of experiments were conducted using a standard solution. The application of water and fat suppression techniques and their compatibility with other parameters were also investigated. The stability of the equipment, the appearance of errors and artifacts and the reproducibility of the results were also examined to obtain useful conclusions for the interaction of acquisition parameters. All the data were processed with specialized computer software (jMRUI 2.2) to analyze various aspects of the measurements and quantify various parameters such as signal-to-noise ratio (SNR), full-width at half-maximum (FWHM), peak height and j-modulation. The experience acquired from the conducted experiments was successfully applied in acquisition parameter optimization and improvement of clinical applications (two dimensional (2D) MRSI of prostate, brain and muscle MRS) by

  3. A rapid and accurate method, ventilated chamber C-history method, of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials.

    PubMed

    Huang, Shaodan; Xiong, Jianyin; Zhang, Yinping

    2013-10-15

    The indoor pollution caused by formaldehyde and volatile organic compounds (VOCs) emitted from building materials poses an adverse effect on people's health. It is necessary to understand and control the behaviors of the emission sources. Based on detailed mass transfer analysis on the emission process in a ventilated chamber, this paper proposes a novel method of measuring the three emission characteristic parameters, i.e., the initial emittable concentration, the diffusion coefficient and the partition coefficient. A linear correlation between the logarithm of dimensionless concentration and time is derived. The three parameters can then be calculated from the intercept and slope of the correlation. Compared with the closed chamber C-history method, the test is performed under ventilated condition thus some commonly-used measurement instruments (e.g., GC/MS, HPLC) can be applied. While compared with other methods, the present method can rapidly and accurately measure the three parameters, with experimental time less than 12h and R(2) ranging from 0.96 to 0.99 for the cases studied. Independent experiment was carried out to validate the developed method, and good agreement was observed between the simulations based on the determined parameters and experiments. The present method should prove useful for quick characterization of formaldehyde/VOC emissions from indoor materials.

  4. The Araucaria Project: accurate stellar parameters and distance to evolved eclipsing binary ASAS J180057-2333.8 in Sagittarius Arm

    NASA Astrophysics Data System (ADS)

    Suchomska, K.; Graczyk, D.; Smolec, R.; Pietrzyński, G.; Gieren, W.; Stȩpień, K.; Konorski, P.; Pilecki, B.; Villanova, S.; Thompson, I. B.; Górski, M.; Karczmarek, P.; Wielgórski, P.; Anderson, R. I.

    2015-07-01

    We have analyzed the double-lined eclipsing binary system ASAS J180057-2333.8 from the All Sky Automated Survey (ASAS) catalogue. We measure absolute physical and orbital parameters for this system based on archival V-band and I-band ASAS photometry, as well as on high-resolution spectroscopic data obtained with ESO 3.6 m/HARPS and CORALIE spectrographs. The physical and orbital parameters of the system were derived with an accuracy of about 0.5-3 per cent. The system is a very rare configuration of two bright well-detached giants of spectral types K1 and K4 and luminosity class II. The radii of the stars are R1 = 52.12 ± 1.38 and R2 = 67.63 ± 1.40 R⊙ and their masses are M1 = 4.914 ± 0.021 and M2 = 4.875 ± 0.021 M⊙. The exquisite accuracy of 0.5 per cent obtained for the masses of the components is one of the best mass determinations for giants. We derived a precise distance to the system of 2.14 ± 0.06 kpc (stat.) ± 0.05 (syst.) which places the star in the Sagittarius-Carina arm. The Galactic rotational velocity of the star is Θs = 258 ± 26 km s-1 assuming Θ0 = 238 km s-1. A comparison with PARSEC isochrones places the system at the early phase of core helium burning with an age of slightly larger than 100 million years. The effect of overshooting on stellar evolutionary tracks was explored using the MESA star code.

  5. Theoretical calculations on 12 Λ-S and 23 Ω states of CBr+ cation in the gas phase: Potential energy curves, spectroscopic parameters and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of X1Σ+, a3Π, 13Σ+, 13Δ, 11Δ, 11Σ-, 13Σ-, 11Π, 21Σ+, 23Π, 21Π and 23Σ+ Λ-S states of CBr+ cation and corresponding 23 Ω states are calculated for the first time using the CASSCF method, which is followed by the internally contracted MRCI approach with the aug-cc-pVQZ basis set. All the Λ-S states involved are found to be bound and dissociate into the first dissociation limit of CBr+ cation. Of these Λ-S states, only the 13Σ+ and 13Σ- are inverted ones. The spin-orbit (SO) coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. Core-valence correlation is included by a cc-pCVTZ basis set. Relativistic correction is calculated with the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVQZ basis set. To obtain more reliable results, the PECs obtained by the MRCI calculations are corrected for size-extensivity errors by means of the Davidson modification. The PEC crossings of different Λ-S states are studied. With these PECs, the spectroscopic parameters of all the Λ-S and Ω states involved are obtained by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation using the Numerov's method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and available measurements. In particular, the energy separation of 352.26 cm-1 between the a3Π0+ and the a3Π1 Ω states agrees well with the measurements of 369±8 cm-1, and the ωe results of 907.45 and 907.08 cm-1 for the a3Π0+ and a3Π1 Ω states are in excellent agreement with the measurements of 906±2 and 903±6 cm-1, respectively. These show that the spectroscopic parameters obtained in the present paper can be expected to be reliable predicted ones.

  6. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-02-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  7. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-01-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  8. MRCI study on the spectroscopic parameters and molecular constants of the X1Σ+, a3Σ+, A1Π and C1Σ- electronic states of the SiO molecule.

    PubMed

    Shi, Deheng; Li, Wentao; Sun, Jinfeng; Zhu, Zunlue

    2012-02-15

    The potential energy curves (PECs) of the X(1)Σ(+), a(3)Σ(+), A(1)Π and C(1)Σ(-) electronic states of the SiO molecule are studied using an ab initio quantum chemical method. The calculations have been made employing the complete active space self-consistent field (CASSCF) method, which is followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with several correlation-consistent basis sets. The effect on the PECs by the core-valence correlation and relativistic corrections is included. The way to consider the relativistic correction is to use the third-order Douglas-Kroll Hamiltonian approximation. The core-valence correlation correction is carried out with the cc-pCVQZ basis set, and the relativistic correction is performed at the level of the cc-pVQZ basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). The PECs of these electronic states are extrapolated to the complete basis set limit by the total-energy extrapolation scheme. Employing these PECs, the spectroscopic parameters are calculated and compared with those reported in the literature. With these PECs determined by the MRCI+Q/CV+DK+56 calculations, by solving the radial Schrödinger equation of nuclear motion, 110 vibrational states for the X(1)Σ(+), 69 for the a(3)Σ(+), 54 for the A(1)Π and 67 for the C(1)Σ(-) electronic state are predicted when the rotational quantum number J equals zero. The vibrational manifolds of the first 20 vibrational states are reported and compared with the available RKR data for each electronic state. On the whole, as expected, the most accurate spectroscopic parameters and molecular constants of the SiO molecule are obtained by the MRCI+Q/CV+DK+56 calculations. And the present molecular constants of the a(3)Σ(+), C(1)Σ(-) and A(1)Π electronic states determined by the MRCI

  9. Spectroscopic studies of the parameters of plasma jets during their propagation in the background plasma on the PF-3 facility

    NASA Astrophysics Data System (ADS)

    Dan’ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.; Krauz, V. I.; Myalton, V. V.

    2017-04-01

    This paper presents measurement results of neon and helium plasma parameters in axial jets generated in plasma focus discharge. They were obtained in the course of experiments on laboratory modeling of astrophysical jets performed at the PF-3 facility. The plasma concentration was determined according to Stark broadening of spectral lines; the ionization temperature was determined by the average ion charge. The values of the concentration and temperature of jet plasma and background plasma at two distances from the pinch are also presented. In addition, an estimation was made of the heat content losses of the neon and helium jets during their movement through the surrounding medium.

  10. Spectroscopic measurements of SO(2) line parameters in the 9.2 mum atmospheric region and theoretical determination of self-broadening coefficients.

    PubMed

    Tasinato, Nicola; Charmet, Andrea Pietropolli; Stoppa, Paolo; Giorgianni, Santi; Buffa, Giovanni

    2010-01-28

    Sulfur dioxide is still the subject of numerous spectroscopic studies since it plays an active role in the chemistry of Earth's atmosphere and it is a molecule of proven astrophysical importance. In the present work we have determined the self-broadening and integrated absorption coefficients for several lines in the nu(1) band spectral region around 9.2 mum. Besides the parameters of the lines belonging to the nu(1) fundamental of (32)SO(2), also those for some rovibrational lines of the nu(1)+nu(2)-nu(2) hot band of the (32)SO(2) isotopologue and the nu(1) band of the (34)SO(2) isotopic species have been determined. The measurements have been carried out at 297 K using a tunable diode laser spectrometer. The self-broadening parameters have also been theoretically determined employing a semiclassical formalism based on the Anderson-Tsao-Curnutte approximation. The study has been completed with the determination of the vibrational cross sections of the three fundamental bands measured from the spectra recorded at a resolution of 0.2 cm(-1) using a Fourier transform infrared spectrometer.

  11. Spectroscopic Analysis of Binary Mixed-Solvent-Polyimide Precursor Systems with the Preferential Solvation Model for Determining Solute-Centric Kamlet-Taft Solvatochromic Parameters.

    PubMed

    Duereh, Alif; Sato, Yoshiyuki; Smith, Richard Lee; Inomata, Hiroshi

    2015-11-19

    Hydrogen bond donor/acceptor mixed-solvent systems for solutes that exhibit strong specific interactions are not readily characterized with methods that depend on solvatochromic parameters. In this work, the reaction of two monomers, 4,4′-oxidianiline (ODA) and pyromellitic dianhydride (PMDA), to form the common engineering plastic precursor, poly(amic acid) (PAA), are studied for the tetrahydrofuran (THF) mixed-solvent systems (THF-methanol, THF-ethanol, THF-water) with spectroscopy. Solute-centric (SC) Kamlet–Taft solvatochromic (K-T) parameters for the solvent environment around the monomer are determined using a proposed model that incorporates spectroscopically determined local composition (X(L)) around the ODA monomer and the preferential solvation model. For the example reaction to occur under homogeneous conditions, mixed-solvent conditions need have HBA-rich local compositions (0.30 < X(HBA)(L) < 0.83), high solute-centric basicity (β(SC) > 0.60), high solute-centric polarity, (π(SC)* > 0.63), and low solute-centric acidity (α(SC) < 0.63). The method developed allows characterization of mixed-solvent effects and can be readily extended to other systems that have strong specific interactions.

  12. Simultaneous estimation of plasma parameters from spectroscopic data of neutral helium using least square fitting of CR-model

    NASA Astrophysics Data System (ADS)

    Jain, Jalaj; Prakash, Ram; Vyas, Gheesa Lal; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana; Halder, Nilanjan; Choyal, Yaduvendra

    2015-12-01

    In the present work an effort has been made to estimate the plasma parameters simultaneously like—electron density, electron temperature, ground state atom density, ground state ion density and metastable state density from the observed visible spectra of penning plasma discharge (PPD) source using least square fitting. The analysis is performed for the prominently observed neutral helium lines. The atomic data and analysis structure (ADAS) database is used to provide the required collisional-radiative (CR) photon emissivity coefficients (PECs) values under the optical thin plasma condition in the analysis. With this condition the estimated plasma temperature from the PPD is found rather high. It is seen that the inclusion of opacity in the observed spectral lines through PECs and addition of diffusion of neutrals and metastable state species in the CR-model code analysis improves the electron temperature estimation in the simultaneous measurement.

  13. Spectroscopic line parameters of 12CH4 for atmospheric composition retrievals in the 4300-4500 cm-1 region

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Predoi-Cross, A.; Nikitin, A. V.; Tyuterev, Vl. G.; Sung, K.; Smith, M. A. H.; Malathy Devi, V.

    2017-01-01

    Due to the importance of methane as a trace atmospheric gas and a greenhouse gas, we have carried out a precise line-shape study to obtain the CH4-CH4 and CH4-air half-width coefficients, CH4-CH4 and CH4-air shift coefficients and off-diagonal relaxation matrix element coefficients for methane transitions in the spectral range known as the "methane Octad". In addition, the associated temperature dependences of these coefficients have been measured in the 4300-4500 cm-1 region of the Octad. The high signal to noise ratio spectra of pure methane and of dilute mixtures of methane in dry air with high resolution have been recorded at temperatures from 148 K to room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. The analysis of spectra was done using a multispectrum non-linear least-squares curve fitting technique. Theoretical calculations have been performed and the results are compared with the previously published line positions, intensities and with the line parameters available in the GEISA and HITRAN2012 databases.

  14. Prediction of the Spectroscopic Parameters of New Iron Compounds: Hydride of Iron Cyanide/Isocyanide, HFeCN/HFeNC

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2016-09-01

    Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their 5Δ states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.

  15. SPECTROSCOPIC CONSTANTS AND VIBRATIONAL FREQUENCIES FOR l-C{sub 3}H{sup +} AND ISOTOPOLOGUES FROM HIGHLY ACCURATE QUARTIC FORCE FIELDS: THE DETECTION OF l-C{sub 3}H{sup +} IN THE HORSEHEAD NEBULA PDR QUESTIONED

    SciTech Connect

    Huang Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-05-10

    Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C{sub 3}H{sup +}. In an effort to corroborate this finding, we employed state-of-the-art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 {yields} 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C{sub 3}H{sup +} is questionable.

  16. Spectroscopic Constants and Vibrational Frequencies for l-C3H+ and Isotopologues from Highly-Accurate Quartic Force Fields: The Detection of l-C3H+ in the Horsehead Nebula PDR Questioned

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan Clifton; Lee, Timothy J.

    2013-01-01

    Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C3H+. In an effort to corroborate this finding, we employed state-of-the art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 yields 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C3H+ is questionable.

  17. Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

    PubMed Central

    Badran, Yasser Ali; Abdelaziz, Alsayed Saad; Shehab, Mohamed Ahmed; Mohamed, Hazem Abdelsabour Dief; Emara, Absel-Aziz Ali; Elnabtity, Ali Mohamed Ali; Ghanem, Maged Mohammed; ELHelaly, Hesham Abdel Azim

    2016-01-01

    Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies. PMID:27141192

  18. Possibilities of improving the parameters of hyperthermia in regional isolated limb perfusion using epidural bupivacaine and accurate temperature measurement of the three layers of limb tissue.

    PubMed

    Jastrzebski, Tomasz; Sommer, Anna; Swierblewski, Maciej; Lass, Piotr; Rogowski, Jan; Drucis, Kamil; Kopacz, Andrzej

    2006-06-01

    The present study presents the author's modification of the method, which aims to create proper parameters of the treatment. The selected group consisted of 15 women and eight men, with a mean age of 57.2 years (range from 26 to 72 years). The patients were divided into two groups, depending on whether they were given epidural bupivacaine (group I - 13 patients treated between the years 2001 and 2004) or not [group II (control) - 10 patients treated earlier, between the years 1997 and 2000]. We observed a significant change in the temperature of thigh muscles (P=0.009) and shank muscles (P=0.006). In the control group II, there was a statistically significant difference (P=0.048) in the temperatures between the muscles and subcutaneous tissue on the one hand and the shank skin on the other. That difference was mean 0.67 degrees Celsius (from 0.4 to 0.9) during the perfusion after applying the cytostatic. The temperature of the skin was lower than the temperature of the deeper tissues of the shank and did not exceed 39.9 degrees Celsius. Such a difference in the temperatures was not observed in case of the group I patients who were given bupivacaine into the extrameningeal space before applying the cytostatic. The difference in the temperatures was on average 0.26 degrees Celsius and was not statistically significant (P=0.99), whereas the shank skin temperature was 40.0-40.6 degrees Celsius. The attained results imply that despite the noticeable improvement in the heating of the limb muscles after application of bupivacaine, the improvement in the heating of the skin and subcutaneous tissue is still not satisfactory, although the growing tendency implies such a possibility.

  19. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  20. Starfish: Robust spectroscopic inference tools

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Hogg, David W.; Green, Gregory M.

    2015-05-01

    Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.

  1. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T.-C.; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators.

  2. Spectroscopic detection

    DOEpatents

    Woskov, Paul P.; Hadidi, Kamal

    2003-01-01

    In embodiments, spectroscopic monitor monitors modulated light signals to detect low levels of contaminants and other compounds in the presence of background interference. The monitor uses a spectrometer that includes a transmissive modulator capable of causing different frequency ranges to move onto and off of the detector. The different ranges can include those with the desired signal and those selected to subtract background contributions from those with the desired signal. Embodiments of the system are particularly useful for monitoring metal concentrations in combustion effluent.

  3. Spectroscopic Survey Of Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Kahraman Alicavus, Filiz; Niemczura, Ewa; Polinska, Magdalena; Helminiak, Krzysztof G.; Lampens, Patricia; Molenda-Zakowicz, Joanna; Ukita, Nobuharu; Kambe, Eiji

    2016-07-01

    We present the results of a spectroscopic study of pulsating stars of Delta Scuti type. The spectral types and luminosity classes, fundamental atmospheric parameters (the effective temperature, surface gravity, microturbulent velocity), detailed chemical composition and projected rotational velocities of a significant number of Delta Scuti-type stars were derived. The spectral classification was performed by comparing the spectra of our targets with the spectra of standard stars. The atmospheric parameters were determined by using different methods. The initial atmospheric parameters were derived from the analysis of photometric indices, the spectral energy distribution and the hydrogen lines, while the final atmospheric parameters were obtained from the analysis of iron lines. The spectrum synthesis method was used to determine chemical compositions of the investigated stars. As a result, we derived accurate atmospheric parameters, the projected rotational velocities and the abundance patterns of analysed sample. These results allow us to examine the position of Delta Scuti-type stars in the H-R diagram, and to investigate the effect of the rotational velocity on pulsation properties and a chemical difference between the Delta Scuti-type stars and the Gamma Doradus and A-F type hybrid stars.

  4. Optimizing the precision of a multichannel three-polarizer spectroscopic ellipsometer.

    PubMed

    Chegal, Won; Lee, Jeong Pyo; Cho, Hyun Mo; Han, Sang-Wook; Cho, Yong Jai

    2013-07-01

    We developed a multichannel three-polarizer spectroscopic ellipsometer based on a data acquisition algorithm for achieving optimized precision. This algorithm measures unnormalized Fourier coefficients accurately and precisely. Offset angles for optical elements were obtained as wavelength-independent values using regression calibration. Derived subsets of data reduction functions were used to calculate sample parameters. Correlation coefficients of Fourier coefficients were used to calculate errors in the sample parameters. Mean standard deviations of the sample parameters for each data reduction method were compared to identify the best method. This approach could be used to identify suitable precision optimization methods for other rotating-element ellipsometers.

  5. Photoluminescence study of LiNbO3:Cr3+; W4+ at high pressure. Pressure dependence of spectroscopic parameters and local structure of Cr3+

    NASA Astrophysics Data System (ADS)

    Sánchez-Alejo, M. A.; Rodríguez, F.; Barreda-Argüeso, J. A.; Camarillo, I.; Flores J., C.; Murrieta S., H.; Hernández A., J. M.; Jaque, F.; Camarillo, E.

    2016-10-01

    In this study, the photoluminescence properties of congruent codoped LiNbO3:Cr3+; W4+, crystals have been systematically investigated by performing photoluminescence studies at room temperature in the 0-280 kbar pressure range. In particular, we focus on the influence that hydrostatic pressure has on the 2E→ 4A2 (R-lines) transitions of Cr3+. It has been observed that the pressure dependence of the spectral position of the R-lines associated with both Cr3+ centres β and γ shows a bilinear behaviour with an abrupt slope change near 210 kbar. This change is related to the existence of a pressure-induced structural phase transition in the LiNbO3 host. The analysis of experimental results provides the Racah parameters B and C and the crystal field parameter 10Dq and their pressure and volume, through the crystal field theory and equation of state, dependences.

  6. The GEISA Spectroscopic Database System in its latest Edition

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Crépeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chédin, A.

    2009-04-01

    GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are

  7. Characteristics of the energy bands and the spectroscopic parameters of Pr3+ ions in PrCl3 mixed methanol, iso-propanol and butanol solutions.

    PubMed

    Jana, Samar; Mitra, Subrata

    2011-12-01

    An investigation on the absorption spectra of the praseodymium chloride (PrCl(3)) in methanol, iso-propanol and butanol is carried out between 190 nm and 1100 nm. We have observed and assigned six energy bands of the 4f(2) electronic configuration of the Pr(3+) ion in the visible to near-infra-red and one due to 4f5d configuration in the ultraviolet region. The 4f5d band has been detected properly for low concentration of PrCl(3). We have also constructed a free-ion Hamiltonian and calculated the energy levels of the 4f(2) configuration theoretically. Hence, the best fit free-ion parameters are deduced.

  8. Sensitivity of Forward Radiative Transfer Model on Spectroscopic Assumptions and Input Geophysical Parameters at 23.8 GHz and 183 GHz Channels and its Impact on Inter-calibration of Microwave Radiometers

    NASA Astrophysics Data System (ADS)

    Datta, S.; Jones, W. L.; Ebrahimi, H.; Chen, R.; Payne, V.; Kroodsma, R.

    2014-12-01

    The first step in radiometric inter-calibration is to ascertain the self-consistency and reasonableness of the observed brightness temperature (Tb) for each individual sensor involved. One of the widely used approaches is to compare the observed Tb with a simulated Tb using a forward radiative transfer model (RTM) and input geophysical parameters at the geographic location and time of the observation. In this study we intend to test the sensitivity of the RTM to uncertainties in the input geophysical parameters as well as to the underlying physical assumptions of gaseous absorption and surface emission in the RTM. SAPHIR, a cross track scanner onboard Indo-French Megha-Tropique Satellite, gives us a unique opportunity of studying 6 dual band 183 GHz channels at an inclined orbit over the Tropics for the first time. We will also perform the same sensitivity analysis using the Advance Technology Microwave Sounder (ATMS) 23 GHz and five 183 GHz channels. Preliminary analysis comparing GDAS and an independent retrieved profile show some sensitivity of the RTM to the input data. An extended analysis of this work using different input geophysical parameters will be presented. Two different absorption models, the Rosenkranz and the MonoRTM will be tested to analyze the sensitivity of the RTM to spectroscopic assumptions in each model. Also for the 23.8 GHz channel, the sensitivity of the RTM to the surface emissivity model will be checked. Finally the impact of these sensitivities on radiometric inter-calibration of radiometers at sounding frequencies will be assessed.

  9. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  10. Accurate ab initio quartic force fields of cyclic and bent HC2N isomers.

    PubMed

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J

    2011-12-28

    Highly correlated ab initio quartic force fields (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC(2)N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted as CCSD(T). Dunning's correlation-consistent basis sets cc-pVXZ, X = 3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (PT) (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schrödinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by PT). On the other hand, this procedure (a QFF together with either PT or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC(2)N. All three isomers possess significant dipole moments, 3.05 D, 3.06 D, and 1.71 D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  11. Fast and accurate estimation for astrophysical problems in large databases

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.

    2010-10-01

    A recent flood of astronomical data has created much demand for sophisticated statistical and machine learning tools that can rapidly draw accurate inferences from large databases of high-dimensional data. In this Ph.D. thesis, methods for statistical inference in such databases will be proposed, studied, and applied to real data. I use methods for low-dimensional parametrization of complex, high-dimensional data that are based on the notion of preserving the connectivity of data points in the context of a Markov random walk over the data set. I show how this simple parameterization of data can be exploited to: define appropriate prototypes for use in complex mixture models, determine data-driven eigenfunctions for accurate nonparametric regression, and find a set of suitable features to use in a statistical classifier. In this thesis, methods for each of these tasks are built up from simple principles, compared to existing methods in the literature, and applied to data from astronomical all-sky surveys. I examine several important problems in astrophysics, such as estimation of star formation history parameters for galaxies, prediction of redshifts of galaxies using photometric data, and classification of different types of supernovae based on their photometric light curves. Fast methods for high-dimensional data analysis are crucial in each of these problems because they all involve the analysis of complicated high-dimensional data in large, all-sky surveys. Specifically, I estimate the star formation history parameters for the nearly 800,000 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog, determine redshifts for over 300,000 galaxies in the SDSS photometric catalog, and estimate the types of 20,000 supernovae as part of the Supernova Photometric Classification Challenge. Accurate predictions and classifications are imperative in each of these examples because these estimates are utilized in broader inference problems

  12. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  13. Spectroscopic and physical parameters of Galactic O-type stars. II. Observational constraints on projected rotational and extra broadening velocities as a function of fundamental parameters and stellar evolution

    NASA Astrophysics Data System (ADS)

    Markova, N.; Puls, J.; Simón-Díaz, S.; Herrero, A.; Markov, H.; Langer, N.

    2014-02-01

    Context. Rotation is of key importance for the evolution of massive star, including their fate as supernovae or gamma-ray bursts. However, the rotational velocities of OB stars are difficult to determine. Aims: Based on our own data for 31 Galactic O stars and incorporating similar data for 86 OB supergiants from the literature, we aim at investigating the properties of rotational and extra line-broadening as a function of stellar parameters and at testing model predictions about the evolution of stellar rotation. Methods: Fundamental stellar parameters were determined by means of the code FASTWIND. Projected rotational and extra broadening velocities, vsini and ΘRT, originate from a combined Fourier transform and the goodness-of-fit method. Model calculations published previously were used to estimate the initial evolutionary masses, Mevolinit. Results: The sample O stars with Mevolinit ≳ 50 M⊙ rotate with less that 26% of their break-up velocity, and they also lack slow rotators (vsini ≲ 50 km s-1). For the more massive stars (Mevolinit ≥ 35 M⊙) on the hotter side of the bi-stability jump, the observed and predicted rotational rates agree quite well; for those on the cooler side of the jump, the measured velocties are systematically higher than the predicted ones. In general, the derived ΘRT values decrease toward cooler Teff, whilst for later evolutionary phases they appear, at the same vsini, higher for high-mass stars than for low-mass ones. None of the sample stars shows ΘRT ≥ 110 km s-1. For the majority of the more massive stars, extra broadening either dominates or is in strong competition with rotation. Conclusions: For OB stars of solar metallicity, extra broadening is important and has to be accounted for in the analysis. When appearing at or close to the zero-age main sequence, most of the single and more massive stars rotate slower than previously thought. Model predictions for the evolution of rotation in hot massive stars may need to

  14. The 1997 spectroscopic GEISA databank.

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Arie, E.; Ballard, J.; Barbe, A.; Bjoraker, G.; Bonnet, B.; Brown, L. R.; Camy-Peyret, C.; Champion, J. P.; Chedin, A.; Chursin, A.; Clerbaux, C.; Duxbury, G.; Flaud, J.-M.; Fourrie, N.; Fayt, A.; Graner, G.; Gamache, R.; Goldman, A.; Golovko, V.; Guelachvili, G.; Hartmann, J. M.; Hilico, J. C.; Hillman, J.; Lefevre, G.; Lellouch, E.; Mikhailenko, S. N.; Naumenko, O. V.; Nemtchinov, V.; Newnham, D. A.; Nikitin, A.; Orphal, J.; Perrin, A.; Reuter, D. C.; Rinsland, C. P.; Rosenmann, L.; Rothman, L. S.; Scott, N. A.; Selby, J.; Sinitsa, L. N.; Sirota, J. M.; Smith, A. M.; Smith, K. M.; Tyuterev, V. G.; Tipping, R. H.; Urban, S.; Varanasi, P.; Weber, M.

    1999-05-01

    The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are the spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the giant planets. GEISA-97 contains also a catalog of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. The modifications and improvements made to the earlier edition (GEISA-92) and the data management software are described.

  15. ORBITAL SOLUTIONS FOR TWO YOUNG, LOW-MASS SPECTROSCOPIC BINARIES IN OPHIUCHUS

    SciTech Connect

    Rosero, V.; Prato, L.; Wasserman, L. H.; Rodgers, B. E-mail: lprato@lowell.edu E-mail: brodgers@gemini.edu

    2011-01-15

    We report the orbital parameters for ROXR1 14 and RX J1622.7-2325Nw, two young, low-mass, and double-lined spectroscopic binaries recently discovered in the Ophiuchus star-forming region. Accurate orbital solutions were determined from over a dozen high-resolution spectra taken with the Keck II and Gemini South telescopes. These objects are T Tauri stars with mass ratios close to unity and periods of {approx}5 and {approx}3 days, respectively. In particular, RX J1622.7-2325Nw shows a non-circularized orbit with an eccentricity of 0.30, higher than any other short-period pre-main-sequence (PMS) spectroscopic binary known to date. We speculate that the orbit of RX J1622.7-2325Nw has not yet circularized because of the perturbing action of a {approx}1'' companion, itself a close visual pair. A comparison of known young spectroscopic binaries (SBs) and main-sequence (MS) SBs in the eccentricity-period plane shows an indistinguishable distribution of the two populations, implying that orbital circularization occurs in the first 1 Myr of a star's lifetime. With the results presented in this paper we increase by {approx}4% the small sample of PMS spectroscopic binary stars with known orbital elements.

  16. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  17. Spectroscopic measurements of solar wind generation

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.; Withbroe, G. L.; Zapata, C. A.; Noci, G.

    1983-01-01

    Spectroscopically observable quantities are described which are sensitive to the primary plasma parameters of the solar wind's source region. The method is discussed in which those observable quantities are used as constraints in the construction of empirical models of various coronal structures. Simulated observations are used to examine the fractional contributions to observed spectral intensities from coronal structures of interest which co-exist with other coronal structures along simulated lines-of-sight. The sensitivity of spectroscopic observables to the physical parameters within each of those structures is discussed.

  18. Accurate rotational constants for linear interstellar carbon chains: achieving experimental accuracy

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Arunan, Elangannan

    2017-01-01

    Linear carbon chain molecular species remain the dominant theme in interstellar chemistry. Their continuous astronomical observation depends on the availability of accurate spectroscopic parameters. Accurate rotational constants are reported for hundreds of molecular species of astrophysical, spectroscopy and chemical interests from the different linear carbon chains; C_{{n}}H, C_{{n}}H-, C_{{n}}N, C_{{n}}N-, C_{{n}}O, C_{{n}}S, HC_{{n}}S, C_{{n}}Si, CH3(CC)_{{n}}H, HC_{{n}}N, DC_{2{n}+1}N, HC_{2{n}}NC, and CH3(C≡C)_{{n}}CN using three to four moments of inertia calculated from the experimental rotational constants coupled with those obtained from the optimized geometries at the Hartree Fock level. The calculated rotational constants are obtained from the corrected moments of inertia at the Hartfree Fock geometries. The calculated rotational constants show accuracy of few kHz below irrespective of the chain length and terminating groups. The obtained accuracy of few kHz places these rotational constants as excellent tools for both astronomical and laboratory detection of these molecular species of astrophysical interest. From the numerous unidentified lines from different astronomical surveys, transitions corresponding to known and new linear carbon chains could be found using these rotational constants. The astrophysical, spectroscopic and chemical implications of these results are discussed.

  19. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  20. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  1. A SPECTROSCOPIC SURVEY AND ANALYSIS OF BRIGHT, HYDROGEN-RICH WHITE DWARFS

    SciTech Connect

    Gianninas, A.; Bergeron, P.; Ruiz, M. T. E-mail: bergeron@astro.umontreal.ca

    2011-12-20

    We have conducted a spectroscopic survey of over 1300 bright (V {<=} 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook and Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations.

  2. Spectroscopic Sensitivity Workout: First-order modes

    NASA Astrophysics Data System (ADS)

    Brown, Thomas

    2001-07-01

    This program is the basic sensitivity measurement for all supported MAMA and CCD first-order spectroscopic modes. It is run once in Cycle 10. Sensitivity measurements are done for all supported tilts of the gratings, at a S/N suitable to any particular setting, in order to get all measurements done in a reasonable number of orbits but still get a very accurate sensitivity measurement. Data for the newly available "pseudo-apertures" near CCD row 900 are also taken.

  3. THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS

    SciTech Connect

    Pinsonneault, Marc H.; Epstein, Courtney; Johnson, Jennifer A.; Elsworth, Yvonne; Chaplin, William J.; Hekker, Saskia; Silva Aguirre, Victor; Stello, Dennis; Mészáros, Sz.; García, Rafael A.; Beck, Paul; Mathur, Savita; García Pérez, Ana; Girardi, Léo; Basu, Sarbani; Shetrone, Matthew; Allende Prieto, Carlos; Beers, Timothy C.; and others

    2015-01-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T {sub eff}, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T {sub eff} and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T {sub eff} and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  4. Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.

    PubMed

    Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A

    2011-10-14

    The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.

  5. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  6. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  7. Spectroscopic Constants of the X1Σ+ and 13Π states of AlO+

    NASA Astrophysics Data System (ADS)

    Sghaier, Onsi; Linguerri, Roberto; Mogren, Muneerah Mogren Al; Francisco, Joseph S.; Hochlaf, Majdi

    2016-08-01

    Using both standard and explicitly correlated ab initio methods in conjunction with several atomic basis sets, the ground state of AlO(X2Σ+) and the two lowest electronic states of AlO+ (1Σ+ and 3Π) are investigated. Potential energy curves for these species are mapped, which are incorporated later to solve the nuclear motion problem. Benchmark computations on AlO(X2Σ+) are used to determine the reliability of the theoretical methods and basis sets used for an accurate description of aluminum oxide compounds. The electronic ground state of AlO+ is X1Σ+, followed by the low-lying 13Π state. For both cationic electronic states, a set of spectroscopic parameters are recommended that may help in the identification of this ion in laboratory and astrophysical media. An accurate estimation of the adiabatic ionization energy of AlO, AIE = 9.70 eV, is also reported.

  8. Clinical application of a novel automatic algorithm for actigraphy-based activity and rest period identification to accurately determine awake and asleep ambulatory blood pressure parameters and cardiovascular risk.

    PubMed

    Crespo, Cristina; Fernández, José R; Aboy, Mateo; Mojón, Artemio

    2013-03-01

    This paper reports the results of a study designed to determine whether there are statistically significant differences between the values of ambulatory blood pressure monitoring (ABPM) parameters obtained using different methods-fixed schedule, diary, and automatic algorithm based on actigraphy-of defining the main activity and rest periods, and to determine the clinical relevance of such differences. We studied 233 patients (98 men/135 women), 61.29 ± .83 yrs of age (mean ± SD). Statistical methods were used to measure agreement in the diagnosis and classification of subjects within the context of ABPM and cardiovascular disease risk assessment. The results show that there are statistically significant differences both at the group and individual levels. Those at the individual level have clinically significant implications, as they can result in a different classification, and, therefore, different diagnosis and treatment for individual subjects. The use of an automatic algorithm based on actigraphy can lead to better individual treatment by correcting the accuracy problems associated with the fixed schedule on patients whose actual activity/rest routine differs from the fixed schedule assumed, and it also overcomes the limitations and reliability issues associated with the use of diaries.

  9. The HITRAN 2008 Molecular Spectroscopic Database

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Gordon, Iouli E.; Barbe, Alain; Benner, D. Chris; Bernath, Peter F.; Birk, Manfred; Boudon, V.; Brown, Linda R.; Campargue, Alain; Champion, J.-P.; Chance, Kelly V.; Coudert, L. H.; Sung, K.; Toth, R. A.

    2009-01-01

    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are not resolved; individual line parameters and absorption cross sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for forty-two molecules including many of their isotopologues.

  10. Spectroscopic Needs for Imaging Dark Energy Experiments

    SciTech Connect

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cheu, Elliott; Cunha, Carlos E.; de la Macorra, Alex; Dell’Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean -Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Menard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Park, Changbom; Rhodes, Jason; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter

  11. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE PAGES

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; ...

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce

  12. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  13. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  14. A Comparison of Galaxy Counting Techniques in Spectroscopically Undersampled Regions

    NASA Astrophysics Data System (ADS)

    Specian, Mike A.; Szalay, Alex S.

    2016-11-01

    Accurate measures of galactic overdensities are invaluable for precision cosmology. Obtaining these measurements is complicated when members of one’s galaxy sample lack radial depths, most commonly derived via spectroscopic redshifts. In this paper, we utilize the Sloan Digital Sky Survey’s Main Galaxy Sample to compare seven methods of counting galaxies in cells when many of those galaxies lack redshifts. These methods fall into three categories: assigning galaxies discrete redshifts, scaling the numbers counted using regions’ spectroscopic completeness properties, and employing probabilistic techniques. We split spectroscopically undersampled regions into three types—those inside the spectroscopic footprint, those outside but adjacent to it, and those distant from it. Through Monte Carlo simulations, we demonstrate that the preferred counting techniques are a function of region type, cell size, and redshift. We conclude by reporting optimal counting strategies under a variety of conditions.

  15. Spectroscopic investigation of highly transient pinch plasmas

    SciTech Connect

    Bergmann, K.; Engel, A.; Lebert, R.; Rosmej, O.N.; Rosmej, F.B.; Gavrilescu, C.; Neff, W.

    1997-11-01

    The temporal evolution of neon pinch plasmas, generated in a 2 kJ plasma focus device, has been investigated by x-ray spectroscopic methods for two sets of device parameters. These two sets lead to characteristic differences of the K-shell emission. Stationary models are shown to fail to explain the experimental observations even qualitatively. Transient spectra analysis shows that the characteristic differences observed can be referred to different transient modes of plasma dynamics. The spectra analysis includes beside resonance lines also dielectronic satellites and recombination continua. The results concerning the development of the plasma parameters achieved by the spectra modeling are supported by independent measurements of the time resolved K-shell emission and by optical streak images of the pinch plasma dynamics, which confirms the reliability of the transient spectroscopic analysis presented. {copyright} {ital 1997} {ital The American Physical Society}

  16. Developing Accurate Spatial Maps of Cotton Fiber Quality Parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Awareness of the importance of cotton fiber quality (Gossypium, L. sps.) has increased as advances in spinning technology require better quality cotton fiber. Recent advances in geospatial information sciences allow an improved ability to study the extent and causes of spatial variability in fiber p...

  17. ZFIRE: A KECK/MOSFIRE Spectroscopic Survey of Galaxies in Rich Environments at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya; Glazebrook, Karl; Kacprzak, Glenn G.; Yuan, Tiantian; Tran, Kim-Vy; Spitler, Lee; Kewley, Lisa; Straatman, Caroline; Cowley, Michael; Fisher, David; Labbe, Ivo; Tomczak, Adam; Allen, Rebecca; Alcorn, Leo

    2016-09-01

    We present an overview and the first data release of ZFIRE, a spectroscopic redshift survey of star-forming galaxies that utilizes the MOSFIRE instrument on Keck-I to study galaxy properties in rich environments at 1.5 < z < 2.5. ZFIRE measures accurate spectroscopic redshifts and basic galaxy properties derived from multiple emission lines. The galaxies are selected from a stellar mass limited sample based on deep near infrared imaging ({K}{AB}\\lt 25) and precise photometric redshifts from the ZFOURGE and UKIDSS surveys as well as grism redshifts from 3DHST. Between 2013 and 2015, ZFIRE has observed the COSMOS and UDS legacy fields over 13 nights and has obtained 211 galaxy redshifts over 1.57 < z < 2.66 from a combination of nebular emission lines (such as Hα, [N ii], Hβ, [O ii], [O iii], and [S ii]) observed at 1-2 μm. Based on our medium-band near infrared photometry, we are able to spectrophotometrically flux calibrate our spectra to ˜10% accuracy. ZFIRE reaches 5σ emission line flux limits of ˜3 × 10-18 erg s-1 cm-2 with a resolving power of R = 3500 and reaches masses down to ˜109 M ⊙. We confirm that the primary input survey, ZFOURGE, has produced photometric redshifts for star-forming galaxies (including highly attenuated ones) accurate to {{Δ }}z/(1+{z}{spec})=0.015 with 0.7% outliers. We measure a slight redshift bias of <0.001, and we note that the redshift bias tends to be larger at higher masses. We also examine the role of redshift on the derivation of rest-frame colors and stellar population parameters from SED fitting techniques. The ZFIRE survey extends spectroscopically confirmed z ˜ 2 samples across a richer range of environments, here we make available the first public release of the data for use by the community.7

  18. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  19. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  20. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  1. The STIS CCD Spectroscopic Line Spread Functions

    NASA Technical Reports Server (NTRS)

    Gull, T.; Lindler, D.; Tennant, D.; Bowers, C.; Grady, C.; Hill, R. S.; Malumuth, E.

    2002-01-01

    We characterize the spectroscopic line spread functions of the spectroscopic CCD modes for high contrast objects. Our long range goal is to develop tools that accurately extract spectroscopic information of faint, point or extended sources in the vicinity of bright, point sources at separations approaching the realizable angular limits of HST with STIS. Diffracted and scattered light due to the HST optics, and scattered light effects within the STIS are addressed. Filter fringing, CCD fringing, window reflections, and scattering within the detector and other effects are noted. We have obtained spectra of several reference stars, used for flux calibration or for coronagraphic standards, that have spectral distributions ranging from very red to very blue. Spectra of each star were recorded with the star in the aperture and with the star blocked by either the F1 or F2 fiducial. Plots of the detected starlight along the spatial axis of the aperture are provided for four stars. With the star in the aperture, the line spread function is quite noticeable. Placing the star behind one of the fiducials cuts the scattered light and the diffracted light, is detectable even out to 1OOOOA. When the star is placed behind either fiducial, the scattered and diffracted light components, at three arcseconds displacement from the star, are below lop6 the peak of the star at wavelengths below 6000A; at the same angular distance, scattered light does contaminate the background longward of 6000A up to a level of 10(exp -5).

  2. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  3. The HITRAN2012 molecular spectroscopic database

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gordon, I. E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P. F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L. R.; Campargue, A.; Chance, K.; Cohen, E. A.; Coudert, L. H.; Devi, V. M.; Drouin, B. J.; Fayt, A.; Flaud, J.-M.; Gamache, R. R.; Harrison, J. J.; Hartmann, J.-M.; Hill, C.; Hodges, J. T.; Jacquemart, D.; Jolly, A.; Lamouroux, J.; Le Roy, R. J.; Li, G.; Long, D. A.; Lyulin, O. M.; Mackie, C. J.; Massie, S. T.; Mikhailenko, S.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Orphal, J.; Perevalov, V.; Perrin, A.; Polovtseva, E. R.; Richard, C.; Smith, M. A. H.; Starikova, E.; Sung, K.; Tashkun, S.; Tennyson, J.; Toon, G. C.; Tyuterev, Vl. G.; Wagner, G.

    2013-11-01

    This paper describes the status of the 2012 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2008 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of six major components structured into folders that are freely accessible on the internet. These folders consist of the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, ultraviolet spectroscopic parameters, aerosol indices of refraction, collision-induced absorption data, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, and validity. Molecules and isotopologues have been added that address the issues of atmospheres beyond the Earth. Also discussed is a new initiative that casts HITRAN into a relational database format that offers many advantages over the long-standing sequential text-based structure that has existed since the initial release of HITRAN in the early 1970s.

  4. Spectroscopic Survey of Circumstellar Disks in Orion

    NASA Astrophysics Data System (ADS)

    Contreras, Maria; Hernandez, Jesus; Olguin, Lorenzo; Briceno, Cesar

    2013-07-01

    As a second stage of a project focused on characterizing candidate stars bearing a circumstellar disk in Orion, we present a spectroscopic follow-up of a set of about 170 bright stars. The present set of stars was selected by their optical (UBVRI) and infrared behavior in different color-color and color-magnitude diagrams. Observations were carried out at the Observatorio Astronomico Nacional located at the Sierra San Pedro Martir in B.C., Mexico and at the Observatorio Guillermo Haro in Cananea, Sonora, Mexico. Low-resolution spectra were obtained for all candidates in the sample. Using the SPTCLASS code, we have obtained spectral types and equivalent widths of the Li I 6707 and Halpha lines for each one of the stars. This project is a cornerstone of a large scale survey aimed to obtain stellar parameters in a homogeneous way using spectroscopic data. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  5. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  6. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  7. Preparation, spectroscopic, thermal, antihepatotoxicity, hematological parameters and liver antioxidant capacity characterizations of Cd(II), Hg(II), and Pb(II) mononuclear complexes of paracetamol anti-inflammatory drug

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2014-10-01

    Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), 1H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd2+ + Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.

  8. Raman Spectroscopic Measurements of Dermal Carotenoids in Breast Cancer Operated Patients Provide Evidence for the Positive Impact of a Dietary Regimen Rich in Fruit and Vegetables on Body Oxidative Stress and BC Prognostic Anthropometric Parameters: A Five-Year Study

    PubMed Central

    Perrone, A.; Pintaudi, A. M.; Traina, A.; Carruba, G.; Attanzio, A.; Gentile, C.; Tesoriere, L.; Livrea, M. A.

    2016-01-01

    Dermal carotenoids are a feasible marker of the body antioxidative network and may reveal a moderate to severe imbalance of the redox status, thereby providing indication of individual oxidative stress. In this work noninvasive Resonance Raman Spectroscopy (RRS) measurements of skin carotenoids (skin carotenoid score (SCS)) were used to provide indications of individual oxidative stress, each year for five years, in 71 breast cancer (BC) patients at high risk of recurrence. Patients' SCS has been correlated with parameters relevant to BC risk, waist circumference (WC), and body mass index (BMI), in the aim of monitoring the effect of a dietary regimen intended to positively affect BC risk factors. The RRS methodological approach in BC patients appeared from positive correlation between patients' SCS and blood level of lycopene. The level of skin carotenoids was inversely correlated with the patients' WC and BMI. At the end of the 5 y observation BC patients exhibited a significant reduction of WC and BMI and increase of SCS, when strictly adhering to the dietary regimen. In conclusion, noninvasive measurements of skin carotenoids can (i) reveal an oxidative stress condition correlated with parameters of BC risk and (ii) monitor dietary-related variations in BC patients. PMID:27213029

  9. Preparation, spectroscopic, thermal, antihepatotoxicity, hematological parameters and liver antioxidant capacity characterizations of Cd(II), Hg(II), and Pb(II) mononuclear complexes of paracetamol anti-inflammatory drug.

    PubMed

    El-Megharbel, Samy M; Hamza, Reham Z; Refat, Moamen S

    2014-10-15

    Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), (1)H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd(2+)+Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.

  10. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  11. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  12. Electrochemical and spectroscopic effects of mixed substituents in bis(phenolate)–copper(II) galactose oxidase model complexes

    PubMed Central

    Pratt, Russell C.; Lyons, Christopher T.; Wasinger, Erik C.; Stack, T. Daniel. P.

    2012-01-01

    Non-symmetric substitution of salen (1R1,R2) and reduced salen (2R1,R2) CuII-phenoxyl complexes with a combination of -tBu, -SiPr, and -OMe substituents leads to dramatic differences in their redox and spectroscopic properties, providing insight into the influence of the cysteine-modified tyrosine cofactor in the enzyme galactose oxidase (GO). Using a modified Marcus-Hush analysis, the oxidized copper complexes are characterized as Class II mixed-valent due to the electronic differentiation between the two substituted phenolates. Sulfur K-edge X-ray absorption spectroscopy (XAS) assesses the degree of radical delocalization onto the single sulfur atom of non-symmetric [1tBu,SMe]+ at 7%, consistent with other spectroscopic and electrochemical results that suggest preferential oxidation of the -SMe bearing phenolate. Estimates of the thermodynamic free-energy difference between the two localized states (ΔG∘) and reorganizational energies (λR1R2) of [1R1,R2]+ and [2R1,R2]+ leads to accurate predictions of the spectroscopically observed IVCT transition energies. Application of the modified Marcus-Hush analysis to GO using parameters determined for [2R1,R2]+ predicts a νmax of ~ 13600 cm−1, well within the energy range of the broad Vis-NIR band displayed by the enzyme. PMID:22471355

  13. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  14. LIBS spectroscopic classification relative to compressive sensing

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.; Jacobs, Eddie; Furxhi, Orges

    2011-05-01

    Laser Induced Breakdown Spectroscopy (LIBS) utilizes a diversity of standard spectroscopic techniques for classification of materials present in the sample. Pre-excitation processing sometimes limits the analyte to a short list of candidates. Prior art demonstrates that sparsity is present in the data. This is sometimes characterized as identification by components. Traditionally, spectroscopic identification has been accomplished by an expert reader in a manner typical for MRI images in the medicine. In an effort to automate this process, more recent art has emphasized the use of customized variations to standard classification algorithms. In addition, formal mathematical proofs for compressive sensing have been advanced. Recently the University of Memphis has been contracted by the Spectroscopic Materials Identification Center to advance and characterize the sensor research and development related to LIBS. Applications include portable standoff sensing for improvised explosive device detection and related law enforcement and military applications. Reduction of the mass, power consumption and other portability parameters is seen as dependent on classification choices for a LIBS system. This paper presents results for the comparison of standard LIBS classification techniques to those implied by Compressive Sensing mathematics. Optimization results and implications for portable LIBS design are presented.

  15. Spectroscopic (FT-IR, FT-Raman and UV-Visible) investigations, NMR chemical shielding anisotropy (CSA) parameters of 2,6-Diamino-4-chloropyrimidine for dye sensitized solar cells using density functional theory.

    PubMed

    Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K

    2015-02-05

    The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  16. The Cannon: Data-driven method for determining stellar parameters and abundances from stellar spectra

    NASA Astrophysics Data System (ADS)

    Ho, Anna Y. Q.; Ness, Melissa; Hogg, David W.; Rix, Hans-Walter

    2016-02-01

    The Cannon is a data-driven method for determining stellar labels (physical parameters and chemical abundances) from stellar spectra in the context of vast spectroscopic surveys. It fits for the spectral model given training spectra and labels, with the polynomial order for the spectral model decided by the user, infers labels for the test spectra, and provides diagnostic output for monitoring and evaluating the process. It offers SNR-independent continuum normalization, performs well at lower signal-to-noise, and is very accurate.

  17. The mass ratio in spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Ducati, J. R.; Penteado, E. M.; Turcati, R.

    2003-08-01

    The process of formation of binary and multiple stars is not yet fully understood. Possibilities range from simultaneous processes of condensation from the primeval nebula, to isolated star formation and eventual capture to form a double system. Models exist that predict success probabilities for each theoretical process, and comparison with observational data is crucial. Spectroscopic binaries are specially suited to be used as observational data, since several biases that can arise from general catalogues of binary stars can be avoided, including dominance of systems with large separations between components. A very important parameter in these studies is the mass ratio, the quocient of the masses of primary and secundary members. The histogram of mass ratios provides crucial information to models of binary formation, linked to condensation processes and evolutionaty rates.In this case, spectroscopic binaries can be chosen as the observational sample, provided that the spectrum of the primary is from a non-evolved, main-sequence star,whose mass can be derived reliably from its spectral type. Defining an adequate limiting magnitude (6.5), one avoids bias from eclipsing systems with high inclinations, since nearly all systems up to 6.5 mag were detected. In this paper, a critical review is presented of the existing methods for deriving the distribution of the mass ratios from spectroscopic binary orbital data. After showing the incorrectness of some results published in the litterature, the available data (Batten's 8th Catalogue, 1989) is discussed. Simulations for several distributions of mass ratios (constant, quadratic, etc) are performed. It is shown that the existing data permits only to assert that the spectroscopic binaries with small mass ratios (q < 0.4) are more frequent that those with large mass ratios (q = 0.9 to 1.0).

  18. Spectroscopic measurements of soybeans used to parameterize physiological traits in the AgroIBIS ecosystem model

    NASA Astrophysics Data System (ADS)

    Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.

    2014-12-01

    Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the Agro

  19. Galaxy And Mass Assembly (GAMA): spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Hopkins, A. M.; Driver, S. P.; Brough, S.; Owers, M. S.; Bauer, A. E.; Gunawardhana, M. L. P.; Cluver, M. E.; Colless, M.; Foster, C.; Lara-López, M. A.; Roseboom, I.; Sharp, R.; Steele, O.; Thomas, D.; Baldry, I. K.; Brown, M. J. I.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Drinkwater, M. J.; Loveday, J.; Meyer, M.; Peacock, J. A.; Tuffs, R.; Agius, N.; Alpaslan, M.; Andrae, E.; Cameron, E.; Cole, S.; Ching, J. H. Y.; Christodoulou, L.; Conselice, C.; Croom, S.; Cross, N. J. G.; De Propris, R.; Delhaize, J.; Dunne, L.; Eales, S.; Ellis, S.; Frenk, C. S.; Graham, Alister W.; Grootes, M. W.; Häußler, B.; Heymans, C.; Hill, D.; Hoyle, B.; Hudson, M.; Jarvis, M.; Johansson, J.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; López-Sánchez, Á.; Maddox, S.; Madore, B.; Maraston, C.; McNaught-Roberts, T.; Nichol, R. C.; Oliver, S.; Parkinson, H.; Penny, S.; Phillipps, S.; Pimbblet, K. A.; Ponman, T.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Staveley-Smith, L.; Sutherland, W.; Taylor, E.; Van Waerbeke, L.; Vázquez-Mata, J. A.; Warren, S.; Wijesinghe, D. B.; Wild, V.; Wilkins, S.

    2013-04-01

    The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ˜300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.

  20. sick: The Spectroscopic Inference Crank

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  1. Spectroscopic methods for detection of impurities in water

    NASA Astrophysics Data System (ADS)

    Strashnikova, Natalia V.; Papiashvili, Nona; Cohen-Luria, Rivka; Mark, Shlomo; Shilon, Guy; Khankin, Daniel; Kalisky, Yehoshua; Kalisky, Ofra; Parola, Abraham H.

    2011-11-01

    Optical photoluminescence spectroscopic method for detection of impurities, hazardous materials, pesticides, and pollutants in water resources, both qualitatively and quantitatively, is presented. The method is based on synchronous fluorescence spectroscopy (SFS) of organic aromatic compounds, or poly-aromatic hydrocarbons (PAH), and is carried out by following simultaneously their excitation and emission spectra. The full excitation emission matrix (EEM) generated in this way provides a 2-D and 3-D fluorescence map of the tested sample and the diagonals through the axes origin provide the synchronous fluorescence spectra at a constant wavelengths differences between the emission and excitation wavelengths, thus enabling multitude components identification. This map contains all the relevant spectroscopic information of the tested sample, and serves as a unique "fingerprint" with a very specific and accurate identification. When compared with pre-determined spectra and calibration curves from a "databank", there is a one-toone correspondence between the image and the specific compound, and it can be identified accurately both qualitatively and quantitatively. This method offers several significant advantages, and it provides a sensitive (ppm detection level), accurate and simple spectroscopic tool to monitor impurities and pollutants in water. The design and performance of the spectrofluorimeter prototype, as well as the software development and analysis of chemical organic compounds and mixtures in water will be discussed in this paper.

  2. Spectroscopic classification of supernova candidates

    NASA Astrophysics Data System (ADS)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  3. Spectroscopic optical coherence elastography.

    PubMed

    Adie, Steven G; Liang, Xing; Kennedy, Brendan F; John, Renu; Sampson, David D; Boppart, Stephen A

    2010-12-06

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response.

  4. Spectroscopic Detection of Pathogens

    SciTech Connect

    ALAM,M. KATHLEEN; TIMLIN,JERILYN A.; MARTIN,LAURA E.; HJELLE,DRIAN; LYONS,RICK; GARRISON,KRISTIN

    2000-11-01

    The goal of this LDRD Research project was to provide a preliminary examination of the use of infrared spectroscopy as a tool to detect the changes in cell cultures upon activation by an infectious agent. Due to a late arrival of funding, only 5 months were available to transfer and setup equipment at UTTM,develop cell culture lines, test methods of in-situ activation and collect kinetic data from activated cells. Using attenuated total reflectance (ATR) as a sampling method, live cell cultures were examined prior to and after activation. Spectroscopic data were collected from cells immediately after activation in situ and, in many cases for five successive hours. Additional data were collected from cells activated within a test tube (pre-activated), in both transmission mode as well as in ATR mode. Changes in the infrared data were apparent in the transmission data collected from the pre-activated cells as well in some of the pre-activated ATR data. Changes in the in-situ activated spectral data were only occasionally present due to (1) the limited time cells were studied and (2) incomplete activation. Comparison of preliminary data to infrared bands reported in the literature suggests the primary changes seen are due an increase in ribonucleic acid (RNA) production. This work will be continued as part of a 3 year DARPA grant.

  5. Accurate equilibrium structures for piperidine and cyclohexane.

    PubMed

    Demaison, Jean; Craig, Norman C; Groner, Peter; Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Rudolph, Heinz Dieter

    2015-03-05

    Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.

  6. Spectroscopic detection of nitrogen concentrations in sagebrush

    SciTech Connect

    J. J. MITCHELL; N. F. GLENN; T.T. SANKEY; D. R. DERRYBERRY; R. C. HRUSKA; M. O. Anderson

    2012-07-01

    The ability to estimate foliar nitrogen (N) in semi-arid landscapes can yield information on nutritional status and improve our limited understanding of controls on canopy photosynthesis. We examined two spectroscopic methods for estimating sagebrush dried leaf and live shrub N content: first derivative reflectance (FDR) and continuum removal. Both methods used partial least squares (PLS) regression to select wavebands most significantly correlated with N concentrations in the samples. Sagebrush dried leaf spectra produced PLS models (R2 = 0.76–0.86) that could predict N concentrations within the dataset more accurately than PLS models generated from live shrub spectra (R2 = 0.41–0.63). Inclusion of wavelengths associated with leaf water in the FDR transformations appeared to improve regression results. Findings are encouraging and warrant further exploration into sagebrush reflectance spectra to characterize N concentrations.

  7. Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. 2. Orbits of Double-Lined Spectroscopic Binaries

    DTIC Science & Technology

    2011-07-01

    Toronto, M5V 3B1, Canada 4 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA 5 US Naval Observatory, Flagstaff Station...March 31; published 2011 May 26 ABSTRACT We present orbital parameters for six double-lined spectroscopic binaries (ι Pegasi, ω Draconis, 12 Boötis...14. ABSTRACT We present orbital parameters for six double-lined spectroscopic binaries (ι Pegasi, ω Draconis, 12 Bo?otis, V1143 Cygni, β

  8. The Spatial Distribution of Spectroscopically Selected Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.; Agustsson, Ingolfur

    2015-01-01

    We use a mock redshift survey of the first Millennium Run simulation to investigate the spatial locations of spectroscopically selected satellite galaxies. The host-satellite systems were selected using typical redshift space proximity criteria and, therefore, the satellite sample includes a large number of "interlopers" (i.e., false satellites). Fifty percent of the satellites are located outside the virial radii of their host galaxies and 34% are located more than 500 kpc from their host galaxy. The host galaxies reside in relatively isolated regions of space and have stellar masses that span the range 10.3 < log10[M*/Ms] < 11.5. The 3D locations of the satellites are well-fitted by a combination of a Navarro, Frenk & White (NFW) density profile and a power law. At fixed stellar mass, the NFW scale parameter, rs, for the satellites of red hosts exceeds that for the satellites of blue hosts, and in both cases the dependence of rs on host stellar mass is well-fitted by a power law. For the satellites of red hosts, rs ~ (M*/Ms)0.71, while for satellites of blue hosts rs ~ (M*/Ms)0.48. For hosts with large stellar masses (log10[M*/Ms] > 10.8), the satellites of the red hosts are significantly (4σ) less concentrated than is the halo dark matter, while the satellites of blue hosts are marginally (2σ) more concentrated than is the halo dark matter. We perform model fits to the projected locations of the satellites and find that, with the exception of the satellites of the most massive red hosts, the 2D analysis accurately recovers the values of rs that were found using the 3D analysis. Therefore, even in the limit of a large population of "interlopers" in the satellite sample, the 3D distribution of the satellites can be recovered using 2D information alone. However, since the concentration of the satellite distribution differs from that of the dark matter in the case of high mass host galaxies, this calls into question whether spectroscopically selected satellites

  9. Improved spectroscopic line parameters for the ozone molecule

    NASA Technical Reports Server (NTRS)

    Flaud, J. M.; Rinsland, C. P.

    1991-01-01

    Recently the authors made a comprehensive compilation of improved line positions, intensities, and lower state energies of ozone between 0 and 3400/cm. Examples of improvement brought by these data and progress achieved in remote sensing using them are given. Areas for future study include hot bands in the higher wavenumber range, spectral regions above 3400/cm, the O-17 isotopic variants of ozone, broadening coefficients, and emission from high-lying vibrational levels of ozone in the upper atmosphere.

  10. Spectroscopic Parameters of B Stars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hanes, Richard; McSwain, M. Virginia

    2017-01-01

    As part of an ongoing program to study the massive stars in the Carina Nebula, we have analyzed the spectra of 97 B stars. Using the Tlusty BSTAR2006 grids of model spectra, we have measured the effective temperature, surface gravities, and the projected rotational velocities of our sample. We also compared our results to the evolutionary tracks and isochrones of Ekström et al. to measure the mass, radius, and age of these stars.

  11. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  12. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    SciTech Connect

    Cunha, Carlos E.; Huterer, Dragan; Lin, Huan; Busha, Michael T.; Wechsler, Risa H.

    2014-10-11

    We use N-body-spectro-photometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys to photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modeled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectrograph with wavelength coverage of 5500{\\AA} < {\\lambda} < 9500{\\AA}. The principal systematic errors that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colors, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a percent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also substantially degrade the accuracy of training set based photo-z estimators. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably.

  13. Optimization of spectroscopic surveys for testing non-Gaussianity

    SciTech Connect

    Raccanelli, Alvise; Doré, Olivier; Dalal, Neal E-mail: Olivier.P.Dore@jpl.nasa.gov

    2015-08-01

    We investigate optimization strategies to measure primordial non-Gaussianity with future spectroscopic surveys. We forecast measurements coming from the 3D galaxy power spectrum and compute constraints on primordial non-Gaussianity parameters f{sub NL} and n{sub NG}. After studying the dependence on those parameters upon survey specifications such as redshift range, area, number density, we assume a reference mock survey and investigate the trade-off between number density and area surveyed. We then define the observational requirements to reach the detection of f{sub NL} of order 1. Our results show that power spectrum constraints on non-Gaussianity from future spectroscopic surveys can improve on current CMB limits, but the multi-tracer technique and higher order correlations will be needed in order to reach an even better precision in the measurements of the non-Gaussianity parameter f{sub NL}.

  14. THIRTY NEW LOW-MASS SPECTROSCOPIC BINARIES

    SciTech Connect

    Shkolnik, Evgenya L.; Hebb, Leslie; Cameron, Andrew C.; Liu, Michael C.; Neill Reid, I. E-mail: Andrew.Cameron@st-and.ac.u E-mail: mliu@ifa.hawaii.ed

    2010-06-20

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P{sub rot} to determine the true orbital parameters. For those with no P{sub rot}, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems.

  15. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  16. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  17. Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2017-04-01

    I start by providing an updated summary of the penalized pixel-fitting (PPXF) method that is used to extract the stellar and gas kinematics, as well as the stellar population of galaxies, via full spectrum fitting. I then focus on the problem of extracting the kinematics when the velocity dispersion σ is smaller than the velocity sampling ΔV that is generally, by design, close to the instrumental dispersion σinst. The standard approach consists of convolving templates with a discretized kernel, while fitting for its parameters. This is obviously very inaccurate when σ ≲ ΔV/2, due to undersampling. Oversampling can prevent this, but it has drawbacks. Here I present a more accurate and efficient alternative. It avoids the evaluation of the undersampled kernel and instead directly computes its well-sampled analytic Fourier transform, for use with the convolution theorem. A simple analytic transform exists when the kernel is described by the popular Gauss-Hermite parametrization (which includes the Gaussian as special case) for the line-of-sight velocity distribution. I describe how this idea was implemented in a significant upgrade to the publicly available PPXF software. The key advantage of the new approach is that it provides accurate velocities regardless of σ. This is important e.g. for spectroscopic surveys targeting galaxies with σ ≪ σinst, for galaxy redshift determinations or for measuring line-of-sight velocities of individual stars. The proposed method could also be used to fix Gaussian convolution algorithms used in today's popular software packages.

  18. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  19. An analytical fit to an accurate ab initio ( 1A 1) potential surface of H 2O

    NASA Astrophysics Data System (ADS)

    Redmon, Michael J.; Schatz, George C.

    1981-01-01

    The accurate ab initio MBPT quartic force field of Bartlett, Shavitt and Purvis has been fit to an analytical function using a method developed by Sorbie and Murrell (SM). An analysis of this surface indicates that it describes most properties of the H 2O molecule very accurately, including an exact fit to the MBPT force field, and very close to the correct energy difference between linear and equilibrium H 2O. The surface also reproduces the correct diatomic potentials in all dissociative regions, but some aspects of it in the "near asymptotic" O( 1D) + H 2 region are not quantitatively described. For example, the potential seems to be too attractive at long range for O + H 2 encounters, although it does have the correct minimum energy path geometry and correctly exhibits no barrier to O atom insertion. Comparisons of this surface with one previously developed by SM indicates generally good agreement between the two, especially after some of the SM parameters were corrected, using a numerical differentiation algorithm to evaluate them. A surface developed by Schinke and Lester (SL) is more realistic than outs in the O( 1D) + H 2 regions, but less quantitative in its description of the H 2O molecule. Overall, the present fit appears to be both realistic and quantitative for energy displacements up to 3-4; eV from H 2O equilibrium, and should therefore be useful for spectroscopic and collision dynamics studies involving H 2O.

  20. Spectroscopic Modeling of Single Element Plasma

    SciTech Connect

    Ghomeishi, Mostafa; Yap, S. L.; Wong, C. S.; Saboohi, S.; Chan, L. S.

    2011-03-30

    A strategy for spectroscopic analysis of single element plasmas is through modeling. An experimental investigation or generation of a specified emission spectrum can be attempted based on the modeling results which are currently under investigating by many researchers in the world. In the emission spectroscopy, the K-shell emission is more interesting than emissions from other shells due to their unique EUV and SXR frequencies that can be applied in various scientific and industrial applications. Population information of our model is based on a steady state kinetic code which is calculated for a given electron temperature and an estimated electron density. Thus for each single element plasma it needs large amounts of experimental or theoretical database. Depending on the parameter of the plasma, theories based on local thermodynamic equilibrium (LTE) and non-LTE are considered. In the non-LTE case, the Corona model is used and the total absolute number densities are calculated based on the ion densities that are related to the electron density corresponds to the mean charge of the ions. The spectra generated by the model can then be compared with spectroscopic data obtained experimentally.

  1. High-Definition Infrared Spectroscopic Imaging

    PubMed Central

    Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit

    2013-01-01

    The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676

  2. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  3. Spectroscopic methods in gas hydrate research.

    PubMed

    Rauh, Florian; Mizaikoff, Boris

    2012-01-01

    Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO(2) storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3-20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas

  4. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  5. Spectroscopic neutron detection using composite scintillators

    NASA Astrophysics Data System (ADS)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  6. Synthetic Ultraviolet Spectroscopic Indices in Stars

    NASA Astrophysics Data System (ADS)

    Chávez, M.; Rodríguez-Merino, L. H.; Bertone, E.; Buzzoni, A.; Bressan, A.

    2007-12-01

    We present a progress report on the calculation of ultraviolet spectroscopic indices by using the UVBLUE library of synthetic spectra. The ensemble of indices are aimed at complementing empirical databases for the study of stellar populations. The definitions for the set of indices are mainly those empirically built upon data collected with the International Ultraviolet Explorer (IUE). Because the far-ultraviolet (far-UV) and mid-ultraviolet (mid-UV) are sensitive to quite dissimilar stellar populations, they are presented separately. We provide a few examples on the effects of the leading atmospheric parameters on index values. This analysis is, to our knowledge, the first based upon high resolution synthetic spectra and we envisage important applications on the study of stellar aggregates at UV wavelengths.

  7. Role of Optical Spectroscopic Methods in Neuro-Oncological Sciences

    PubMed Central

    Bahreini, Maryam

    2015-01-01

    In the surgical treatment of malignant tumors, it is crucial to characterize the tumor as precisely as possible. The determination of the exact tumor location as well as the analysis of its properties is very important in order to obtain an accurate diagnosis as early as possible. In neurosurgical applications, the optical, non-invasive and in situ techniques allow for the label-free analysis of tissue, which is helpful in neuropathology. In the past decades, optical spectroscopic methods have been investigated drastically in the management of cancer. In the optical spectroscopic techniques, tissue interrogate with sources of light which are ranged from the ultraviolet to the infrared wavelength in the spectrum. The information accumulation of light can be in a reflection which is named reflectance spectroscopy; or interactions with tissue at different wavelengths which are called fluorescence and Raman spectroscopy. This review paper introduces the optical spectroscopic methods which are used to characterize brain tumors (neuro-oncology). Based on biochemical information obtained from these spectroscopic methods, it is possible to identify tumor from normal brain tissues, to indicate tumor margins, the borders towards normal brain tissue and infiltrating gliomas, to distinguish radiation damage of tissues, to detect particular central nervous system (CNS) structures to identify cell types using particular neurotransmitters, to detect cells or drugs which are optically labeled within therapeutic intermediations and to estimate the viability of tissue and the prediction of apoptosis beginning in vitro and in vivo. The label-free, optical biochemical spectroscopic methods can provide clinically relevant information and need to be further exploited to develop a safe and easy-to-use technology for in situ diagnosis of malignant tumors. PMID:25987969

  8. SPECTROSCOPIC BINARIES IN THE ORION NEBULA CLUSTER AND NGC 2264

    SciTech Connect

    Kounkel, Marina; Hartmann, Lee; Mateo, Mario; Bailey, John I. III; Spencer, Meghin; Tobin, John J.

    2016-04-10

    We examine the spectroscopic binary population for two massive nearby regions of clustered star formation, the Orion Nebula Cluster (ONC) and NGC 2264, supplementing the data presented by Tobin et al. with more recent observations and more extensive analysis. The inferred multiplicity fraction up to 10 au based on these observations is 5.3 ± 1.2% for NGC 2264 and 5.8 ± 1.1% for the ONC; these values are consistent with the distribution of binaries in the field in the relevant parameter range. Eight of the multiple systems in the sample have enough epochs to perform an initial fit for the orbital parameters. Two of these sources are double-lined spectroscopic binaries; for them, we determine the mass ratio. Our reanalysis of the distribution of stellar radial velocities toward these clusters presents a significantly better agreement between stellar and gas kinematics than was previously thought.

  9. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions.

    PubMed

    Peterson, Kirk A; Shepler, Benjamin C; Figgen, Detlev; Stoll, Hermann

    2006-12-28

    A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation

  10. Spectroscopic characterization of polymers: report

    SciTech Connect

    Koenig, J.L.

    1987-10-01

    Polymer characterization has presented major difficulties to the analytical chemist, who has had to develop techniques to cope with the challenge. Even the elementary problem of measuring molecular weight is not easy. Yet such measurements are essential, because the physical, mechanical, and flow properties depend on the length of the polymer chain. Because of the limited solubility and high viscosity of polymers, many classical techniques have been of little use or have had to be extensively modified to measure the molecular weight of polymers. Size-exclusion chromatographic techniques such as gel permeation have been developed to measure these molecular weight distributions. Special chromatographic instruments with a range of spectroscopic detectors (including infrared and laser-light scattering) have emerged commercially to aid the analytical chemist in the fundamental endeavor to measure the length of the polymer chain and its distribution. The author describes the advantages and disadvantages and disadvantages of various spectroscopic techniques.

  11. Knockout, Transfer and Spectroscopic Factors

    NASA Astrophysics Data System (ADS)

    Kemper, Kirby; Keeley, Nicholas; Rusek, Krzysztof

    2011-10-01

    As derived quantities rather than observables, spectroscopic factors extracted from fits to data are model dependent. The main source of uncertainty is the choice of binding potential, but other factors such as adequate modeling of the reaction mechanism, the Perey effect, choice of distorting nuclear potentials etc. can also play a significant role. Recently, there has been some discussion of apparent discrepancies in spectroscopic factors derived from knockout reactions compared to those obtained from low-energy direct reactions. It should be possible to reconcile these discrepancies and we explore this prospect by attempting to describe the 10Be(d,t)9Be data of Nucl. Phys. A157, 305 (1970) using the 10Be/9Be form factors from a recent knockout study, Phys. Rev. Lett. 106, 162502 (2011). The influence of such factors as choice of distorting potentials and multi-step reactions paths will be explored.

  12. Method of absorbance correction in a spectroscopic heating value sensor

    SciTech Connect

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  18. Mid-infrared spectroscopic investigation

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Vergo, Norma; Walter, Louis

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed.

  19. Single nanoparticle tracking spectroscopic microscope

    DOEpatents

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  20. QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES

    SciTech Connect

    Arneson, Ryan A.; Brownstein, Joel R.; Bolton, Adam S. E-mail: joelbrownstein@astro.utah.edu

    2012-07-01

    Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass-density profile. For parameters typical of the SLACS and BELLS surveys, we find (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass-density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias toward smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias toward larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of non-lenses is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general, we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass-density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.

  1. A more accurate nonequilibrium air radiation code - NEQAIR second generation

    NASA Technical Reports Server (NTRS)

    Moreau, Stephane; Laux, Christophe O.; Chapman, Dean R.; Maccormack, Robert W.

    1992-01-01

    Two experiments, one an equilibrium flow in a plasma torch at Stanford, the other a nonequilibrium flow in a SDIO/IST Bow-Shock-Ultra-Violet missile flight, have provided the basis for modifying, enhancing, and testing the well-known radiation code, NEQAIR. The original code, herein termed NEQAIR1, lacked computational efficiency, accurate data for some species and the flexibility to handle a variety of species. The modified code, herein termed NEQAIR2, incorporates recent findings in the spectroscopic and radiation models. It can handle any number of species and radiative bands in a gas whose thermodynamic state can be described by up to four temperatures. It provides a new capability of computing very fine spectra in a reasonable CPU time, while including transport phenomena along the line of sight and the characteristics of instruments that were used in the measurements. Such a new tool should allow more accurate testing and diagnosis of the different physical models used in numerical simulations of radiating, low density, high energy flows.

  2. Highlights of the Brazilian Solar Spectroscope

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Cecatto, J. R.; Mészárosová, H.; Faria, C.; Fernandes, F. C. R.; Karlický, M.; de Andrade, M. C.

    2009-07-01

    The digital, decimetric (950-2500 MHz) Brazilian Solar Spectroscope (BSS, Sawant, H.S., Subramanian, K.R., Faria, C., et al. Brazilian Solar Spectroscope (BSS). Solar Phys. 200, 167-176, 2001) with high time (10-1000 ms) and frequency (1-10 MHz) resolution is in regular operation since April, 1998, at the National Space Research Institute (INPE) at São José dos Campos, Brazil. The BSS has now been upgraded with a new digital data acquisition and data processing system. The new version of the BSS has improved the observational possibilities with the capability to record up to 200 frequency channels available in the selectable frequency range 950-2500 MHz. The GPS receiver permits the acquisition of data with time accuracy in the order of 0.1 ms. The software system of the BSS is composed by two distinct modules: the first, data acquisition system provides a flexible Graphical User Interface (GUI) that allows one to choose the observational parameters. The second module is the real time visualization system that permits real time visualization of the observed dynamic spectrum and additionally allows procedures for visualization and preliminary analysis of the recorded solar spectra. Using the new visualization system, we have realized two new types of dm-radio fine structures: narrow band type III bursts with positive as well as negative group frequency drift and dots emissions arranged in zebra-like and fiber-like chains. Furthermore, we have found flare generated fast wave trains according to their tadpole signature in wavelet power spectra for a decimetric type IV radio event (June 6, 2000 flare).

  3. Does DFT-SAPT method provide spectroscopic accuracy?

    SciTech Connect

    Shirkov, Leonid; Makarewicz, Jan

    2015-02-14

    Ground state potential energy curves for homonuclear and heteronuclear dimers consisting of noble gas atoms from He to Kr were calculated within the symmetry adapted perturbation theory based on the density functional theory (DFT-SAPT). These potentials together with spectroscopic data derived from them were compared to previous high-precision coupled cluster with singles and doubles including the connected triples theory calculations (or better if available) as well as to experimental data used as the benchmark. The impact of midbond functions on DFT-SAPT results was tested to study the convergence of the interaction energies. It was shown that, for most of the complexes, DFT-SAPT potential calculated at the complete basis set (CBS) limit is lower than the corresponding benchmark potential in the region near its minimum and hence, spectroscopic accuracy cannot be achieved. The influence of the residual term δ(HF) on the interaction energy was also studied. As a result, we have found that this term improves the agreement with the benchmark in the repulsive region for the dimers considered, but leads to even larger overestimation of potential depth D{sub e}. Although the standard hybrid exchange-correlation (xc) functionals with asymptotic correction within the second order DFT-SAPT do not provide the spectroscopic accuracy at the CBS limit, it is possible to adjust empirically basis sets yielding highly accurate results.

  4. HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS

    SciTech Connect

    Smullen, Rachel A.; Kobulnicky, Henry A.

    2015-08-01

    We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars in this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.

  5. Spectroscopic Biomarkers for Monitoring Wound Healing and Infection in Wounds

    DTIC Science & Technology

    2015-06-01

    civilian trauma center. The parameters bearing the most weight will be used to diagnose trauma wounds and predict patient outcome. 15. SUBJECT TERMS...are most important for a correct initial assessment of the wound along with a more accurate wound healing prediction. The parameters bearing the

  6. Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars

    NASA Astrophysics Data System (ADS)

    Niemczura, E.; Murphy, S. J.; Smalley, B.; Uytterhoeven, K.; Pigulski, A.; Lehmann, H.; Bowman, D. M.; Catanzaro, G.; van Aarle, E.; Bloemen, S.; Briquet, M.; De Cat, P.; Drobek, D.; Eyer, L.; Gameiro, J. F. S.; Gorlova, N.; Kamiński, K.; Lampens, P.; Marcos-Arenal, P.; Pápics, P. I.; Vandenbussche, B.; Van Winckel, H.; Stȩślicki, M.; Fagas, M.

    2015-07-01

    The Kepler space mission provided near-continuous and high-precision photometry of about 207 000 stars, which can be used for asteroseismology. However, for successful seismic modeling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe I, and Fe II lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λ Boo types. The distribution of the projected rotational velocity, vsin i, is typical for A and F stars and ranges from 8 to about 280 km s-1, with a mean of 134 km s-1.

  7. Spectroscopic and Interferometric Measurements of Nine K Giant Stars

    NASA Astrophysics Data System (ADS)

    Baines, Ellyn K.; Döllinger, Michaela P.; Guenther, Eike W.; Hatzes, Artie P.; Hrudkovu, Marie; van Belle, Gerard T.

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  8. Spectroscopic Classifications of Optical Transients with SOAR

    NASA Astrophysics Data System (ADS)

    Foley, R. J.; Hounsell, R. A.; Downing, S.; Pan, Y.-C.; Scolnic, D.; Jha, S. W.; Rest, A.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2015-07-01

    We report the following classifications of optical transients from spectroscopic observations with the Goodman spectrograph (wavelength range 3100 - 7100) on the Southern Astrophysical Research (SOAR) telescope.

  9. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  10. Spectroscopic properties of chlorophyll f.

    PubMed

    Li, Yaqiong; Cai, Zheng-Li; Chen, Min

    2013-09-26

    The absorption and fluorescence spectra of chlorophyll f (newly discovered in 2010) have been measured in acetone and methanol at different temperatures. The spectral analysis and assignment are compared with the spectra of chlorophyll a and d under the same experimental conditions. The spectroscopic properties of these chlorophylls have further been studied by the aid of density functional CAM-B3LYP and high-level symmetric adapted coupled-cluster configuration interaction calculations. The main Q and Soret bands and possible sidebands of chlorophylls have been determined. The photophysical properties of chlorophyll f are discussed.

  11. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  12. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    double-ζ quality such as N07D and SNSD. Such a protocol has been then applied to the dimers of nucleobases in order to study the perturbation on the vibrational frequencies and infrared intensities induced by the intermolecular hydrogen-bonding interactions. Efforts have been made to challenge the problems of simulating strongly anharmonic vibrations within hydrogen-bonded bridges, focusing on the requirement of a very accurate description of the underlying potential energy surface. Improvements for such vibrations have been achieved by means of hybrid models, where the harmonic part of the force-field is computed at a higher level of theory like B2PLYP, or by application of the less demanding ONIOM B2PLYP:B3LYP scheme, which is a focused model where only the part of the molecular system forming the hydrogen bonds is treated at B2PLYP level of theory. Moreover, for improving the vibrational frequencies of modes like the stretching of C=O and N-H functional groups, which are particularly sensitive to hydrogen-bonding, correction parameters for the B3LYP-D3/N07D frequencies have been determined. Afterwards, the treatment of the vibrational properties of nucleobases in condensed phases has been faced, focusing on uracil in the solid state. In particular, a heptamer cluster of uracil molecules has been considered as model to represent the properties in the solid state. The relative vibrational frequencies have been computed at anharmonic level within the VPT2 framework, combining two cost-effective approaches, namely the hybrid B3LYP-D3/N07D:DFTBA model, where the harmonic frequencies are computed with B3LYP-D3/N07D method and the anharmonic corrections are evaluated with the less expensive DFTBA method, and the reduced dimensionality VPT2 (RD-VPT2) approach, in which only selected vibrational modes are calculated anharmonically (including the couplings with the other modes) while the remaining modes are treated at the harmonic level, using the B3LYP-D3/N07D method only

  13. A spectroscopic analysis of three cataclysmic variable stars

    NASA Astrophysics Data System (ADS)

    Unda-Sanzana, E.

    2005-02-01

    Cataclysmic variable stars (CVs) are binary systems in which matter is transferred from a low mass star to a white dwarf via an accretion disc. My thesis is a spectroscopic study of three of these objects: U Gem, GD 552 and GY Cnc. I present high-resolution optical spectra of U Gem taken during quiescence. For U Gem, the radial velocity semi-amplitude of the white dwarf, K1, is accurately known thanks to a direct observation by Long et al. (1999). I find that even with these data the optical measurements are seriously distorted compared to the known value, which is not recovered to better than 20%. Doppler tomograms show emission at low velocity, close to the centre of mass, and a transient and sharp absorption feature is seen in the Balmer lines close to eclipse. I suggest that stellar prominences may explain part of these features. I study two features detected in HeII 4686.75 angstroms. They seem to be produced in the bright spot. The narrower feature has a velocity close to that of the accretion disc in the impact region. I present evidence of weak spiral structure, which may support explanations for ``spiral shocks'' based upon 3-body effects. I apply a method of isophote fitting to search for evidence of stream-disc overflow, but fail to uncover any. I detect evidence of irradiation of the mass donor with shielding by the disc: I estimate an H/R ratio between 0.15 and 0.20. For GD 552 I present spectroscopy taken with the aim of detecting emission from the mass donor. I fail to do so at a level which allows me to rule out the presence of a near-main-sequence star donor. Given GD 552's orbital period of 103 minutes, this suggests instead that it may be a system that has evolved through the 80 minute orbital period minimum of CVs and now has a brown dwarf mass donor. Finally, I give a first look at high-resolution data for GY Cnc, whose dynamical parameters make it a near-perfect twin of U Gem. I find several surprising features: the bright spot is completely

  14. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  15. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    Typical estimates of standing wood derived from remote sensing sources take advantage of aggregate measurements of canopy heights (e.g. LIDAR) and canopy diameters (segmentation of IKONOS imagery) to obtain a wood volume estimate by assuming homogeneous species and a fixed function that returns volume. The validation of such techniques use manually measured diameter at breast height records (DBH). Our goal is to improve the accuracy and applicability of biomass estimation methods to heterogeneous forests and transitional areas. We are developing estimates with quantifiable uncertainty using a new form of estimation function, active sampling, and volumetric reconstruction image rendering for species specific mass truth. Initially we are developing a Bayesian adaptive sampling method for BRDF associated with the MISR Rahman model with respect to categorical biomes. This involves characterizing the probability distributions of the 3 free parameters of the Rahman model for the 6 categories of biomes used by MISR. Subsequently, these distributions can be used to determine the optimal sampling methodology to distinguish biomes during acquisition. We have a remotely controlled semi-autonomous helicopter that has stereo imaging, lidar, differential GPS, and spectrometers covering wavelengths from visible to NIR. We intend to automatically vary the way points of the flight path via the Bayesian adaptive sampling method. The second critical part of this work is in automating the validation of biomass estimates via using machine vision techniques. This involves taking 2-D pictures of trees of known species, and then via Bayesian techniques, reconstructing 3-D models of the trees to estimate the distribution moments associated with wood volume. Similar techniques have been developed by the medical imaging community. This then provides probability distributions conditional upon species. The final part of this work is in relating the BRDF actively sampled measurements to species

  16. Spectroscopic analysis of Pr^3+ (4f^2) absorption intensities in a plastic host (HEMA).

    NASA Astrophysics Data System (ADS)

    Stonestreet, David; Nash, Kelly; Dee, Doug; Yow, Raylon; Gruber, John; Sardar, Dhiraj

    2006-10-01

    A spectroscopic investigation has been performed on the Pr^3+ ions embedded in 2-hydroxyethyl methacrylate (HEMA) solid plastic host. The standard Judd-Ofelt analysis was applied to the room temperature absorption intensities of Pr^3+ transitions to determine three phenomenological intensity parameters: φ2, φ4 and φ6. Values of the intensity parameters were subsequently used to determine the decay rates (emission probabilities), radiative lifetimes, and branching ratios of the principal intermanifold transitions of Pr^3+ from the ^3P2, ^1D2, and ^3P0 manifold states to the lower-lying manifolds. The spectroscopic properties Pr^3+ in HEMA will be compared with those in glasses.

  17. Inverse scattering spectroscopic method for the fast measurement of the number and mass concentrations of metal nanoparticle colloid

    NASA Astrophysics Data System (ADS)

    Yang, Guoce; Bai, Benfeng; Liu, Wenqi; Wu, Xiaochun

    2016-04-01

    Metal nanoparticles (NPs) have wide applications in various fields due to their unique properties. The accurate and fast characterization of metal NP concentration is highly demanded in the synthesis, metrology, and applications of NPs. The commonly used inductively coupled plasma mass spectrometry (ICP-MS) is a standard method for measuring the mass concentration (MC) of NPs, even though it is time-consuming, expensive, and destructive. While for the number concentration (NC) characterization of NPs, the method is less explored. Here, we present an improved optical extinction-scattering spectroscopic method for the fast, non-destructive characterization of the MC and NC of poly-disperse metal NP colloid simultaneously. By measuring the extinction spectrum and the 90° scattering spectrum of the nanorod (NR) colloid, we can solve an inverse scattering problem to retrieve the two dimensional joint probability density function (2D-JPDF) with respect to the width and the aspect ratio of NR sample accurately, based on which the NC and MC of the colloidal NPs can be calculated. This method is powerful to characterize both the geometric parameters and the concentrations, including the MC and NC, of poly-disperse metal NPs simultaneously. It is very useful for the non-destructive, non-contact, and in-situ comprehensive measurement of colloidal NPs. This method also has the potential to characterize NPs of other shapes or made of other materials.

  18. Accurate multireference configuration interaction calculations of the 24 Λ-S states and 60 Ω states of the BO+ cation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-11-01

    The potential energy curves were calculated for the 24 Λ-S states correlating with the lowest four dissociation channels of the BO+ cation. The potential energy curves were also computed for the 60 Ω states generated from the 24 Λ-S states. Calculations were made for internuclear separations from 0.08 to 1.05 nm using the CASSCF method, which was followed by the icMRCI approach with the correlation-consistent basis sets. Core-valence correlation, scalar relativistic and basis extrapolation were accounted for. Of the 24 Λ-S states, only three states (25Π, 15Σ-, and 25Σ-) were found to be repulsive; only the 15Δ state was found to be a very weakly-bound state; and the E1Π, 23Π, and 15Π states were found to be very strong bound. In addition, the B1Σ+ and 31Σ+ states have double wells by the avoided crossing between the two states. The a3Π, 13Σ-, and 23Σ- states are inverted with the spin-orbit coupling effect included. The spectroscopic parameters were determined and the vibrational properties of several Λ-S states were predicted. Comparison with available experimental data shows that the methodology employed is highly accurate for this system.

  19. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  20. Spectroscopic insight for tablet compression.

    PubMed

    Lakio, S; Ylinärä, H; Antikainen, O; Räikkönen, H; Yliruusi, J

    2015-02-01

    Tablet compression process has been studied over the years from various perspectives. However what exactly happens to material during compression is still unknown. In this study a novel compression die which enables real-time spectroscopic measurements during the compression of material is represented. Both near infrared and Raman spectroscope probes can be attached to the die. In this study the usage of the die is demonstrated by using Raman spectroscopy. Eicosane, d-glucose anhydrate, α-lactose monohydrate and xylitol were used in the study because their compression behavior and bonding properties during compression were assumed to be different. The intensity of the Raman signal changed during compression with all of the materials. However, the intensity changes were different within the materials. The biggest differences were within the xylitol spectra. It was noticed that some peaks disappeared with higher compression pressures indicating that the pressure affected variously on different bonds in xylitol structure. These reversible changes were supposed to relate the changes in conformation and crystal structure. As a conclusion, the die was found to be a significant addition for studying compression process in real-time. It can help to reveal Process induced transformations (PITs) occurring during powder compaction.

  1. Articulatory Parameters.

    ERIC Educational Resources Information Center

    Ladefoged, Peter

    1980-01-01

    Summarizes the 16 parameters hypothesized to be necessary and sufficient for linguistic phonetic specifications. Suggests seven parameters affecting tongue shapes, three determining the positions of the lips, one controlling the position of the velum, four varying laryngeal actions, and one controlling respiratory activity. (RL)

  2. The HERMES solar atlas and the spectroscopic analysis of the seismic solar analogue KIC 3241581

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Allende Prieto, C.; Van Reeth, T.; Tkachenko, A.; Raskin, G.; van Winckel, H.; do Nascimento, J.-D., Jr.; Salabert, D.; Corsaro, E.; García, R. A.

    2016-05-01

    Context. Solar-analogue stars provide an excellent resource to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. Aims: We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar- and late-type stars observed with this instrument and thus perform differential spectroscopic comparisons. Methods: We acquire high-resolution and high signal-to-noise (S/N) spectroscopy to construct three solar reference spectra by observing the reflected light of the asteroids Vesta and Victoria and the jovian moon Europa (100 ≲ S/N ≲ 450) with the HERMES spectrograph. We then observe the Kepler solar analogue KIC 3241581 (S/N ~ 170). For this star, the fundamental spectral parameters are extracted using a differential analysis. Sufficient S/N in the near ultraviolet allows us to investigate the chromospheric magnetic activity in both objects. Results: We constructed three solar spectrum atlases from 385 to 900 nm, obtained with the HERMES spectrograph from observations of two bright asteroids and a jovian moon. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC 3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff = 5689 ± 11 K, log g = 4.385 ± 0.005, [Fe/H] = + 0.22 ± 0.01, being in agreement with the published global seismic values, which confirms its status as solar analogue. The chromospheric activity level is

  3. Importance of accurate spectral simulations for the analysis of terahertz spectra: citric acid anhydrate and monohydrate.

    PubMed

    King, Matthew D; Davis, Eric A; Smith, Tiffany M; Korter, Timothy M

    2011-10-13

    The terahertz (THz) spectra of crystalline solids are typically uniquely sensitive to the molecular packing configurations, allowing for the detection of polymorphs and hydrates by THz spectroscopic techniques. It is possible, however, that coincident absorptions may be observed between related crystal forms, in which case careful assessment of the lattice vibrations of each system must be performed. Presented here is a THz spectroscopic investigation of citric acid in its anhydrous and monohydrate phases. Remarkably similar features were observed in the THz spectra of both systems, requiring the accurate calculation of the low-frequency vibrational modes by solid-state density functional theory to determine the origins of these spectral features. The results of the simulations demonstrate the necessity of reliable and rigorous methods for THz vibrational modes to ensure the proper evaluation of the THz spectra of molecular solids.

  4. Revision of Spectral Parameters for the b- and γ-BANDS of Oxygen and Their Validation Using Atmospheric Spectra with the Sun as Source

    NASA Astrophysics Data System (ADS)

    Gordon, I. E.; Rothman, L. S.; Toon, G. C.

    2011-06-01

    Until recently the B (B1ΣG+ (v=1)←X3Σ-G (v=0)) and γ (B1ΣG+ (v=2)←X3Σ-G (v=0)) bands of oxygen in the visible region had not been used extensively in satellite remote sensing. However, these bands (in particular the B-band) are now being considered for future satellite missions. In this light, it is important to make sure that the reference spectroscopic parameters are accurate enough to provide means of deducing important physical characteristics from the atmospheric spectra. The energy levels and intensities currently given for these bands in the HITRAN spectroscopic database had not been updated for over two decades. We have collected the best available measured line positions that involve the B1ΣG+ (v=1 and v=2) states for the three most abundant isotopologues of oxygen and performed a combined fit to obtain a consistent set of spectroscopic constants. These constants were then used to calculate the line positions. A careful review of the available intensity and line-shape measurements was also carried out, and new parameters were derived based on that review. In particular, line shift parameters that were not previously available were introduced. The new data have been tested in application to high-resolution atmospheric spectra measured with the Fourier transform spectrometers at Park Falls, WI (B-band) and Kitt Peak, AZ (γ-band) and have yielded substantial improvement. In addition, we report the first direct observation and analysis of the 16O18O lines in the γ-band. L.S. Rothman, I.E. Gordon, A. Barbe, D.Chris Benner, P.F. Bernath, et al, ``The HITRAN 2008 Molecular Spectroscopic Database,'' JQSRT 110, 532-572 (2009).

  5. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  6. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  7. Spectroscopic studies of detonating heterogeneous explosives. [HNS

    SciTech Connect

    Renlund, A.M.; Trott, W.M.

    1985-01-01

    The experimental objectives of this work are to use real-time spectroscopic techniques, emission spectroscopy and Raman spectra to monitor chemical and physical changes in shock-loaded or detonating high explosive (HE) samples. The investigators hope to identify chemical species including any transient intermediates. Also, they wish to determine the physical state of the material when the reactions are taking place; measure the temperature and the pressure; and study the effect of different initiation parameters and bulk properties of the explosive material. This work is just part of the effort undertaken to gain information on the detailed chemistry involved in initiation and detonation. In summary, the investigators have obtained vibrational temperatures of some small radical products of detonation, which may correlate with the detonation temperature. They have also observed that NO/sub 2/ is an early product from detonating HNS and RDX, and that other electronically excited radical species such as CN(B) are formed in HNS detonations. In the Raman work, the single-pulse spectra could be obtained even in the severe environment of a detonation, and that the rate of removal of the parent molecule could be monitored. 2 refs., 6 figs.

  8. Spectroscopic problems in ITER diagnostics

    NASA Astrophysics Data System (ADS)

    Lisitsa, V. S.; Bureyeva, L. A.; Kukushkin, A. B.; Kadomtsev, M. B.; Krupin, V. A.; Levashova, M. G.; Medvedev, A. A.; Mukhin, E. E.; Shurygin, V. A.; Tugarinov, S. N.; Vukolov, K. Yu

    2012-12-01

    Problems of spectroscopic diagnostics of ITER plasma are under consideration. Three types of diagnostics are presented: 1) Balmer lines spectroscopy in the edge and divertor plasmas; 2) Thomson scattering, 3) charge exchange recombination spectroscopy. The Zeeman-Stark structure of line shapes is discussed. The overlapping of isotopes H-D-T spectral line shapes are presented for the SOL and divertor conditions. The polarization measurements of H-alpha spectral lines for H-D mixture on T-10 tokamak are shown in order to separate Zeeman splitting in more details. The problem of plasma background radiation emission for Thomson scattering in ITER is discussed in details. The line shape of P-7 hydrogen spectral line having a wave length close to laser one is presented together with continuum radiation. The charge exchange recombination spectroscopy (CXRS) is discussed in details. The data on Dα, HeII and CVI measurements in CXRS experiments on T-10 tokamak are presented.

  9. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.

  10. 4MOST - 4-meter Multi-Object Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Quirrenbach, Andreas; Consortium, 4MOST

    2015-08-01

    4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the 4m VISTA telescope of the European Southern Observatory. 4MOST will provide the spectroscopic complement to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA.The 4MOST baseline concept features a 2.5 degree diameter field-of-view with ~2400 fibers in the focal surface that are configured by a fiber positioner based on the tilting spine principle. The fibers feed two types of spectrographs: ~1600 fibers go to two spectrographs with resolution R>5000 (λ~390-930 nm) and ~800 fibers to a spectrograph with R>18,000 (λ~392-437 nm & 515-572 nm & 605-675 nm).4MOST will have a unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020.Gaia’s spectroscopic limits mean that radial velocity information starts to peter out at about 10 kpc, even for the most luminous stars. With 4MOST we will be able to obtain metallicities and [α/Fe] ratios of horizontal branch (HB) and red giant branch (RGB) stars out to ≈50 kpc and accurate radial velocities (σV ≈ 2 km/s) to 100 kpc. This will answer many open questions about the structure and formation of the Milky Way.Beginning in 2016 eROSITA will carry out a full sky X-ray survey that will probe to approximately 50 times fainter fluxes than the very successful ROSAT all sky survey but with dramatically better angular resolution of FWHM˜25ʺ and much better energy resolution.eROSITA will discover 3 million X

  11. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation)

    NASA Astrophysics Data System (ADS)

    Rothman, Laurence S.; Rinsland, Curtis P.; Goldman, Aaron; Massie, Steven T.; Edwards, David P.; Flaud, Jean-Marie; Perrin, Agnes; Camy-Peyret, Claude; Dana, Victor; Mandin, Y.-Y.; Schroeder, John W.; Gamache, Robert R.; Wattson, R. B.; Yoshino, Kouichi; Chance, Kelly V.; Jucks, Kenneth W.; Brown, L. R.; Nemtchinov, Vassilii; Varanasi, Prasad

    1998-07-01

    Nineteen ninety-eight marks the 25th anniversary of the release of the first HITRAN database. HITRAN is recognized as the international standard of the fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that is forthcoming. A new release is planned for 1998.

  12. Accurate transition rates for intercombination lines of singly ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2011-01-01

    The transition energies and rates for the 2s22p2 3P1,2-2s2p3 5S2o and 2s22p3s-2s22p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p3 1,3P1o and 2s22p3s 1,3P1olevels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  13. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  14. ELODIE: A spectrograph for accurate radial velocity measurements.

    NASA Astrophysics Data System (ADS)

    Baranne, A.; Queloz, D.; Mayor, M.; Adrianzyk, G.; Knispel, G.; Kohler, D.; Lacroix, D.; Meunier, J.-P.; Rimbaud, G.; Vin, A.

    1996-10-01

    The fibre-fed echelle spectrograph of Observatoire de Haute-Provence, ELODIE, is presented. This instrument has been in operation since the end of 1993 on the 1.93 m telescope. ELODIE is designed as an updated version of the cross-correlation spectrometer CORAVEL, to perform very accurate radial velocity measurements such as needed in the search, by Doppler shift, for brown-dwarfs or giant planets orbiting around nearby stars. In one single exposure a spectrum at a resolution of 42000 (λ/{DELTA}λ) ranging from 3906A to 6811A is recorded on a 1024x1024 CCD. This performance is achieved by using a tanθ=4 echelle grating and a combination of a prism and a grism as cross-disperser. An automatic on-line data treatment reduces all the ELODIE echelle spectra and computes cross-correlation functions. The instrument design and the data reduction algorithms are described in this paper. The efficiency and accuracy of the instrument and its long term instrumental stability allow us to measure radial velocities with an accuracy better than 15m/s for stars up to 9th magnitude in less than 30 minutes exposure time. Observations of 16th magnitude stars are also possible to measure velocities at about 1km/s accuracy. For classic spectroscopic studies (S/N>100) 9th magnitude stars can be observed in one hour exposure time.

  15. NOSD-1000, the high-temperature nitrous oxide spectroscopic databank

    NASA Astrophysics Data System (ADS)

    Tashkun, S. A.; Perevalov, V. I.; Lavrentieva, N. N.

    2016-07-01

    We present a high-temperature version, NOSD-1000, of the nitrous oxide spectroscopic databank. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths and coefficients of temperature dependence of air- and self-broadened half-widths) of the most abundant isotopologue 14N216O of the nitrous oxide molecule. The reference temperature is Tref=1000 K and the intensity cutoff is Icut=10-25 cm-1/(molecule cm-2). More than 1.4 million lines covering the 260-8310 cm-1 spectral range are included in NOSD-1000. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonian and effective dipole moment operators) to observed data collected from the literature. Line-by-line simulation of a medium-resolution high-temperature (T=873 K) spectrum has been performed in order to validate the databank. NOSD-1000 is freely accessible via the Internet.

  16. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    SciTech Connect

    Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S. E-mail: hochlaf@univ-mlv.fr; Linguerri, Roberto; Hochlaf, Majdi E-mail: hochlaf@univ-mlv.fr

    2013-11-07

    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.

  17. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  18. Nonlocal thermal transport in solar flares. II - Spectroscopic diagnostics

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; Cheng, Chung-Chieh; Doschek, George A.; Devore, C. Richard

    1989-01-01

    Physical parameters obtained for a flaring solar atmosphere in an earlier paper are used here to predict time-dependent emission-line profiles and integrated intensities as a function of position for two spectral lines commonly observed during solar flares: the X-ray resonance lines of Ca XIX and Mg XI. Considerations of ionization nonequilibrium during the rise phase of the flare are addressed, and the effects on the predicted spectral-line characteristics are discussed. It is concluded that some spectroscopic diagnostics favor the nonlocal model, but other long-standing discrepancies between the numerical models and the observations remain unresolved.

  19. Accurate and simple calibration of DLP projector systems

    NASA Astrophysics Data System (ADS)

    Wilm, Jakob; Olesen, Oline V.; Larsen, Rasmus

    2014-03-01

    Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now available which require only a small number of calibration targets. The problem of obtaining these parameters for light projectors has not been studied as extensively and most current methods require a camera and involve feature extraction from a known projected pattern. In this work we present a novel calibration technique for DLP Projector systems based on phase shifting profilometry projection onto a printed calibration target. In contrast to most current methods, the one presented here does not rely on an initial camera calibration, and so does not carry over the error into projector calibration. A radial interpolation scheme is used to convert features coordinates into projector space, thereby allowing for a very accurate procedure. This allows for highly accurate determination of parameters including lens distortion. Our implementation acquires printed planar calibration scenes in less than 1s. This makes our method both fast and convenient. We evaluate our method in terms of reprojection errors and structured light image reconstruction quality.

  20. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  1. No microplastics in benthic eelpout (Zoarces viviparus): An urgent need for spectroscopic analyses in microplastic detection.

    PubMed

    Wesch, Charlotte; Barthel, Anne-Kathrin; Braun, Ulrike; Klein, Roland; Paulus, Martin

    2016-07-01

    Monitoring the ingestion of microplastics is challenging and suitable detection techniques are insufficiently used. Thus, misidentifying natural for synthetic microfibres cannot be avoided. As part of a framework to monitor the ingestion of microplastics in eelpout, this short report addresses the accurate identification of microfibres. We show that, following visual inspections, putatively synthetic microfibres are indeed of natural origin, as ascertained by spectrometric analyses. Consequently, we call for an inclusion of spectroscopic techniques in standardized microplastic monitoring schemes.

  2. Spectroscopic properties of oxygen vacancies in LaAlO3

    SciTech Connect

    Dicks, Oliver A.; Shluger, Alexander L.; Sushko, Peter V.; Littlewood, Peter B.

    2016-04-25

    Oxygen vacancies in LaAlO3 (LAO) play an important role in the formation of the two-dimensional electron gas observed at the LaAlO3/SrTiO3 interface and affect the performance of MOSFETs using LAO as a gate dielectric. However, their spectroscopic properties are still poorly understood, which hampers their experimental identification. Here we predict the absorption spectra and ESR parameters of oxygen vacancies in LAO using periodic and embedded cluster methods and density functional theory (DFT). The structure, charge distribution, and spectroscopic properties of the neutral (V 0 O) and charged (V + O and V 2+ O ) oxygen vacancies in cubic and rhombohedral LaAlO3 are investigated. The highest intensity optical transitions [calculated using time-dependent DFT (TDDFT)], from the oxygen vacancy states to the conduction-band states have onsets at 3.5 and 4.2 eV for V 0 O and 3.6 eV for V + O in rhombohedral LAO and 3.3 and 4.0 eV for V 0 O and 3.4 eV for V + O in cubic LAO, respectively. Also reported are the isotropic g value (2.004026) and hyperfine coupling constants of V + O , which are compared to the experimental data obtained using electron spin resonance (ESR) spectroscopy, and accurately predict both the position and the width (3 mT) of its ESR signature. These results may further facilitate the experimental identification of oxygen vacancies in LAO and help to establish their role at the LAO/STO interfaces and in nanodevices using LAO.

  3. Spectroscopic properties of oxygen vacancies in LaAlO3

    SciTech Connect

    Dicks, Oliver A.; Shluger, Alexander L.; Sushko, Peter V.; Littlewood, Peter B.

    2016-04-01

    Oxygen vacancies in LaAlO3 (LAO) play an important role in the formation of the 2-dimensional electron gas observed at the LaAlO3/SrTiO3 interface and affect the performance of MOSFETs using LAO as a gate dielectric. However, their spectroscopic properties are still poorly understood, which hampers their experimental identification. Here we predict the absorption spectra and ESR parameters of oxygen vacancies in LAO using periodic and embedded cluster models and Density Functional Theory (DFT). The structure, charge distribution, and spectroscopic properties of the neutral (V0O) and charged (V+O and V2+O ) oxygen vacancies in cubic and rhombohedral LaAlO3 are investigated. The highest intensity optical transitions (calculated using time dependent DFT (TDDFT)), from the oxygen vacancy states to the conduction band states have onsets at 3.5 and 4.2 eV for V0O and 3.6 eV for V+O in rhombohedral LAO and 3.3 and 4.0 eV for V 0O and 3.4 eV for V+O in cubic LAO, respectively. Also reported are the isotropic g-value (2.004026) and hyperfine coupling constants of V+O which are compared to the experimental data obtained using electron spin resonance (ESR) spectroscopy, and accurately predict both the position and the width (3 mT) of its ESR signature. These results may further facilitate the experimental identification of oxygen vacancies in LAO and help to establish their role at the LAO/STO interfaces and in nanodevices using LAO.

  4. More-Accurate Model of Flows in Rocket Injectors

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford

    2011-01-01

    An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.

  5. An Empirical Dipole Polarizability for he from a Fit to Spectroscopic Data Yielding Analytic Empirical Potentials for all Isotopologues of HeH^+

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Le Roy, Robert J.; Dattani, Nikesh S.

    2015-06-01

    All available spectroscopic data for all stable isotopologues of HeH^+ are analyzed with a direct-potential-fit (DPF) procedure that uses least-squares fits to experimental data in order to optimize the parameters defining an analytic potential. Since the coefficient of the leading (1/r^4) inverse-power term is C_4 = αHe/2, when treated as a free parameter in the fit, it provides an independent empirical estimate of the polarizability of the He atom. The fact that the present model for the long-range behaviour includes accurate theoretical C_6, C_7 and C_8 coefficients (which are held fixed in the fits) should make it possible to obtain a good estimate of this quantity. The Boltzmann constant k_B, a fundamental constant that can define temperature, is directly related to the dipole polarizability α of a gas by the expression k_B = α/3ɛ_0(ɛ_r+2/ɛ_r-1){p}/{T} in which ɛ_0 is the permitivity of free space, and ɛ_r is the relative dielectric permitivity at pressure p and temperature T. If k_B can be determined with greater precision, it can be used to define temperature based on a fundamental constant, rather than based on the rather arbitrary triple point of water, which is only known to 5 digits of precision. α for He is known theoretically to 8 digits of precision, but an empirical value lags behind. This work, examines the question of how precisely αHe can be determined from a DPF to spectroscopic HeH^+ data, where the limiting long-range tail of the analytic potential has the correct form implied by Rydberg theory: αHe/2r^4. Although the highest observed vibrational level is bound by over 1000 cm-1, our current fits determine an empirical C_4 = α{He}/2 with an uncertainty of only 0.6%. It has been shown that with more precise spectroscopic data near the dissociation, α{He} can be determined with high enough precision to determine a more precise k_B and hence redefine temperature more accurately. Dattani N S. & Puchalski M. (2015) Physical Review

  6. Spectroscopic radiation imager for Internet-based safeguards and monitoring

    NASA Astrophysics Data System (ADS)

    Woodring, Mitchell; Souza, David; Honig, Larry; Squillante, Michael R.; Entine, Gerald

    1999-10-01

    Monitoring nuclear materials that is dangerously radioactive, remotely located, or difficult to access is a challenging task. The necessary research required to develop a system capable of remotely monitoring radioactive materials has been undertaken at Radiation Monitoring Devices, Inc. We report on a system utilizing a spectroscopic gamma-ray imager for real-time observation of sensitive nuclear materials over the Internet or dedicated networks. Research at RMD has produced a spectroscopic gamma-ray imager centered on a position-sensitive photomultiplier tube coupled to scintillation crystal and a coded aperture. A gamma-ray intensity pattern from the detector is stored and processed by a portable computer workstation and then mathematically corrected to yield the original radiation-source image. The pseudo-color, radiation-source image is overlaid on a co-registered video picture of the same area captured by a high-resolution charge-coupled device. The combined image is displayed as an accurate map of gamma-ray sources in the physical environment. Recent developments involve instrument control and data transmission through computer networks. Alarm triggers based on changes in the video image, the radiation image, the energy spectrum are under development. Work to remotely control alarm sensitivity and type, as well as the image update frequency, has also been examined.

  7. Spectroscopic properties and potential energy surfaces of GeH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Li, Junqing

    1988-04-01

    MCSCF (complete active space SCF) followed by configuration interaction calculations are carried out on 12 electronic states of GeH. Relativistic configuration interaction calculations are carried out with the objective of computing the spin-orbit corrections for the low-lying states. These calculations reveal the existence of 10 bound electronic states of GeH for which spectroscopic properties are computed. The three experimentally observed bands ( a- X, A- X, B- X) are assigned and the uncertainties in the experimental Te and ωe values of these states are corrected. In addition, the spectroscopic properties of 8 states are calculated which are yet to be observed. The spin-orbit coupling constant for the ground state X( 2Π) is calculated to be 869 cm -1. An accurate dissociation energy of 2.81 eV was obtained using {MCSCF}/{SOCI} calculation which employed a large Gaussian basis set questioning the experimental De of ˜3.3 eV obtained from the predissociation in the A2Δ state. It is shown that the intersection of the repulsive 4Π curve which dissociates into the ground state atoms causes predissociation in the A( 2Δ) , B( 2Σ +) , 2Σ +(III), and 2Π(II) states. The potential energy surfaces of a few excited states contain barriers. The calculated ground state dipole moment of 0.098 D is in disagreement with an experimental value of 1.24 D, questioning the experimental dipole moment.

  8. Near-infrared spectroscopic approach to assess tissue viability following a thermal injury

    NASA Astrophysics Data System (ADS)

    Leonardi, Lorenzo; Sowa, Michael G.; Payette, Jeri R.; Hewko, Mark D.; Schattka, Bernhard J.; Matas, Anna; Mantsch, Henry H.

    2001-07-01

    A recurrent problem in the assessment of thermal injuries is the ability to accurately identify the depth and extent of injury. Generally, the depth of a burn injury determines and is inversely related to the ability of the skin to restore and regenerate itself. Burns involve damage to the dermis in varying amounts, reducing the dermal blood supply and altering the skin hemodynamics. Near infrared spectroscopic imaging was used to non-invasively assess the changes that occur in the early (1-3 h) post-burn period. The study used an accurate porcine model to investigate the potential of near infrared spectroscopic imaging to accurately distinguish between burns of varying severity. Data analysis was carried out using a two-way and three-way data decompositions techniques to investigate the spectral changes related to burns. Burn injuries drastically alter the physical and optical properties of the tissue. Thermal destruction of cutaneous vasculature disrupts perfusion and oxygen delivery to the affected tissue. The results demonstrated that near infrared spectroscopic imaging might provide a new tool for an objective clinical assessment of burn injuries.

  9. MDM OSMOS Spectroscopic classification of Supernovae

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Dong, Subo; Chen, Ping; Klusmeyer, J.; Prieto, Jose Luis; Shappee, B.; Shields, J.; Brown, J.; Stanek, K. Z.; Kochanek, C.

    2016-11-01

    We report optical spectroscopic classification of supernova candidates 2016hgd (ATel #9651), 2016hli (ATel #9685), CSS161013:015319+171853 and CSS161013:020130+141534 (http://nesssi.cacr.caltech.edu/catalina/AllSN.html).

  10. CSP Spectroscopic Classification of LSQ16oi

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Phillips, M.; Lira, P.; Ellman, N.; Baltay, C.; Rabinowitz, D.; Rostami, S.; Hsiao, E. Y.

    2016-02-01

    We report the spectroscopic classification of a La Silla-QUEST (LSQ) supernova (Baltay et al. 2013, PASP, 125, 683) taken using WFCCD on the 2.5-m du Pont Telescope as part of the Carnegie Supernova Project (CSP).

  11. Spectroscopic Classifications of Optical Transients with SOAR

    NASA Astrophysics Data System (ADS)

    Hounsell, R. A.; Miller, J. A.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2016-06-01

    We report the following classifications of optical transients from spectroscopic observations with the Goodman spectrograph on the SOAR 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).

  12. Asiago spectroscopic classification of SN2017awk.

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner; Pastorello, P.; Turatto, M.; Terreran, G

    2017-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of ASASSN-17co The target was supplied by All Sky Automated Survey for SuperNovae (ASAS-SN).

  13. Asiago spectroscopic classification of SN2017mf

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Elias-Rosa, N.; Pastorello, P.; Turatto, M.; Terreran, G

    2017-01-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of SN2017mf. The observation was performed with the Asiago 1.22-m Galileo Telescope (+ Boller & Chivens spectrograph).

  14. Vibrational spectroscopic characterization of fluoroquinolones

    NASA Astrophysics Data System (ADS)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  15. Spectroscopic properties of alexandrite crystals

    NASA Astrophysics Data System (ADS)

    Powell, Richard C.; Xi, Lin; Gang, Xu; Quarles, Gregory J.; Walling, John C.

    1985-09-01

    Details of the optical-spectroscopic properties of alexandrite (BeAl2O4:Cr3+) crystals were studied by different laser-spectroscopy techniques. The temperature dependences of the fluorescence lifetimes and widths of the zero-phonon lines were found to be quite different for Cr3+ ions in the mirror and inversion crystal-field sites. The results indicate that direct phonon-absorption processes dominate both thermal line broadening and lifetime quenching for ions in the mirror sites while phonon-scattering processes dominate the line broadening of inversion-site ions and leave their lifetime independent of temperature. Tunable-dye-laser site-selection methods were used to obtain the excitation spectra of the Cr3+ ions in inversion sites at low temperature and to identify six types of exchange-coupled pairs of Cr3+ ions in the lattice. Time-resolved site-selection spectroscopy was used to monitor the energy transfer between Cr3+ ions in mirror and inversion sites at both low and high temperature. Finally, high-power, picosecond pulse excitation was used to produce two-photon absorption, and the resulting emission spectrum was found to exhibit a new fluorescence band in the 400-nm spectral region.

  16. An accurate metric for the spacetime around rotating neutron stars.

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2017-01-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parameterised by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parameterisation of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a 3-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  17. Handbook of Basic Atomic Spectroscopic Data

    National Institute of Standards and Technology Data Gateway

    SRD 108 Handbook of Basic Atomic Spectroscopic Data (Web, free access)   This handbook provides a selection of the most important and frequently used atomic spectroscopic data. The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). The wavelengths, intensities, and spectrum assignments are given for each element, and the data for the approximately 12,000 lines of all elements are also collected into a single table.

  18. Optical design of Lyman/FUSE. [Far UV Spectroscopic Explorer

    NASA Technical Reports Server (NTRS)

    Content, D. A.; Davila, P. M.; Osantowski, J. F.; Saha, T. T.; Wilson, M. E.

    1990-01-01

    The optical system for the proposed Lyman/Far UV Spectroscopic Explorer (FUSE) orbiting observatory is described and illustrated with drawings and graphs of predicted performance. The system comprises (1) an FUV channel based on a 1.84-m-diameter Rowland circle spectrograph with five high-density modified ellipsiodal near-normal-incidence gratings and an array of four MAMA detectors; (2) an EUV channel with ellipsoidal mirror, planar varied-line-space grating, microchannel-plate array, and wedge-and-strip anode detector; (3) a 70-cm Wolter II glancing-incidence telescope; and (4) a CCD-detector fine-error sensor to provide accurate pointing (within 200 marcsec rms). The resolving powers of the spectrographs are 30,000 in the FUV and 300-600 (wavelength-dependent) in the EUV.

  19. Raman Spectroscopic Investigation of Dyes in Spices

    NASA Astrophysics Data System (ADS)

    Uhlemann, Ute; Ramoji, Anuradha; Rösch, Petra; Da Costa Filho, Paulo Augusto; Robert, Fabien; Popp, Jürgen

    2010-08-01

    In this study, a number of synthetic colorants for spices have been investigated by means of Raman spectroscopy, resonance Raman spectroscopy, and surface enhanced (resonance) Raman spectroscopy (SER(S)). The aim of the study was the determination of limits of detection for each dye separately and in binary mixtures of dyes in spiked samples of the spices. Most of the investigated dyes have been azo dyes, some being water-soluble, the other being fat-soluble. Investigating the composition of food preparations is an ongoing and important branch of analytical sciences. On one hand, new ingredients have to be analyzed with regard to their contents, on the other hand, raw materials that have been tampered have to be eliminated from food production processes. In the last decades, the various Raman spectroscopic methods have proven to be successful in many areas of life and materials sciences. The ability of Raman spectroscopy to distinguish even structural very similar analytes by means of their vibrational fingerprint will also be important in this study. Nevertheless, Raman scattering is a very weak process that is oftentimes overlaid by matrix interferences or fluorescence. In order to achieve limits of detection in the nanomolar range, the signal intensity has to be increased. According to the well-known equations, there are several ways of achieving this increase: •increasing sample concentration •increasing laser power •decreasing the laser wavelength •using electronic resonance •increasing the local electromagnetic field In this study, nearly all of the above-mentioned principles were applied. In a first step, all dyes were investigated in solution at different concentrations to determine a limit of detection. In the second step, spiked spice samples have been extracted with a variety of solvents and process parameters tested. To lower the limit of detection even further, SERS spectroscopy has been used as well in as out of electronic resonance.

  20. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  1. Time Domain Reflectometric and spectroscopic studies on toluene + butyronitrile solution

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Arivazhagan, G.; Kumbharkhane, A. C.; Joshi, Y. S.; Kannan, P. P.

    2016-03-01

    The dielectric parameters of toluene + butyronitrile solution have been obtained by time domain reflectometry (TDR) technique in the frequency range from 10 MHz to 30 GHz at 298 K. Spectroscopic (FTIR and 13C NMR) studies have also been carried out on the solution and the results of the studies show that neat butyronitrile is self-associative through C-H⋯N contacts and weak intermolecular forces of C-H⋯N and C-H⋯π type are operative in the solution. The obtained dielectric parameters such as Kirkwood correlation factor g, relaxation time τ etc. have been analyzed in view of these weak intermolecular forces. The weak non-covalent interactions between heteromolecules appear to have no influence on the ideality of ɛm vs X2 curve of the solution. Heteromolecular entities with weak intermolecular forces experience larger hindrance leading to longer relaxation time τ.

  2. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  3. Determining force field parameters using a physically based equation of state.

    PubMed

    van Westen, Thijs; Vlugt, Thijs J H; Gross, Joachim

    2011-06-23

    Force field parameters used in classical molecular simulations can be estimated from quantum mechanical calculations or spectroscopic measurements. This especially applies to bonded interactions such as bond-stretching, bond-bending, and torsional interactions. However, it is difficult and computational expensive to obtain accurate parameters describing the nonbonded van der Waals interactions from quantum mechanics. In many studies, these parameters are adjusted to reproduce experimental data, such as vapor-liquid equilibria (VLE) data. Adjusting these force field parameters to VLE data is currently a cumbersome and computationally expensive task. The reason is that the result of a calculation of the vapor-liquid equilibria depends on the van der Waals interactions of all atom types in the system, therefore requiring many time-consuming iterations. In this work, we use an analytical equation of state, the perturbed chain statistical associating fluid theory (PC-SAFT), to predict the results of molecular simulations for VLE. The analytical PC-SAFT equation of state is used to approximate the objective function f(p) as a function of the array of force field parameters p. The objective function is here for example defined as the deviations of vapor pressure, enthalpy of vaporization and liquid density data, with respect to experimental data. The parameters are optimized using the analytical PC-SAFT equation of state, which is orders of magnitude quicker to calculate than molecular simulation. The solution is an excellent approximation of the real objective function, so that the resulting method requires only very few molecular simulation runs to converge. The method is here illustrated by optimizing transferable Lennard-Jones parameters for the n-alkane series. Optimizing four force field parameters p = (ε(CH(2))(CH(2)), ε(CH(3))(CH(3)), σ(CH(2))(CH(2)), σ(CH(3))(CH(3))) we obtain excellent agreement of coexisting densities, vapor pressure and caloric properties

  4. Accurate measurement of the pulse wave delay with imaging photoplethysmography

    PubMed Central

    Kamshilin, Alexei A.; Sidorov, Igor S.; Babayan, Laura; Volynsky, Maxim A.; Giniatullin, Rashid; Mamontov, Oleg V.

    2016-01-01

    Assessment of the cardiovascular parameters using noncontact video-based or imaging photoplethysmography (IPPG) is usually considered as inaccurate because of strong influence of motion artefacts. To optimize this technique we performed a simultaneous recording of electrocardiogram and video frames of the face for 36 healthy volunteers. We found that signal disturbances originate mainly from the stochastically enhanced dichroic notch caused by endogenous cardiovascular mechanisms, with smaller contribution of the motion artefacts. Our properly designed algorithm allowed us to increase accuracy of the pulse-transit-time measurement and visualize propagation of the pulse wave in the facial region. Thus, the accurate measurement of the pulse wave parameters with this technique suggests a sensitive approach to assess local regulation of microcirculation in various physiological and pathological states. PMID:28018731

  5. Spectroscopic investigation of protein corona

    NASA Astrophysics Data System (ADS)

    Choudhary, Poonam

    Nanotechnology has revolutionalized the landscape of modern science and technology, including materials, electronics, therapeutics, bioimaging, sensing, and the environment. Research in the past decade has examined the fate of nanomaterials in vitro and in vivo, as well as the interactions between nanoparticles and biological and ecosystems using primarily toxicological and ecotoxicological approaches. However, due to the versatility in the physical and physicochemical properties of nanoparticles, and due to the vast complexity of their hosting systems, the solubility, transformation, and biocompatibility of nanomaterials are still poorly understood. Nanotechnology has been undergoing tremendous development in recent decades, driven by realized perceived applications of nanomaterials in electronics, therapeutics, imaging, sensing, environmental remediation, and consumer products. Nanoparticles on entering the blood stream undergo an identity change, they become coated with proteins. There are different kind of proteins present in blood. Proteins compete for getting coated over the surface of nanoparticle and this whole entity of proteins coated over nanoparticle surface is called Protein Corona. Proteins tightly bound to the surface of nanoparticle form hard corona and the ones loosely bound on the outer surface form soft corona. This dissertation is aimed at spectroscopic investigation of Protein Corona. Chapter I of this dissertation offers a comprehensive review of the literature based on nanomaterials with the focus on carbon based nanomaterilas and introduction to Protein Corona. Chapter II is based different methods used for Graphene Synthesis,different types of defects and doping. In Chapter III influence of defects on Graphene Protein Corona was investigated. Chapter IV is based on the study of Apoptosis induced cell death by Gold and silver nanoparticles. In vitro study of effect of Protein Corona on toxicity of cells was done.

  6. Spectroscopic Observations of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Donzelli, C. J.; Pastoriza, M. G.

    2000-07-01

    In this paper we describe the spectroscopic and infrared properties of a sample of 25 merging galaxy pairs, selected from the catalog of Arp & Madore, and we compare them with those observed in a similar sample of interacting galaxies (Donzelli & Pastoriza). It is noted that mergers as well as interacting systems comprise a wide range of spectral types, going from those corresponding to well-evolved stellar populations (older than 200 Myr) to those that show clear signatures of H II regions with stellar populations younger than 8 Myr. However, merger galaxies show on average more excited spectra than interacting pairs, which could be attributed to lower gas metallicity. From the emission lines we also found that merging systems show on average higher (about a factor of 2) star formation rates than interacting galaxies. Classical diagnostic diagrams show that only three of 50 of the galaxies (6%) present some form of nuclear activity: two Seyfert galaxies and one LINER. However, through a detailed analysis of the pure emission-line spectra, we conclude that this fraction may raise up to 23% of the mergers if we consider that some galaxies host a low-luminosity active nucleus surrounded by strong star-forming regions. This latter assumption is also supported by the infrared colors of the galaxies. Regarding to the total infrared luminosities, the merging galaxies show on average an IR luminosity, log(Lir)=10.7, lower than that of interacting systems, log(Lir)=10.9. We find that only three mergers of the sample (12%) can be classified as luminous infrared galaxies, while this fraction increases to 24% in the interacting sample. Based on observations made at CASLEO. Complejo Astronómico El Leoncito is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan.

  7. How accurately can 21cm tomography constrain cosmology?

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  8. Combining weak-lensing tomography and spectroscopic redshift surveys

    SciTech Connect

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is

  9. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  10. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  11. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  12. Fundamental parameters of exoplanets and their host stars

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey Langer

    For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional exoplanets. I then identify, observe, and model new eclipsing binaries to better understand the stellar mass-radius relationship and stellar limb-darkening, compare these observations to the predictions of stellar models, and attempt to define to what extent these fundamental stellar characteristics can impact derived planetary parameters. I also present novel techniques for the direct determination of exoplanet masses and stellar inclinations via multi-wavelength astrometry, the ground-based photometric observation of stars at sub-millimagnitude precision, the reduction of Kepler photometry from pixel-level data, the extraction of radial velocities from spectroscopic observations, and the automatic identification, period analysis, and modeling of eclipsing binaries and transiting planets in large datasets.

  13. A Far Ultraviolet Spectroscopic Analysis of the Old Nova Q Cygni

    NASA Astrophysics Data System (ADS)

    Kolobow, Craig; Sion, E. M.

    2011-01-01

    Q Cygni (Nova Cygni 1876) is one of the oldest old novae with a long orbital period of 10.08 hours and spectroscopic peculiarities in the optical including the presence of variable wind outflow revealed by optical P Cygni profiles in the He I lines and Halpha (Kafka et al.2003). There has never been a far UV spectroscopic analysis of this system. Therefore, we have carried out a synthetic spectral analysis of a far ultraviolet IUE archival spectrum of Q Cygni using our optically thick, steady state, accretion disk models and model white dwarf photospheres. We report the results of our spectroscopic analysis and compare the physical parameters we derive with those of other old novae. We gratefully acknowledge the support of this by NSF grant 0807892 to Villanova University.

  14. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  15. Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.

    PubMed

    Huynh, Linh; Tagkopoulos, Ilias

    2015-08-21

    In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.

  16. A new and accurate continuum description of moving fronts

    NASA Astrophysics Data System (ADS)

    Johnston, S. T.; Baker, R. E.; Simpson, M. J.

    2017-03-01

    Processes that involve moving fronts of populations are prevalent in ecology and cell biology. A common approach to describe these processes is a lattice-based random walk model, which can include mechanisms such as crowding, birth, death, movement and agent–agent adhesion. However, these models are generally analytically intractable and it is computationally expensive to perform sufficiently many realisations of the model to obtain an estimate of average behaviour that is not dominated by random fluctuations. To avoid these issues, both mean-field (MF) and corrected mean-field (CMF) continuum descriptions of random walk models have been proposed. However, both continuum descriptions are inaccurate outside of limited parameter regimes, and CMF descriptions cannot be employed to describe moving fronts. Here we present an alternative description in terms of the dynamics of groups of contiguous occupied lattice sites and contiguous vacant lattice sites. Our description provides an accurate prediction of the average random walk behaviour in all parameter regimes. Critically, our description accurately predicts the persistence or extinction of the population in situations where previous continuum descriptions predict the opposite outcome. Furthermore, unlike traditional MF models, our approach provides information about the spatial clustering within the population and, subsequently, the moving front.

  17. Accurate measurement of streamwise vortices using dual-plane PIV

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Breuer, Kenneth S.

    2012-11-01

    Low Reynolds number aerodynamic experiments with flapping animals (such as bats and small birds) are of particular interest due to their application to micro air vehicles which operate in a similar parameter space. Previous PIV wake measurements described the structures left by bats and birds and provided insight into the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions based on said measurements. The highly three-dimensional and unsteady nature of the flows associated with flapping flight are major challenges for accurate measurements. The challenge of animal flight measurements is finding small flow features in a large field of view at high speed with limited laser energy and camera resolution. Cross-stream measurement is further complicated by the predominately out-of-plane flow that requires thick laser sheets and short inter-frame times, which increase noise and measurement uncertainty. Choosing appropriate experimental parameters requires compromise between the spatial and temporal resolution and the dynamic range of the measurement. To explore these challenges, we do a case study on the wake of a fixed wing. The fixed model simplifies the experiment and allows direct measurements of the aerodynamic forces via load cell. We present a detailed analysis of the wake measurements, discuss the criteria for making accurate measurements, and present a solution for making quantitative aerodynamic load measurements behind free-flyers.

  18. An Accurate and Efficient Method of Computing Differential Seismograms

    NASA Astrophysics Data System (ADS)

    Hu, S.; Zhu, L.

    2013-12-01

    Inversion of seismic waveforms for Earth structure usually requires computing partial derivatives of seismograms with respect to velocity model parameters. We developed an accurate and efficient method to calculate differential seismograms for multi-layered elastic media, based on the Thompson-Haskell propagator matrix technique. We first derived the partial derivatives of the Haskell matrix and its compound matrix respect to the layer parameters (P wave velocity, shear wave velocity and density). We then derived the partial derivatives of surface displacement kernels in the frequency-wavenumber domain. The differential seismograms are obtained by using the frequency-wavenumber double integration method. The implementation is computationally efficient and the total computing time is proportional to the time of computing the seismogram itself, i.e., independent of the number of layers in the model. We verified the correctness of results by comparing with differential seismograms computed using the finite differences method. Our results are more accurate because of the analytical nature of the derived partial derivatives.

  19. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  20. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  1. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  2. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  3. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different investigations are in much better agreement with the calculations using the NCRP Report 58 and NNDC(2000) initial spectra with average discrepancies of 0.9% and 1.7% for the {sup 125}I and {sup 103}Pd seeds, respectively. However, there are no differences in the calculated TG-43U1 brachytherapy parameters using either initial spectrum in both cases. Similarly, there were no differences outside the statistical uncertainties of 0.1% or 0.2%, in the average energy, air kerma/history, dose rate/history, and dose rate constant when calculated using either the full photon spectrum or the main-peaks-only spectrum. Conclusions: Our calculated dose rate constants based on using the calculated on-axis spectrum and a line or dual-point source model are in excellent agreement (0.5% on average) with the values of Chen and Nath, verifying the accuracy of their more approximate method of going from the spectrum to the dose rate constant. However, the dose rate constants based on full seed models differ by between +4.6% and -1.5% from those based on the line or dual-point source approximations. These results suggest that the main value of spectroscopic measurements is to verify full Monte Carlo models of the seeds by comparison to the calculated spectra.

  4. An Accurate, Simplified Model Intrabeam Scattering

    SciTech Connect

    Bane, Karl LF

    2002-05-23

    Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.

  5. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  6. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  7. Application of optical spectroscopic techniques for disease diagnosis

    NASA Astrophysics Data System (ADS)

    Saha, Anushree

    Optical spectroscopy, a truly non-invasive tool for remote diagnostics, is capable of providing valuable information on the structure and function of molecules. However, most spectroscopic techniques suffer from drawbacks, which limit their application. As a part of my dissertation work, I have developed theoretical and experimental methods to address the above mentioned issues. I have successfully applied these methods for monitoring the physical, chemical and biochemical parameters of biomolecules involved in some specific life threatening diseases like lead poisoning and age-related macular degeneration (AMD). I presented optical studies of melanosomes, which are one of the vital organelles in the human eye, also known to be responsible for a disease called age-related macular degeneration (AMD), a condition of advanced degeneration which causes progressive blindness. I used Raman spectroscopy, to first chemically identify the composition of melanosome, and then monitor the changes in its functional and chemical behavior due to long term exposure to visible light. The above study, apart from explaining the role of melanosomes in AMD, also sets the threshold power for lasers used in surgeries and other clinical applications. In the second part of my dissertation, a battery of spectroscopic techniques was successfully applied to explore the different binding sites of lead ions with the most abundant carrier protein molecule in our circulatory system, human serum albumin. I applied optical spectroscopic tools for ultrasensitive detection of heavy metal ions in solution which can also be used for lead detection at a very early stage of lead poisoning. Apart from this, I used Raman microspectroscopy to study the chemical alteration occurring inside a prostate cancer cell as a result of a treatment with a low concentrated aqueous extract of a prospective drug, Nerium Oleander. The experimental methods used in this study has tremendous potential for clinical

  8. Supergranular Parameters

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2016-07-01

    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  9. Spectroscopic analysis of Cu wire array implosions on the refurbished Z generator

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Clark, R. W.; Ouart, N. D.; Giuliani, J. L.; Thornhill, W.; Davis, J.; Jones, B.; Ampleford, D. J.; Hansen, S. B.; Coverdale, C. A.

    2012-09-01

    Experimental investigations of pinches on the refurbished Z (ZR) generator using Cu arrays have been initiated and more are planned for the near future. Significant X-ray emissions in the K-shell from moderately high atomic number plasmas such as Cu generate extreme interest. However, the production of these hard photons from high Z materials comes with a price. There is substantial loss of radiative yield due to stripping through many electrons present in high Z materials to reach to the H- or He-like ionization stages. Production of hard X-rays for materials with atomic number higher than Cu such as Kr is very difficult and theoretical predictions are even more uncertain. Previous experimental efforts using Cu as a plasma pinch load are encouraging and promote further investigations of this element on the refurbished Z machine for achieving photon energies higher than 5 keV and obtaining sufficient radiative yield. We will analyze the ionization dynamics and generate Cu spectrum using the temperature and density conditions obtained from 1-D non-LTE radiation hydrodynamics simulations of Cu wire array implosions on ZR. These results will be compared with K- and L-shell experimental spectrum of shot Z 1975. Theoretical K- and L-shell spectroscopy provides validation of atomic and plasma modeling when compared to available experimental data and also provides useful diagnostics for the plasma parameters. Our self-consistently generated non-LTE collisional-radiative model employs an extensive atomic level structure and data for all dominant atomic processes that are necessary to model accurately the pinch dynamics and the spectroscopic details of the emitted radiation.

  10. Relative flux calibration for the LAMOST Spectroscopic Survey of the Galactic anticentre

    NASA Astrophysics Data System (ADS)

    Xiang, M. S.; Liu, X. W.; Yuan, H. B.; Huo, Z. Y.; Huang, Y.; Zheng, Y.; Zhang, H. W.; Chen, B. Q.; Zhang, H. H.; Sun, N. C.; Wang, C.; Zhao, Y. H.; Shi, J. R.; Luo, A. L.; Li, G. P.; Bai, Z. R.; Zhang, Y.; Hou, Y. H.; Yuan, H. L.; Li, G. W.

    2015-03-01

    We have developed and implemented an iterative algorithm of flux calibration for the LAMOST Spectroscopic Survey of the Galactic anticentre (LSS-GAC). For a given LSS-GAC plate, the spectra are first processed with a set of nominal spectral response curves (SRCs) and used to derive initial stellar atmospheric parameters (effective temperature Teff, surface gravity log g and metallicity [Fe/H]) as well as dust reddening E(B - V) of all targeted stars. For each of the 16 spectrographs, several F-type stars with good signal-to-noise ratios are selected as flux standard stars for further, iterative spectral flux calibration. Comparison of spectrophotometric colours, deduced from the flux-calibrated spectra, with the photometric measurements yield average differences of 0.02 ± 0.07 and -0.04 ± 0.09 mag for (g - r) and (g - i), respectively. The relatively large negative offset in (g - i) is because we have opted not to correct for the telluric bands, most notably the atmospheric A band in the wavelength range of the i band. Comparison of LSS-GAC multi-epoch observations of duplicate targets indicates that the algorithm has achieved an accuracy of about 10 per cent in relative flux calibration for the wavelength range 4000-9000 Å. The shapes of SRCs deduced for individual LAMOST spectrographs vary by up to 30 per cent for a given night, and larger for different nights, indicating that the derivation of SRCs for the individual plates is essential to achieve accurate flux calibration for the LAMOST spectra.

  11. Optical Spectroscopic Monitoring of Parachute Yarn Aging

    SciTech Connect

    Tallant, D.R.; Garcia, M.J.; Simpson, R.L.; Behr, V.L.; Whinery, L.D.; Peng, L.W.

    1999-04-01

    Optical spectroscopic techniques were evaluated as nondestructive monitors of the aging of parachutes in nuclear weapons. We analyzed thermally aged samples of nylon and Kevlar webbing by photoluminescence spectroscopy and reflection spectroscopy. Infrared analysis was also performed to help understand the degradation mechanisms of the polymer materials in the webbing. The photoluminescence and reflection spectra were analyzed by chemometric data treatment techniques to see if aged-induced changes in the spectra correlated to changes in measured tensile strength. A correlation was found between the shapes of the photoluminescent bands and the measured tensile strengths. Photoluminescent spectra can be used to predict the tensile strengths of nylon and Kevlar webbing with sufficient accuracy to categorize the webbing sample as above rated tensile strength, marginal or below rated tensile strength. The instrumentation required to perform the optical spectroscopic measurement can be made rugged, compact and portable. Thus, optical spectroscopic techniques offer a means for nondestructive field monitoring of parachutes in the enduring stockpile/

  12. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  13. Systems budgets architecture and development for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Mignot, Shan; Flagey, Nicolas; Szeto, Kei; Murowinski, Rick; McConnachie, Alan

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project is an enterprise to upgrade the existing Canada-France- Hawaii observatory into a spectroscopic facility based on a 10 meter-class telescope. As such, the project relies on engineering requirements not limited only to its instruments (the low, medium and high resolution spectrographs) but for the whole observatory. The science requirements, the operations concept, the project management and the applicable regulations are the basis from which these requirements are initially derived, yet they do not form hierarchies as each may serve several purposes, that is, pertain to several budgets. Completeness and consistency are hence the main systems engineering challenges for such a large project as MSE. Special attention is devoted to ensuring the traceability of requirements via parametric models, derivation documents, simulations, and finally maintaining KAOS diagrams and a database under IBM Rational DOORS linking them together. This paper will present the architecture of the main budgets under development and the associated processes, expand to highlight those that are interrelated and how the system, as a whole, is then optimized by modelling and analysis of the pertinent system parameters.

  14. The 2003 edition of the GEISA/IASI spectroscopic database

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Scott, N. A.; Chédin, A.; Garceran, K.; Armante, R.; Chursin, A. A.; Barbe, A.; Birk, M.; Brown, L. R.; Camy-Peyret, C.; Claveau, C.; Clerbaux, C.; Coheur, P. F.; Dana, V.; Daumont, L.; Debacker-Barilly, M. R.; Flaud, J. M.; Goldman, A.; Hamdouni, A.; Hess, M.; Jacquemart, D.; Köpke, P.; Mandin, J. Y.; Massie, S.; Mikhailenko, S.; Nemtchinov, V.; Nikitin, A.; Newnham, D.; Perrin, A.; Perevalov, V. I.; Régalia-Jarlot, L.; Rublev, A.; Schreier, F.; Schult, I.; Smith, K. M.; Tashkun, S. A.; Teffo, J. L.; Toth, R. A.; Tyuterev, Vl. G.; Vander Auwera, J.; Varanasi, P.; Wagner, G.

    2005-11-01

    The content of the current (2003) version, GEISA/IASI-03, of the computer-accessible spectroscopic database, GEISA/IASI, is described. This “system” or database is comprised of three independent spectroscopic archives, which are (a) a database of individual spectral line parameters on 14 molecules, H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, HNO3, OCS, C2H2, N2, and the related 51 isotopomers and isotopologues, representing 702,550 entries, in the spectral range 599 3001cm, (b) a database of spectral absorption cross-sections (6,572,329 entries related to six molecules, CFC-11, CFC-12, CFC-14, HCFC-22, N2O5, CCl4), and a catalogue of microphysical and optical properties (mainly, the refractive indices) of atmospheric aerosols. The modifications and improvements, which have been implemented since the earlier editions of this database, in terms of content and management, have been explained in detail. GEISA/IASI has been created with the specific purpose of assessing the capability of measurement by the IASI instrument within the designated goals of ISSWG in the frame of the CNES/EUMETSAT European Polar System preparation. All the archived data can be handled through a user-friendly associated management software, which is posted on the ARA/LMD group web site at http://ara.lmd.polytechnique.fr.

  15. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    NASA Astrophysics Data System (ADS)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  16. Development of a THz spectroscopic imaging system.

    PubMed

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K

    2002-11-07

    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated.

  17. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  18. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  19. A More Accurate Measurement of the {sup 28}Si Lattice Parameter

    SciTech Connect

    Massa, E. Sasso, C. P.; Mana, G.; Palmisano, C.

    2015-09-15

    In 2011, a discrepancy between the values of the Planck constant measured by counting Si atoms and by comparing mechanical and electrical powers prompted a review, among others, of the measurement of the spacing of {sup 28}Si (220) lattice planes, either to confirm the measured value and its uncertainty or to identify errors. This exercise confirmed the result of the previous measurement and yields the additional value d{sub 220} = 192 014 711.98(34) am having a reduced uncertainty.

  20. Accurate Zero Parameter Correlation Energy Functional Obtained from the Homogeneous Electron Gas with an Energy Gap

    NASA Astrophysics Data System (ADS)

    Krieger, J. B.; Chen, Jiqiang; Iafrate, G. J.; Savin, A.

    1998-03-01

    We have obtained an analytic approximation to E_c(r_g, ζ,G) where G is an energy gap separating the occupied and unoccupied states of a homogeneous electron gas for ζ=3D0 and ξ=3D1. When G=3D0, E_c(r_g, ζ) reduces to the usual LSD result. This functional is employed in calculating correlation energies for unpolarized atoms and ions for Z <= 18 by taking G[n]=3D1/8|nabla ln n|^2, which reduces to the ionization energy in the large r limit in an exact Kohn-Sham (KS) theory. The resulting functional is self-interaction-corrected employing a method which is invariant under a unitary transformation. We find that the application of this approach to the calculation of the Ec functional reduces the error in the LSD result by more than 95%. When the value of G is approximately corrected to include the effect of higher lying unoccupied localized states, the resulting values of Ec are within a few percent of the exact results.

  1. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  2. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  3. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2017-01-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archaeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, Apache Point Observatory Galactic Evolution Experiment) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3-0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on a vast data set of observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  4. Accurate taxonomic assignment of short pyrosequencing reads.

    PubMed

    Clemente, José C; Jansson, Jesper; Valiente, Gabriel

    2010-01-01

    Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.

  5. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  6. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  7. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  8. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  9. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  10. Spectroscopic evidence of jet-cooled o-chloro-alpha-methylbenzyl radical in corona excitation.

    PubMed

    Ahn, Hyeon Geun; Lee, Gi Woo; Lee, Sang Kuk

    2008-12-25

    We report the first spectroscopic evidence of the o-chloro-alpha-methylbenzyl radical. The electronically hot but jet-cooled o-chloro-alpha-methylbenzyl radical was formed from precursor o-chloro-ethylbenzene seeded in a large amount of inert carrier gas helium, by employing the technique of corona excited supersonic expansion with a pinhole-type glass nozzle. The vibronic emission spectrum was recorded with a long path monochromator in the D(1) --> D(0) electronic transition in the visible region. By comparing the observed spectrum with that of the o-chlorobenzyl radical reported previously, we could easily identify the spectroscopic evidence of the jet-cooled o-chloro-alpha-methylbenzyl radical generated in the corona discharge of o-chloro-ethylbenzene, from which the electronic transition energy and several vibrational mode frequencies in the ground electronic state were accurately determined.

  11. Speckle and spectroscopic orbits of the early A-type triple system Eta Virginis

    NASA Technical Reports Server (NTRS)

    Hartkopf, William I.; Mcalister, Harold A.; Yang, Xinxing; Fekel, Francis C.

    1992-01-01

    Eta Virginis is a bright (V = 3.89) triple system of composite spectral type A2 IV that has been observed for over a dozen years with both spectroscopy and speckle interferometry. Analysis of the speckle observations results in a long period of 13.1 yr. This period is also detected in residuals from the spectroscopic observations of the 71.7919 day short-period orbit. Elements of the long-period orbit were determined separately using the observations of both techniques. The more accurate elements from the speckle solution have been assumed in a simultaneous spectroscopic determination of the short- and long-period orbital elements. The magnitude difference of the speckle components suggests that lines of the third star should be visible in the spectrum.

  12. Reprocessing the Hipparcos Intermediate Astrometric Data of spectroscopic binaries. II. Systems with a giant component

    NASA Astrophysics Data System (ADS)

    Pourbaix, D.; Boffin, H. M. J.

    2003-02-01

    By reanalyzing the Hipparcos Intermediate Astrometric Data of a large sample of spectroscopic binaries containing a giant, we obtain a sample of 29 systems fulfilling a carefully derived set of constraints and hence for which we can derive an accurate orbital solution. Of these, one is a double-lined spectroscopic binary and six were not listed in the DMSA/O section of the catalogue. Using our solutions, we derive the masses of the components in these systems and statistically analyze them. We also briefly discuss each system individually. Based on observations from the Hipparcos astrometric satellite operated by the European Space Agency (ESA 1997) and on data collected with the Simbad database.

  13. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    NASA Astrophysics Data System (ADS)

    Višňak, Jakub; Sobek, Lukáš

    2016-11-01

    A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states) and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions) properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP), electron correlation via (TD)DFT/B3LYP (dispersion interaction corrected) and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description - more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian) and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS) and UV-VIS spectroscopic studies (including our original experimental research on this topic). In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site) and analytical chemical studies (including natural samples) are discussed.

  14. Spectroscopic mode identification in gamma Doradus stars

    NASA Astrophysics Data System (ADS)

    Rylvia Pollard, Karen

    2015-08-01

    The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many gamma Doradus stars using hundreds of precise, high resolution spectroscopic observations. This paper describes some of these frequency and mode identifications and the emerging patterns of the programme.

  15. Asiago spectroscopic classification of two SNe

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Terreran, G.; Tomasella, L.; OAPd, M. Turatto (INAF

    2016-09-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of two transients. The targets are supplied by the All Sky Automated Survey for SuperNOvae (ASAS-SN) and the TNS (https://wis-tns.weizmann.ac.il).

  16. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  17. Asiago spectroscopic classification of SN 2017ati.

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Tomasella, L.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Turatto, M.; Terreran, G.

    2017-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of Gaia17aiq. The target was supplied by Gaia Photometric Science Alerts programme . The observation was performed with the Asiago 1.82m Copernico Telescope (+AFOSC; range 340-820 nm; resolution 1.4 nm). Survey name | IAU name | Host galaxy | Disc.

  18. Asiago spectroscopic classification of ASASSN-15db

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.

    2015-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of ASASSN-15db in NGC 5996. The observation was performed with the Asiago 1.82m Copernico Telescope (+AFOSC; range 340-820 nm; resolution 1.4 nm), equipped with the CCD Andor IKON L936.

  19. Atmospheric and Spectroscopic Research in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Park, Kwangjai

    1998-01-01

    The spectroscopic measurements of molecular parameters constitute one of the major areas of our research program. This part of our program has been conducted in close collaboration with Smithsonian Astrophysical Observatory (SAO) and National Institute of Standards and Technology (NIST). The references on HO2, OH, and O2 that appear on the publication list are examples of this type of work completed during the grant period. These pressure-broadening studies have provided the kind of improvements needed in the database for retrieving atmospheric profiles from far infrared limb sensing data. One example of this linkage between the pressure broadening studies and the improvements in data retrieval is described in the paper on HBr (paper #4, publication list). The retrieval of the concentration profile of this important species from the IBEX data was facilitated by a number of performance improvement factors, not the least of which was the database improvements.

  20. Spectroscopic study of Er:Sm doped barium fluorotellurite glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2010-09-15

    In this paper, we report the physical and spectroscopic properties of Er(3+), Sm(3+) and Er(3+):Sm(3+) ions codoped barium fluorotellurite (BFT) glasses. Different Stokes and anti-Stokes emissions were observed under 532 nm and 976 nm laser excitations. Energy transfer from Er(3+) ion to Sm(3+) ion was confirmed on the basis of luminescence intensity variation and decay curve analysis in both the cases. Under green (532 nm) excitation emission intensity of Sm(3+) ion bands improves whereas on NIR (976 nm) excitation new emission bands of Sm(3+) ions were observed in Er:Sm codoped samples. Ion interactions and the different energy transfer parameters were also calculated.

  1. Investigation on interaction of prulifloxacin with pepsin: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Huang, Yabei; Yan, Jie; Liu, Benzhi; Yu, Zhang; Gao, Xiaoyan; Tang, Yingcai; Zi, Yanqin

    2010-03-01

    The interaction between prulifloxacin, a kind of new oral taking antibiotic and pepsin, a kind of enzyme in the stomach has been investigated in vitro under a simulated physiological condition by different spectroscopic methods. The intrinsic fluorescence of pepsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. The negative value of Δ G0 reveals that the binding process is a spontaneous process. The binding distance R between donor (pepsin) and acceptor (prulifloxacin) was obtained according to the Förster's resonance energy transfer theory and found to be 0.95 nm. The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  2. Investigation on interaction of prulifloxacin with pepsin: a spectroscopic analysis.

    PubMed

    Huang, Yabei; Yan, Jie; Liu, Benzhi; Yu, Zhang; Gao, Xiaoyan; Tang, Yingcai; Zi, Yanqin

    2010-03-01

    The interaction between prulifloxacin, a kind of new oral taking antibiotic and pepsin, a kind of enzyme in the stomach has been investigated in vitro under a simulated physiological condition by different spectroscopic methods. The intrinsic fluorescence of pepsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. The negative value of DeltaG(0) reveals that the binding process is a spontaneous process. The binding distance R between donor (pepsin) and acceptor (prulifloxacin) was obtained according to the Förster's resonance energy transfer theory and found to be 0.95 nm. The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  3. Structural and Spectroscopic Properties of Water Around Small Hydrophobic Solutes

    PubMed Central

    Montagna, Maria; Sterpone, Fabio; Guidoni, Leonardo

    2013-01-01

    We investigated the structural, dynamical and spectroscopic properties of water molecules around a solvated methane by means of Car-Parrinello molecular dynamics simulations. Despite their mobility, in the first-shell water molecules are dynamically displaced in a clathrate-like cage around the hydrophobic solute. No significant differences in water geometrical parameters, in molecular dipole moments or in hydrogen bonding properties are observed between in-shell and out-shell molecules, indicating that liquid water can accommodate a small hydrophobic solute without altering its structural properties. The calculated contribution of the first shell water molecules to the infrared spectra does not show significant differences with respect the bulk signal once the effects of the missing polarization of second-shell molecules has been taken into account. Small fingerprints of the clathrate-like structure appear in the vibrational density of states in the libration and OH stretching regions. PMID:22946539

  4. Efficient determination of accurate atomic polarizabilities for polarizeable embedding calculations

    PubMed Central

    Schröder, Heiner

    2016-01-01

    We evaluate embedding potentials, obtained via various methods, used for polarizable embedding computations of excitation energies of para‐nitroaniline in water and organic solvents as well as of the green fluorescent protein. We found that isotropic polarizabilities derived from DFTD3 dispersion coefficients correlate well with those obtained via the LoProp method. We show that these polarizabilities in conjunction with appropriately derived point charges are in good agreement with calculations employing static multipole moments up to quadrupoles and anisotropic polarizabilities for both computed systems. The (partial) use of these easily‐accessible parameters drastically reduces the computational effort to obtain accurate embedding potentials especially for proteins. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27317509

  5. Fast and accurate automated cell boundary determination for fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Arce, Stephen Hugo; Wu, Pei-Hsun; Tseng, Yiider

    2013-07-01

    Detailed measurement of cell phenotype information from digital fluorescence images has the potential to greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the complexity of cell conformations presents a major barrier preventing effective determination of cell boundaries, and introduces measurement error that propagates throughout subsequent assessment of cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require user-interaction, prolonged computation time and specialized training cannot adequately provide the support for high content platforms, which often sacrifice resolution to foster the speedy collection of massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad applicability to promote biotechnology.

  6. Quality metric for accurate overlay control in <20nm nodes

    NASA Astrophysics Data System (ADS)

    Klein, Dana; Amit, Eran; Cohen, Guy; Amir, Nuriel; Har-Zvi, Michael; Huang, Chin-Chou Kevin; Karur-Shanmugam, Ramkumar; Pierson, Bill; Kato, Cindy; Kurita, Hiroyuki

    2013-04-01

    The semiconductor industry is moving toward 20nm nodes and below. As the Overlay (OVL) budget is getting tighter at these advanced nodes, the importance in the accuracy in each nanometer of OVL error is critical. When process owners select OVL targets and methods for their process, they must do it wisely; otherwise the reported OVL could be inaccurate, resulting in yield loss. The same problem can occur when the target sampling map is chosen incorrectly, consisting of asymmetric targets that will cause biased correctable terms and a corrupted wafer. Total measurement uncertainty (TMU) is the main parameter that process owners use when choosing an OVL target per layer. Going towards the 20nm nodes and below, TMU will not be enough for accurate OVL control. KLA-Tencor has introduced a quality score named `Qmerit' for its imaging based OVL (IBO) targets, which is obtained on the-fly for each OVL measurement point in X & Y. This Qmerit score will enable the process owners to select compatible targets which provide accurate OVL values for their process and thereby improve their yield. Together with K-T Analyzer's ability to detect the symmetric targets across the wafer and within the field, the Archer tools will continue to provide an independent, reliable measurement of OVL error into the next advanced nodes, enabling fabs to manufacture devices that meet their tight OVL error budgets.

  7. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  8. Accurate colon residue detection algorithm with partial volume segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Liang, Zhengrong; Zhang, PengPeng; Kutcher, Gerald J.

    2004-05-01

    Colon cancer is the second leading cause of cancer-related death in the United States. Earlier detection and removal of polyps can dramatically reduce the chance of developing malignant tumor. Due to some limitations of optical colonoscopy used in clinic, many researchers have developed virtual colonoscopy as an alternative technique, in which accurate colon segmentation is crucial. However, partial volume effect and existence of residue make it very challenging. The electronic colon cleaning technique proposed by Chen et al is a very attractive method, which is also kind of hard segmentation method. As mentioned in their paper, some artifacts were produced, which might affect the accurate colon reconstruction. In our paper, instead of labeling each voxel with a unique label or tissue type, the percentage of different tissues within each voxel, which we call a mixture, was considered in establishing a maximum a posterior probability (MAP) image-segmentation framework. A Markov random field (MRF) model was developed to reflect the spatial information for the tissue mixtures. The spatial information based on hard segmentation was used to determine which tissue types are in the specific voxel. Parameters of each tissue class were estimated by the expectation-maximization (EM) algorithm during the MAP tissue-mixture segmentation. Real CT experimental results demonstrated that the partial volume effects between four tissue types have been precisely detected. Meanwhile, the residue has been electronically removed and very smooth and clean interface along the colon wall has been obtained.

  9. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  10. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  11. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  12. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  13. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  14. Obtaining accurate translations from expressed sequence tags.

    PubMed

    Wasmuth, James; Blaxter, Mark

    2009-01-01

    The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.

  15. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  16. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  17. Magnetic ranging tool accurately guides replacement well

    SciTech Connect

    Lane, J.B.; Wesson, J.P. )

    1992-12-21

    This paper reports on magnetic ranging surveys and directional drilling technology which accurately guided a replacement well bore to intersect a leaking gas storage well with casing damage. The second well bore was then used to pump cement into the original leaking casing shoe. The repair well bore kicked off from the surface hole, bypassed casing damage in the middle of the well, and intersected the damaged well near the casing shoe. The repair well was subsequently completed in the gas storage zone near the original well bore, salvaging the valuable bottom hole location in the reservoir. This method would prevent the loss of storage gas, and it would prevent a potential underground blowout that could permanently damage the integrity of the storage field.

  18. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  19. How many dark energy parameters?

    SciTech Connect

    Linder, Eric V.; Huterer, Dragan

    2005-05-16

    For exploring the physics behind the accelerating universe a crucial question is how much we can learn about the dynamics through next generation cosmological experiments. For example, in defining the dark energy behavior through an effective equation of state, how many parameters can we realistically expect to tightly constrain? Through both general and specific examples (including new parametrizations and principal component analysis) we argue that the answer is 42 - no, wait, two. Cosmological parameter analyses involving a measure of the equation of state value at some epoch (e.g., w_0) and a measure of the change in equation of state (e.g., w') are therefore realistic in projecting dark energy parameter constraints. More elaborate parametrizations could have some uses (e.g., testing for bias or comparison with model features), but do not lead to accurately measured dark energy parameters.

  20. Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging.

    PubMed

    Chen, Shuo; Wang, Gang; Cui, Xiaoyu; Liu, Quan

    2017-01-23

    Raman spectroscopy has demonstrated great potential in biomedical applications. However, spectroscopic Raman imaging is limited in the investigation of fast changing phenomena because of slow data acquisition. Our previous studies have indicated that spectroscopic Raman imaging can be significantly sped up using the approach of narrow-band imaging followed by spectral reconstruction. A multi-channel system was built to demonstrate the feasibility of fast wide-field spectroscopic Raman imaging using the approach of simultaneous narrow-band image acquisition followed by spectral reconstruction based on Wiener estimation in phantoms. To further improve the accuracy of reconstructed Raman spectra, we propose a stepwise spectral reconstruction method in this study, which can be combined with the earlier developed sequential weighted Wiener estimation to improve spectral reconstruction accuracy. The stepwise spectral reconstruction method first reconstructs the fluorescence background spectrum from narrow-band measurements and then the pure Raman narrow-band measurements can be estimated by subtracting the estimated fluorescence background from the overall narrow-band measurements. Thereafter, the pure Raman spectrum can be reconstructed from the estimated pure Raman narrow-band measurements. The result indicates that the stepwise spectral reconstruction method can improve spectral reconstruction accuracy significantly when combined with sequential weighted Wiener estimation, compared with the traditional Wiener estimation. In addition, qualitatively accurate cell Raman spectra were successfully reconstructed using the stepwise spectral reconstruction method from the narrow-band measurements acquired by a four-channel wide-field Raman spectroscopic imaging system. This method can potentially facilitate the adoption of spectroscopic Raman imaging to the investigation of fast changing phenomena.

  1. A new approach to compute accurate velocity of meteors

    NASA Astrophysics Data System (ADS)

    Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William

    2016-10-01

    The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy

  2. Flexible receiver accurately tracks multiple threats

    NASA Astrophysics Data System (ADS)

    Browne, Jack

    1988-09-01

    The design and performance of a broadband (0.03-40-GHz) receiver system for electronic-surveillance applications are described. The complete superheterodyne receiver system comprises a control and display unit, a scan display, an equipment frame, and a choice of readily interchangeable RF tuner and demodulator modules with narrow or broad instantaneous bandwidths and BITE capability. Photographs, block diagrams, and tables listing the performance parameters of the modules are provided.

  3. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  4. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  5. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  6. Using Scaling for accurate stochastic macroweather forecasts (including the "pause")

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; del Rio Amador, Lenin

    2015-04-01

    already more accurate (have smaller RMS errors) than existing GCM's over the 1 - 10 year range. At annual scales they are almost as accurate as the (stochastic) Linear Inverse Modelling (LIM) approach (with hundreds of parameters) and are more accurate than LIM for scales beyond three years or so.

  7. [Spectroscopic properties of Pr3+ doped transparent oxyfluoride vitroceramics].

    PubMed

    Chen, Ying; Chen, Xiao-bo; Chen, Luan; Yang, Xiao-dong; Hu, Li-li; Wu, Zheng-long; Yu, Chun-lei; Wang, Ya-fei; Liu, Da-he; Tian, Qiang

    2011-12-01

    In the present paper, the room-temperature absorption spectrum of Pr+ -doped transparent oxyfluoride vitroceramics (Pr(0.2):FOV) was studied systematically. The optical characterisation of Pr(0.2):FOV was performed. The standard and modified Judd-Ofelt theories were used to determine the J-O intensity parameters. The problems with standard Judd-Ofelt theorie for Pr3+ were discussed. Based on the intensity parameters, some predicted optical parameters, such as the spontaneous radiative transition probabilities, radiative lifetimes, branching ratios and integrated emission cross section were calculated. And the application of Pr:FOV was analyzed. Especially there are large oscillator strength and large integrated emission cross section in the transitions of (3)P0-->(3)H4, (3)P1-->(3)H5 and (3)P0-->(3)H6, (3)P0-->(3)F2. So, they are more worthy of attention. The obtained spectroscopic results show the potential application of the Pr3+ -doped oxyfluoride vitroceramics for solid-state lasers.

  8. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    methods. These techniques will help in the understanding of new physics contained in current and future data sets as well as benefit the research efforts of the cosmology community. Our idea is to shift the computationally intensive pieces of the parameter estimation framework to a parallel training step. We then provide a machine learning code that uses this training set to learn the relationship between the underlying cosmological parameters and the function we wish to compute. This code is very accurate and simple to evaluate. It can provide incredible speed- ups of parameter estimation codes. For some applications this provides the convenience of obtaining results faster, while in other cases this allows the use of codes that would be impossible to apply in the brute force setting. In this thesis we provide several examples where our method allows more accurate computation of functions important for data analysis than is currently possible. As the techniques developed in this work are very general, there are no doubt a wide array of applications both inside and outside of cosmology. We have already seen this interest as other scientists have presented ideas for using our algorithm to improve their computational work, indicating its importance as modern experiments push forward. In fact, our algorithm will play an important role in the parameter analysis of Planck, the next generation CMB space mission.

  9. Does a pneumotach accurately characterize voice function?

    NASA Astrophysics Data System (ADS)

    Walters, Gage; Krane, Michael

    2016-11-01

    A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  10. Accurate thermoplasmonic simulation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  11. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  12. Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.

    PubMed

    Ganyecz, Ádám; Kállay, Mihály; Csontos, József

    2017-02-09

    An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

  13. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  14. Accurate methods for large molecular systems.

    PubMed

    Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A

    2009-07-23

    Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

  15. Accurate upper body rehabilitation system using kinect.

    PubMed

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  16. Noninvasive hemoglobin monitoring: how accurate is enough?

    PubMed

    Rice, Mark J; Gravenstein, Nikolaus; Morey, Timothy E

    2013-10-01

    Evaluating the accuracy of medical devices has traditionally been a blend of statistical analyses, at times without contextualizing the clinical application. There have been a number of recent publications on the accuracy of a continuous noninvasive hemoglobin measurement device, the Masimo Radical-7 Pulse Co-oximeter, focusing on the traditional statistical metrics of bias and precision. In this review, which contains material presented at the Innovations and Applications of Monitoring Perfusion, Oxygenation, and Ventilation (IAMPOV) Symposium at Yale University in 2012, we critically investigated these metrics as applied to the new technology, exploring what is required of a noninvasive hemoglobin monitor and whether the conventional statistics adequately answer our questions about clinical accuracy. We discuss the glucose error grid, well known in the glucose monitoring literature, and describe an analogous version for hemoglobin monitoring. This hemoglobin error grid can be used to evaluate the required clinical accuracy (±g/dL) of a hemoglobin measurement device to provide more conclusive evidence on whether to transfuse an individual patient. The important decision to transfuse a patient usually requires both an accurate hemoglobin measurement and a physiologic reason to elect transfusion. It is our opinion that the published accuracy data of the Masimo Radical-7 is not good enough to make the transfusion decision.

  17. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  18. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  19. Towards Accurate Molecular Modeling of Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.

    2010-03-01

    There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.

  20. Necessary conditions for accurate computations of three-body partial decay widths

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Jensen, A. S.; Fedorov, D. V.

    2008-09-01

    The partial width for decay of a resonance into three fragments is largely determined at distances where the energy is smaller than the effective potential producing the corresponding wave function. At short distances the many-body properties are accounted for by preformation or spectroscopic factors. We use the adiabatic expansion method combined with the WKB approximation to obtain the indispensable cluster model wave functions at intermediate and larger distances. We test the concept by deriving conditions for the minimal basis expressed in terms of partial waves and radial nodes. We compare results for different effective interactions and methods. Agreement is found with experimental values for a sufficiently large basis. We illustrate the ideas with realistic examples from α emission of C12 and two-proton emission of Ne17. Basis requirements for accurate momentum distributions are briefly discussed.

  1. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  2. Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun

    2015-05-01

    We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].

  3. Photometric and spectroscopic studies of massive binaries in the large Magellanic Cloud. II. Three O-type systems in the 30 Dor region

    SciTech Connect

    Morrell, Nidia I.; Massey, Philip; Neugent, Kathryn F.; Penny, Laura R.; Gies, Douglas R. E-mail: phil.massey@lowell.edu E-mail: penny@cofc.edu

    2014-07-10

    This is the second paper in a series devoted to the study of massive binary systems in the Large Magellanic Cloud (LMC). We mainly aim to provide accurate data that constrains the mass-luminosity relation for the most massive stars but also to address the long lasting problem known as the 'mass discrepancy'. We present here our results for three binaries (LMC 169782, LMC 171520, and [P93] 921) harboring the earliest O-type components—ranging from O4 V to O6.5 V—among our sample of 17 systems. Our photometry provided accurate periods for the studied systems, allowing the spectroscopic observations to be performed at selected phases where the radial velocity separation between binary components is larger. Following the procedure outlined in our first paper of this series, after solving the radial velocity curves for orbital parameters, we used tomographic reconstruction to obtain the individual spectra of each star, from which we determined effective temperatures via a model atmosphere fitting with FASTWIND. This information, combined with the light-curve analysis that was performed with GENSYN, enabled the determination of absolute masses, radii, and bolometric luminosities that are compared with those predicted by modern stellar evolutionary models finding that they agree within the uncertainties. Nevertheless, the comparison seems to confirm the small differences found in the first paper of this series in the sense that the evolutionary masses are slightly larger than the Keplerian ones, with differences averaging ∼10%, or alternatively, the stellar evolutionary models predict luminosities that are somewhat lower than observed. Still, the overall agreement between the current evolutionary models and the empirically determined stellar parameters is remarkable.

  4. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  5. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  6. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  7. Are your spectroscopic data being used?

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.; Potterbusch, Megan R.; Bouquin, Daina; Erdmann, Christopher C.; Wilzewski, Jonas S.; Rothman, Laurence S.

    2016-09-01

    The issue of availability of data and their presentation in spectroscopic publications is discussed. Different current practices are critically reviewed from the point of view of potential users, government policies, and merit of success of the authors. Indeed, properly providing the data benefits not only users but also the authors of the spectroscopic research. We will show that this increases citations to the spectroscopy papers and visibility of the research groups. Examples based on the statistical analyses of the articles published in the Journal of Molecular Spectroscopy will be shown. We will discuss different methods including supplementary materials to the Journals, public-curated databases and also new tools that can be utilized by spectroscopists.

  8. Data Acquisition System for Instructional Spectroscopes

    NASA Astrophysics Data System (ADS)

    Almeida, C. B. S. B.; Hetem, A.

    2014-10-01

    This article aims to present the software for data acquisition developed in scientific initiation program - IC, for use in the design of a spectrometer built by students. The program was built in C++, a language in wide use today. The origin of spectra used is a simplified model of rustic spectroscope. This equipment basically consists of a box that does not allow light to enter, except through a slit made in the side of it, a diffraction media and a camera for data acquisition. After the image acquisition, one executes the data processing, followed by the usual steps of reduction and analysis of this type of tool. We have implemented a method for calibrating the spectroscope, through which one can compare the incidence of the photons with characteristic of each monochromatic wave. The final result is a one-dimensional spectrum that can be subsequently analyzed.

  9. Spectroscopic Sensitivity Workout: First-order modes

    NASA Astrophysics Data System (ADS)

    Brown, Thomas

    2003-07-01

    We will observe the primary flux standards G191B2B, GD71 and GD153, obtaining first-order spectra in all L-modes {G191B2B only in the CCD modes due to its high brightness in the UV}. By comparing observed and model spectra, we will update calibration reference files describing spectroscopic sensitivity {and CTE loss} as a function of time. On visit of GD71 will be spent on verifying the recently derived CTE formula for STIS Spectroscopic modes with the CCD, by stepping the target along the slit {7 positions} with two {short} exposure times. This will verify the results using the two-amplifier readout method, and provide high-S/N data at low intensity levels and low background level.

  10. IRIS: Towards an Accurate and Fast Stage Weight Prediction Method

    NASA Astrophysics Data System (ADS)

    Taponier, V.; Balu, A.

    2002-01-01

    The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator

  11. Impact of optical distortions on fiber positioning in the dark energy spectroscopic instrument

    NASA Astrophysics Data System (ADS)

    Kent, Stephen; Lampton, Michael; Doel, A. Peter; Brooks, David; Miller, Tim; Besuner, Robert; Silber, Joe; Liang, Ming; Sprayberry, David; Baltay, Charles; Rabinowitz, David

    2016-08-01

    The Dark Energy Spectroscopic Instrument, to be located at the prime focus of the Mayall telescope, includes a wide field corrector, a 5000 fiber positioner system, and a fiber view camera. The mapping of the sky to the focal plane, needed to position the fibers accurately, is described in detail. A major challenge is dealing with the large amount of distortion introduced by the optics (of order 10% scale change), including time-dependent non-axisymmetric distortions introduced by the atmospheric dispersion compensator. Solutions are presented to measure or mitigate these effects.

  12. Impact of Distortions on Fiber Position Location in the dark Energy Spectroscopic Instrument

    SciTech Connect

    Kent, Stephen; Lampton, Michael; Doel, A. Peter; Brooks, David; Miller, Tim; Besuner, Robert; Silber, Joe; Liang, Ming; Sprayberry, David; Baltay, Charles; Rabinowitz, David

    2016-01-01

    The Dark Energy Spectroscopic Instrument, to be located at the prime focus of the Mayall telescope, includes a wide field corrector, a 5000 fiber positioner system, and a fiber view camera. The mapping of the sky to the focal plane, needed to position the fibers accurately, is described in detail. A major challenge is dealing with the large amount of distortion introduced by the optics (of order 10% scale change), including time-dependent non-axisymmetric distortions introduced by the atmospheric dispersion compensator. Solutions are presented to measure or mitigate these effects.

  13. Spectroscopic Observations of Geo-Stationary Satellites Over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Kim, S. J.; Han, W. Y.; Park, J. S.; Min, S. W.

    2001-11-01

    Low resolution spectroscopic observations of geo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF) with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It is suggested that the material types of the satellites can be determined through spectral comparisons with the ground laboratory data. We will continuously observe additional geo-stationary satellites for the accurate classification of spectral features.

  14. Quantitative spectroscopy of Galactic BA-type supergiants. I. Atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Firnstein, M.; Przybilla, N.

    2012-07-01

    Context. BA-type supergiants show a high potential as versatile indicators for modern astronomy. This paper constitutes the first in a series that aims at a systematic spectroscopic study of Galactic BA-type supergiants. Various problems will be addressed, including in particular observational constraints on the evolution of massive stars and a determination of abundance gradients in the Milky Way. Aims: The focus here is on the determination of accurate and precise atmospheric parameters for a sample of Galactic BA-type supergiants as prerequisite for all further analysis. Some first applications include a recalibration of functional relationships between spectral-type, intrinsic colours, bolometric corrections and effective temperature, and an exploration of the reddening-free Johnson Q and Strömgren [c1] and β-indices as photometric indicators for effective temperatures and gravities of BA-type supergiants. Methods: An extensive grid of theoretical spectra is computed based on a hybrid non-LTE approach, covering the relevant parameter space in effective temperature, surface gravity, helium abundance, microturbulence and elemental abundances. The atmospheric parameters are derived spectroscopically by line-profile fits of our theoretical models to high-resolution and high-S/N spectra obtained at various observatories. Ionization equilibria of multiple metals and the Stark-broadened hydrogen and the neutral helium lines constitute our primary indicators for the parameter determination, supplemented by (spectro-)photometry from the UV to the near-IR. Results: We obtain accurate atmospheric parameters for 35 sample supergiants from a homogeneous analysis. Data on effective temperatures, surface gravities, helium abundances, microturbulence, macroturbulence and rotational velocities are presented. The interstellar reddening and the ratio of total-to-selective extinction towards the stars are determined. Our empirical spectral-type-Teff scale is steeper than

  15. Spectroscopic classification of Gaia16alf

    NASA Astrophysics Data System (ADS)

    Onori, F.; Fraser, M.; Jonker, P.; Wyrzykowski, L.; Blagorodnova, N.; Mattila, S.

    2016-04-01

    We report the spectroscopic classification of Gaia16alf, from medium resolution (R~1000; 330-990nm) spectra taken with the William Herschel Telescope + ISIS + R300B/R158R on the night of 2016 April 19. The spectrum is consistent with that of a Type Ia SN a few days before maximum light at a redshift of z=0.094.

  16. Spectroscopic diagnostics of tritium recycling in TFTR

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Stotler, D. P.; Adler, H.; Ramsey, A. T.

    1995-01-01

    Spectroscopic measurements of tritium Balmer-alpha (Tα) emission from a fusion plasma are presented. A Fabry-Perot interferometer is used to measure the Hα, Dα, Tα spectrum in the current D-T experimental campaign on TFTR and the contributions of H, D, and T are separated by spectral analysis. The Tα line was measurable at concentrations Tα /(Hα+Dα+Tα) down to 2%.

  17. Spectroscopic Gradients in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Battistini, C.; Carrasco, L.; Recillas, E.

    2009-11-01

    We review some relevant properties of the observed changes of Hβ, Mg_2, and FeI Lick indices across the surface of 25 bright elliptical galaxies. The impact of these spectroscopic gradients is briefly discussed, in the framework of the leading physical mechanisms that led to galaxy formation. In particular, three relevant evolutionary scenarios are sketched, each one able, in principle, to consistently match galaxy spectral properties and effectively constrain the composing stellar populations in these systems.

  18. Spectroscopic madness - A golden age for amateurs

    NASA Astrophysics Data System (ADS)

    Eversberg, Thomas

    2011-01-01

    Today, professional instrumentation is dominated by heavily oversubscribed telescopes which focus mainly on a limited number of ``fashionable'' research topics. As a result, time acquisition for massive star research including extended observation campaigns, becomes more difficult. On the other hand, massive star investigations by amateur astronomers performing spectroscopic measurements are on a level which can fulfil professional needs. I describe the instrumentation available to the amateurs, their observational skills and the potential contribution they can make to the professional community.

  19. Spectroscopic-guided brain tumor resection

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Toms, Steven A.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2000-05-01

    A pilot in vivo study was conducted to investigate the feasibility of using optical spectroscopy for brain tumor margin detection. Fluorescence and diffuse reflectance spectra were acquired using a portable clinical spectroscopic system from normal brain tissues, tumors, and tumor margins in 21 brain tumor patients undergoing craniotomy. Results form this study show the potential of optical spectroscopy in detecting infiltrating tumor margins of primary brain tumors.

  20. A simpler and more accurate AUTO-HDS framework for clustering and visualization of biological data.

    PubMed

    Campello, Ricardo J G B; Moulavi, Davoud; Sander, Jörg

    2012-01-01

    In [1], the authors proposed a framework for automated clustering and visualization of biological data sets named AUTO-HDS. This letter is intended to complement that framework by showing that it is possible to get rid of a user-defined parameter in a way that the clustering stage can be implemented more accurately while having reduced computational complexity.

  1. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  2. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  3. Accurate paleointensities - the multi-method approach

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart

    2016-04-01

    The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.

  4. Accurate glucose detection in a small etalon

    NASA Astrophysics Data System (ADS)

    Martini, Joerg; Kuebler, Sebastian; Recht, Michael; Torres, Francisco; Roe, Jeffrey; Kiesel, Peter; Bruce, Richard

    2010-02-01

    We are developing a continuous glucose monitor for subcutaneous long-term implantation. This detector contains a double chamber Fabry-Perot-etalon that measures the differential refractive index (RI) between a reference and a measurement chamber at 850 nm. The etalon chambers have wavelength dependent transmission maxima which dependent linearly on the RI of their contents. An RI difference of ▵n=1.5.10-6 changes the spectral position of a transmission maximum by 1pm in our measurement. By sweeping the wavelength of a single-mode Vertical-Cavity-Surface-Emitting-Laser (VCSEL) linearly in time and detecting the maximum transmission peaks of the etalon we are able to measure the RI of a liquid. We have demonstrated accuracy of ▵n=+/-3.5.10-6 over a ▵n-range of 0 to 1.75.10-4 and an accuracy of 2% over a ▵nrange of 1.75.10-4 to 9.8.10-4. The accuracy is primarily limited by the reference measurement. The RI difference between the etalon chambers is made specific to glucose by the competitive, reversible release of Concanavalin A (ConA) from an immobilized dextran matrix. The matrix and ConA bound to it, is positioned outside the optical detection path. ConA is released from the matrix by reacting with glucose and diffuses into the optical path to change the RI in the etalon. Factors such as temperature affect the RI in measurement and detection chamber equally but do not affect the differential measurement. A typical standard deviation in RI is +/-1.4.10-6 over the range 32°C to 42°C. The detector enables an accurate glucose specific concentration measurement.

  5. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  6. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  7. Flux measurements using the BATSE spectroscopic detectors

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1993-01-01

    Among the Compton Gama-Ray Observatory instruments, the BATSE Spectroscopic Detectors (SD) have the distinction of being able to detect photons of energies less than about 20 keV. This is an interesting energy range for the examination of low mass X-ray binaries (LMXB's). In fact, Sco X-1, the prototype LMXB, is easily seen even in the raw BATSE spectroscopic data. The all-sky coverage afforded by these detectors offers a unique opportunity to monitor this source over time periods never before possible. The aim of this investigation was to test a number of ways in which both continous and discrete flux measurements can be obtained using the BATSE spectroscopic datasets. A instrumental description of a SD can be found in the Compton Workshop of Apr. 1989, this report will deal only with methods which can be used to analyze its datasets. Many of the items discussed below, particularly in regard to the earth occultation technique, have been developed, refined, and applied by the BATSE team to the reduction of BATSE LAD data. Code written as part of this project utilizes portions of that work. The following discussions will first address issues related to the reduction of SD datasets using the earth occultation technique. It will then discuss methods for the recovery of the flux history of strong sources while they are above the earth's limb. The report will conclude with recommended reduction procedures.

  8. Spectroscopic studies of individual plasmon resonant nanoparticles

    NASA Astrophysics Data System (ADS)

    Mock, Jack J.; Smith, David R.; Barbic, Mladen; Oldenburg, Steven J.; Schultz, David A.; Schultz, Sheldon

    2003-11-01

    We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plas on resonant nanoparticles,along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically,and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds,and color images can be captured using consumer digital color cameras. Spheres,tetrahedrons,and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized,and their spectra correlated with their shape and size as determined by transmission electron icroscope (TEM). The unique shape,size, composition,and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles.

  9. Spectroscopic Follow Up of Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Latham, David W.; Cochran, W. D.; Marcy, G. W.; Buchhave, L.; Endl, M.; Isaacson, H.; Gautier, T. N.; Borucki, W. J.; Koch, D.; Kepler Team

    2010-01-01

    Spectroscopic follow-up observations play a crucial role in the confirmation and characterization of transiting planet candidates identified by Kepler. The most challenging part of this work is the determination of radial velocities with a precision approaching 1 m/s in order to derive masses from spectroscopic orbits. The most precious resource for this work is HIRES on Keck I, to be joined by HARPS-North on the William Herschel Telescope when that new spectrometer comes on line in two years. Because a large fraction of the planet candidates are in fact stellar systems involving eclipsing stars and not planets, our strategy is to start with reconnaissance spectroscopy using smaller telescopes, to sort out and reject as many of the false positives as possible before going to Keck. During the first Kepler observing season in 2009, more than 100 nights of telescope time were allocated for this work, using high-resolution spectrometers on the Lick 3.0-m Shane Telescope, the McDonald 2.7-m Reflector, the 2.5-m Nordic Optical Telescope, and the 1.5-m Tillinghast Reflector at the Whipple observatory. In this paper we will summarize the scope and organization of the spectroscopic follow-up observations, showing examples of the types of false positives found and ending with a presentation of the characteristics of a confirmed planet.

  10. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  11. Accurate rubidium atomic fountain frequency standard

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Yuri; Marra, Giuseppe

    2011-06-01

    The design, operating parameters and the accuracy evaluation of the NPL Rb atomic fountain are described. The atomic fountain employs a double magneto-optical arrangement that allows a large number of 87Rb atoms to be trapped, a water-cooled temperature-stabilized interrogation region and a high quality factor interrogation cavity. From the uncertainties of measured and calculated systematic frequency shifts, the fractional frequency accuracy is estimated to be 3.7 × 10-16. The fractional frequency stability, limited predominantly by noise in the local oscillator, is measured to be 7 × 10-16 after one day of averaging. Based on the proposed quasi-continuous regime of operation of the fountain, the accuracy of the Rb standard of 5 × 10-17 reachable in two days of averaging is predicted.

  12. A quick accurate model of nozzle backflow

    NASA Technical Reports Server (NTRS)

    Kuharski, R. A.

    1991-01-01

    Backflow from nozzles is a major source of contamination on spacecraft. If the craft contains any exposed high voltages, the neutral density produced by the nozzles in the vicinity of the craft needs to be known in order to assess the possibility of Paschen breakdown or the probability of sheath ionization around a region of the craft that collects electrons for the plasma. A model for backflow has been developed for incorporation into the Environment-Power System Analysis Tool (EPSAT) which quickly estimates both the magnitude of the backflow and the species makeup of the flow. By combining the backflow model with the Simons (1972) model for continuum flow it is possible to quickly estimate the density of each species from a nozzle at any position in space. The model requires only a few physical parameters of the nozzle and the gas as inputs and is therefore ideal for engineering applications.

  13. Photometric and spectroscopic investigation of the oscillating Algol type binary: EW Boo

    NASA Astrophysics Data System (ADS)

    Doğruel, Mustafa Burak; Gürol, Birol

    2015-10-01

    We obtained the physical and geometrical parameters of the EW Boo system, which exhibits short period and small amplitude pulsations as well as brightness variations due to orbital motion of components. Towards this end we carried out photometric observations at Ankara University Kreiken Observatory (AUKO) as well as spectroscopic observations at TUBITAK National Observatory (TNO). The light and radial velocity curves obtained from these observations have been simultaneously analyzed with PHOEBE and the absolute parameters of the system along with the geometric parameters of the components have been determined. Using model light curves of EW Boo, light curve regions in which the pulsations are active have been determined and as a result of analyses performed in the frequency region, characteristic parameters of pulsations have been obtained. We find that the results are compatible with current parameters of similar systems in the literature. The evolutionary status of the components is propounded and discussed.

  14. Spectroscopic strengths of low-lying levels in 18Ne

    NASA Astrophysics Data System (ADS)

    Omalley, Patrick; Allen, J. M.; Bardayan, D. W.; Becchetti, F. D.; Cizewski, J. A.; Febbraro, M.; Gryzwacz, R.; Hall, M.; Jones, K. L.; Kolata, J. J.; Paulauskas, S. V.; Smith, K.; Thornsberry, C.

    2016-09-01

    Much effort has been made to understand the origins of 18F in novae. Due to its relatively long half-life ( 2 hours), 18F can survive until the nova envelope is transparent, and therefore it can provide a sensitive diagnostic of nova nucleosynthesis. It is likely produced through the beta decay of 18Ne, which is itself produced (primarily) through the 17F(p, γ) reaction. Understanding the direct capture contribution to the 17F(p, γ) reaction is important to accurately model it. As such, the spectroscopic strengths of low-lying states in 18Ne are needed. At the University of Notre Dame a measurement of the 17F(d,n) reaction has been performed using a beam produced with TwinSol Low energy radioactive beam facility. The neutrons were detected using a combination of VANDLE and UoM deuterated scintillator arrays. Data will be shown and preliminary results discussed. Research sponsored by the National Science Foundation, the US DOE Office of Nuclear Physics, and the National Nuclear Security Administration.

  15. Nested wire array simulation and comparison with spectroscopic data*

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Mehlhorn, Tom; Maron, Yitzhak; Lepell, Dave

    2003-10-01

    We present (r,θ) simulations of nested wire array experiments on Sandia National Laboratories' Z accelerator (Albuquerque, NM), using Alegra-MHD, a resistive MHD code which includes radiation and thermal conduction, in addition to a realistic equation of state and conductivity model for the wire cores. Of particular interest is the modeling of the distribution of current between the inner and outer arrays (requiring accurate EOS and conductivity models), and the bombardment of the inner array by coronal plasma streams from the outer array. Both effects play a crucial role in determining the amount of energy absorbed by the inner array wires, the resulting "transparency" of the inner array, and ultimately the dynamical "mode" of implosion of the entire array [1,2]. We benchmark simulations against plasma precursor data inferred from spectroscopic analysis. [1] S.V. Lebedev, et al., Phys. Rev. Lett., 84, 1708 (2000) [2] J.P. Chittenden, et al., Phys. Plasmas, 8, 675 (2001) *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics

    SciTech Connect

    Rahman, Md. T. Ramana, C. V.

    2014-10-28

    Gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}, referred to CFGO) with variable Gd content (x = 0.0–0.4) have been synthesized by solid state ceramic method. The crystal structure and impedance properties of CFGO compounds have been evaluated. X-ray diffraction measurements indicate that CFGO crystallize in the inverse spinel phase. The CFGO compounds exhibit lattice expansion due to substitution of larger Gd ions into the crystal lattice. Impedance spectroscopy analysis was performed under a wide range of frequency (f = 20 Hz–1 MHz) and temperature (T = 303–573 K). Electrical properties of Gd incorporated Co ferrite ceramics are enhanced compared to pure CoFe{sub 2}O{sub 4} due to the lattice distortion. Impedance spectroscopic analysis illustrates the variation of bulk grain and grain-boundary contributions towards the electrical resistance and capacitance of CFGO materials with temperature. A two-layer heterogeneous model consisting of moderately conducting grain interior (ferrite-phase) regions separated by insulating grain boundaries (resistive-phase) accurately account for the observed temperature and frequency dependent electrical characteristic of CFGO ceramics.

  17. Spectroscopic study of the peculiar galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Yakovleva, V. A.; Merkulova, O. A.; Karataeva, G. M.; Shalyapina, L. V.; Yablokova, N. V.; Burenkov, A. N.

    2016-04-01

    We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry-Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy's minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy's stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region ( r ≤ 5"), are ≈1 Gyr and ≈-0.4 dex, respectively. Both young (2-5 × 108 yr) and old (5-10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8" south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.

  18. New spectroscopic tools and techniques for characterizing M dwarfs and discovering their planets in the near-infrared

    NASA Astrophysics Data System (ADS)

    Terrien, Ryan C.

    M dwarfs are the least massive and most common stars in the Galaxy. Due to their prevalence and long lifetimes, these diminutive stars play an outsize role in several fields of astronomical study. In particular, it is now known that they commonly host planetary systems, and may be the most common hosts of Earth-size, rocky planets in the habitable zone. A comprehensive understanding of M dwarfs is crucial for understanding the origins and conditions of their planetary systems, including their potential habitability. Such an understanding depends on methods for precisely and accurately measuring their properties. These tools have broader applicability as well, underlying the use of M dwarfs as fossils of Galactic evolution, and helping to constrain the structures and interiors of these stars. The measurement of the fundamental parameters of M dwarfs is encumbered by their spectral complexity. Unlike stars of spectral type F, G, or K that are similar to our G type Sun, whose spectra are dominated by continuum emission and atomic features, the cool atmospheres of M dwarfs are dominated by complex molecular absorption. Another challenge for studies of M dwarfs is that these stars are optically faint, emitting much of their radiation in the near-infrared (NIR). The availability and performance of NIR spectrographs have lagged behind those of optical spectrographs due to the challenges of producing low-noise, high-sensitivity NIR detector arrays, which have only recently become available. This thesis discusses two related lines of work that address these challenges, motivated by the development of the Habitable Zone Planet Finder (HPF), a NIR radial velocity (RV) spectrograph under development at Penn State that will search for and confirm planets around nearby M dwarfs. This work includes the development and application of new NIR spectroscopic techniques for characterizing M dwarfs, and the development and optimization of new NIR instrumentation for HPF. The first line

  19. The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast

    NASA Astrophysics Data System (ADS)

    Zhao, Gong-Bo; Wang, Yuting; Ross, Ashley J.; Shandera, Sarah; Percival, Will J.; Dawson, Kyle S.; Kneib, Jean-Paul; Myers, Adam D.; Brownstein, Joel R.; Comparat, Johan; Delubac, Timothée; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K.; Meza, Andrés; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yèche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, Hu

    2016-04-01

    We present a science forecast for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) survey. Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the fNL parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Lyman α forest to constrain the total neutrino mass. We find that eBOSS luminous red galaxies, emission line galaxies and clustering quasars can achieve a precision of 1, 2.2 and 1.6 per cent, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on fσ8 is expected to be 2.5, 3.3 and 2.8 per cent, respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of σ(fNL) ˜ 10-15. eBOSS can at most improve the dark energy figure of merit by a factor of 3 for the Chevallier-Polarski-Linder parametrization, and can well constrain three eigenmodes for the general equation-of-state parameter. eBOSS can also significantly improve constraints on modified gravity parameters by providing the RSD information, which is highly complementary to constraints obtained from weak lensing measurements. A principal component analysis shows that eBOSS can measure the eigenmodes of the effective Newton's constant to 2 per cent precision; this is a factor of 10 improvement over that achievable without eBOSS. Finally, we derive the eBOSS constraint (combined with Planck, Dark Energy Survey and BOSS) on the total neutrino mass, σ(Σmν) = 0.03 eV (68 per cent CL), which in principle makes it possible to distinguish between the two scenarios of neutrino mass hierarchies.

  20. The MIDAS touch for Accurately Predicting the Stress-Strain Behavior of Tantalum

    SciTech Connect

    Jorgensen, S.

    2016-03-02

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  1. Accurate Variational Description of Adiabatic Quantum Optimization

    NASA Astrophysics Data System (ADS)

    Carleo, Giuseppe; Bauer, Bela; Troyer, Matthias

    Adiabatic quantum optimization (AQO) is a quantum computing protocol where a system is driven by a time-dependent Hamiltonian. The initial Hamiltonian has an easily prepared ground-state and the final Hamiltonian encodes some desired optimization problem. An adiabatic time evolution then yields a solution to the optimization problem. Several challenges emerge in the theoretical description of this protocol: on one hand, the exact simulation of quantum dynamics is exponentially complex in the size of the optimization problem. On the other hand, approximate approaches such as tensor network states (TNS) are limited to small instances by the amount of entanglement that can be encoded. I will present here an extension of the time-dependent Variational Monte Carlo approach to problems in AQO. This approach is based on a general class of (Jastrow-Feenberg) entangled states, whose parameters are evolved in time according to a stochastic variational principle. We demonstrate this approach for optimization problems of the Ising spin-glass type. A very good accuracy is achieved when compared to exact time-dependent TNS on small instances. We then apply this approach to larger problems, and discuss the efficiency of the quantum annealing scheme in comparison with its classical counterpart.

  2. Accurate simulation of optical properties in dyes.

    PubMed

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.

  3. Spectroscopic investigation of U, Np and Th in nuclear glasses

    NASA Astrophysics Data System (ADS)

    Calas, G.; Galoisy, L. V.; Petit-Maire, D.

    2011-12-01

    Vitrification of high-level radioactive waste in borosilicate glasses is currently used on an industrial scale in several countries. The fundamental properties of the waste forms are their chemical and mechanical durability against the forcing conditions represented by chemical alteration or internal/external irradiation. The waste immobilized in glass is composed of over 30 different nuclear fission and activation products, as well as minor actinides. The oxidation state and local atomic coordination of long-lived radionuclides are important parameters to understand the long-term evolution of the glass. We present an overview of the local structure around actinides in glasses similar to the French nuclear glass. X-Ray absorption spectroscopy has been used to probe the local environment around uranium, neptunium and thorium in these glasses. It is combined with with UV-visible spectroscopy, used to get selective information on the surrounding of U(IV), U(V) and U(VI) in glasses. Our spectroscopic data show that U, Np and Th occur in nuclear glasses in a peculiar surrounding showing significant differences with the crystal chemistry of these elements in crystalline compounds. Element speciation may be used as a pertinent parameter to follow the long-term stability of nuclear glasses, either under irradiation or during the alteration of the glass.

  4. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  5. PASTIS: Bayesian extrasolar planet validation - II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Díaz, R. F.; Almenara, J.-M.; Bouchy, F.; Deleuil, M.; Figueira, P.; Hébrard, G.; Moutou, C.; Rodionov, S.; Santos, N. C.

    2015-08-01

    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as a function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anticorrelated with the radial velocity one, as in the case of stellar spots. In those cases, the full width at half-maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We review all the spectroscopic diagnoses reported in the literature so far, especially the ones to monitor the line asymmetry. We estimate their uncertainty and compare their sensitivity to blends. Based on that, we recommend the use of BiGauss which is the most sensitive diagnosis to monitor line-profile asymmetry. In this paper, we also investigate the sensitivity of the radial velocities to constrain blend scenarios and develop a formalism to estimate the level of dilution of a blended signal. Finally, we apply our blend model to re-analyse the spectroscopic diagnoses of HD 16702, an unresolved face-on binary which exhibits bisector variations.

  6. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-12-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z0 = 82 and neutrons number around the closed shells Z0 = 82 and Z0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (Np) and neutron (Nn) numbers. These linear dependencies are correlated with the closed shells core (Z0,N0). The same individual linear behaviors are obtained as a function of the multiplication of NpNn and the isospin asymmetry parameter, NpNnI. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function NpNn/(Z0+N0).

  7. The effects of a multidensity plasma on ultraviolet spectroscopic electron density diagnostics

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.

    1984-01-01

    Spectroscopic electron density diagnostics have been developed for interpretation of UV, EUV, and X-ray emission line spectra of solar and other astrophysical plasmas, and tokamak plasmas. In principle, accurate electron densities can be determined. However, in practice, a number of difficulties arise with respect to the determination of very accurate electron densities in the 1100-3000 A region. The present study has the objective to investigate one of these difficulties, taking into account the effect on line ratios produced by a source composed of several regions of substantially different densities, all at the same temperature. The study is in particular concerned with a source in which small high density knots are embedded in low-density plasma. Attention is given to line ratios involving the O IV multiplet near 1400 A, obtained from the spectrum of a surge observed outside the solar limb.

  8. Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields

    NASA Astrophysics Data System (ADS)

    Morel, T.; Miglio, A.; Lagarde, N.; Montalbán, J.; Rainer, M.; Poretti, E.; Eggenberger, P.; Hekker, S.; Kallinger, T.; Mosser, B.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.

    2014-04-01

    A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaigns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars. Based on observations collected at La Silla Observatory, ESO (Chile) with the FEROS and HARPS spectrograph at the 2.2 and 3.6-m telescopes under programs LP178.D-0361, LP182.D-0356, and LP185.D-0056.Appendix A is available in electronic form at http://www.aanda.orgTables A.2 to A.6 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A119

  9. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...

  10. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering

    NASA Astrophysics Data System (ADS)

    Chuang, Chia-Hsun; Prada, Francisco; Pellejero-Ibanez, Marcos; Beutler, Florian; Cuesta, Antonio J.; Eisenstein, Daniel J.; Escoffier, Stephanie; Ho, Shirley; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Manera, Marc; Nuza, Sebastián E.; Rodríguez-Torres, Sergio; Ross, Ashley; Rubiño-Martín, J. A.; Samushia, Lado; Schlegel, David J.; Schneider, Donald P.; Wang, Yuting; Weaver, Benjamin A.; Zhao, Gongbo; Brownstein, Joel R.; Dawson, Kyle S.; Maraston, Claudia; Olmstead, Matthew D.; Thomas, Daniel

    2016-10-01

    With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h-1 Mpc). We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z = 0.59, to obtain constraints on the Hubble expansion rate H(z), the angular- diameter distance DA(z), the normalized growth rate f(z)σ8(z), and the physical matter density Ωm h2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g. ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs, H(0.59)rs/rs,fid, f(0.59)σ8(0.59), Ωm h2} = {1427 ± 26 Mpc, 97.3 ± 3.3 km s-1 Mpc-1, 0.488 ± 0.060, 0.135 ± 0.016}, where rs is the comoving sound horizon at the drag epoch and rs,fid = 147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g. cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e. CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, w, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk, is 0.3 per cent. We do not find deviation from flat ΛCDM.

  11. On estimating the background of remote sensing gamma-ray spectroscopic data

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Hua

    2016-10-01

    In this paper, we considered the inverse count accumulation process of gamma-ray spectrum and derived an iterative filtering method to estimate the background of noisy spectroscopic data for the remote sensing observations of planetary surface. Compared with the SNIP method, the proposed method avoids the calculation of the average FWHM of the whole spectrum or the peak regions, which is an important parameter for the SNIP method. The synthetic and experimental spectra are used to validate the derived method. The results show that the proposed method can estimate the background efficiently, especially for the spectroscopic data with Compton continuum. In addition, by combining the proposed method and the SNIP method, the average FWHM can be determined easily, which can be used to validate the characteristics of detector.

  12. The spectroscopic search for the trace aerosols in the planetary atmospheres - the results of numerical simulations

    NASA Astrophysics Data System (ADS)

    Blecka, Maria I.

    2010-05-01

    The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.

  13. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  14. Spectroscopic and second-order nonlinear optical properties of Ruthenium(ii) complexes: a DFT/MRCI and ADC(2) study.

    PubMed

    Escudero, Daniel; Thiel, Walter; Champagne, Benoît

    2015-07-15

    In this communication we use the density functional theory-based multi-reference configuration interaction (DFT/MRCI) and the second-order algebraic diagrammatic construction (ADC(2)) methods to compute the spectroscopic and second-order nonlinear optical (NLO) properties of Ru(ii)-based NLO-phores. For some of the complexes, an appropriate treatment of doubly excited states is essential to correctly describe their spectroscopic and photochemical properties. Geometrical and solvent relaxation effects are also assessed. An adequate treatment of solvent effects seems critical for an accurate description of the NLO properties of these complexes.

  15. Enhancing forensic science with spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Ricci, Camilla; Kazarian, Sergei G.

    2006-09-01

    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging

  16. Are your Spectroscopic Data Being Used?

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.; Rothman, Laurence S.; Wilzewski, Jonas

    2014-06-01

    Spectroscopy is an established and indispensable tool in science, industry, agriculture, medicine, surveillance, etc.. The potential user of spectral data, which is not available in HITRAN or other databases, searches the spectroscopy publications. After finding the desired publication, the user very often encounters the following problems: 1) They cannot find the data described in the paper. There can be many reasons for this: nothing is provided in the paper itself or supplementary material; the authors are not responding to any requests; the web links provided in the paper have long been broken; etc. 2) The data is presented in a reduced form, for instance through the fitted spectroscopic constants. While this is a long-standing practice among spectroscopists, there are numerous serious problems with this practice, such as users getting different energy and intensity values because of different representations of the solution to the Hamiltonian, or even just despairing of trying to generate usable line lists from the published constants. Properly providing the data benefits not only users but also the authors of the spectroscopic research. We will show that this increases citations to the spectroscopy papers and visibility of the research groups. We will also address the quite common issue when researchers obtain the data, but do not feel that they have time, interest or resources to write an article describing it. There are modern tools that would allow one to make these data available to potential users and still get credit for it. However, this is a worst case scenario recommendation, i.e., publishing the data in a peer-reviewed journal is still the preferred way. L. S. Rothman, I. E. Gordon, et al. "The HITRAN 2012 molecular spectroscopic database," JQSRT 113, 4-50 (2013).

  17. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    NASA Astrophysics Data System (ADS)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  18. Exploring the spectroscopic properties of relic radiogalaxies

    NASA Astrophysics Data System (ADS)

    Capetti, A.; Robinson, A.; Baldi, R. D.; Buttiglione, S.; Axon, D. J.; Celotti, A.; Chiaberge, M.

    2013-03-01

    From an optical spectroscopic survey of 3CR radiogalaxies (RGs) with z < 0.3, we discovered three objects characterized by an extremely low level of gas excitation and a large deficit of line emission with respect to RGs of similar radio luminosity. We interpreted these objects as relic active galactic nuclei (AGN), i.e., sources observed after a large drop in their nuclear activity. We here present new spectroscopic observations for these three galaxies and for a group of "candidate" relics. None of the candidates can be convincingly confirmed. From the new data for the three relics, we estimate the density of the line-emitting gas. This enables us to explore the temporal evolution of the line ratios after the AGN "death". The characteristic timescale is the light-crossing time of the emission-line region, a few ~103 years, too short to correspond to a substantial population of relic RGs. Additional mechanisms of gas ionization, such as "relic shocks" from their past high power phase or stellar sources, should also be considered to account for the spectroscopic properties of the relic RGs. Relic RGs appear to be a mixed bag of sources in different phases of evolution, including AGN recently (~104 years ago) quenched, galaxies that have been inactive for at least ~106 years, and objects caught during the transition from a powerful RG to a low power FR I source. Based on observations made with the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Centro Galileo Galilei of INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque del los Muchachos of the Instituto de Astrofisica de Canarias.

  19. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    DTIC Science & Technology

    2011-04-01

    Paschalis EP, Boskey AL (1999) J Biomed Opt 4: 14 –21 13. Kidder LH, Kalasinsky VF , Luke JL, Levin IW, Lewis EN (1997) Nat Medicine 3:235–237 14 . Ellis DI...SUPPLEMENTARY NOTES 14 . ABSTRACT The report summarizes progress towards using Fourier transform infrared spectroscopic imaging for...3 6 9 12 1 4 7 10 2 5 8 11 15 18 13 16 14 17 96 3 104 5 6 1171 8 12 15 181316 14 17 19 20 22 262321 24 25 2927 30 343128 32 33 35 36 37 38 e. Develop

  20. UV Spectroscopic Indices of Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Morales-Hernández, J.; Chávez, M.; Bertone, E.; Buzzoni, A.; Bressan, A.

    2009-03-01

    We present the calculation of a set of 12 mid-ultraviolet (1900-3200 Å) spectroscopic indices for a sample of 15 galactic globular clusters (GGC) observed with the International Ultraviolet Explorer (IUE). We explore the dependence of the indices on age and metal abundance. We found that five indices (BL 2538, Fe II 2609, Mg II 2800, Mg I 2852 and Mg Wide) display a remarkably good correlation with [Fe/H]. With respect to age, only one index (BL 2740) shows a good correlation. Results from theoretical simple stellar populations well reproduce the global trends of indices vs. [Fe/H].

  1. Observatory software for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Vermeulen, Tom; Isani, Sidik; Withington, Kanoa; Ho, Kevin; Szeto, Kei; Murowinski, Rick

    2016-07-01

    The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. This paper outlines the software and control architecture envisioned for the new facility. The architecture will be designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven opensource software. CFHT plans to minimize risk and development time by leveraging existing technology.

  2. Spectroscopic Bogoliubov features near the unitary limit

    SciTech Connect

    Domanski, T.

    2011-08-15

    We analyze the single-particle excitation spectrum of the ultracold fermion atom system close to the unitary limit where there has been found experimental evidence for the Bogoliubov quasiparticles below as well as above the transition temperature T{sub c}. We consider the short-range correlations originating from the preformed pairs and try to discuss the experimental data adapting phenomenological self-energy previously used for description of the antinodal spectra of the underdoped cuprate superconductors. We show that this ansatz qualitatively accounts for the momentum-resolved rf spectroscopic data obtained for {sup 40}K atoms.

  3. Maximum entropy estimation of glutamate and glutamine in MR spectroscopic imaging.

    PubMed

    Rathi, Yogesh; Ning, Lipeng; Michailovich, Oleg; Liao, HuiJun; Gagoski, Borjan; Grant, P Ellen; Shenton, Martha E; Stern, Robert; Westin, Carl-Fredrik; Lin, Alexander

    2014-01-01

    Magnetic resonance spectroscopic imaging (MRSI) is often used to estimate the concentration of several brain metabolites. Abnormalities in these concentrations can indicate specific pathology, which can be quite useful in understanding the disease mechanism underlying those changes. Due to higher concentration, metabolites such as N-acetylaspartate (NAA), Creatine (Cr) and Choline (Cho) can be readily estimated using standard Fourier transform techniques. However, metabolites such as Glutamate (Glu) and Glutamine (Gln) occur in significantly lower concentrations and their resonance peaks are very close to each other making it difficult to accurately estimate their concentrations (separately). In this work, we propose to use the theory of 'Spectral Zooming' or high-resolution spectral analysis to separate the Glutamate and Glutamine peaks and accurately estimate their concentrations. The method works by estimating a unique power spectral density, which corresponds to the maximum entropy solution of a zero-mean stationary Gaussian process. We demonstrate our estimation technique on several physical phantom data sets as well as on in-vivo brain spectroscopic imaging data. The proposed technique is quite general and can be used to estimate the concentration of any other metabolite of interest.

  4. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  5. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  6. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  7. New Teff and [Fe/H] spectroscopic calibration for FGK dwarfs and GK giants

    NASA Astrophysics Data System (ADS)

    Teixeira, G. D. C.; Sousa, S. G.; Tsantaki, M.; Monteiro, M. J. P. F. G.; Santos, N. C.; Israelian, G.

    2016-10-01

    Context. The ever-growing number of large spectroscopic survey programs has increased the importance of fast and reliable methods with which to determine precise stellar parameters. Some of these methods are highly dependent on correct spectroscopic calibrations. Aims: The goal of this work is to obtain a new spectroscopic calibration for a fast estimate of Teff and [Fe/H] for a wide range of stellar spectral types. Methods: We used spectra from a joint sample of 708 stars, compiled from 451 FGK dwarfs and 257 GK-giant stars. We used homogeneously determined spectroscopic stellar parameters to derive temperature calibrations using a set of selected EW line-ratios, and [Fe/H] calibrations using a set of selected Fe I lines. Results: We have derived 322 EW line-ratios and 100 Fe I lines that can be used to compute Teff and [Fe/H], respectively. We show that these calibrations are effective for FGK dwarfs and GK-giant stars in the following ranges: 4500 K

  8. IR spectroscopic analysis of the new organic silver complex C13H13N4OAg

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.

    2013-07-01

    IR analysis in the frequency range 400-4000 cm-1 is used here to investigate the changes in different modes of thermally treated new metal complex (diphenyl carbazide silver complex DPCAg, C13H13N4OAg) during the glass transition at 91 °C and the high temperature phase transition at 167 °C. These two phase transitions in this new metal compound are studied here by detecting the changes in some IR spectroscopic parameters (e.g., mode shift, band contour, peak height and peak intensity) during the elevation of temperature. All of the vibrations of DPCAg were found to be due to ionic fundamentals 3311 cm-1, 3097 cm-1, 3052 cm-1, 1677 cm-1, 1602 cm-1, 1492 cm-1, 1306 cm-1, 1252 cm-1, 887 cm-1 and 755 cm-1. The results obtained can be considered as the first spectroscopic analysis of this new metal complex. These results strongly confirmed that the thermally treated DPCAg transverse a glass transition at 91 °C and a high temperature phase transition at 167 °C. Anomalous spectroscopic changes near the glass transition temperature Tg could be recorded. A temperature dependence of peak intensity of the two modes 810 cm-1 and 3440 cm-1 could be observed beyond Tg. Also, the high temperature phase modification at 167 °C showed anomalous change in the spectroscopic parameters before and after the phase transition process. A proposed silver position in the new silver complex DPCAg has been presented.

  9. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  10. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  11. Accurate and efficient linear scaling DFT calculations with universal applicability.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Genovese, Luigi; Caliste, Damien; Boulanger, Paul; Goedecker, Stefan; Deutsch, Thierry

    2015-12-21

    Density functional theory calculations are computationally extremely expensive for systems containing many atoms due to their intrinsic cubic scaling. This fact has led to the development of so-called linear scaling algorithms during the last few decades. In this way it becomes possible to perform ab initio calculations for several tens of thousands of atoms within reasonable walltimes. However, even though the use of linear scaling algorithms is physically well justified, their implementation often introduces some small errors. Consequently most implementations offering such a linear complexity either yield only a limited accuracy or, if one wants to go beyond this restriction, require a tedious fine tuning of many parameters. In our linear scaling approach within the BigDFT package, we were able to overcome this restriction. Using an ansatz based on localized support functions expressed in an underlying Daubechies wavelet basis - which offers ideal properties for accurate linear scaling calculations - we obtain an amazingly high accuracy and a universal applicability while still keeping the possibility of simulating large system with linear scaling walltimes requiring only a moderate demand of computing resources. We prove the effectiveness of our method on a wide variety of systems with different boundary conditions, for single-point calculations as well as for geometry optimizations and molecular dynamics.

  12. Raman Spectroscopy as an Accurate Probe of Defects in Graphene

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin; Barros, Eduardo; Saito, Riichiro; Dresselhaus, Mildred

    2014-03-01

    Raman Spectroscopy has proved to be an invaluable non-destructive technique that allows us to obtain intrinsic information about graphene. Furthermore, defect-induced Raman features, namely the D and D' bands, have previously been used to assess the purity of graphitic samples. However, quantitative studies of the signatures of the different types of defects on the Raman spectra is still an open problem. Experimental results already suggest that the Raman intensity ratio ID /ID' may allow us to identify the nature of the defects. We study from a theoretical point of view the power and limitations of Raman spectroscopy in the study of defects in graphene. We derive an analytic model that describes the Double Resonance Raman process of disordered graphene samples, and which explicitly shows the role played by both the defect-dependent parameters as well as the experimentally-controlled variables. We compare our model with previous Raman experiments, and use it to guide new ways in which defects in graphene can be accurately probed with Raman spectroscopy. We acknowledge support from NSF grant DMR1004147.

  13. Photometric brown-dwarf classification. I. A method to identify and accurately classify large samples of brown dwarfs without spectroscopy

    NASA Astrophysics Data System (ADS)

    Skrzypek, N.; Warren, S. J.; Faherty, J. K.; Mortlock, D. J.; Burgasser, A. J.; Hewett, P. C.

    2015-02-01

    Aims: We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods: We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 μm, selected from an area of 3344 deg2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0 0.8, were then classified by comparison against template colours of quasars, stars, and brown dwarfs. The L and T templates, spectral types L0 to T8, were created by identifying previously known sources with spectroscopic classifications, and fitting polynomial relations between colour and spectral type. Results: Of the 192 known L and T dwarfs with reliable photometry in the surveyed area and magnitude range, 189 are recovered by our selection and classification method. We have quantified the accuracy of the classification method both externally, with spectroscopy, and internally, by creating synthetic catalogues and accounting for the uncertainties. We find that, brighter than J = 17.5, photo-type classifications are accurate to one spectral sub-type, and are therefore competitive with spectroscopic classifications. The resultant catalogue of 1157 L and T dwarfs will be presented in a companion paper.

  14. Theoretical spectroscopic investigations of HNS{sup q} and HSN{sup q} (q = 0, +1, −1) in the gas phase

    SciTech Connect

    Ben Yaghlane, S. E-mail: saidayagh@gmail.com; Jaidane, N.-E.; Cotton, C. E.; Francisco, J. S.; Al Mogren, M. M.; Linguerri, R. E-mail: saidayagh@gmail.com; Hochlaf, M.

    2014-06-28

    We performed accurate ab initio investigations of the geometric parameters and the vibrational structure of neutral HNS/HSN triatomics and their singly charged anions and cations. We used standard and explicitly correlated coupled cluster approaches in connection with large basis sets. At the highest levels of description, we show that results nicely approach those obtained at the complete basis set limit. Moreover, we generated the three-dimensional potential energy surfaces (3D PESs) for these molecular entities at the coupled cluster level with singles and doubles and a perturbative treatment of triple excitations, along with a basis set of augmented quintuple-zeta quality (aug-cc-pV5Z). A full set of spectroscopic constants are deduced from these potentials by applying perturbation theory. In addition, these 3D PESs are incorporated into variational treatment of the nuclear motions. The pattern of the lowest vibrational levels and corresponding wavefunctions, up to around 4000 cm{sup −1} above the corresponding potential energy minimum, is presented for the first time.

  15. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  16. Distillation tray structural parameter study: Phase 1

    NASA Technical Reports Server (NTRS)

    Winter, J. Ronald

    1991-01-01

    The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.

  17. VERIFYING ASTEROSEISMICALLY DETERMINED PARAMETERS OF KEPLER STARS USING HIPPARCOS PARALLAXES: SELF-CONSISTENT STELLAR PROPERTIES AND DISTANCES

    SciTech Connect

    Silva Aguirre, V.; Chaplin, W. J.; Bedding, T. R.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Casagrande, L.; Basu, S.; Campante, T. L.; Monteiro, M. J. P. F. G.; Huber, D.; Miglio, A.; Elsworth, Y.; Hekker, S.; Serenelli, A. M.; Garcia, R. A.; Mathur, S.; Ballot, J.; Creevey, O. L.; Gilliland, R. L.; Metcalfe, T. S.; and others

    2012-09-20

    Accurately determining the properties of stars is of prime importance for characterizing stellar populations in our Galaxy. The field of asteroseismology has been thought to be particularly successful in such an endeavor for stars in different evolutionary stages. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is mandatory. With this purpose, we present a new technique to obtain stellar properties by coupling asteroseismic analysis with the InfraRed Flux Method. By using two global seismic observables and multi-band photometry, the technique allows us to obtain masses, radii, effective temperatures, bolometric fluxes, and hence distances for field stars in a self-consistent manner. We apply our method to 22 solar-like oscillators in the Kepler short-cadence sample, that have accurate Hipparcos parallaxes. Our distance determinations agree to better than 5%, while measurements of spectroscopic effective temperatures and interferometric radii also validate our results. We briefly discuss the potential of our technique for stellar population analysis and models of Galactic Chemical Evolution.

  18. Spectroscopic investigations on NO+(X1Σ+, a3Σ+, A1Π) ion using multi-reference configuration interaction method and correlation-consistent sextuple basis set augmented with diffuse functions

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Ping; Cheng, Xin-Lu; Zhang, Hong; Yang, Xiang-Dong

    2011-06-01

    Three low-lying electronic states (X1Σ+, a3Σ+, and A1Π) of NO+ ion are studied using the complete active space self-consistent-field (CASSCF) method followed by highly accurate valence internally contracted multi-reference configuration interaction (MRCI) approach in combination of the correlation-consistent sextuple basis set augmented with diffuse functions, aug-cc-pV6Z. The potential energy curves (PECs) of the NO+(X1Σ+, a3Σ+, A1Π) are calculated. Based on the PECs, the spectroscopic parameters Re, De, ωe, ωeχe, αe, Be, and D0 are reproduced, which are in excellent agreement with the available measurements. By numerically solving the radial Schrödinger equation of nuclear motion using the Numerov method, the first 20 vibrational levels, inertial rotation and centrifugal distortion constants of NO+(X1Σ+, a3Σ+, A1Π) ion are derived when the rotational quantum number J is equal to zero (J = 0) for the first time, which accord well with the available measurements. Finally, the analytical potential energy functions of these states are fitted, which are used to accurately derive the first 20 classical turning points when J = 0. These results are compared in detail with those of previous investigations reported in the literature.

  19. The Maunakea Spectroscopic Explorer: Science and Status

    NASA Astrophysics Data System (ADS)

    Hopkins, A.; McConnachie, A.; MSE Team

    2016-10-01

    MSE is a project to replace the current 3.6 m CFHT with a 10 m class, segmented, wide-field telescope that will feed a dedicated suite of multi-object spectrographs, operating at resolutions from R˜2000 to R>20000, and obtaining >3000 spectra per pointing (>> 5 million spectra/yr). It will use much of the existing infrastructure of the current CFHT, including the pier, and will closely approximate the envelope of the existing facility. MSE will be the only fully dedicated, 10 m class, wide-field spectroscopic telescope at first light in ˜ 2025. It will fill arguably the single biggest "missing link" in the international network of astronomical facilities. At optical wavelengths, LSST, WFIRST, Euclid, and Gaia will identify many millions of astrophysically interesting targets that otherwise lack the dedicated, large aperture, spectroscopic followup facilities required to probe their chemodynamical properties. Elsewhere, SKA, eRosita and others will provide a revolution in our understanding of the multiwavelength Universe. Among this capability, MSE will be an essential tool by providing the optical data that will otherwise be chronically absent.

  20. Spectroscopic enhancement in nanoparticles embedded glasses

    SciTech Connect

    Sahar, M. R. Ghoshal, S. K.

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  1. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  2. Spectroscopic Characterization of Isomerization Transition States

    NASA Astrophysics Data System (ADS)

    Baraban, Joshua H.; Changala, Bryan; Mellau, Georg Ch.; Stanton, John F.; Merer, Anthony; Field, Robert W.

    2016-06-01

    Transition state theory is central to our understanding of chemical reaction dynamics. We demonstrate here a method for extracting transition state energies and properties from a characteristic pattern found in frequency domain spectra of isomerizing systems. This pattern, a dip in the spacings of certain barrier-proximal vibrational levels, can be understood using the concept of effective frequency, ωeff. The method is applied to the cis-trans conformational change in the S_1 state of C2H2 and the bond-breaking HCN-HNC isomerization. In both cases, the barrier heights derived from spectroscopic data agree extremely well with previous ab initio calculations. We also show that it is possible to distinguish between vibrational modes that are actively involved in the isomerization process and those that are passive bystanders. (This work has been published in J. H. Baraban, P. B. Changala, G. Ch. Mellau, J. F. Stanton, A. J. Merer, and R. W. Field. Spectroscopic characterization of isomerization transition states. Science, 350(6266):1338--1342, 2015.)

  3. EPSILON AURIGAE: AN IMPROVED SPECTROSCOPIC ORBITAL SOLUTION

    SciTech Connect

    Stefanik, Robert P.; Torres, Guillermo; Lovegrove, Justin; Latham, David W.; Zajac, Joseph; Pera, Vivian E.; Mazeh, Tsevi

    2010-03-15

    A rare eclipse of the mysterious object {epsilon} Aurigae will occur in 2009-2011. We report an updated single-lined spectroscopic solution for the orbit of the primary star based on 20 years of monitoring at the CfA, combined with historical velocity observations dating back to 1897. There are 518 new CfA observations obtained between 1989 and 2009. Two solutions are presented. One uses the velocities outside the eclipse phases together with mid-times of previous eclipses, from photometry dating back to 1842, which provide the strongest constraint on the ephemeris. This yields a period of 9896.0 {+-} 1.6 days (27.0938 {+-} 0.0044 years) with a velocity semi-amplitude of 13.84 {+-} 0.23 km s{sup -1} and an eccentricity of 0.227 {+-} 0.011. The middle of the current ongoing eclipse predicted by this combined fit is JD 2,455,413.8 {+-} 4.8, corresponding to 2010 August 5. If we use only the radial velocities, we find that the predicted middle of the current eclipse is nine months earlier. This would imply that the gravitating companion is not the same as the eclipsing object. Alternatively, the purely spectroscopic solution may be biased by perturbations in the velocities due to the short-period oscillations of the supergiant.

  4. Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.

    2017-01-01

    We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.

  5. Spectroscopic investigations of carious tooth decay.

    PubMed

    Thareja, R K; Sharma, A K; Shukla, Shobha

    2008-11-01

    We report on the elemental composition of healthy and infected part of human tooth using laser induced breakdown spectroscopy (LIBS). We have used prominent constituent transitions in laser-excited tooth to diagnose the state of the tooth. A nanosecond laser pulse (355nm, 5ns) was used as an ablating pulse and the sodium (3s2S-3p2P) at 588.99 and (3s2S-3p2P) at 589.99nm, strontium (5s21S-1s5P) at 460.55nm, and calcium (3d3D-4f 3F0) at 452.55nm transitions for spectroscopic analysis. The spectroscopic observations in conjunction with discriminate analysis showed that calcium attached to the hydroxyapatite structure of the tooth was affected severely at the infected part of the tooth. The position-time plots generated from two-dimensional (2D) images conclusively showed a decrease in calcium concentration in the infected region of the irradiated tooth. Using the technique, we could distinguish between the healthy and carious parts of the tooth with significant accuracy.

  6. Spectroscopic enhancement in nanoparticles embedded glasses

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Ghoshal, S. K.

    2014-09-01

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  7. Infrared Spectroscopic Imaging: The Next Generation

    PubMed Central

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  8. Spectroscopic characterization of the Stentor photoreceptor.

    PubMed

    Walker, E B; Lee, T Y; Song, P S

    1979-09-20

    1. On the basis of chromatographic and spectroscopic (absorption, fluorescence and its polarization, fluorescence lifetime, circular dichroism) characterization of the Stentor photoreceptor (stentorin) for photophobic response, the photoreceptor chromophore released from mild acid hydrolysis has been identified as hypericin. 2. The native chromophore is apparently linked to a protein (65 K) containing Lys and several hydrophobic residues, which is soluble in acetone and n-pentane. The peptide-linked stentorin (I) chromophore exhibits circular dichroism in the visible region due to the induced optical activity provided by the peptide. 3. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of a 38% fraction of the sucrose density centrifugation has resolved stentorin II proteins having molecular weights of 13 000, 16 000, 65 000 and 130 000. These proteins, as well as the acetone-soluble peptide, have been spectroscopically characterized with particular emphasis on their primary photoreactivity as the photophobic receptor of Stentor coeruleus. 4. Irradiation of whole living Stentor in dilute buffer solutions induces a decrease in the pH of the medium. A strong dependence upon pH in the fluorescence spectra of both synthetic and native chromophores is also evident, showing a significant drop in the pKa of one or more hydroxyl groups in the excited state. A mechanism for the photophobic response, based on this lowering of the pKa as the primary photoprocess, has been discussed.

  9. Science capabilities of the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Devost, Daniel; McConnachie, Alan; Flagey, Nicolas; Cote, Patrick; Balogh, Michael; Driver, Simon P.; Venn, Kim

    2017-01-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multiobject spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 20,000. The project is currently in design phase, with full science operations nominally starting in 2025. MSE will enable transformational science in areas as diverse as exoplanetary host characterization; stellar monitoring campaigns; tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of the distant Galaxy; connecting galaxies to the large scale structure of the Universe; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for E-ELT, TMT and GMT. I will give an update on the status of the project and review some of the most exciting scientific capabilities of the observatory.

  10. Spectroscopic Analysis of Planetary Host Stars

    NASA Astrophysics Data System (ADS)

    Rittipruk, P.; Yushchenko, A.; Kang, Y. W.

    2014-08-01

    We observed the high resolution spectra of extra-solar planet host stars. The spectroscopic data of host stars were observed using the CHIRON echelle spectrometer and R-C Spectrograph for magnetic activity on the SMART-1.5 meter telescope at CTIO, Chile. The analysis of spectroscopic data was performed using URAN and SYNTHE programs. These spectra allow us to determine the effective temperatures, surface gravities, microturbulent velocities and, finally, the chemical composition of the hosts was obtained by spectrum synthesis. One of the targets, namely HD 47536, the host of two planets, appeared to be a halo star with overabundances of neutron capture elements. The effective temperature and the surface gravity of this star are 4400 K and log=1.5 respectively, the iron is underabundant by 0.6 dex. The heavy elements (up to thorium, Z=90) show the overabundances with respect to iron. The signs of accretion of interstellar gas are found in the atmosphere of this star.

  11. Accurate and flexible calibration technique for fringe projection profilometry by using encoded points and Fourier analysis

    NASA Astrophysics Data System (ADS)

    González, Andrés. L.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    In order to get measures with a high accurate, three-dimensional reconstruction systems are implemented in industrial, medical, and investigative fields. To obtain high accurate is necessary to carry out an appropriate calibration procedure. In fringe projection profilometry, this procedure allows obtaining a relation between absolute phase and three-dimensional (3D) information of the object in study; however, to execute such procedure a precise movement stage is required. A fringe projection system is formed by a projector, a digital camera and a control unit, called like a projection-acquisition unit in this paper. The calibration of the projection-acquisition unit consists in to establish the parameters that are required to transform the phase of the projected fringes to metric coordinates of the object surface. These parameters are a function of the intrinsic and extrinsic parameters of both camera and projector, due to the projector is modeled as an inverse camera. For this purpose, in this paper a novel and flexible calibration method that allows calibrating any device that works with fringe projection profilometry is proposed. In this method is used a reference plane placed in random positions and the projection of an encoded pattern of control points. The camera parameters are computed using Zhang's calibration method; and the projector parameters are computed from the camera parameters and the phase of the pattern of control points, which is determined by using Fourier analysis. Experimental results are presented to demonstrate the performance of the calibration method.

  12. Simple, flexible, and accurate phase retrieval method for generalized phase-shifting interferometry.

    PubMed

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2017-01-01

    This paper presents a non-iterative phase retrieval method from randomly phase-shifted fringe images. By combining the hyperaccurate least squares ellipse fitting method with the subspace method (usually called the principal component analysis), a fast and accurate phase retrieval algorithm is realized. The proposed method is simple, flexible, and accurate. It can be easily coded without iteration, initial guess, or tuning parameter. Its flexibility comes from the fact that totally random phase-shifting steps and any number of fringe images greater than two are acceptable without any specific treatment. Finally, it is accurate because the hyperaccurate least squares method and the modified subspace method enable phase retrieval with a small error as shown by the simulations. A MATLAB code, which is used in the experimental section, is provided within the paper to demonstrate its simplicity and easiness.

  13. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    ERIC Educational Resources Information Center

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  14. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  15. Resolving Spectral Lines with a Periscope-Type DVD Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka

    2008-01-01

    A new type of DVD spectroscope, the periscope type, is described and the numerical analysis of the observed emission and absorption spectra is demonstrated. A small and thin mirror is put inside and an eighth part of a DVD is used as a grating. Using this improved DVD spectroscope, one can observe and photograph visible spectra more easily and…

  16. Preparation of cesium targets for gamma-spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Basu, S. K.; Chanda, S.; Deb, P.; Eqbal, Md; Kundu, S.; Joseph, D.

    2000-11-01

    A procedure to prepare monoisotopic cesium compound targets for gamma-spectroscopic experiments is described. Using this procedure, uniform targets up to thicknesses of 0.6-1.2 mg/cm 2 were prepared and used for in-beam spectroscopic studies. The purity of the target was tested by energy dispersive X-ray fluorescence (EDXRF) measurements.

  17. Spectroscopic constants and potential energy curves of AsF

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1996-02-01

    Spectroscopic constants and potential energy curves of 21 electronic states of AsF are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) and multireference singles and doubles configuration interaction (MRSDCI) methods. The computed spectroscopic constants agree with the experimental values for the observed states.

  18. Absolute and geometric parameters of contact binary BO Arietis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gürsoytrak, S. H.; Bradstreet, D. H.

    2015-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system BO Ari from analyzed CCD (BVRI) light curves and radial velocity data. The photometric data were obtained in 2009 and 2010 at Ankara University Observatory (AUO) and the spectroscopic observations were made in 2007 and 2010 at TUBITAK National Observatory (TUG). These light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be an A-type W UMa system. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.995M⊙,M2 = 0.189M⊙,R1 = 1.090R⊙ and R2 = 0.515R⊙ . Finally, we discuss the evolutionary status of the system.

  19. The CoRoT-GES Collaboration: Improving red giants spectroscopic surface gravitity and abundances with asteroseismology

    NASA Astrophysics Data System (ADS)

    Valentini, M.; Chiappini, C.; Miglio, A.; Montalbán, J.; Rodrigues, T.; Mosser, B.; Anders, F.; the CoRoT RG Group; GES Consortium, the

    2016-09-01

    Nowadays large spectroscopic surveys, like the Gaia-ESO Survey (GES), provide unique stellar databases for better investigating the formation and evolution of our Galaxy. Great attention must be paid to the accuracy of the basic stellar properties derived: large uncertainties in stellar parameters lead to large uncertainties in abundances, distances and ages. Asteroseismology has a key role in this context: when seismic information is combined with information derived from spectroscopic analysis, highly precise constraints on distances, masses, extinction and ages of red giants can be obtained. In the light of this promising joint action, we started the CoRoT-GES collaboration. We present a set of 1111 CoRoT stars, observed by GES from December 2011 to July 2014, these stars belong to the CoRoT field LRc01, pointing at the inner Galactic disk. Among these stars, 534 have reliable global seismic parameters. By combining seismic informations and spectroscopy, we derived precise stellar parameters, ages, kinematic and orbital parameters and detailed element abundances for this sample of stars. We also show that, thanks to asteroseismology, we are able to obtain a higher precision than what can be achieved by the standard spectroscopic means. This sample of CoRoT red giants, spanning Galactocentric distances from 5 to 8 kpc and a wide age interval (1-13 Gyr), provides us a representative sample for the inner disk population.

  20. The GEISA Spectroscopic Database as a Tool for Hyperspectral Earth' Tropospheric Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, Nicole; Crépeau, Laurent; Capelle, Virginie; Scott, Noëlle; Armante, Raymond; Chédin, Alain

    2010-05-01

    Remote sensing of the terrestrial atmosphere has advanced significantly in recent years, and this has placed greater demands on the compilations in terms of accuracy, additional species, and spectral coverage. The successful performances of the new generation of hyperspectral Earth' atmospheric sounders like AIRS (Atmospheric Infrared Sounder -http://www-airs.jpl.nasa.gov/), in the USA, and IASI (Infrared Atmospheric Sounding Interferometer -http://earth-sciences.cnes.fr/IASI/) in Europe, which have a better vertical resolution and accuracy, compared to the previous satellite infrared vertical sounders, depend ultimately on the accuracy to which the spectroscopic parameters of the optically active gases are known, since they constitute an essential input to the forward radiative transfer models that are used to interpret their observations. In this context, the GEISA (1) (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer-accessible database, initiated in 1976, is continuously developed and maintained at LMD (Laboratoire de Météorologie Dynamique, France). The updated 2009 edition of GEISA (GEISA-09)is a system comprising three independent sub-databases devoted respectively to: line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, the contents of which will be summarized, 50 molecules are involved in the line transition parameters sub-database, including 111 isotopes, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031 cm-1. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI through the GEISA/IASI database derived from GEISA (2). Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data