Science.gov

Sample records for accurate stellar parameters

  1. Accurate Stellar Parameters for Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani; Valenti, Jeff A.

    2015-01-01

    A large impedement to our understanding of planet formation is obtaining a clear picture of planet radii and densities. Although determining precise ratios between planet and stellar host are relatively easy, determining accurate stellar parameters is still a difficult and costly undertaking. High resolution spectral analysis has traditionally yielded precise values for some stellar parameters but stars in common between catalogs from different authors or analyzed using different techniques often show offsets far in excess of their uncertainties. Most analyses now use some external constraint, when available, to break observed degeneracies between surface gravity, effective temperature, and metallicity which can otherwise lead to correlated errors in results. However, these external constraints are impossible to obtain for all stars and can require more costly observations than the initial high resolution spectra. We demonstrate that these discrepencies can be mitigated by use of a larger line list that has carefully tuned atomic line data. We use an iterative modeling technique that does not require external constraints. We compare the surface gravity obtained with our spectral synthesis modeling to asteroseismically determined values for 42 Kepler stars. Our analysis agrees well with only a 0.048 dex offset and an rms scatter of 0.05 dex. Such accurate stellar gravities can reduce the primary source of uncertainty in radii by almost an order of magnitude over unconstrained spectral analysis.

  2. Precise and accurate assessment of uncertainties in model parameters from stellar interferometry. Application to stellar diameters

    NASA Astrophysics Data System (ADS)

    Lachaume, Regis; Rabus, Markus; Jordan, Andres

    2015-08-01

    In stellar interferometry, the assumption that the observables can be seen as Gaussian, independent variables is the norm. In particular, neither the optical interferometry FITS (OIFITS) format nor the most popular fitting software in the field, LITpro, offer means to specify a covariance matrix or non-Gaussian uncertainties. Interferometric observables are correlated by construct, though. Also, the calibration by an instrumental transfer function ensures that the resulting observables are not Gaussian, even if uncalibrated ones happened to be so.While analytic frameworks have been published in the past, they are cumbersome and there is no generic implementation available. We propose here a relatively simple way of dealing with correlated errors without the need to extend the OIFITS specification or making some Gaussian assumptions. By repeatedly picking at random which interferograms, which calibrator stars, and which are the errors on their diameters, and performing the data processing on the bootstrapped data, we derive a sampling of p(O), the multivariate probability density function (PDF) of the observables O. The results can be stored in a normal OIFITS file. Then, given a model m with parameters P predicting observables O = m(P), we can estimate the PDF of the model parameters f(P) = p(m(P)) by using a density estimation of the observables' PDF p.With observations repeated over different baselines, on nights several days apart, and with a significant set of calibrators systematic errors are de facto taken into account. We apply the technique to a precise and accurate assessment of stellar diameters obtained at the Very Large Telescope Interferometer with PIONIER.

  3. Using modern stellar observables to constrain stellar parameters and the physics of the stellar interior

    NASA Astrophysics Data System (ADS)

    van Saders, Jennifer L.

    2014-05-01

    stellar parameters and the physics of the interior. I examine how the acoustic signature of the location of the base of stellar convective envelopes can be used as an absolute abundance indicator, and describe a novel 3He-burning instability in low mass stars along with the observational signatures of such a process. Finally, I examine the manner in which stellar rotation, observed in a population of objects, can be used as a means to distinguish between different evolutionary states, masses, and ages. I emphasize that rotation periods can be used as age indicators (as often discussed in the literature), but that the interpretation of rotation periods must be made within the context of the full stellar population to arrive at accurate results.

  4. The Araucaria Project: accurate stellar parameters and distance to evolved eclipsing binary ASAS J180057-2333.8 in Sagittarius Arm

    NASA Astrophysics Data System (ADS)

    Suchomska, K.; Graczyk, D.; Smolec, R.; Pietrzyński, G.; Gieren, W.; Stȩpień, K.; Konorski, P.; Pilecki, B.; Villanova, S.; Thompson, I. B.; Górski, M.; Karczmarek, P.; Wielgórski, P.; Anderson, R. I.

    2015-07-01

    We have analyzed the double-lined eclipsing binary system ASAS J180057-2333.8 from the All Sky Automated Survey (ASAS) catalogue. We measure absolute physical and orbital parameters for this system based on archival V-band and I-band ASAS photometry, as well as on high-resolution spectroscopic data obtained with ESO 3.6 m/HARPS and CORALIE spectrographs. The physical and orbital parameters of the system were derived with an accuracy of about 0.5-3 per cent. The system is a very rare configuration of two bright well-detached giants of spectral types K1 and K4 and luminosity class II. The radii of the stars are R1 = 52.12 ± 1.38 and R2 = 67.63 ± 1.40 R⊙ and their masses are M1 = 4.914 ± 0.021 and M2 = 4.875 ± 0.021 M⊙. The exquisite accuracy of 0.5 per cent obtained for the masses of the components is one of the best mass determinations for giants. We derived a precise distance to the system of 2.14 ± 0.06 kpc (stat.) ± 0.05 (syst.) which places the star in the Sagittarius-Carina arm. The Galactic rotational velocity of the star is Θs = 258 ± 26 km s-1 assuming Θ0 = 238 km s-1. A comparison with PARSEC isochrones places the system at the early phase of core helium burning with an age of slightly larger than 100 million years. The effect of overshooting on stellar evolutionary tracks was explored using the MESA star code.

  5. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively. PMID:26978937

  6. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively.

  7. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  8. ZASPE: Zonal Atmospheric Stellar Parameters Estimator

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordan, Andres; Hartman, Joel; Bakos, Gaspar

    2016-07-01

    ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.

  9. Stellar atmospheric parameter estimation using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  10. EFFECT OF UNCERTAINTIES IN STELLAR MODEL PARAMETERS ON ESTIMATED MASSES AND RADII OF SINGLE STARS

    SciTech Connect

    Basu, Sarbani; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne E-mail: gav@bison.ph.bham.ac.uk E-mail: y.p.elsworth@bham.ac.uk

    2012-02-10

    Accurate and precise values of radii and masses of stars are needed to correctly estimate properties of extrasolar planets. We examine the effect of uncertainties in stellar model parameters on estimates of the masses, radii, and average densities of solar-type stars. We find that in the absence of seismic data on solar-like oscillations, stellar masses can be determined to a greater accuracy than either stellar radii or densities; but to get reasonably accurate results the effective temperature, log g, and metallicity must be measured to high precision. When seismic data are available, stellar density is the most well-determined property, followed by radius, with mass the least well-determined property. Uncertainties in stellar convection, quantified in terms of uncertainties in the value of the mixing length parameter, cause the most significant errors in the estimates of stellar properties.

  11. Habitable zone dependence on stellar parameter uncertainties

    SciTech Connect

    Kane, Stephen R.

    2014-02-20

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  12. The PASTEL catalogue of stellar parameters

    NASA Astrophysics Data System (ADS)

    Soubiran, C.; Le Campion, J.-F.; Cayrel de Strobel, G.; Caillo, A.

    2010-06-01

    Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue, published in 1997 and 2001. It is a bibliographical compilation of stellar atmospheric parameters providing (T_eff, log g, [Fe/H]) determinations obtained from the analysis of high resolution, high signal-to-noise spectra, carried out with model atmospheres. PASTEL also provides determinations of the one parameter T_eff based on various methods. It is aimed in the future to provide also homogenized atmospheric parameters and elemental abundances, radial and rotational velocities. A web interface has been created to query the catalogue on elaborated criteria. PASTEL is also distributed through the CDS database and VizieR. Methods: To make it as complete as possible, the main journals have been surveyed, as well as the CDS database, to find relevant publications. The catalogue is regularly updated with new determinations found in the literature. Results: As of Febuary 2010, PASTEL includes 30151 determinations of either T_eff or (T_eff, log g, [Fe/H]) for 16 649 different stars corresponding to 865 bibliographical references. Nearly 6000 stars have a determination of the three parameters (T_eff, log g, [Fe/H]) with a high quality spectroscopic metallicity. The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/. It is also available in electronic form at the Centre de Données Stellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel), at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111

  13. Accurate Low-mass Stellar Models of KOI-126

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron

    2011-10-01

    The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.

  14. ESTIMATION OF DISTANCES TO STARS WITH STELLAR PARAMETERS FROM LAMOST

    SciTech Connect

    Carlin, Jeffrey L.; Newberg, Heidi Jo; Liu, Chao; Deng, Licai; Li, Guangwei; Luo, A-Li; Wu, Yue; Yang, Ming; Zhang, Haotong; Beers, Timothy C.; Chen, Li; Hou, Jinliang; Smith, Martin C.; Guhathakurta, Puragra; Lépine, Sébastien; Yanny, Brian; Zheng, Zheng

    2015-07-15

    We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star’s absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ∼5° diameter “plate” that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ∼20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ∼40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.

  15. Stellar Atmospheres, Atmospheric Extension, and Fundamental Parameters: Weighing Stars Using the Stellar Mass Index

    NASA Astrophysics Data System (ADS)

    Neilson, Hilding R.; Baron, Fabien; Norris, Ryan; Kloppenborg, Brian; Lester, John B.

    2016-10-01

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  16. New Theory of Stellar Convection without the mixing-length parameter: new stellar atmosphere models

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2015-08-01

    Stellar convection is customarily described by the mixing-length theory, which makes use of the mixing-length scale to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun.No strong arguments exist to claim that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty.In a recent paper (Pasetto et al 2014) we presented a new theory of stellar convection that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behaviour of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time dependent formalism.We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory are now compared with those from the standard mixing-length paradigm with very satisfactory results for atmosphere models of the Sun and all the stars around the Hertzsprung-Russell diagram.

  17. Theory of Stellar Convection: Removing the Mixing-Length parameter

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2015-08-01

    Stellar convection is customarily described by the mixing-length theory, which makes use of the mixing-length scale to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun.No strong arguments exist to claim that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty.In a recent paper (Pasetto et al 2014) we presented a new theory of stellar convection that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behaviour of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time dependent formalism.We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory are compared with those from the standard mixing-length paradigm with exceptional results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.

  18. The true stellar parameters of the Kepler target list

    NASA Astrophysics Data System (ADS)

    Farmer, R.; Kolb, U.; Norton, A. J.

    2013-09-01

    We present results of a population synthesis study of the Kepler field. We adapted BiSEPS, a code that includes a fully self-consistent treatment of single and binary star evolution, to generate a sample of synthetic stars that represents the Kepler Input Catalogue (KIC). By subjecting this synthetic sample to the same target selection criteria that defined the actual Kepler target list we obtain a synthetic target list. We analysed the synthetic target list in turn with the methods of the Kepler Stellar Classification Project (SCP), to obtain SCP-derived stellar parameters. From this we find significant differences between the actual physical stellar parameters and those derived by the SCP of the stars in the synthetic sample. For a main sequence (MS) star, we find on average a ˜ 3% increase in stellar radius and a consequent ˜3% overestimate of the radius for any transiting exoplanet, when considered over the whole target list.

  19. Application of the SEGUE Stellar Parameter Pipeline to LAMOST Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Lee, Young Sun; Beers, Timothy C.; Carlin, Jeffrey L.; Newberg, Heidi J.; Hou, Yonghui; Li, Guangwei; Luo, A.-Li; Wu, Yue; Yang, Ming; Zhang, Haotong; Zhang, Wei; Zhang, Yong

    2015-12-01

    We describe an application of the SEGUE Stellar Parameter Pipeline (SSPP) to medium-resolution stellar spectra obtained by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), in order to determine estimates of the stellar atmospheric parameters (Teff, {log} g, and [Fe/H]) and the abundance ratios ([α/Fe] and [C/Fe]). By performing a coordinate match with the LAMOST stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the RAdial Velocity Experiment (RAVE), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE). We ran the selected LAMOST stellar spectra from each survey through SSPP, and compared the stellar parameters down to signal-to-noise ratio (S/N) of 10 and chemical abundances down to S/N = 20 derived by SSPP with those determined by the APOGEE, RAVE, and SEGUE software pipelines. Our results show that the derived stellar parameters generally agree quite well, even though there exist some small systematic offsets with small scatter in Teff, {log} g, and [Fe/H], due to the use of different temperature scales, abundance scales, and calibrations adopted by each survey. Comparison of the [α/Fe] determinations for LAMOST spectra suggests no sign of significant systematic offsets (<-0.04 dex), with a small scatter (<0.08 dex) relative to stars in common with APOGEE and SEGUE. The [C/Fe] estimates determined for the LAMOST spectra also exhibit good agreement, with a very small offset (˜0.01 dex) and scatter (˜0.12 dex) relative to the SEGUE stars, while there exists about a -0.19 dex offset, with a small scatter of ˜0.13 dex, for the APOGEE sample. Due to the existence of small offsets in the stellar parameters and abundances among difference data sets, optimal results when combining the different data sets will be obtained by removing the offsets. Once accomplished, the stellar parameters and

  20. The LAMOST stellar parameter pipeline at Peking University - LSP3

    NASA Astrophysics Data System (ADS)

    Xiang, M. S.; Liu, X. W.; Yuan, H. B.; Huang, Y.; Huo, Z. Y.; Zhang, H. W.; Chen, B. Q.; Zhang, H. H.; Sun, N. C.; Wang, C.; Zhao, Y. H.; Shi, J. R.; Luo, A. L.; Li, G. P.; Wu, Y.; Bai, Z. R.; Zhang, Y.; Hou, Y. H.; Yuan, H. L.; Li, G. W.; Wei, Z.

    2015-03-01

    We introduce the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) stellar parameter pipeline at Peking University - LSP3, developed and implemented for the determinations of radial velocity Vr and stellar atmospheric parameters (effective temperature Teff, surface gravity log g, metallicity [Fe/H]) for the LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC). We describe the algorithms of LSP3 and examine the accuracy of parameters yielded by it. The precision and accuracy of parameters yielded are investigated by comparing results of multi-epoch observations and of candidate members of open and globular clusters, with photometric calibration, as well as with independent determinations available from a number of external data bases, including the PASTEL archive, the APOGEE, SDSS and RAVE surveys, as well as those released in the LAMOST DR1. The uncertainties of LSP3 parameters are characterized and quantified as a function of the spectral signal-to-noise ratio (SNR) and stellar atmospheric parameters. We conclude that the current implementation of LSP3 has achieved an accuracy of 5.0 km s-1, 150 K, 0.25 dex, 0.15 dex for the radial velocity, effective temperature, surface gravity and metallicity, respectively, for LSS-GAC spectra of FGK stars of SNRs per pixel higher than 10. The LSP3 has been applied to over a million LSS-GAC spectra collected hitherto. Stellar parameters yielded by the LSP3 will be released to the general public following the data policy of LAMOST, together with estimates of the interstellar extinction E(B - V) and stellar distances, deduced by combining spectroscopic and multiband photometric measurements using a variety of techniques.

  1. A Fabry-Perot interferometer for accurate measurement of temporal changes in stellar Doppler shift

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Smith, P. H.; Frecker, J. E.; Merline, W. J.; Perry, M. L.

    1986-01-01

    The scrambling of incident light by an optical filter, and the stability obtainable through wavelength calibration by means of a tilt-tunable Fabry-Perot etalon, allow the accurate observation of Doppler shift changes in stellar absorption lines. Distinct, widely spaced monochromatic images of the entrance aperture are formed in the focal plane of the camera through a sampling of about 350 points on the profile of the stellar spectrum by successive orders of interferometric transmission through the etalon. Changes in Doppler shift modify the relative intensities of these images, in proportion to the slope of the spectral profile at each point sampled.

  2. Investigation of physical parameters in stellar flares observed by GINGA

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar X-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program.Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.

  3. Investigation of physical parameters in stellar flares observed by GINGA

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar x-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program. Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.

  4. Validation of LAMOST stellar parameters with the PASTEL catalog

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zhang, Hua-Wei; Xiang, Mao-Sheng; Huang, Yang; Liu, Xiao-Wei; Luo, A.-Li; Zhang, Hao-Tong; Wu, Yue; Zhang, Yong; Li, Guang-Wei; Du, Bing

    2015-12-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) published its first data release (DR1) in 2013, which is currently the largest dataset of stellar spectra in the world. We combine the PASTEL catalog and SIMBAD radial velocities as a testing standard to validate stellar parameters (effective temperature Teff, surface gravity log g, metallicity [Fe/H] and radial velocity Vr) derived from DR1. Through cross-identification of the DR1 catalogs and the PASTEL catalog, we obtain a preliminary sample of 422 stars. After removal of stellar parameter measurements from problematic spectra and applying effective temperature constraints to the sample, we compare the stellar parameters from DR1 with those from PASTEL and SIMBAD to demonstrate that the DR1 results are reliable in restricted ranges of Teff. We derive standard deviations of 110 K, 0.19 dex and 0.11 dex for Teff, log g and [Fe/H] respectively when Teff < 8000 K, and 4.91 km s-1 for Vr when Teff < 10 000 K. Systematic errors are negligible except for those of Vr. In addition, metallicities in DR1 are systematically higher than those in PASTEL, in the range of PASTEL [Fe/H] < -1.5.

  5. Parameter and cost optimizations for a modular stellarator reactor

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.; Johnson, P. C.; Watson, C. J. H.

    1983-02-01

    The physical scaling and cost scaling of a modular stellarator reactor are described. It is shown that configurations based on l=2 are best able to support adequate beta, and physical relationships are derived which enable the geometry and parameters of an l=2 modular stellarator to be defined. A cost scaling for the components of the nuclear island is developed using Starfire (tokamak reactor study) engineering as a basis. It is shown that for minimum cost the stellarator should be of small aspect ratio. For a 4000 MWth plant, as Starfire, the optimum configuration is a 15 coil, 3 field period, l=2 device with a major radius of 16 m and a plasma minor radius of 2 m; and with a conservative wall loading of 2 MW/m2 and an average beta of 3.9%; the estimated cost per kilowatt (electrical) is marginally (7%) greater than Starfire.

  6. Determination of the spectroscopic stellar parameters for 257 field giant stars★

    NASA Astrophysics Data System (ADS)

    Alves, S.; Benamati, L.; Santos, N. C.; Adibekyan, V. Zh.; Sousa, S. G.; Israelian, G.; De Medeiros, J. R.; Lovis, C.; Udry, S.

    2015-04-01

    The study of stellar parameters of planet-hosting stars, such as metallicity and chemical abundances, help us to understand the theory of planet formation and stellar evolution. Here, we present a catalogue of accurate stellar atmospheric parameters and iron abundances for a sample of 257 K and G field evolved stars that are being surveyed for planets using precise radial-velocity measurements as part of the Coralie programme to search for planets around giants. The analysis was done using a set of high-resolution and high-signal-to-noise Ultraviolet and Visible Echelle Spectrograph spectra. The stellar parameters were derived using Fe I and II ionization and excitation equilibrium methods. To take into account possible effects related to the choice of the lines on the derived parameters, we used three different iron line-list sets in our analysis, and the results differ among themselves by a small factor for most of stars. For those stars with previous literature parameter estimates, we found very good agreement with our own values. In the present catalogue, we are providing new precise spectroscopic measurements of effective temperature, surface gravity, microturbulence, and metallicity for 190 stars for which it has not been found or published in previous articles.

  7. Estimating stellar parameters and interstellar extinction from evolutionary tracks

    NASA Astrophysics Data System (ADS)

    Sichevsky, S.; Malkov, O.

    Developing methods for analyzing and extracting information from modern sky surveys is a challenging task in astrophysical studies. We study possibilities of parameterizing stars and interstellar medium from multicolor photometry performed in three modern photometric surveys: GALEX, SDSS, and 2MASS. For this purpose, we have developed a method to estimate stellar radius from effective temperature and gravity with the help of evolutionary tracks and model stellar atmospheres. In accordance with the evolution rate at every point of the evolutionary track, star formation rate, and initial mass function, a weight is assigned to the resulting value of radius that allows us to estimate the radius more accurately. The method is verified for the most populated areas of the Hertzsprung-Russell diagram: main-sequence stars and red giants, and it was found to be rather precise (for main-sequence stars, the average relative error of radius and its standard deviation are 0.03% and 3.87%, respectively).

  8. Stellar & Planetary Parameters for K2's M dwarf Systems

    NASA Astrophysics Data System (ADS)

    Martinez, Arturo Omar; Crossfield, Ian; Schlieder, Joshua E.; Petigura, Erik; Aller, Kimberly Mei; Lepine, Sebastien; Beichman, Charles A.; Howard, Andrew; Werner, Michael W.

    2016-01-01

    The ongoing K2 mission uses photometry in order to find planets around stars of various types. M dwarfs are of high interests since they have been shown to host more planets than any other main sequence stars and transiting planets around M dwarfs are easier to find. In this poster, we present stellar parameters from M dwarfs hosting transiting planet candidates discovered by our team. Spectra of various bright M dwarfs and K2 objects were obtained in the J, H, and K bands (0.95 microns to 2.52 microns) at R ~ 1000. We measure equivalent widths of spectra features to obtain stellar radii and effective temperatures. Since planet radii and equilibrium temperatures depend on calculating the parameters of its host stars, understanding the nature of the hosts stars improves the precision with which we can measure these K2 objects of interest.

  9. Atmosphere models and the determination of stellar parameters

    NASA Astrophysics Data System (ADS)

    Martins, F.

    2014-11-01

    We present the basic concepts necessary to build atmosphere models for any type of star. We then illustrate how atmosphere models can be used to determine stellar parameters. We focus on the effects of line-blanketing for hot stars, and on non-LTE and three dimensional effects for cool stars. We illustrate the impact of these effects on the determination of the ages of stars from the HR diagram.

  10. Accuracy of stellar parameters determined from multicolor photometry

    NASA Astrophysics Data System (ADS)

    Sichevskij, S. G.; Mironov, A. V.; Malkov, O. Yu.

    2014-04-01

    The development and application of new methods for intelligent analysis and extraction of information from digital sky surveys carried out in various spectral domains have now become a popular field in astrophysical research and, in particular, in stellar studies. Modern large-scale photometric surveys provide data for 105-106 relatively faint objects, and the lack of spectroscopic data can be compensated by the cross identification of the objects followed by an analysis of all catalogued photometric data. In this paper we investigate the possibility of determining the effective temperature, surface gravity, total extinction, and the total-to-selective extinction ratio based on the photometry provided in the 2MASS, SDSS, and GALEX surveys, and estimate the accuracy of the inferred parameters. We use a library of theoretical spectra to compute the magnitudes of stars in the photometric bands of the above surveys for various sets of input parameters. We compare the differences between the computed magnitudes with the errors of the corresponding surveys. We find that stellar parameters can be computed over a sizable domain of the parameter space. We estimate the accuracy of the resulting parameters. We show that the presence of far-ultraviolet data in the available set of observed magnitudes increases the accuracy of the inferred parameters.

  11. The true stellar parameters of the Kepler target list

    NASA Astrophysics Data System (ADS)

    Farmer, R.; Kolb, U.; Norton, A. J.

    2013-08-01

    Using population synthesis tools we create a synthetic Kepler Input Catalogue (KIC) and subject it to the Kepler Stellar Classification Program (SCP) method for determining stellar parameters such as the effective temperature Teff and surface gravity g. We achieve a satisfactory match between the synthetic KIC and the real KIC in the log g versus log Teff diagram, while there is a significant difference between the actual physical stellar parameters and those derived by the SCP of the stars in the synthetic sample. We find a median difference ΔTeff = +500 K and ˜Δlog g = -0.2 dex for main-sequence (MS) stars, and ˜ΔTeff = +50 K and Δlog g = -0.5 dex for giants, although there is a large variation across parameter space. For a MS star the median difference in g would equate to a ˜3 per cent increase in stellar radius and a consequent ˜3 per cent overestimate of the radius for any transiting exoplanet. We find no significant difference between ΔTeff and Δlog g for single stars and the primary star in a binary system. We also re-created the Kepler target selection method and found that the binary fraction is unchanged by the target selection. Binaries are selected in similar proportions to single star systems; the fraction of MS dwarfs in the sample increases from about 75 to 80 per cent, and the giant star fraction decreases from 25 to 20 per cent.

  12. Probabilistic Inference of Basic Stellar Parameters: Application to Flickering Stars

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Kipping, David. M.

    2016-05-01

    The relations between observable stellar parameters are usually assumed to be deterministic. That is, given an infinitely precise measurement of independent variable, “x”, and some model, the value of dependent variable, “y” can be known exactly. In practice this assumption is rarely valid and intrinsic stochasticity means that two stars with exactly the same “x” will have slightly different “y”s. The relation between short-timescale brightness fluctuations (flicker) of stars and both surface gravity and stellar density are two such stochastic relations that have until now been treated as deterministic ones. We recalibrate these relations in a probabilistic framework, using hierarchical Bayesian modeling to constrain the instrinsic scatter in the relations. We find evidence for additional scatter in the relationship, that cannot be accounted for by the observational uncertainties alone. The scatter in surface gravity and stellar density does not depend on flicker, suggesting that using flicker as a proxy for {log}g and ρ ⋆ is equally valid for dwarf and giant stars, despite the fact that the observational uncertainties tend to be larger for dwarfs. Based on archival data of the Kepler telescope.

  13. ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline

    NASA Astrophysics Data System (ADS)

    García Pérez, Ana E.; Allende Prieto, Carlos; Holtzman, Jon A.; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D. A.; Johnson, Jennifer A.; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Shane, Neville; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Weinberg, David H.; Bovy, Jo; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Hayden, Michael R.; Hearty, Fred R.; Nguyen, Duy C.; O'Connell, Robert W.; Pinsonneault, Marc H.; Wilson, John C.; Zasowski, Gail

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  14. Accurate Parameter Estimation for Unbalanced Three-Phase System

    PubMed Central

    Chen, Yuan

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS. PMID:25162056

  15. Accurate parameter estimation for unbalanced three-phase system.

    PubMed

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS.

  16. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    SciTech Connect

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D.; Montesinos, B.; Najita, J. R.; Brittain, S. D.; Van den Ancker, M. E.

    2014-07-20

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉} = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  17. STELLAR MASS-TO-LIGHT RATIOS FROM GALAXY SPECTRA: HOW ACCURATE CAN THEY BE?

    SciTech Connect

    Gallazzi, Anna; Bell, Eric F. E-mail: ericbell@umich.edu

    2009-12-01

    Stellar masses play a crucial role in the exploration of galaxy properties and the evolution of the galaxy population. In this paper, we explore the minimum possible uncertainties in stellar mass-to-light ratios (M {sub *}/L) from the assumed star formation history (SFH) and metallicity distribution, with the goals of providing a minimum set of requirements for observational studies. We use a large Monte Carlo library of SFHs to study as a function of galaxy spectral type and signal-to-noise ratio (S/N) the statistical uncertainties of M {sub *}/L values using either absorption-line data or broadband colors. The accuracy of M {sub *}/L estimates can be significantly improved by using metal-sensitive indices in combination with age-sensitive indices, in particular for galaxies with intermediate-age or young stellar populations. While M {sub *}/L accuracy clearly depends on the spectral S/N, there is no significant gain in improving the S/N much above 50 pixel{sup -1} and limiting uncertainties of {approx}0.03 dex are reached. Assuming that dust is accurately corrected or absent and that the redshift is known, color-based M {sub *}/L estimates are only slightly more uncertain than spectroscopic estimates (at comparable spectroscopic and photometric quality), but are more easily affected by systematic biases. This is the case in particular for galaxies with bursty SFHs (high H{delta} {sub A} at fixed D4000 {sub n}), the M {sub *}/L of which cannot be constrained any better than {approx}0.15 dex with any indicators explored here. Finally, we explore the effects of the assumed prior distribution in SFHs and metallicity, finding them to be higher for color-based estimates.

  18. ACCURATE STELLAR KINEMATICS AT FAINT MAGNITUDES: APPLICATION TO THE BOOeTES I DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Koposov, Sergey E.; Gilmore, G.; Walker, M. G.; Belokurov, V.; Evans, N. Wyn; Okamoto, S.; Penarrubia, J.; Fellhauer, M.; Gieren, W.; Geisler, D.; Monaco, L.; Norris, J. E.; Wilkinson, M.; Wyse, R. F. G.; Zucker, D. B.

    2011-08-01

    We develop, implement, and characterize an enhanced data reduction approach which delivers precise, accurate, radial velocities from moderate resolution spectroscopy with the fiber-fed VLT/FLAMES+GIRAFFE facility. This facility, with appropriate care, delivers radial velocities adequate to resolve the intrinsic velocity dispersions of the very faint dwarf spheroidal (dSph) galaxies. Importantly, repeated measurements let us reliably calibrate our individual velocity errors (0.2 kms{sup -1} {<=} {delta}{sub V} {<=} 5 km s{sup -1}) and directly detect stars with variable radial velocities. We show, by application to the Booetes I dSph, that the intrinsic velocity dispersion of this system is significantly below 6.5 km s{sup -1} reported by previous studies. Our data favor a two-population model of Booetes I, consisting of a majority 'cold' stellar component, with velocity dispersion 2.4{sup +0.9}{sub -0.5} km s{sup -1}, and a minority 'hot' stellar component, with velocity dispersion {approx}9 km s{sup -1}, although we cannot completely rule out a single component distribution with velocity dispersion 4.6{sup 0.8}{sub -0.6} km s{sup -1}. We speculate that this complex velocity distribution actually reflects the distribution of velocity anisotropy in Booetes I, which is a measure of its formation processes.

  19. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  20. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  1. Accurate parameters for HD 209458 and its planet from HST spectrophotometry

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2016-08-01

    We present updated parameters for the star HD 209458 and its transiting giant planet. The stellar angular diameter θ=0.2254±0.0017 mas is obtained from the average ratio between the absolute flux observed with the Hubble Space Telescope and that of the best-fitting Kurucz model atmosphere. This angular diameter represents an improvement in precision of more than four times compared to available interferometric determinations. The stellar radius R⋆=1.20±0.05 R⊙ is ascertained by combining the angular diameter with the Hipparcos trigonometric parallax, which is the main contributor to its uncertainty, and therefore the radius accuracy should be significantly improved with Gaia's measurements. The radius of the exoplanet Rp=1.41±0.06 RJ is derived from the corresponding transit depth in the light curve and our stellar radius. From the model fitting, we accurately determine the effective temperature, Teff=6071±20 K, which is in perfect agreement with the value of 6070±24 K calculated from the angular diameter and the integrated spectral energy distribution. We also find precise values from recent Padova Isochrones, such as R⋆=1.20±0.06 R⊙ and Teff=6099±41 K. We arrive at a consistent picture from these methods and compare the results with those from the literature.

  2. Direct computation of parameters for accurate polarizable force fields

    SciTech Connect

    Verstraelen, Toon Vandenbrande, Steven; Ayers, Paul W.

    2014-11-21

    We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham Density Functional Theory (DFT), approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization, and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.

  3. Estimating Stellar Fundamental Parameters Using PCA: Application to Early Type Stars of GES Data

    NASA Astrophysics Data System (ADS)

    Farah, W.; Gebran, M.; Paletou, F.; Blomme, R.

    2015-12-01

    This work addresses a procedure to estimate fundamental stellar parameters such as T_{eff}, log g, [Fe/H], and v sin i using a dimensionality reduction technique called principal component analysis (PCA), applied to a large database of synthetic spectra. This technique shows promising results for inverting stellar parameters of observed targets from Gaia Eso Survey.

  4. VizieR Online Data Catalog: Stellar physical parameters for young stars (Monguio+, 2014)

    NASA Astrophysics Data System (ADS)

    Monguio, M.; Figueras, F.; Grosbol, P.

    2014-08-01

    A uvbyHβ Stromgren photometric survey covering 16 square degrees in the anticenter direction was carried out using the Wide Field Camera at the Isaac Newton Telescope. Physical parameters like stellar distances and extinctions for the young stars of our survey are presented here. We developed a new method for deriving physical parameters from Stromgren photometry and also implemented and tested it. This is a model-based method that uses the most recent available stellar atmospheric models and evolutionary tracks to interpolate in a 3D grid of the unreddened indexes [m1], [c1] and Hβ. Distances derived from both this method and the classical pre-Hipparcos calibrations were tested against Hipparcos parallaxes and found to be accurate. Furthermore, a shift in the atmospheric grids in the range Teff=[7000,9000]K was detected and a correction is proposed. The two methods were used to compute distances and reddening for around 12000 OBA-type stars in our Stromgren anticenter survey. Data from the IPHAS and 2MASS catalogs were used to complement the detection of emission line stars and to break the degeneracy between early and late photometric regions. We note that photometric distances can differ by more than 20%, those derived from the empirical calibrations being smaller than those derived with the new method, which agree better with the Hipparcos data. (1 data file).

  5. Stellar parameters of early-M dwarfs from ratios of spectral features at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Affer, L.; Micela, G.; Scandariato, G.; Damasso, M.; Stelzer, B.; Barbieri, M.; Bedin, L. R.; Biazzo, K.; Bignamini, A.; Borsa, F.; Claudi, R. U.; Covino, E.; Desidera, S.; Esposito, M.; Gratton, R.; González Hernández, J. I.; Lanza, A. F.; Maggio, A.; Molinari, E.; Pagano, I.; Perger, M.; Pillitteri, I.; Piotto, G.; Poretti, E.; Prisinzano, L.; Rebolo, R.; Ribas, I.; Shkolnik, E.; Southworth, J.; Sozzetti, A.; Suárez Mascareño, A.

    2015-05-01

    Context. Low-mass stars have been recognised as promising targets in the search for rocky, small planets with the potential of supporting life. As a consequence, Doppler search programmes using high-resolution spectrographs like HARPS or HARPS-N are providing huge quantities of optical spectra of M dwarfs. However, determining the stellar parameters of M dwarfs using optical spectra has proven to be challenging. Aims: We aim to calibrate empirical relationships to determine accurate stellar parameters for early-M dwarfs (spectral types M0-M4.5) using the same spectra as those that are used for radial velocity determinations, without the necessity of acquiring IR spectra or relying on atmospheric models and/or photometric calibrations. Methods: Our methodology consists of using ratios of pseudo-equivalent widths of spectral features as a temperature diagnostic, a technique frequently used in solar-type stars. Stars with effective temperatures obtained from interferometric estimates of their radii are used as calibrators. Empirical calibrations for the spectral type are also provided. Combinations of features and ratios of features are used to derive calibrations for the stellar metallicity. Our methods are then applied to a large sample of M dwarfs that are currently being observed in the framework of the HARPS GTO search for extrasolar planets. The derived temperatures and metallicities are used together with photometric estimates of mass, radius, and surface gravity to calibrate empirical relationships for these parameters. Results: A long list of spectral features in the optical spectra of early-M dwarfs was identified. This list shows that the pseudo-equivalent width of roughly 43% of the features is strongly anticorrelated with the effective temperature. The correlation with the stellar metallicity is weaker. A total of 112 temperature sensitive ratios were identified and calibrated over the range 3100-3950 K, providing effective temperatures with typical

  6. Fundamental Parameters of Nearby Red Dwarfs: Stellar Radius as an Indicator of Age

    NASA Astrophysics Data System (ADS)

    Silverstein, Michele L.; Henry, Todd J.; Winters, Jennifer G.; Jao, Wei-Chun; Riedel, Adric R.; Dieterich, Sergio; RECONS Team

    2016-01-01

    Red dwarfs dominate the Galactic population, yet determining one of their most fundamental characteristics --- age --- has proven difficult. The characterization of red dwarfs in terms of their age is fundamental to mapping the history of star and, ultimately, planet formation in the Milky Way. Here we report on a compelling technique to evaluate the radii of red dwarfs, which can be used to provide leverage in estimating their ages. These radii are also particularly valuable in the cases of transiting exoplanet hosts because accurate stellar radii are required to determine accurate planetary radii.In this work, we use the BT-Settl models in combination with Johnson-Kron-Cousins VRI, 2MASS JHK, and WISE All-Sky Release photometry to produce spectral energy distributions (SEDs) to determine the temperatures and bolometric fluxes for 500 red dwarfs, most of which are in the southern sky. The full suites of our photometric and astrometric data (including hundreds of accurate new parallaxes from the RECONS team at the CTIO/SMARTS 0.9m) allow us to also determine the bolometric luminosities and radii. This method of radius determination is validated by a comparison of our measurements to those found using the CHARA Array (Boyajian et al. 2012), which match within a few percent.In addition to a compilation of red dwarf fundamental parameters, our findings provide a snapshot of relative stellar ages in the solar neighborhood. Of particular interest are the cohorts of very young and very old stars identified within 50 pc. These outliers exemplify the demographic extremes of the nearest stars.This effort has been supported by the NSF through grants AST-0908402, AST-1109445, and AST-1412026, and via observations made possible by the SMARTS Consortium.

  7. Open cluster Dolidze 25: Stellar parameters and the metallicity in the Galactic anticentre

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Simón-Díaz, S.; Lorenzo, J.; Castro, N.; Herrero, A.

    2015-12-01

    Context. The young open cluster Dolidze 25, in the direction of the Galactic anticentre, has been attributed a very low metallicity, with typical abundances between -0.5 and -0.7 dex below solar. Aims: We intend to derive accurate cluster parameters and accurate stellar abundances for some of its members. Methods: We have obtained a large sample of intermediate- and high-resolution spectra for stars in and around Dolidze 25. We used the fastwind code to generate stellar atmosphere models to fit the observed spectra. We derive stellar parameters for a large number of OB stars in the area, and abundances of oxygen and silicon for a number of stars with spectral types around B0. Results: We measure low abundances in stars of Dolidze 25. For the three stars with spectral types around B0, we find 0.3 dex (Si) and 0.5 dex (O) below the values typical in the solar neighbourhood. These values, even though not as low as those given previously, confirm Dolidze 25 and the surrounding H ii region Sh2-284 as the most metal-poor star-forming environment known in the Milky Way. We derive a distance 4.5 ± 0.3 kpc to the cluster (rG ≈ 12.3 kpc). The cluster cannot be older than ~3 Myr, and likely is not much younger. One star in its immediate vicinity, sharing the same distance, has Si and O abundances at most 0.15 dex below solar. Conclusions: The low abundances measured in Dolidze 25 are compatible with currently accepted values for the slope of the Galactic metallicity gradient, if we take into account that variations of at least ±0.15 dex are observed at a given radius. The area traditionally identified as Dolidze 25 is only a small part of a much larger star-forming region that comprises the whole dust shell associated with Sh2-284 and very likely several other smaller H ii regions in its vicinity. Based on observations made with the Nordic Optical Telescope, the Mercator Telescope, and the telescopes of the Isaac Newton Group.

  8. SP_Ace: a new code to derive stellar parameters and elemental abundances

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  9. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2016-10-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the LAMOST spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, APOGEE) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3 - 0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on the observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  10. Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors

    PubMed Central

    CLIFFORD, Gari; SAMENI, Reza; WARD, Mr. Jay; ROBINSON, Julian; WOLFBERG, Adam J.

    2011-01-01

    OBJECTIVE To evaluate the accuracy of a novel system for measuring fetal heart rate and ST-segment changes using non-invasive electrodes on the maternal abdomen. STUDY DESIGN Fetal ECGs were recorded using abdominal sensors from 32 term laboring women who had a fetal scalp electrode (FSE) placed for a clinical indication. RESULTS Good quality data for FHR estimation was available in 91.2% of the FSE segments, and 89.9% of the abdominal electrode segments. The root mean square (RMS) error between the FHR data calculated by both methods over all processed segments was 0.36 beats per minute. ST deviation from the isoelectric point ranged from 0 to 14.2% of R-wave amplitude. The RMS error between the ST change calculated by both methods averaged over all processed segments was 3.2%. CONCLUSION FHR and ST change acquired from the maternal abdomen is highly accurate and on average is clinically indistinguishable from FHR and ST change calculated using FSE data. PMID:21514560

  11. THE AGE AND STELLAR PARAMETERS OF THE PROCYON BINARY SYSTEM

    SciTech Connect

    Liebert, James; Arnett, David; Fontaine, Gilles; Young, Patrick A.; Williams, Kurtis A. E-mail: darnett@as.arizona.edu E-mail: pyoung.3@asu.edu

    2013-05-20

    The Procyon AB binary system (orbital period 40.838 yr, a newly refined determination) is near and bright enough that the component radii, effective temperatures, and luminosities are very well determined, although more than one possible solution to the masses has limited the claimed accuracy. Preliminary mass determinations for each component are available from Hubble Space Telescope imaging, supported by ground-based astrometry and an excellent Hipparcos parallax; we use these for our preferred solution for the binary system. Other values for the masses are also considered. We have employed the TYCHO stellar evolution code to match the radius and luminosity of the F5 IV-V primary star to determine the system's most likely age as 1.87 {+-} 0.13 Gyr. Since prior studies of Procyon A found its abundance indistinguishable from solar, the solar composition of Asplund, Grevesse, and Sauval (Z = 0.014) is assumed for the Hertzsprung-Russell diagram fitting. An unsuccessful attempt to fit using the older solar abundance scale of Grevesse and Sauval (Z = 0.019) is also reported. For Procyon B, 11 new sequences for the cooling of non-DA white dwarfs have been calculated to investigate the dependences of the cooling age on (1) the mass, (2) core composition, (3) helium layer mass, and (4) heavy-element opacities in the helium envelope. Our calculations indicate a cooling age of 1.19 {+-} 0.11 Gyr, which implies that the progenitor mass of Procyon B was 2.59{sub -0.26}{sup +0.44} M{sub Sun }. In a plot of initial versus final mass of white dwarfs in astrometric binaries or star clusters (all with age determinations), the Procyon B final mass lies several {sigma} below a straight line fit.

  12. AUTOMATIC DETERMINATION OF STELLAR PARAMETERS VIA ASTEROSEISMOLOGY OF STOCHASTICALLY OSCILLATING STARS: COMPARISON WITH DIRECT MEASUREMENTS

    SciTech Connect

    Quirion, Pierre-Olivier; Christensen-Dalsgaard, Joergen; Arentoft, Torben E-mail: jcd@phys.au.d

    2010-12-20

    Space-based projects are providing a wealth of high-quality asteroseismic data, including frequencies for a large number of stars showing solar-like oscillations. These data open the prospect for precise determinations of key stellar parameters, of particular value to the study of extra-solar planetary systems. Given the quantity of the available and expected data, it is important to develop efficient and reliable techniques for analyzing them, including the determination of stellar parameters from the observed frequencies. Here we present the SEEK package developed for the analysis of asteroseismic data from the Kepler mission. A central goal of the package is to obtain a fast and automatic determination of the stellar radius and other parameters in a form that is statistically well defined. The algorithms are tested by comparing the results of the analysis with independent measurements of stellar radius and mass for a sample of well-observed stars. We conclude that the SEEK package fixes stellar parameters with accuracy and precision.

  13. SDSS/SEGUE spectral feature analysis for stellar atmospheric parameter estimation

    SciTech Connect

    Li, Xiangru; Lu, Yu; Yang, Tan; Wang, Yongjun; Wu, Q. M. Jonathan; Luo, Ali; Zhao, Yongheng; Zuo, Fang

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T{sub eff}, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T{sub eff} (101.609921 K for T{sub eff}), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T{sub eff}, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T{sub eff} (124.545075 K for T{sub eff}), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  14. SDSS/SEGUE Spectral Feature Analysis for Stellar Atmospheric Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Wu, Q. M. Jonathan; Luo, Ali; Zhao, Yongheng; Lu, Yu; Zuo, Fang; Yang, Tan; Wang, Yongjun

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T eff, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T eff (101.609921 K for T eff), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T eff, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T eff (124.545075 K for T eff), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  15. The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

    SciTech Connect

    Lee, Y.S.; Beers, T.C.; Sivarani, T.; Johnson, J.A.; An, D.; Wilhelm, R.; Prieto, C.Allende; Koesterke, L.; Re Fiorentin, P.; Bailer-Jones, C.A.L.; Norris, J.E.

    2007-10-01

    The authors validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-1) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parameter estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, they quantify the typical uncertainty of the SSPP values, {sigma}([Fe/H]) = 0.13 dex for stars in the range of 4500 K {le} T{sub eff} {le} 7500 K and 2.0 {le} log g {le} 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 {le} [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; they find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by {approx} 0.3 dex.

  16. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    SciTech Connect

    McDermid, Richard M.; Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Duc, Pierre-Alain; Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald; Khochfar, Sadegh; Krajnović, Davor; Morganti, Raffaella; Oosterloo, Tom; Naab, Thorsten; and others

    2014-09-10

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS{sup 3D} project. We study trends between our dynamically derived IMF normalization α{sub dyn} ≡ (M/L){sub stars}/(M/L){sub Salp} and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α{sub dyn} at a given population parameter. As a result, we find weak α{sub dyn}-[α/Fe] and α{sub dyn} –Age correlations and no significant α{sub dyn} –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  17. Stellar

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This eerie, dark structure, resembling an imaginary sea serpent's head, is a column of cool molecular hydrogen gas (two atoms of hydrogen in each molecule) and dust that is an incubator for new stars. The stars are embedded inside finger-like protrusions extending from the top of the nebula. Each 'fingertip' is somewhat larger than our own solar system. The pillar is slowly eroding away by the ultraviolet light from nearby hot stars, a process called 'photoevaporation.' As it does, small globules of especially dense gas buried within the cloud is uncovered. These globules have been dubbed 'EGGs' -- an acronym for 'Evaporating Gaseous Globules.' The shadows of the EGGs protect gas behind them, resulting in the finger-like structures at the top of the cloud. Forming inside at least some of the EGGs are embryonic stars -- stars that abruptly stop growing when the EGGs are uncovered and they are separated from the larger reservoir of gas from which they were drawing mass. Eventually the stars emerge, as the EGGs themselves succumb to photoevaporation. The stellar EGGS are found, appropriately enough, in the 'Eagle Nebula' (also called M16 -- the 16th object in Charles Messier's 18th century catalog of 'fuzzy' permanent objects in the sky), a nearby star-forming region 7,000 light-years away in the constellation Serpens. The picture was taken on April 1, 1995 with the Hubble Space Telescope Wide Field and Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emission from singly-ionized sulfur atoms. Green shows emission from hydrogen. Blue shows light emitted by doubly-ionized oxygen atoms.

  18. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    SciTech Connect

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Da Rio, Nicola; Chojnowski, S. Drew; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail; Flaherty, Kevin M.; Frinchaboy, Peter M.

    2014-10-20

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  19. IN-SYNC I: Homogeneous Stellar Parameters from High-resolution APOGEE Spectra for Thousands of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail

    2014-10-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  20. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was

  1. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    SciTech Connect

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; Ge, Jian; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Wang, Ji; and others

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T {sub eff}, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ∼ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T {sub eff}, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An

  2. The Catalogue of Stellar Parameters from the Detached Double-Lined Eclipsing Binaries in the Milky Way

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Bilir, S.; Soydugan, F.; Gökçe, E. Yaz; Soydugan, E.; Tüysüz, M.; Şenyüz, T.; Demircan, O.

    2014-05-01

    The most accurate stellar astrophysical parameters were collected from the solutions of the light and the radial velocity curves of 257 detached double-lined eclipsing binaries in the Milky Way. The catalogue contains masses, radii, surface gravities, effective temperatures, luminosities, projected rotational velocities of the component stars, and the orbital parameters. The number of stars with accurate parameters increased 67% in comparison to the most recent similar collection by Torres, Andersen, & Giménez (2010). Distributions of some basic parameters were investigated. The ranges of effective temperatures, masses, and radii are 2 750

  3. Catching the fish - Constraining stellar parameters for TX Piscium using spectro-interferometric observations

    NASA Astrophysics Data System (ADS)

    Klotz, D.; Paladini, C.; Hron, J.; Aringer, B.; Sacuto, S.; Marigo, P.; Verhoelst, T.

    2013-02-01

    Context. Stellar parameter determination is a challenging task when dealing with galactic giant stars. The combination of different investigation techniques has proven to be a promising approach. Aims: We analyse archive spectra obtained with the Short Wavelength Spectrometer (SWS) onboard ISO, and new interferometric observations from the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI) of a very well studied carbon-rich giant: TX Psc. The aim of this work is to determine stellar parameters using spectroscopy and interferometry. Methods: The observations are used to constrain the model atmosphere, and eventually the stellar evolutionary model in the region where the tracks map the beginning of the carbon star sequence. Two different approaches are used to determine stellar parameters: (i) the "classic" interferometric approach where the effective temperature is fixed by using the angular diameter in the N-band (from interferometry) and the apparent bolometric magnitude; (ii) parameters are obtained by fitting a grid of state-of-the-art hydrostatic models to spectroscopic and interferometric observations. Results: We find good agreement between the parameters of the two methods. The effective temperature and luminosity clearly place TX Psc in the carbon-rich AGB star domain in the H-R-diagram. Current evolutionary tracks suggest that TX Psc became a C-star just recently, which means that the star is still in a "quiet" phase compared to the subsequent strong-wind regime. This agrees with the C/O ratio being only slightly greater than one. Based on observations made with ESO telescopes at Paranal Observatory under program IDs 74.D-0601, 60.A-9224, 77.C-0440, 60.A-9006, 78.D-0112, 84.D-0805.

  4. Effects of the Stellar Component on Derived Physical Parameters of Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Robledo-Rella, V.

    2000-05-01

    We present results of long-slit spatially integrated (~ 7 arcmin2) spectroscopy (3600 - 10200 Å in the central regions of Carina, M8 and M20. We obtained two types of spectra: neb \\ (pure nebular) and all \\ (nebular plus stellar). The stellar effect increases along the Balmer series, with neb/all \\ ~ 1.20 at Hdelta, but could be much stronger (~ 1.7) for weaker lines beyond H8. The resulting neb \\ dereddened spectra give slightly higher electron temperatures which yield (O/H) smaller (~ 0.10-0.30 dex), (N/H) higher (~ 0.05-0.10 dex), (Ne/H) smaller (~ 0.25-0.40 dex), and (Ar/H) smaller (~ 0.15-0.30 dex), with respect to the all \\ case. Although these differences are roughly within the uncertainties, they could be important in deriving accurate chemical compositions in extragalactic nebula where the stars are not resolved.

  5. A MACHINE-LEARNING METHOD TO INFER FUNDAMENTAL STELLAR PARAMETERS FROM PHOTOMETRIC LIGHT CURVES

    SciTech Connect

    Miller, A. A.; Bloom, J. S.; Richards, J. W.; Starr, D. L.; Lee, Y. S.; Butler, N. R.; Tokarz, S.; Smith, N.; Eisner, J. A.

    2015-01-10

    A fundamental challenge for wide-field imaging surveys is obtaining follow-up spectroscopic observations: there are >10{sup 9} photometrically cataloged sources, yet modern spectroscopic surveys are limited to ∼few× 10{sup 6} targets. As we approach the Large Synoptic Survey Telescope era, new algorithmic solutions are required to cope with the data deluge. Here we report the development of a machine-learning framework capable of inferring fundamental stellar parameters (T {sub eff}, log g, and [Fe/H]) using photometric-brightness variations and color alone. A training set is constructed from a systematic spectroscopic survey of variables with Hectospec/Multi-Mirror Telescope. In sum, the training set includes ∼9000 spectra, for which stellar parameters are measured using the SEGUE Stellar Parameters Pipeline (SSPP). We employed the random forest algorithm to perform a non-parametric regression that predicts T {sub eff}, log g, and [Fe/H] from photometric time-domain observations. Our final optimized model produces a cross-validated rms error (RMSE) of 165 K, 0.39 dex, and 0.33 dex for T {sub eff}, log g, and [Fe/H], respectively. Examining the subset of sources for which the SSPP measurements are most reliable, the RMSE reduces to 125 K, 0.37 dex, and 0.27 dex, respectively, comparable to what is achievable via low-resolution spectroscopy. For variable stars this represents a ≈12%-20% improvement in RMSE relative to models trained with single-epoch photometric colors. As an application of our method, we estimate stellar parameters for ∼54,000 known variables. We argue that this method may convert photometric time-domain surveys into pseudo-spectrographic engines, enabling the construction of extremely detailed maps of the Milky Way, its structure, and history.

  6. VizieR Online Data Catalog: Abundances and stellar parameters of LAMOST stars (Lee+, 2015)

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Beers, T. C.; Carlin, J. L.; Newberg, H. J.; Hou, Y.; Li, G.; Luo, A.-L.; Wu, Y.; Yang, M.; Zhang, H.; Zhang, W.; Zhang, Y.

    2016-04-01

    By performing a coordinate match with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; see DR1 in Luo et al. 2015, cat. V/146) stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Majewski et al. 2015, submitted), the RAdial Velocity Experiment (RAVE; see Kordopatis et al. 2013, cat. III/272), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE; see Yanny et al. 2009, cat. J/AJ/137/4377). The LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey is an ongoing spectroscopic survey being conducted with the Guoshoujing telescope in northeast China. This telescope employs a fixed 4-m Schmidt-type reflector with 4000 optical fibers in the focal plane to obtain spectra of astronomical objects in a 5° field of view. The LEGUE and SEGUE surveys have very similar spectral coverage and resolving power (R~1800). The LAMOST stellar targets mostly comprise stars brighter than r< 17, whereas the SEGUE stars range from r=14 to r=21. SEGUE-1 was executed during the second phase of the Sloan Digital Sky Survey (SDSS-II). This effort was continued as SEGUE-2 during the third phase of SDSS (SDSS-III). APOGEE was designed to obtain high-resolution near-infrared spectra (in the H-band between 1.51 and 1.70μm). The spectra obtained by APOGEE have a resolving power R~22500 and high S/N (>100). APOGEE-1 was a sub-survey of SDSS-III, and is now completed. Its extension, APOGEE-2, is presently underway as part of SDSS-IV. The RAVE survey was designed to observe about a million stars in the southern hemisphere, and obtain optical spectra over the wavelength range 8410-8795Å, the region of the CaII triplet, at a resolving power R~7500. SEGUE-1 and SEGUE-2 have employed the SEGUE Stellar Parameter Pipeline (SSPP; Lee et al. 2008, cat. J/AJ/136/2050; Allende Prieto et al. 2008, cat. J/AJ/136

  7. Improving Stellar Parameter and Abundance Determinations of Early B-Type Stars

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.; Przybilla, N.

    2010-06-01

    In the past years we have made great efforts to reduce the statistical and systematic uncertainties in stellar parameter and chemical abundance determinations of early B-type stars. Both the construction of robust model atoms for non-LTE line-formation calculations and a novel self-consistent spectral analysis methodology were decisive to achieve results of unprecedented precision. They were extensively tested and applied to high-quality spectra of stars from OB associations and the field in the solar neighborhood, covering a broad parameter range. Initially, most lines of hydrogen, helium and carbon in the optical/near-IR spectral range were reproduced simultaneously in a consistent way for the first time, improving drastically on the accuracy of results in published work. By taking additional ionization equilibria of oxygen, neon, silicon, and iron into account, uncertainties as low as ˜1% in effective temperature, ˜10% in surface gravity and ˜20% in elemental abundances are achieved—compared to ˜5-10%, ˜25% and a factor ˜2-3 using standard methods. Several sources of systematic errors have been identified by comparison of our analysis methods for early B-type stars with previously used standard techniques, e.g., the VLT-FLAMES survey of massive stars. Improvements in automatic analyses are strongly recommended for meaningful comparisons of spectroscopic stellar parameters and chemical abundances (“observational constraints”) with predictions of stellar and galactic chemical evolution models.

  8. Investigation of Kepler Objects of Interest Stellar Parameters from Observed Transit Durations

    NASA Astrophysics Data System (ADS)

    Plavchan, Peter; Bilinski, Christopher; Currie, Thayne

    2014-01-01

    The Kepler mission discovery of candidate transiting exoplanets (KOIs) enables a plethora of ensemble analyses of the architecture and properties of exoplanetary systems. We compare the observed transit durations of KOIs to a synthetic distribution generated from the known eccentricities of radial velocity (RV) discovered exoplanets. We find that the Kepler and RV distributions differ at a statistically significant level. We identify three related systematic trends that are likely due to errors in stellar radii, which in turn affect the inferred exoplanet radii and the distribution thereof, and prevent a valid analysis of the underlying ensemble eccentricity distribution. First, 15% of KOIs have transit durations >20% longer than the transit duration expected for an edge-on circular orbit, including 92 KOIs with transit durations >50% longer, when only a handful of such systems are expected. Second, the median transit duration is too long by up to ~25%. Random errors of < 50% in the stellar radius are not adequate to account for these two trends. We identify that incorrect estimates of stellar metallicity and extinction could account for these anomalies, rather than astrophysical effects such as eccentric exoplanets improbably transiting near apastron. Third, we find that the median transit duration is correlated with stellar radius, when no such trend is expected. All three effects are still present, although less pronounced, when considering only multiple transiting KOI systems which are thought to have a low false-positive rate. Improved stellar parameters for KOIs are necessary for the validity of future ensemble tests of exoplanetary systems found by Kepler.

  9. APOSTLE OBSERVATIONS OF GJ 1214b: SYSTEM PARAMETERS AND EVIDENCE FOR STELLAR ACTIVITY

    SciTech Connect

    Kundurthy, P.; Agol, E.; Becker, A. C.; Williams, B.; Mukadam, A.; Barnes, R.

    2011-04-20

    We present three transits of GJ 1214b, observed as part of the Apache Point Observatory Survey of Transit Light Curves of Exoplanets. By applying Markov Chain Monte Carlo techniques to a multi-wavelength data set which included our r-band light curves and previously gathered data of GJ 1214b, we confirm earlier estimates of system parameters. Using spectral energy distribution fitting, mass-luminosity relations, and light curve data, we derived absolute parameters for the star and planet, improving uncertainties by a factor of two for the stellar mass (M{sub *} = 0.153{sup +0.010}{sub -0.009} M{sub sun}), stellar radius (R{sub *} = 0.210{sup +0.005}{sub -0.004} R{sub sun}), planetary radius (R{sub p} = 2.74{sup +0.06}{sub -0.05} R{sub +}), and planetary density ({rho}{sub p} = 1.68 {+-} 0.23 g cm{sup -3}). Transit times derived from our study show no evidence for strong transit timing variations. We also report the detection of two features in our light curves which we believe are evidence for a low-energy stellar flare and a spot-crossing event.

  10. RESEARCH PAPER: Automated estimation of stellar fundamental parameters from low resolution spectra: the PLS method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Nan; Luo, A.-Li; Zhao, Yong-Heng

    2009-06-01

    PLS (Partial Least Squares regression) is introduced into an automatic estimation of fundamental stellar spectral parameters. It extracts the most correlative spectral component to the parameters (Teff, log g and [Fe/H]), and sets up a linear regression function from spectra to the corresponding parameters. Considering the properties of stellar spectra and the PLS algorithm, we present a piecewise PLS regression method for estimation of stellar parameters, which is composed of one PLS model for Teff, and seven PLS models for log g and [Fe/H] estimation. Its performance is investigated by large experiments on flux calibrated spectra and continuum normalized spectra at different signal-to-noise ratios (SNRs) and resolutions. The results show that the piecewise PLS method is robust for spectra at the medium resolution of 0.23 nm. For low resolution 0.5 nm and 1 nm spectra, it achieves competitive results at higher SNR. Experiments using ELODIE spectra of 0.23 nm resolution illustrate that our piecewise PLS models trained with MILES spectra are efficient for O ~ G stars: for flux calibrated spectra, the systematic offsets are 3.8%, 0.14 dex, and -0.09 dex for Teff, log g and [Fe/H], with error scatters of 5.2%, 0.44 dex and 0.38 dex, respectively; for continuum normalized spectra, the systematic offsets are 3.8%, 0.12dex, and -0.13dex for Teff, log g and [Fe/H], with error scatters of 5.2%, 0.49 dex and 0.41 dex, respectively. The PLS method is rapid, easy to use and does not rely as strongly on the tightness of a parameter grid of templates to reach high precision as Artificial Neural Networks or minimum distance methods do.

  11. VizieR Online Data Catalog: Fundamental stellar parameters from PolarBase (Paletou+, 2015)

    NASA Astrophysics Data System (ADS)

    Paletou, F.; Boehm, T.; Watson, V.; Trouilhet, J.-F.

    2015-02-01

    Our reference spectra are taken from the Elodie stellar library (Prugniel et al. 2007, astro-ph/0703658, Cat. III/251; Prugniel & Soubiran 2001A&A...369.1048P, Cat. III/218). Our main purpose is inverting of stellar parameters from high-resolution spectra coming from Narval and ESPaDOnS spectropolarimeters. These data are now available from the public database PolarBase (Petit et al., 2014PASP..126..469P, Cat. J/PASP/126/469). Narval is a modern spectropolarimeter operating in the 380-1000nm spectral domain, with a spectral resolution of 65000 in its polarimetric mode. It is an improved copy, adapted to the 2m TBL telescope, of the ESPaDOnS spectropolarimeter, which is in operations since 2004 at the 3.6m aperture CFHT telescope. (1 data file).

  12. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  13. The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael

    1996-01-01

    Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.

  14. The SEGUE Stellar Parameter Pipeline. 1. Description and Initial Validation Tests

    SciTech Connect

    Lee, Young Sun; Beers, Timothy C.; Sivarani, Thirupathi; Allende Prieto, Carlos; Koesterke, Lars; Wilhelm, Ronald; Norris, John e.; Bailer-Jones, Coryn A.L.; Re Fiorentin, Paola; Rockosi, Constance M.; Yanny, Brian; /Fermilab /Rensselaer Poly. /Harvard-Smithsonian Ctr. Astrophys.

    2007-10-01

    The authors describe the development and implementation of the SEGUE (Sloan Extension for Galactic Exploration and Understanding) Stellar Parameter Pipeline (SSPP). The SSPP derives, using multiple techniques, radial velocities and the fundamental stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) for AFGK-type stars, based on medium-resolution spectroscopy and ugriz photometry obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its Galactic extension (SDSS-II/SEGUE). the SSPP also provides spectral classification for a much wider range of stars, including stars with temperatures outside of the window where atmospheric parameters can be estimated with the current approaches. This is Paper I in a series of papers on the SSPP; it provides an overview of the SSPP, and initial tests of its performance using multiple data sets. Random and systematic errors are critically examined for the current version of the SSPP, which has been used for the sixth public data release of the SDSS (DR-6).

  15. VizieR Online Data Catalog: IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014)

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Covey, K. R.; Meyer, M. R.; Nidever, D. L.; Stassun, K. G.; Foster, J. B.; Tan, J. C.; Chojnowski, S. D.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Skrutskie, M.; Majewski, S. R.; Wilson, J. C.; Zasowski, G.

    2015-06-01

    The spectra were collected with APOGEE's multi-object, high-resolution (R~22500) spectrograph with a spectral range covering much of the H band from 1.51 to 1.69um, which is fiber-fed from the Sloan 2.5m telescope. We provide two companion tables to this paper, which contain the derived stellar parameters for the stars in IC 348 and the Pleiades. The first table contains one row per star with the mean spectral and photometric parameters. The second table contains one row per epoch with the spectral parameters measured at that epoch. In both tables we provide the uncertainties computed by Equation (5). (2 data files).

  16. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  17. Stellar parameters for stars of the CoRoT exoplanet field

    NASA Astrophysics Data System (ADS)

    Cortés, C.; Maciel, S. C.; Vieira, S.; Ferreira Lopes, C. E.; Leão, I. C.; de Oliveira, G. P.; Correia, C.; Canto Martins, B. L.; Catelan, M.; De Medeiros, J. R.

    2015-09-01

    Context. Spectroscopic observations represent a fundamental step in the physical characterization of stars and, in particular, in the precise location of stars in the HR diagram. Rotation is also a key parameter, impacting stellar properties and evolution, which modulates the interior and manifests itself on the surface of stars. To date, the lack of analysis based on large samples has prevented our understanding of the real impact of stellar parameters and rotation on the stellar evolution as well as on the behavior of surface abundances. The space missions, CoRoT and Kepler, are providing us with rotation periods for thousands of stars, thus enabling a robust assessment of the behavior of rotation for different populations and evolutionary stages. For these reasons, the follow-up programs are fundamental to increasing the returns of these space missions. An analysis that combines spectroscopic data and rotation/modulation periods obtained from these space missions provides the basis for establishing the evolutionary behavior of the angular momentum of solar-like stars at different evolutionary stages, and the relation of rotation with other relevant physical and chemical parameters. Aims: To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Methods: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters (Teff, log (g), [Fe/H], vmic, vrad, vsin (i), and A(Li)) for a large sample of CoRoT targets. Results: We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our

  18. Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited

    SciTech Connect

    Fogtmann-Schulz, Alexandra; Hinrup, Brian; Van Eylen, Vincent; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Silva Aguirre, Víctor; Tingley, Brandon

    2014-02-01

    Since the discovery of Kepler-10, the system has received considerable interest because it contains a small, rocky planet which orbits the star in less than a day. The system's parameters, announced by the Kepler team and subsequently used in further research, were based on only five months of data. We have reanalyzed this system using the full span of 29 months of Kepler photometric data, and obtained improved information about its star and the planets. A detailed asteroseismic analysis of the extended time series provides a significant improvement on the stellar parameters: not only can we state that Kepler-10 is the oldest known rocky-planet-harboring system at 10.41 ± 1.36 Gyr, but these parameters combined with improved planetary parameters from new transit fits gives us the radius of Kepler-10b to within just 125 km. A new analysis of the full planetary phase curve leads to new estimates on the planetary temperature and albedo, which remain degenerate in the Kepler band. Our modeling suggests that the flux level during the occultation is slightly lower than at the transit wings, which would imply that the nightside of this planet has a non-negligible temperature.

  19. Abundances, Stellar Parameters, and Spectra from the SDSS-III/APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Holtzman, Jon A.; Shetrone, Matthew; Johnson, Jennifer A.; Allende Prieto, Carlos; Anders, Friedrich; Andrews, Brett; Beers, Timothy C.; Bizyaev, Dmitry; Blanton, Michael R.; Bovy, Jo; Carrera, Ricardo; Chojnowski, S. Drew; Cunha, Katia; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Galbraith-Frew, Jessica; García Pérez, Ana E.; García-Hernández, D. A.; Hasselquist, Sten; Hayden, Michael R.; Hearty, Fred R.; Ivans, Inese; Majewski, Steven R.; Martell, Sarah; Meszaros, Szabolcs; Muna, Demitri; Nidever, David; Nguyen, Duy Cuong; O'Connell, Robert W.; Pan, Kaike; Pinsonneault, Marc; Robin, Annie C.; Schiavon, Ricardo P.; Shane, Neville; Sobeck, Jennifer; Smith, Verne V.; Troup, Nicholas; Weinberg, David H.; Wilson, John C.; Wood-Vasey, W. M.; Zamora, Olga; Zasowski, Gail

    2015-11-01

    The SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey operated from 2011-2014 using the APOGEE spectrograph, which collects high-resolution (R ˜ 22,500), near-IR (1.51-1.70 μm) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data products that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters ({T}{eff}, {log} g, [M/H], [α/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; it is smaller for some elemental abundances within more limited ranges and at high signal-to-noise ratio. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1-0.2 dex. Uncertainties may be larger at cooler temperatures ({T}{eff} \\lt 4000 {{K}}). Access to the public data release and data products is described, and some guidance for using the data products is provided.

  20. Morphological parameters of a Spitzer survey of stellar structure in galaxies

    SciTech Connect

    Holwerda, B. W.; Muñoz-Mateos, J.-C.; Sheth, K.; Kim, T.; Meidt, S.; Mizusawa, T.; Hinz, J. L.; Zaritsky, D.; Regan, M. W.; Gil de Paz, A.; Menéndez-Delmestre, K.; Seibert, M.; Ho, L. C.; Gadotti, D. A.; Erroz-Ferrer, S. E-mail: benne.holwerda@gmail.com [Instituto de Astrofísica de Canarias, Vía Láctea s and others

    2014-01-20

    The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), asymmetry (A), smoothness (S), the Gini index (G), the relative contribution of the brightest pixels to the second-order moment of the flux (M {sub 20}), ellipticity (E), and the Gini index of the second-order moment (G{sub M} ) have all been applied to morphologically classify galaxies at various wavelengths. Here, we present a catalog of these parameters for the Spitzer Survey of stellar structure in Galaxies, a volume-limited, near-infrared (NIR) imaging survey of nearby galaxies using the 3.6 and 4.5 μm channels of the Infrared Array Camera on board the Spitzer Space Telescope. Our goal is to provide a reference catalog of NIR quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies—those typically found on the Hubble tuning fork—lie in this parameter space and show that there is a tight relation between concentration (C {sub 82}) and M {sub 20} for normal galaxies. M {sub 20} can be used to classify galaxies into earlier and later types (i.e., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer NIR imaging. We find that four relations, based on the parameters A and S, G and M {sub 20}, G{sub M} , C, and M {sub 20}, respectively, select outliers in morphological parameter space, but each selects different subsets of galaxies. Two criteria (G{sub M} > 0.6, G > –0.115 × M {sub 20} + 0.384) seem most appropriate to identify possible mergers and the merger fraction in NIR surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on

  1. Deep SDSS optical spectroscopy of distant halo stars. I. Atmospheric parameters and stellar metallicity distribution

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Fernández-Alvar, E.; Schlesinger, K. J.; Lee, Y. S.; Morrison, H. L.; Schneider, D. P.; Beers, T. C.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.; Simmons, A.; Simmerer, J.; Sobeck, J.; Robin, A. C.

    2014-08-01

    Aims: We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Methods: Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with log g (cgs units) lower than 2.5. Results: An analysis of stars in the globular cluster M 13 reveals a dependence of the inferred metallicity on surface gravity for stars with log g < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system

  2. VizieR Online Data Catalog: FAMA code for stellar parameters and abundances (Magrini+, 2013)

    NASA Astrophysics Data System (ADS)

    Magrini, L.; Randich, S.; Friel, E.; Spina, L.; Jacobson, H.; Cantat-Gaudin, T.; Donati, P.; Baglioni, R.; Maiorca, E.; Bragaglia, A.; Sordo, R.; Vallenari, A.

    2013-07-01

    FAMA v.1, July 2013, distributed with MOOGv2013 and Kurucz models. Perl Codes: read_out2.pl read_final.pl driver.pl sclipping_26.0.pl sclipping_final.pl sclipping_26.1.pl confronta.pl fama.pl Model atmopheres and interpolator (Kurucz models): MODEL_ATMO MOOG_files: files to compile MOOG (the most recent version of MOOG can be obtained from http://www.as.utexas.edu/~chris/moog.html) FAMAmoogfiles: files to update when compiling MOOG OUTPUT: directory in which the results will be stored, contains a sm macro to produce final plots automoog.par: files with parameters for FAMA 1) OUTPUTdir 2) MOOGdir 3) modelsdir 4) 1.0 (default) percentage of the dispersion of FeI abundances to be considered to compute the errors on the stellar parameters, 1.0 means 100%, thus to compute e.g., the error on Teff we allow to code to find the Teff corresponding to a slope given by σ(FeI)/range(EP). 5) 1.2 (default) σ clipping for FeI lines 6) 1.0 (default) σ clipping for FeII lines 7) 1.0 (default) σ clipping for the other elements 8) 1.0 (default) value of the QP parameter, higher values mean less strong convergence criteria. star.iron: EWs in the correct format to test the code sun.par: initial parameters for the test (1 data file).

  3. Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters

    NASA Astrophysics Data System (ADS)

    Espinoza, Néstor; Jordán, Andrés

    2015-06-01

    Limb darkening is fundamental in determining transit light-curve shapes, and is typically modelled by a variety of laws that parametrize the intensity profile of the star that is being transited. Confronted with a transit light curve, some authors fix the parameters of these laws, the so-called limb darkening coefficients (LDCs), while others prefer to let them float in the light-curve fitting procedure. Which of these is the best strategy, however, is still unclear, as well as how and by how much each of these can bias the retrieved transit parameters. In this work we attempt to clarify those points by first recalculating these LDCs, comparing them to measured values from Kepler transit light curves using an algorithm that takes into account uncertainties in both the geometry of the transit and the parameters of the stellar host. We show there are significant departures from predicted model values, suggesting that our understanding of limb darkening still needs to improve. Then, we show through simulations that if one uses the quadratic limb darkening law to parametrize limb darkening, fixing and fitting the LDCs can lead to significant biases - up to ˜3 and ˜1 per cent in Rp/R*, respectively - which are important for several confirmed and candidate exoplanets. We conclude that, in this case, the best approach is to let the LDCs be free in the fitting procedure. Strategies to avoid biases in data from present and future missions involving high precision measurements of transit parameters are described.

  4. Cool stars: spectral library of high-resolution echelle spectra and database of stellar parameters

    NASA Astrophysics Data System (ADS)

    Montes, D.

    2013-05-01

    During the last years our group have undertake several high resolution spectroscopic surveys of nearby FGKM stars with different spectrographs (FOCES, SARG, SOFIN, FIES, HERMES). A large number of stars have been already observed and we have already determined spectral types, rotational velocities as well as radial velocities, Lithium abundance and several chromospheric activity indicators. We are working now in a homogeneous determination of the fundamental stellar parameters (T_{eff}, log{g}, ξ and [Fe/H]) and chemical abundances of many elements of all these stars. Some fully reduced spectra in FITS format have been available via ftp and in the {http://www.ucm.es/info/Astrof/invest/actividad/spectra.html}{Worl Wide Web} (Montes et al. 1997, A&AS, 123, 473; Montes et al. 1998, A&AS, 128, 485; and Montes et al. 1999, ApJS, 123, 283) and some particular spectral regions of the echelle spectra are available at VizieR by López-Santiago et al. 2010, A&A, 514, A97. We are now working in made accessible all the spectra of our different surveys in a Virtual Observatory ({http://svo.cab.inta-csic.es/}{VO}) compliant library and database accessible using a common web interface following the standards of the International Virtual Observatory Alliance ({http://www.ivoa.net/}{IVOA}). The spectral library includes F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 10000 Å, with spectral resolution ranging from 40000 to 80000. The database will provide in addition the stellar parameters determined for these spectra using {http://cdsads.u-strasbg.fr/abs/2012arXiv1205.4879T}{StePar} (Tabernero et al. 2012, A&A, 547, A13).

  5. Estimating stellar atmospheric parameters based on LASSO and support-vector regression

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Li, Xiangru

    2015-09-01

    A scheme for estimating atmospheric parameters Teff, log g and [Fe/H] is proposed on the basis of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Haar wavelet. The proposed scheme consists of three processes. A spectrum is decomposed using the Haar wavelet transform and low-frequency components at the fourth level are considered as candidate features. Then, spectral features from the candidate features are detected using the LASSO algorithm to estimate the atmospheric parameters. Finally, atmospheric parameters are estimated from the extracted spectral features using the support-vector regression (SVR) method. The proposed scheme was evaluated using three sets of stellar spectra from the Sloan Digital Sky Survey (SDSS), Large Sky Area Multi-object Fibre Spectroscopic Telescope (LAMOST) and Kurucz's model, respectively. The mean absolute errors are as follows: for the 40 000 SDSS spectra, 0.0062 dex for log Teff (85.83 K for Teff), 0.2035 dex for log g and 0.1512 dex for [Fe/H]; for the 23 963 LAMOST spectra, 0.0074 dex for log Teff (95.37 K for Teff), 0.1528 dex for log g and 0.1146 dex for [Fe/H]; for the 10 469 synthetic spectra, 0.0010 dex for log Teff (14.42K for Teff), 0.0123 dex for log g and 0.0125 dex for [Fe/H].

  6. Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    PubMed Central

    Loewe, Axel; Wilhelms, Mathias; Schmid, Jochen; Krause, Mathias J.; Fischer, Fathima; Thomas, Dierk; Scholz, Eberhard P.; Dössel, Olaf; Seemann, Gunnar

    2016-01-01

    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non

  7. An accurate Fortran code for computing hydrogenic continuum wave functions at a wide range of parameters

    NASA Astrophysics Data System (ADS)

    Peng, Liang-You; Gong, Qihuang

    2010-12-01

    The accurate computations of hydrogenic continuum wave functions are very important in many branches of physics such as electron-atom collisions, cold atom physics, and atomic ionization in strong laser fields, etc. Although there already exist various algorithms and codes, most of them are only reliable in a certain ranges of parameters. In some practical applications, accurate continuum wave functions need to be calculated at extremely low energies, large radial distances and/or large angular momentum number. Here we provide such a code, which can generate accurate hydrogenic continuum wave functions and corresponding Coulomb phase shifts at a wide range of parameters. Without any essential restrict to angular momentum number, the present code is able to give reliable results at the electron energy range [10,10] eV for radial distances of [10,10] a.u. We also find the present code is very efficient, which should find numerous applications in many fields such as strong field physics. Program summaryProgram title: HContinuumGautchi Catalogue identifier: AEHD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1233 No. of bytes in distributed program, including test data, etc.: 7405 Distribution format: tar.gz Programming language: Fortran90 in fixed format Computer: AMD Processors Operating system: Linux RAM: 20 MBytes Classification: 2.7, 4.5 Nature of problem: The accurate computation of atomic continuum wave functions is very important in many research fields such as strong field physics and cold atom physics. Although there have already existed various algorithms and codes, most of them can only be applicable and reliable in a certain range of parameters. We present here an accurate FORTRAN program for

  8. Data reduction, radial velocities and stellar parameters from spectra in the very low signal-to-noise domain

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca

    2013-10-01

    different approach with respect to the ESO pipeline. We then analyze deeply the best way to perform sky sub- traction and continuum normalization, the most important sources respectively of noise and systematics in radial velocity determination and chemical analysis of spectra. The huge number of spectra of our dataset requires an automatic but robust approach, which we do not fail to provide. We finally determine radial velocities for the stars in the sample with unprecedented precision with respect to previous works with similar data and we recover the same stellar atmosphere parameters of other studies performed on the same cluster but on brighter stars, with higher spectral resolution and wavelength range ten times larger than our data. In the final chapter of the thesis we face a similar problem but from a completely different perspective. High resolution, high SNR data from the High Accuracy Radial Velocity Planet Searcher spectro- graph (HARPS) in La Silla (Chile) have been used to calibrate the at- mospheric stellar parameters as functions of the main characteristics of Cross-Correlation Functions, specifically built by including spec- tral lines with different sensitivity to stellar atmosphere parameters. These tools has been designed to be quick and to be easy to imple- ment in a instrument pipeline for a real-time determination, neverthe- less they provide accurate parameters even for lower SNR spectra.

  9. Properties of stellar generations in globular clusters and relations with global parameters

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; Recio-Blanco, A.; Lucatello, S.; D'Orazi, V.; Cassisi, S.

    2010-06-01

    We revise the scenario of the formation of Galactic globular clusters (GCs) by adding the observed detailed chemical composition of their different stellar generations to the set of their global parameters. We exploit the unprecedented set of homogeneous abundances of more than 1200 red giants in 19 clusters, as well as additional data from literature, to give a new definition of bona fide GCs, as the stellar aggregates showing the Na-O anticorrelation. We propose a classification of GCs according to their kinematics and location in the Galaxy in three populations: disk/bulge, inner halo, and outer halo. We find that the luminosity function of GCs is fairly independent of their population, suggesting that it is imprinted by the formation mechanism only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs. The extremely low Al abundances found for the primordial population of massive GCs indicate a very fast enrichment process before the formation of the primordial population. We suggest a scenario for the formation of GCs that includes at least three main phases: i) the formation of a precursor population (likely due to the interaction of cosmological structures similar to those that led to the formation of dwarf spheroidals, but residing at smaller Galactocentric distances, with the early Galaxy or with other structures); ii) the triggering of a long episode of star formation (the primordial population) from the precursor population; and iii) the formation of the current GC, mainly within a cooling flow formed by the slow winds of a fraction of the primordial population. The precursor population is very effective in raising the metal content in massive and/or metal-poor (mainly halo) clusters, while its rôle is minor in small and/or metal-rich (mainly disk) ones. Finally, we use principal component analysis and multivariate relations to study the phase of metal enrichment

  10. Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery

    PubMed Central

    Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid

    2016-01-01

    A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation. PMID:27699137

  11. Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery

    PubMed Central

    Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid

    2016-01-01

    A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation.

  12. Tidally Enhanced Stellar Wind in Binaries as a Second Parameter for the Horizontal Branch Morphology of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Han, Z.; Lei, Z.

    2014-04-01

    Metallicity is the first parameter to influence the horizontal branch morphology of globular clusters. It has been found, however, that some other parameters may also play an important role in affecting the morphology. While the nature of these other important parameters remains unclear, they are believed to be correlated with the mass loss during the red giant stages, from which the horizontal branch stars have descended. Unfortunately, the mass loss during the red giant stages of stellar evolution are poorly understood at present. In this talk, we investigate the physical consequences of tidally-enhanced stellar winds during the evolution of binary stars on enhancing the mass loss of red giant primaries, with accompanying effects for the horizontal branch morphology of globular clusters. In a binary system, the stellar wind of the red giant primary star may be largely enhanced by its companion star. Different separation of the binary system, however, will lead to a different mass loss rate of the primary star. We found that red, blue, and extreme horizontal branch stars are all produced under the effects of tidally-enhanced stellar wind without any additional assumptions on the mass loss dispersion. Furthermore, the horizontal branch morphology is found to be insensitive to the tidal enhancement parameter, B.

  13. Derivation of stellar parameters from Gaia RVS spectra with prediction uncertainty using Generative Artificial Neural Networks (GANNs)

    NASA Astrophysics Data System (ADS)

    Manteiga, Minia; Dafonte, Jose Carlos; Ulla, Ana; Alvarez, Marco Antonio; Garabato, Daniel; Fustes, Diego

    2015-08-01

    The main purpose of Gaia Radial Velocity Spectrograph (RVS) is to measure the radial velocity of stars in the near infrared CaII spectral region. However, RVS will be used also for estimating the main stellar astrophysical parameters: effective temperature (Teff), logarithm of surface gravity (logg), abundance of metal elements with respect to hydrogen ([Fe/H]) and abundance of alpha elements with respect to iron ([α/Fe]). The software package being developed by Gaia DPAC (Data Processing and Analysis Consorcium) is composed by a bunch of modules which address the problem of parameterization from different perspectives This work focuses on developments carried out in the framework of one of these modules, called ANN, that is based on the application of Artificial Neural Networks.ANNs are a great tool that offers non-linear regression capabilities to any degree of complexity. Furthermore, they can provide accurate predictions when new data is presented to them, since they can generalize their solutions. However, in principle, ANNs are not able to give a measure of uncertainty over their predictions. Giving a measure of uncertainty over predictions is desirable in application domains where posterior inferences need to assess the quality of the predictions, especially when the behaviour of the system is not completely known. This is the case of data analysis coming from complex scientific missions like Gaia. This work presents a new architecture for ANNs, Generative ANNs (GANNs), that models the forward function instead of the inverse one. The advantage of forward modelling is that it estimates the actual observation, so that the fit between the estimated observation and the actual observation can be assessed, which allows for novelty detection, model evaluation and active learning. Furthermore, GANNs can be integrated in a Bayesian framework, which allows to estimate the full posterior distribution over the parameters of interest, to perform model comparisons, etc.

  14. Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime

    NASA Astrophysics Data System (ADS)

    Filippazzo, Joe; Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.; Godfrey, Paige A.; BDNYC

    2016-01-01

    The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of fundamental parameters for a wide diversity of objects at the low end of the IMF is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 221 M, L, T, and Y dwarfs using published parallaxes and 0.3-40 μm spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity (Lbol), effective temperature (Teff), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive Lbol, Teff, and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared into the mid-infrared. Consequently we find the SED flux pivots at Ks band, making BCKs as a function of spectral type a tight and age independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. Finally, we present preliminary comparisons of these empirical results to best fit parameters from four different model atmosphere grids via Markov-Chain Monte Carlo analysis in order to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs.

  15. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  16. The nearby eclipsing stellar system δ Velorum. III. Self-consistent fundamental parameters and distance

    NASA Astrophysics Data System (ADS)

    Mérand, A.; Kervella, P.; Pribulla, T.; Petr-Gotzens, M. G.; Benisty, M.; Natta, A.; Duvert, G.; Schertl, D.; Vannier, M.

    2011-08-01

    Context. The triple stellar system δ Vel (composed of two A-type and one F-type main-sequence stars) is particularly interesting because it contains one of the nearest and brightest eclipsing binaries. It therefore presents a unique opportunity to determine independently the physical properties of the three components of the system, as well as its distance. Aims: We aim at determining the fundamental parameters (masses, radii, luminosities, rotational velocities) of the three components of δ Vel, as well as the parallax of the system, independently from the existing Hipparcos measurement. Methods: We determined dynamical masses from high-precision astrometry of the orbits of Aab-B and Aa-Ab using adaptive optics (VLT/NACO) and optical interferometry (VLTI/AMBER). The main component is an eclipsing binary composed of two early A-type stars in rapid rotation. We modeled the photometric and radial velocity measurements of the eclipsing pair Aa-Ab using a self-consistent method based on physical parameters (mass, radius, luminosity, rotational velocity). Results: From our self-consistent modeling of the primary and secondary components of the δ Vel A eclipsing pair, we derive their fundamental parameters with a typical accuracy of 1%. We find that they have similar masses, 2.43 ± 0.02 M⊙ and 2.27 ± 0.02 M⊙. The physical parameters of the tertiary component (δ Vel B) are also estimated, although to a lower accuracy. We obtain a parallax π = 39.8 ± 0.4 mas for the system, in satisfactory agreement (-1.2 σ) with the Hipparcos value (πHip = 40.5 ± 0.4 mas). Conclusions: The physical parameters we derive represent a consistent set of constraints for the evolutionary modeling of this system. The agreement of the parallax we measure with the Hipparcos value to a 1% accuracy is also an interesting confirmation of the true accuracy of these two independent measurements. Based on observations made with ESO telescopes at Paranal Observatory, under ESO programs 076

  17. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    SciTech Connect

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.; Reshetnikov, V. P.; Sotnikova, N. Ya.; Yablokova, N. V.; Hillyer, R. W.

    2014-05-20

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.

  18. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    SciTech Connect

    Van Grootel, V.; Gillon, M.; Scuflaire, R.; Valencia, D.; Madhusudhan, N.; Demory, B.-O.; Queloz, D.; Dragomir, D.; Howe, A. R.; Burrows, A. S.; Deming, D.; Ehrenreich, D.; Lovis, C.; Mayor, M.; Pepe, F.; Segransan, D.; Udry, S.; Seager, S.

    2014-05-01

    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M {sub *} = 0.77 ± 0.05 M {sub ☉}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-High Resolution Echelle Spectrometer (Keck-HIRES) radial velocities and Microvariability and Oscillations of STars (MOST) and Spitzer photometry. HD 97658 b is a massive (M{sub P}=7.55{sub −0.79}{sup +0.83} M{sub ⊕}) and large (R{sub P}=2.247{sub −0.095}{sup +0.098}R{sub ⊕} at 4.5 μm) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, of at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for upcoming space missions such as the Transiting Exoplanet Survey Satellite (TESS), the Characterizing Exoplanet Satellite (CHEOPS), the Planetary Transits and Oscillations of stars (PLATO), and the James Webb Space Telescope to characterize thoroughly its structure and atmosphere.

  19. Ages and metallicities for quiescent galaxies in the Shapley supercluster: driving parameters of the stellar populations

    NASA Astrophysics Data System (ADS)

    Smith, Russell J.; Lucey, John R.; Hudson, Michael J.

    2009-12-01

    We use high signal-to-noise spectroscopy for a sample of 232 quiescent galaxies in the Shapley supercluster, to investigate how their stellar populations depend on velocity dispersion (σ), luminosity and stellar mass. The sample spans a large range in velocity dispersion (30-300kms-1) and in luminosity (MR from -18.7 to -23.2). Estimates of age, total metallicity (Z/H) and α-element abundance ratio (α/Fe) were derived from absorption-line analysis, using single-burst models of Thomas and collaborators. Using the Rose CaII index, we conclude that recent star formation (frosting) events are not responsible for the intermediate ages observed in some of the galaxies. Age, Z/H and α/Fe are correlated positively with velocity dispersion, but we also find significant residual trends with luminosity: at given σ, the brighter galaxies are younger, less α-enriched and have higher Z/H. At face value, these results might suggest that the stellar populations depend on stellar mass as well as on velocity dispersion. However, we show that the observed trends can be reproduced by models in which the stellar populations depend systematically only on σ, and are independent of stellar mass M*. For age, the observed luminosity correlation arises because young galaxies are brighter, at fixed M*. For metallicity, the observed luminosity dependence arises because metal-rich galaxies, at fixed mass, tend also to be younger, and hence brighter. We find a good match to the observed luminosity correlations with age ~σ+0.40, Z/H~σ+0.35,α/Fe ~σ+0.20, where the slopes are close to those found when fitting traditional scaling relations. We conclude that the star formation and enrichment histories of galaxies are determined primarily by the depth of their gravitational potential wells. The observed residual correlations with luminosity do not imply a corresponding dependence on stellar mass.

  20. Self-consistent physical parameters for five intermediate-age SMC stellar clusters from CMD modelling

    NASA Astrophysics Data System (ADS)

    Dias, B.; Kerber, L. O.; Barbuy, B.; Santiago, B.; Ortolani, S.; Balbinot, E.

    2014-01-01

    Context. Stellar clusters in the Small Magellanic Cloud (SMC) are useful probes for studying the chemical and dynamical evolution of this neighbouring dwarf galaxy, enabling inspection of a large period covering over 10 Gyr. Aims: The main goals of this work are the derivation of age, metallicity, distance modulus, reddening, core radius, and central density profiles for six sample clusters, in order to place them in the context of the Small Cloud evolution. The studied clusters are AM 3, HW 1, HW 34, HW 40, Lindsay 2, and Lindsay 3; HW 1, HW 34, and Lindsay 2 are studied for the first time. Methods: Optical colour-magnitude diagrams (V,B - V CMDs) and radial density profiles were built from images obtained with the 4.1 m Southern Astrophysical Research (SOAR) telescope, reaching V ~ 23. The determination of structural parameters were carried out by applying King profile fitting. The other parameters were derived in a self-consistent way by means of isochrone fitting, which uses likelihood statistics to identify the synthetic CMDs that best reproduce the observed ones. Membership probabilities were determined comparing the cluster and control field CMDs. Completeness and photometric uncertainties were obtained by performing artificial star tests. Results: The results confirm that these clusters (except HW 34, identified as a field fluctuation) are intermediate-age clusters, with ages between 1.2 Gyr (Lindsay 3) and ~5.0 Gyr (HW 1). In particular HW 1, Lindsay 2 and Lindsay 3 are located in a region that we called West Halo, where studies of ages and metallicity gradients are still lacking. Moreover, Lindsay 2 was identified as a moderately metal-poor cluster with [Fe/H] = -1.4 ± 0.2 dex, lower than expected from the age-metallicity relation by Pagel & Tautvaisiene (1998). We also found distances varying from ~53 kpc to 66 kpc, compatible with the large depth of the SMC. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which

  1. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere . The impact on stellar and planetary mass

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.

    2015-04-01

    Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).

  2. On the estimation of stellar parameters with uncertainty prediction from Generative Artificial Neural Networks: application to Gaia RVS simulated spectra

    NASA Astrophysics Data System (ADS)

    Dafonte, C.; Fustes, D.; Manteiga, M.; Garabato, D.; Álvarez, M. A.; Ulla, A.; Allende Prieto, C.

    2016-10-01

    Aims: We present an innovative artificial neural network (ANN) architecture, called Generative ANN (GANN), that computes the forward model, that is it learns the function that relates the unknown outputs (stellar atmospheric parameters, in this case) to the given inputs (spectra). Such a model can be integrated in a Bayesian framework to estimate the posterior distribution of the outputs. Methods: The architecture of the GANN follows the same scheme as a normal ANN, but with the inputs and outputs inverted. We train the network with the set of atmospheric parameters (Teff, log g, [Fe/H] and [α/ Fe]), obtaining the stellar spectra for such inputs. The residuals between the spectra in the grid and the estimated spectra are minimized using a validation dataset to keep solutions as general as possible. Results: The performance of both conventional ANNs and GANNs to estimate the stellar parameters as a function of the star brightness is presented and compared for different Galactic populations. GANNs provide significantly improved parameterizations for early and intermediate spectral types with rich and intermediate metallicities. The behaviour of both algorithms is very similar for our sample of late-type stars, obtaining residuals in the derivation of [Fe/H] and [α/ Fe] below 0.1 dex for stars with Gaia magnitude Grvs < 12, which accounts for a number in the order of four million stars to be observed by the Radial Velocity Spectrograph of the Gaia satellite. Conclusions: Uncertainty estimation of computed astrophysical parameters is crucial for the validation of the parameterization itself and for the subsequent exploitation by the astronomical community. GANNs produce not only the parameters for a given spectrum, but a goodness-of-fit between the observed spectrum and the predicted one for a given set of parameters. Moreover, they allow us to obtain the full posterior distribution over the astrophysical parameters space once a noise model is assumed. This can be

  3. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    SciTech Connect

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-09-15

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.

  4. Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Molenda-Żakowicz, J.; De Cat, P.; Catanzaro, G.; Fu, J. N.; Ren, A. B.; Luo, A. L.; Shi, J. R.; Wu, Y.; Zhang, H. T.

    2016-10-01

    Aims: A comprehensive and homogeneous determination of stellar parameters for the stars observed by the Kepler space telescope is necessary for statistical studies of their properties. As a result of the large number of stars monitored by Kepler, the largest and more complete databases of stellar parameters published to date are multiband photometric surveys. The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, was the first large spectroscopic project, which started in 2011 and aimed at filling that gap. In this work we present the results of our analysis, which is focused on selecting spectra with emission lines and chromospherically active stars by means of the spectral subtraction of inactive templates. The spectroscopic determination of the atmospheric parameters for a large number of stars is a by-product of our analysis. Methods: We have used a purposely developed version of the code ROTFIT for the determination of the stellar parameters by exploiting a wide and homogeneous collection of real star spectra, namely the Indo US library. We provide a catalog with the atmospheric parameters (Teff, log g, and [Fe/H]), radial velocity (RV), and an estimate of the projected rotation velocity (vsini). For cool stars (Teff≤ 6000 K), we also calculated the Hα and Ca ii-IRT fluxes, which are important proxies of chromospheric activity. Results: We have derived the RV and atmospheric parameters for 61 753 spectra of 51 385 stars. The average uncertainties, which we estimate from the stars observed more than once, are about 12 km s-1, 1.3%, 0.05 dex, and 0.06 dex for RV, Teff, log g, and [Fe/H], respectively, although they are larger for the spectra with a very low signal-to-noise ratio. Literature data for a few hundred stars (mainly from high-resolution spectroscopy) were used to peform quality control of our results. The final accuracy of the RV is about 14 km s-1. The accuracy of the Teff, log g, and [Fe/H] measurements is about 3.5%, 0.3 dex

  5. LAMOST Observations in the Kepler Field. Analysis of the Stellar Parameters Measured with LASP Based on Low-resolution Spectra

    NASA Astrophysics Data System (ADS)

    Ren, Anbing; Fu, Jianning; De Cat, Peter; Wu, Yue; Yang, Xiaohu; Shi, Jianrong; Luo, Ali; Zhang, Haotong; Dong, Subo; Zhang, Ruyuan; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang; Du, Bing

    2016-08-01

    All 14 subfields of the Kepler field were observed at least once with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (lamost, Xinglong Observatory, China) during the 2012–2014 observation seasons. There are 88,628 reduced spectra with a signal-to-noise ratio in the g band (S/N g ) ≥ 6 after the first round (2012–2014) of observations of the lamost– Kepler project (LK-project). By adopting the upgraded version of the lamost Stellar Parameter pipeline (lasp), we have determined the atmospheric parameters ({T}{eff}, {log}g, and [Fe/H]) and heliocentric radial velocity v rad for 51,406 stars with 61,226 spectra. Compared with the atmospheric parameters derived from both high-resolution spectroscopy and asteroseismology for common stars in Huber et al., an external calibration of lasp atmospheric parameters was made, leading to the determination of the external errors for giants and dwarfs. Multiple spectroscopic observations of the same objects in the LK-project were used to estimate the internal uncertainties of the atmospheric parameters as a function of S/N g with the unbiased estimation method. The lasp atmospheric parameters were calibrated based on both the external and internal uncertainties for the giants and dwarfs. A general statistical analysis of the stellar parameters leads to the discovery of 106 candidate metal-poor stars, 9 candidate very metal-poor stars, and 18 candidate high-velocity stars. Fitting formulae were obtained segmentally for both the calibrated atmospheric parameters of the LK-project and the Kepler Input Catalog (KIC) parameters with common stars. The calibrated atmospheric parameters and radial velocities of the LK-project will be useful for studying stars in the Kepler field. ) located at the Xinglong Observatory, China.

  6. LAMOST Observations in the Kepler Field. Analysis of the Stellar Parameters Measured with LASP Based on Low-resolution Spectra

    NASA Astrophysics Data System (ADS)

    Ren, Anbing; Fu, Jianning; De Cat, Peter; Wu, Yue; Yang, Xiaohu; Shi, Jianrong; Luo, Ali; Zhang, Haotong; Dong, Subo; Zhang, Ruyuan; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang; Du, Bing

    2016-08-01

    All 14 subfields of the Kepler field were observed at least once with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (lamost, Xinglong Observatory, China) during the 2012-2014 observation seasons. There are 88,628 reduced spectra with a signal-to-noise ratio in the g band (S/N g ) ≥ 6 after the first round (2012-2014) of observations of the lamost- Kepler project (LK-project). By adopting the upgraded version of the lamost Stellar Parameter pipeline (lasp), we have determined the atmospheric parameters ({T}{eff}, {log}g, and [Fe/H]) and heliocentric radial velocity v rad for 51,406 stars with 61,226 spectra. Compared with the atmospheric parameters derived from both high-resolution spectroscopy and asteroseismology for common stars in Huber et al., an external calibration of lasp atmospheric parameters was made, leading to the determination of the external errors for giants and dwarfs. Multiple spectroscopic observations of the same objects in the LK-project were used to estimate the internal uncertainties of the atmospheric parameters as a function of S/N g with the unbiased estimation method. The lasp atmospheric parameters were calibrated based on both the external and internal uncertainties for the giants and dwarfs. A general statistical analysis of the stellar parameters leads to the discovery of 106 candidate metal-poor stars, 9 candidate very metal-poor stars, and 18 candidate high-velocity stars. Fitting formulae were obtained segmentally for both the calibrated atmospheric parameters of the LK-project and the Kepler Input Catalog (KIC) parameters with common stars. The calibrated atmospheric parameters and radial velocities of the LK-project will be useful for studying stars in the Kepler field. ) located at the Xinglong Observatory, China.

  7. Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets

    NASA Astrophysics Data System (ADS)

    Bruntt, H.; Basu, S.; Smalley, B.; Chaplin, W. J.; Verner, G. A.; Bedding, T. R.; Catala, C.; Gazzano, J.-C.; Molenda-Żakowicz, J.; Thygesen, A. O.; Uytterhoeven, K.; Hekker, S.; Huber, D.; Karoff, C.; Mathur, S.; Mosser, B.; Appourchaux, T.; Campante, T. L.; Elsworth, Y.; García, R. A.; Handberg, R.; Metcalfe, T. S.; Quirion, P.-O.; Régulo, C.; Roxburgh, I. W.; Stello, D.; Christensen-Dalsgaard, J.; Kawaler, S. D.; Kjeldsen, H.; Morris, R. L.; Quintana, E. V.; Sanderfer, D. T.

    2012-06-01

    We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well represented by Fe lines. Relative abundances of light elements (CNO) and α elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The accuracy on the log g parameter is better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of VT-KS [TYCHO V magnitude minus Two Micron All Sky Survey (2MASS) KS magnitude] and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets, this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe I-Fe II balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, α elements and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where α-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars.

  8. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation

    PubMed Central

    Ralph, Duncan K.; Matsen, Frederick A.

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM “factorization” strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM. PMID:26751373

  9. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation.

    PubMed

    Ralph, Duncan K; Matsen, Frederick A

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM. PMID:26751373

  10. New determination of abundances and stellar parameters for a set of weak G-band stars

    NASA Astrophysics Data System (ADS)

    Palacios, A.; Jasniewicz, G.; Masseron, T.; Thévenin, F.; Itam-Pasquet, J.; Parthasarathy, M.

    2016-03-01

    Context. Weak G-band (wGb) stars are a very peculiar class of red giants; they are almost devoided of carbon and often present mild lithium enrichment. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, which prevented any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for a sample of 28 wGb stars and were able to identify them as descendants of early A-type to late B-type stars, although we were not able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. Aims: Using new high-resolution spectra, we present the study of a new sample of wGb stars with the aim of homogeneously deriving their fundamental parameters and surface abundances for a selected set of chemical species that we use to improve our insight on this peculiar class of objects. Methods: We obtained high-resolution and high signal-to-noise spectra for 19 wGb stars in the southern and northern hemisphere that we used to perform consistent spectral synthesis to derive their fundamental parameters and metallicities, as well as the spectroscopic abundances for Li, C, 12C/13C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. Results: We confirm that the wGb stars are stars with initial masses in the range 3.2 to 4.2 M⊙. We suggest that a large fraction could be mildly evolved stars on the subgiant branch currently undergoing the first dredge-up, while a smaller number of stars are more probably in the core He burning phase at the clump. After analysing their abundance pattern, we confirm their strong nitrogen enrichment anti-correlated with large carbon depletion, characteristic of material fully processed through the CNO cycle to an extent not known in evolved intermediate-mass stars

  11. A spectroscopic survey of Herbig Ae/Be stars with X-shooter - I. Stellar parameters and accretion rates

    NASA Astrophysics Data System (ADS)

    Fairlamb, J. R.; Oudmaijer, R. D.; Mendigutía, I.; Ilee, J. D.; van den Ancker, M. E.

    2015-10-01

    Herbig Ae/Be stars (HAeBes) span a key mass range that links low- and high-mass stars, and thus provide an ideal window from which to explore their formation. This paper presents Very Large Telescope/X-shooter spectra of 91 HAeBes, the largest spectroscopic study of HAeBe accretion to date. A homogeneous approach to determining stellar parameters is undertaken for the majority of the sample. Measurements of the ultraviolet are modelled within the context of magnetospheric accretion, allowing a direct determination of mass accretion rates. Multiple correlations are observed across the sample between accretion and stellar properties: the youngest and often most massive stars are the strongest accretors, and there is an almost 1:1 relationship between the accretion luminosity and stellar luminosity. Despite these overall trends of increased accretion rates in HAeBes when compared to classical T Tauri stars, we also find noticeable differences in correlations when considering the Herbig Ae and Herbig Be subsets. This, combined with the difficulty in applying a magnetospheric accretion model to some of the Herbig Be stars, could suggest that another form of accretion may be occurring within Herbig Be mass range.

  12. Effective Temperatures of Selected Main-Sequence Stars with the Most Accurate Parameters

    NASA Astrophysics Data System (ADS)

    Soydugan, F.; Eker, Z.; Soydugan, E.; Bilir, S.; Gökçe, E. Y.; Steer, I.; Tüysüz, M.; Šenyüz, T.; Demircan, O.

    2015-07-01

    In this study we investigate the distributions of the properties of detached double-lined binaries (DBs) in the mass-luminosity, mass-radius, and mass-effective temperature diagrams. We have improved the classical mass-luminosity relation based on the database of DBs by Eker et al. (2014a). Based on the accurate observational data available to us we propose a method for improving the effective temperatures of eclipsing binaries with accurate mass and radius determinations.

  13. Stochastic stellar cluster initial mass functions: Models and impact on integrated cluster parameter determination

    SciTech Connect

    Anders, P.; Kotulla, R.; De Grijs, R.; Wicker, J.

    2013-12-01

    Stellar clusters are regularly used to study the evolution of their host galaxy. Except for a few nearby galaxies, these studies rely on the interpretation of integrated cluster properties, especially integrated photometry observed using multiple filters (i.e., the spectral energy distribution, SED). To allow interpretation of such observations, we present a large set of GALEV cluster models using the realistic approach of adopting stochastically sampled stellar initial mass functions. We provide models for a wide range of cluster masses (10{sup 3}-2 × 10{sup 5} M {sub ☉}), metallicities (–2.3 ≤ [Fe/H] ≤ +0.18 dex), foreground extinction, and 184 regularly used filters. We analyze various sets of stochastic cluster SEDs by fitting them with non-stochastic models, which is the procedure commonly used in this field. We identify caveats and quantify the fitting uncertainties associated with this standard procedure. We show that this can yield highly unreliable fitting results, especially for low-mass clusters.

  14. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters.

    PubMed

    Damon, Bruce M; Heemskerk, Anneriet M; Ding, Zhaohua

    2012-06-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.

  15. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  16. Accurate nuclear masses from a three parameter Kohn-Sham DFT approach (BCPM)

    SciTech Connect

    Baldo, M.; Robledo, L. M.; Schuck, P.; Vinas, X.

    2012-10-20

    Given the promising features of the recently proposed Barcelona-Catania-Paris (BCP) functional [1], it is the purpose of this work to still improve on it. It is, for instance, shown that the number of open parameters can be reduced from 4-5 to 2-3, i.e. by practically a factor of two without deteriorating the results.

  17. The SEGUE Stellar Parameter Pipeline. IV. Validation with an Extended Sample of Galactic Globular and Open Clusters

    SciTech Connect

    Smolinski, Jason P.; Beers, Timothy C.; Lee, Young Sun; An, Deokkeun; Bickerton, Steven J.; Johnson, Jennifer A.; Loomis, Craig P.; Rockosi, Constance M.; Sivarani, Thirupathi; Yanny, Brian; /Fermilab

    2010-08-01

    Spectroscopic and photometric data for likely member stars of five Galactic globular clusters (M 3, M 53, M 71, M 92, and NGC 5053) and three open clusters (M 35, NGC 2158, and NGC 6791) are processed by the current version of the SEGUE Stellar Parameter Pipeline (SSPP), in order to determine estimates of metallicities and radial velocities for the clusters. These results are then compared to values from the literature. We find that the mean metallicity (<[Fe/H]>) and mean radial velocity (hRVi) estimates for each cluster are almost all within 2{sigma} of the adopted literature values; most are within 1{sigma}. We also demonstrate that the new version of the SSPP achieves small, but noteworthy, improvements in <[Fe/H]> estimates at the extrema of the cluster metallicity range, as compared to a previous version of the pipeline software. These results provide additional confidence in the application of the SSPP for studies of the abundances and kinematics of stellar populations in the Galaxy.

  18. A PUBLIC K{sub s} -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS {sup ,}

    SciTech Connect

    Muzzin, Adam; Franx, Marijn; Labbe, Ivo; Marchesini, Danilo; Stefanon, Mauro; Milvang-Jensen, Bo; Fynbo, J. P. U.; Dunlop, James S.; Brammer, Gabriel; Van Dokkum, Pieter

    2013-05-01

    We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.

  19. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  20. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    PubMed Central

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-01-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154

  1. Can a combination of ultrasonographic parameters accurately evaluate concussion and guide return-to-play decisions?

    PubMed

    Cartwright, Michael S; Dupuis, Janae E; Bargoil, Jessica M; Foster, Dana C

    2015-09-01

    Mild traumatic brain injury, often referred to as concussion, is a common, potentially debilitating, and costly condition. One of the main challenges in diagnosing and managing concussion is that there is not currently an objective test to determine the presence of a concussion and to guide return-to-play decisions for athletes. Traditional neuroimaging tests, such as brain magnetic resonance imaging, are normal in concussion, and therefore diagnosis and management are guided by reported symptoms. Some athletes will under-report symptoms to accelerate their return-to-play and others will over-report symptoms out of fear of further injury or misinterpretation of underlying conditions, such as migraine headache. Therefore, an objective measure is needed to assist in several facets of concussion management. Limited data in animal and human testing indicates that intracranial pressure increases slightly and cerebrovascular reactivity (the ability of the cerebral arteries to auto-regulate in response to changes in carbon dioxide) decreases slightly following mild traumatic brain injury. We hypothesize that a combination of ultrasonographic measurements (optic nerve sheath diameter and transcranial Doppler assessment of cerebrovascular reactivity) into a single index will allow for an accurate and non-invasive measurement of intracranial pressure and cerebrovascular reactivity, and this index will be clinically relevant and useful for guiding concussion diagnosis and management. Ultrasound is an ideal modality for the evaluation of concussion because it is portable (allowing for evaluation in many settings, such as on the playing field or in a combat zone), radiation-free (making repeat scans safe), and relatively inexpensive (resulting in nearly universal availability). This paper reviews the literature supporting our hypothesis that an ultrasonographic index can assist in the diagnosis and management of concussion, and it also presents limited data regarding the

  2. Can a combination of ultrasonographic parameters accurately evaluate concussion and guide return-to-play decisions?

    PubMed

    Cartwright, Michael S; Dupuis, Janae E; Bargoil, Jessica M; Foster, Dana C

    2015-09-01

    Mild traumatic brain injury, often referred to as concussion, is a common, potentially debilitating, and costly condition. One of the main challenges in diagnosing and managing concussion is that there is not currently an objective test to determine the presence of a concussion and to guide return-to-play decisions for athletes. Traditional neuroimaging tests, such as brain magnetic resonance imaging, are normal in concussion, and therefore diagnosis and management are guided by reported symptoms. Some athletes will under-report symptoms to accelerate their return-to-play and others will over-report symptoms out of fear of further injury or misinterpretation of underlying conditions, such as migraine headache. Therefore, an objective measure is needed to assist in several facets of concussion management. Limited data in animal and human testing indicates that intracranial pressure increases slightly and cerebrovascular reactivity (the ability of the cerebral arteries to auto-regulate in response to changes in carbon dioxide) decreases slightly following mild traumatic brain injury. We hypothesize that a combination of ultrasonographic measurements (optic nerve sheath diameter and transcranial Doppler assessment of cerebrovascular reactivity) into a single index will allow for an accurate and non-invasive measurement of intracranial pressure and cerebrovascular reactivity, and this index will be clinically relevant and useful for guiding concussion diagnosis and management. Ultrasound is an ideal modality for the evaluation of concussion because it is portable (allowing for evaluation in many settings, such as on the playing field or in a combat zone), radiation-free (making repeat scans safe), and relatively inexpensive (resulting in nearly universal availability). This paper reviews the literature supporting our hypothesis that an ultrasonographic index can assist in the diagnosis and management of concussion, and it also presents limited data regarding the

  3. Can a Combination of Ultrasonographic Parameters Accurately Evaluate Concussion and Guide Return-to-Play Decisions?

    PubMed Central

    Cartwright, Michael S.; Dupuis, Janae E.; Bargoil, Jessica M.; Foster, Dana C.

    2015-01-01

    Mild traumatic brain injury, often referred to as concussion, is a common, potentially debilitating, and costly condition. One of the main challenges in diagnosing and managing concussion is that there is not currently an objective test to determine the presence of a concussion and to guide return-to-play decisions for athletes. Traditional neuroimaging tests, such as brain magnetic resonance imaging, are normal in concussion, and therefore diagnosis and management are guided by reported symptoms. Some athletes will under-report symptoms to accelerate their return-to-play and others will over-report symptoms out of fear of further injury or misinterpretation of underlying conditions, such as migraine headache. Therefore, an objective measure is needed to assist in several facets of concussion management. Limited data in animal and human testing indicates that intracranial pressure increases slightly and cerebrovascular reactivity (the ability of the cerebral arteries to auto-regulate in response to changes in carbon dioxide) decreases slightly following mild traumatic brain injury. We hypothesize that a combination of ultrasonographic measurements (optic nerve sheath diameter and transcranial Doppler assessment of cerebrovascular reactivity) into a single index will allow for an accurate and non-invasive measurement of intracranial pressure and cerebrovascular reactivity, and this index will be clinically relevant and useful for guiding concussion diagnosis and management. Ultrasound is an ideal modality for the evaluation of concussion because it is portable (allowing for evaluation in many settings, such as on the playing field or in a combat zone), radiation-free (making repeat scans safe), and relatively inexpensive (resulting in nearly universal availability). This paper reviews the literature supporting our hypothesis that an ultrasonographic index can assist in the diagnosis and management of concussion, and it also presents limited data regarding the

  4. VizieR Online Data Catalog: RGB stars in Galactic GC stellar parameters (Dias+, 2016)

    NASA Astrophysics Data System (ADS)

    Dias, B.; Barbuy, B.; Saviane, I.; Held, E.; da Costa, G.; Ortolani, S.; Gullieuszik, M.; Vasquez, S.

    2016-03-01

    Spectroscopic parameters for 758 red giant branch stars in 51 Milky Way globular clusters. For each star star ID, cluster name, equatorial coordinates, magnitude, colour, heliocentric velocities, membership classification member, effective temperature, surface gravity, metallicity, Mg and alpha-element abundance. We note that magnitude and colours are not calibrated. (2 data files).

  5. Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals.

    PubMed

    Hansen, D Flemming; Westler, William M; Kunze, Micha B A; Markley, John L; Weinhold, Frank; Led, Jens J

    2012-03-14

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal-ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal-ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for (15)N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of (15)N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of (15)N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site.

  6. Accurate Structure and Dynamics of the Metal-Site of Paramagnetic Metalloproteins from NMR Parameters Using Natural Bond Orbitals

    PubMed Central

    2012-01-01

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal–ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal–ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for 15N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of 15N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of 15N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site. PMID:22329704

  7. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters

    PubMed Central

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-01-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. PMID:25883146

  8. Line Shape Parameters for CO_2 Transitions: Accurate Predictions from Complex Robert-Bonamy Calculations

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Gamache, Robert R.

    2013-06-01

    A model for the prediction of the vibrational dependence of CO_2 half-widths and line shifts for several broadeners, based on a modification of the model proposed by Gamache and Hartmann, is presented. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power p and a reference ro-vibrational transition. Complex Robert-Bonamy calculations were made for 24 bands for lower rotational quantum numbers J'' from 0 to 160 for N_2-, O_2-, air-, and self-collisions with CO_2. In the model a Quantum Coordinate is defined by (c_1 Δν_1 + c_2 Δν_2 + c_3 Δν_3)^p where a linear least-squares fit to the data by the model expression is made. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From these fit data, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO_2 databases to have complete information for the line shape parameters. R. R. Gamache, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer. {{83}} (2004), 119. R. R. Gamache, J. Lamouroux, J. Quant. Spectrosc. Radiat. Transfer. {{117}} (2013), 93.

  9. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters.

    PubMed

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-07-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il.

  10. Accurate Analytical and Statistical Approaches to Reduce O-C Discrepancies in the Precessional Parameters

    NASA Astrophysics Data System (ADS)

    Martínez, M. J.; Marco, F. J.; López, J. A.

    2009-02-01

    The Hipparcos catalog provides a reference frame at optical wavelengths for the new International Celestial Reference System (ICRS). This new reference system was adopted following the resolution agreed at the 23rd IAU General Assembly held in Kyoto in 1997. Differences in the Hipparcos system of proper motions and the previous materialization of the reference frame, the FK5, are expected to be caused only by the combined effects of the motion of the equinox of the FK5 and the precession of the equator and the ecliptic. Several authors have pointed out an inconsistency between the differences in proper motion of the Hipparcos-FK5 and the correction of the precessional values derived from VLBI and lunar laser ranging (LLR) observations. Most of them have claimed that these discrepancies are due to slightly biased proper motions in the FK5 catalog. The different mathematical models that have been employed to explain these errors have not fully accounted for the discrepancies in the correction of the precessional parameters. Our goal here is to offer an explanation for this fact. We propose the use of independent parametric and nonparametric models. The introduction of a nonparametric model, combined with the inner product in the square integrable functions over the unitary sphere, would give us values which do not depend on the possible interdependencies existing in the data set. The evidence shows that zonal studies are needed. This would lead us to introduce a local nonparametric model. All these models will provide independent corrections to the precessional values, which could then be compared in order to study the reliability in each case. Finally, we obtain values for the precession corrections that are very consistent with those that are currently adopted.

  11. The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars

    SciTech Connect

    Allende Prieto, C.; Sivarani, T.; Beers, T.C.; Lee, Y.S.; Koesterke, L.; Shetrone, M.; Sneden, C.; Lambert, D.L.; Wilhelm, R.; Rockosi, C.M.; Lai, D.

    2007-10-01

    The authors report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which they compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R {approx} 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), they empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km s{sup -1}, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. They estimate random errors for lower S/N spectra based on numerical simulations.

  12. VizieR Online Data Catalog: SWEETCat I. Stellar parameters for host stars (Santos+, 2013)

    NASA Astrophysics Data System (ADS)

    Santos, N. C.; Sousa, S. G.; Mortier, A.; Neves, V.; Adibekyan, V.; Tsantaki, M.; Delgado Mena, E.; Bonfils, X.; Israelian, G.; Mayor, M.; Udry; S.

    2013-07-01

    The file sweetcat.dat contains the spectroscopic parameters for all the planet hosts compiled for this work (data as of July 2013). Up to date tables can be found at http://www.astro.up.pt/resources/sweet-cat . The spectra were gathered through observations, made by our team, and by the use of the ESO archive. In total, six different spectrographs were used: FEROS (2.2m ESO/MPI telescope, La Silla, Chile), FIES (Nordic Optical Telescope, La Palma, Spain), HARPS (3.6m ESO telescope, La Silla, Chile), SARG (TNG Telescope, La Palma, Spain), SOPHIE (1.93m telescope, OHP, France), and UVES (VLT Kueyen telescope, Paranal, Chile). (2 data files).

  13. Evaluating Gaia performances on eclipsing binaries. IV. Orbits and stellar parameters for SV Cam, BS Dra and HP Dra

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T.

    2005-10-01

    This is the fourth in a series of papers that aim both to provide reasonable orbits for a number of eclipsing binaries and to evaluate the expected performance of Gaia of these objects and the accuracy that is achievable in the determination of such fundamental stellar parameters as mass and radius. In this paper, we attempt to derive the orbits and physical parameters for three eclipsing binaries in the mid-F to mid-G spectral range. As for previous papers, only the H_P, V_T, BT photometry from the Hipparcos/Tycho mission and ground-based radial velocities from spectroscopy in the region 8480-8740 Å are used in the analyses. These data sets simulate the photometric and spectroscopic data that are expected to be obtained by Gaia, the approved ESA Cornerstone mission to be launched in 2011. The systems targeted in this paper are SV Cam, BS Dra and HP Dra. SV Cam and BS Dra have been studied previously, allowing comparisons of the derived parameters with those from full scale and devoted ground-based investigations. HP Dra has no published orbital solution. SV Cam has a β Lyrae type light curve and the others have Algol-like light curves. SV Cam has the complication of light curve anomalies, usually attributed to spots; BS Dra has non-solar metallicity, and HP Dra appears to have a small eccentricity and a sizeable time derivative in the argument of the periastron. Thus all three provide interesting and different test cases.

  14. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  15. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. PMID:26121186

  16. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Subramanian, Swetha; Mast, T. Douglas

    2015-09-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  17. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    PubMed

    Subramanian, Swetha; Mast, T Douglas

    2015-10-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. PMID:26352462

  18. A New Synthetic Library of the Near-infrared Ca II Triplet Indices. I. Index Definition, Calibration, and Relations with Stellar Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Du, W.; Luo, A. L.; Zhao, Y. H.

    2012-02-01

    Adopting the SPECTRUM package, which is a stellar spectral synthesis program, we have synthesized a comprehensive set of 2890 near-infrared (NIR) synthetic spectra with a resolution and wavelength sampling similar to the Sloan Digital Sky Survey (SDSS) and the forthcoming Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectra. During the synthesis, we applied the "New grids of ATLAS9 Model Atmosphere" to develop a grid of local thermodynamic equilibrium model atmospheres for effective temperatures (T eff) ranging from 3500 to 7500 K, for surface gravities (log g) from 0.5 to 5.0 dex, for metallicities ([Fe/H]) from -4.0 to 0.5 dex, and for solar ([α/Fe] = 0.0 dex) and non-solar ([α/Fe] = +0.4 dex) abundances. This synthetic stellar library is composed of 1350 solar scaled abundance (SSA) and 1530 non-solar scaled abundance (NSSA) spectra, grounding on which we have defined a new set of NIR Ca II triplet indices and an index CaT as the sum of the three. These defined indices were automatically measured on every spectrum of the synthetic stellar library and calibrated with the indices computed on the observational spectra from the INDO-U.S. stellar library. In order to check the effect of α-element enhancement on the so-defined Ca II indices, we compared indices measured on the SSA spectra with those on the NSSA ones at the same trine of stellar parameters (T eff, log g, [Fe/H]); luckily, little influences of α-element enhancement were found. Furthermore, comparisons of our synthetic indices with the observational ones from measurements on the INDO-U.S. stellar library, the SDSS-DR7 and SDSS-DR8 spectroscopic survey are presented, respectively, for dwarfs and giants in specific. For dwarfs, our synthetic indices could well reproduce the behaviors of the observational indices versus stellar parameters, which verifies the validity of our index definitions for dwarfs. For giants, the consistency between our synthetic indices and the observational

  19. A NEW SYNTHETIC LIBRARY OF THE NEAR-INFRARED Ca II TRIPLET INDICES. I. INDEX DEFINITION, CALIBRATION, AND RELATIONS WITH STELLAR ATMOSPHERIC PARAMETERS

    SciTech Connect

    Du, W.; Luo, A. L.; Zhao, Y. H. E-mail: lal@nao.cas.cn

    2012-02-15

    Adopting the SPECTRUM package, which is a stellar spectral synthesis program, we have synthesized a comprehensive set of 2890 near-infrared (NIR) synthetic spectra with a resolution and wavelength sampling similar to the Sloan Digital Sky Survey (SDSS) and the forthcoming Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectra. During the synthesis, we applied the 'New grids of ATLAS9 Model Atmosphere' to develop a grid of local thermodynamic equilibrium model atmospheres for effective temperatures (T{sub eff}) ranging from 3500 to 7500 K, for surface gravities (log g) from 0.5 to 5.0 dex, for metallicities ([Fe/H]) from -4.0 to 0.5 dex, and for solar ([{alpha}/Fe] = 0.0 dex) and non-solar ([{alpha}/Fe] = +0.4 dex) abundances. This synthetic stellar library is composed of 1350 solar scaled abundance (SSA) and 1530 non-solar scaled abundance (NSSA) spectra, grounding on which we have defined a new set of NIR Ca II triplet indices and an index CaT as the sum of the three. These defined indices were automatically measured on every spectrum of the synthetic stellar library and calibrated with the indices computed on the observational spectra from the INDO-U.S. stellar library. In order to check the effect of {alpha}-element enhancement on the so-defined Ca II indices, we compared indices measured on the SSA spectra with those on the NSSA ones at the same trine of stellar parameters (T{sub eff}, log g, [Fe/H]); luckily, little influences of {alpha}-element enhancement were found. Furthermore, comparisons of our synthetic indices with the observational ones from measurements on the INDO-U.S. stellar library, the SDSS-DR7 and SDSS-DR8 spectroscopic survey are presented, respectively, for dwarfs and giants in specific. For dwarfs, our synthetic indices could well reproduce the behaviors of the observational indices versus stellar parameters, which verifies the validity of our index definitions for dwarfs. For giants, the consistency between our synthetic

  20. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  1. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1

  2. VizieR Online Data Catalog: Stellar parameters for CoRoT exoplanet field stars (Cortes+, 2015)

    NASA Astrophysics Data System (ADS)

    Cortes, C.; Maciel, S. C.; Vieira, S.; Ferreira Lopes, C. E.; Leao, I. C.; de Oliveira, G. P.; Correia, C.; Canto Martins, B. L.; Catelan, M.; de Medeiros, J. R.

    2016-08-01

    The present stellar sample is composed of 138 stars of spectral types F, G, and K, with visual magnitudes V between 10 to 14, located in two exoplanet fields observed by CoRoT, namely the Galactic center (LRc01: Long Run Center 01) and the Galactic anticenter (LRa01: Long Run Anticenter 01) fields. (4 data files).

  3. 55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R.; Tabetha, S. Boyajian; McAlister, Harold A.; White, Russel; Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Farrington, Chris; Goldfinger, P. J.; Van Belle, Gerard T.; Raymond, Sean N.; Lopez-Morales, Mercedes; Ridgway, Stephen T.

    2011-10-10

    The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cnc's stellar astrophysical parameters based on improved interferometry: R = 0.943 {+-} 0.010 R{sub sun}, T{sub EFF} = 5196 {+-} 24 K. We use isochrone fitting to determine 55 Cnc's age to be 10.2 {+-} 2.5 Gyr, implying a stellar mass of 0.905 {+-} 0.015 M{sub sun}. Our analysis of the location and extent of the system's habitable zone (HZ; 0.67-1.32 AU) shows that planet f, with period {approx}260 days and Msin i = 0.155 M{sub Jupiter}, spends the majority of the duration of its elliptical orbit in the circumstellar HZ. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet f's vicinity: a large moon and a low-mass planet on a dynamically stable orbit within the HZ. Finally, our direct value for 55 Cancri's stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ({approx}2.05 {+-} 0.15 R{sub +}), which, depending on the planetary mass assumed, implies a bulk density of 0.76 {rho}{sub +} or 1.07 {rho}{sub +}.

  4. A Comparison of Stellar Elemental Abundance Techniques and Measurements

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.; Desch, Steven J.; Anbar, Ariel D.; Adibekyan, Vardan; Blanco-Cuaresma, Sergi; Carlberg, Joleen K.; Delgado Mena, Elisa; Liu, Fan; Nordlander, Thomas; Sousa, Sergio G.; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike; Jofré, Paula; Santos, Nuno C.; Soubiran, Caroline

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.

  5. Kea: A New Tool to Obtain Stellar Parameters from Low to Moderate Signal-to-noise and High-resolution Echelle Spectra

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Cochran, William D.

    2016-09-01

    In this paper, we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal-to-noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance spectra that we have obtained at McDonald Observatory. We use Kea to determine effective temperatures (T eff), metallicity ([Fe/H]), surface gravity (log g), and projected rotational velocity (v{sin}i). Kea compares the observations to a large library of synthetic spectra that covers a wide range of different T eff, [Fe/H], and log g values. We calibrated Kea on observations of well-characterized standard stars (the Kepler field “platinum” sample) that range in T eff from 5000 to 6500 K, in [Fe/H] from -0.5 to +0.4 dex, and in log g from 3.2 to 4.6 dex. We then compared the Kea results from reconnaissance spectra of 45 Kepler objects of interest (KOIs) to stellar parameters derived from higher signal-to-noise spectra obtained with Keck/HIRES. We find typical uncertainties of 100 K in T eff, 0.12 dex in [Fe/H], and 0.18 dex in log g. Named after Nestor notabilis an alpine parrot native to New Zealand.

  6. Kea: A New Tool to Obtain Stellar Parameters from Low to Moderate Signal-to-noise and High-resolution Echelle Spectra

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Cochran, William D.

    2016-09-01

    In this paper, we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal-to-noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance spectra that we have obtained at McDonald Observatory. We use Kea to determine effective temperatures (T eff), metallicity ([Fe/H]), surface gravity (log g), and projected rotational velocity (v{sin}i). Kea compares the observations to a large library of synthetic spectra that covers a wide range of different T eff, [Fe/H], and log g values. We calibrated Kea on observations of well-characterized standard stars (the Kepler field “platinum” sample) that range in T eff from 5000 to 6500 K, in [Fe/H] from ‑0.5 to +0.4 dex, and in log g from 3.2 to 4.6 dex. We then compared the Kea results from reconnaissance spectra of 45 Kepler objects of interest (KOIs) to stellar parameters derived from higher signal-to-noise spectra obtained with Keck/HIRES. We find typical uncertainties of 100 K in T eff, 0.12 dex in [Fe/H], and 0.18 dex in log g. Named after Nestor notabilis an alpine parrot native to New Zealand.

  7. Stellar evolution.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y. (Editor); Muriel, A.

    1972-01-01

    Aspects of normal stellar evolution are discussed together with evolution near the main sequence, stellar evolution from main sequence to white dwarf or carbon ignition, the structure of massive main-sequence stars, and problems of stellar stability and stellar pulsation. Other subjects considered include variable stars, white dwarfs, close binaries, novae, early supernova luminosity, neutron stars, the photometry of field horizontal-branch stars, and stellar opacity. Transport mechanisms in stars are examined together with thermonuclear reactions and nucleosynthesis, the instability problem in nuclear burning shells, stellar coalescence, and intense magnetic fields in astrophysics. Individual items are announced in this issue.

  8. Retrieving parameters of the anisotropic refractive index fluctuations spectrum in the stratosphere from balloon-borne observations of stellar scintillation.

    PubMed

    Robert, Clélia; Conan, Jean-Marc; Michau, Vincent; Renard, Jean-Baptiste; Robert, Claude; Dalaudier, Francis

    2008-02-01

    Scintillation effects are not negligible in the stratosphere. We present a model based on a 3D model of anisotropic and isotropic refractive index fluctuations spectra that predicts scintillation rates within the so-called small perturbation approximation. Atmospheric observations of stellar scintillation made from the AMON-RA (AMON, Absorption par les Minoritaires Ozone et NO(x); RA, rapid) balloon-borne spectrometer allows us to remotely probe wave-turbulence characteristics in the stratosphere. Data reduction from these observations brings out values of the inner scale of the anisotropic spectrum. We find metric values of the inner scale that are compatible with space-based measurements. We find a major contribution of the anisotropic spectrum relative to the isotropic contribution. When the sight line plunges into the atmosphere, strong scintillation occurs as well as coupled chromatic refraction effects.

  9. STELLAR PARAMETERS FOR HD 69830, A NEARBY STAR WITH THREE NEPTUNE MASS PLANETS AND AN ASTEROID BELT

    SciTech Connect

    Tanner, Angelle; Boyajian, Tabetha S.; Brewer, John M.; Fischer, Debra; Von Braun, Kaspar; Van Belle, Gerard T.; Kane, Stephen; Farrington, Chris; Brummelaar, Theo A. ten; McAlister, Harold A.; Schaefer, Gail; Beichman, Charles A.

    2015-02-20

    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674 ± 0.014 mas for the limb-darkened angular diameter of this star leads to a physical radius of R {sub *} = 0.9058 ± 0.0190 R {sub ☉} and luminosity of L {sub *} = 0.622 ± 0.014 L {sub ☉} when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel diagram along with stellar evolution isochrones produces an age of 10.6 ± 4 Gyr and mass of 0.863 ± 0.043 M {sub ☉}. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H] = –0.04 ± 0.03), effective temperature (5385 ± 44 K), and surface gravity (log g = 4.49 ± 0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5 ± 3 Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic location of the habitable zone produces a range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet (d) around HD 69830. Finally, we estimate the snow line at a distance of 1.95 ± 0.19 AU, which is outside the orbit of all three planets and its asteroid belt.

  10. Fundamental stellar parameters for selected T-Tauri stars in the Chamaeleon and Rho Ophiuchus star-forming regions

    NASA Astrophysics Data System (ADS)

    James, D. J.; Aarnio, A. N.; Richert, A. J. W.; Cargile, P. A.; Santos, N. C.; Melo, C. H. F.; Bouvier, J.

    2016-06-01

    We present the results of an optical photometry and high-resolution spectroscopy campaign for a modest sample of X-ray selected stars in the Chamaeleon and Rho Ophiuchus star-forming regions. With R˜ 50 000 optical spectra, we establish kinematic membership of the parent association and confirm stellar youth for each star in our sample. With the acquisition of new standardized BVIc photometry, in concert with near-infrared data from the literature, we derive age and mass from stellar positions in model-dependent Hertzsprung-Russell diagrams. We compare isochronal ages derived using colour-dependent extinction values finding that, within error bars, ages are the same irrespective of whether E(B - V), E(V - Ic), E(J - H) or E(H - K) is used to establish extinction, although model ages tend to be marginally younger for redder Ecolour values. For Cham I and η Cham members, we derive ages of ≲5-6 Myr, whereas our three η Cha candidates are more consistent with a ≳25 Myr post-T Tauri star population. In Rho Ophiuchus, most stars in our sample have isochronal ages <10 Myr. Five objects show evidence of strong infrared excess (Av > 5) in the Two Micron All Sky Survey colour-colour diagram, however in terms of Hα emission, all stars except RXJ1625.6-2613 are consistent with being weak-lined T-Tauri stars. Spectral energy distributions (SEDs) over the range ≃4000 Å <λ < 1000 μm, show that only one Chamaeleon star (RXJ1112.7 -7637) and three Rho Ophiuchus stars (ROXR1 13, RXJ1625.6-2613 & RXJ1627.1-2419) reveal substantial departures from a bare photosphere.

  11. Numerical parameter constraints for accurate PIC-DSMC simulation of breakdown from arc initiation to stable arcs

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Hopkins, Matthew; Moore, Stan; Boerner, Jeremiah; Cartwright, Keith

    2015-09-01

    Simulation of breakdown is important for understanding and designing a variety of applications such as mitigating undesirable discharge events. Such simulations need to be accurate through early time arc initiation to late time stable arc behavior. Here we examine constraints on the timestep and mesh size required for arc simulations using the particle-in-cell (PIC) method with direct simulation Monte Carlo (DMSC) collisions. Accurate simulation of electron avalanche across a fixed voltage drop and constant neutral density (reduced field of 1000 Td) was found to require a timestep ~ 1/100 of the mean time between collisions and a mesh size ~ 1/25 the mean free path. These constraints are much smaller than the typical PIC-DSMC requirements for timestep and mesh size. Both constraints are related to the fact that charged particles are accelerated by the external field. Thus gradients in the electron energy distribution function can exist at scales smaller than the mean free path and these must be resolved by the mesh size for accurate collision rates. Additionally, the timestep must be small enough that the particle energy change due to the fields be small in order to capture gradients in the cross sections versus energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Stellar population models based on new generation stellar library

    NASA Astrophysics Data System (ADS)

    Koleva, M.; Vazdekis, A.

    The spectral predictions of stellar population models are not as accurate in the ultra-violet (UV) as in the optical wavelength domain. One of the reasons is the lack of high-quality stellar libraries. The New Generation Stellar Library (NGSL), recently released, represents a significant step towards the improvement of this situation. To prepare NGSL for population synthesis, we determined the atmospheric parameters of its stars, we assessed the precision of the wavelength calibration and characterised its intrinsic resolution. We also measured the Galactic extinction for each of the NGSL stars. For our analyses we used Ulyss, a full spectrum fitting package, fitting the NGSL spectra against the MILES interpolator. As a second step we build preliminary single stellar population models using Vazdekis (2003) synthesis code. We find that the wavelength calibration is precise up to 0.1 px, after correcting a systematic effect in the optical range. The spectral resolution varies from 3 Å in the UV to 10 Å in the near-infrared (NIR), corresponding to a roughly constant reciprocal resolution R=λ/δλ ≈1000 and an instrumental velocity dispersion σ_{ins} ≈ 130 kms. We derived the atmospheric parameters homogeneously. The precision for the FGK stars is 42 K, 0.24 and 0.09 dex for teff, logg and feh, respectively. The corresponding mean errors are 150 K, 0.50 and 0.48 dex for the M stars, and for the OBA stars they are 4.5 percent, 0.44 and 0.18 dex. The comparison with the literature shows that our results are not biased. Our first version of models compares well with models based on optical libraries, having the advantages to be free from artifacts due to the atmosphere. In future we will fine-tune our models by comparing to different models and observations of globular clusters.

  13. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are

  14. A non-empirical, parameter-free, hybrid functional for accurate calculations of optoelectronic properties of finite systems

    NASA Astrophysics Data System (ADS)

    Brawand, Nicholas; Vörös, Márton; Govoni, Marco; Galli, Giulia

    The accurate prediction of optoelectronic properties of molecules and solids is a persisting challenge for current density functional theory (DFT) based methods. We propose a hybrid functional where the mixing fraction of exact and local exchange is determined by a non-empirical, system dependent function. This functional yields ionization potentials, fundamental and optical gaps of many, diverse systems in excellent agreement with experiments, including organic and inorganic molecules and nanocrystals. We further demonstrate that the newly defined hybrid functional gives the correct alignment between the energy level of the exemplary TTF-TCNQ donor-acceptor system. DOE-BES: DE-FG02-06ER46262.

  15. Stellar parameters of M dwarfs from low and high-resolution spectra together with new model atmospheres

    NASA Astrophysics Data System (ADS)

    Rajpurohit, A. S.; Reylé, C.; Schultheis, M.; Allard, F.; Scholz, R.; Homeier, D.

    2012-12-01

    We present an optical spectral atlas of stars covering the whole M-dwarf sequence. It consists of 95 M dwarfs at solar metallicity observed at low-resolution with EMMI@NTT and 21 M-subdwarfs, extreme-subdwarfs and ultra-subdwarfs observed at high resolution with UVES@VLT. Using the most recent PHOENIX BT-Settl stellar model atmospheres we perform a detailed comparison with our observed spectra using χ^2 minimization technique. We confront the models with low-resolution spectra of M dwarfs at solar metallicity and we assign effective temperatures to the M dwarfs. We present temperature versus spectral type and colour relations and their comparison with others found in the literature. We also present our high-resolution spectra of the subdwarfs (sdM, esdM, usdM) and compare them to the newest grid of the BT Settl models which uses the revised solar abundances of Caffau et al (2011). This comparison allows us to study the spectral details of cool atmospheres, to determine precise [Fe/H] values for our objects, and to investigate the effect of metallicity on cool dwarf atmospheres. This study also helps to validate the atmosphere models and improve them by determining new constants on molecular opacities, dust cloud formation etc.

  16. Towards an accurate specific reaction parameter density functional for water dissociation on Ni(111): RPBE versus PW91.

    PubMed

    Jiang, Bin; Guo, Hua

    2016-08-01

    In search for an accurate description of the dissociative chemisorption of water on the Ni(111) surface, we report a new nine-dimensional potential energy surface (PES) based on a large number of density functional theory points using the RPBE functional. Seven-dimensional quantum dynamical calculations have been carried out on the RPBE PES, followed by site averaging and lattice effect corrections, yielding sticking probabilities that are compared with both the previous theoretical results based on a PW91 PES and experiment. It is shown that the RPBE functional increases the reaction barrier, but has otherwise a minor impact on the PES topography. Better agreement with experimental results is obtained with the new PES, but the agreement is still not quantitative. Possible sources of the remaining discrepancies are discussed.

  17. Accurate determination of interface trap state parameters by admittance spectroscopy in the presence of a Schottky barrier contact: Application to ZnO-based solar cells

    NASA Astrophysics Data System (ADS)

    Marin, Andrew T.; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2013-04-01

    This work shows that when a Schottky barrier is present in a photovoltaic device, such as in a device with an ITO/ZnO contact, equivalent circuit analysis must be performed with admittance spectroscopy to accurately determine the pn junction interface recombination parameters (i.e., capture cross section and density of trap states). Without equivalent circuit analysis, a Schottky barrier can produce an error of ˜4-orders of magnitude in the capture cross section and ˜50% error in the measured density of trap states. Using a solution processed ZnO/Cu2O photovoltaic test system, we apply our analysis to clearly separate the contributions of interface states at the pn junction from the Schottky barrier at the ITO/ZnO contact so that the interface state recombination parameters can be accurately characterized. This work is widely applicable to the multitude of photovoltaic devices, which use ZnO adjacent to ITO.

  18. A two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion

    PubMed Central

    Kostylev, Maxim; Wilson, David

    2014-01-01

    Lignocellulosic biomass is a potential source of renewable, low-carbon-footprint liquid fuels. Biomass recalcitrance and enzyme cost are key challenges associated with the large-scale production of cellulosic fuel. Kinetic modeling of enzymatic cellulose digestion has been complicated by the heterogeneous nature of the substrate and by the fact that a true steady state cannot be attained. We present a two-parameter kinetic model based on the Michaelis-Menten scheme (Michaelis L and Menten ML. (1913) Biochem Z 49:333–369), but with a time-dependent activity coefficient analogous to fractal-like kinetics formulated by Kopelman (Kopelman R. (1988) Science 241:1620–1626). We provide a mathematical derivation and experimental support to show that one of the parameters is a total activity coefficient and the other is an intrinsic constant that reflects the ability of the cellulases to overcome substrate recalcitrance. The model is applicable to individual cellulases and their mixtures at low-to-medium enzyme loads. Using biomass degrading enzymes from a cellulolytic bacterium Thermobifida fusca we show that the model can be used for mechanistic studies of enzymatic cellulose digestion. We also demonstrate that it applies to the crude supernatant of the widely studied cellulolytic fungus Trichoderma reesei and can thus be used to compare cellulases from different organisms. The two parameters may serve a similar role to Vmax, KM, and kcat in classical kinetics. A similar approach may be applicable to other enzymes with heterogeneous substrates and where a steady state is not achievable. PMID:23837567

  19. SEMICONDUCTOR INTEGRATED CIRCUITS: Accurate metamodels of device parameters and their applications in performance modeling and optimization of analog integrated circuits

    NASA Astrophysics Data System (ADS)

    Tao, Liang; Xinzhang, Jia; Junfeng, Chen

    2009-11-01

    Techniques for constructing metamodels of device parameters at BSIM3v3 level accuracy are presented to improve knowledge-based circuit sizing optimization. Based on the analysis of the prediction error of analytical performance expressions, operating point driven (OPD) metamodels of MOSFETs are introduced to capture the circuit's characteristics precisely. In the algorithm of metamodel construction, radial basis functions are adopted to interpolate the scattered multivariate data obtained from a well tailored data sampling scheme designed for MOSFETs. The OPD metamodels can be used to automatically bias the circuit at a specific DC operating point. Analytical-based performance expressions composed by the OPD metamodels show obvious improvement for most small-signal performances compared with simulation-based models. Both operating-point variables and transistor dimensions can be optimized in our nesting-loop optimization formulation to maximize design flexibility. The method is successfully applied to a low-voltage low-power amplifier.

  20. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  1. ON THE ROLE OF DISKS IN THE FORMATION OF STELLAR SYSTEMS: A NUMERICAL PARAMETER STUDY OF RAPID ACCRETION

    SciTech Connect

    Kratter, Kaitlin M.; Matzner, Christopher D.; Krumholz, Mark R.; Klein, Richard I.

    2010-01-10

    We study rapidly accreting, gravitationally unstable disks with a series of idealized global, numerical experiments using the code ORION. Our numerical parameter study focuses on protostellar disks, showing that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the infall rate to the disk sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate and governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum stable disk mass: disks that exceed approx50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.

  2. Coupling 1D Navier Stokes equation with autoregulation lumped parameter networks for accurate cerebral blood flow modeling

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2014-11-01

    The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is critical to cerebral blood flow modeling, as well as investigations into pathological conditions. We discuss a one-dimensional nonlinear model of blood flow in the cerebral arteries that includes coupling of autoregulatory lumped parameter networks. The model is tested to reproduce a common clinical test to assess autoregulatory function - the carotid artery compression test. The change in the flow velocity at the middle cerebral artery (MCA) during carotid compression and release demonstrated strong agreement with published measurements. The model is then used to investigate vasospasm of the MCA, a common clinical concern following subarachnoid hemorrhage. Vasospasm was modeled by prescribing vessel area reduction in the middle portion of the MCA. Our model showed similar increases in velocity for moderate vasospasms, however, for serious vasospasm (~ 90% area reduction), the blood flow velocity demonstrated decrease due to blood flow rerouting. This demonstrates a potentially important phenomenon, which otherwise would lead to false-negative decisions on clinical vasospasm if not properly anticipated.

  3. HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE

    SciTech Connect

    Guillochon, James; Ramirez-Ruiz, Enrico

    2013-04-10

    The disruption of stars by supermassive black holes has been linked to more than a dozen flares in the cores of galaxies out to redshift z {approx} 0.4. Modeling these flares properly requires a prediction of the rate of mass return to the black hole after a disruption. Through hydrodynamical simulation, we show that aside from the full disruption of a solar mass star at the exact limit where the star is destroyed, the common assumptions used to estimate M-dot (t), the rate of mass return to the black hole, are largely invalid. While the analytical approximation to tidal disruption predicts that the least-centrally concentrated stars and the deepest encounters should have more quickly-peaked flares, we find that the most-centrally concentrated stars have the quickest-peaking flares, and the trend between the time of peak and the impact parameter for deeply penetrating encounters reverses beyond the critical distance at which the star is completely destroyed. We also show that the most-centrally concentrated stars produced a characteristic drop in M-dot (t) shortly after peak when a star is only partially disrupted, with the power law index n being as extreme as -4 in the months immediately following the peak of a flare. Additionally, we find that n asymptotes to {approx_equal} - 2.2 for both low- and high-mass stars for approximately half of all stellar disruptions. Both of these results are significantly steeper than the typically assumed n = -5/3. As these precipitous decay rates are only seen for events in which a stellar core survives the disruption, they can be used to determine if an observed tidal disruption flare produced a surviving remnant. We provide fitting formulae for four fundamental quantities of tidal disruption as functions of the star's distance to the black hole at pericenter and its stellar structure: the total mass lost, the time of peak, the accretion rate at peak, and the power-law index shortly after peak. These results should be taken into

  4. Stellar population model dependence in optical AGN identification

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zaw, Ingyin; Farrar, Glennys

    2016-08-01

    The choice of stellar templates plays an important role in optical spectroscopic AGN classification, because the host galaxy contribution must be accurately subtracted in order to isolate the true contribution of the AGN. Up to now, simple stellar population models such as BC03, have been used as templates in doing the stellar component analysis. As more stellar population models become available, systematic study of the impact of the stellar population modeling becomes possible. This is important not only for finding the best template but also for understanding the merits and limitations of the templates. We analyzed the SDSS DR8 spectra, using different empirical, theoretical, and mixed stellar population models. We found that some templates lead to systematic biases in the identification of AGN candidates. We investigated the effects of the range of age,metallicity, and the total wavelength used in full-spectrum fitting. We found that the completeness of parameter space in the template model plays a vital role in classifying AGN candidates; the wavelength range used to analyze the spectra also affects the result but in a relative minor way. Empirical stellar models can be expected to yield the most reliable estimate of the absorption features in the host galaxies, since there will be less model dependence (e.g., on opacity assumption, line profile representation).

  5. KERR PARAMETERS FOR STELLAR MASS BLACK HOLES AND THEIR CONSEQUENCES FOR GAMMA-RAY BURSTS AND HYPERNOVAE

    SciTech Connect

    Moreno Mendez, Enrique; Brown, Gerald E.; Walter, Frederick M.; Lee, Chang-Hwan E-mail: clee@pusan.ac.kr

    2011-01-20

    Recent measurements of the Kerr parameters a{sub *} for two black hole binaries in our Galaxy, GRO J1655-40 and 4U 1543-47, of a{sub *} = 0.65-0.75 and a{sub *} = 0.75-0.85, respectively, fit the predictions of Lee et al. of a{sub *} {approx_equal} 0.8. They predicted a{sub *}>0.5 for 80% of the soft X-ray transient (SXT) sources. The maximum available energy in the Blandford-Znajek formalism for a{sub *}>0.5 gives E>3 x 10{sup 53} erg, orders of magnitude larger than the energy needed for the gamma-ray burst (GRB) and hypernova explosion. We interpret the SXTs to be relics of GRBs and hypernovae. We find that most galactic SXTs were subluminous given that they could use only a small part of the available rotational energy.

  6. FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

    SciTech Connect

    Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L.

    2015-09-10

    We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol}) and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.

  7. Extension of the AMBER force field for nitroxide radicals and combined QM/MM/PCM approach to the accurate determination of EPR parameters of DMPOH in solution

    PubMed Central

    Hermosilla, Laura; Prampolini, Giacomo; Calle, Paloma; García de la Vega, José Manuel; Brancato, Giuseppe; Barone, Vincenzo

    2015-01-01

    A computational strategy that combines both time-dependent and time-independent approaches is exploited to accurately model molecular dynamics and solvent effects on the isotropic hyperfine coupling constants of the DMPO-H nitroxide. Our recent general force field for nitroxides derived from AMBER ff99SB is further extended to systems involving hydrogen atoms in β-positions with respect to NO. The resulting force-field has been employed in a series of classical molecular dynamics simulations, comparing the computed EPR parameters from selected molecular configurations to the corresponding experimental data in different solvents. The effect of vibrational averaging on the spectroscopic parameters is also taken into account, by second order vibrational perturbation theory involving semi-diagonal third energy derivatives together first and second property derivatives. PMID:26584116

  8. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod.

  9. Disentangling between stellar activity and planetary signals

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Bouchy, F.; Hébrard, G.; Bonfils, X.; Santos, N.; Vauclair, S.

    2011-04-01

    Photospheric stellar activity (i.e. dark spots or bright plages) might be an important source of noise and confusion in stellar radial-velocity (RV) measurements. Radial-velocimetry planet search surveys as well as follow-up of photometric transit surveys require a deeper understanding and characterization of the effects of stellar activities to differentiate them from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations in the photometry, RV, and spectral line shapes are characterized and analyzed according to the stellar inclination, the latitude, and the number of spots. We show that the anti-correlation between RV and bisector span, known to be a signature of activity, requires a good sampling to be resolved when there are several spots on the photosphere. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at the fundamental period and its two-first harmonics allow us to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD 189733, GJ 674, CoRoT-7, and ι Hor. We succeed in fitting simultaneously activity and planetary signals on GJ674 and CoRoT-7. This simultaneous modeling of the activity and planetary parameters leads to slightly higher masses of CoRoT-7b and c of respectively, 5.7 ± 2.5 MEarth and 13.2 ± 4.1 MEarth. The larger uncertainties properly take into account the stellar active jitter. We exclude short-period low-mass exoplanets around ι Hor. For data with realistic time-sampling and white Gaussian noise, we use simulations to show that our approach is effective in distinguishing reflex-motion due to a planetary companion and stellar-activity-induced RV variations provided that 1) the planetary orbital period is not close to that of the stellar rotation or one of its two first harmonics; 2

  10. Stellar Variability Effects on Transit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zellem, Robert Thomas; Swain, Mark R.; Shkolnik, Evgenya; Line, Michael R.; Llama, Joe

    2016-10-01

    Stellar variability caused by surface magnetic activity poses a great challenge to accurately and precisely characterize the atmospheres of transiting exoplanets. We present a preliminary analysis of the effects of unocculted star spots at IR wavelengths on planetary transmission and emission spectra. We will explore how stellar variability changes the derived exoplanet atmospheric parameters inferred through retrievals for a group of exoplanetary hosts stars. Our study includes stars ranging in activity levels from an inactive sun to a very active late-type star, and a range of planetary masses from super-Earths to Jupiters. These effects will be especially important for the high precision measurements (<100 ppm) needed to characterize the atmospheric composition of smaller planets. This work is critical for optimizing the exoplanet observing program of JWST, which will study known habitable zone transiting planets as well as new ones found by TESS orbiting nearby M dwarfs, which are more active than solar-type stars.

  11. Stability and variations of plasma parameters in the L-2M stellarator during excitation of the induction current in the regime of ECR plasma heating

    SciTech Connect

    Akulina, D. K.; Batanov, G. M.; Berezhetskii, M. S.; Vasil'kov, D. G.; Vafin, I. Yu.; Voronov, G. S.; Voronova, E. V.; Gladkov, G. A.; Grebenshchikov, S. E.; Grishina, I. A.; Knyazev, A. V.; Kovrizhnykh, L. M.; Kolik, L. V.; Kuznetsov, A. B.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Malykh, N. I.; Meshcheryakov, A. I.; Nechaev, Yu. I.

    2008-12-15

    Results are presented from experimental studies of variations in the plasma parameters during the excitation of a multiaxis magnetic configuration by the induction current (up to 17 kA) in the basic magnetic configuration of the L-2M stellarator in the regime of ECR heating at a microwave power of {approx}200 kW ({approx}1 MW m{sup -3}) and an average plasma density of (1-2) x 10{sup 19} m{sup -3}. The current direction was chosen to reduce the net rotational transform (the so-called 'negative' current). The current was high enough for the rotational transform to change its sign inside the plasma column. Computer simulations of the L-2M magnetic structure showed that the surface with a zero rotational transform is topologically unstable and gives rise to magnetic islands, i.e., to a multiaxis magnetic configuration. Magnetic measurements showed that, at negative currents above 10 kA, intense bursts of MHD oscillations with a clearly defined toroidal mode number n = 0 were observed in the frequency range of several kilohertz. Unfortunately, the experimental data are insufficient to draw the final conclusion on the transverse structure of these oscillations. The radial temperature profiles along the stellarator major radius in the equatorial plane were studied. It is found that the electron temperature decreases by a factor of 1.3 in the plasma core (r/a {<=} 0.6) and that the temperature jump is retained near the boundary. A change in turbulent fluctuations of the plasma density during the excitation of a negative current was studied using wave scattering diagnostics. It is found that the probability density function of the increments of fluctuations in the plasma core differs from a Gaussian distribution. The measured distribution is heavy-tailed and broadens in the presence of the current. It is found that the spectrum of turbulent fluctuations and their Doppler shift near the plasma boundary are nonuniform in the radial direction. This may be attributed to the

  12. Stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1980-01-01

    Developments in the understanding and use of chromospheric diagnostics are discussed with emphasis on the following aspects: (1) trends emerging from semiempirical models of single stars; (2) the validity of claims that theoretical models of chromospheres are becoming realistic; (3) the correlation between the widths of Ca 2 H and K line emission cores and stellar absolute luminosity extending over 15 magnitudes (Wilson-Bappu relation); and (4) the existence of systematic flow patterns in stellar chromospheres.

  13. Stellar Populations

    NASA Astrophysics Data System (ADS)

    Peletier, Reynier F.

    2013-10-01

    This is a summary of my lectures during the 2011 Canary Islands Winter School in Puerto de la Cruz. I give an introduction to the field of stellar populations in galaxies, and highlight some new results. Since the title of the Winter School is Secular Evolution in Galaxies I mostly concentrate on nearby galaxies, which are best suited to study this theme. Of course, the understanding of stellar populations is intimately connected to understanding the formation and evolution of galaxies, one of the great outstanding problems of astronomy. We are currently in a situation where very large observational advances have been made in recent years. Galaxies have been detected up to a redshift of ten. A huge effort has to be made so that stellar population theory can catch up with observations. Since most galaxies are far away, information about them has to come from stellar population synthesis of integrated light. Here I will discuss how stellar evolution theory, together with observations in our Milky Way and Local Group, are used as building blocks to analyse these integrated stellar populations.

  14. The solar-stellar connection

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark S.

    2016-07-01

    A review of some principal results achieved in the area of stellar astrophysics with its origins in solar physics - the Solar-Stellar Connection - is presented from the perspective of an observational astronomer. The historical origins of the Solar-Stellar Connection are discussed followed by a review of key results from observations of stellar cycles analogous to the solar cycle in terms of parameters relevant to dynamo theory. A review of facets of angular momentum evolution and irradiance variations, each of which is determined by emergent, dynamo-generated magnetic fields, is given. Recent considerations of the impacts of stellar magnetic activity on the ambient radiative and energetic particle environment of the habitable zone of exoplanet systems are summarized. Some anticipated directions of the Solar-Stellar Connection in the new era of astronomy as defined by the advent of transformative facilities are presented.

  15. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  16. Stellar Physics

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, Gennady S.

    The matter in the Universe (its barionic component) is concentrated mainly in stars. Inside galaxies, stars contain more than 90% of the matter, and in galactic clusters, due to the existence of intercluster gas, stars contain more than 70% of the matter. The presence of heavy elements (heavier than carbon) in the intercluster gas, with an abundance of the order of one third of solar gas, indicates that almost all barionic matter in the Universe went through a stellar stage. According to modern views, the enrichment of intercluster gas by heavy elements happens due to outflow of matter from galaxies, where the production of heavy elements takes place due to stellar evolution. It follows from the cosmological models of a hot Universe that only hydrogen and helium, with very small additions of lithium, beryllium and boron, were produced in the Big Bang. All heavier elements, starting from carbon, are produced as a result of stellar evolution (see Sect.4.4, Vol. 1).

  17. Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2007-01-01

    The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.

  18. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    Giménez-García, A.; Shenar, T.; Torrejón, J. M.; Oskinova, L.; Martínez-Núñez, S.; Hamann, W.-R.; Rodes-Roca, J. J.; González-Galán, A.; Alonso-Santiago, J.; González-Fernández, C.; Bernabeu, G.; Sander, A.

    2016-06-01

    Context. Classical supergiant X-ray binaries (SGXBs) and supergiant fast X-ray transients (SFXTs) are two types of high-mass X-ray binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors' stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. Aims: To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods: We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results: We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 ± 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e< 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the

  19. Progress Toward Attractive Stellarators

    SciTech Connect

    Neilson, G H; Brown, T G; Gates, D A; Lu, K P; Zarnstorff, M C; Boozer, A H; Harris, J H; Meneghini, O; Mynick, H E; Pomphrey, N; Reiman, A H; Xanthopoulos, P

    2011-01-05

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS design space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.

  20. Rotation-Activity Correlations in K and M Dwarfs. I. Stellar Parameters and Compilations of v sin i and P/sin i for a Large Sample of Late-K and M Dwarfs

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.; Mullan, D. J.; Paletou, F.; Gebran, M.

    2016-05-01

    The reliable determination of rotation-activity correlations (RACs) depends on precise measurements of the following stellar parameters: T eff, parallax, radius, metallicity, and rotational speed v sin i. In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (Paper II), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the (R-I) C color from the calibrations of Mann et al. and Kenyon & Hartmann for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters (T eff, log(g), and [M/H]) using the principal component analysis-based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius-[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian et al. We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected v sin i in 92 stars. In combination with our previous v sin i measurements in M and K dwarfs, we now derive P/sin i measures for a sample of 418 K and M dwarfs. We investigate the distributions of P/sin i, and we show that they are different from one spectral subtype to another at a 99.9% confidence level. Based on observations available at Observatoire de Haute Provence and the European Southern Observatory databases and on Hipparcos parallax measurements.

  1. The Solar-Stellar Connection

    NASA Astrophysics Data System (ADS)

    Brun, A. S.; García, R. A.; Houdek, G.; Nandy, D.; Pinsonneault, M.

    2015-12-01

    We discuss how recent advances in observations, theory and numerical simulations have allowed the stellar community to progress in its understanding of stellar convection, rotation and magnetism and to assess the degree to which the Sun and other stars share similar dynamical properties. Ensemble asteroseismology has become a reality with the advent of large time domain studies, especially from space missions. This new capability has provided improved constraints on stellar rotation and activity, over and above that obtained via traditional techniques such as spectropolarimetry or CaII H&K observations. New data and surveys covering large mass and age ranges have provided a wide parameter space to confront theories of stellar magnetism. These new empirical databases are complemented by theoretical advances and improved multi-D simulations of stellar dynamos. We trace these pathways through which a lucid and more detailed picture of magnetohydrodynamics of solar-like stars is beginning to emerge and discuss future prospects.

  2. Observational Constraints on Stellar Flares and Prominences

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2016-07-01

    Multi-wavelength surveys have catalogued a wealth of stellar flare data for stars representing a broad range of masses and ages. Young solar analogs inform our understanding of the Sun's evolution and the influence of its activity on early solar system formation, while field star observations allow us to place its current activity into context within a statistical ensemble of main-sequence G-type stars. At the same time, stellar observations probe a variety of interior and coronal conditions, providing constraints on models of equilibrium (and loss thereof!) for magnetic structures. In this review, I will focus on our current understanding of stellar flares, prominences, and coronal mass ejections as a function of stellar parameters. As our interpretation of stellar data relies heavily on solar-stellar analogy, I will explore how far into extreme stellar parameter spaces this comparison can be invoked.

  3. [A Method to Estimate Metal Abundance from Stellar Spectra Using Ca Line Index].

    PubMed

    Pan, Jing-chang; Luo, A-li; Li, Xiang-ru; Wei, Peng

    2015-09-01

    This paper presents a method to estimate stellar metallicity based on BP neural network and Ca line index. This method trains a BP ANN model from SDSS/SEGUE stellar spectra and parameters provided by SSPP. The values of Teff and the line index of Ca lines are the input of network while the [Fe/H] values are the oputput of the network. A set of samples are resampled from the set of all and then a network model is trained. The network can be used to predict the stellar metallicity from low-resolution spsectra. The experiment shows that the proposed method can accurately and effectively measure the [Fe/H] from the stellar spectra. PMID:26669184

  4. Systematic Non-LTE Study of the -2.6 < [Fe/H] < 0.2 F and G dwarfs in the Solar Neighborhood. I. Stellar Atmosphere Parameters

    NASA Astrophysics Data System (ADS)

    Sitnova, T.; Zhao, G.; Mashonkina, L.; Chen, Y.; Liu, F.; Pakhomov, Yu.; Tan, K.; Bolte, M.; Alexeeva, S.; Grupp, F.; Shi, J.-R.; Zhang, H.-W.

    2015-08-01

    We present atmospheric parameters for 51 nearby F and G dwarf and subgiant stars uniformly distributed over the -2.60< [{Fe}/{{H}}]< +0.20 metallicity range that is suitable for the Galactic chemical evolution research. Lines of iron in the two ionization stages, Fe I and Fe II, were used to derive a homogeneous set of effective temperatures, surface gravities, iron abundances, and microturbulence velocities. Our spectroscopic analyses took advantage of employing high-resolution (R ≥ 60,000) Shane/Hamilton and Canada-France-Hawaii Telescope/ESPaDOnS observed spectra and non-LTE (NLTE) line formation for Fe I and Fe II in the classical one-dimensional model atmospheres. The spectroscopic method was tested in advance with the 20 benchmark stars, for which there are multiple measurements of the infrared flux method effective temperature and their Hipparcos parallax error is less than 10%. We found NLTE abundances from lines of Fe I and Fe II to be consistent within 0.06 dex for every benchmark star, when applying a scaling factor of {S}{{H}} = 0.5 to the Drawinian rates of inelastic Fe+H collisions. The obtained atmospheric parameters were checked for each program star by comparing its position in the log g-{T}{eff} plane with the theoretical evolutionary track of given metallicity and α-enhancement in the Yi et al. grid. Our final effective temperatures lie exactly in between the {T}{IRFM} scales of Alonso et al. and Casagrande et al., with a mean difference of +46 and -51 K, respectively. NLTE leads to higher surface gravity compared with that for LTE. The shift in log g is smaller than 0.1 dex for stars with [Fe/H] ≥slant -0.75, {T}{eff} ≤ 5750 K, or log g ≥ 4.20. NLTE analysis is crucial for the very metal-poor turnoff and subgiant stars, for which the shift in log g between NLTE and LTE can be up to 0.5 dex. The obtained accurate atmospheric parameters will be used in the forthcoming papers to determine NLTE abundances of important astrophysical elements

  5. A panchromatic view of star-forming regions in the Magellanic clouds: Characterizing physical and evolutionary parameters of young stellar objects

    NASA Astrophysics Data System (ADS)

    Carlson, Lynn Redding

    2010-07-01

    Many factors affect the formation of stars, and none of them is well-understood. Metal abundance, environment, turbulence, and multiplicity all have roles to play in how quickly Young Stellar Objects (YSOs) form and evolve, what masses they achieve, and the rate at which interstellar medium is converted into stars. The first step in understanding star formation must be to construct a representative catalog of YSOs, including a variety of evolutionary stages, masses, and environments. Here, we examine clustered star formation in 10 H II regions in the Large and Small Magellanic Clouds (LMC and SMC). These two galaxies have different sub-Solar metallicities, and we choose star-forming regions with different sizes, morphologies, locations, and surrounding environments. By combining photometric data across a range of wavelengths to characterize diverse stellar and proto-stellar populations, we refine a method to find and characterize YSO candidates, identifying ˜ 1200 new YSOs in the two Clouds. We construct initial lists of YSO candidates based on 10 new color-selection criteria and then leverage data from the SAGE Spitzer Space Telescope Legacy Programs along with ancillary data from ground-based surveys. We fit photometric measurements to Spectral Energy Distributions (SEDs) of model YSOs and select which are well-fit based on their reduced chi 2 values. Where deep Hubble Space Telescope (HST) observations are available, we note that most (˜ 70%) single infrared sources actually correspond to several optical sources in apparent compact proto-clusters. Preliminary imaging from the HERITAGE Herschel Space Telescope photometric survey of the Magellanic Clouds even affords us a qualitative glimpse of the earliest, most embedded stages of star formation, which we compare visually to our YSO candidates. We outline an entirely new technique to determine the lifetimes of YSO evolutionary stages, comparing the spatial locations of stellar populations, pre-main sequence

  6. Accurate collision-induced line-coupling parameters for the fundamental band of CO in He - Close coupling and coupled states scattering calculations

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Boissoles, J.; Boulet, C.

    1988-01-01

    The first accurate theoretical values for off-diagonal (i.e., line-coupling) pressure-broadening cross sections are presented. Calculations were done for CO perturbed by He at thermal collision energies using an accurate ab initio potential energy surface. Converged close coupling, i.e., numerically exact values, were obtained for coupling to the R(0) and R(2) lines. These were used to test the coupled states (CS) and infinite order sudden (IOS) approximate scattering methods. CS was found to be of quantitative accuracy (a few percent) and has been used to obtain coupling values for lines to R(10). IOS values are less accurate, but, owing to their simplicity, may nonetheless prove useful as has been recently demonstrated.

  7. Results of Compact Stellarator Eengineering Trade Studies

    SciTech Connect

    T. Brown, L. Bromberg, and M. Cole

    2009-09-25

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  8. Results of Compact Stellarator Engineering Trade Studies

    SciTech Connect

    Tom Brown, L. Bromberg, M. Cole

    2009-05-27

    number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  9. Introduction to stellar evolution

    NASA Astrophysics Data System (ADS)

    Scilla, Degl'Innocenti

    2016-04-01

    This contribution is meant as a first brief introduction to stellar physics. First I shortly describe the main physical processes active in stellar structures then I summarize the most important features during the stellar life-cycle.

  10. STELLARATOR INJECTOR

    DOEpatents

    Post, R.F.

    1962-09-01

    A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)

  11. Study of transneptunian objects through stellar occultations

    NASA Astrophysics Data System (ADS)

    Benedetti-Rossi, G.; Sicardy, B.; Braga-Ribas, F.

    2014-07-01

    The physical parameters of the transneptunian objects (TNO's) such as size, shape, density, presence of atmosphere, provide important information on their formation and evolution. At more than 30 astronomical units (au) from the Sun, those objects receive low solar radiation and have low mutual collisions so they can be considered as remnants of the primordial outer Solar System. Besides that, information on TNO's is of great relevance when trying to establish a general formation scenario for the recently discovered planetary systems. The problem is that such bodies have a diameter smaller than 2300 km (Eris, one of the largest TNO, has 2326 km) and, when viewed from Earth, they subtend angles smaller than 50 milli-arcseconds, a fact that makes their resolution very poor with current imaging systems. One method to obtain very accurate information on the TNO's is the stellar-occultation technique. Sizes at kilometer accuracies and pressure at nanobar levels can be achieved with this method. Shape, mass, density and other physical parameters can also be derived using this technique. Since 2010, we observed stellar occultations of several TNO's (Varuna in 2010 and 2013; Eris in 2010; 2003 AZ_{84} in 2010 and 2011; Makemake in 2011; Quaoar in 2011 and two in 2012; 2002 KX_{14} in 2013; and finally Sedna in 2013) besides some other occultations of the Pluto system and of the largest Centaurs. We also predicted future events in 2014 and 2015 for the largest 40 TNO's and Centaurs. In this work, we will present new results obtained from recent stellar occultations of TNO's.

  12. Neoclassical transport in stellarators

    SciTech Connect

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    The stellarator neoclassical transport due to particles trapped in local helical wells is calculated in the low-collisionality regime using a systematic expansion. The behavior of electron transport is found to be the same over a wide range of energies, but the behavior of ion transport for low energy ions is found to be different than that for high energy ions. Furthermore, the electron fluxes do not vary with the change in the radial ambipolar electric field nearly as much as do the ion fluxes. Thus, the particle diffusion is controlled by the electrons. A nonradial ambipolar electric field is induced by ion drift. This electric field enhances the transport by about 15 to 20%. A convenient graphical method that allows one to determine the magnitude of the radial ambipolar field for machines with different parameters is presented. Numerical examples show that electron energy confinement time is comparable to the ion energy confinement time for all the different size stellarators studied. Although the neoclassical losses are large, it is shown that ignition can be achieved in a reasonably sized stellarator reactor. Finally, from the standpoint of reactor economics, the confinement scaling law shows that in order to increase n tau, it is better to increase the aspect ratio than the overall dimensions of the reactor.

  13. First results from the Goddard High-Resolution Spectrograph - Spectroscopic determination of stellar parameters of Melnick 42, an O3f star in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Altner, B.; Ebbets, D.; Hubeny, I.; Hutchings, J. B.

    1991-01-01

    GHRS and optical (ESO 3.6 m) observations of the O3f star Melnick 42 in the 30 Doradus complex are reported. A first analysis reveals that with a luminosity of 2.3 million L(solar) and a present mass of 100 M(solar), Melnick 42 is one of the most luminous and massive stars known. An estimate of abundances indicates that iron and oxygen are very likely reduced by a factor of four relative to the sun, whereas carbon is more strongly depleted and nitrogen is approximately solar. The terminal velocity of the stellar wind is 3000 km/s. The mass-loss rate is 4 x 10 to the -6th M(solar)/yr, with a large uncertainty. The excellent quality GHRS spectrum taken in a crowded region of the LMC demonstrates the superiority of the HST for quantitative ultraviolet spectroscopy of hot stars in other galaxies.

  14. New Leverage on Stellar Evolution: NASA Archives and Bayes

    NASA Astrophysics Data System (ADS)

    von Hippel, Ted

    Motivation: Perhaps the most important achievement of stellar evolution is its ability to determine the ages for star clusters, and thus the ages and star formation histories of the Milky Way and other galaxies. Yet, stellar evolution still suffers limitations that make it extremely difficult to derive the ages to better than 1-2 Gyrs for globular clusters and to even lower precision for open clusters. Furthermore, these are the errors quoted in the literature, which usually include only data and fitting errors and not intrinsic uncertainties in the stellar evolution models themselves. Despite many successes, stellar evolution models are limited in two main ways: lack of understanding of certain physical processes (e.g., mass loss) and our inability to accurately model physical processes in 1-D (e.g., convective mixing). Proposed Solution: We propose to take advantage of three new developments to significantly refine our understanding of stellar evolution, in particular the processes dominated by mass loss, parameterizations of convection, and issues that affect WD ages. The first of these three new developments is that we can now take advantage of large, homogenous photometry databases for open and globular clusters obtained by the Hubble Space Telescope (HST), the Spitzer Space Telescope (Spitzer), and the Two-Micron All- Sky Survey (2MASS). The second development is the creation of MESA, a fully verified and validated, open source stellar evolution code with updated physics and modern, sophisticated numerical methods. The third is a Bayesian code developed by our group that takes full advantage of all the available photometry and stellar evolution model information throughout the color-magnitude diagram, as well as ancillary data such as membership probabilities through radial velocities or proper motions, spectroscopic masses, and spectroscopic effective temperatures. Research Strategy: We will use HST, Spitzer, and 2MASS photometry of stars in ~300 open

  15. PREFACE: A Stellar Journey A Stellar Journey

    NASA Astrophysics Data System (ADS)

    Asplund, M.

    2008-10-01

    astronomical talk, student lecture, musical concert or theatre play. Another attribute of Bengt is his boundless optimism, which not the least has helped many of his students overcome the unavoidable moments of despair (this is only true as long as one is aware of the well-known BG factor: multiply any of Bengt's estimates for the time required to complete a task by at least a factor of three). His personal traits make working with Bengt always very enjoyable as well as highly educating. Bengt's work also extends well beyond the domain of astronomy, including music, literature, theatre, religion, research ethics, science policy and science popularization. Bengt is an excellent role model for a successful scientist with a rich and rewarding life outside of academia. The symposium A Stellar Journey was divided into five sessions covering basically the main research areas Bengt has worked on: Stellar atmospheres, Solar/stellar spectroscopy, Stellar parameters, Stellar evolution and nucleosynthesis and Stellar populations. In addition, one afternoon was devoted to a session entitled Anything but astronomy (see the symposium program), which tried to showcase Bengt's diverse interests outside of astronomy with talks ranging from religion and history of science over science popularization and future studies to literature and music. My task, as chair of the Scientific Organizing Committee, to put together an exciting scientific program of invited reviews and talks was made considerably easier thanks to the excellent suggestions by the other SOC members: Ann Boesgaard, Sofia Feltzing, John Lattanzio, Andre Maeder, Bertrand Plez and Monique Spite. I believe in the end we were successful in achieving our charge, an impression corroborated by the many encouraging comments from various participants during and after the conference. I am particularly grateful to Nils Bergvall, Bengt Edvardsson and Bertrand Plez for their time-consuming efforts in arranging the extraordinary and greatly

  16. Old stellar systems in UV: resolved and integrated properties

    NASA Astrophysics Data System (ADS)

    Dalessandro, E.

    2014-11-01

    The UV properties of old stellar populations have been subject of intense scrutiny from the late sixties, when the UV-upturn in early type galaxies was first discovered. Because of their proximity and relative simplicity, Galactic globular clusters (GGCs) are ideal local templates to understand how the integrated UV light is driven by hot stellar populations, primarily horizontal branch stars and their progeny. Our understanding of such stars is still plagued by theoretical uncertainties, which are partly due to the absence of an accurate, comprehensive, statistically representative homogeneous data-set. To move a step forward on this subject, we have combined the HST and GALEX capabilities and collected the largest data-base ever obtained for GGCs in UV. This data-base is best suited to provide insights on the HB second parameter problem and on the first stages of GCs formation and chemical evolution and to understand how they are linked to the observed properties of extragalactic systems.

  17. Stark broadening data for stellar plasma research.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  18. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. II. DETERMINING ABSOLUTE INCLINATIONS, GRAVITY-DARKENING COEFFICIENTS, AND SPOT PARAMETERS OF SINGLE STARS WITH SIM LITE

    SciTech Connect

    Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.

    2010-11-10

    We present a novel technique to determine the absolute inclination of single stars using multi-wavelength submilliarcsecond astrometry. The technique exploits the effect of gravity darkening, which causes a wavelength-dependent astrometric displacement parallel to a star's projected rotation axis. We find that this effect is clearly detectable using SIM Lite for various giant stars and rapid rotators, and present detailed models for multiple systems using the REFLUX code. We also explore the multi-wavelength astrometric reflex motion induced by spots on single stars. We find that it should be possible to determine spot size, relative temperature, and some positional information for both giant and nearby main-sequence stars utilizing multi-wavelength SIM Lite data. These data will be extremely useful in stellar and exoplanet astrophysics, as well as supporting the primary SIM Lite mission through proper multi-wavelength calibration of the giant star astrometric reference frame, and reduction of noise introduced by starspots when searching for extrasolar planets.

  19. Chaotic pulsations in stellar models

    SciTech Connect

    Buchler, J.R. )

    1990-12-01

    The irregular behavior of large-amplitude pulsating stars undergoing radial oscillations is examined theoretically, with a focus on hydrodynamic simulations of the W Virginis population II Cepheids (stars which show both regular and RV Tau characteristics). Sequences of models are constructed as one-parameter families (with luminosity, mass, and composition fixed and Teff as the control parameter) and analyzed to derive a systematic map of the bifurcation set; i.e., of the possible types of pulsations. The results are presented graphically, and it is shown that both cascades of period doubling (via destabilization of an overtone through a half-integer-type resonance) and tangent bifurcation are possible routes to chaos in these systems, depending on the stellar parameters. The general robustness of the chaotic behavior and the existence of a 'chaotic blue edge' in stellar-parameter space are demonstrated. 55 refs.

  20. Stellar Metamorphosis:

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae

  1. PREFACE: A Stellar Journey A Stellar Journey

    NASA Astrophysics Data System (ADS)

    Asplund, M.

    2008-10-01

    astronomical talk, student lecture, musical concert or theatre play. Another attribute of Bengt is his boundless optimism, which not the least has helped many of his students overcome the unavoidable moments of despair (this is only true as long as one is aware of the well-known BG factor: multiply any of Bengt's estimates for the time required to complete a task by at least a factor of three). His personal traits make working with Bengt always very enjoyable as well as highly educating. Bengt's work also extends well beyond the domain of astronomy, including music, literature, theatre, religion, research ethics, science policy and science popularization. Bengt is an excellent role model for a successful scientist with a rich and rewarding life outside of academia. The symposium A Stellar Journey was divided into five sessions covering basically the main research areas Bengt has worked on: Stellar atmospheres, Solar/stellar spectroscopy, Stellar parameters, Stellar evolution and nucleosynthesis and Stellar populations. In addition, one afternoon was devoted to a session entitled Anything but astronomy (see the symposium program), which tried to showcase Bengt's diverse interests outside of astronomy with talks ranging from religion and history of science over science popularization and future studies to literature and music. My task, as chair of the Scientific Organizing Committee, to put together an exciting scientific program of invited reviews and talks was made considerably easier thanks to the excellent suggestions by the other SOC members: Ann Boesgaard, Sofia Feltzing, John Lattanzio, Andre Maeder, Bertrand Plez and Monique Spite. I believe in the end we were successful in achieving our charge, an impression corroborated by the many encouraging comments from various participants during and after the conference. I am particularly grateful to Nils Bergvall, Bengt Edvardsson and Bertrand Plez for their time-consuming efforts in arranging the extraordinary and greatly

  2. YONSEI EVOLUTIONARY POPULATION SYNTHESIS (YEPS) MODEL. I. SPECTROSCOPIC EVOLUTION OF SIMPLE STELLAR POPULATIONS

    SciTech Connect

    Chung, Chul; Yoon, Suk-Jin; Lee, Sang-Yoon; Lee, Young-Wook

    2013-01-15

    We present a series of papers on the 2012 version of the Yonsei Evolutionary Population Synthesis (YEPS) model, which was constructed based on over 20 years of research. This first paper delineates the spectroscopic aspect of integrated light from stellar populations older than 1 Gyr. The standard YEPS is based on the most up-to-date Yonsei-Yale stellar evolutionary tracks and BaSel 3.1 flux libraries, and provides absorption line indices of the Lick/IDS system and high-order Balmer lines for simple stellar populations as functions of stellar parameters, such as metallicity, age, and {alpha}-element mixture. Special care has been taken to incorporate a systematic contribution from horizontal-branch (HB) stars, which alters the temperature-sensitive Balmer lines significantly, resulting in up to a 5 Gyr difference in the age estimation of old, metal-poor stellar populations. We also find that HBs exert an appreciable effect not only on the Balmer lines but also on the metallicity-sensitive lines, including the magnesium index. This is critical in explaining the intriguing bimodality found in index distributions of globular clusters in massive galaxies and to accurately derive spectroscopic metallicities from various indices. A full set of the spectroscopic and photometric YEPS model data of the entire parameter space is currently downloadable at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

  3. Stellar Populations of Shell Galaxies

    NASA Astrophysics Data System (ADS)

    Carlsten, Scott; Zenteno, Alfredo

    2016-01-01

    We present a study of the inner (out to ˜1 effective radius) stellar populations in a sample of 9 shell galaxies. We derive stellar population parameters from long slit spectra by both analyzing the Lick indices of the galaxies and by fitting high resolution SSP model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. We find the presence of young stellar populations in several of the galaxies, implying recent star formation and allowing us to speculate on the age of the shells. Analyzing the metallicity gradients in our sample, we find an average metallicity gradient of -0.16±0.10 dex/decade in radius. Finally, we compare this with galaxy evolution models to try to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers in their past but it is unclear whether the shells formed from these events or from separate minor mergers.

  4. Stellar activity cycles and asteroseismology

    NASA Astrophysics Data System (ADS)

    Salabert, D.

    2011-12-01

    The success of helioseismology is due to its capability to accurately measure the p-mode parameters of the solar eigenmode spectrum, which allow us to infer unique information about the internal structure and dynamics of the Sun from its surface all the way down to the core. It has contributed greatly to a clearer understanding of the Sun and provided insights into the complex solar magnetism, by means for instance of the variability of the characteristics of the p-mode spectrum. Indeed, variations in the mean strength of the solar magnetic field lead to significant shifts in the frequencies of even the lowest-degree p modes with high levels of correlation with solar surface activity proxies. These frequency shifts are explained to arise from structural changes in the outer layers of the Sun during the 11-year activity cycle, which is understood to be driven by a dynamo process. However, clear differences between p-mode frequencies and solar surface activity during the unusually extended minimum of cycle 23 were observed. The origin of the p-mode variability is thus far from being properly understood and a better comprehension of its relationship with solar and stellar activity cycles will help us in our understanding of the dynamo processes. Spectroscopic measurements of Ca H and K emission lines revealed magnetic activity variations in a large sample of solar-type stars with timescales ranging from 2.5 and 25 years. This broad range of cycle periods is thought to reflect differences in the rotational properties and the depths of the surface convection zones with various masses and ages. However, spectroscopic measurements are only good proxies of surface magnetic fields. The recent discovery of variations with magnetic activity in the p-mode oscillation frequencies of the solar-like star HD 49933 observed by CoRoT, with a frequency dependence comparable in shape to the one observed in the Sun, opens a new era in the study of the physical phenomena involved in the

  5. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  6. Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

    PubMed Central

    Badran, Yasser Ali; Abdelaziz, Alsayed Saad; Shehab, Mohamed Ahmed; Mohamed, Hazem Abdelsabour Dief; Emara, Absel-Aziz Ali; Elnabtity, Ali Mohamed Ali; Ghanem, Maged Mohammed; ELHelaly, Hesham Abdel Azim

    2016-01-01

    Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies. PMID:27141192

  7. Stellar Abundances of the Galactic Thick Disk

    NASA Astrophysics Data System (ADS)

    Pettinger, M. M.; Bernkopf, J.; Fuhrmann, K.; Korn, A. J.; Gehren, T.

    We present the results from model atmosphere analyses of two G dwarfs of the Galactic thick disk, 72 Her and HD 64606. High resolution, high signal-to-noise échelle spectra were obtained with the FOCES spectrograph on the 2.2m telescope of the Calar Alto observatory, Spain. Due to the well-defined blaze function of FOCES the determination of the continuum within an order and from order to order in the Hα, Hβ (for Teff) and Mg Ib triplett (for log g) region is very precise and leads to very accurately determined spectroscopic stellar parameters. The aim of our analysis is to study the chemical behaviour of the thick disk in particular with respect to the α-, r- and s-process elements. The principal results are as follows: both stars show significant enhancement in all analysed α-elements, in the r-process element Eu as well as in Al and Zn. Mn and the s-process element Ba are underabundant relative to iron while the other iron-peak elements exhibit a slight enhancement. N, Na, Ce and the r-process element Sr also show a weak overabundance. Based on the very accurate HIPPARCOS astrometry the stellar ages were determined to be 13 Gyrs. This allows us to identify both stars as members of the thick disk which is also in accord with their kinematics. The high Eu/Ba ratios are consistent with the ratio expected for stars older than 12 Gyr under the assumption of r-process dominated enrichment in the early phase of Galactic chemical evolution. We argue that the high [Al/Fe] and [Zn/Fe] ratios potentially allow to spectroscopically distinguish between the halo and thick-disk populations.

  8. Photodynamical modeling of hierarchical stellar system KOI-126

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas Michael

    The power and precision of the Kepler space telescope has provided the astrophysical field with a valuable insight into the dynamics of extra-solar systems. KOI-126 represents the first eclipsing hierarchical triple stellar system identified in the Kepler mission's photometry. The dynamics of the system are such that ascertaining the parameters of each body accurately (better than a few percent) is possible from the photometry alone. This allows determination of the characteristics while avoiding biases inherent in traditional studies of low-mass eclipsing systems. The parameter set for KOI-126 was originally reported on by Carter et al. and is uniquely composed of a low-mass binary, KOI-126 B and KOI-126 C. This pair orbits a third, more massive star KOI-126 A. The original analysis employed a full dynamical-photometric model, utilizing a Levenberg-Marquardt algorithm and least-squares minimization, to fit the short-cadence (i.e. successive 58.84 second cadence exposures) photometric data from the Kepler spacecraft captured over a period of 247 days. The updated catalog of short-cadence data now covers a span of 1,300 days. In light of the new data, and the valuable contribution accurately sampled fully-convective stars offer to theoretical stellar models, it is therefore relevant to refine the parameters of this system. Furthermore, with the ubiquity of multi-stellar systems, a well documented, portable, scalable computer modeling code for N-body systems is introduced. Thus, a new analysis is done on KOI-126 using this parallelized dynamical-photometric modeling package written in Python, based on Carter et al.'s original code, titled Pynamic. Pynamic allows the use of several fitting algorithms, but in this analysis utilizes the affine-invariant Markov chain Monte Carlo ensemble.

  9. History of Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.

    2004-01-01

    This viewgraph presentation reviews the history of stellar interferometry from the suggestion of Fizeau that stellar interferometry was possible,to the use of the Mark I, II and III for astrometry. Photographs, and parts of original articles are presented.

  10. 146 Kepler-Lamost targets fundamental parameters

    NASA Astrophysics Data System (ADS)

    Wu, Yaqian

    2015-08-01

    Accurate stellar fundamental parameters with high precision are important for distinguishing stellar populationand star study.Turn-off stars are in the relatively vital stellar evolution state. Studying turn-off stars can help us to have a more comprehensive understand of the stellar physics.With the help of observation provided by Lamost project, we obtain atmospheric parameters of 146 turn-off stars from LSP3 pipeline. Combined with stellar pulsation data from Kepler, we can get asteroseismic characteristic of stars,such as Δν and νmax.In this paper,we constructed a grid of evolutionary models, with the mass range from 0.8 to 2.5 M⊙ and metallicities Zini = 0.0085, 0.0105, 0.0130, 0.0165, 0.0200, 0.0250, 0.0300, 0.0400 (i.e.[Fe/H] from -0.3 to 0.4dex).All evolutionary tracks were started in the pre-main sequence birth line and ended at the base of Red Giant Branch.Based on the stellar model grid we constructed,as well as Kepler-Lamost observations, we obtained fundamental parameters of 146 around turn-off stars, and found that 112 targets lied in turn-off state or in the Main Sequence,15 targets are subgiant stars and 7 targets have evolved to the red giants stage.Then we use pulsation code(JIG) of Guenther to extract theorical individual frequencies and calculate theorical Δν.Meanwhile we obtained more precise fundamental parameters of these stars.

  11. ASteCA: Automated Stellar Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Vázquez, R. A.; Piatti, A. E.

    2015-04-01

    We present the Automated Stellar Cluster Analysis package (ASteCA), a suit of tools designed to fully automate the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its uncertainties. To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contamination as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11, Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1, Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is written in Python and is made available as an open source code which can be downloaded ready to be used from its official site.

  12. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models

    SciTech Connect

    Malo, Lison; Doyon, René; Albert, Loïc; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan; Feiden, Gregory A.; Riedel, Adric E-mail: doyon@astro.umontreal.ca

    2014-09-01

    Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass stars in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.

  13. Deriving Stellar Inclination of Slow Rotators Using Stellar Activity

    NASA Astrophysics Data System (ADS)

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ~2-2.5 km s-1. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84+6-20 deg, which implies a star-planet obliquity of \\psi =4+18-4 considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45+9-19, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s-1. Based on observations made with the MOST satellite, the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile), and the SOPHIE instrument at the Observatoire de Haute Provence (France).

  14. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  15. Stellar parametrization from Gaia RVS spectra

    NASA Astrophysics Data System (ADS)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    found for A-type stars, while the log(g) derivation is more accurate (errors of 0.07 and 0.12 dex at GRVS = 12.6 and 13.4, respectively). For the faintest stars, with GRVS≳ 13-14, a Teff input from the spectrophotometric-derived parameters will allow the final GSP-Spec parametrization to be improved. Conclusions: The reported results, while neglecting possible mismatches between synthetic and real spectra, show that the contribution of the RVS-based stellar parameters will be unique in the brighter part of the Gaia survey, which allows for crucial age estimations and accurate chemical abundances. This will constitute a unique and precious sample, providing many pieces of the Milky Way history puzzle with unprecedented precision and statistical relevance.

  16. Exploring the stellar populations of nearby and high redshift galaxies with ELTs

    NASA Astrophysics Data System (ADS)

    Gullieuszik, M.; Falomo, R.; Greggio, L.; Uslenghi, M.; Fantinel, D.

    The high sensitivity and spatial resolution of future ELTs facilities will offer the unique opportunity to probe directly the stellar populations of the very inner regions of galaxies in the local Universe and to derive morphological and photometric information for high redshift galaxies. We present our project aimed at assessing the expected capabilities of ELTs in the study of nearby and high-redshift stellar populations. To this end, we simulated imaging observations of different stellar populations in the local Universe and in high-redhshift galaxies with the MICADO camera at the E-ELT. Detailed photometric analyses of these images were used to probe the feasibility of science cases dealing with photometry of resolved stars in crowded fields, and with surface photometry of distant galaxies. We find that the future facilities will allow us to greatly improve our knowledge of the stellar populations in galaxies, especially in the innermost and most crowded regions. Accurate photometry of turn-off stars in nuclear star clusters of intermediate age will be possible up to distances of ˜ 3 Mpc. The exquisite spacial resolution will also drive great progress in unresolved stellar populations studies, enabling the detailed measurement of structural parameters, colour profiles, and the detection of signature of star formation sub-structures in galaxies at redshifts up to z=3.

  17. Spherical Stellarators and Stellarator-Hybrids

    NASA Astrophysics Data System (ADS)

    Moroz, P. E.

    1997-11-01

    Stellarators are typically the large aspect ratio devices, A ≈ 7-10, and the lowest-A stellarators ever built have A ≈ 5. Following the increasing interest in very compact tokamak devices, called Spherical Tokamaks (ST), an interest has also emerged recently in very compact stellarator devices with A <= 3.5, as their attractiveness for fusion is being demonstrated [1-4]. These stellarators have been called, in analogy with the ST, the Spherical Stellarators (SS). The SS devices have a number of unique features and benefit from the strong bootstrap current. The SS concept shows a path to a compact, high-β, and steady-state fusion reactor, which can be relatively simple and inexpensive. We will report on the latest results obtained, discuss various types of coil configurations advantageous for the SS, and present results of the first round of configuration optimization. Applications to ST devices [5] and new results for stellarator-spheromak hybrids [6] will be presented as well. [1] P.E. Moroz, Phys. Rev. Lett. 77, 651 (1996); [2] P.E. Moroz, Phys. Plasmas 3, 3055 (1996); [3] P.E. Moroz, D.B. Batchelor et al., Fusion Tech. 30, 1347 (1996); [4] P.E. Moroz, Plasma Phys. Reports 23, 502 (1997); [5] P.E. Moroz, Nucl. Fusion 37, No. 7 (1997); [6] P.E. Moroz, Sherwood Fus. Theor. Conf., Madison, 3C31 (1997). *Supported by DOE Grant No. DE-FG02-97ER54395.

  18. Automatic stellar spectra parameterisation in the IR Ca ii triplet region

    NASA Astrophysics Data System (ADS)

    Kordopatis, G.; Recio-Blanco, A.; de Laverny, P.; Bijaoui, A.; Hill, V.; Gilmore, G.; Wyse, R. F. G.; Ordenovic, C.

    2011-11-01

    minimum in the fit and the algorithm must avoid being trapped in false local minima. The second algorithm, DEGAS, uses a pattern-recognition approach and consequently has a more global vision of the parameter space. The best-fit synthetic spectrum is derived through a series of comparisons between the observed and synthetic spectra, summed over wavelength pixels, with additional refinements in the set of synthetic spectra after each stage, i.e. a decision tree. Results: We identified physical degeneracies in different regions of the H - R diagram: hot dwarf and giant stars share the same spectral signatures. Furthermore, it is very difficult to determine an accurate value for the surface gravity of cooler dwarfs. These effects are intensified when the lack of information increases, which happens for low-metallicity stars or spectra with low signal-to-noise ratios (SNRs). Our results demonstrate that the local projection method is preferred for spectra with high SNR, whereas the decision-tree method is preferred for spectra of lower SNR. We therefore propose a hybrid approach, combining these methods, and demonstrate that sufficiently accurate results for the purposes of galactic archaeology studies are retrieved down to SNR ~ 20 for typical parameter values of stars belonging to the local thin or thick disc, and for SNR down to ~50 for the more metal-poor giant stars of the halo. Conclusions: If unappreciated, degeneracies in stellar parameters can introduce biases and systematic errors in derived quantities for target stars such as distances and full space motions. These can be minimised using the knowledge gained by thorough testing of the proposed stellar classification algorithm, which in turn lead to robust automated methods for the coming extensive spectroscopic surveys of stars in the Local Group.

  19. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T.-C.; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators.

  20. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations.

    PubMed

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T-C; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators. PMID:27131699

  1. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2015-08-01

    This talk will review ideas about the formation of stellar halos. It will include discussion of the observational evidence for stellar populations formed "in situ" (meaning formed in orbits close to their current ones), "kicked-out" (meaning formed in the inner galaxy in orbits unlike their current ones) and "accreted" (meaning formed in a dark matter halo other than the one they currently occupy). The properties of these (and other) populations seen in simulations of stellar halo formation will also be examined.

  2. Using MASSCLEAN to Describe Stellar Clusters Found in the Vista Variables in the Via Lactea (VVV) Survey

    NASA Astrophysics Data System (ADS)

    Popescu, B.; Hanson, M. M.; Borissova, J.; Kurtev, R.; Ivanov, V. D.; Catelan, M.; Larsen, S. S.; Minniti, D.; Lucas, P.

    2014-10-01

    The important parameters: age, mass and distance of resolved or partially resolved stellar clusters are better accurately determined by using color-magnitude diagrams (CMD). However, when the main sequence turnoff is not available or clearly identifiable, large errors in all parameters result when using simple isochrone fitting, particularly when observations are limited to near-infrared bands. We used the MASSCLEAN package to perform 5 million Monte Carlo simulations of stochastically sampled stellar clusters in order to generate CMD templates for a variety of cluster masses and ages and which mimic the observational photometric errors. This results in the creation of tens of thousands of n-dimensional stellar density maps (templates) in numerous color planes as a function of age and mass. We use these MASSCLEAN CMD templates to refine and sharpen traditional isochrone fitting to analyze the newly discovered stellar clusters/cluster candidates from the Vista Variables in the Via Lactea (VVV) Survey. Our MASSCLEAN templates are also being used to design and optimize search algorithms for stellar clusters in broad-band surveys.

  3. PREFACE: Stellar Atmospheres in the Gaia Era - Preface

    NASA Astrophysics Data System (ADS)

    Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter

    2011-12-01

    Volume 328 (2011) of the Journal of Physics: Conference Series provides a record of the invited and contributed talks, and of the posters presented at the GREAT-ESF workshop entitled `Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modelling' (http://great-esf.oma.be and mirrored at http://spectri.freeshell.org/great-esf). The conference was held on 23-24 June 2011 at the Vrije Universiteit Brussel, Belgium. 47 scientists from 11 countries around the world attended the workshop. The ESA-Gaia satellite (launch mid 2013) will observe a billion stellar objects in the Galaxy and provide spectrophotometric and high-resolution spectra of an unprecedented number of stars observed with a space-based instrument. The confrontation of these data with theoretical models will significantly advance our understanding of the physics of stellar atmospheres. New stellar populations such as previously unknown emission line stars will be discovered, and fundamental questions such as the basic scenarios of stellar evolution will be addressed with Gaia data. The 33 presentations and 4 main discussion sessions at the workshop addressed important topics in spectrum synthesis methods and detailed line profile calculations urgently needed for accurate modelling of stellar spectra. It brought together leading scientists and students of the stellar physics communities investigating hot and cool star spectra. The scientific programme of the workshop consisted of 23 oral (6 invited) and 10 poster presentations about cool stars (first day; Comparative Spectrum Modelling and Quantitative Spectroscopy of Cool Stars), and hot stars (second day; Quantitative Spectroscopy of Hot Stars). The hot and cool stars communities use different spectrum modelling codes for determining basic parameters such as the effective temperature, surface gravity, iron abundance, and the chemical composition of stellar atmospheres. The chaired sessions of the first day highlighted

  4. KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES

    SciTech Connect

    Gilliland, Ronald L.; Chaplin, William J.; Elsworth, Yvonne P.; Miglio, Andrea; Dunham, Edward W.; Argabright, Vic S.; Borucki, William J.; Bryson, Stephen T.; Koch, David G.; Walkowicz, Lucianne M.; Basri, Gibor; Buzasi, Derek L.; Caldwell, Douglas A.; Jenkins, Jon M.; Van Cleve, Jeffrey; Welsh, William F.

    2011-11-01

    Kepler mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here, we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity, and hence noise levels reproduce the primary intrinsic stellar noise features.

  5. The Non-Stellar Infrared Continuum of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, Almudena; Quillen, Alice C.; Simpson, Chris; Efstathiou, Andreas; Ward, Martin J.

    2000-01-01

    JHKL'M (1 - 5 micrometers) imaging of a sample of Seyfert 2 galaxies is presented. We have performed an accurate estimate of the near-infrared non-stellar nuclear fluxes. We confirm that the near-infrared nuclear continuum between 1 and 2.2microns of some Seyfert 2s is dominated by stellar emission, whereas the continuum emission at longer wavelengths (lambda = 3 - 5 micrometers) is almost entirely non-stellar in origin. The non-stellar spectral energy distributions (SED) in the infrared (up to 15 micrometers) of Seyfert galaxies show a variety of shapes, and they are well reproduced with the tapered disk models of Efstathiou & Rowan-Robinson (1995). We have used two models, one including an optically thin cone component found to fit the SED of NGC 1068, and a coneless model. Although our modelling of the SEDs does not allow us to favor either model to account for all the observed SEDs, we find that the viewing angle towards the central source is well constrained by both models. The galaxies in our sample have fitted values of the viewing angle in the range Theta(sub V) = 0 deg - 64 deg, for the assumed model parameters. We have also investigated non-stellar color-color diagrams (L' - M vs. H - M and L' - M vs. H - L'). The colors of the Seyfert galaxies with viewing angles Theta(sub v) less than 30 deg are better reproduced with the cone model. These diagrams provide a good means to separate Seyfert 2s with moderate obscuration (A(sub V) approx. less than 20 mag from hard X-ray observations) from those with high obscuration. The ground-based 4.8 microns and ISO 9.6 microns luminosities are well correlated with the hard X-ray luminosities of Seyfert ls and 2s. These continuum emissions appear as a good indicator of the AGN luminosity, at least in the cases of hard X-ray Compton-thin Seyfert galaxies (N(sub H) less than or = 10(exp 24)/sq cm). We finally stress the finding that some Compton thick galaxies show bright non-stellar emission at 5 microns This suggests

  6. Stellar wind models of subluminous hot stars

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Kubát, J.; Krtičková, I.

    2016-09-01

    Context. Mass-loss rate is one of the most important stellar parameters. Mass loss via stellar winds may influence stellar evolution and modifies stellar spectrum. Stellar winds of subluminous hot stars, especially subdwarfs, have not been studied thoroughly. Aims: We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influence of the magnetic field and X-ray ionization on the stellar wind, and to study the interaction of subdwarf wind with mass loss from Be and cool companions. Methods: We used our kinetic equilibrium (NLTE) wind models with the radiative force determined from the radiative transfer equation in the comoving frame (CMF) to predict the wind structure of subluminous hot stars. Our models solve stationary hydrodynamical equations, that is the equation of continuity, equation of motion, and energy equation and predict basic wind parameters. Results: We predicted the wind mass-loss rate as a function of stellar parameters, namely the stellar luminosity, effective temperature, and metallicity. The derived wind parameters (mass-loss rates and terminal velocities) agree with the values derived from the observations. The radiative force is not able to accelerate the homogeneous wind for stars with low effective temperatures and high surface gravities. We discussed the properties of winds of individual subdwarfs. The X-ray irradiation may inhibit the flow in binaries with compact components. In binaries with Be components, the winds interact with the disk of the Be star. Conclusions: Stellar winds exist in subluminous stars with low gravities or high effective temperatures. Despite their low mass-loss rates, they are detectable in the ultraviolet spectrum and cause X-ray emission. Subdwarf stars may lose a significant part of their mass during the evolution. The angular momentum loss in magnetic subdwarfs with wind may explain their

  7. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profiles to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.

  8. The dependence of convective core overshooting on stellar mass

    NASA Astrophysics Data System (ADS)

    Claret, A.; Torres, G.

    2016-07-01

    Context. Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are very different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly because of a lack of suitable observational data. Aims: We revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. Methods: We used a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 M⊙. We compared their measured properties with stellar evolution calculations to infer semi-empirical values of the overshooting parameter αov for each star. Our models use the common prescription for the overshoot distance dov = αovHp, where Hp is the pressure scale height at the edge of the convective core as given by the Schwarzschild criterion, and αov is a free parameter. Results: We find a relation between αov and mass, which is defined much more clearly than in previous work, and indicates a significant rise up to about 2 M⊙ followed by little or no change beyond this mass. No appreciable dependence is seen with evolutionary state at a given mass, or with metallicity at a given mass although the stars in our sample span a range of a factor of ten in [Fe/H], from -1.01 to + 0.01.

  9. Stellar feedback efficiencies: supernovae versus stellar winds

    NASA Astrophysics Data System (ADS)

    Fierlinger, Katharina M.; Burkert, Andreas; Ntormousi, Evangelia; Fierlinger, Peter; Schartmann, Marc; Ballone, Alessandro; Krause, Martin G. H.; Diehl, Roland

    2016-02-01

    Stellar winds and supernova (SN) explosions of massive stars (`stellar feedback') create bubbles in the interstellar medium (ISM) and insert newly produced heavy elements and kinetic energy into their surroundings, possibly driving turbulence. Most of this energy is thermalized and immediately removed from the ISM by radiative cooling. The rest is available for driving ISM dynamics. In this work we estimate the amount of feedback energy retained as kinetic energy when the bubble walls have decelerated to the sound speed of the ambient medium. We show that the feedback of the most massive star outweighs the feedback from less massive stars. For a giant molecular cloud (GMC) mass of 105 M⊙ (as e.g. found in the Orion GMCs) and a star formation efficiency of 8 per cent the initial mass function predicts a most massive star of approximately 60 M⊙. For this stellar evolution model we test the dependence of the retained kinetic energy of the cold GMC gas on the inclusion of stellar winds. In our model winds insert 2.34 times the energy of an SN and create stellar wind bubbles serving as pressure reservoirs. We find that during the pressure-driven phases of the bubble evolution radiative losses peak near the contact discontinuity (CD), and thus the retained energy depends critically on the scales of the mixing processes across the CD. Taking into account the winds of massive stars increases the amount of kinetic energy deposited in the cold ISM from 0.1 per cent to a few per cent of the feedback energy.

  10. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  11. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15-30 labels simultaneously.

  12. Stellarator-Spheromak

    SciTech Connect

    Moroz, P.E.

    1997-03-01

    A novel concept for magnetic plasma confinement, Stellarator-Spheromak (SSP), is proposed. Numerical analysis with the classical-stellarator-type outboard stellarator windings demonstrates a number of potential advantages of SSP for controlled nuclear fusion. Among the main ones are: simple and compact magnet coil configuration, absence of material structures (e.g. magnet coils or conducting walls) in the center of the torus, high rotational transform, and a possibility of MHD equilibria with very high {beta} (pressure/magnetic pressure) of the confined plasma.

  13. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  14. Comprehensive stellar population models and the disentanglement of age and metallicity effects

    NASA Technical Reports Server (NTRS)

    Worthey, Guy

    1994-01-01

    applied in a differential sense have smaller uncertainties. (4) In the present models the dominant error for colors is probably the transformation from stellar atmospheric parameters to stellar colors. (5) Stellar B - V is difficult to model, and current spreads among different authors can reach 0.2 mag. (6) If known defects in the stellar flux library are corrected, the population model colors of this work in passbands redder than U would be accurate to roughly 0.03 mag in an absolute sense. These corrections are not made in the tables of model output.

  15. UV light from old stellar populations: the HST and GALEX eyes on globular clusters.

    NASA Astrophysics Data System (ADS)

    Dalessandro, Emanuele

    The UV properties of old stellar populations have been subject of intense scrutiny from the late sixties, when the UV-upturn in early type galaxies was first discovered. Because of their proximity and relative simplicity, Galactic globular clusters (GGCs) are ideal local templates to understand how the integrated UV light is driven by hot stellar populations, primarily horizontal branch stars and their progeny. Our understanding of such stars is still plagued by theoretical uncertainties, which are partly due to the absence of an accurate, comprehensive, statistically representative homogeneous data-set. To move a step forward on this subject, we have combined the HST and GALEX capabilities and collected the largest data-base ever obtained for GGCs in UV. This data-base is best suited to provide insights on the HB second parameter problem and on the first stages of GCs formation and chemical evolution and to understand how they are linked to the observed properties of extragalactic systems.

  16. The structure and Stellar Populations of Nuclear Star Clusters in Late-type Spiral Galaxies From HST/WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel

    2016-06-01

    Luminous, compact stellar systems known as nuclear clusters (NCs) are commonly found in the centers of galaxies across the entire Hubble sequence. I present an analysis of the structure and stellar populations of a sample of ten of the nearest and brightest NCs residing in late-type spiral galaxies, using imaging data from Hubble Space Telescope Wide Field Camera 3 in seven bands that span the near-ultraviolet to the near-infrared. The intrinsic shapes and sizes of the NCs, disentangled from the effects of point spread function (PSF) blurring, were measured using GALFIT. For six of the ten NCs in our sample, we find changes in the effective radius with wavelength, which suggests that many NCs contain radially varying stellar populations. There is also a general trend of increasing roundness of the NCs at longer wavelengths, suggesting that the youngest stars in NCs typically form in disks. I developed a Monte Carlo code to fit linear combinations of simple stellar population models to the observed spectral energy distribution (SED) of each NC and assess the uncertainties in the fit parameters. Tests using mock SEDs with known input parameters demonstrate that although the method is susceptible to degeneracies between model SEDs, the code is robust and accurately recovers the total stellar mass for a wide range of NC colors and ages. I present global star formation histories and stellar mass estimates for each cluster, which are in good agreement with previous dynamical studies. The clusters are generally dominated by an old (> 1 Gyr) population, but are best described by multi-age models. The spatially resolved properties of the stellar populations of each NC were also studied by performing SED fits on a pixel-by-pixel basis. These fits reveal radial age gradients in the same NCs that exhibited variation in the effective radius with wavelength. Finally, I present deprojected density profiles and estimates of the central stellar density of each cluster.

  17. Disentangling between stellar activity and planetary signals

    NASA Astrophysics Data System (ADS)

    Boisse, Isabelle; Bouchy, François; Hébrard, Guillaume; Bonfils, Xavier; Santos, Nuno; Vauclair, Sylvie

    2011-08-01

    Photospheric stellar activity (i.e. dark spots or bright plages) might be an important source of noise and confusion in the radial-velocity (RV) measurements. Radial-velocimetry planet search surveys as well as follow-up of photometric transit surveys require a deeper understanding and characterization of the effects of stellar activities to disentangle it from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations of the RV are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at the fundamental period and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD 189733, GJ 674, CoRoT-7 and ι Hor. We succeed in fitting simultaneously activity and planetary signals on GJ674 and CoRoT-7. We excluded short-period low-mass exoplanets around ι Hor. Our approach is efficient to disentangle reflex-motion due to a planetary companion and stellar-activity induced-RV variations provided that 1) the planetary orbital period is not close to that of the stellar rotation or one of its two-first harmonics, 2) the rotational period of the star is accurately known, 3) the data cover more than one stellar rotational period.

  18. Stellar atmospheric structural patterns

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1983-01-01

    The thermodynamics of stellar atmospheres is discussed. Particular attention is given to the relation between theoretical modeling and empirical evidence. The characteristics of distinctive atmospheric regions and their radical structures are discussed.

  19. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  20. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  1. Treatment of atomic and molecular line blanketing by opacity sampling. [atmospheric optics - stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Krupp, B. M.

    1975-01-01

    An opacity sampling (OS) technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is presented. Tests were conducted and results show that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 500 frequency points is often adequate. The effects of atomic and molecular lines are separately studied. A test model computed by using the OS method agrees very well with a model having identical atmospheric parameters computed by the giant line (opacity distribution function) method.

  2. Stellar activity and coronal heating: an overview of recent results.

    PubMed

    Testa, Paola; Saar, Steven H; Drake, Jeremy J

    2015-05-28

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  3. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  4. Stellar activity and coronal heating: an overview of recent results.

    PubMed

    Testa, Paola; Saar, Steven H; Drake, Jeremy J

    2015-05-28

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars.

  5. Ripple transport in Helical-Axis Advanced Stellarators: A comparison with classical stellarator/torsatrons

    SciTech Connect

    Beidler, C.D.; Hitchon, W.N.G.

    1995-07-01

    Calculations of the neoclassical transport rates due to particles trapped in the helical ripples of a stellarator`s magnetic field are carried out, based on solutions of the bounceaveraged kinetic equation. These calculations employ a model for the magnetic field strength, B, which is an accurate approximation to the actual B for a wide variety of stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias) as well as conventional stellarators and torsatrons. Comparisons are carried out in which it is shown that the Helias concept leads to significant reductions in neoclassical transport rates throughout the entire long-mean-free-path regime, with the reduction being particularly dramatic in the {nu}{sup {minus}1} regime. These findings are confirmed by numerical simulations. Further, it is shown that the behavior of deeply trapped particles in Helias can be fundamentally different from that in classical stellarator/torsatrons; as a consequence, the beneficial effects of a radial electric field on the transport make themselves felt at lower collision frequency than is usual.

  6. WFPC2 Stellar Photometry with HSTphot

    NASA Technical Reports Server (NTRS)

    Dolphin, Andrew E.

    2000-01-01

    HSTphot, a photometry package designed to handle the undersampled PSFs found in WFPC2 images, is introduced and described, as well as some of the considerations that have to be made in order to obtain accurate PSF-fitting stellar photometry with WFPC2 data. Tests of HSTphot's internal reliability are made using multiple observations of the same field, and tests of external reliability are made by comparing with DoPHOT reductions of the same data. Subject headz'ngs: techniques: photometric

  7. Radiation-driven winds of hot luminous stars. XVIII. The unreliability of stellar and wind parameter determinations from optical vs. UV spectral analysis of selected central stars of planetary nebulae and the possibility of some CSPNs as single-star supernova Ia progenitors

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Pauldrach, A. W. A.; Kaschinski, C. B.

    2016-08-01

    Context. The uncertainty in the degree to which radiation-driven winds of hot stars might be affected by small inhomogeneities in the density leads to a corresponding uncertainty in the determination of the atmospheric mass loss rates from the strength of optical recombination lines and - since the mass loss rate is not a free parameter but a function of the stellar parameters mass, radius, luminosity, and abundances - in principle also in the determination of these stellar parameters. Furthermore, the optical recombination lines also react sensitively to even small changes in the density structure resulting from the (often assumed instead of computed) velocity law of the outflow. This raises the question of how reliable the parameter determinations from such lines are. Aims: The currently existing severe discrepancy between central stars of planetary nebulae (CSPN) stellar and wind parameters derived from model fits to the optical spectra and those derived using hydrodynamically consistent model fits to the UV spectra is to be reassessed via a simultaneous optical/UV analysis using a state-of-the-art model atmosphere code. Methods: We have modified our hydrodynamically consistent model atmosphere code with an implementation of the usual ad hoc treatment of clumping (small inhomogeneities in the density) in the wind. This allows us to re-evaluate, with respect to their influence on the appearance of the UV spectra and their compatibility with the observations, the parameters determined in an earlier study that had employed clumping in its models to achieve a fit to the observed optical spectra. Results: The discrepancy between the optical and the UV analyses is confirmed to be the result of a missing consistency between stellar and wind parameters in the optical analysis. While clumping in the wind does significantly increase the emission in the optical hydrogen and helium recombination lines, the influence of the density (velocity field) is of the same order as

  8. Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S. (Editor); Golub, L. (Editor)

    1981-01-01

    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.

  9. Las Campanas Stellar Library

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor; Zolotukhin, Ivan; Beletsky, Yuri; Worthey, Guy

    2015-08-01

    Stellar libraries are fundamental tools required to understand stellar populations in star clusters and galaxies as well as properties of individual stars. Comprehensive libraries exist in the optical domain, but the near-infrared (NIR) domain stays a couple of decades behind. Here we present the Las Campanas Stellar Library project aiming at obtaining high signal-to-noise intermediate-resolution (R=8000) NIR spectra (0.83<λ<2.5μm) for a sample of 1200 stars in the Southern sky using the Folded-port InfraRed Echelette spectrograph at the 6.5-m Magellan Baade telescope. We developed a dedicated observing strategy and customized the telescope control software in order to achieve the highest possible level of data homogeniety. As of 2015, we observed about 600 stars of all spectral types and luminosity classes making our library the largest homogeneous collection of stellar spectra covering the entire NIR domain. We also re-calibrated in flux and wavelength the two existing optical stellar libraries, INDO-US and UVES-POP and followed up about 400 non-variable stars in the NIR in order to get complete optical-NIR coverage. Worth mentioning that our current sample includes about 80 AGB stars and a few dozens of bulge/LMC/SMC stars.

  10. On the universal stellar law

    NASA Astrophysics Data System (ADS)

    Krot, Alexander

    In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of

  11. On stellar limb darkening and exoplanetary transits

    NASA Astrophysics Data System (ADS)

    Howarth, Ian D.

    2011-12-01

    This paper examines how to compare stellar limb-darkening coefficients evaluated from model atmospheres with those derived from photometry. Different characterizations of a given model atmosphere can give quite different numerical results (even for a given limb-darkening 'law'), while light-curve analyses yield limb-darkening coefficients that are dependent on system geometry, and that are not directly comparable to any model-atmosphere representation. These issues are examined in the context of exoplanetary transits, which offer significant advantages over traditional binary-star eclipsing systems in the study of stellar limb darkening. 'Like for like' comparisons between light-curve analyses and new model-atmosphere results, mediated by synthetic photometry, are conducted for a small sample of stars. Agreement between the resulting synthetic-photometry/atmosphere-model (SPAM) limb-darkening coefficients and empirical values ranges from very good to quite poor, even though the targets investigated show only a small dispersion in fundamental stellar parameters.

  12. Strong stellar winds.

    PubMed

    Conti, P S; McCray, R

    1980-04-01

    The hottest and most luminous stars lose a substantial fraction of their mass in strong stellar winds. These winds not only affect the evolution of the star, they also carve huge expanding cavities in the surrounding interstellar medium, possibly affecting star formation. The winds are probably driven by radiation pressure, but uncertainties persist in their theoretical description. Strong x-ray sources associated with a few of these hot stars may be used to probe the stellar winds. The nature of the weak x-ray sources recently observed to be associated with many of these stars is uncertain. It is suggested that roughly 10 percent of the luminous hot stars may have as companions neutron stars or black holes orbiting within the stellar winds.

  13. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  14. Sparse field stellar photometry

    NASA Astrophysics Data System (ADS)

    Reid, N.

    The past few years have seen substantial developments in the capability of high speed measuring machines in the field of automated stellar photometry. However, it is only very recently that these machines have started to make any impact on stellar astronomy, and even now their potential is scarcely being exploited. In this review, after describing some of the limitations on photometric precision, empirical results are used to demonstrate the sort of accuracies that are possible with the UK Schmidt plate plus COSMOS/APM images-scan combination. The astronomical results obtained to date from these machines are discussed, and some consideration is given to the future role of measuring machines in stellar astronomy.

  15. THE RESOLVED STELLAR HALO OF NGC 253

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Chappell, Samantha N.; Radburn-Smith, David J.; De Jong, Roelof S.

    2011-07-20

    We have obtained Magellan/IMACS and Hubble Space Telescope (HST)/Advanced Camera for Surveys imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a {approx} 0.35 {+-} 0.1. The total stellar mass of the halo is estimated to be M{sub halo} {approx} (2.5 {+-} 1.5) x 10{sup 9} M{sub sun}, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 {+-} 0.6, corresponding to a three-dimensional power-law index of {approx} - 4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.

  16. Catalyzed D-D stellarator reactor

    DOE PAGES

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  17. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2003-05-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  18. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2008-02-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  19. Sparse field stellar photometry.

    NASA Astrophysics Data System (ADS)

    Reid, N.

    The past few years have seen substantial developments in the capability of high speed measuring machines in the field of automated stellar photometry. In this review, after describing some of the limitations on photometric precision, empirical results are used to demonstrate the sort of accuracies that are possible with the UK Schmidt plate plus COSMOS/APM images-scan combination. The astronomical results obtained to date from these machines are discussed, and some consideration is given to the future role of measuring machines in stellar astronomy.

  20. Importance of including small body spin effects in the modelling of intermediate mass-ratio inspirals. II. Accurate parameter extraction of strong sources using higher-order spin effects

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Gair, Jonathan R.; Brown, Duncan A.

    2012-03-01

    -4, and 10-1, respectively. LISA should also be able to determine the location of the source in the sky and the SMBH spin orientation to within ˜10-4 steradians. Furthermore, we show that by including conservative corrections up to 2.5PN order, systematic errors no longer dominate over statistical errors. This shows that search templates that include small body spin effects in the equations of motion up to 2.5PN order should allow us to perform accurate parameter extraction for IMRIs with typical signal-to-noise ratio ˜1000.

  1. CH in stellar atmospheres: an extensive linelist

    NASA Astrophysics Data System (ADS)

    Masseron, T.; Plez, B.; Van Eck, S.; Colin, R.; Daoutidis, I.; Godefroid, M.; Coheur, P.-F.; Bernath, P.; Jorissen, A.; Christlieb, N.

    2014-11-01

    The advent of high-resolution spectrographs and detailed stellar atmosphere modelling has strengthened the need for accurate molecular data. Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with which to study transitions from the CH molecule. We combine programs for spectral analysis of molecules and stellar-radiative transfer codes to build an extensive CH linelist, including predissociation broadening as well as newly identified levels. We show examples of strong predissociation CH lines in CEMP stars, and we stress the important role played by the CH features in the Bond-Neff feature depressing the spectra of barium stars by as much as 0.2 mag in the λ = 3000-5500 Å range. Because of the extreme thermodynamic conditions prevailing in stellar atmospheres (compared to the laboratory), molecular transitions with high energy levels can be observed. Stellar spectra can thus be used to constrain and improve molecular data. Full Table 14 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/571/A47

  2. Stellar magnetic cycles

    NASA Astrophysics Data System (ADS)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  3. A Stellar Demonstrator

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2009-01-01

    The main purpose of the stellar demonstrator is to help explain the movement of stars. In particular, students have difficulties understanding why, if they are living in the Northern Hemisphere, they may observe starts in the Southern Hemisphere, or why circumpolar stars are not the same in different parts of Europe. Using the demonstrator, these…

  4. Stellar Ontogeny: From Dust...

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the process of star formation. Infrared and radio astronomy, particularly microwave astronomy is used to provide information on different stages of stellar formation. The role of dust and gas which swirl through the interstellar regions of a galaxy and the collapse of a cloud in star formation are also presented. (HM)

  5. Introduction to Stellar Astrophysics

    NASA Astrophysics Data System (ADS)

    Böhm-Vitense, Erika

    1992-01-01

    This book is the final one in a series of three texts which together provide a modern, complete and authoritative account of our present knowledge of the stars. It discusses the internal structure and the evolution of stars, and is completely self-contained. There is an emphasis on the basic physics governing stellar structure and the basic ideas on which our understanding of stellar structure is based. The book also provides a comprehensive discussion of stellar evolution. Careful comparison is made between theory and observation, and the author has thus provided a lucid and balanced introductory text for the student. As for volumes 1 and 2, volume 3 is self-contained and can be used as an independent textbook. The author has not only taught but has also published many original papers in this subject. Her clear and readable style should make this text a first choice for undergraduate and beginning graduate students taking courses in astronomy and particularly in stellar astrophysics.

  6. Clumps in stellar winds

    NASA Astrophysics Data System (ADS)

    Vink, J. S.

    2014-07-01

    We discuss the origin and quantification of wind clumping and mass-loss rates (Ṁ), particularly in close proximity to the Eddington (Γ) limit, relevant for very massive stars (VMS). We present evidence that clumping may not be the result of the line-deshadowing instability (LDI), but that clumps are already present in the stellar photosphere.

  7. Opacity of stellar matter

    SciTech Connect

    Rogers, F J

    1998-09-17

    New efforts to calculate opacity have produced significant improvements in the quality of stellar models. The most dramatic effect has been large opacity enhancements for stars subject to large amplitude pulsations. Significant improvement in helioseismic modeling has also been obtained. A description and comparisons of the new opacity efforts are give

  8. isochrones: Stellar model grid package

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.

    2015-03-01

    Isochrones, written in Python, simplifies common tasks often done with stellar model grids, such as simulating synthetic stellar populations, plotting evolution tracks or isochrones, or estimating the physical properties of a star given photometric and/or spectroscopic observations.

  9. Trends of stellar entropy along stellar evolution

    NASA Astrophysics Data System (ADS)

    de Avellar, Guilherme Bronzato, Marcio; Alvares de Souza, Rodrigo; Horvath, Jorge Ernesto

    2016-02-01

    This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.

  10. Convective Overshoot in Stellar Interior

    NASA Astrophysics Data System (ADS)

    Zhang, Q. S.

    2015-07-01

    In stellar interiors, the turbulent thermal convection transports matters and energy, and dominates the structure and evolution of stars. The convective overshoot, which results from the non-local convective transport from the convection zone to the radiative zone, is one of the most uncertain and difficult factors in stellar physics at present. The classical method for studying the convective overshoot is the non-local mixing-length theory (NMLT). However, the NMLT bases on phenomenological assumptions, and leads to contradictions, thus the NMLT was criticized in literature. At present, the helioseismic studies have shown that the NMLT cannot satisfy the helioseismic requirements, and have pointed out that only the turbulent convection models (TCMs) can be accepted. In the first part of this thesis, models and derivations of both the NMLT and the TCM were introduced. In the second part, i.e., the work part, the studies on the TCM (theoretical analysis and applications), and the development of a new model of the convective overshoot mixing were described in detail. In the work of theoretical analysis on the TCM, the approximate solution and the asymptotic solution were obtained based on some assumptions. The structure of the overshoot region was discussed. In a large space of the free parameters, the approximate/asymptotic solutions are in good agreement with the numerical results. We found an important result that the scale of the overshoot region in which the thermal energy transport is effective is 1 HK (HK is the scale height of turbulence kinetic energy), which does not depend on the free parameters of the TCM. We applied the TCM and a simple overshoot mixing model in three cases. In the solar case, it was found that the temperature gradient in the overshoot region is in agreement with the helioseismic requirements, and the profiles of the solar lithium abundance, sound speed, and density of the solar models are also improved. In the low-mass stars of open

  11. Stellar Pulsations and Stellar Evolution: Conflict, Cohabitation, or Symbiosis?

    NASA Astrophysics Data System (ADS)

    Weiss, Achim

    While the analysis of stellar pulsations allows the determination of current properties of a star, stellar evolution models connect it with its previous history. In many cases results from both methods do not agree. In this review some classical and current cases of disagreement are presented. In some cases these conflicts led to an improvement of the theory of stellar evolution, while in others they still remain unsolved. Some well-known problems of stellar physics are pointed out as well, for which it is hoped that seismology—or in general the analysis of stellar pulsations—will help to resolve them. The limits of this symbiosis will be discussed as well.

  12. Stellar encounter driven red-giant star mass loss in globular clusters

    SciTech Connect

    Pasquato, Mario; Moraghan, Anthony; Chung, Chul; Lee, Young-Wook; De Luca, Andrea; Raimondo, Gabriella; Carini, Roberta; Brocato, Enzo

    2014-07-01

    Globular cluster (GC) color-magnitude diagrams (CMDs) are reasonably well understood in terms of standard stellar evolution. However, there are still some open issues, such as fully accounting for the horizontal branch (HB) morphology in terms of chemical and dynamical parameters. Mass loss on the red giant branch (RGB) shapes the mass distribution of the HB stars, and the color distribution in turn. The physical mechanisms driving mass loss are still unclear, as direct observations fail to reveal a clear correlation between mass-loss rate and stellar properties. The HB mass distribution is further complicated by helium-enhanced multiple stellar populations due to differences in the evolving mass along the HB. We present a simple analytical mass-loss model based on tidal stripping through Roche-Lobe overflow during stellar encounters. Our model naturally results in a non-Gaussian mass-loss distribution with high skewness and contains only two free parameters. We fit it to the HB mass distribution of four Galactic GCs, as obtained from fitting the CMD with zero age HB models. The best-fit model accurately reproduces the observed mass distribution. If confirmed on a wider sample of GCs, our results would account for the effects of dynamics in RGB mass-loss processes and provide a physically motivated procedure for synthetic CMDs of GCs. Our physical modeling of mass loss may result in the ability to disentangle the effects of dynamics and helium-enhanced multiple populations on the HB morphology and is instrumental in making HB morphology a probe of the dynamical state of GCs, leading to an improved understanding of their evolution.

  13. Mass Transfer by Stellar Wind

    NASA Astrophysics Data System (ADS)

    Boffin, Henri M. J.

    I review the process of mass transfer in a binary system through a stellar wind, with an emphasis on systems containing a red giant. I show how wind accretion in a binary system is different from the usually assumed Bondi-Hoyle approximation, first as far as the flow's structure is concerned, but most importantly, also for the mass accretion and specific angular momentum loss. This has important implications on the evolution of the orbital parameters. I also discuss the impact of wind accretion, on the chemical pollution and change in spin of the accreting star. The last section deals with observations and covers systems that most likely went through wind mass transfer: barium and related stars, symbiotic stars and central stars of planetary nebulae (CSPN). The most recent observations of cool CSPN progenitors of barium stars, as well as of carbon-rich post-common envelope systems, are providing unique constraints on the mass transfer processes.

  14. Magellanic Clouds: Stellar Populations

    NASA Astrophysics Data System (ADS)

    Mould, J.; Murdin, P.

    2000-11-01

    The Magellanic Clouds (figure 1) have long been seen as the prototypical young STELLAR POPULATION. The presence of young GLOBULAR CLUSTERS in the Clouds spoke to southern hemisphere observers of the opportunity to study close up processes which have not occurred in the Milky Way for a long time. Young globulars are also seen in other gas-rich, highly disturbed environments, such as merging galaxi...

  15. DOLPHOT: Stellar photometry

    NASA Astrophysics Data System (ADS)

    Dolphin, Andrew

    2016-08-01

    DOLPHOT is a stellar photometry package that was adapted from HSTphot for general use. It supports two modes; the first is a generic PSF-fitting package, which uses analytic PSF models and can be used for any camera. The second mode uses ACS PSFs and calibrations, and is effectively an ACS adaptation of HSTphot. A number of utility programs are also included with the DOLPHOT distribution, including basic image reduction routines.

  16. A new correction of stellar oscillation frequencies for near-surface effects

    NASA Astrophysics Data System (ADS)

    Ball, W. H.; Gizon, L.

    2014-08-01

    Context. Space-based observations of solar-like oscillations present an opportunity to constrain stellar models using individual mode frequencies. However, current stellar models are inaccurate near the surface, which introduces a systematic difference that must be corrected. Aims: We introduce and evaluate two parametrizations of the surface corrections based on formulae given by Gough (1990, LNP, 367, 283). The first we call a cubic term proportional to ν3/ ℐ and the second has an additional inverse term proportional to ν-1/ ℐ, where ν and ℐ are the frequency and inertia of an oscillation mode. Methods: We first show that these formulae accurately correct model frequencies of two different solar models (Model S and a calibrated MESA model) when compared to observed BiSON frequencies. In particular, even the cubic form alone fits significantly better than a power law. We then incorporate the parametrizations into a modelling pipeline that simultaneously fits the surface effects and the underlying stellar model parameters. We apply this pipeline to synthetic observations of a Sun-like stellar model, solar observations degraded to typical asteroseismic uncertainties, and observations of the well-studied CoRoT target HD 52265. For comparison, we also run the pipeline with the scaled power-law correction proposed by Kjeldsen et al. (2008, ApJ, 683, L175). Results: The fits to synthetic and degraded solar data show that the method is unbiased and produces best-fit parameters that are consistent with the input models and known parameters of the Sun. Our results for HD 52265 are consistent with previous modelling efforts and the magnitude of the surface correction is similar to that of the Sun. The fit using a scaled power-law correction is significantly worse but yields consistent parameters, suggesting that HD 52265 is sufficiently Sun-like for the same power-law to be applicable. Conclusions: We find that the cubic term alone is suitable for asteroseismic

  17. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  18. THE STEADY-STATE WIND MODEL FOR YOUNG STELLAR CLUSTERS WITH AN EXPONENTIAL STELLAR DENSITY DISTRIBUTION

    SciTech Connect

    Silich, Sergiy; Tenorio-Tagle, Guillermo; Martinez-Gonzalez, Sergio; Bisnovatyi-Kogan, Gennadiy E-mail: gkogan@iki.rssi.ru

    2011-12-20

    A hydrodynamic model for steady-state, spherically symmetric winds driven by young stellar clusters with an exponential stellar density distribution is presented. Unlike in most previous calculations, the position of the singular point R{sub sp}, which separates the inner subsonic zone from the outer supersonic flow, is not associated with the star cluster edge, but calculated self-consistently. When the radiative losses of energy are negligible, the transition from the subsonic to the supersonic flow occurs always at R{sub sp} Almost-Equal-To 4R{sub c} , where R{sub c} is the characteristic scale for the stellar density distribution, irrespective of other star cluster parameters. This is not the case in the catastrophic cooling regime, when the temperature drops abruptly at a short distance from the star cluster center, and the transition from the subsonic to the supersonic regime occurs at a much smaller distance from the star cluster center. The impact from the major star cluster parameters to the wind inner structure is thoroughly discussed. Particular attention is paid to the effects which radiative cooling provides to the flow. The results of the calculations for a set of input parameters, which lead to different hydrodynamic regimes, are presented and compared to the results from non-radiative one-dimensional numerical simulations and to those from calculations with a homogeneous stellar mass distribution.

  19. Black holes in young stellar clusters

    SciTech Connect

    Goswami, Sanghamitra; Kiel, Paul; Rasio, Frederic A.

    2014-02-01

    We present theoretical models for stellar black hole (BH) properties in young, massive star clusters. Using a Monte Carlo code for stellar dynamics, we model realistic star clusters with N ≅ 5 × 10{sup 5} stars and significant binary fractions (up to 50%) with self-consistent treatments of stellar dynamics and stellar evolution. We compute the formation rates and characteristic properties of single and binary BHs for various representative ages, cluster parameters, and metallicities. Because of dynamical interactions and supernova (SN) kicks, more single BHs end up retained in clusters compared to BHs in binaries. We also find that the ejection of BHs from a cluster is a strong function of initial density. In low-density clusters (where dynamical effects are negligible), it is mainly SN kicks that eject BHs from the cluster, whereas in high-density clusters (initial central density ρ {sub c}(0) ∼ 10{sup 5} M {sub ☉} pc{sup –3} in our models) the BH ejection rate is enhanced significantly by dynamics. Dynamical interactions of binary systems in dense clusters also modify the orbital period and eccentricity distributions while increasing the probability of a BH having a more massive companion.

  20. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have found possible proofs of stellar vampirism in the globular cluster 47 Tucanae. Using ESO's Very Large Telescope, they found that some hot, bright, and apparently young stars in the cluster present less carbon and oxygen than the majority of their sisters. This indicates that these few stars likely formed by taking their material from another star. "This is the first detection of a chemical signature clearly pointing to a specific scenario to form so-called 'Blue straggler stars' in a globular cluster", said Francesco Ferraro, from the Astronomy Department of Bologna University (Italy) and lead-author of the paper presenting the results. Blue stragglers are unexpectedly young-looking stars found in stellar aggregates, such as globular clusters, which are known to be made up of old stars. These enigmatic objects are thought to be created in either direct stellar collisions or through the evolution and coalescence of a binary star system in which one star 'sucks' material off the other, rejuvenating itself. As such, they provide interesting constraints on both binary stellar evolution and star cluster dynamics. To date, the unambiguous signatures of either stellar traffic accidents or stellar vampirism have not been observed, and the formation mechanisms of Blue stragglers are still a mystery. The astronomers used ESO's Very Large Telescope to measure the abundance of chemical elements at the surface of 43 Blue straggler stars in the globular cluster 47 Tucanae [1]. They discovered that six of these Blue straggler stars contain less carbon and oxygen than the majority of these peculiar objects. Such an anomaly indicates that the material at the surface of the blue stragglers comes from the deep interiors of a parent star [2]. Such deep material can reach the surface of the blue straggler only during the mass transfer process occurring between two stars in a binary system. Numerical simulations indeed show that the coalescence of stars should not

  1. MHD stability of the MHH2 stellarator

    SciTech Connect

    Garabedian, P.R.

    1998-12-31

    The NSTAB code provides a computer implementation of the variational principle of magnetohydrodynamics. Excellent resolution is obtained by combining a spectral representation in the toroidal and poloidal angles with a low order, but exceptionally accurate, finite difference scheme in the radial direction. Conservation form of the magnetostatics equations is used to capture islands and current sheets effectively on crude grids. This method enables one to discuss global stability by analyzing bifurcated solutions of the equilibrium problem. The author applies it to investigate the physics of the MHH2 stellarator, whose magnetic structure has a remarkable property of quasi-axial symmetry.

  2. THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION

    SciTech Connect

    Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.

    2013-04-10

    In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, these differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.

  3. Stellar structure of magnetars

    NASA Astrophysics Data System (ADS)

    Dong, JianMin; Zuo, Wei; Gu, JianZhong; Shang, XinLe

    2016-04-01

    Magnetars are strong magnetized neutron stars which could emit quiescent X-ray, repeating burst of soft gamma ray, and even the giant flares. We investigate the effects of magnetic fields on the structure of isolated magnetars. The stellar structure together with the magnetic field configuration can be obtained at the same time within a self-consistent procedure. The magnetar mass and radius are found to be weakly enhanced by the strong magnetic fields. Unlike other previous investigations, the magnetic field is unable to violate the mass limit of the neutron stars.

  4. A Stellar Highway

    NASA Astrophysics Data System (ADS)

    Rijsdijk, Case

    2015-10-01

    Thomas Henderson, at the Royal Observatory of the Cape, was the first person to measure the distance to a star in 1834. Robert Innes, at the Union Observatory in Johannesburg, discovered that Proxima Centauri was the nearest star to the Sun in 1915. The idea of marking the 100th anniversary of the discovery of Proxima Centauri in 2015 led to the development of a Stellar Highway, similar to the well-known scale models of the Solar System or Planetary Highways, but showing the scaled distance between stars.

  5. Polarized Continuum Radiation from Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrington, J. Patrick

    2015-10-01

    Continuum scattering by free electrons can be significant in early type stars, while in late type stars Rayleigh scattering by hydrogen atoms or molecules may be important. Computer programs used to construct models of stellar atmospheres generally treat the scattering of the continuum radiation as isotropic and unpolarized, but this scattering has a dipole angular dependence and will produce polarization. We review an accurate method for evaluating the polarization and limb darkening of the radiation from model stellar atmospheres. We use this method to obtain results for: (i) Late type stars, based on the MARCS code models (Gustafsson et al. 2008), and (ii) Early type stars, based on the NLTE code TLUSTY (Lanz and Hubeny 2003). These results are tabulated at http://www.astro.umd.edu/~jph/Stellar_Polarization.html. While the net polarization vanishes for an unresolved spherical star, this symmetry is broken by rapid rotation or by the masking of part of the star by a binary companion or during the transit of an exoplanet. We give some numerical results for these last cases.

  6. MASSCLEAN: MASSive CLuster Evolution and ANalysis package -- A new tool for stellar clusters

    NASA Astrophysics Data System (ADS)

    Popescu, Bogdan

    2010-11-01

    Stellar clusters are laboratories for stellar evolution. Their stellar content have an uniform age and chemical composition, but span a large mass interval. The majority of stars are born in clusters and end up in the general field population. An accurate characterization of stellar clusters could be used to built better models, from stellar evolution to the evolution of an entire galaxy. Regardless of the fact that they are so close, for many Milky Way clusters it is difficult to be observed because they are obscured by the dust in the disk of our Galaxy. The clusters from the Local Group and beyond are too distant, so only their integrated properties could be used most of the time. There is one way to analyze the observational data, to search for clusters, and to describe them: simulations. MASSCLEAN (MASSive CLuster Evolution and ANalysis) package was developed to provide a better characterization of Galactic clusters, to derive selection effects of current surveys, and to provide information about the extra-galactic clusters. Simulations of known Galactic clusters are used to get better constraints on their parameters, like mass, age, extinction, chemical composition and distance. This is the traditional way to describe the Galactic clusters, fitting the data using the available models. The difference is that MASSCLEAN simulations provide a consistent set of parameters. The majority of extra-galactic clusters are known only from their integrated properties, integrated magnitudes and colors. The current models for stellar populations are available only in the infinite mass limit. But the real clusters have a finite mass, and their integrated colors show a large dispersion (stochastic fluctuations). The description of the variation of integrated colors as a function of mass and age lead to the creation of MASSCLEANcolors database, based on 70 million Monte Carlo simulations. Since the entries in the database form a consistent set of integrated colors, integrated

  7. StellaR: Stellar evolution tracks and isochrones tools

    NASA Astrophysics Data System (ADS)

    Dell'Omodarmeme, Matteo; Valle, Giada

    2015-05-01

    stellaR accesses and manipulates publicly available stellar evolutionary tracks and isochrones from the Pisa low-mass database. It retrieves and plots the required calculations from CDS, constructs by interpolation tracks or isochrones of compositions different to the ones available in the database, constructs isochrones for age not included in the database, and extracts relevant evolutionary points from tracks or isochrones.

  8. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  9. Stellar Rotation Effects in Polarimetric Microlensing

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe

    2016-07-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.

  10. CALIBRATIONS OF ATMOSPHERIC PARAMETERS OBTAINED FROM THE FIRST YEAR OF SDSS-III APOGEE OBSERVATIONS

    SciTech Connect

    Mészáros, Sz.; Allende Prieto, C.; Holtzman, J.; García Pérez, A. E.; Chojnowski, S. D.; Hearty, F. R.; Majewski, S. R.; Schiavon, R. P.; Basu, S.; Bizyaev, D.; Chaplin, W. J.; Elsworth, Y.; Cunha, K.; Epstein, C.; Johnson, J. A.; Frinchaboy, P. M.; García, R. A.; Kallinger, T.; Koesterke, L.; and others

    2013-11-01

    The Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a three-year survey that is collecting 10{sup 5} high-resolution spectra in the near-IR across multiple Galactic populations. To derive stellar parameters and chemical compositions from this massive data set, the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP) has been developed. Here, we describe empirical calibrations of stellar parameters presented in the first SDSS-III APOGEE data release (DR10). These calibrations were enabled by observations of 559 stars in 20 globular and open clusters. The cluster observations were supplemented by observations of stars in NASA's Kepler field that have well determined surface gravities from asteroseismic analysis. We discuss the accuracy and precision of the derived stellar parameters, considering especially effective temperature, surface gravity, and metallicity; we also briefly discuss the derived results for the abundances of the α-elements, carbon, and nitrogen. Overall, we find that ASPCAP achieves reasonably accurate results for temperature and metallicity, but suffers from systematic errors in surface gravity. We derive calibration relations that bring the raw ASPCAP results into better agreement with independently determined stellar parameters. The internal scatter of ASPCAP parameters within clusters suggests that metallicities are measured with a precision better than 0.1 dex, effective temperatures better than 150 K, and surface gravities better than 0.2 dex. The understanding provided by the clusters and Kepler giants on the current accuracy and precision will be invaluable for future improvements of the pipeline.

  11. Radioactive elements in stellar atmospheres

    SciTech Connect

    Gopka, Vira; Yushchenko, Alexander; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon

    2006-07-12

    The identification of lines of radioactive elements (Tc, Pm and elements with 83stellar atmospheres, contamination of stellar atmosphere by recent SN explosion, and spallation reactions.

  12. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  13. A catalog of stellar spectrophotometry

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.; Shore, S. N.; White, R. E.; Warren, W. H., Jr.

    1989-01-01

    A machine-readable catalog of stellar spectrophotometric measurements made with rotating grating scanner is introduced. Consideration is given to the processes by which the stellar data were collected and calibrated with the fluxes of Vega (Hayes and Latham, 1975). A sample page from the spectrophotometric catalog is presented.

  14. Chromospheric activity and stellar evolution

    NASA Technical Reports Server (NTRS)

    Kippenhahn, R.

    1973-01-01

    A study of stellar chromospheres based on the internal structure of particular stars is presented. Used are complex flow diagrams of the linkage paths between mass loss, angular momentum loss, magnetic field from the turbulent dynamo and its relations to differential rotations and the convection zone, and stellar evolution.

  15. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  16. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  17. Nucleosynthesis in stellar explosions

    SciTech Connect

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  18. Early stellar evolution

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1994-01-01

    Research into the formation and early evolution of stars is currently an area of great interest and activity. The theoretical and observational foundations for this development are reviewed in this paper. By now, the basic physics governing cloud collapse is well understood, as is the structure of the resulting protostars. However, the theory predicts protostellar luminosities that are greater than those of most infrared sources. Observationally, it is thought that protostars emit powerful winds that push away remnant cloud gas, but both the origin of these winds and the nature of their interaction with ambient gas are controversial. Finally, the theory of pre-main-sequence stars has been modified to incorporate more realistic initial conditions. This improvement helps to explain the distribution of such stars in the H-R diagram. Many important issues, such as the origin of binary stars and stellar clusters, remain as challenges for future research.

  19. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  20. Asteroseismic stellar activity relations

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Corsaro, E.; Karoff, C.

    2014-11-01

    Context. In asteroseismology an important diagnostic of the evolutionary status of a star is the small frequency separation which is sensitive to the gradient of the mean molecular weight in the stellar interior. It is thus interesting to discuss the classical age-activity relations in terms of this quantity. Moreover, as the photospheric magnetic field tends to suppress the amplitudes of acoustic oscillations, it is important to quantify the importance of this effect by considering various activity indicators. Aims: We propose a new class of age-activity relations that connects the Mt. Wilson S index and the average scatter in the light curve with the small frequency separation and the amplitude of the p-mode oscillations. Methods: We used a Bayesian inference to compute the posterior probability of various empirical laws for a sample of 19 solar-like active stars observed by the Kepler telescope. Results: We demonstrate the presence of a clear correlation between the Mt. Wilson S index and the relative age of the stars as indicated by the small frequency separation, as well as an anti-correlation between the S index and the oscillation amplitudes. We argue that the average activity level of the stars shows a stronger correlation with the small frequency separation than with the absolute age that is often considered in the literature. Conclusions: The phenomenological laws discovered in this paper have the potential to become new important diagnostics to link stellar evolution theory with the dynamics of global magnetic fields. In particular we argue that the relation between the Mt. Wilson S index and the oscillation amplitudes is in good agreement with the findings of direct numerical simulations of magneto-convection.

  1. Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning

    NASA Astrophysics Data System (ADS)

    Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabeth

    2016-10-01

    Owing to the remarkable photometric precision of space observatories like Kepler, stellar and planetary systems beyond our own are now being characterized en masse for the first time. These characterizations are pivotal for endeavors such as searching for Earth-like planets and solar twins, understanding the mechanisms that govern stellar evolution, and tracing the dynamics of our Galaxy. The volume of data that is becoming available, however, brings with it the need to process this information accurately and rapidly. While existing methods can constrain fundamental stellar parameters such as ages, masses, and radii from these observations, they require substantial computational effort to do so. We develop a method based on machine learning for rapidly estimating fundamental parameters of main-sequence solar-like stars from classical and asteroseismic observations. We first demonstrate this method on a hare-and-hound exercise and then apply it to the Sun, 16 Cyg A and B, and 34 planet-hosting candidates that have been observed by the Kepler spacecraft. We find that our estimates and their associated uncertainties are comparable to the results of other methods, but with the additional benefit of being able to explore many more stellar parameters while using much less computation time. We furthermore use this method to present evidence for an empirical diffusion–mass relation. Our method is open source and freely available for the community to use.6

  2. Thermal Radio Emission from Radiative Shocks in Colliding Stellar Winds

    NASA Astrophysics Data System (ADS)

    Montes, Gabriela; González, Ricardo F.; Cantó, Jorge; Pérez-Torres, Miguel A.; Alberdi, Antonio

    2011-01-01

    We present a semi-analytic model for computing the thermal radio continuum emission from radiative shocks within colliding wind binaries. Assuming a thin shell approximation, we determine the contribution of the wind collision region (WCR) to the total thermal emission for close binaries. We investigate the effect of the binary separation and the stellar wind parameters on the total spectrum. In addition, we point out the relevance of taking into account this contribution for the correct interpretation of the observations, and the accuracy of the stellar wind parameters derived from them.

  3. Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Haster, Carl-Johan; Wang, Zhilu; Berry, Christopher P. L.; Stevenson, Simon; Veitch, John; Mandel, Ilya

    2016-04-01

    Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of ≳100 solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These sources can provide definitive evidence for the existence of IMBHs, probe globular-cluster dynamics, and potentially serve as tests of general relativity. We analyse the accuracy with which we can measure the masses and spins of the IMBH and its companion in intermediate-mass-ratio coalescences. We find that we can identify an IMBH with a mass above 100 M⊙ with 95 per cent confidence provided the massive body exceeds 130 M⊙. For source masses above ˜200 M⊙, the best measured parameter is the frequency of the quasi-normal ringdown. Consequently, the total mass is measured better than the chirp mass for massive binaries, but the total mass is still partly degenerate with spin, which cannot be accurately measured. Low-frequency detector sensitivity is particularly important for massive sources, since sensitivity to the inspiral phase is critical for measuring the mass of the stellar-mass companion. We show that we can accurately infer source parameters for cosmologically redshifted signals by applying appropriate corrections. We investigate the impact of uncertainty in the model gravitational waveforms and conclude that our main results are likely robust to systematics.

  4. Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.

    PubMed

    Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A

    2011-10-14

    The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.

  5. Astrospheres and Stellar Bow shocks

    NASA Astrophysics Data System (ADS)

    Van Marle, Allard Jan

    2016-07-01

    As stars evolve, they deliver feedback to the surrounding medium in the form of stellar wind and radiation. These shape the surrounding matter, forming what is called an astrosphere, a sphere of influence in which the star dominates the morphology and composition of the surrounding medium. Astrospheres are fascinating objects. Because they are formed through the interaction between the stellar feedback and the interstellar gas, they can tell us a great deal about both. Furthermore, because they are shaped over time they provide us with a window into the past. This is of particular interest for the study of stellar evolution, because the astrosphere reflects changes in the properties of the stellar wind, which relate directly to the properties of the star. A special sub-class of astrospheres, the stellar bow shocks, occur when the progenitor star moves through the surrounding medium at supersonic speed. Because the properties of the bow shock relate directly to both the stellar wind and the interstellar medium, the shape and size of the bow shock can be used to determine these properties. Using state-of-the-art numerical codes, it is possible to simulate the interaction between the stellar wind and radiation and the interstellar medium. These results can then be compared to observations. They can also be used to predict the type of observations that are best suited to study these objects. In this fashion computational and observational astronomy can support each other in their efforts to gain a better understanding of stars and their environment.

  6. Extreme Low Aspect Ratio Stellarators

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    1997-11-01

    Recently proposed Spherical Stellarator (SS) concept [1] includes the devices with stellarator features and low aspect ratio, A <= 3.5, which is very unusual for stellarators (typical stellarators have A ≈ 7-10 or above). Strong bootstrap current and high-β equilibria are two distinguished elements of the SS concept leading to compact, steady-state, and efficient fusion reactor. Different coil configurations advantageous for the SS have been identified and analyzed [1-6]. In this report, we will present results on novel stellarator configurations which are unusual even for the SS approach. These are the extreme-low-aspect-ratio-stellarators (ELARS), with the aspect ratio A ≈ 1. We succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform (ι ≈ 0.1 - 0.15), large plasma volume, and good particle transport characteristics. [1] P.E. Moroz, Phys. Rev. Lett. 77, 651 (1996); [2] P.E. Moroz, Phys. Plasmas 3, 3055 (1996); [3] P.E. Moroz, D.B. Batchelor et al., Fusion Tech. 30, 1347 (1996); [4] P.E. Moroz, Stellarator News 48, 2 (1996); [5] P.E. Moroz, Plasma Phys. Reports 23, 502 (1997); [6] P.E. Moroz, Nucl. Fusion 37, No. 8 (1997). *Supported by DOE Grant No. DE-FG02-97ER54395.

  7. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  8. Stellar Snowflake Cluster

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 Stellar Snowflake Cluster Combined Image [figure removed for brevity, see original site] Figure 2 Infrared Array CameraFigure 3 Multiband Imaging Photometer

    Newborn stars, hidden behind thick dust, are revealed in this image of a section of the Christmas Tree cluster from NASA's Spitzer Space Telescope, created in joint effort between Spitzer's infrared array camera and multiband imaging photometer instruments.

    The newly revealed infant stars appear as pink and red specks toward the center of the combined image (fig. 1). The stars appear to have formed in regularly spaced intervals along linear structures in a configuration that resembles the spokes of a wheel or the pattern of a snowflake. Hence, astronomers have nicknamed this the 'Snowflake' cluster.

    Star-forming clouds like this one are dynamic and evolving structures. Since the stars trace the straight line pattern of spokes of a wheel, scientists believe that these are newborn stars, or 'protostars.' At a mere 100,000 years old, these infant structures have yet to 'crawl' away from their location of birth. Over time, the natural drifting motions of each star will break this order, and the snowflake design will be no more.

    While most of the visible-light stars that give the Christmas Tree cluster its name and triangular shape do not shine brightly in Spitzer's infrared eyes, all of the stars forming from this dusty cloud are considered part of the cluster.

    Like a dusty cosmic finger pointing up to the newborn clusters, Spitzer also illuminates the optically dark and dense Cone nebula, the tip of which can be seen towards the bottom left corner of each image.

    This combined image shows the presence of organic molecules mixed with dust as wisps of green, which have been illuminated by nearby star formation. The larger yellowish dots neighboring the baby red stars in the Snowflake Cluster are massive stellar infants forming

  9. The regulation of star formation in cool-core clusters: imprints on the stellar populations of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Loubser, S. I.; Babul, A.; Hoekstra, H.; Mahdavi, A.; Donahue, M.; Bildfell, C.; Voit, G. M.

    2016-02-01

    A fraction of brightest cluster galaxies (BCGs) show bright emission in the ultraviolet and the blue part of the optical spectrum, which has been interpreted as evidence of recent star formation. Most of these results are based on the analysis of broad-band photometric data. Here, we study the optical spectra of a sample of 19 BCGs hosted by X-ray luminous galaxy clusters at 0.15 stellar populations as well as composite populations, consisting of a young stellar component superimposed on an intermediate/old stellar component, to accurately constrain their star formation histories. We detect prominent young (˜200 Myr) stellar populations in four of the 19 galaxies. Of the four, the BCG in Abell 1835 shows remarkable A-type stellar features indicating a relatively large population of young stars, which is extremely unusual even amongst star-forming BCGs. We constrain the mass contribution of these young components to the total stellar mass to be typically between 1 and 3 per cent, but rising to 7 per cent in Abell 1835. We find that the four of the BCGs with strong evidence for recent star formation (and only these four galaxies) are found within a projected distance of 5 kpc of their host cluster's X-ray peak, and the diffuse, X-ray gas surrounding the BCGs exhibits a ratio of the radiative cooling-to-free-fall time (tc/tff) of ≤10. These are also some of the clusters with the lowest central entropy. Our results are consistent with the predictions of the precipitation-driven star formation and active galactic nucleus feedback model, in which the radiatively cooling diffuse gas is subject to local thermal instabilities once the instability parameter tc/tff falls below ˜10, leading to the condensation and precipitation of cold gas. The number of galaxies in our sample where the host cluster satisfies all the

  10. Estimating stellar mean density through seismic inversions

    NASA Astrophysics Data System (ADS)

    Reese, D. R.; Marques, J. P.; Goupil, M. J.; Thompson, M. J.; Deheuvels, S.

    2012-03-01

    Context. Determining the mass of stars is crucial both for improving stellar evolution theory and for characterising exoplanetary systems. Asteroseismology offers a promising way for estimating the stellar mean density. When combined with accurate radii determinations, such as are expected from Gaia, this yields accurate stellar masses. The main difficulty is finding the best way to extract the mean density of a star from a set of observed frequencies. Aims: We seek to establish a new method for estimating the stellar mean density, which combines the simplicity of a scaling law while providing the accuracy of an inversion technique. Methods: We provide a framework in which to construct and evaluate kernel-based linear inversions that directly yield the mean density of a star. We then describe three different inversion techniques (SOLA and two scaling laws) and apply them to the Sun, several test cases and three stars, α Cen B, HD 49933 and HD 49385, two of which are observed by CoRoT. Results: The SOLA (subtractive optimally localised averages) approach and the scaling law based on the surface correcting technique described by Kjeldsen et al. (2008, ApJ, 683, L175) yield comparable results that can reach an accuracy of 0.5% and are better than scaling the large frequency separation. The reason for this is that the averaging kernels from the two first methods are comparable in quality and are better than what is obtained with the large frequency separation. It is also shown that scaling the large frequency separation is more sensitive to near-surface effects, but is much less affected by an incorrect mode identification. As a result, one can identify pulsation modes by looking for an ℓ and n assignment which provides the best agreement between the results from the large frequency separation and those from one of the two other methods. Non-linear effects are also discussed, as is the effects of mixed modes. In particular, we show that mixed modes bring little

  11. Stellar masses and radii as constraints on stellar models

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes

    1993-01-01

    The current status of empirical data on stellar masses and radii of sufficient accuracy to give constraints on stellar models is reviewed. Results from the best-studied eclipsing binaries can already trace the main-sequence evolution of 1-10-solar-mass stars in considerable detail and will be even more useful when supplemented by chemical abundance data. Taking the deceptively simple question of the observed width of the main sequence as an example, it is shown how careful attention to the details of the data is required to reach robust conclusions about such features of modern stellar evolution models as opacity tables or convective overshooting. Only detailed modeling of specific systems with known masses, radii, and metal abundance constrain the theory strongly enough that a truly critical test is achieved. The same is true when using tidal interactions in binaries (apsidal motion, rotational synchronization, and orbital circularization) as another probe into stellar interiors.

  12. Abundances, planetary nebulae, and stellar evolution

    NASA Astrophysics Data System (ADS)

    Aller, Lawrence H.

    1994-09-01

    Among Henry Norris Russell's many achievements were his contributions to solar and stellar spectroscopy, in particular, to an analysis of the chemical composition of the solar atmosphere. The question of composition differences between stars was hotly debated; some distinguished astronomers argued that all stars had the solar composition. Some early challenges to this doctrine are described. Determinations of chemical compositions of gaseous nebulae were much more difficult. If we observe the lines of a given chemical element in one ionization stage in a stellar spectrum, we can deduce readily the abundance of that element. No such luxury is available for a planetary or diffuse gaseous nebula. We must measure lines of as many ionization stages as we can. Furthermore, a nebula is an extended object. Often detailed spectroscopy is at hand only for narrow pencil columns taken through the image. Different observers use a variety of apertures. Fortunately it is possible to calculate theoretical spectra for any arbitrary cross section taken through a symmetrical model, so UV, optical, and IR observations all can be compared properly with a prediction. The value of high-resolution spectra obtained with instruments such as the Hamilton Echelle Spectrograph at Lick Observatory is emphasized. Improved fluxes for weak but important transitions are found. Close blends of lines of different ions can be resolved, and checks can be made on predictions of atomic parameters such as Einstein A-values and collision strengths. High spectral resolution data have been obtained and reduced for 22 planetary nebulae of varying size, structure, stellar population membership, dustiness, level of excitation, evolutionary status, and chemical compositions. The promise seems justified that with such extensive, high quality data, additional insights on nebular genesis and late states of stellar evolution can be found. The present survey is confined to nebulae of high surface brightness, but

  13. Abundances, planetary nebulae, and stellar evolution

    NASA Technical Reports Server (NTRS)

    Aller, Lawrence H.

    1994-01-01

    Among Henry Norris Russell's many achievements were his contributions to solar and stellar spectroscopy, in particular, to an analysis of the chemical composition of the solar atmosphere. The question of composition differences between stars was hotly debated; some distinguished astronomers argued that all stars had the solar composition. Some early challenges to this doctrine are described. Determinations of chemical compositions of gaseous nebulae were much more difficult. If we observe the lines of a given chemical element in one ionization stage in a stellar spectrum, we can deduce readily the abundance of that element. No such luxury is available for a planetary or diffuse gaseous nebula. We must measure lines of as many ionization stages as we can. Furthermore, a nebula is an extended object. Often detailed spectroscopy is at hand only for narrow pencil columns taken through the image. Different observers use a variety of apertures. Fortunately it is possible to calculate theoretical spectra for any arbitrary cross section taken through a symmetrical model, so UV, optical, and IR observations all can be compared properly with a prediction. The value of high-resolution spectra obtained with instruments such as the Hamilton Echelle Spectrograph at Lick Observatory is emphasized. Improved fluxes for weak but important transitions are found. Close blends of lines of different ions can be resolved, and checks can be made on predictions of atomic parameters such as Einstein A-values and collision strengths. High spectral resolution data have been obtained and reduced for 22 planetary nebulae of varying size, structure, stellar population membership, dustiness, level of excitation, evolutionary status, and chemical compositions. The promise seems justified that with such extensive, high quality data, additional insights on nebular genesis and late states of stellar evolution can be found. The present survey is confined to nebulae of high surface brightness, but

  14. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  15. Colour and stellar population gradients in galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Cardone, V. F.; Capaccioli, M.; Jetzer, P.; Molinaro, R.

    We discuss the colour, age and metallicity gradients in a wide sample of local SDSS early- and late-type galaxies. From the fitting of stellar population models we find that metallicity is the main driver of colour gradients and the age in the central regions is a dominant parameter which rules the scatter in both metallicity and age gradients. We find a consistency with independent observations and a set of simulations. From the comparison with simulations and theoretical considerations we are able to depict a general picture of a formation scenario.

  16. Stellar populations of stellar halos: Results from the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Conroy, C.; Pillepich, A.; Hernquist, L.

    2016-08-01

    The influence of both major and minor mergers is expected to significantly affect gradients of stellar ages and metallicities in the outskirts of galaxies. Measurements of observed gradients are beginning to reach large radii in galaxies, but a theoretical framework for connecting the findings to a picture of galactic build-up is still in its infancy. We analyze stellar populations of a statistically representative sample of quiescent galaxies over a wide mass range from the Illustris simulation. We measure metallicity and age profiles in the stellar halos of quiescent Illustris galaxies ranging in stellar mass from 1010 to 1012 M ⊙, accounting for observational projection and luminosity-weighting effects. We find wide variance in stellar population gradients between galaxies of similar mass, with typical gradients agreeing with observed galaxies. We show that, at fixed mass, the fraction of stars born in-situ within galaxies is correlated with the metallicity gradient in the halo, confirming that stellar halos contain unique information about the build-up and merger histories of galaxies.

  17. A Breeder Algorithm for Stellarator Optimization

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ware, A. S.; Hirshman, S. P.; Spong, D. A.

    2003-10-01

    An optimization algorithm that combines the global parameter space search properties of a genetic algorithm (GA) with the local parameter search properties of a Levenberg-Marquardt (LM) algorithm is described. Optimization algorithms used in the design of stellarator configurations are often classified as either global (such as GA and differential evolution algorithm) or local (such as LM). While nonlinear least-squares methods such as LM are effective at minimizing a cost-function based on desirable plasma properties such as quasi-symmetry and ballooning stability, whether or not this is a local or global minimum is unknown. The advantage of evolutionary algorithms such as GA is that they search a wider range of parameter space and are not susceptible to getting stuck in a local minimum of the cost function. Their disadvantage is that in some cases the evolutionary algorithms are ineffective at finding a minimum state. Here, we describe the initial development of the Breeder Algorithm (BA). BA consists of a genetic algorithm outer loop with an inner loop in which each generation is refined using a LM step. Initial results for a quasi-poloidal stellarator optimization will be presented, along with a comparison to existing optimization algorithms.

  18. Axisymmetric Simulations of Hot Jupiter-Stellar Wind Hydrodynamic Interaction

    NASA Astrophysics Data System (ADS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-03-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  19. Can stellar activity make a planet seem misaligned?

    NASA Astrophysics Data System (ADS)

    Oshagh, M.; Dreizler, S.; Santos, N. C.; Figueira, P.; Reiners, A.

    2016-08-01

    Several studies have shown that the occultation of stellar active regions by the transiting planet can generate anomalies in the high-precision transit light curves, and these anomalies may lead to an inaccurate estimate of the planetary parameters (e.g., the planet radius). Since the physics and geometry behind the transit light curve and the Rossiter-McLaughlin effect (spectroscopic transit) are the same, the Rossiter-McLaughlin observations are expected to be affected by the occultation of stellar active regions in a similar way. In this paper we perform a fundamental test on the spin-orbit angles as derived by Rossiter-McLaughlin measurements, and we examine the impact of the occultation of stellar active regions by the transiting planet on the spin-orbit angle estimations. Our results show that the inaccurate estimation on the spin-orbit angle due to stellar activity can be quite significant (up to ~30 deg), particularly for the edge-on, aligned, and small transiting planets. Therefore, our results suggest that the aligned transiting planets are the ones that can be easily misinterpreted as misaligned owing to the stellar activity. In other words, the biases introduced by ignoring stellar activity are unlikely to be the culprit for the highly misaligned systems.

  20. BASE-9: Bayesian Analysis for Stellar Evolution with nine variables

    NASA Astrophysics Data System (ADS)

    Robinson, Elliot; von Hippel, Ted; Stein, Nathan; Stenning, David; Wagner-Kaiser, Rachel; Si, Shijing; van Dyk, David

    2016-08-01

    The BASE-9 (Bayesian Analysis for Stellar Evolution with nine variables) software suite recovers star cluster and stellar parameters from photometry and is useful for analyzing single-age, single-metallicity star clusters, binaries, or single stars, and for simulating such systems. BASE-9 uses a Markov chain Monte Carlo (MCMC) technique along with brute force numerical integration to estimate the posterior probability distribution for the age, metallicity, helium abundance, distance modulus, line-of-sight absorption, and parameters of the initial-final mass relation (IFMR) for a cluster, and for the primary mass, secondary mass (if a binary), and cluster probability for every potential cluster member. The MCMC technique is used for the cluster quantities (the first six items listed above) and numerical integration is used for the stellar quantities (the last three items in the above list).

  1. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  2. Mapping stellar surface features

    SciTech Connect

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be approx. 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations.

  3. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  4. A Stellar Classification Tool

    NASA Astrophysics Data System (ADS)

    Kattner, S. M.; Glaspey, J.

    2005-12-01

    With the multitude of stellar objects in the sky, we have investigated development of an automated spectral classification system within IRAF to assist in the analysis of small to moderate sized spectroscopic datasets. Using data mining, we extracted 108 standard, sharp-lined B, A, and F stars from the NOAO Digital Library, and measured equivalent widths for 65 prominent lines in the 3000-7000 Angstrom range. Spectral type versus equivalent width intensity was plotted in order to retrieve the lines that demonstrated a clear relationship. For each of the 29 spectral features exhibiting a good correlation between spectral type and line strength, we could fit the data with a polynomial of order three to five. These polynomial fits were then used to predict the spectral types for a separate sample of objects from the NOAO Digital Library. From the comparison of the second data set with the first, we found that several lines could be used for an automated classification system, allowing us good reason to believe that such a system can eventually be established. Kattner's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  5. Ultraviolet stellar astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Kondo, Y.; Ocallaghan, F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. During all three Skylab missions, prism-on observations were obtained in 188 starfields and prism-off observations in 31 starfields. In general, the fields are concentrated in the Milky Way where the frequency of hot stars is highest. These fields cover an area approximately 3660 degrees and include roughly 24 percent of a band 30 deg wide centered on the plane of the Milky Way. A census of stars in the prism-on fields shows that nearly 6,000 stars have measurable flux data at a wavelength of 2600A, that 1,600 have measurable data at 2000A, and that 400 show useful data at 1500A. Obvious absorption or emission features shortward of 2000A are visible in approximately 120 stars. This represents a bonanza of data useful for statistical studies of stellar classification and of interstellar reddening as well as for studies of various types of peculiar stars.

  6. Devastated Stellar Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Spitzer Space Telescope shows the nasty effects of living near a group of massive stars: radiation and winds from the massive stars (white spot in center) are blasting planet-making material away from stars like our sun. The planetary material can be seen as comet-like tails behind three stars near the center of the picture. The tails are pointing away from the massive stellar furnaces that are blowing them outward.

    The picture is the best example yet of multiple sun-like stars being stripped of their planet-making dust by massive stars.

    The sun-like stars are about two to three million years old, an age when planets are thought to be growing out of surrounding disks of dust and gas. Astronomers say the dust being blown from the stars is from their outer disks. This means that any Earth-like planets forming around the sun-like stars would be safe, while outer planets like Uranus might be nothing more than dust in the wind.

    This image shows a portion of the W5 star-forming region, located 6,500 light-years away in the constellation Cassiopeia. It is a composite of infrared data from Spitzer's infrared array camera and multiband imaging photometer. Light with a wavelength of 3.5 microns is blue, while light from the dust of 24 microns is orange-red.

  7. STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO KEPLER TARGETS

    SciTech Connect

    Silva Aguirre, V.; Christensen-Dalsgaard, J.; Chaplin, W. J.; Basu, S.; Deheuvels, S.; Brandao, I. M.; Cunha, M. S.; Sousa, S. G.; Dogan, G.; Metcalfe, T. S.; Serenelli, A. M.; Garcia, R. A.; Ballot, J.; Weiss, A.; Appourchaux, T.; Casagrande, L.; Cassisi, S.; Creevey, O. L.; Lebreton, Y.; Noels, A.; and others

    2013-06-01

    Using asteroseismic data and stellar evolution models we obtain the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence lifetime is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass, and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.

  8. Bonnsai: a Bayesian tool for comparing stars with stellar evolution models

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Langer, N.; de Koter, A.; Brott, I.; Izzard, R. G.; Lau, H. H. B.

    2014-10-01

    Powerful telescopes equipped with multi-fibre or integral field spectrographs combined with detailed models of stellar atmospheres and automated fitting techniques allow for the analysis of large number of stars. These datasets contain a wealth of information that require new analysis techniques to bridge the gap between observations and stellar evolution models. To that end, we develop Bonnsai (BONN Stellar Astrophysics Interface), a Bayesian statistical method, that is capable of comparing all available observables simultaneously to stellar models while taking observed uncertainties and prior knowledge such as initial mass functions and distributions of stellar rotational velocities into account. Bonnsai can be used to (1) determine probability distributions of fundamental stellar parameters such as initial masses and stellar ages from complex datasets; (2) predict stellar parameters that were not yet observationally determined; and (3) test stellar models to further advance our understanding of stellar evolution. An important aspect of Bonnsai is that it singles out stars that cannot be reproduced by stellar models through χ2 hypothesis tests and posterior predictive checks. Bonnsai can be used with any set of stellar models and currently supports massive main-sequence single star models of Milky Way and Large and Small Magellanic Cloud composition. We apply our new method to mock stars to demonstrate its functionality and capabilities. In a first application, we use Bonnsai to test the stellar models of Brott et al. (2011, A&A, 530, A115) by comparing the stellar ages inferred for the primary and secondary stars of eclipsing Milky Way binaries of which the components range in mass between 4.5 and 28 M⊙. Ages are determined from dynamical masses and radii that are known to better than 3%. We show that the stellar models must include rotation because stellar radii can be increased by several percent via centrifugal forces. We find that the average age

  9. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  10. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    SciTech Connect

    Ghezzi, Luan; Johnson, John Asher

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a sample of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.

  11. Spectroscopic parameters for solar-type stars with moderate-to-high rotation. New parameters for ten planet hosts

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S. G.; Santos, N. C.; Montalto, M.; Delgado-Mena, E.; Mortier, A.; Adibekyan, V.; Israelian, G.

    2014-10-01

    Context. Planetary studies demand precise and accurate stellar parameters as input for inferring the planetary properties. Different methods often provide different results that could lead to biases in the planetary parameters. Aims: In this work, we present a refinement of the spectral synthesis technique designed to treat fast rotating stars better. This method is used to derive precise stellar parameters, namely effective temperature, surface gravity, metallicity, and rotational velocity. The procedure is tested for FGK stars with low and moderate-to-high rotation rates. Methods: The spectroscopic analysis is based on the spectral synthesis package Spectroscopy Made Easy (SME), which assumes Kurucz model atmospheres in LTE. The line list where the synthesis is conducted is comprised of iron lines, and the atomic data are derived after solar calibration. Results: The comparison of our stellar parameters shows good agreement with literature values, both for slowly and for fast rotating stars. In addition, our results are on the same scale as the parameters derived from the iron ionization and excitation method presented in our previous works. We present new atmospheric parameters for 10 transiting planet hosts as an update to the SWEET-Cat catalog. We also re-analyze their transit light curves to derive new updated planetary properties. Based on observations collected at the La Silla Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 089.C-0444(A), 088.C-0892(A)) and with the HARPS spectrograph at the 3.6 m telescope (ESO runs ID 072.C-0488(E), 079.C-0127(A)); at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France, with the SOPHIE spectrograph at the 1.93 m telescope and at the Observatoire Midi-Pyrénées (CNRS), France, with the NARVAL spectrograph at the 2 m Bernard Lyot Telescope (Run ID L131N11).Appendix A is available in electronic form at http://www.aanda.org

  12. Optimizing Stellarators for Turbulent Transport

    SciTech Connect

    H.E. Mynick, N.Pomphrey, and P. Xanthopoulos

    2010-05-27

    Up to now, the term "transport-optimized" stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5.

  13. Spherical stellarator with plasma current

    NASA Astrophysics Data System (ADS)

    Moroz, Paul E.

    1996-08-01

    Recently proposed novel concept of a spherical stellarator (P. E. Moroz, ``Spherical stellarator configuration,'' to appear in Phys. Rev. Lett) is enhanced by adding the plasma current to the otherwise pure stellarator system. The coil configuration of this ultra low aspect ratio system differs from that of a spherical tokamak by inclination of external parts of the toroidal field coils. It is shown that the configuration considered possesses many attractive properties, including: wide flexibility of operating regimes, compact design and coil simplicity, good access to the plasma, closed vacuum flux surfaces with large enclosed volume, significant external rotational transform, strong magnetic well, and a high plasma β [β(0) in excess of 30%] equilibrium. It is shown that the bootstrap effect in a spherical stellarator, in principle, can supply the full plasma current required for the high-β equilibrium.

  14. SUB-STELLAR COMPANIONS AND STELLAR MULTIPLICITY IN THE TAURUS STAR-FORMING REGION

    SciTech Connect

    Daemgen, Sebastian; Bonavita, Mariangela; Jayawardhana, Ray; Lafrenière, David; Janson, Markus

    2015-02-01

    We present results from a large, high-spatial-resolution near-infrared imaging search for stellar and sub-stellar companions in the Taurus-Auriga star-forming region. The sample covers 64 stars with masses between those of the most massive Taurus members at ∼3 M {sub ☉} and low-mass stars at ∼0.2 M {sub ☉}. We detected 74 companion candidates, 34 of these reported for the first time. Twenty-five companions are likely physically bound, partly confirmed by follow-up observations. Four candidate companions are likely unrelated field stars. Assuming physical association with their host star, estimated companion masses are as low as ∼2 M {sub Jup}. The inferred multiplicity frequency within our sensitivity limits between ∼10-1500 AU is 26.3{sub −4.9}{sup +6.6}%. Applying a completeness correction, 62% ± 14% of all Taurus stars between 0.7 and 1.4 M {sub ☉} appear to be multiple. Higher order multiples were found in 1.8{sub −1.5}{sup +4.2}% of the cases, in agreement with previous observations of the field. We estimate a sub-stellar companion frequency of ∼3.5%-8.8% within our sensitivity limits from the discovery of two likely bound and three other tentative very low-mass companions. This frequency appears to be in agreement with what is expected from the tail of the stellar companion mass ratio distribution, suggesting that stellar and brown dwarf companions share the same dominant formation mechanism. Further, we find evidence for possible evolution of binary parameters between two identified sub-populations in Taurus with ages of ∼2 Myr and ∼20 Myr, respectively.

  15. Accretion-powered Stellar Winds. II. Numerical Solutions for Stellar Wind Torques

    NASA Astrophysics Data System (ADS)

    Matt, Sean; Pudritz, Ralph E.

    2008-05-01

    In order to explain the slow rotation observed in a large fraction of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar winds in torquing down the stars. For this mechanism to be effective, the stellar winds need to have relatively high outflow rates, and thus would likely be powered by the accretion process itself. Here, we use numerical magnetohydrodynamical simulations to compute detailed two-dimensional (axisymmetric) stellar wind solutions, in order to determine the spin-down torque on the star. We discuss wind driving mechanisms and then adopt a Parker-like (thermal pressure driven) wind, modified by rotation, magnetic fields, and enhanced mass-loss rate (relative to the Sun). We explore a range of parameters relevant for CTTSs, including variations in the stellar mass, radius, spin rate, surface magnetic field strength, mass-loss rate, and wind acceleration rate. We also consider both dipole and quadrupole magnetic field geometries. Our simulations indicate that the stellar wind torque is of sufficient magnitude to be important for spinning down a "typical" CTTS, for a mass-loss rate of ~10-9 M⊙ yr-1. The winds are wide-angle, self-collimated flows, as expected of magnetic rotator winds with moderately fast rotation. The cases with quadrupolar field produce a much weaker torque than for a dipole with the same surface field strength, demonstrating that magnetic geometry plays a fundamental role in determining the torque. Cases with varying wind acceleration rate show much smaller variations in the torque, suggesting that the details of the wind driving are less important. We use our computed results to fit a semianalytic formula for the effective Alfvén radius in the wind, as well as the torque. This allows for considerable predictive power, and is an improvement over existing approximations.

  16. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  17. Stellar winds of hot stars

    NASA Astrophysics Data System (ADS)

    Stee, Ph.; Chesneau, O.

    2014-09-01

    In this paper, we summarize the basic properties of radiative stellar winds from the theoretical and observational point of views. We illustrate two examples of a radiative code applied to stellar physics: the SIMECA code successfully used to constrain the physics of the circumstellar environment of the Be star α Arae constrained by VLTI-AMBER spectrally resolved measurements and the CMFGEN code applied to the BA supergiants Deneb and Rigel constrained by CHARA-VEGA measurements.

  18. Stars in other universes: stellar structure with different fundamental constants

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.

    2008-08-01

    Motivated by the possible existence of other universes, with possible variations in the laws of physics, this paper explores the parameter space of fundamental constants that allows for the existence of stars. To make this problem tractable, we develop a semi-analytical stellar structure model that allows for physical understanding of these stars with unconventional parameters, as well as a means to survey the relevant parameter space. In this work, the most important quantities that determine stellar properties—and are allowed to vary—are the gravitational constant G, the fine structure constant α and a composite parameter \\mathcal {C} that determines nuclear reaction rates. Working within this model, we delineate the portion of parameter space that allows for the existence of stars. Our main finding is that a sizable fraction of the parameter space (roughly one-fourth) provides the values necessary for stellar objects to operate through sustained nuclear fusion. As a result, the set of parameters necessary to support stars are not particularly rare. In addition, we briefly consider the possibility that unconventional stars (e.g. black holes, dark matter stars) play the role filled by stars in our universe and constrain the allowed parameter space.

  19. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent.

    PubMed

    Pietrzyński, G; Graczyk, D; Gieren, W; Thompson, I B; Pilecki, B; Udalski, A; Soszyński, I; Kozłowski, S; Konorski, P; Suchomska, K; Bono, G; Moroni, P G Prada; Villanova, S; Nardetto, N; Bresolin, F; Kudritzki, R P; Storm, J; Gallenne, A; Smolec, R; Minniti, D; Kubiak, M; Szymański, M K; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Pietrukowicz, P; Górski, M; Karczmarek, P

    2013-03-01

    In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future. PMID:23467166

  20. Accurate masses for dispersion-supported galaxies

    NASA Astrophysics Data System (ADS)

    Wolf, Joe; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj; Geha, Marla; Muñoz, Ricardo R.; Simon, Joshua D.; Avedo, Frank F.

    2010-08-01

    We derive an accurate mass estimator for dispersion-supported stellar systems and demonstrate its validity by analysing resolved line-of-sight velocity data for globular clusters, dwarf galaxies and elliptical galaxies. Specifically, by manipulating the spherical Jeans equation we show that the mass enclosed within the 3D deprojected half-light radius r1/2 can be determined with only mild assumptions about the spatial variation of the stellar velocity dispersion anisotropy as long as the projected velocity dispersion profile is fairly flat near the half-light radius, as is typically observed. We find M1/2 = 3 G-1< σ2los > r1/2 ~= 4 G-1< σ2los > Re, where < σ2los > is the luminosity-weighted square of the line-of-sight velocity dispersion and Re is the 2D projected half-light radius. While deceptively familiar in form, this formula is not the virial theorem, which cannot be used to determine accurate masses unless the radial profile of the total mass is known a priori. We utilize this finding to show that all of the Milky Way dwarf spheroidal galaxies (MW dSphs) are consistent with having formed within a halo of a mass of approximately 3 × 109 Msolar, assuming a Λ cold dark matter cosmology. The faintest MW dSphs seem to have formed in dark matter haloes that are at least as massive as those of the brightest MW dSphs, despite the almost five orders of magnitude spread in luminosity between them. We expand our analysis to the full range of observed dispersion-supported stellar systems and examine their dynamical I-band mass-to-light ratios ΥI1/2. The ΥI1/2 versus M1/2 relation for dispersion-supported galaxies follows a U shape, with a broad minimum near ΥI1/2 ~= 3 that spans dwarf elliptical galaxies to normal ellipticals, a steep rise to ΥI1/2 ~= 3200 for ultra-faint dSphs and a more shallow rise to ΥI1/2 ~= 800 for galaxy cluster spheroids.

  1. Stellar populations of galaxies in the ALHAMBRA survey up to z ~ 1. I. MUFFIT: A multi-filter fitting code for stellar population diagnostics

    NASA Astrophysics Data System (ADS)

    Díaz-García, L. A.; Cenarro, A. J.; López-Sanjuan, C.; Ferreras, I.; Varela, J.; Viironen, K.; Cristóbal-Hornillos, D.; Moles, M.; Marín-Franch, A.; Arnalte-Mur, P.; Ascaso, B.; Cerviño, M.; González Delgado, R. M.; Márquez, I.; Masegosa, J.; Molino, A.; Pović, M.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Fernández-Soto, A.; Husillos, C.; Infante, L.; Aguerri, J. A. L.; Martínez, V. J.; del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.; Gruel, N.

    2015-10-01

    Aims: We present MUFFIT, a new generic code optimized to retrieve the main stellar population parameters of galaxies in photometric multi-filter surveys, and check its reliability and feasibility with real galaxy data from the ALHAMBRA survey. Methods: Making use of an error-weighted χ2-test, we compare the multi-filter fluxes of galaxies with the synthetic photometry of mixtures of two single stellar populations at different redshifts and extinctions, to provide the most likely range of stellar population parameters (mainly ages and metallicities), extinctions, redshifts, and stellar masses. To improve the diagnostic reliability, MUFFIT identifies and removes from the analysis those bands that are significantly affected by emission lines. The final parameters and their uncertainties are derived by a Monte Carlo method, using the individual photometric uncertainties in each band. Finally, we discuss the accuracies, degeneracies, and reliability of MUFFIT using both simulated and real galaxies from ALHAMBRA, comparing with results from the literature. Results: MUFFIT is a precise and reliable code to derive stellar population parameters of galaxies in ALHAMBRA. Using the results from photometric-redshift codes as input, MUFFIT improves the photometric-redshift accuracy by ~10-20%. MUFFIT also detects nebular emissions in galaxies, providing physical information about their strengths. The stellar masses derived from MUFFIT show excellent agreement with the COSMOS and SDSS values. In addition, the retrieved age-metallicity locus for a sample of z ≤ 0.22 early-type galaxies in ALHAMBRA at different stellar mass bins are in very good agreement with the ones from SDSS spectroscopic diagnostics. Moreover, a one-to-one comparison between the redshifts, ages, metallicities, and stellar masses derived spectroscopically for SDSS and by MUFFIT for ALHAMBRA reveals good qualitative agreements in all the parameters, hence reinforcing the strengths of multi-filter galaxy data

  2. STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO

    SciTech Connect

    Bell, Eric F.; Xue Xiangxiang; Rix, Hans-Walter; Ruhland, Christine; Hogg, David W.

    2010-12-15

    If the stellar halos of disk galaxies are built up from the disruption of dwarf galaxies, models predict highly structured variations in the stellar populations within these halos. We test this prediction by studying the ratio of blue horizontal branch stars (BHB stars; more abundant in old, metal-poor populations) to main-sequence turn-off stars (MSTO stars; a feature of all populations) in the stellar halo of the Milky Way using data from the Sloan Digital Sky Survey. We develop and apply an improved technique to select BHB stars using ugr color information alone, yielding a sample of {approx}9000 g < 18 candidates where {approx}70% of them are BHB stars. We map the BHB/MSTO ratio across {approx}1/4 of the sky at the distance resolution permitted by the absolute magnitude distribution of MSTO stars. We find large variations of the BHB/MSTO star ratio in the stellar halo. Previously identified, stream-like halo structures have distinctive BHB/MSTO ratios, indicating different ages/metallicities. Some halo features, e.g., the low-latitude structure, appear to be almost completely devoid of BHB stars, whereas other structures appear to be rich in BHB stars. The Sagittarius tidal stream shows an apparent variation in the BHB/MSTO ratio along its extent, which we interpret in terms of population gradients within the progenitor dwarf galaxy. Our detection of coherent stellar population variations between different stellar halo substructures provides yet more support to cosmologically motivated models for stellar halo growth.

  3. Critical tests of stellar evolution in open clusters. II. Membership, duplicity, and stellar and dynamical evolution in NGC 3680.

    NASA Astrophysics Data System (ADS)

    Nordstroem, B.; Andersen, J.; Andersen, M. I.

    1997-06-01

    Based on new, accurate photometry, radial velocities, and proper motions for the intermediate-age open cluster NGC 3680, we identify individual single and binary cluster members and field stars in the colour-magnitude diagram (CMD). This basic step turns out to be crucial for a proper understanding of the cluster CMD: ~60% of the stars are found to be field stars, and over 50% of the cluster stars are binaries. No bona fide cluster star is found more than 1.5mag below the turnoff, and cluster stars below 1.4Msun_ are only found in binary systems. The total present mass of NGC 3680 is ~100Msun_, excluding any as yet unseen stellar remnants, and its half-mass radius is 3.3' (1.2pc). Comparison with plausible IMFs indicates that only ~3% of the original stars and <~10% of the mass now survive, ~30% of the initial mass being in the form of massive stars that have now completed their evolution, and ~60% in low-mass stars which may now be located in a distant cluster halo or perhaps have been lost entirely. The single main-sequence cluster members form an extremely tight sequence in the CMD, with E_(b-y)_=0.034 and [Fe/H]=+0.11. A direct fit to the Hyades main sequence yields (m-M)_0_=10.5+/-0.2 for NGC 3680. Isochrones from several stellar models have been fit to the cluster sequence. When based on consistent uvby colour transformations and the above cluster parameters, these fits are very stable and show that standard models are not acceptable for stars with the turnoff mass of NGC 3680. Overshooting models perform much better, but further refinement of the overshooting formalism seems to be needed. The age derived for NGC 3680 is 1.45+/-0.3Gyr. The limiting factor in a precise comparison of theory and observations is now the transformation from theoretical to observed parameters, particularly (broad-band) colours.

  4. Stellar Nucleosynthesis in the Hyades Open Cluster

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; King, Jeremy R.; The, Lih-Sin

    2009-08-01

    We report a comprehensive light-element (Li, C, N, O, Na, Mg, and Al) abundance analysis of three solar-type main sequence (MS) dwarfs and three red giant branch (RGB) clump stars in the Hyades open cluster using high-resolution and high signal-to-noise spectroscopy. The abundances have been derived in a self-consistent fashion, and for each group (MS or RGB), the CNO abundances are found to be in excellent star-to-star agreement. Using the dwarfs to infer the initial composition of the giants, the combined abundance patterns confirm that the giants have undergone the first dredge-up and that material processed by the CN cycle has been mixed to the surface layers. The observed abundances are compared to predictions of a standard stellar model based on the Clemson-American University of Beirut (CAUB) stellar evolution code. The model reproduces the observed evolution of the N and O abundances, as well as the previously derived 12C/13C ratio, but it fails to predict by a factor of 1.5 the observed level of 12C depletion. A similar discord appears to exist in previously reported observed and modeled C abundances of giants in the Galactic disk. Random uncertainties in the mean abundances and uncertainties related to possible systematic errors in the Hyades dwarf and giant parameter scales cannot account for the discrepancy in the observed and modeled abundances. Li abundances are derived to determine if noncanonical extra mixing, like that seen in low-mass metal-poor giants, has occurred in the Hyades giants. The Li abundance of the giant γ Tau is in good accord with the predicted level of surface Li dilution, but a ~0.35 dex spread in the giant Li abundances is found and cannot be explained by the stellar model. Possible sources of the spread are discussed; however, it is apparent that the differential mechanism responsible for the Li dispersion must be unrelated to the uniformly low 12C abundances of the giants. Na, Mg, and Al abundances are derived as an additional

  5. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    SciTech Connect

    Trampedach, Regner; Asplund, Martin; Collet, Remo; Nordlund, Ake

    2013-05-20

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.

  6. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  7. Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters

    NASA Astrophysics Data System (ADS)

    Ligi, R.; Creevey, O.; Mourard, D.; Crida, A.; Lagrange, A.-M.; Nardetto, N.; Perraut, K.; Schultheis, M.; Tallon-Bosc, I.; ten Brummelaar, T.

    2016-02-01

    Context. Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the Hertzsprung-Russell diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of stars hosting planets are required elements for studying exoplanetary systems. Aims: We aim at determining accurate parameters of a set of 18 bright exoplanet host and potential host stars from interferometric measurements, photometry, and stellar models. Methods: Using the VEGA/CHARA interferometer operating in the visible domain, we measured the angular diameters of 18 stars, ten of which host exoplanets. We combined them with their distances to estimate their radii. We used photometry to derive their bolometric flux and, then, their effective temperature and luminosity to place them on the H-R diagram. We then used the PARSEC models to derive their best fit ages and masses, with error bars derived from Monte Carlo calculations. Results: Our interferometric measurements lead to an average of 1.9% uncertainty on angular diameters and 3% on stellar radii. There is good agreement between measured and indirect estimations of angular diameters (either from SED fitting or from surface brightness relations) for main sequence (MS) stars, but not as good for more evolved stars. For each star, we provide a likelihood map in the mass-age plane; typically, two distinct sets of solutions appear (an old and a young age). The errors on the ages and masses that we provide account for the metallicity uncertainties, which are often neglected by other works. From measurements of its radius and density, we also provide the mass of 55 Cnc independently of models. From the stellar masses, we provide new estimates of semi-major axes and minimum masses of exoplanets with reliable uncertainties. We also derive the radius, density, and mass of 55 Cnc e, a super-Earth that transits its stellar host. Our exoplanetary

  8. Open Questions in Stellar Nuclear Physics: I

    SciTech Connect

    Gai, Moshe

    2004-09-13

    No doubt, among the most exciting discoveries of the third millennium thus far are oscillations of massive neutrinos and dark energy that leads to an accelerated expansion of the Universe. Accordingly, Nuclear Physics is presented with two extraordinary challenges: the need for precise (5% or better) prediction of solar neutrino fluxes within the Standard Solar Model, and the need for an accurate (5% or better) understanding of stellar evolution and in particular of Type Ia super nova that are used as cosmological standard candle. In contrast, much confusion is found in the field with contradicting data and strong statements of accuracy that can not be supported by current data. We discuss an experimental program to address these challenges and disagreements.

  9. Open Questions in Stellar Nuclear Physics: II

    SciTech Connect

    Gai, Moshe

    2004-09-13

    No doubt, among the most exciting discoveries of the third millennium thus far are oscillations of massive neutrinos and dark energy that leads to an accelerated expansion of the Universe. Accordingly, Nuclear Physics is presented with two extraordinary challenges: the need for precise (5% or better) prediction of solar neutrino fluxes within the Standard Solar Model, and the need for an accurate (5% or better) understanding of stellar evolution and in particular of Type Ia super nova that are used as cosmological standard candle. In contrast, much confusion is found in the field with contradicting data and strong statements of accuracy that can not be supported by current data. We discuss an experimental program to address these challenges and disagreements.

  10. Stellar radii from long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre

    2008-10-01

    Long baseline interferometers now measure the angular diameters of nearby stars with sub-percent accuracy. They can be translated in photospheric radii when the parallax is known, thus creating a novel and powerful constraint for stellar models. I present applications of interferometric radius measurements to the modeling of main sequence stars. Over the last few years, we obtained accurate measurements of the linear radius of many of the nearest stars: Procyon A, 61 Cyg A & B, α Cen A & B, Sirius A, Proxima. . . Firstly, I describe the example of our modeling of Procyon A (F5IV-V) with the CESAM code, constrained using spectrophotometry, the linear radius, and asteroseismic frequencies. I also present our recent results on the low-mass 61 Cyg system (K5V+K7V), for which asteroseismic frequencies have not been detected yet.

  11. The Milky Way Tomography with SDSS. 2. Stellar Metallicity

    SciTech Connect

    Ivezic, Zeljko; Sesar, Branimir; Juric, Mario; Bond, Nicholas; Dalcanton, Julianne; Rockosi, Constance M.; Yanny, Brian; Newberg, Heidi J.; Beers, Timothy C.; Prieto, Carlos Allende; Wilhelm, Ron; /Texas Tech. /Michigan State U.

    2008-04-01

    In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using effective temperature and metallicity derived from SDSS spectra for {approx}60,000 F and G type main sequence stars (0.2 < g-r < 0.6), we develop polynomial models, reminiscent of traditional methods based on the UBV photometry, for estimating these parameters from the SDSS u-g and g-r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for effective temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of {approx}200,000 F and G type stars observed in 300 deg{sup 2} of high Galactic latitude sky. These deeper (g < 20.5) and photometrically precise ({approx}0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-fit number ratio of the two components is consistent with that implied by the decomposition of stellar counts profiles into exponential disk and power-law halo components by Juric et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [Fe/H] = -1.46 and a standard deviation of {approx}0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms {approx}0.16 dex) and the median smoothly decreasing with distance

  12. Stellar Populations in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    MacArthur, L. A.; Courteau, S.; Bell, E. F.; Holtzman, J. A.

    2004-12-01

    We investigate optical and near-IR color gradients in a sample of 172 low-inclination galaxies spanning Hubble types S0--Irr. The colors are compared to stellar population synthesis models from which luminosity-weighted average ages and metallicities are determined. We explore the effects of different underlying star formation histories and additional bursts of star formation. Because the observed gradients show radial structure, we measure ``inner'' and ``outer'' disk age and metallicity gradients. Relative trends in age and metallicity and their gradients are explored as a function of Hubble type, rotational velocity, total near-IR galaxy magnitude, central surface brightness, and scale length. We find strong correlations in age and metallicity with Hubble type, rotational velocity, total magnitude, and central surface brightness in the sense that earlier-type, faster rotating, more luminous, and higher surface brightness galaxies are older and more metal-rich, suggesting an early and more rapid star formation history for these galaxies. The increasing trends level off for T ⪉ 4 (Sbc and earlier), V {rot} ⪆ 120 km s-1, MK ⪉ -23 mag, and μ 0 ⪉ 18.5 mag arcsec-2. Outer disk gradients are weaker than the inner gradients as expected for a slower variation of the potential and surface brightness in the outer parts. We find that stronger age gradients are associated with weaker metallicity gradients. Relative trends in gradients with galaxy parameters do not agree with predictions of semi-analytic models of hierarchical galaxy formation, possibly as a result of bar-induced radial flows. However, the observed trends are in agreement with chemo-spectro photometric models of spiral galaxy evolution based on CDM-motivated scaling laws but including none of the hierarchical merging characteristics. This implies a strong dependence of the star formation history of spiral galaxies on the galaxy potential and halo spin parameter. L.A.M. and S.C acknowledge support

  13. Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    SciTech Connect

    Boyajian, Tabetha S.; Van Belle, Gerard; Von Braun, Kaspar

    2014-03-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B – V) and Sloan (g – r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date.

  14. Precise spectroscopic parameters for solar-type stars with moderate-to-high rotation

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S.; Santos, N. C.; Montalto, M.

    2014-07-01

    One of the primary objectives of Gaia is to survey billions stars and build the most precise 3D map of the Milky Way. Automated techniques of spectral analysis are needed to perform a rapid and homogeneous processing of the data to provide precise and accurate stellar parameters, such as for the GAIA-ESO survey. In this context, our recent work is based on the spectral synthesis technique to derive parameters for both slowly and fast rotating stars (Tsantaki et al. 2014). The spectroscopic analysis was performed using the package Spectroscopy Made Easy (SME; Valenti & Piskunov 1996) and a specific methodology to deal with fast rotators (υsini up to 50 km/s). The spectral regions, including the atomic data of all the lines in our analysis are available online in SME readable format http://mariatsantaki.weebly.com;. A comparison between the parameters derived with our methodology and with the iron ionization and excitation method (e.g. Sousa et al. 2008; Tsantaki et al. 2013) shows that both results are on the same scale. Additionally, for fast rotating stars, our results are in good agreement with literature values when comparing to other methods. We are now able to provide parameters for a very wide group of stars: from giants to dwarfs and from slowly to fast rotating stars. Except for galactic studies, stellar parameters are important for the planetary characterization. We provided updated stellar and planetary properties for ten systems. The stellar parameters were compiled in the SWEET-Catalogue (https://www.astro.up.pt/resources/sweet-cat/).

  15. Asteroseismic determination of fundamental parameters of Sun-like stars using multilayered neural networks

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep; Hanasoge, Shravan; Bhattacharya, Jishnu; Antia, H. M.; Krishnamurthi, Ganapathy

    2016-10-01

    The advent of space-based observatories such as Convection, Rotation and planetary Transits (CoRoT) and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial helium abundance, initial metallicity, mixing length (assumed to be constant over time), and the age to which the star must be evolved. Some of these parameters are also very useful in characterizing the associated planets and in studying Galactic archaeology. How to obtain these parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using artificial neural networks, is successful in determining the evolutionary parameters based on spectroscopic and seismic measurements. Our trained networks show robustness over a broad range of parameter space, and critically, are entirely computationally inexpensive and fully automated. We analyse the observations of a few stars using this method and the results compare well to inferences obtained using other techniques. This method is both computationally cheap and inferentially accurate, paving the way for analysing the vast quantities of stellar observations from past, current, and future missions.

  16. Inferences on Stellar Activity and Stellar Cycles from Asteroseismology

    NASA Astrophysics Data System (ADS)

    Chaplin, William J.; Basu, Sarbani

    2014-12-01

    The solar activity cycle can be studied using many different types of observations, such as counting sunspots, measuring emission in the Ca II H&K lines, magnetograms, radio emissions, etc. One of the more recent ways of studying solar activity is to use the changing properties of solar oscillations. Stellar activity cycles are generally studied using the Ca II lines, or sometimes using photometry. Asteroseismology is potentially an exciting means of studying these cycles. In this article we examine whether or not asteroseismic data can be used for this purpose, and what the asteroseismic signatures of stellar activity are. We also examine how asteroseismology may help in more indirect ways.

  17. The Stellar Wind from the Central Star of NGC 7009

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Iping, Rosina; Chu, You-Hua; Gruendl, Robert

    2006-01-01

    Observations of NGC 7009, including its central star HD 200516, have been obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, providing spectra covering 905-1187 A with spectral resolution of 15 km/sec. One observation was made with the 30x30 arcsec aperture and includes the star plus the entire nebula. A second observation used the 1.25x20arcsec slit significantly reducing the nebular 'contamination' of the stellar spectrum. This poster discusses the spectrum of the central star. A strong FUV continuum, as expected for Teff=82,000K, dominates the spectrum. The most prominent spectral feature is a very strong P-Cygni profile of O VI 1032-1038. This paper presents models of the stellar spectrum and the wind features to further refine the stellar parameters and mass loss rate.

  18. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jose, Jordi

    2016-01-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  19. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  20. SME@XSEDE: An automated spectral synthesis tool for stellar characterization

    NASA Astrophysics Data System (ADS)

    Hebb, Leslie; Cargile, Phillip

    2015-01-01

    Over the last decade, large scale discovery surveys like Kepler have produced vast catalogs of newly discovered extrasolar planetary systems. Most of these systems require stellar characterization of the host stars in order to derive the host star masses and completely solve for the planetary properties. Currently, there is no widely accepted and standardized method to determine fundamental parameters from stellar spectra. Here, we present a new approach to automating stellar characterization of large datasets of high resolution spectra. Our software, called SME@XSEDE, is based on one of the most widely used spectral synthesis algorithms, Spectroscopy Made Easy (SME), originally described in Valenti and Piskanov (1996). Like SME, SME@XSEDE compares an observed spectrum to synthetic model spectra derived through radiative transfer calculations for a range of stellar parameters in order to find the global stellar properties (temperature, gravity, metallicity, vsini, and individual abundances) that result in a synthetic spectrum that best matches an observed spectrum. We use the XSEDE super computer cluster to run many sets of initial guesses of stellar parameters to determine robust SME-based solutions without extensive, hands-on work. In this paper, we describe our software in detail and compare results derived from the application of SME@XSEDE to several well-studied datasets of stellar parameters including Valenti and Fischer 2005, Torres et al. 2012, and Huber et al 2013.

  1. VizieR Online Data Catalog: SP_Ace derived data from stellar spectra (Boeche+, 2016)

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2015-11-01

    SP_Ace is a software designed to derive stellar parameters and elemental abundances from stellar spectra. In this tables we report the stellar parameters Teff, logg, [M/H], and chemical abundances [El/H] for ten elements derived with the software SP_Ace from spectra of the ELODIE spectral library (Prugniel et al., 2007, Cat. III/251), the benchmark stars (Jofre et al., 2014, Cat. J/A+A/564/A133), and the S4N library (Allende Prieto et al., 2004, Cat. J/A+A/420/183) degraded to spectral resolution R=12,000 and S/N=100. (3 data files).

  2. Developing Accurate Spatial Maps of Cotton Fiber Quality Parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Awareness of the importance of cotton fiber quality (Gossypium, L. sps.) has increased as advances in spinning technology require better quality cotton fiber. Recent advances in geospatial information sciences allow an improved ability to study the extent and causes of spatial variability in fiber p...

  3. The universal stellar mass-stellar metallicity relation for dwarf galaxies

    SciTech Connect

    Kirby, Evan N.; Bullock, James S.; Cohen, Judith G.; Guhathakurta, Puragra; Gallazzi, Anna

    2013-12-20

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z{sub ∗}∝M{sub ∗}{sup 0.30±0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M {sub *} = 10{sup 12} M {sub ☉}. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping.

  4. Resolving polarized stellar features thanks to polarimetric interferometry

    NASA Astrophysics Data System (ADS)

    Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel

    2003-02-01

    Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.

  5. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  6. Atmospheric parameters and carbon abundance for hot DB white dwarfs

    NASA Astrophysics Data System (ADS)

    Koester, D.; Provencal, J.; Gänsicke, B. T.

    2014-08-01

    Atmospheric parameters for hot DB (helium atmosphere) white dwarfs near effective temperatures of 25 000 K are extremely difficult to determine from optical spectroscopy. The neutral He lines reach a maximum in this range and change very little with effective temperature and surface gravity. Moreover, an often unknown amount of hydrogen contamination can change the resulting parameters significantly. This is particularly unfortunate because this is the range of variable DBV or V777 Her stars. Accurate atmospheric parameters are needed to help or confirm the asteroseismic analysis of these objects. Another important aspect is the new class of white dwarfs - the hot DQ - whose spectra are dominated by carbon lines. The analysis shows that their atmospheres are pure carbon. The origin of these stars is not yet understood, but they may have an evolutionary link with the hotter DBs, as studied here. Our aim is to determine accurate atmospheric parameters and element abundances and study the implications for the evolution of white dwarfs of spectral classes DB and hot DQ. High-resolution UV spectra of five DBs were studied with model atmospheres. We determined stellar parameters and abundances or upper limits of C and Si. These objects were compared with cooler DBs below 20 000 K. We find photospheric C and no other heavy elements - with extremely high limits on the C/Si ratio - in two of the five hot DBs. We compare various explanations for this unusual composition that have been proposed in the literature: accretion of interstellar or circumstellar matter, radiative levitation, carbon dredge-up from the deeper interior below the helium layer, and a residual stellar wind. None of these explanations is completely satisfactory, and the problem of the origin of the hot DQ remains an open question.

  7. Stellar Imager (SI) Space Mission: Stellar Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, K. G.

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI'S science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI'S prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the science goals of the SI Mission and a mission architecture that could meet those goals.

  8. Complete Stellar Models: Spectral and Interior Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Schaerer, Daniel

    1995-08-01

    This thesis work presents the first "complete stellar models" for massive stars, which consistently treat the stellar interior, the atmosphere, and the stellar winds. This approach allows to simultaneously predict basic stellar parameters (luminosity, radii, temperatures), nucleosynthesis (abundances), as well as the detailed emergent spectrum through the relevant evolutionary phases (corresponding to OB, LBV and Wolf--Rayet stars). On the other hand, our modelling including the stellar winds also allows to study the influence of the outer layers on the stellar structure and evolution. Conceptually the thesis is divided in two main parts. In the first part we construct the first non-LTE line blanketed hydrodynamic models of spherically expanding atmospheres of hot stars. The entire domain from the optically thick photosphere out to the terminal velocity of the wind is treated. We discuss in detail the effects of line blanketing on the atmospheric structure and on the predicted spectrum. We study the influence of the hydrodynamic structure on the profiles of both photospheric and wind lines. Our results also show that for precise determinations of stellar parameters and abundances of hot luminous stars, the use of plane parallel models may lead to systematic errors. In the second part we develop the "complete stellar models" (CoStar). As a first application we study the main sequence (MS) interior and spectral evolution of massive stars at solar metallicity. The evolutionary tracks and the interior evolution are found to be basically unchanged by the realistic treatment of the outer layers. The main CoStar predictions presented and discussed for the MS are the following: 1. Ejected mass of the most important elements. Deposition of wind momentum and mechanical energy 2. Estimates of mass loss rates due to radiation pressure including multiple scattering and line overlap 3. Continuous spectral energy distribution (EUV to IR) and ionising fluxes 4. UBVRIJHKLMN

  9. Theory of stellar coronae - An interpretation of X-ray emission from non-degenerate stellar sources

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1981-01-01

    It is shown that the acoustic wave heating theory of stellar coronae explains neither Einstein Observatory coronae data nor previous UV and X-ray observations of the sun and other stars, on the evidence of data implying that magnetic fields, stellar rotation rates and convection zone parameters figure in the determination of coronal heating. Einstein Observatory results suggest that O-type star coronae are heated by the interaction of turbulent stellar winds with slowly-decaying primordial magnetic fields or by radiative instabilities in the flow. The apparent absence of coronae in Ap stars is due to the stability of atmospheres in which even weak convection is suppressed by the strong field. Dynamo action is implicated in some normal A-type stars and in F- and later-type dwarfs. Coronal characteristics of dMe and dM stars, close binaries, and K- and M-type giants are also considered.

  10. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100

  11. Absolute properties of the eclipsing binary system AQ Serpentis: A stringent test of convective core overshooting in stellar evolution models

    SciTech Connect

    Torres, Guillermo; Vaz, Luiz Paulo R.; Sandberg Lacy, Claud H.; Claret, Antonio E-mail: lpv@fisica.ufmg.br E-mail: claret@iaa.es

    2014-02-01

    We report differential photometric observations and radial-velocity measurements of the detached, 1.69 day period, double-lined eclipsing binary AQ Ser. Accurate masses and radii for the components are determined to better than 1.8% and 1.1%, respectively, and are M {sub 1} = 1.417 ± 0.021 M {sub ☉}, M {sub 2} = 1.346 ± 0.024 M {sub ☉}, R {sub 1} = 2.451 ± 0.027 R {sub ☉}, and R {sub 2} = 2.281 ± 0.014 R {sub ☉}. The temperatures are 6340 ± 100 K (spectral type F6) and 6430 ± 100 K (F5), respectively. Both stars are considerably evolved, such that predictions from stellar evolution theory are particularly sensitive to the degree of extra mixing above the convective core (overshoot). The component masses are different enough to exclude a location in the H-R diagram past the point of central hydrogen exhaustion, which implies the need for extra mixing. Moreover, we find that current main-sequence models are unable to match the observed properties at a single age even when allowing the unknown metallicity, mixing length parameter, and convective overshooting parameter to vary freely and independently for the two components. The age of the more massive star appears systematically younger. AQ Ser and other similarly evolved eclipsing binaries showing the same discrepancy highlight an outstanding and largely overlooked problem with the description of overshooting in current stellar theory.

  12. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  13. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    SciTech Connect

    Geller, Aaron M.; Leigh, Nathan W. C. E-mail: nleigh@amnh.org

    2015-07-20

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binary scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.

  14. Baroclinic instability in stellar radiation zones

    SciTech Connect

    Kitchatinov, L. L.

    2014-03-20

    Surfaces of constant pressure and constant density do not coincide in differentially rotating stars. Stellar radiation zones with baroclinic stratification can be unstable. Instabilities in radiation zones are of crucial importance for angular momentum transport, mixing of chemical species, and, possibly, for magnetic field generation. This paper performs linear analysis of baroclinic instability in differentially rotating stars. Linear stability equations are formulated for differential rotation of arbitrary shape and then solved numerically for rotation nonuniform in radius. As the differential rotation increases, r- and g-modes of initially stable global oscillations transform smoothly into growing modes of baroclinic instability. The instability can therefore be interpreted as stability loss to r- and g-modes excitation. Regions of stellar parameters where r- or g-modes are preferentially excited are defined. Baroclinic instability onsets at a very small differential rotation of below 1%. The characteristic time of instability growth is about 1000 rotation periods. Growing disturbances possess kinetic helicity. Magnetic field generation by the turbulence resulting from baroclinic instability in differentially rotating radiation zones is therefore possible.

  15. Stellar twins determine the distance of the Pleiades

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas; Jofré, Paula; Gilmore, Gerard; Clare Worley, C.; Soubiran, Caroline; Blanco-Cuaresma, Sergi; Hawkins, Keith; Casey, Andrew R.

    2016-10-01

    Since the release of the Hipparcos catalogue in 1997, the distance to the Pleiades open cluster has been heavily debated. The distance obtained from Hipparcos and those by alternative methods differ by 10 to 15%. As accurate stellar distances are key to understanding stellar structure and evolution, this dilemma puts the validity of some stellar evolution models into question. Using our model-independent method to determine parallaxes based on twin stars, we report individual parallaxes of 15 FGK type stars in the Pleiades in anticipation of the astrometric mission Gaia. These parallaxes give a mean cluster parallax of 7.42 ± 0.09 mas,which corresponds to a mean cluster distance of 134.8 ± 1.7 pc. This value agrees with the current results obtained from stellar evolution models. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 096.D-0402(A).Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A59

  16. The Supernova - A Stellar Spectacle.

    ERIC Educational Resources Information Center

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  17. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  18. Stellar Ontogeny:...to Ashes

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the process of stellar death and the correlation between the size of a star in solar masses and its way of death. The amount of mass loss that occurs during the life and death of a star is also discussed. (HM)

  19. Grigori Kuzmin and Stellar Dynamics

    NASA Astrophysics Data System (ADS)

    de Zeeuw, P. Tim; van de Ven, Glenn

    Grigori Kuzmin was a very gifted dynamicist and one of the towering figures in the distinguished history of the Tartu Observatory. He obtained a number of important results in relative isolation which were later rediscovered in the West. This work laid the foundation for further advances in the theory of stellar systems in dynamical equilibrium, thereby substantially increasing our understanding of galaxy dynamics.

  20. The Stellar Populations of Lyman Break Galaxies at z ~ 5

    NASA Astrophysics Data System (ADS)

    Yabe, Kiyoto; Ohta, Kouji; Iwata, Ikuru; Sawicki, Marcin; Tamura, Naoyuki; Akiyama, Masayuki; Aoki, Kentaro

    2009-03-01

    We present the results of spectral energy distribution (SED) fitting analysis for Lyman break galaxies (LBGs) at z ~ 5 in the Great Observatories Origins Deep Survey North (GOODS-N) and its flanking fields (the GOODS-FF). With the publicly available Infrared Array Camera (IRAC) images in the GOODS-N and IRAC data in the GOODS-FF, we constructed the rest-frame UV to optical SEDs for a large sample (~100) of UV-selected galaxies at z ~ 5. Comparing the observed SEDs with model SEDs generated with a population synthesis code, we derived a best-fit set of parameters (stellar mass, age, color excess, and star formation rate) for each of the sample LBGs. The derived stellar masses range from 108 to 1011 M sun with a median value of 4.1 × 109 M sun. Comparison with z = 2-3 LBGs shows that the stellar masses of z ~ 5 LBGs are systematically smaller by a factor of 3-4 than those of z = 2-3 LBGs in a similar rest-frame UV luminosity range. The star formation ages are relatively younger than those of the z = 2-3 LBGs. We also compared the results for our sample with other studies for the z = 5-6 galaxies. Although there seem to be similarities and differences in the properties, we could not conclude its significance. We also derived a stellar mass function of our sample by correcting for incompletenesses. Although the number densities in the massive end are comparable to the theoretical predictions from semianalytic models involving active galactic nucleus feedback, the number densities in the low-mass part are smaller than the model predictions. By integrating the stellar mass function down to 108 M sun, the stellar mass density at z ~ 5 is calculated to be (0.7-2.4) ×107 M sun Mpc-3. The stellar mass density at z ~ 5 is dominated by the massive part of the stellar mass function. Compared with other observational studies and the model predictions, the mass density of our sample is consistent with general trend of the increase of the stellar mass density with time.

  1. Characterizing the Milky Way's Stellar Populations by Understanding Stars Inside and Out

    NASA Astrophysics Data System (ADS)

    Epstein, Courtney Rose

    Understanding the mass assembly process and star formation history of galaxies is an open question in cosmology. In comparison with studying high-redshift galaxies, the Milky Way provides a laboratory for studying the formation and evolution of one system in detail. The Milky Way's star formation history may be reconstructed from the kinematics and chemistry of its stars, but accurate stellar ages are required to define the chronology of events. This dissertation explores two promising techniques for inferring field star ages based on (1) the decline in rotation rates due to stellar winds on the main sequence, and (2) the combination of asteroseismic mass and spectroscopic abundance constraints for red giant branch stars. Low-mass main sequence stars with a deep surface convection zone lose angular momentum due to a magnetically-driven wind and spin down over time, making rotation a potential age indicator. I investigate both theoretical and observational uncertainties in the rotation-mass-age relationship. Because the functional form of the angular momentum loss law is not well established, two different prescriptions are compared; both have the feature that solar mass stars forget their initial conditions and converge to a narrow rotation sequence more quickly than lower mass stars do. Even for a perfect angular momentum loss model, I find that the initial spread in rotation rates dominates the age uncertainty for young and low-mass (M ≤ 0.6 MSun) stars, while latitudinal surface differential rotation sets a ~20% minimum uncertainty in rotation-based ages. Rotation periods are predicted to be a useful clock and detectable by ground-based surveys for field populations as old as 1--2 Gyr, and detectable by space-based telescopes for stars as old as the Galactic disk. Rotation provides better leverage than other age diagnostics for unevolved dwarfs because the spin down timescale is much faster than the nuclear-burning timescale. However, for solar-like dwarfs and

  2. Stellar Astrophysics with the World's largest Telescopes

    NASA Astrophysics Data System (ADS)

    Mikolajewska, Joanna; Olech, Arkadiusz

    The book reviews the most timely and interesting problems of stellar astrophysics, particularly those suitable for studies with the world's largest telescopes, and it can serve as an introduction to such studies. In particular it gives a comprehensive presentation of state-of-the-art research in stellar and planetary system formation, extra-solar planets, final stages of single and binary stellar evolution, and stellar populations in the Local Group of Galaxies, including observational techniques and technologies applicable to those important fields.

  3. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  4. How stellar activity affects exoplanet's parameters estimation and exoplanet's atmosphere

    NASA Astrophysics Data System (ADS)

    Oshagh, Mahmoudreza

    2015-07-01

    The next large facility with the potential to characterize the atmosphere of exoplanets will be the James Webb Space Telescope (JWST), a 6.5 m telescope to be launched in 2018. The JWST will be equipped with four instruments; three in the near InfaRed (1-5 microns): NIRCAM, NIRSPEC and NIRISS, and one in the mid-InfraRed (5-28 microns): MIRI. MIRI is of particular interest to characterize temperate exoplanets; it includes an imager with three observing modes: imagery, coronagraphy and low resolution (R=100) spectroscopy, and an Integral Field Spectrometer with a spectral resolution around 3000. I will discuss the capabilities of the instrument to characterize exoplanets, showing simulations of transit observations, as well as direct imaging observations, which include instrumental test results. It should be stressed that the JWST is not dedicated to exoplanets and we can expect a large pressure on the observing time.

  5. Revisiting the correlation between stellar activity and planetary surface gravity

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Oshagh, M.; Adibekyan, V. Zh.; Santos, N. C.

    2014-12-01

    Aims: We re-evaluate the correlation between planetary surface gravity and stellar host activity as measured by the index log (R'HK). This correlation, previously identified by Hartman (2010, ApJ, 717, L138), is now analyzed in light of an extended measurement dataset, roughly three times larger than the original one. Methods: We calculated the Spearman rank correlation coefficient between the two quantities and its associated p-value. The correlation coefficient was calculated for both the full dataset and the star-planet pairs that follow the conditions proposed by Hartman (2010). To do so, we considered effective temperatures both as collected from the literature and from the SWEET-Cat catalog, which provides a more homogeneous and accurate effective temperature determination. Results: The analysis delivers significant correlation coefficients, but with a lower value than those obtained by Hartman (2010). The two datasets are compatible, and we show that a correlation coefficient as high as previously published can arise naturally from a small-number statistics analysis of the current dataset. The correlation is recovered for star-planet pairs selected using the different conditions proposed by Hartman (2010). Remarkably, the usage of SWEET-Cat temperatures led to higher correlation coefficient values. We highlight and discuss the role of the correlation betwen different parameters such as effective temperature and activity index. Several additional effects on top of those discussed previously were considered, but none fully explains the detected correlation. In light of the complex issue discussed here, we encourage the different follow-up teams to publish their activity index values in the form of a log (R'HK) index so that a comparison across stars and instruments can be pursued. Appendix A is available in electronic form at http://www.aanda.org

  6. IN-SYNC. IV. The Young Stellar Population in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; Tan, Jonathan C.; Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Cullen, Nicholas C.; Tobin, John J.; Kim, Jinyoung S.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Chojnowski, S. Drew; Flaherty, Kevin M.; Majewski, Steve; Skrutskie, Michael F.; Zasowski, Gail; Pan, Kaike

    2016-02-01

    We present the results of the Sloan Digital Sky Survey APOGEE INfrared Spectroscopy of Young Nebulous Clusters program (IN-SYNC) survey of the Orion A molecular cloud. This survey obtained high-resolution near-infrared spectroscopy of about 2700 young pre-main-sequence stars on a ˜ 6^\\circ field of view. We have measured accurate stellar parameters ({T}{{eff}}, {log}g, v{sin}i) and extinctions and placed the sources in the Hertzsprung-Russel diagram (HRD). We have also extracted radial velocities for the kinematic characterization of the population. We compare our measurements with literature results to assess the performance and accuracy of the survey. Source extinction shows evidence for dust grains that are larger than those in the diffuse interstellar medium: we estimate an average RV = 5.5 in the region. Importantly, we find a clear correlation between HRD inferred ages and spectroscopic surface-gravity-inferred ages and between extinction and disk presence; this strongly suggests a real spread of ages larger than a few Myr. Focusing on the young population around NGC 1980/ι Ori, which has previously been suggested to be a separate, foreground, older cluster, we confirm its older (˜5 Myr) age and low AV, but considering that its radial velocity distribution is indistinguishable from Orion A’s population, we suggest that NGC 1980 is part of Orion A’s star formation activity. Based on their stellar parameters and kinematic properties, we identify 383 new candidate members of Orion A, most of which are diskless sources in areas of the region poorly studied by previous works.

  7. On the stellar rotation-activity connection

    NASA Technical Reports Server (NTRS)

    Rosner, R.

    1983-01-01

    The relationship between rotation rates and surface activity in late-type dwarf stars is explored in a survey of recent theoretical and observational studies. Current theoretical models of stellar-magnetic-field production and coronal activity are examined, including linear kinematic dynamo theory, nonlinear dynamos using approximations, and full numerical simulations of the MHD equations; and some typical results are presented graphically. The limitations of the modeling procedures and the constraints imposed by the physics are indicated. The statistical techniques used in establishing correlations between various observational parameters are analyzed critically, and the methods developed for quasar luminosity functions by Avni et al. (1980) are used to evaluate the effects of upper detection bounds, incomplete samples, and missing data for the case of rotation and X-ray flux data.

  8. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  9. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  10. Semi-analytic stellar structure in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Horbatsch, M. W.; Burgess, C. P.

    2011-08-01

    Precision tests of gravity can be used to constrain the properties of hypothetical very light scalar fields, but these tests depend crucially on how macroscopic astrophysical objects couple to the new scalar field. We study the equations of stellar structure using scalar-tensor gravity, with the goal of seeing how stellar properties depend on assumptions made about the scalar coupling at a microscopic level. In order to make the study relatively easy for different assumptions about microscopic couplings, we develop quasi-analytic approximate methods for solving the stellar-structure equations rather than simply integrating them numerically. (The approximation involved assumes the dimensionless scalar coupling at the stellar center is weak, and we compare our results with numerical integration in order to establish its domain of validity.) We illustrate these methods by applying them to Brans-Dicke scalars, and their generalization in which the scalar-matter coupling slowly runs — or `walks' — as a function of the scalar field: a(phi) simeq as+bsphi. (Such couplings can arise in extra-dimensional applications, for instance.) The four observable parameters that characterize the fields external to a spherically symmetric star are the stellar radius, R, mass, M, scalar `charge', Q, and the scalar's asymptotic value, phi∞. These are subject to two relations because of the matching to the interior solution, generalizing the usual mass-radius, M(R), relation of General Relativity. Since phi∞ is common to different stars in a given region (such as a binary pulsar), all quantities can be computed locally in terms of the stellar masses. We identify how these relations depend on the microscopic scalar couplings, agreeing with earlier workers when comparisons are possible. Explicit analytical solutions are obtained for the instructive toy model of constant-density stars, whose properties we compare to more realistic equations of state for neutron star models.

  11. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    SciTech Connect

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.

  12. Theory of stellar convection - II. First stellar models

    NASA Astrophysics Data System (ADS)

    Pasetto, S.; Chiosi, C.; Chiosi, E.; Cropper, M.; Weiss, A.

    2016-07-01

    We present here the first stellar models on the Hertzsprung-Russell diagram, in which convection is treated according to the new scale-free convection theory (SFC theory) by Pasetto et al. The aim is to compare the results of the new theory with those from the classical, calibrated mixing-length (ML) theory to examine differences and similarities. We integrate the equations describing the structure of the atmosphere from the stellar surface down to a few per cent of the stellar mass using both ML theory and SFC theory. The key temperature over pressure gradients, the energy fluxes, and the extension of the convective zones are compared in both theories. The analysis is first made for the Sun and then extended to other stars of different mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones, temperature gradients ∇ and ∇e, and energy fluxes that are very similar to those derived from the `calibrated' MT theory for main-sequence stars. We conclude that the old scale dependent ML theory can now be replaced with a self-consistent scale-free theory able to predict correct results, as it is more physically grounded than the ML theory. Fundamentally, the SFC theory offers a deeper insight of the underlying physics than numerical simulations.

  13. Dynamical structure of the multiple stellar system HD164492

    NASA Astrophysics Data System (ADS)

    González, J. F.; Veramendi, M. E.

    2016-08-01

    HD 164492 is a Trapezium-like stellar system with one O-type and several early B-type components immersed in an active star forming region (M20). The relevance of this system has increased after the recent discovery that one of its visual components, HD 164492C, is a spectroscopic triple with a remarkable magnetic field. As a complement of those spectro-polarimetric studies, we present here a survey of the stellar components in the region using available Hubble Space Telescope images. By applying aperture and point spread function (PSF) photometry, we measure accurate separations of close visual pairs and detect new visual companions. Combining these results with previous spectroscopic and photometric studies, we estimate physical separations for 20 probable members of this high-order multiple system. The most interesting feature is that even though it has a global Trapezium-like structure, some of its components are stable binary subsystems organized hierarchically.

  14. Three-dimensional analysis of tokamaks and stellarators

    PubMed Central

    Garabedian, Paul R.

    2008-01-01

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807

  15. Quantifying the line-of-sight mass distributions for time-delay lenses with stellar masses

    NASA Astrophysics Data System (ADS)

    Rusu, Cristian; Fassnacht, Chris; Treu, Tommaso; Suyu, Sherry; Auger, Matt; Koopmans, Leon; Marshall, Phil; Wong, Kenneth; Collett, Thomas; Agnello, Adriano; Blandford, Roger; Courbin, Frederic; Hilbert, Stefan; Meylan, Georges; Sluse, Dominique

    2014-12-01

    Measuring cosmological parameters with a realistic account of systematic uncertainties is currently one of the principal challenges of physical cosmology. Building on our recent successes with two gravitationally lensed systems, we have started a program to achieve accurate cosmographic measurements from five gravitationally lensed quasars. We aim at measuring H_0 with an accuracy better than 4%, comparable to but independent from measurements by current BAO, SN or Cepheid programs. The largest current contributor to the error budget in our sample is uncertainty about the line-of-sight mass distribution and environment of the lens systems. In this proposal, we request wide-field u-band imaging of the only lens in our sample without already available Spitzer/IRCA observations, B1608+656. The proposed observations are critical for reducing these uncertainties by providing accurate redshifts and in particular stellar masses for galaxies in the light cones of the target lens system. This will establish lensing as a powerful and independent tool for determining cosmography, in preparation for the hundreds of time-delay lenses that will be discovered by future surveys.

  16. STELLAR WIND INFLUENCE ON PLANETARY DYNAMOS

    SciTech Connect

    Heyner, Daniel; Glassmeier, Karl-Heinz; Schmitt, Dieter

    2012-05-10

    We examine the possible influence of early stellar wind conditions on the evolution of planetary dynamo action. In our model, the dynamo operates within a significant ambient magnetospheric magnetic field generated by the interaction between the stellar wind and the planetary magnetic field. This provides a negative feedback mechanism which quenches the dynamo growth. The external magnetic field magnitude which the dynamo experiences, and thus the strength of the quenching, depends on the stellar wind dynamic pressure. As this pressure significantly changes during stellar evolution, we argue that under early stellar system conditions the coupling between the stellar wind and the interior dynamics of a planet is much more important than has been thought up to now. We demonstrate the effects of the feedback coupling in the course of stellar evolution with a planet at a similar distance to the central star as Mercury is to the Sun.

  17. The Solar/Stellar Connection

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha

    2015-08-01

    The Sun is the archetype of magnetic star. Its proximity and the wealth of very high accuracy observations that this has allowed us to gather over many decades have greatly helped us understanding how solar-like stars (e.g with a convective envelope) redistribute angular momentum and generate a cyclic magnetic field. However most models have been so fine tuned that when they are straightforwardly extended to other solar-like stars and are compared with the ever growing stellar magnetism and differential rotation observations the agreement is not as good as one could hope. In this review I will discuss based on theoretical considerations and multi-D MHD stellar models what can be considered as robust properties of solar-like star dynamics and magnetism and what is still speculative.

  18. Stellar models in brane worlds

    NASA Astrophysics Data System (ADS)

    Linares, Francisco X.; García-Aspeitia, Miguel A.; Ureña-López, L. Arturo

    2015-07-01

    We consider here a full study of stellar dynamics from the brane-world point of view in the case of constant density and of a polytropic fluid. We start our study cataloguing the minimal requirements to obtain a compact object with a Schwarzschild exterior, highlighting the low and high energy limit, the boundary conditions, and the appropriate behavior of Weyl contributions inside and outside of the star. Under the previous requirements we show an extensive study of stellar behavior, starting with stars of constant density and its extended cases with the presence of nonlocal contributions. Finally, we focus our attention to more realistic stars with a polytropic equation of state, especially in the case of white dwarfs, and study their static configurations numerically. One of the main results is that the inclusion of the Weyl functions from brane-world models allows the existence of more compact configurations than within general relativity.

  19. Stellar structures in Extended Gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; De Laurentis, M.

    2016-09-01

    Stellar structures are investigated by considering the modified Lané-Emden equation coming out from Extended Gravity. In particular, this equation is obtained in the Newtonian limit of f ( R) -gravity by introducing a polytropic relation between the pressure and the density into the modified Poisson equation. The result is an integro-differential equation, which, in the limit f ( R) → R , becomes the standard Lané-Emden equation usually adopted in the stellar theory. We find the radial profiles of gravitational potential by solving for some values of the polytropic index. The solutions are compatible with those coming from General Relativity and could be physically relevant in order to address peculiar and extremely massive objects.

  20. The Properties of the local Interstellar Medium and the Interaction of the Stellar Winds of epsilon Indi and lambda Andromedae with the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.

    1996-01-01

    We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.

  1. Using Cepheid Period Changes to Test Stellar Evolutionary Models

    NASA Astrophysics Data System (ADS)

    Turner, David; Abdel-Sabour Abdel-Latif, Mohamed; Berdnikov, Leonid N.

    2005-08-01

    Rate of period change in Cepheid variables is a parameter that can be predicted from stellar evolutionary models, provided the instability strip-crossing mode is known. Different evolutionary models predict different rates of period change for the same strip crossing, which suggests that observed rates of period change in Cepheids are useful for testing how well different models match real stars. From a compilation of observed period changes in about 200 Cepheids that we have completed in recent years, we examine how closely the observational data match model predictions. In general, the observations are consistent with model predictions, yet there are a number of distinct differences indicating a need for further refinements to existing stellar evolutionary models. In addition, rate of period change for Cepheids is a parameter that may be useful for establishing the location of individual Cepheids within the instability strip, independent of interstellar extinction.

  2. Geometry Dependence of Stellarator Turbulence

    SciTech Connect

    H.E. Mynick, P. Xanthopoulos and A.H. Boozer

    2009-08-10

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.

  3. Integrated inertial stellar attitude sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye M. (Inventor); Kourepenis, Anthony S. (Inventor); Wyman, Jr., William F. (Inventor)

    2007-01-01

    An integrated inertial stellar attitude sensor for an aerospace vehicle includes a star camera system, a gyroscope system, a controller system for synchronously integrating an output of said star camera system and an output of said gyroscope system into a stream of data, and a flight computer responsive to said stream of data for determining from the star camera system output and the gyroscope system output the attitude of the aerospace vehicle.

  4. Solar and Stellar Eclipse Mapping

    NASA Astrophysics Data System (ADS)

    Budding, E.

    2007-05-01

    The special circumstance of solar eclipse affords an opportunity to review its background, particularly in the cultural context of western Anatolia. This links with a current project of çanakkale Onsekiz Mart University. Turning to the more general subject of stellar eclipses, topics of particular note concern: choice of fitting functions, disk eclipses, spot eclipses and the gravity-darkening effect. These topics arise within new era eclipsing binary studies and are relevant to active researches on remote binaries and extrasolar planets.

  5. Eddington's Stellar Models and Early Twentieth Century Astrophysics

    NASA Astrophysics Data System (ADS)

    Eisberg, Joann

    1991-06-01

    Between 1916 and 1926, Arthur Stanley Eddington developed models of the temperature, pressure and density in the interior of stars. The models generated a relationship between stellar mass and luminosity that agreed well with observation. Coupled with the evolutionary theory that astronomers then thought governed stars, the models explained the distribution of stars upon the Hertzsprung-Russell diagram. This thesis argues that Eddington's models were shaped by the cosmological concerns that had preoccupied the British astronomical community in the preceding decade. British astronomers participated in a program of statistical cosmology, spearheaded by the Dutch astronomer, J. C. Kapteyn, to map the universe by studying the distribution of stars in neighborhoods successively more distant from the sun. The parameters of chief concern in this program were proper motion, which was used to measure stellar distance, and luminosity, considered the most important inherent characteristic of a star. In 1913 Henry Norris Russell published an empirical diagram of stellar luminosity and spectral type, on which he based a new theory of the evolution of stars from bright, red giants to bright, blue giants, to faint red dwarfs. British astronomers recognized the theory and diagram as fruits of the statistical program, and they rapidly accepted its parameters as the ones a stellar model should generate. Prompted by his interest in cepheid variable stars to construct a model of stars in radiative equilibrium, Eddington's first concern was to reproduce the features of Russell's diagram. Russell's evolutionary theory played so large a role in Eddington's work that when his own mass -luminosity relationship threatened to overturn it, he tailored his theory of stellar energy generation to preserve it.

  6. A spectral line survey of the starless and proto-stellar cores detected by BLAST toward the Vela-D molecular cloud

    NASA Astrophysics Data System (ADS)

    Morales Ortiz, J. L.; Olmi, L.; Burton, M.; De Luca, M.; Elia, D.; Giannini, T.; Lorenzetti, D.; Massi, F.; Strafella, F.

    2012-07-01

    Context. Starless cores represent a very early stage of the star formation process, before collapse results in the formation of a central protostar or a multiple system of protostars. Aims: We use spectral line observations of a sample of cold dust cores, previously detected with the BLAST telescope in the Vela-D molecular cloud, to perform a more accurate physical and kinematical analysis of the sources. Methods: We present a 3-mm and 1.3-cm survey conducted with the Mopra 22-m and Parkes 64-m radio telescopes of a sample of 40 cold dust cores, including both starless and proto-stellar sources. 20 objects were also mapped using molecular tracers of dense gas. To trace the dense gas we used the molecular species NH3, N2H+, HNC, HCO+, H13CO+, HCN and H13CN, where some of them trace the more quiescent gas, while others are sensitive to more dynamical processes. Results: The selected cores have a wide variety of morphological types and also show physical and chemical variations, which may be associated to different evolutionary phases. We find evidence of systematic motions in both starless and proto-stellar cores and we detect line wings in many of the proto-stellar cores. Our observations probe linear distances in the sources ≳ 0.1 pc, and are thus sensitive mainly to molecular gas in the envelope of the cores. In this region we do find that, for example, the radial profile of the N2H+(1-0) emission falls off more quickly than that of C-bearing molecules such as HNC(1-0), HCO+(1-0) and HCN(1-0). We also analyze the correlation between several physical and chemical parameters and the dynamics of the cores. Conclusions: Depending on the assumptions made to estimate the virial mass, we find that many starless cores have masses below the self-gravitating threshold, whereas most of the proto-stellar cores have masses which are near or above the self-gravitating critical value. An analysis of the median properties of the starless and proto-stellar cores suggests that

  7. A Direct Measurement of Lifetimes and Stellar Luminosities on the AGB

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2015-01-01

    The asymptotic giant branch (AGB) represents the phase of stellar evolution where stars become their brightest and reddest. As such, understanding stellar lifetimes and luminosities during this evolutionary phase is crucial to accurately interpret red and infrared light from galaxies using population synthesis models. Recently, there has been much controversy over the inferred ages and masses of infrared galaxies due to our lack of understanding of this phase. In this presentation, I'll present a direct measurement of the stellar core mass growth on the AGB by comparing the initial core masses to the post AGB core masses measured from spectroscopy of white dwarfs. The resulting data allows us to calculate the stellar lifetime and luminosity on the AGB, and to compare to popular models that are used to interpret light from distant galaxies.

  8. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z.-Y.; Zhang, Z.-W.; Vilenius, E.; Müller, Th.; Ortiz, J. L.; Braga-Ribas, F.; Bosh, A.; Duffard, R.; Lellouch, E.; Tancredi, G.; Young, L.; Milam, Stefanie N.; the JWST “Occultations” Focus Group

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  9. Stellar chromospheres, coronae, and winds

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. P.; Macgregor, K. B.

    1986-01-01

    It has now been found that one or more of the phenomena of chromospheres, coronae, and winds are present in stars of every class. A review is provided of the observational and theoretical results pertaining to the thermal and dynamical structure of early- and late-type stellar atmospheres. Single stars either on the main sequence or in the postmain sequence stages of evolution are considered. In the context of a study of late-type stars, the specific case of the sun is also examined. The observational evidence for the presence of chromospheres in late-type stellar atmospheres is discussed, taking into account spectral diagnostics and line formation, an observational summary and aspects of location in the H-R diagram, and the Wilson-Bappu effect. Attention is also given to observational evidence for the presence of transition regions and coronae in late-type stellar atmospheres, chromospheric and coronal heating mechanisms, observational evidence for mass loss, and the winds and coronae of early-type stars.

  10. Stellar chromospheres, coronae, and winds

    NASA Astrophysics Data System (ADS)

    Cassinelli, J. P.; MacGregor, K. B.

    It has now been found that one or more of the phenomena of chromospheres, coronae, and winds are present in stars of every class. A review is provided of the observational and theoretical results pertaining to the thermal and dynamical structure of early- and late-type stellar atmospheres. Single stars either on the main sequence or in the postmain sequence stages of evolution are considered. In the context of a study of late-type stars, the specific case of the sun is also examined. The observational evidence for the presence of chromospheres in late-type stellar atmospheres is discussed, taking into account spectral diagnostics and line formation, an observational summary and aspects of location in the H-R diagram, and the Wilson-Bappu effect. Attention is also given to observational evidence for the presence of transition regions and coronae in late-type stellar atmospheres, chromospheric and coronal heating mechanisms, observational evidence for mass loss, and the winds and coronae of early-type stars.

  11. Astrostatistical Analysis in Solar and Stellar Physics

    NASA Astrophysics Data System (ADS)

    Stenning, David Craig

    the solar cycle that are missed when the model is fit using only the sunspot numbers. In Part II of this dissertation we focus on two related lines of research involving Bayesian analysis of stellar evolution. We first focus on modeling multiple stellar populations in star clusters. It has long been assumed that all star clusters are comprised of single stellar populations---stars that formed at roughly the same time from a common molecular cloud. However, recent studies have produced evidence that some clusters host multiple populations, which has far-reaching scientific implications. We develop a Bayesian hierarchical model for multiple-population star clusters, extending earlier statistical models of stellar evolution (e.g., van Dyk et al. 2009, Stein et al. 2013). We also devise an adaptive Markov chain Monte Carlo algorithm to explore the complex posterior distribution. We use numerical studies to demonstrate that our method can recover parameters of multiple-population clusters, and also show how model misspecification can be diagnosed. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We also explore statistical properties of the estimators and determine that the influence of the prior distribution does not diminish with larger sample sizes, leading to non-standard asymptotics. In a final line of research, we present the first-ever attempt to estimate the carbon fraction of white dwarfs. This quantity has important implications for both astrophysics and fundamental nuclear physics, but is currently unknown. We use a numerical study to demonstrate that assuming an incorrect value for the carbon fraction leads to incorrect white-dwarf ages of star clusters. Finally, we present our attempt to estimate the carbon fraction of the white dwarfs in the well-studied star cluster 47 Tucanae.

  12. Temperature-dependent nuclear partition functions and abundances in the stellar interior

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Nasser Tawfik, Abdel; Ezzelarab, Nada; Abas Khan, Ali

    2016-05-01

    We calculate the temperature-dependent nuclear partition functions (TDNPFs) and nuclear abundances for 728 nuclei, assuming nuclear statistical equilibrium (NSE). The theories of stellar evolution support NSE. Discrete nuclear energy levels have been calculated microscopically, using the pn-QRPA theory, up to an excitation energy of 10 MeV in the calculation of the TDNPFs. This feature of our paper distinguishes it from previous calculations. Experimental data is also incorporated wherever available to ensure the reliability of our results. Beyond 10 MeV, we employ a simple Fermi gas model and perform integration over the nuclear level densities to approximate the TDNPFs. We calculate nuclidic abundances, using the Saha equation, as a function of three parameters: stellar density, stellar temperature and the lepton-to-baryon content of stellar matter. All these physical parameters are considered to be extremely important in the stellar interior. The results obtained in this paper show that the equilibrium configuration of nuclei remains unaltered by increasing the stellar density (only the calculated nuclear abundances increase by roughly the same order of magnitude). Increasing the stellar temperature smoothes the equilibrium configuration showing peaks at the neutron-number magic nuclei.

  13. ACCURATE ESTIMATIONS OF STELLAR AND INTERSTELLAR TRANSITION LINES OF TRIPLY IONIZED GERMANIUM

    SciTech Connect

    Dutta, Narendra Nath; Majumder, Sonjoy E-mail: sonjoy@gmail.com

    2011-08-10

    In this paper, we report on weighted oscillator strengths of E1 transitions and transition probabilities of E2 transitions among different low-lying states of triply ionized germanium using highly correlated relativistic coupled cluster (RCC) method. Due to the abundance of Ge IV in the solar system, planetary nebulae, white dwarf stars, etc., the study of such transitions is important from an astrophysical point of view. The weighted oscillator strengths of E1 transitions are presented in length and velocity gauge forms to check the accuracy of the calculations. We find excellent agreement between calculated and experimental excitation energies. Oscillator strengths of few transitions, wherever studied in the literature via other theoretical and experimental approaches, are compared with our RCC calculations.

  14. Accurate stellar masses for SB2 components: Interferometric observations for Gaia validation

    NASA Astrophysics Data System (ADS)

    Halbwachs, J.-L.; Boffin, H. M. J.; Le Bouquin, J.-B.; Famaey, B.; Salomon, J.-B.; Arenou, F.; Pourbaix, D.; Anthonioz, F.; Grellmann, R.; Guieu, S.; Guillout, P.; Jorissen, A.; Kiefer, F.; Lebreton, Y.; Mazeh, T.; Nebot Gómez-Morán, A.; Sana, H.; Tal-Or, L.

    2015-12-01

    A sample of about 70 double-lined spectroscopic binaries (SB2) is followed with radial velocity (RV) measurements, in order to derive the masses of their components when the astrometric measurements of Gaia will be available. A subset of 6 SB2 was observed in interferometry with VLTI/PIONIER, and the components were separated for each binary. The RV measurements already obtained were combined with the interferometric observations and the masses of the components were derived. The accuracies of the 12 masses are presently between 0.4 and 7 %, but they will still be improved in the future. These masses will be used to validate the masses which will be obtained from Gaia. In addition, the parallaxes derived from the combined visual+spectroscopic orbits are compared to that of Hipparcos, and a mass-luminosity relation is derived in the infrared H band.

  15. The use of stellar occultations to study the figures and atmospheres of small bodies in the outer solar system

    NASA Astrophysics Data System (ADS)

    Person, Michael James

    The methods of analyzing stellar occultations by small bodies in the outer solar system are discussed with examples from Triton, Pluto, and Charon. Simulations were performed characterizing the analysis of multi-chord occultations including: the effects of the direction of residual minimization in figure fits, the complications in measuring the reliability of fitted figure parameters when there are few degrees of freedom, and the proper treatment of grazing chords in model fitting. The 2005 July 11 C313.2 stellar occultation by Charon was analyzed. Occultation timings from the three published data sets were combined to accurately determine the mean radius of Charon: 606.0 ± 1.5 km. The analysis indicates that a slight oblateness in the body (0.006 ± 0.003) best matches the data, with a confidence level of 86%. Charon's mean radius corresponds to a bulk density of 1.63 ± 0.07 g/cm 3 , which is significantly less than Pluto's (1.92 ± 0.12 g/cm 3 ), consistent with an impact formation scenario in which at least one of the impactors was differentiated. The 2002 August 21 P131.1 and the 1988 June 9 P8 stellar occultations by Pluto were analyzed. The ellipticity of Pluto's atmosphere as measured by the P131.1 event is 0.066 ± 0.040, with a Gaussian confidence level of 63%, and the ellipticity as measured by the P8 occultations is 0.091 ± 0.041, with a Gaussian confidence level of 70%. If this nonsphericity is confirmed, its size and variation could possibly be attributed to superrotating winds driven by sources such as surface frost migration due to changing insolation patterns or albedo properties, gravity waves, and an asymmetric mass distribution in Pluto itself. The 2001 August 23 Tr231 stellar occultation by Triton was analyzed. The half- light radius of Triton's atmosphere was calculated from astrometrically calibrated model fits to the occultation light curve. The resulting half-light radius of 1479.01 km is larger than the value of 1456.3 km derived from

  16. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  17. Fundamental Parameters of Kepler Eclipsing Binaries. I. KIC 5738698

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Orosz, Jerome A.

    2016-06-01

    Eclipsing binaries serve as a valuable source of stellar masses and radii that inform stellar evolutionary models and provide insight into additional astrophysical processes. The exquisite light curves generated by space-based missions such as Kepler offer the most stringent tests to date. We use the Kepler light curve of the 4.8 day eclipsing binary KIC 5739896 with ground based optical spectra to derive fundamental parameters for the system. We reconstruct the component spectra to determine the individual atmospheric parameters, and model the Kepler photometry with the binary synthesis code Eclipsing Light Curve to obtain accurate masses and radii. The two components of KIC 5738698 are F-type stars with {M}1\\=\\1.39+/- 0.04 {M}ȯ , {M}2\\=\\1.34+/- 0.06 {M}ȯ , and {R}1\\=\\1.84+/- 0.03 {R}ȯ , {R}2\\=\\1.72+/- 0.03 {R}ȯ . We also report a small eccentricity (e≲ 0.0017) and unusual albedo values that are required to match the detailed shape of the Kepler light curve. Comparison with evolutionary models indicate an approximate age of 2.3 Gyr for the system.

  18. Fundamental Parameters of Kepler Eclipsing Binaries. I. KIC 5738698

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Orosz, Jerome A.

    2016-06-01

    Eclipsing binaries serve as a valuable source of stellar masses and radii that inform stellar evolutionary models and provide insight into additional astrophysical processes. The exquisite light curves generated by space-based missions such as Kepler offer the most stringent tests to date. We use the Kepler light curve of the 4.8 day eclipsing binary KIC 5739896 with ground based optical spectra to derive fundamental parameters for the system. We reconstruct the component spectra to determine the individual atmospheric parameters, and model the Kepler photometry with the binary synthesis code Eclipsing Light Curve to obtain accurate masses and radii. The two components of KIC 5738698 are F-type stars with {M}1\\=\\1.39+/- 0.04 {M}⊙ , {M}2\\=\\1.34+/- 0.06 {M}⊙ , and {R}1\\=\\1.84+/- 0.03 {R}⊙ , {R}2\\=\\1.72+/- 0.03 {R}⊙ . We also report a small eccentricity (e≲ 0.0017) and unusual albedo values that are required to match the detailed shape of the Kepler light curve. Comparison with evolutionary models indicate an approximate age of 2.3 Gyr for the system.

  19. pPXF: Penalized Pixel-Fitting stellar kinematics extraction

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2012-10-01

    pPXF is an IDL (and free GDL or FL) program which extracts the stellar kinematics or stellar population from absorption-line spectra of galaxies using the Penalized Pixel-Fitting method (pPXF) developed by Cappellari & Emsellem (2004, PASP, 116, 138). Additional features implemented in the pPXF routine include: Optimal template: Fitted together with the kinematics to minimize template-mismatch errors. Also useful to extract gas kinematics or derive emission-corrected line-strengths indexes. One can use synthetic templates to study the stellar population of galaxies via "Full Spectral Fitting" instead of using traditional line-strengths.Regularization of templates weights: To reduce the noise in the recovery of the stellar population parameters and attach a physical meaning to the output weights assigned to the templates in term of the star formation history (SFH) or metallicity distribution of an individual galaxy.Iterative sigma clipping: To clean the spectra from residual bad pixels or cosmic rays.Additive/multiplicative polynomials: To correct low frequency continuum variations. Also useful for calibration purposes.

  20. CONVECTIVE OVERSHOOT MIXING IN MODELS OF THE STELLAR INTERIOR

    SciTech Connect

    Zhang, Q. S.

    2013-04-01

    Convective overshoot mixing plays an important role in stellar structure and evolution. However, overshoot mixing is also a long-standing problem; it is one of the most uncertain factors in stellar physics. As is well known, convective overshoot mixing is determined by the radial turbulent flux of the chemical component. In this paper, a local model of the radial turbulent flux of the chemical component is established based on hydrodynamic equations and some model assumptions and is tested in stellar models. The main conclusions are as follows. (1) The local model shows that convective overshoot mixing could be regarded as a diffusion process and the diffusion coefficient for different chemical elements is the same. However, if the non-local terms i.e., the gradient of the third-order moments, are taken into account, the diffusion coefficient for each chemical element should in general be different. (2) The diffusion coefficient of convective/overshoot mixing shows different behaviors in the convection zone and in the overshoot region because the characteristic length scale of the mixing is large in the convection zone and small in the overshoot region. Overshoot mixing should be regarded as a weak mixing process. (3) The diffusion coefficient of mixing is tested in stellar models, and it is found that a single choice of our central mixing parameter leads to consistent results for a solar convective envelope model as well as for core convection models of stars with masses from 2 M to 10 M.

  1. A Unified Computational Model for Solar and Stellar Flares

    NASA Technical Reports Server (NTRS)

    Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats

    2015-01-01

    We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.

  2. Evidences for Black Hole Formation by Complete Stellar Collapse

    NASA Astrophysics Data System (ADS)

    Mirabel, Igor Felix

    2016-07-01

    One of the most critical parameters that determines the formation of binary black holes is the range of masses of black holes that may form by direct collapse, namely, with no energetic supernova kicks that would unbound the stellar binary. Theoretical models set mass ranges and limits for black hole formation through the complete collapse of the stellar progenitor. However, observational constraints for those mass limits have been elusive. Since the velocity of a stellar black hole encodes the history of its formation and evolution, it may provide observational constraints on the strength of kicks by natal supernova explosions in the formation of the black hole. Based on the motion in three dimensions of five black hole binaries in our Galaxy it is found that the three black holes with < 10 solar masses are runaway black hole binaries due to kicks from natal supernovae, whereas the two black holes with 10 to 15 solar masses remained in their birth place and must have been form by complete or almost complete collapse of the progenitor star. These observations show that there may be binary black holes with components having masses as low as 10 solar masses, which suggests that a significant fraction of massive stellar binaries would end as black hole binaries that would produce a large stochastic gravitational-wave background.

  3. A UNIFIED COMPUTATIONAL MODEL FOR SOLAR AND STELLAR FLARES

    SciTech Connect

    Allred, Joel C.; Carlsson, Mats

    2015-08-10

    We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker–Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.

  4. Accurate Molecular Polarizabilities Based on Continuum Electrostatics

    PubMed Central

    Truchon, Jean-François; Nicholls, Anthony; Iftimie, Radu I.; Roux, Benoît; Bayly, Christopher I.

    2013-01-01

    A novel approach for representing the intramolecular polarizability as a continuum dielectric is introduced to account for molecular electronic polarization. It is shown, using a finite-difference solution to the Poisson equation, that the Electronic Polarization from Internal Continuum (EPIC) model yields accurate gas-phase molecular polarizability tensors for a test set of 98 challenging molecules composed of heteroaromatics, alkanes and diatomics. The electronic polarization originates from a high intramolecular dielectric that produces polarizabilities consistent with B3LYP/aug-cc-pVTZ and experimental values when surrounded by vacuum dielectric. In contrast to other approaches to model electronic polarization, this simple model avoids the polarizability catastrophe and accurately calculates molecular anisotropy with the use of very few fitted parameters and without resorting to auxiliary sites or anisotropic atomic centers. On average, the unsigned error in the average polarizability and anisotropy compared to B3LYP are 2% and 5%, respectively. The correlation between the polarizability components from B3LYP and this approach lead to a R2 of 0.990 and a slope of 0.999. Even the F2 anisotropy, shown to be a difficult case for existing polarizability models, can be reproduced within 2% error. In addition to providing new parameters for a rapid method directly applicable to the calculation of polarizabilities, this work extends the widely used Poisson equation to areas where accurate molecular polarizabilities matter. PMID:23646034

  5. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  6. A dynamical calibration of the mass-luminosity relation at very low stellar masses and young ages.

    PubMed

    Close, Laird M; Lenzen, Rainer; Guirado, Jose C; Nielsen, Eric L; Mamajek, Eric E; Brandner, Wolfgang; Hartung, Markus; Lidman, Chris; Biller, Beth

    2005-01-20

    Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the 'mass-luminosity' relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resolved low-mass companion AB Dor C, whose mass is 0.090 +/- 0.005 solar masses. Given its measured 1-2-micrometre luminosity, we have found that the standard mass-luminosity relations overestimate the near-infrared luminosity of such objects by about a factor of approximately 2.5 at young ages. The young, cool objects hitherto thought to be substellar in mass are therefore about twice as massive, which means that the frequency of brown dwarfs and planetary mass objects in young stellar clusters has been overestimated.

  7. Mitigating the Impact of Large Intrapixel Quantum Efficiency Variations on Precision Stellar Photometry and Astrometry

    NASA Astrophysics Data System (ADS)

    Mighell, K. J.

    2005-12-01

    Current infrared detector technology can produce imagers with non-uniform intrapixel response functions. This can cause significant stellar flux loss (depending on where a star is centered within the central pixel) which is an observational fact in some existing space-based astronomical cameras. Large intrapixel quantum efficiency (QE) variations can also cause the observed (apparent) positions of stars to be significantly corrupted. With such ugly detectors, the observed stellar brightnesses and positions are neither precise or accurate. Excellent stellar photometry and astrometry is, fortunately, still achievable even in the presence of large intrapixel QE variations --- as long as the image formation process inside the detector is accurately modeled within the photometric reduction code. Detailed analysis of simulated space-based stellar observations are presented which demonstrate how the impact of large intrapixel QE variations can be mitigated using the MATPHOT algorithm with accurate discrete Point Spread functions and accurate Detector Response Functions. Source code and documentation for MATPHOT and support software is freely available at the following web site: http://www.noao.edu/staff/mighell/matphot K.J.M was supported by a grant from the National Aeronautics and Space Administration (NASA), Interagency Order No. NNG05EB61I, which was awarded by the Applied Information Systems Research (AISR) Program of NASA's Science Mission Directorate.

  8. Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Matthews, J. M.; Aerts, C.; Pavlovski, K.; Pápics, P. I.; Zwintz, K.; Cameron, C.; Walker, G. A. H.; Kuschnig, R.; Degroote, P.; Debosscher, J.; Moravveji, E.; Kolbas, V.; Guenther, D. B.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2016-05-01

    Binary stars provide a valuable test of stellar structure and evolution, because the masses of the individual stellar components can be derived with high accuracy and in a model-independent way. In this work, we study Spica, an eccentric double-lined spectroscopic binary system with a β Cep type variable primary component. We use state-of-the-art modelling tools to determine accurate orbital elements of the binary system and atmospheric parameters of both stellar components. We interpret the short-period variability intrinsic to the primary component, detected on top of the orbital motion both in the photometric and spectroscopic data. The non-local thermodynamic equilibrium based spectrum analysis reveals two stars of similar atmospheric chemical composition consistent with the present-day cosmic abundance standard. The masses and radii of the stars are found to be 11.43 ± 1.15 M⊙ and 7.21 ± 0.75 M⊙, and 7.47 ± 0.54 R⊙ and 3.74 ± 0.53 R⊙ for the primary and secondary, respectively. We find the primary component to pulsate in three independent modes, of which one is identified as a radial mode, while the two others are found to be non-radial, low degree l modes. The frequency of one of these modes is an exact multiple of the orbital frequency, and the l = m = 2 mode identification suggests a tidal nature for this particular mode. We find a very good agreement between the derived dynamical and evolutionary masses for the Spica system to within the observational errors of the measured masses. The age of the system is estimated to be 12.5 ± 1 Myr.

  9. MiniCNT - A Tabletop Stellarator

    NASA Astrophysics Data System (ADS)

    Dugan, Chris; Pedersen, Thomas; Berkery, John

    2006-10-01

    MiniCNT is a scaled down version of the Columbia Non-Neutral Torus, a stellarator built to study confinement of non-neutral plasmas on magnetic surfaces. MiniCNT is a glass vacuum chamber capable of holding pressures six orders of magnitude below atmospheric pressure. Unlike CNT, in which plasmas are invisible, MiniCNT allows some collisions with neutrals, causing it to glow. Using two twelve-volt car batteries to power four magnetic coils, MiniCNT generates a 0.02 Tesla magnetic field. While CNT, being larger, is obviously more accurate, there are multiple benefits in MiniCNT. First, it is more flexible and can be adjusted to fit many scenarios easily. The car batteries can be switched for other power sources, the coils can be realigned, and the chamber can be pumped to various pressures of various gases. Also, it is visually accessible; while CNT has glass viewing ports and its plasma is dark, MiniCNT is made of glass and its plasma glows, allowing visualization of the magnetic surfaces.

  10. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  11. Stellar photometry with big pixels

    SciTech Connect

    Buonanno, R.; Iannicola, G.; European Southern Observatory, Garching )

    1989-03-01

    A new software for stellar photometry in crowded fields is presented. This software overcomes the limitations present in a traditional package like ROMAFOT when the pixel size of the detector is comparable to the scale length of point images. This is the case, for instance, with the Hubble Space Telescope-Wide Field Camera and, partially, with the Planetary Camera. The numerical solution presented here is compared to the technical solution of obtaining more exposures of the same field, each shifted by a fraction of pixel. This software will be available in MIDAS. 11 refs.

  12. Stellar bar in NGC 1068

    SciTech Connect

    Scoville, N.Z.; Matthews, K.; Carico, D.P.; Sanders, D.B.

    1988-04-01

    High-resolution 2-micron mapping of the inner disk of NGC 1068 reveals a bar extending to + or - 16 arcsec from the nucleus at position angle 48 deg. The stellar mass distribution, presumably traced by the near-infrared light, is therefore strongly nonaxisymmetric with a contrast of approximately 3:1 between the major and minor axes of the bar. This large-scale galactic structure is probably responsible for the concentration of molecular clouds in a ring just outside the bar. The massive bar may also drive noncircular motions in the inner disk of the galaxy as possibly seen in the gaseous emission lines. 21 references.

  13. Modular stellarator fusion reactor concept

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Krakowski, R. A.

    1981-08-01

    A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an 1 = 2 system with a plasma aspect ratio of 11. The physical basis of the design point is described together with supporting magnetics, coil-force, and stress computations.

  14. Abundance measurements in stellar environments

    NASA Astrophysics Data System (ADS)

    Leone, F.

    2014-05-01

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  15. Abundance measurements in stellar environments

    SciTech Connect

    Leone, F.

    2014-05-09

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  16. Spectroscopy of blue stellar objects

    NASA Technical Reports Server (NTRS)

    Mitchell, K. J.; Warnock, A., III; Nations, H. L.; Barden, S. C.

    1983-01-01

    Spectra have been obtained for the brightest objects from a list of blue stellar objects found in a Palomar Schmidt field centered on Kapteyn Selected Area 28. Four of the objects presented here comprise a complete sample of objects with UV excess and magnitudes brighter than or equal to B = 16.3 mag. The object with the largest UV excess is a previously undiscovered quasar of redshift 0.25 and cataloged B magnitude of 15.6 mag. The object shows some evidence of variability. Spectroscopy for one bright object in a companion field centered on Selected Area 29 is also presented.

  17. Young Stellar Clusters Containing Massive Young Stellar Objects in the VVV Survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Ramírez Alegría, S.; Alonso, J.; Lucas, P. W.; Kurtev, R.; Medina, N.; Navarro, C.; Kuhn, M.; Gromadzki, M.; Retamales, G.; Fernandez, M. A.; Agurto-Gangas, C.; Chené, A.-N.; Minniti, D.; Contreras Pena, C.; Catelan, M.; Decany, I.; Thompson, M. A.; Morales, E. F. E.; Amigo, P.

    2016-09-01

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 M ⊙), the slope Γ of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M ⊙). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.

  18. A NEW METHOD FOR DERIVING THE STELLAR BIRTH FUNCTION OF RESOLVED STELLAR POPULATIONS

    SciTech Connect

    Gennaro, M.; Brown, T. M.; Gordon, K. D.; Tchernyshyov, K.

    2015-07-20

    We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoids binning stars in the color–magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge.

  19. Young Stellar Clusters Containing Massive Young Stellar Objects in the VVV Survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Ramírez Alegría, S.; Alonso, J.; Lucas, P. W.; Kurtev, R.; Medina, N.; Navarro, C.; Kuhn, M.; Gromadzki, M.; Retamales, G.; Fernandez, M. A.; Agurto-Gangas, C.; Chené, A.-N.; Minniti, D.; Contreras Pena, C.; Catelan, M.; Decany, I.; Thompson, M. A.; Morales, E. F. E.; Amigo, P.

    2016-09-01

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 M ⊙), the slope Γ of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M ⊙). Using VVV and GLIMPSE color-color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.

  20. Symmetry breaking of quasihelical stellarator equilibria

    SciTech Connect

    Weening, R.H. )

    1993-04-01

    A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.

  1. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  2. Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Riebel, David

    2012-01-01

    I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.

  3. Perturbation analysis of a general polytropic homologously collapsing stellar core

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Lou, Yu-Qing

    2009-12-01

    For dynamic background models of Goldreich & Weber and Lou & Cao, we examine three-dimensional perturbation properties of oscillations and instabilities in a general polytropic homologously collapsing stellar core of a relativistically hot medium with a polytropic index γ = 4/3. Perturbation behaviours, especially internal gravity g modes, depend on the variation of specific entropy in the collapsing core. Among possible perturbations, we identify acoustic p modes and surface f modes as well as internal gravity g+ and g- modes. As in stellar oscillations of a static star, we define g+ and g- modes by the sign of the Brunt-Väisälä buoyancy frequency squared for a collapsing stellar core. A new criterion for the onset of instabilities is established for a homologous stellar core collapse. We demonstrate that the global energy criterion of Chandrasekhar is insufficient to warrant the stability of general polytropic equilibria. We confirm the acoustic p-mode stability of Goldreich & Weber, even though their p-mode eigenvalues appear in systematic errors. Unstable modes include g- modes and sufficiently high-order g+ modes, corresponding to core instabilities. Such instabilities occur before the stellar core bounce, in contrast to instabilities in other models of supernova (SN) explosions. The breakdown of spherical symmetry happens earlier than expected in numerical simulations so far. The formation and motion of the central compact object are speculated to be much affected by such g-mode instabilities. By estimates of typical parameters, unstable low-order l = 1 g-modes may produce initial kicks of the central compact object. Other high-order and high-degree unstable g modes may shred the nascent neutron core into pieces without an eventual compact remnant (e.g. SN 1987A). Formation of binary pulsars and planets around neutron stars might originate from unstable l = 2 g-modes and high-order high-degree g modes, respectively.

  4. The metastable dynamo model of stellar rotational evolution

    SciTech Connect

    Brown, Timothy M.

    2014-07-10

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  5. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  6. Stellar mass and population diagnostics of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.

    2013-12-01

    We conduct a broad investigation about stellar mass and population diagnostics in order to formulate novel constraints related to the formation and evolution of galaxies from a nearby cluster environment. Our work is powered by the use of stellar population models which transform galaxy colours and/or absorption line strengths into estimates of its stellar properties. As input to such models, we assemble an extensive compilation of age and chemical abundance information for Galactic globular clusters. This compilation allows a confident expansion of these models into new regions of parameter space that promise to refine our knowledge of galactic chemical evolution. We then draw upon a state-of-the-art spectroscopic and photometric survey of the Virgo galaxy cluster in order to constrain spatial variations of the stellar ages, metallicities, and masses within its member galaxies, and their dynamical masses. We interpret these data in the context of the histories of star formation, chemical enrichment, and stellar mass assembly to formulate a broad picture of the build-up of this cluster's content over time. In it, the giant early-type galaxies formed through highly dissipational processes at early times that built up most of their stellar mass and drew significant amounts of dark matter within their optical radii. Conversely, dwarf early-types experienced environmental processes that quenched their star formation during either the early stages of cluster assembly or upon infall at later times. Somewhat perplexing is our finding that the internal dynamics of these galaxies are largely explained by their stellar masses. Lastly, Virgo spirals also suffer from their dense environment, through ram pressure stripping and/or tidal harrassment. In addition to quenching, these effects leave an imprint on their internal dynamical evolution too. Late-type spirals exhibit evidence of having ejected significant amounts of baryons from their inner regions, likely via energetic

  7. Conventional and nonconventional global Alfven eigenmodes in stellarators

    SciTech Connect

    Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.

    2007-10-15

    Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.

  8. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  9. Stellar Multiples Among the KOIs

    NASA Astrophysics Data System (ADS)

    Alyse Hirsch, Lea; Everett, Mark; Ciardi, David; Furlan, Elise; Horch, Elliott; Howell, Steve; Teske, Johanna; Marcy, Geoffrey W.

    2015-12-01

    We examine high-resolution follow-up imaging data for 84 KOIs with stellar companions detected within 2”. These stars were observed in the optical using speckle interferometry (Gemini/DSSI or WIYN/DSSI) and/or in the near-infrared with adaptive optics imaging (Keck/NIRC2, Palomar/PHARO, or Lick/IRCAL), and all have imaging results in at least two filters. Their companions are all unresolved in the Kepler images, and fall on the same pixel of the Kepler detector; thus the planet radii calculated for planet candidates in these systems are subject to upward revision due to contamination of the target star’s light by the stellar companion. We calculate updated planet radii for these 84 planet candidates, assuming the planet orbits the brighter of the two stars. We also use isochrone models and distance estimates to assess the likelihood that the companion is bound. This analysis complements galaxy models that determine the probability of a chance alignment of a background star for each system (Everett et al., in prep.). Together, these data allow us to isolate a sub-population of Kepler planets and planet candidates that reside in physical binary systems, for comparison to the wider Kepler planet population.

  10. Stellarator Research at Columbia University

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Caliri, C.; Clark, A. W.; Febre, A.; Hammond, K. C.; Massidda, S. D.; Sweeney, R. M.; Pedersen, T. S.; Sarasola, X.; Spong, D. A.; Kornbluth, Y.

    2013-10-01

    Neutral plasmas were formed and heated by Electron Cyclotron and Electron Bernstein Waves at 2.45 GHz in the Columbia Nonneutral Torus (CNT) and were characterized with Langmuir probe and fast camera measurements. Future research will take advantage of the low aspect ratio (A = 2.3-2.7), high fraction of trapped particles and large vessel of CNT. The first plasma was obtained in a prototype circular coil tokamak-stellarator hybrid (Proto-CIRCUS). As a result of the toroidal-field coils being tilted and interlinked with each other, the device can be operated at lower plasma-current than a tokamak of comparable size and field, with implications for disruptions and steady state. Additionally, the toroidal magnetic ripple is less pronounced. Comparisons between field-line calculations and experimental mapping is expected to confirm the generation of rotational transform and its dependence on the radial location and tilt of the coils, both of which can be varied. Finally we propose a small EC-heated classical stellarator to improve the production-rate and charge-state of ions in EC-resonant ion sources (ECRIS) over the conventional magnetic-mirror design, and discuss how ions would be extracted, for injection in research and medical accelerators.

  11. Stellar dynamics of CEN A

    NASA Astrophysics Data System (ADS)

    Wilkinson, A.; Sharples, R. M.; Fosbury, R. A. E.; Wallace, P. T.

    1986-01-01

    The first complete map of the stellar velocity field within 100 arcsec of the nucleus of the bright elliptical galaxy NGC 5128 (Cen A) has been compiled, and complementary long-slit spectra out to 400 arcsec along the optical major axis have been obtained. These data show that the ellipsoidal stellar component is rotating slowly (maximum line-of-sight velocity 40 km/s) approximately perpendicular to the dust lane about a projected axis lying in pa approximately 135 deg and in the opposite sense to that expected if the warp were due to the dust lying in stable orbits round a triaxial potential. The velocity field may be explained by either an effectively stationary oblate triaxial model where the radio jet lies along the major axis perpendicular to the dust lane, or by an effectively stationary prolate model where the jet is not constrained to be perpendicular to the dust lane, but in either case the present warped dust lane configuration must be transient. It is shown that the dust lane can significantly affect the steepness of the rotation curve, the skew of the velocity field, and the magnitude of the dispersion.

  12. Problems of collisional stellar dynamics

    NASA Astrophysics Data System (ADS)

    Heggie, D. C.

    2011-03-01

    The discovery of dynamical friction was Chandrasekhar's best known contribution to the theory of stellar dynamics, but his work ranged from the few-body problem to the limit of large N (in effect, galaxies). Much of this work was summarised in the text "Principles of Stellar Dynamics" tep{C1942,C1960}, which ranges from a precise calculation of the time of relaxation, through a long analysis of galaxy models, to the behaviour of star clusters in tidal fields. The later edition also includes the work on dynamical friction and related issues. In this review we focus on progress in the collisional aspects of these problems, i.e. those where few-body interactions play a dominant role, and so we omit further discussion of galaxy dynamics. But we try to link Chandrasekhar's fundamental discoveries in collisional problems with the progress that has been made in the 50 years since the publication of the enlarged edition. There is one other such problem to which Chandrasekhar contributed, though the paper in question tep{C1944} was not reprinted in the book. See Section ref{sec:binaries}. For more on the collisionless problems studied by Chandrasekhar, see the paper by N. Wyn Evans (2011) in the present volume.

  13. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  14. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  15. Mixing in massive stellar mergers

    NASA Astrophysics Data System (ADS)

    Gaburov, E.; Lombardi, J. C.; Portegies Zwart, S.

    2008-01-01

    The early evolution of dense star clusters is possibly dominated by close interactions between stars, and physical collisions between stars may occur quite frequently. Simulating a stellar collision event can be an intensive numerical task, as detailed calculations of this process require hydrodynamic simulations in three dimensions. We present a computationally inexpensive method in which we approximate the merger process, including shock heating, hydrodynamic mixing and mass loss, with a simple algorithm based on conservation laws and a basic qualitative understanding of the hydrodynamics of stellar mergers. The algorithm relies on Archimedes' principle to dictate the distribution of the fluid in the stable equilibrium situation. We calibrate and apply the method to mergers of massive stars, as these are expected to occur in young and dense star clusters. We find that without the effects of microscopic mixing, the temperature and chemical composition profiles in a collision product can become double-valued functions of enclosed mass. Such an unphysical situation is mended by simulating microscopic mixing as a post-collision effect. In this way we find that head-on collisions between stars of the same spectral type result in substantial mixing, while mergers between stars of different spectral type, such as type B and O stars (~10 and ~40Msolar respectively), are subject to relatively little hydrodynamic mixing. Our algorithm has been implemented in an easy-to-use software package, which we have made publicly available for download.1

  16. Confronting predictions of stellar evolution theory: the case of single field M dwarf stars

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Mann, Andrew W.; Gaidos, Eric

    2015-01-01

    Using a homogenous sample of single field M dwarf stars from the CONCH-SHELL catalog, we confront the reliability of predictions from low mass stellar evolution models. Empirical values for the bolometric flux, effective temperature, and stellar radius are typically determined with better than 1%, 2%, and 5% precision, respectively. Coupled with precise [M/H] values, these observations place strong constraints on the accuracy of stellar models. A Markov Chain Monte Carlo (MCMC) formalism is used to establish the most likely stellar properties, with associated uncertainties, by interpolating within a dense grid of Dartmouth stellar evolution models with mass, age, metallicity, and distance as free parameters. The observed effective temperature and bolometric flux are adopted as independent observables in the MCMC likelihood function with the addition of the observed [M/H] and distance as informative Bayesian priors. Results are presented comparing model mass estimates to those from an empirical mass-luminosity calibration, and showing how well stellar models reproduce the observed radii, effective temperatures, and luminosities. Reliability of stellar models is then investigated as a function of mass, [M/H], equivalent width of H-alpha, and X-ray luminosity. Finally, we briefly discuss various physical mechanisms to explain the observed trends, particularly in the context of the hypothesis that magnetic activity is the source of model-observation discrepancies.

  17. Collision rates and the determination of atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Spielfiedel, A.; Feautrier, N.; Guitou, M.; Belyaev, A. K.

    2011-12-01

    Non-LTE modelisation of stellar atmospheres requires an accurate knowledge of collisional rate coefficients (mainly with H atoms) that compete with radiative rates to populate the atomic levels. In the framework of the SAM-GAIA project, we carry out, with colleagues from Uppsala, St. Petersburg and Nice, an interdisciplinary work combining quantum chemistry, collision physics and astrophysical modeling. Present studies concern collisional excitation of Mg and O by H-atoms. In the particular case of Mg, 15 electronic states of the MgH molecule as well as the associated couplings that mix the states during the collision were calculated. The resulting cross sections and rate coefficients point out the sensitivity of the results with the quantum chemistry data. Our detailed calculations show that the usual approximate formulae (Drawin, Kaulakys) lead to errors by factors up to 10^6. Consequences on atmospheric parameters are analyzed.

  18. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  19. Full stellar kinematical profiles of central parts of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Vudragović, A.; Samurović, S.; Jovanović, M.

    2016-09-01

    Context. We present the largest catalog of detailed stellar kinematics of the central parts of nearby galaxies, which includes higher moments of the line-of-sight velocity distribution (LOSVD) function represented by the Gauss-Hermite series. The kinematics is measured on a sample of galaxies selected from the Arecibo Legacy Fast ALFA (Alfalfa) survey using spectroscopy from the Sloan Digital Sky Survey (SDSS DR7). Aims: The SDSS DR7 offers measurements of the LOSVD based on the assumption of a pure Gaussian shape of the broadening function caused by the combination of rotational and random motion of the stars in galaxies. We discuss the consequences of this oversimplification since the velocity dispersion, one of the measured quantities, often serves as the proxy to important modeling parameters such as the black-hole mass and the virial mass of galaxies. Methods: The publicly available pPXF code is used to calculate the full kinematical profile for the sample galaxies including higher moments of their LOSVD. Both observed and synthetic stellar libraries were used and the related template mismatch problem is discussed. Results: For the whole sample of 2180 nearby galaxies reflecting morphological distribution characteristic for the local Universe, we successfully recovered stellar kinematics of their central parts, including higher order moments of the LOSVD function, for signal-to-noise above 50. Conclusions: We show the consequences of the oversimplification of the LOSVD function with Gaussian function on the velocity dispersion for the empirical and the synthetic stellar library. For the empirical stellar library, this approximation leads to an increase in the virial mass of 13% on average, while for the synthetic library the effect is weaker, with an increase of 9% on average. Systematic erroneous estimates of the velocity dispersion comes from the use of the synthetic stellar library instead of the empirical one and is much larger than the value imposed by

  20. Physics assessment of stellarators as fusion power plants

    SciTech Connect

    Lyon, J.F.; Rome, J.A.; Garabedian, P.R.; Anderson, D.T.; Painter, S.L.

    1995-02-01

    Four different stellarator configurations (a Compact Torsatron, a new modular torsatron, Helias, and a new Modular Helias-like Heliac) were analyzed as fusion power plants and compared with the second-stability ARIES-IV tokamak. The device and plasma parameters were determined by minimizing the projected cost of electricity subject to various constraints. The stellarators were competitive with ARIES-IV for a range of assumptions on confinement models, alpha-particle losses, and beta. 1-D power balance equations were solved for both Lackner-Gottardi confinement scaling with an assumed n{sub e}(r) and for helical-ripple-induced transport with both assumed and calculated forms for n{sub e}(r) and E{sub r}(r).

  1. Stellar Mass Radial Profiles of Pan-STARRS MDS Galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Thilker, D. A.; Heckman, T. M.

    2013-01-01

    Six-band (ugrizy) surface brightness radial profiles are derived for a sample of 48 late-type face-on non-interacting nearby galaxies using the Pan-STARRS Medium Deep Survey stack imaging (grizy) and the CFHT deep u-band imaging data. The surface brightnesses are measured down to ~ 29-30 ABmag/arcsec^2. The SB radial profiles are then fed into the advanced SED fitting software MAGPHYS (da Cunha et al. 2008) to derive radial profiles of stellar mass surface density as well as other parameters, such as metallicity and star formation history. The output stellar mass surface density profiles can be classified into three types (single exponential, down-bending, and up-bending), which is consistent with the results of Polen & Trujillo (2006). But the up-bending profiles are more common than indicated in PT06.

  2. COMPARISON OF PHOTOMETRIC VARIABILITY BEFORE AND AFTER STELLAR FLARES

    SciTech Connect

    Karoff, C.

    2014-01-20

    The energy in the solar acoustic spectrum is known to be correlated with flares, but it is not known if the same is true for stellar flares. In order to answer this question, we have analyzed 73 flares in 39 solar-like stars. These flares were identified in the 854 solar-like stars observed by the Kepler spacecraft that have stellar parameters measured with asteroseismology. Though we were not able to identify a statistically significant enhancement of the energy in the high-frequency part of the post-flare acoustic spectra compared to the pre-flare spectra of these stars, we did identify a larger variability between the energy in the high-frequency part of the post- and pre-flare acoustic spectra compared to spectra taken at random times.

  3. Insights on the solar dynamo from stellar observations

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Martens, Petrus C.; Judge, Philip G.

    2014-06-01

    A successful dynamo model should not only explain the broad characteristics of the magnetic field cycle for the Sun (22-year sunspot cycle with polarity reversals, migration of active latitudes toward the poles throughout the cycle, and Joy’s law), but should also be able to explain the cycling behavior observed in Solar-analog stars, which are very close to the Sun in essential characteristics. Our aim is to develop a set of constraints on dynamo models from the observed behavior of solar-analog stars obtained from a number of long-running synoptic surveys of cycling activity (Mount Wilson Observatory HK survey, Lowel Observatory Solar-Stellar Spectrograph, and the Fairborn Observatory Automatic Photoelectric Telescope survey), in conjuncture with stellar rotation and differential rotation data obtained by the Kepler Mission and other sources. By carefully piecing together the best data available today, we will provide an improved understanding of the parameter space in which Solar-like dynamos operate.

  4. A Dream of a Mission: Stellar Imager and Seismic Probe

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The Stellar Imager and Seismic Probe (SISP) is a mission to understand the various effects of magnetic fields of stars, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best-possible forecasting of solar activity on times scales ranging up to decades, and an understanding of the impact of stellar magnetic activity on astrobiology and life in the Universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the Universe. SISP will zoom in on what today - with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool to astrophysics as fundamental as the microscope is to the study of life on Earth. SISP is an ultraviolet aperture-synthesis imager with 8-10 telescopes with meter-class apertures, and a central hub with focal-plane instrumentation that allows spectrophotometry in passbands as narrow as a few Angstroms up to hundreds of Angstroms. SISP will image stars and binaries with one hundred to one thousand resolution elements on their surface, and sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations; this will provide accurate knowledge of stellar structure and evolution and complex transport processes, and will impact numerous branches of (astro)physics ranging from the Big Bang to the future of the Universe. Fitting naturally within the NASA long-term time line, SISP complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets.

  5. Atomic Oscillator Strengths for Stellar Atmosphere Modeling

    NASA Astrophysics Data System (ADS)

    Ruffoni, Matthew; Pickering, Juliet C.

    2015-08-01

    In order to correctly model stellar atmospheres, fundamental atomic data must be available to describe atomic lines observed in their spectra. Accurate, laboratory-measured oscillator strengths (f-values) for Fe peak elements in neutral or low-ionisation states are particularly important for determining chemical abundances.However, advances in astronomical spectroscopy in recent decades have outpaced those in laboratory astrophysics, with the latter frequently being overlooked at the planning stages of new projects. As a result, numerous big-budget astronomy projects have been, and continue to be hindered by a lack of suitable, accurately-measured reference data to permit the analysis of expensive astronomical spectra; a problem only likely to worsen in the coming decades as spectrographs at new facilities increasingly move to infrared wavelengths.At Imperial College London - and in collaboration with NIST, Wisconsin University and Lund University - we have been working with the astronomy community in an effort to provide new accurately-measured f-values for a range of projects. In particular, we have been working closely with the Gaia-ESO (GES) and SDSS-III/APOGEE surveys, both of which have discovered that many lines that would make ideal candidates for inclusion in their analyses have poorly defined f-values, or are simply absent from the database. Using high-resolution Fourier transform spectroscopy (R ~ 2,000,000) to provide atomic branching fractions, and combining these with level lifetimes measured with laser induced fluorescence, we have provided new laboratory-measured f-values for a range of Fe-peak elements, most recently including Fe I, Fe II, and V I. For strong, unblended lines, uncertainties are as low as ±0.02 dex.In this presentation, I will describe how experimental f-values are obtained in the laboratory and present our recent work for GES and APOGEE. In particular, I will also discuss the strengths and limitations of current laboratory

  6. TRACSSS-2: Tracing More Cold Stellar Streams with Spitzer

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl; Kupper, Andreas; Sesar, Branimir; Pearson, Sarah; Rich, Jeffrey; Scowcroft, Vicky; Price-Whelan, Adrian; Johnston, Kathryn

    2016-08-01

    Stellar debris streams may be the most sensitive probes we have of the size and shape of the Milky Way's dark matter distribution. Using the remarkably precise infrared period-luminosity relation for RR Lyrae, Spitzer has already demonstrated the ability to measure distances to better than 2% over nearly the entire volume of the Galaxy. By measuring very accurate mean magnitudes for RR Lyrae in the Anticenter and Styx streams, we will immediately be able to put tighter constrains on the mass and shape of the Galactic halo. These measurements will become still more important in coming years, when they can be used to turn Gaia proper motion measurements into accurate transverse space velocities. These measurements are unlikely to be improved upon in the foreseeable future and may ultimately rank among Spitzer's most enduring legacies.

  7. Characterizing the Cool KOIs. VIII. Parameters of the Planets Orbiting Kepler’s Coolest Dwarfs

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan J.; Montet, Benjamin T.; Vanderburg, Andrew; Morton, Timothy; Muirhead, Philip S.; Johnson, John Asher

    2015-06-01

    The coolest dwarf stars targeted by the Kepler Mission constitute a relatively small but scientifically valuable subset of the Kepler target stars, and provide a high-fidelity, nearby sample of transiting planetary systems. Using archival Kepler data spanning the entire primary mission, we perform a uniform analysis to extract, confirm, and characterize the transit signals discovered by the Kepler pipeline toward M-type dwarf stars. We recover all but two of the signals reported in a recent listing from the Exoplanet Archive resulting in 163 planet candidates associated with a sample of 104 low-mass stars. We fitted the observed light curves to transit models using a Markov Chain Monte Carlo method and we have made the posterior samples publicly available to facilitate further studies. We fitted empirical transit times to individual transit signals with significantly non-linear ephemerides for accurate recovery of transit parameters and precise measuring of transit timing variations. We also provide the physical parameters for the stellar sample, including new measurements of stellar rotation, allowing the conversion of transit parameters into planet radii and orbital parameters.

  8. Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars

    NASA Technical Reports Server (NTRS)

    Worthey, Guy; Faber, S. M.; Gonzalez, J. Jesus; Burstein, D.

    1994-01-01

    Twenty-one optical absorption features, 11 of which have been previously defined, are automatically measured in a sample of 460 stars. Following Gorgas et al., the indices are summarized in fitting functions that give index strengths as functions of stellar temperature, gravity, and (Fe/H). This project was carried out with the purpose of predicting index strengths in the integrated light of stellar populations of different ages and metallicities, but the data should be valuable for stellar studies in the Galaxy as well. Several of the new indices appear to be promising indicators of metallicity for old stellar populations. A complete list of index data and atmospheric parameters is available in computer-readable form.

  9. Upgrading the Solar-Stellar Connection: News about activity in Cool Stars

    NASA Astrophysics Data System (ADS)

    Gunther, H. M.; Poppenhaeger, K.; Testa, P.; Borgniet, S.; Brun, A. S.; Cegla, H. M.; Garraffo, C.; Kowalski, A.; Shapiro, A.; Shkolnik, E.; Spada, F.; Vidotto, A. A.

    2015-01-01

    In this splinter session, ten speakers presented results on solar and stellar activity and how the two fields are connected. This was followed by a lively discussion and supplemented by short, one-minute highlight talks. The talks presented new theoretical and observational results on mass accretion on the Sun, the activity rate of flare stars, the evolution of the stellar magnetic field on time scales of a single cycle and over the lifetime of a star, and two different approaches to model the radial-velocity jitter in cool stars that is due to the granulation on the surface. Talks and discussion showed how much the interpretation of stellar activity data relies on the sun and how the large number of objects available in stellar studies can extend the parameter range of activity models.

  10. STELLAR POPULATIONS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Hou, L. G.; Han, J. L.; Kong, M. Z.; Wu Xuebing

    2011-05-10

    Ultraluminous infrared galaxies (ULIRGs) are classified into several types depending on the dominance of starburst or active galactic nucleus (AGN) components. We conducted a stellar population analysis for a sample of 160 ULIRGs to study the evolution of ULIRGs. We found that the dominance of intermediate-age and old stellar populations increases along the sequence of H II-like ULIRGs, Seyfert-H II composite ULIRGs, and Seyfert 2 ULIRGs. Consequently, the typical mean stellar age and stellar mass increase along the sequence. Comparing the gas mass estimated from the CO measurements to the stellar mass estimated from the optical spectra, we found that the gas fraction is anti-correlated with stellar mass. Even so, the total masses of H II-like ULIRGs with small stellar masses and a large fraction of gas are not comparable to the small masses of Seyfert 2 ULIRGs. This indicates that H II-like ULIRGs with small stellar masses have no evolutionary connections with massive Seyfert 2 ULIRGs. Only massive ULIRGs may follow the evolution sequence toward AGNs, and massive H II-like ULIRGs are probably in an earlier stage of the sequence.

  11. The stellar mass function and efficiency of galaxy formation with a varying initial mass function

    NASA Astrophysics Data System (ADS)

    McGee, Sean L.; Goto, Ryosuke; Balogh, Michael L.

    2014-03-01

    Several recent observational studies have concluded that the initial mass function (IMF) of stars varies systematically with galaxy properties such as velocity dispersion. In this paper, we investigate the effect of linking the circular velocity of galaxies, as determined from the Fundamental Plane and Tully-Fisher relations, to the slope of the IMF with parametrizations guided by several of these studies. For each empirical relation, we generate stellar masses of ˜600 000 Sloan Digital Sky Survey galaxies at z ˜ 0.1, by fitting the optical photometry to large suites of synthetic stellar populations that sample the full range of galaxy parameters. We generate stellar mass functions and examine the stellar-to-halo mass relations using sub-halo abundance matching. At the massive end, the stellar mass functions become a power law, instead of the familiar exponential decline. As a result, it is a generic feature of these models that the central galaxy stellar-to-halo mass relation is significantly flatter at high masses (slope ˜-0.3 to -0.4) than in the case of a universal IMF (slope ˜-0.6). We find that regardless of whether the IMF varies systematically in all galaxies or just early types, there is still a well-defined peak in the central stellar-to-halo mass ratio at halo masses of ˜1012 M⊙. In general, the IMF variations explored here lead to significantly higher integrated stellar densities if the assumed dependence on circular velocity applies to all galaxies, including late-types; in fact the more extreme cases can be ruled out, as they imply an unphysical situation in which the stellar fraction exceeds the universal baryon fraction.

  12. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  13. On stellar X-ray emission

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Golub, L.; Vaiana, G. S.

    1985-01-01

    Stellar X-ray astronomy represents an entirely new astronomical discipline which has emerged during the past five years. It lies at the crossroads of solar physics, stellar physics, and general astrophysics. The present review is concerned with the main physical problems which arise in connection with a study of the stellar X-ray data. A central issue is the extent to which the extrapolation from solar physics is justified and the definition (if possible) of the limits to such extrapolation. The observational properties of X-ray emission from stars are considered along with the solar analogy and the modeling of X-ray emission from late-type stars, the modeling of X-ray emission from early-type stars, the physics of stellar X-ray emission, stellar X-ray emission in the more general astrophysical context, and future prospects.

  14. Hydrodynamic stellar interactions in dense star clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.

    1993-01-01

    Highly detailed HST observations of globular-cluster cores and galactic nuclei motivate new theoretical studies of the violent dynamical processes which govern the evolution of these very dense stellar systems. These processes include close stellar encounters and direct physical collisions between stars. Such hydrodynamic stellar interactions are thought to explain the large populations of blue stragglers, millisecond pulsars, X-ray binaries, and other peculiar sources observed in globular clusters. Three-dimensional hydrodynamics techniques now make it possible to perform realistic numerical simulations of these interactions. The results, when combined with those of N-body simulations of stellar dynamics, should provide for the first time a realistic description of dense star clusters. Here I review briefly current theoretical work on hydrodynamic stellar interactions, emphasizing its relevance to recent observations.

  15. SpaceInn hare-and-hounds exercise: Estimation of stellar properties using space-based asteroseismic data

    NASA Astrophysics Data System (ADS)

    Reese, D. R.; Chaplin, W. J.; Davies, G. R.; Miglio, A.; Antia, H. M.; Ball, W. H.; Basu, S.; Buldgen, G.; Christensen-Dalsgaard, J.; Coelho, H. R.; Hekker, S.; Houdek, G.; Lebreton, Y.; Mazumdar, A.; Metcalfe, T. S.; Silva Aguirre, V.; Stello, D.; Verma, K.

    2016-07-01

    Context. Detailed oscillation spectra comprising individual frequencies for numerous solar-type stars and red giants are either currently available, e.g. courtesy of the CoRoT, Kepler, and K2 missions, or will become available with the upcoming NASA TESS and ESA PLATO 2.0 missions. The data can lead to a precise characterisation of these stars thereby improving our understanding of stellar evolution, exoplanetary systems, and the history of our galaxy. Aims: Our goal is to test and compare different methods for obtaining stellar properties from oscillation frequencies and spectroscopic constraints. Specifically, we would like to evaluate the accuracy of the results and reliability of the associated error bars, and to see where there is room for improvement. Methods: In the context of the SpaceInn network, we carried out a hare-and-hounds exercise in which one group, the hares, simulated observations of oscillation spectra for a set of ten artificial solar-type stars, and a number of hounds applied various methods for characterising these stars based on the data produced by the hares. Most of the hounds fell into two main groups. The first group used forward modelling (i.e. applied various search/optimisation algorithms in a stellar parameter space) whereas the second group relied on acoustic glitch signatures. Results: Results based on the forward modelling approach were accurate to 1.5% (radius), 3.9% (mass), 23% (age), 1.5% (surface gravity), and 1.8% (mean density), as based on the root mean square difference. Individual hounds reached different degrees of accuracy, some of which were substantially better than the above average values. For the two 1M⊙ stellar targets, the accuracy on the age is better than 10% thereby satisfying the requirements for the PLATO 2.0 mission. High stellar masses and atomic diffusion (which in our models does not include the effects of radiative accelerations) proved to be sources of difficulty. The average accuracies for the

  16. VEGAS-SSS: A VST Early-Type GAlaxy Survey: Analysis of Small Stellar System

    NASA Astrophysics Data System (ADS)

    Cantiello, M.

    VEGAS-SSS is a program devoted to study the properties of small stellar systems (SSSs) around bright galaxies, built on the VEGAS survey. At completion, the survey will have collected detailed photometric information of ˜ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, SBF, etc.) and the clustered light (compact stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  17. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Progress in observational, theoretical, and radio studies of coronal plasmas is summarized. Specifically work completed in the area of solar and stellar magnetic fields, related photospheric phenomena and the relationships between magnetism, rotation, coronal and chromospheric emission in solar-like stars is described. Also outlined are theoretical studies carried out in the following areas, among others: (1) neutral beams as the dominant energy transport mechanism in two ribbon-flares; (2) magneto hydrodynamic and circuit models for filament eruptions; and (3) studies of radio emission mechanisms in transient events. Finally, radio observations designed for coronal activity studies of the sun and of solar-type coronae are described. A bibliography of publications and talks is provided along with reprints of selected articles.

  18. Polarimetric Investigations of Stellar Associations

    NASA Astrophysics Data System (ADS)

    Khachikian, E. Ye.; Eritsian, M. A.; Hovhannessian, R. Kh.

    2002-07-01

    The degree of polarization of light from stars in 44 O B associations as a function of interstellar absorption is investigated. It is shown that the character of the dependence of P on A V for stars in associations and stars not in associations depends on the value of A V: for A V 2 m .5 it has a linear character and is the same for both groups of stars. For A V > 2 m .5 the dependence of P on A V for stars in and not in associations departs from linearity and for A V = 4 m .5 it reaches P ass = 1.8% and P nonass = 1%, respectively. Such a difference is explained by the additional depolarization in stellar associations. Such strong depolarization in associations may be due to the overall magnetic field of the Galaxy and to physical peculiarities in the association itself.

  19. Solar and stellar photospheric abundances

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos

    2016-07-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  20. STELLAR MASSES FROM THE CANDELS SURVEY: THE GOODS-SOUTH AND UDS FIELDS

    SciTech Connect

    Santini, P.; Fontana, A.; Castellano, M.; Grazian, A.; Amorin, R.; Ferguson, H. C.; Mobasher, B.; Barro, G.; Hsu, L. T.; Salvato, M.; Wuyts, S.; Galametz, A.; Lee, B.; Lee, S.-K.; Pforr, J.; Wiklind, T.; Almaini, O.; Cooper, M. C.; Weiner, B.; and others

    2015-03-10

    We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey project. We combine the effort from 10 different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ∼80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age <100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for <20 Myr sources) if nebular contribution is ignored.

  1. Stellar Masses from the CANDELS Survey: The GOODS-South and UDS Fields

    NASA Astrophysics Data System (ADS)

    Santini, P.; Ferguson, H. C.; Fontana, A.; Mobasher, B.; Barro, G.; Castellano, M.; Finkelstein, S. L.; Grazian, A.; Hsu, L. T.; Lee, B.; Lee, S.-K.; Pforr, J.; Salvato, M.; Wiklind, T.; Wuyts, S.; Almaini, O.; Cooper, M. C.; Galametz, A.; Weiner, B.; Amorin, R.; Boutsia, K.; Conselice, C. J.; Dahlen, T.; Dickinson, M. E.; Giavalisco, M.; Grogin, N. A.; Guo, Y.; Hathi, N. P.; Kocevski, D.; Koekemoer, A. M.; Kurczynski, P.; Merlin, E.; Mortlock, A.; Newman, J. A.; Paris, D.; Pentericci, L.; Simons, R.; Willner, S. P.

    2015-03-01

    We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey project. We combine the effort from 10 different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ~80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age <100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for <20 Myr sources) if nebular contribution is ignored.

  2. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  3. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  4. Determination of fundamental asteroseismic parameters using the Hilbert transform

    NASA Astrophysics Data System (ADS)

    Kiefer, René; Schad, Ariane; Herzberg, Wiebke; Roth, Markus

    2015-06-01

    Context. Solar-like oscillations exhibit a regular pattern of frequencies. This pattern is dominated by the small and large frequency separations between modes. The accurate determination of these parameters is of great interest, because they give information about e.g. the evolutionary state and the mass of a star. Aims: We want to develop a robust method to determine the large and small frequency separations for time series with low signal-to-noise ratio. For this purpose, we analyse a time series of the Sun from the GOLF instrument aboard SOHO and a time series of the star KIC 5184732 from the NASA Kepler satellite by employing a combination of Fourier and Hilbert transform. Methods: We use the analytic signal of filtered stellar oscillation time series to compute the signal envelope. Spectral analysis of the signal envelope then reveals frequency differences of dominant modes in the periodogram of the stellar time series. Results: With the described method the large frequency separation Δν can be extracted from the envelope spectrum even for data of poor signal-to-noise ratio. A modification of the method allows for an overview of the regularities in the periodogram of the time series.

  5. A stellar interferometer on the Moon

    NASA Astrophysics Data System (ADS)

    Porro, Irene

    present the results of the simulation of the interfering fringes obtained when polarization effects are present. In the fourth chapter (IV) I deal with the problem of how thermal e ects a ect the performance of a stellar interferometer. Knowing these effects and the thermal characteristic of the site when designing the instrument, allows to riduce its sensibility to the thermal changes. In the first part of the chapter I take into consideration the optical components, both reffective and refractive, of the system: I evaluate the wavefront error due to the alteration of the physical characteristics of the optical material as a consequence of a temperature variation. In the second part I consider the effects on the structure which supports and connects the primary and the secondary mirrors: a temperature variation may cause a perturbation in the telescope alignment and hence a wavefront error. The general expressions for the wavefront error obtained in the rst and second part are then applied to IOTA. In particular the result of this study are used to perform an a posteriori evaluation of the visibility loss for IOTA. Finally, I performed a detailed analysis for the evaluation of the wavefront error introduced by a non-perfect thermal compensation affecting the metric structure which connects the mirrors of the telescope. The fifth chapter (V) consists in a description of the causes of mechanical instability which can a effect the operation of IOTA. In most cases I only present a qualitative description of the phenomena and a rough evaluation of their effects. This is because an accurate evaluation of the wavefront error induced by each of them requires a specialistic study of the vibration propagation throughout the whole structure of the interferometer, a study which is beyond the purposes of this work. I performed a more detailed evaluation only to determine the efficiency of the insolation system applied to the vacuum pumps. One of the problems arisen the first times

  6. Cool WISPs for stellar cooling excesses

    NASA Astrophysics Data System (ADS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  7. Geometrical beaming of stellar mass ULXs

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; King, Andrew

    2016-10-01

    The presence or lack of eclipses in the X-ray light curves of ultraluminous X-ray sources (ULXs) can be directly linked to the accreting system geometry. In the case where the compact object is stellar mass and radiates isotropically, we should expect eclipses by a main-sequence to sub-giant secondary star on the recurrence time-scale of hours to days. X-ray light curves are now available for large numbers of ULXs as a result of the latest XMM-Newton catalogue. We determine the amount of fractional variability that should be injected into an otherwise featureless light curve for a given set of system parameters as a result of eclipses and compare this to the available data. We find that the vast majority of sources for which the variability has been measured to be non-zero and for which available observations meet the criteria for eclipse searches, have fractional variabilities which are too low to derive from eclipses and so must be viewed such that θ ≤ cos- 1(R*/a). This would require that the disc subtends a larger angle than that of the secondary star and is therefore consistent with a conical outflow formed from super-critical accretion rates and implies some level of geometrical beaming in ULXs.

  8. Gaia status and potential for stellar astrophysics

    NASA Astrophysics Data System (ADS)

    Prusti, Timo

    2015-08-01

    The commissioning phase of the Gaia satellite was completed in July 2014 and we are well into the first year of routine phase operations out of the nominal 5 year mission. All subsystems are working and the operational parameters have been tuned for optimum science performance. A final upgrade of the on-board detection software is under testing. The aim is to be operational in the final configuration by summer 2015. The magnitude limit of the survey has been set to G=20.7 mag for astrometry and photometry. The spectroscopy magnitude limit is currently G_RVS=16.2 mag, but may be adjusted pending the new on-board software testing. The in-flight performance and the chosen operational modes are reviewed against science potential specifically in the field of stellar astrophysics. The Science Alerts stream based on photometry has been started while preparations are underway for the first intermediate catalogue release by summer 2016. Examples of Gaia observations will be shown to indicate the scientific power of this ESA cornerstone mission.

  9. Dust Disks Around Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Suh, Kyung-Won

    2016-06-01

    To reproduce the spectral energy distributions (SEDs) of young stellar objects (YSOs), we perform radiative transfer model calculations for the circumstellar dust disks with various shapes and many dust species. For eight sample objects of T Tauri and Herbig Ae/Be stars, we compare the theoretical model SEDs with the observed SEDs described by the infrared space observatory and Spitzer space telescope spectral data. We use the model, CGPLUS, for a passive irradiated circumstellar dust disk with an inner hole and an inner rim for the eight sample YSOs. We present model parameters for the dust disk, which reproduce the observed SEDs. We find that the model requires a higher mass, luminosity, and temperature for the central star for the Herbig Ae/Be stars than those for the T Tauri stars. Generally, the outer radius, total mass, thickness, and rim height of the theoretical dust disk for the Herbig Ae/Be stars are larger than those for the T Tauri stars.

  10. Heat transport experiments on the HSX stellarator

    NASA Astrophysics Data System (ADS)

    Weir, Gavin McCabe

    It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission line have been installed and tested to facilitate modulated heating experiments on HSX, and a multi-pass absorption model accurately predicts the total absorption and spatial extent of the electron cyclotron resonance heating during a modulation experiment. The electron cyclotron emission measured by an absolutely calibrated 16-channel radiometer is used to measure the local electron temperature and its response to the modulated heating. The amplitude and phase of the heat wave through the foot of the steep electron temperature gradient region of the plasma, 0.2It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission

  11. Dynamics and evolution of dense stellar systems

    NASA Astrophysics Data System (ADS)

    Fregeau, John M.

    2004-10-01

    The research presented in this thesis comprises a theoretical study of several aspects relating to the dynamics and evolution of dense stellar systems such as globular clusters. First, I present the results of a study of mass segregation in two-component star clusters, based on a large number of numerical N-body simulations using our Monte-Carlo code. Heavy objects, which could represent stellar remnants such as neutron stars or black holes, exhibit behavior that is in quantitative agreement with simple analytical arguments. Light objects, which could represent free-floating planets or brown dwarfs, are predominantly lost from the cluster, as expected from simple analytical arguments, but may remain in the halo in larger numbers than expected. Using a recent null detection of planetary-mass microlensing events in M22, I find an upper limit of ˜25% at the 63% confidence level for the current mass fraction of M22 in the form of very low-mass objects. Turning to more realistic clusters, I present a study of the evolution of clusters containing primordial binaries, based on an enhanced version of the Monte-Carlo code that treats binary interactions via cross sections and analytical prescriptions. All models exhibit a long-lived “binary burning” phase lasting many tens of relaxation times. The structural parameters of the models during this phase match well those of most observed Galactic globular clusters. At the end of this phase, clusters that have survived tidal disruption undergo deep core collapse, followed by gravothermal oscillations. The results clearly show that the presence of even a small fraction of binaries in a cluster is sufficient to support the core against collapse significantly beyond the normal core collapse time predicted without the presence of binaries. For tidally truncated systems, collapse is delayed sufficiently that the cluster will undergo complete tidal disruption before core collapse. Moving a step beyond analytical prescriptions, I

  12. Stellar X-ray Emission From Magnetically Funneled Shocks

    NASA Astrophysics Data System (ADS)

    Guenther, Hans

    Stars and planets form in giant molecular clouds, so they are deeply embedded in their early stages. When they become optically visible, the young stars are still surrounded by a proto-planetary disk, where planets evolve. These stars are called classical T Tauri stars (CTTS). A key, yet poorly constrained, parameter for the disk evolution is the stellar high-energy emission. It can ionize the outer layers of the disk, change its chemistry and even drive photoevaporation of the disk. Thus the spectral shape and the temporal variability of the stellar X-ray and UV emission shapes the gas and dust properties in some regions of the disk. It sets the photoevaporation timescale which provides an upper limit for planet formation. CTTS still actively accrete mass from their disk. The infalling matter is funneled by the stellar magnetic field and impacts on the star close to free fall velocity. A hot accretion shock develops, which emits X-rays which are distinct from any coronal X-rays. Eventually the disk disperses and bulk planet formation comes to an end. X-ray emitting shocks can still occur at a later stage in stellar evolution, if e.g. the magnetic field is strong enough to funnel the stellar wind to collide in the disk midplane. This so-called magnetically confined wind shock model was originally developed for the A0p star IQ Aur. The magnetically funneled accretion model has been successfully tested for CTTS in a small mass range only; the magnetically confined wind shock model lacks a comparison for high-resolution X-ray grating spectra for all but the most massive stars. In this proposal we request funding to analyze three XMM-Newton observations, which will probe X-ray emitting shocks in stars with magnetic fields: DN Tau (observed as category C target in cycle 8), a CTTS with much lower mass than previous CTTS with X- ray grating spectroscopy; MN Lup (to be observed in cycle 9), a prime candidate for simultaneous X-ray/Doppler-imaging studies; and IQ Aur (to

  13. Clump formation through colliding stellar winds in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Calderón, Diego

    2016-07-01

    The gas cloud G2 is currently being tidally disrupted by the Galactic Center super-massive black hole, Sgr A*. The region around the black hole is populated by ˜30 Wolf-Rayet stars, which produce strong outflows. Following an analytical approach, we explore the possibility that gas clumps, such as G2, originate from the collision of identical stellar winds via the Non-Linear Thin Shell Instability. We have found that the collision of relatively slow (<750 km s^{-1}) and strong (˜10^{-5} M_{⊙} yr^{-1}) stellar winds from stars at short separations (<2000 AU) is a process that indeed could produce clumps of G2's mass and above. Such short separation encounters of single stars along their orbits are not common in the Galactic Centre, however close binaries, such as IRS 16SW, are promising clump sources (see Calderón et al. 2016). We also present the first results of 2D models of colliding wind systems using the hydrodynamics adaptive mesh refinement code RAMSES, aiming to obtain a clump mass function, and the rate of clump formation and ejection to the ISM. We study the effect of parameters such as wind properties, stellar separation and orbital motion, in order to understand how likely the formation of G2 is in this context.

  14. ICRF heating in a straight, helically symmetric stellarator

    SciTech Connect

    Jaeger, E.F.; Weitzner, H.; Batchelor, D.B.

    1987-07-01

    Experimental observations of direct ion cyclotron resonant frequency (ICRF) heating at fundamental ion cyclotron resonance on the L-2 stellarator have stimulated interest in the theoretical basis for such heating. In this paper, global solutions for the ICRF wave fields