Science.gov

Sample records for accurate structural models

  1. Accurate protein structure modeling using sparse NMR data and homologous structure information

    PubMed Central

    Thompson, James M.; Sgourakis, Nikolaos G.; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L.; Szyperski, Thomas; Montelione, Gaetano T.; Baker, David

    2012-01-01

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining , 13C, and 15N backbone and 13Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2–1.9 Å relative to the conventional determined NMR ensembles and of 0.9–1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments. PMID:22665781

  2. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    PubMed

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  3. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations

    PubMed Central

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-01-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-‘one-click’ experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  4. Beyond Ellipse(s): Accurately Modelling the Isophotal Structure of Galaxies with ISOFIT and CMODEL

    NASA Astrophysics Data System (ADS)

    Ciambur, B. C.

    2015-09-01

    This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.

  5. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html. PMID:18376982

  6. conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure.

    PubMed

    Kieslich, Chris A; Smadbeck, James; Khoury, George A; Floudas, Christodoulos A

    2016-03-28

    Accurate prediction of protein secondary structure remains a crucial step in most approaches to the protein-folding problem, yet the prediction of ordered secondary structure, specifically beta-strands, remains a challenge. We developed a consensus secondary structure prediction method, conSSert, which is based on support vector machines (SVM) and provides exceptional accuracy for the prediction of beta-strands with QE accuracy of over 0.82 and a Q2-EH of 0.86. conSSert uses as input probabilities for the three types of secondary structure (helix, strand, and coil) that are predicted by four top performing methods: PSSpred, PSIPRED, SPINE-X, and RAPTOR. conSSert was trained/tested using 4261 protein chains from PDBSelect25, and 8632 chains from PISCES. Further validation was performed using targets from CASP9, CASP10, and CASP11. Our data suggest that poor performance in strand prediction is likely a result of training bias and not solely due to the nonlocal nature of beta-sheet contacts. conSSert is freely available for noncommercial use as a webservice: http://ares.tamu.edu/conSSert/ . PMID:26928531

  7. Accurate Fabrication of Hydroxyapatite Bone Models with Porous Scaffold Structures by Using Stereolithography

    NASA Astrophysics Data System (ADS)

    Maeda, Chiaki; Tasaki, Satoko; Kirihara, Soshu

    2011-05-01

    Computer graphic models of bioscaffolds with four-coordinate lattice structures of solid rods in artificial bones were designed by using a computer aided design. The scaffold models composed of acryl resin with hydroxyapatite particles at 45vol. % were fabricated by using stereolithography of a computer aided manufacturing. After dewaxing and sintering heat treatment processes, the ceramics scaffold models with four-coordinate lattices and fine hydroxyapatite microstructures were obtained successfully. By using a computer aided analysis, it was found that bio-fluids could flow extensively inside the sintered scaffolds. This result shows that the lattice structures will realize appropriate bio-fluid circulations and promote regenerations of new bones.

  8. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  9. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    SciTech Connect

    Dunn, Nicholas J. H.; Noid, W. G.

    2015-12-28

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.

  10. Anatomically accurate individual face modeling.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2003-01-01

    This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction. PMID:15455936

  11. RCK: accurate and efficient inference of sequence- and structure-based protein–RNA binding models from RNAcompete data

    PubMed Central

    Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie

    2016-01-01

    Motivation: Protein–RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein–RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. Results: We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein–RNA structure-based models on an unprecedented scale. Availability and Implementation: Software and models are freely available at http://rck.csail.mit.edu/ Contact: bab@mit.edu Supplementary information

  12. Accurate modeling of spectral fine-structure in Earth radiance spectra measured with the Global Ozone Monitoring Experiment.

    PubMed

    van Deelen, Rutger; Hasekamp, Otto P; Landgraf, Jochen

    2007-01-10

    We present what we believe to be a novel approach to simulating the spectral fine structure (<1 nm) in measurements of spectrometers such as the Global Ozone Monitoring Experiment (GOME). GOME measures the Earth's radiance spectra and daily solar irradiance spectra from which a reflectivity spectrum is commonly extracted. The high-frequency structures contained in such a spectrum are, apart from atmospheric absorption, caused by Raman scattering and by a shift between the solar irradiance and the Earth's radiance spectrum. Normally, an a priori high-resolution solar spectrum is used to simulate these structures. We present an alternative method in which all the required information on the solar spectrum is retrieved from the GOME measurements. We investigate two approaches for the spectral range of 390-400 nm. First, a solar spectrum is reconstructed on a fine spectral grid from the GOME solar measurement. This approach leads to undersampling errors of up to 0.5% in the modeling of the Earth's radiance spectra. Second, a combination of the solar measurement and one of the Earth's radiance measurement is used to retrieve a solar spectrum. This approach effectively removes the undersampling error and results in residuals close to the GOME measurement noise of 0.1%. PMID:17268571

  13. Accurate mask model for advanced nodes

    NASA Astrophysics Data System (ADS)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle

    2014-07-01

    Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.

  14. Accurate Prediction of Docked Protein Structure Similarity.

    PubMed

    Akbal-Delibas, Bahar; Pomplun, Marc; Haspel, Nurit

    2015-09-01

    One of the major challenges for protein-protein docking methods is to accurately discriminate nativelike structures. The protein docking community agrees on the existence of a relationship between various favorable intermolecular interactions (e.g. Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native structure. Different docking algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights against specific training data to evaluate and rank candidate structures. However, the exact form of this relationship is unknown and the accuracy of such methods is impaired by the pervasiveness of false positives. Unlike the conventional scoring functions, we propose a novel machine learning approach that not only ranks the candidate structures relative to each other but also indicates how similar each candidate is to the native conformation. We trained the AccuRMSD neural network with an extensive dataset using the back-propagation learning algorithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å error margin. PMID:26335807

  15. Pre-Modeling Ensures Accurate Solid Models

    ERIC Educational Resources Information Center

    Gow, George

    2010-01-01

    Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…

  16. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  17. Accurate and efficient reconstruction of deep phylogenies from structured RNAs

    PubMed Central

    Stocsits, Roman R.; Letsch, Harald; Hertel, Jana; Misof, Bernhard; Stadler, Peter F.

    2009-01-01

    Ribosomal RNA (rRNA) genes are probably the most frequently used data source in phylogenetic reconstruction. Individual columns of rRNA alignments are not independent as a consequence of their highly conserved secondary structures. Unless explicitly taken into account, these correlation can distort the phylogenetic signal and/or lead to gross overestimates of tree stability. Maximum likelihood and Bayesian approaches are of course amenable to using RNA-specific substitution models that treat conserved base pairs appropriately, but require accurate secondary structure models as input. So far, however, no accurate and easy-to-use tool has been available for computing structure-aware alignments and consensus structures that can deal with the large rRNAs. The RNAsalsa approach is designed to fill this gap. Capitalizing on the improved accuracy of pairwise consensus structures and informed by a priori knowledge of group-specific structural constraints, the tool provides both alignments and consensus structures that are of sufficient accuracy for routine phylogenetic analysis based on RNA-specific substitution models. The power of the approach is demonstrated using two rRNA data sets: a mitochondrial rRNA set of 26 Mammalia, and a collection of 28S nuclear rRNAs representative of the five major echinoderm groups. PMID:19723687

  18. Accurate and efficient reconstruction of deep phylogenies from structured RNAs.

    PubMed

    Stocsits, Roman R; Letsch, Harald; Hertel, Jana; Misof, Bernhard; Stadler, Peter F

    2009-10-01

    Ribosomal RNA (rRNA) genes are probably the most frequently used data source in phylogenetic reconstruction. Individual columns of rRNA alignments are not independent as a consequence of their highly conserved secondary structures. Unless explicitly taken into account, these correlation can distort the phylogenetic signal and/or lead to gross overestimates of tree stability. Maximum likelihood and Bayesian approaches are of course amenable to using RNA-specific substitution models that treat conserved base pairs appropriately, but require accurate secondary structure models as input. So far, however, no accurate and easy-to-use tool has been available for computing structure-aware alignments and consensus structures that can deal with the large rRNAs. The RNAsalsa approach is designed to fill this gap. Capitalizing on the improved accuracy of pairwise consensus structures and informed by a priori knowledge of group-specific structural constraints, the tool provides both alignments and consensus structures that are of sufficient accuracy for routine phylogenetic analysis based on RNA-specific substitution models. The power of the approach is demonstrated using two rRNA data sets: a mitochondrial rRNA set of 26 Mammalia, and a collection of 28S nuclear rRNAs representative of the five major echinoderm groups. PMID:19723687

  19. Accurate equilibrium structures of fluoro- and chloroderivatives of methane

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Demaison, Jean; Rudolph, Heinz Dieter

    2014-11-01

    This work is a systematic study of molecular structure of fluoro-, chloro-, and fluorochloromethanes. For the first time, the accurate ab initio structure is computed for 10 molecules (CF4, CClF3, CCl2F2, CCl3F, CHClF2, CHCl2F, CH2F2, CH2ClF, CH2Cl2, and CCl4) at the coupled cluster level of electronic structure theory including single and double excitations augmented by a perturbational estimate of the effects of connected triple excitations [CCSD(T)] with all electrons being correlated and Gaussian basis sets of at least quadruple-ζ quality. Furthermore, when possible, namely for the molecules CH2F2, CH2Cl2, CH2ClF, CHClF2, and CCl2F2, accurate semi-experimental equilibrium (rSEe) structure has also been determined. This is achieved through a least-squares structural refinement procedure based on the equilibrium rotational constants of all available isotopomers, determined by correcting the experimental ground-state rotational constants with computed ab initio vibration-rotation interaction constants and electronic g-factors. The computed and semi-experimental equilibrium structures are in excellent agreement with each other, but the rSEe structure is generally more accurate, in particular for the CF and CCl bond lengths. The carbon-halogen bond length is discussed within the framework of the ligand close-packing model as a function of the atomic charges. For this purpose, the accurate equilibrium structures of some other molecules with alternative ligands, such as CH3Li, CF3CCH, and CF3CN, are also computed.

  20. Accurate modeling of parallel scientific computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  1. Determination of the structure of {gamma}-alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model

    SciTech Connect

    Paglia, Gianluca; Rohl, Andrew L.; Gale, Julian D.; Buckley, Craig E.

    2005-06-01

    We have performed an extensive computational study of {gamma}-Al{sub 2}O{sub 3}, beginning with the geometric analysis of approximately 1.47 billion spinel-based structural candidates, followed by derivative method energy minimization calculations of approximately 122 000 structures. Optimization of the spinel-based structural models demonstrated that structures exhibiting nonspinel site occupancy after simulation were more energetically favorable, as suggested in other computational studies. More importantly, none of the spinel structures exhibited simulated diffraction patterns that were characteristic of {gamma}-Al{sub 2}O{sub 3}. This suggests that cations of {gamma}-Al{sub 2}O{sub 3} are not exclusively held in spinel positions, that the spinel model of {gamma}-Al{sub 2}O{sub 3} does not accurately reflect its structure, and that a representative structure cannot be achieved from molecular modeling when the spinel representation is used as the starting structure. The latter two of these three findings are extremely important when trying to accurately model the structure. A second set of starting models were generated with a large number of cations occupying c symmetry positions, based on the findings from recent experiments. Optimization of the new c symmetry-based structural models resulted in simulated diffraction patterns that were characteristic of {gamma}-Al{sub 2}O{sub 3}. The modeling, conducted using supercells, yields a more accurate and complete determination of the defect structure of {gamma}-Al{sub 2}O{sub 3} than can be achieved with current experimental techniques. The results show that on average over 40% of the cations in the structure occupy nonspinel positions, and approximately two-thirds of these occupy c symmetry positions. The structures exhibit variable occupancy in the site positions that follow local symmetry exclusion rules. This variation was predominantly represented by a migration of cations away from a symmetry positions to other

  2. Determination of the structure of γ -alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model

    NASA Astrophysics Data System (ADS)

    Paglia, Gianluca; Rohl, Andrew L.; Buckley, Craig E.; Gale, Julian D.

    2005-06-01

    We have performed an extensive computational study of γ-Al2O3 , beginning with the geometric analysis of approximately 1.47 billion spinel-based structural candidates, followed by derivative method energy minimization calculations of approximately 122 000 structures. Optimization of the spinel-based structural models demonstrated that structures exhibiting nonspinel site occupancy after simulation were more energetically favorable, as suggested in other computational studies. More importantly, none of the spinel structures exhibited simulated diffraction patterns that were characteristic of γ-Al2O3 . This suggests that cations of γ-Al2O3 are not exclusively held in spinel positions, that the spinel model of γ-Al2O3 does not accurately reflect its structure, and that a representative structure cannot be achieved from molecular modeling when the spinel representation is used as the starting structure. The latter two of these three findings are extremely important when trying to accurately model the structure. A second set of starting models were generated with a large number of cations occupying c symmetry positions, based on the findings from recent experiments. Optimization of the new c symmetry-based structural models resulted in simulated diffraction patterns that were characteristic of γ-Al2O3 . The modeling, conducted using supercells, yields a more accurate and complete determination of the defect structure of γ-Al2O3 than can be achieved with current experimental techniques. The results show that on average over 40% of the cations in the structure occupy nonspinel positions, and approximately two-thirds of these occupy c symmetry positions. The structures exhibit variable occupancy in the site positions that follow local symmetry exclusion rules. This variation was predominantly represented by a migration of cations away from a symmetry positions to other tetrahedral site positions during optimization which were found not to affect the diffraction

  3. The importance of accurate atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Payne, Dylan; Schroeder, John; Liang, Pang

    2014-11-01

    This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.

  4. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  5. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  6. Quantitative Assessment of Protein Structural Models by Comparison of H/D Exchange MS Data with Exchange Behavior Accurately Predicted by DXCOREX

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Pantazatos, Dennis; Li, Sheng; Hamuro, Yoshitomo; Hilser, Vincent J.; Woods, Virgil L.

    2012-01-01

    Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca2+-independent phospholipase A2. The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.

  7. Accurate astronomical atmospheric dispersion models in ZEMAX

    NASA Astrophysics Data System (ADS)

    Spanò, P.

    2014-07-01

    ZEMAX provides a standard built-in atmospheric model to simulate atmospheric refraction and dispersion. This model has been compared with other ones to assess its intrinsic accuracy, critical for very demanding application like ADCs for AO-assisted extremely large telescopes. A revised simple model, based on updated published data of the air refractivity, is proposed by using the "Gradient 5" surface of Zemax. At large zenith angles (65 deg), discrepancies up to 100 mas in the differential refraction are expected near the UV atmospheric transmission cutoff. When high-accuracy modeling is required, the latter model should be preferred.

  8. Accurate spectral modeling for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gupta, S. K.

    1977-01-01

    Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.

  9. Towards Accurate Molecular Modeling of Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.

    2010-03-01

    There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.

  10. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    PubMed

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data. PMID:26355331

  11. Isomerism of Cyanomethanimine: Accurate Structural, Energetic, and Spectroscopic Characterization.

    PubMed

    Puzzarini, Cristina

    2015-11-25

    The structures, relative stabilities, and rotational and vibrational parameters of the Z-C-, E-C-, and N-cyanomethanimine isomers have been evaluated using state-of-the-art quantum-chemical approaches. Equilibrium geometries have been calculated by means of a composite scheme based on coupled-cluster calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The latter approach is proved to provide molecular structures with an accuracy of 0.001-0.002 Å and 0.05-0.1° for bond lengths and angles, respectively. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled-cluster theory, including up to single, double, triple, and quadruple excitations, and corrected for core-electron correlation and anharmonic zero-point vibrational energy, have been used to accurately determine relative energies and the Z-E isomerization barrier with an accuracy of about 1 kJ/mol. Vibrational and rotational spectroscopic parameters have been investigated by means of hybrid schemes that allow us to obtain rotational constants accurate to about a few megahertz and vibrational frequencies with a mean absolute error of ∼1%. Where available, for all properties considered, a very good agreement with experimental data has been observed. PMID:26529434

  12. Accurate, low-cost 3D-models of gullies

    NASA Astrophysics Data System (ADS)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  13. An accurate and simple quantum model for liquid water.

    PubMed

    Paesani, Francesco; Zhang, Wei; Case, David A; Cheatham, Thomas E; Voth, Gregory A

    2006-11-14

    The path-integral molecular dynamics and centroid molecular dynamics methods have been applied to investigate the behavior of liquid water at ambient conditions starting from a recently developed simple point charge/flexible (SPC/Fw) model. Several quantum structural, thermodynamic, and dynamical properties have been computed and compared to the corresponding classical values, as well as to the available experimental data. The path-integral molecular dynamics simulations show that the inclusion of quantum effects results in a less structured liquid with a reduced amount of hydrogen bonding in comparison to its classical analog. The nuclear quantization also leads to a smaller dielectric constant and a larger diffusion coefficient relative to the corresponding classical values. Collective and single molecule time correlation functions show a faster decay than their classical counterparts. Good agreement with the experimental measurements in the low-frequency region is obtained for the quantum infrared spectrum, which also shows a higher intensity and a redshift relative to its classical analog. A modification of the original parametrization of the SPC/Fw model is suggested and tested in order to construct an accurate quantum model, called q-SPC/Fw, for liquid water. The quantum results for several thermodynamic and dynamical properties computed with the new model are shown to be in a significantly better agreement with the experimental data. Finally, a force-matching approach was applied to the q-SPC/Fw model to derive an effective quantum force field for liquid water in which the effects due to the nuclear quantization are explicitly distinguished from those due to the underlying molecular interactions. Thermodynamic and dynamical properties computed using standard classical simulations with this effective quantum potential are found in excellent agreement with those obtained from significantly more computationally demanding full centroid molecular dynamics

  14. Water wave model with accurate dispersion and vertical vorticity

    NASA Astrophysics Data System (ADS)

    Bokhove, Onno

    2010-05-01

    Cotter and Bokhove (Journal of Engineering Mathematics 2010) derived a variational water wave model with accurate dispersion and vertical vorticity. In one limit, it leads to Luke's variational principle for potential flow water waves. In the another limit it leads to the depth-averaged shallow water equations including vertical vorticity. Presently, focus will be put on the Hamiltonian formulation of the variational model and its boundary conditions.

  15. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  16. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  17. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  18. An accurate temperature correction model for thermocouple hygrometers.

    PubMed

    Savage, M J; Cass, A; de Jager, J M

    1982-02-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature. PMID:16662241

  19. More-Accurate Model of Flows in Rocket Injectors

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford

    2011-01-01

    An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.

  20. On the importance of having accurate data for astrophysical modelling

    NASA Astrophysics Data System (ADS)

    Lique, Francois

    2016-06-01

    The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.

  1. Accurate method of modeling cluster scaling relations in modified gravity

    NASA Astrophysics Data System (ADS)

    He, Jian-hua; Li, Baojiu

    2016-06-01

    We propose a new method to model cluster scaling relations in modified gravity. Using a suite of nonradiative hydrodynamical simulations, we show that the scaling relations of accumulated gas quantities, such as the Sunyaev-Zel'dovich effect (Compton-y parameter) and the x-ray Compton-y parameter, can be accurately predicted using the known results in the Λ CDM model with a precision of ˜3 % . This method provides a reliable way to analyze the gas physics in modified gravity using the less demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.

  2. Anisotropic Turbulence Modeling for Accurate Rod Bundle Simulations

    SciTech Connect

    Baglietto, Emilio

    2006-07-01

    An improved anisotropic eddy viscosity model has been developed for accurate predictions of the thermal hydraulic performances of nuclear reactor fuel assemblies. The proposed model adopts a non-linear formulation of the stress-strain relationship in order to include the reproduction of the anisotropic phenomena, and in combination with an optimized low-Reynolds-number formulation based on Direct Numerical Simulation (DNS) to produce correct damping of the turbulent viscosity in the near wall region. This work underlines the importance of accurate anisotropic modeling to faithfully reproduce the scale of the turbulence driven secondary flows inside the bundle subchannels, by comparison with various isothermal and heated experimental cases. The very low scale secondary motion is responsible for the increased turbulence transport which produces a noticeable homogenization of the velocity distribution and consequently of the circumferential cladding temperature distribution, which is of main interest in bundle design. Various fully developed bare bundles test cases are shown for different geometrical and flow conditions, where the proposed model shows clearly improved predictions, in close agreement with experimental findings, for regular as well as distorted geometries. Finally the applicability of the model for practical bundle calculations is evaluated through its application in the high-Reynolds form on coarse grids, with excellent results. (author)

  3. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  4. Identification of accurate nonlinear rainfall-runoff models with unique parameters

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N.

    2009-04-01

    We propose a strategy to identify models with unique parameters that yield accurate streamflow predictions, given a time-series of rainfall inputs. The procedure consists of five general steps. First, an a priori range of model structures is specified based on prior general and site-specific hydrologic knowledge. To this end, we rely on a flexible model code that allows a specification of a wide range of model structures, from simple to complex. Second, using global optimization each model structure is calibrated to a record of rainfall-runoff data, yielding optimal parameter values for each model structure. Third, accuracy of each model structure is determined by estimating model prediction errors using independent validation and statistical theory. Fourth, parameter identifiability of each calibrated model structure is estimated by means of Monte Carlo Markov Chain simulation. Finally, an assessment is made about each model structure in terms of its accuracy of mimicking rainfall-runoff processes (step 3), and the uniqueness of its parameters (step 4). The procedure results in the identification of the most complex and accurate model supported by the data, without causing parameter equifinality. As such, it provides insight into the information content of the data for identifying nonlinear rainfall-runoff models. We illustrate the method using rainfall-runoff data records from several MOPEX basins in the US.

  5. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  6. Mouse models of human AML accurately predict chemotherapy response

    PubMed Central

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.

    2009-01-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  7. Mouse models of human AML accurately predict chemotherapy response.

    PubMed

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S; Zhao, Zhen; Rappaport, Amy R; Luo, Weijun; McCurrach, Mila E; Yang, Miao-Miao; Dolan, M Eileen; Kogan, Scott C; Downing, James R; Lowe, Scott W

    2009-04-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  8. An accurate model potential for alkali neon systems.

    PubMed

    Zanuttini, D; Jacquet, E; Giglio, E; Douady, J; Gervais, B

    2009-12-01

    We present a detailed investigation of the ground and lowest excited states of M-Ne dimers, for M=Li, Na, and K. We show that the potential energy curves of these Van der Waals dimers can be obtained accurately by considering the alkali neon systems as one-electron systems. Following previous authors, the model describes the evolution of the alkali valence electron in the combined potentials of the alkali and neon cores by means of core polarization pseudopotentials. The key parameter for an accurate model is the M(+)-Ne potential energy curve, which was obtained by means of ab initio CCSD(T) calculation using a large basis set. For each MNe dimer, a systematic comparison with ab initio computation of the potential energy curve for the X, A, and B states shows the remarkable accuracy of the model. The vibrational analysis and the comparison with existing experimental data strengthens this conclusion and allows for a precise assignment of the vibrational levels. PMID:19968334

  9. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  10. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  11. An Accurate In Vitro Model of the E. coli Envelope

    PubMed Central

    Clifton, Luke A; Holt, Stephen A; Hughes, Arwel V; Daulton, Emma L; Arunmanee, Wanatchaporn; Heinrich, Frank; Khalid, Syma; Jefferies, Damien; Charlton, Timothy R; Webster, John R P; Kinane, Christian J; Lakey, Jeremy H

    2015-01-01

    Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development. PMID:26331292

  12. Structural Model of Eumelanin

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios; Tsolakidis, Argyrios; Zonios, George; Meng, Sheng

    2006-11-01

    Melanin is a ubiquitous pigment in living organisms with multiple important functions, yet its structure is not well understood. We propose a structural model for eumelanin protomolecules, consisting of 4 or 5 of the basic molecular units (hydroquinone, indolequinone, and its tautomers), in arrangements that contain an inner porphyrin ring. We use time-dependent density functional theory to calculate the optical absorption spectrum of the structural model, which reproduces convincingly the main features of the experimental spectrum of eumelanin. Our model also reproduces accurately other important properties of eumelanin, including x-ray scattering data, its ability to capture and release metal ions, and the characteristic size of the protomolecules.

  13. Accurate modelling of flow induced stresses in rigid colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Vanni, Marco

    2015-07-01

    A method has been developed to estimate the motion and the internal stresses induced by a fluid flow on a rigid aggregate. The approach couples Stokesian dynamics and structural mechanics in order to take into account accurately the effect of the complex geometry of the aggregates on hydrodynamic forces and the internal redistribution of stresses. The intrinsic error of the method, due to the low-order truncation of the multipole expansion of the Stokes solution, has been assessed by comparison with the analytical solution for the case of a doublet in a shear flow. In addition, it has been shown that the error becomes smaller as the number of primary particles in the aggregate increases and hence it is expected to be negligible for realistic reproductions of large aggregates. The evaluation of internal forces is performed by an adaptation of the matrix methods of structural mechanics to the geometric features of the aggregates and to the particular stress-strain relationship that occurs at intermonomer contacts. A preliminary investigation on the stress distribution in rigid aggregates and their mode of breakup has been performed by studying the response to an elongational flow of both realistic reproductions of colloidal aggregates (made of several hundreds monomers) and highly simplified structures. A very different behaviour has been evidenced between low-density aggregates with isostatic or weakly hyperstatic structures and compact aggregates with highly hyperstatic configuration. In low-density clusters breakup is caused directly by the failure of the most stressed intermonomer contact, which is typically located in the inner region of the aggregate and hence originates the birth of fragments of similar size. On the contrary, breakup of compact and highly cross-linked clusters is seldom caused by the failure of a single bond. When this happens, it proceeds through the removal of a tiny fragment from the external part of the structure. More commonly, however

  14. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  15. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    PubMed Central

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.

    2014-01-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409

  16. Screened exchange hybrid density functional for accurate and efficient structures and interaction energies.

    PubMed

    Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan

    2016-06-21

    We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results. PMID:27240749

  17. Accurate Inference of Subtle Population Structure (and Other Genetic Discontinuities) Using Principal Coordinates

    PubMed Central

    Reeves, Patrick A.; Richards, Christopher M.

    2009-01-01

    Background Accurate inference of genetic discontinuities between populations is an essential component of intraspecific biodiversity and evolution studies, as well as associative genetics. The most widely-used methods to infer population structure are model-based, Bayesian MCMC procedures that minimize Hardy-Weinberg and linkage disequilibrium within subpopulations. These methods are useful, but suffer from large computational requirements and a dependence on modeling assumptions that may not be met in real data sets. Here we describe the development of a new approach, PCO-MC, which couples principal coordinate analysis to a clustering procedure for the inference of population structure from multilocus genotype data. Methodology/Principal Findings PCO-MC uses data from all principal coordinate axes simultaneously to calculate a multidimensional “density landscape”, from which the number of subpopulations, and the membership within subpopulations, is determined using a valley-seeking algorithm. Using extensive simulations, we show that this approach outperforms a Bayesian MCMC procedure when many loci (e.g. 100) are sampled, but that the Bayesian procedure is marginally superior with few loci (e.g. 10). When presented with sufficient data, PCO-MC accurately delineated subpopulations with population Fst values as low as 0.03 (G'st>0.2), whereas the limit of resolution of the Bayesian approach was Fst = 0.05 (G'st>0.35). Conclusions/Significance We draw a distinction between population structure inference for describing biodiversity as opposed to Type I error control in associative genetics. We suggest that discrete assignments, like those produced by PCO-MC, are appropriate for circumscribing units of biodiversity whereas expression of population structure as a continuous variable is more useful for case-control correction in structured association studies. PMID:19172174

  18. Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs.

    PubMed

    Nicolotti, Orazio; Gillet, Valerie J; Fleming, Peter J; Green, Darren V S

    2002-11-01

    Deriving quantitative structure-activity relationship (QSAR) models that are accurate, reliable, and easily interpretable is a difficult task. In this study, two new methods have been developed that aim to find useful QSAR models that represent an appropriate balance between model accuracy and complexity. Both methods are based on genetic programming (GP). The first method, referred to as genetic QSAR (or GPQSAR), uses a penalty function to control model complexity. GPQSAR is designed to derive a single linear model that represents an appropriate balance between the variance and the number of descriptors selected for the model. The second method, referred to as multiobjective genetic QSAR (MoQSAR), is based on multiobjective GP and represents a new way of thinking of QSAR. Specifically, QSAR is considered as a multiobjective optimization problem that comprises a number of competitive objectives. Typical objectives include model fitting, the total number of terms, and the occurrence of nonlinear terms. MoQSAR results in a family of equivalent QSAR models where each QSAR represents a different tradeoff in the objectives. A practical consideration often overlooked in QSAR studies is the need for the model to promote an understanding of the biochemical response under investigation. To accomplish this, chemically intuitive descriptors are needed but do not always give rise to statistically robust models. This problem is addressed by the addition of a further objective, called chemical desirability, that aims to reward models that consist of descriptors that are easily interpretable by chemists. GPQSAR and MoQSAR have been tested on various data sets including the Selwood data set and two different solubility data sets. The study demonstrates that the MoQSAR method is able to find models that are at least as good as models derived using standard statistical approaches and also yields models that allow a medicinal chemist to trade statistical robustness for chemical

  19. The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures

    PubMed Central

    Holton, James M; Classen, Scott; Frankel, Kenneth A; Tainer, John A

    2014-01-01

    In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree. These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its protein-solvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill. Database Coordinates and structure factors for the real data have been submitted to the Protein Data Bank under accession 4tws. PMID:25040949

  20. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.

    PubMed

    Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo

    2016-05-15

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817

  1. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches.

    PubMed

    Oksel, Ceyda; Winkler, David A; Ma, Cai Y; Wilkins, Terry; Wang, Xue Z

    2016-09-01

    The number of engineered nanomaterials (ENMs) being exploited commercially is growing rapidly, due to the novel properties they exhibit. Clearly, it is important to understand and minimize any risks to health or the environment posed by the presence of ENMs. Data-driven models that decode the relationships between the biological activities of ENMs and their physicochemical characteristics provide an attractive means of maximizing the value of scarce and expensive experimental data. Although such structure-activity relationship (SAR) methods have become very useful tools for modelling nanotoxicity endpoints (nanoSAR), they have limited robustness and predictivity and, most importantly, interpretation of the models they generate is often very difficult. New computational modelling tools or new ways of using existing tools are required to model the relatively sparse and sometimes lower quality data on the biological effects of ENMs. The most commonly used SAR modelling methods work best with large datasets, are not particularly good at feature selection, can be relatively opaque to interpretation, and may not account for nonlinearity in the structure-property relationships. To overcome these limitations, we describe the application of a novel algorithm, a genetic programming-based decision tree construction tool (GPTree) to nanoSAR modelling. We demonstrate the use of GPTree in the construction of accurate and interpretable nanoSAR models by applying it to four diverse literature datasets. We describe the algorithm and compare model results across the four studies. We show that GPTree generates models with accuracies equivalent to or superior to those of prior modelling studies on the same datasets. GPTree is a robust, automatic method for generation of accurate nanoSAR models with important advantages that it works with small datasets, automatically selects descriptors, and provides significantly improved interpretability of models. PMID:26956430

  2. Methodology to set up accurate OPC model using optical CD metrology and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Shim, Yeon-Ah; Kang, Jaehyun; Lee, Sang-Uk; Kim, Jeahee; Kim, Keeho

    2007-03-01

    For the 90nm node and beyond, smaller Critical Dimension(CD) control budget is required and the ways to control good CD uniformity are needed. Moreover Optical Proximity Correction(OPC) for the sub-90nm node demands more accurate wafer CD data in order to improve accuracy of OPC model. Scanning Electron Microscope (SEM) is the typical method for measuring CD until ArF process. However SEM can give serious attack such as shrinkage of Photo Resist(PR) by burning of weak chemical structure of ArF PR due to high energy electron beam. In fact about 5nm CD narrowing occur when we measure CD by using CD-SEM in ArF photo process. Optical CD Metrology(OCD) and Atomic Force Microscopy(AFM) has been considered to the method for measuring CD without attack of organic materials. Also the OCD and AFM measurement system have the merits of speed, easiness and accurate data. For model-based OPC, the model is generated using CD data of test patterns transferred onto the wafer. In this study we discuss to generate accurate OPC model using OCD and AFM measurement system.

  3. Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation

    NASA Astrophysics Data System (ADS)

    Poddar, Banibrata; Giurgiutiu, Victor

    2016-04-01

    Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.

  4. New process model proves accurate in tests on catalytic reformer

    SciTech Connect

    Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. )

    1994-07-25

    A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

  5. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism

    PubMed Central

    Kieslich, Chris A.; Tamamis, Phanourios; Guzman, Yannis A.; Onel, Melis; Floudas, Christodoulos A.

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/. PMID:26859389

  6. Accurate response surface approximations for weight equations based on structural optimization

    NASA Astrophysics Data System (ADS)

    Papila, Melih

    Accurate weight prediction methods are vitally important for aircraft design optimization. Therefore, designers seek weight prediction techniques with low computational cost and high accuracy, and usually require a compromise between the two. The compromise can be achieved by combining stress analysis and response surface (RS) methodology. While stress analysis provides accurate weight information, RS techniques help to transmit effectively this information to the optimization procedure. The focus of this dissertation is structural weight equations in the form of RS approximations and their accuracy when fitted to results of structural optimizations that are based on finite element analyses. Use of RS methodology filters out the numerical noise in structural optimization results and provides a smooth weight function that can easily be used in gradient-based configuration optimization. In engineering applications RS approximations of low order polynomials are widely used, but the weight may not be modeled well by low-order polynomials, leading to bias errors. In addition, some structural optimization results may have high-amplitude errors (outliers) that may severely affect the accuracy of the weight equation. Statistical techniques associated with RS methodology are sought in order to deal with these two difficulties: (1) high-amplitude numerical noise (outliers) and (2) approximation model inadequacy. The investigation starts with reducing approximation error by identifying and repairing outliers. A potential reason for outliers in optimization results is premature convergence, and outliers of such nature may be corrected by employing different convergence settings. It is demonstrated that outlier repair can lead to accuracy improvements over the more standard approach of removing outliers. The adequacy of approximation is then studied by a modified lack-of-fit approach, and RS errors due to the approximation model are reduced by using higher order polynomials. In

  7. Coupling Efforts to the Accurate and Efficient Tsunami Modelling System

    NASA Astrophysics Data System (ADS)

    Son, S.

    2015-12-01

    In the present study, we couple two different types of tsunami models, i.e., nondispersive shallow water model of characteristic form(MOST ver.4) and dispersive Boussinesq model of non-characteristic form(Son et al. (2011)) in an attempt to improve modelling accuracy and efficiency. Since each model deals with different type of primary variables, additional care on matching boundary condition is required. Using an absorbing-generating boundary condition developed by Van Dongeren and Svendsen(1997), model coupling and integration is achieved. Characteristic variables(i.e., Riemann invariants) in MOST are converted to non-characteristic variables for Boussinesq solver without any loss of physical consistency. Established modelling system has been validated through typical test problems to realistic tsunami events. Simulated results reveal good performance of developed modelling system. Since coupled modelling system provides advantageous flexibility feature during implementation, great efficiencies and accuracies are expected to be gained through spot-focusing application of Boussinesq model inside the entire domain of tsunami propagation.

  8. Structural stability augmentation system design using BODEDIRECT: A quick and accurate approach

    NASA Technical Reports Server (NTRS)

    Goslin, T. J.; Ho, J. K.

    1989-01-01

    A methodology is presented for a modal suppression control law design using flight test data instead of mathematical models to obtain the required gain and phase information about the flexible airplane. This approach is referred to as BODEDIRECT. The purpose of the BODEDIRECT program is to provide a method of analyzing the modal phase relationships measured directly from the airplane. These measurements can be achieved with a frequency sweep at the control surface input while measuring the outputs of interest. The measured Bode-models can be used directly for analysis in the frequency domain, and for control law design. Besides providing a more accurate representation for the system inputs and outputs of interest, this method is quick and relatively inexpensive. To date, the BODEDIRECT program has been tested and verified for computational integrity. Its capabilities include calculation of series, parallel and loop closure connections between Bode-model representations. System PSD, together with gain and phase margins of stability may be calculated for successive loop closures of multi-input/multi-output systems. Current plans include extensive flight testing to obtain a Bode-model representation of a commercial aircraft for design of a structural stability augmentation system.

  9. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    SciTech Connect

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-18

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a ‘steering’ of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  10. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    NASA Astrophysics Data System (ADS)

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-01

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a `steering' of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  11. Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.

    PubMed

    Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E

    2016-08-01

    Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system. PMID:27332140

  12. Comparative Protein Structure Modeling Using Modeller

    PubMed Central

    Eswar, Narayanan; Marti-Renom, Marc A.; Madhusudhan, M.S.; Eramian, David; Shen, Min-yi; Pieper, Ursula

    2014-01-01

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:18428767

  13. Towards more accurate numerical modeling of impedance based high frequency harmonic vibration

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Kiong Soh, Chee

    2014-03-01

    The application of smart materials in various fields of engineering has recently become increasingly popular. For instance, the high frequency based electromechanical impedance (EMI) technique employing smart piezoelectric materials is found to be versatile in structural health monitoring (SHM). Thus far, considerable efforts have been made to study and improve the technique. Various theoretical models of the EMI technique have been proposed in an attempt to better understand its behavior. So far, the three-dimensional (3D) coupled field finite element (FE) model has proved to be the most accurate. However, large discrepancies between the results of the FE model and experimental tests, especially in terms of the slope and magnitude of the admittance signatures, continue to exist and are yet to be resolved. This paper presents a series of parametric studies using the 3D coupled field finite element method (FEM) on all properties of materials involved in the lead zirconate titanate (PZT) structure interaction of the EMI technique, to investigate their effect on the admittance signatures acquired. FE model updating is then performed by adjusting the parameters to match the experimental results. One of the main reasons for the lower accuracy, especially in terms of magnitude and slope, of previous FE models is the difficulty in determining the damping related coefficients and the stiffness of the bonding layer. In this study, using the hysteretic damping model in place of Rayleigh damping, which is used by most researchers in this field, and updated bonding stiffness, an improved and more accurate FE model is achieved. The results of this paper are expected to be useful for future study of the subject area in terms of research and application, such as modeling, design and optimization.

  14. An Accurate Model for Biomolecular Helices and Its Application to Helix Visualization

    PubMed Central

    Wang, Lincong; Qiao, Hui; Cao, Chen; Xu, Shutan; Zou, Shuxue

    2015-01-01

    Helices are the most abundant secondary structural elements in proteins and the structural forms assumed by double stranded DNAs (dsDNA). Though the mathematical expression for a helical curve is simple, none of the previous models for the biomolecular helices in either proteins or DNAs use a genuine helical curve, likely because of the complexity of fitting backbone atoms to helical curves. In this paper we model a helix as a series of different but all bona fide helical curves; each one best fits the coordinates of four consecutive backbone Cα atoms for a protein or P atoms for a DNA molecule. An implementation of the model demonstrates that it is more accurate than the previous ones for the description of the deviation of a helix from a standard helical curve. Furthermore, the accuracy of the model makes it possible to correlate deviations with structural and functional significance. When applied to helix visualization, the ribbon diagrams generated by the model are less choppy or have smaller side chain detachment than those by the previous visualization programs that typically model a helix as a series of low-degree splines. PMID:26126117

  15. Leidenfrost effect: accurate drop shape modeling and new scaling laws

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Rednikov, Alexey; Dorbolo, Stéphane; Colinet, Pierre

    2014-11-01

    In this study, we theoretically investigate the shape of a drop in a Leidenfrost state, focusing on the geometry of the vapor layer. The drop geometry is modeled by numerically matching the solution of the hydrostatic shape of a superhydrophobic drop (for the upper part) with the solution of the lubrication equation of the vapor flow underlying the drop (for the bottom part). The results highlight that the vapor layer, fed by evaporation, forms a concave depression in the drop interface that becomes increasingly marked with the drop size. The vapor layer then consists of a gas pocket in the center and a thin annular neck surrounding it. The film thickness increases with the size of the drop, and the thickness at the neck appears to be of the order of 10--100 μm in the case of water. The model is compared to recent experimental results [Burton et al., Phys. Rev. Lett., 074301 (2012)] and shows an excellent agreement, without any fitting parameter. New scaling laws also emerge from this model. The geometry of the vapor pocket is only weakly dependent on the superheat (and thus on the evaporation rate), this weak dependence being more pronounced in the neck region. In turn, the vapor layer characteristics strongly depend on the drop size.

  16. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  17. Accurate Modeling of X-ray Extinction by Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Draine, B. T.

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  18. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  19. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  20. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, J. A., Jr.

    1998-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  1. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1998-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAxwell's equations by the Finite Integration Algorithm (MAFIA). Cold-test parameters have been calculated for several helical traveLing-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making It possible, for the first time, to design complete TWT via computer simulation.

  2. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  3. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    PubMed Central

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm−1 accuracy. PMID:27138292

  4. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions.

    PubMed

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe(-) using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm(-1) or 153.236(34) meV. The fine structures of Fe(-) were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm(-1) accuracy. PMID:27138292

  5. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-05-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe‑ using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm‑1 or 153.236(34) meV. The fine structures of Fe‑ were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm‑1 accuracy.

  6. Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm.

    PubMed

    Ergül, Özgür; Gürel, Levent

    2013-03-01

    Accurate electromagnetic modeling of complicated optical structures poses several challenges. Optical metamaterial and plasmonic structures are composed of multiple coexisting dielectric and/or conducting parts. Such composite structures may possess diverse values of conductivities and dielectric constants, including negative permittivity and permeability. Further challenges are the large sizes of the structures with respect to wavelength and the complexities of the geometries. In order to overcome these challenges and to achieve rigorous and efficient electromagnetic modeling of three-dimensional optical composite structures, we have developed a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Precise formulation of composite structures is achieved with the so-called "electric and magnetic current combined-field integral equation." Surface integral equations are carefully discretized with piecewise linear basis functions, and the ensuing dense matrix equations are solved iteratively with parallel MLFMA. The hierarchical strategy is used for the efficient parallelization of MLFMA on distributed-memory architectures. In this paper, fast and accurate solutions of large-scale canonical and complicated real-life problems, such as optical metamaterials, discretized with tens of millions of unknowns are presented in order to demonstrate the capabilities of the proposed electromagnetic solver. PMID:23456127

  7. Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach

    PubMed Central

    Saa, Pedro A.; Nielsen, Lars K.

    2016-01-01

    Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions. PMID:27417285

  8. Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3

    NASA Astrophysics Data System (ADS)

    Buckeridge, J.; Taylor, F. H.; Catlow, C. R. A.

    2016-04-01

    Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U =4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol +U ) is most appropriate for studying structure versus spin state, while the local density approximation (LDA +U ) is most appropriate for determining accurate energetics for defect properties.

  9. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs).

    PubMed

    Bernhardt, Paul V; Bosch, Simone; Comba, Peter; Gahan, Lawrence R; Hanson, Graeme R; Mereacre, Valeriu; Noble, Christopher J; Powell, Annie K; Schenk, Gerhard; Wadepohl, Hubert

    2015-08-01

    The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe(III)2 and Fe(III)Fe(II)), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mössbauer spectroscopy, and the solution structural and electronic properties, investigated by mass spectrometry, electronic, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and Mössbauer spectroscopies and electrochemistry, are discussed in detail in order to understand the structures and relative stabilities in solution. In particular, with one of the ligands, a heterovalent Fe(III)Fe(II) species has been produced by chemical oxidation of the Fe(II)2 precursor. The phosphatase reactivities of the complexes, in particular, also of the heterovalent complex, are reported. These studies include pH-dependent as well as substrate concentration dependent studies, leading to pH profiles, catalytic efficiencies and turnover numbers, and indicate that the heterovalent diiron complex discussed here is an accurate PAP model system. PMID:26196255

  10. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various

  11. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy. PMID:27230942

  12. Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation

    PubMed Central

    Wan, Lin; Sun, Kelian; Ding, Qi; Cui, Yuehua; Li, Ming; Wen, Yalu; Elston, Robert C.; Qian, Minping; Fu, Wenjiang J

    2009-01-01

    Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms. PMID:19586935

  13. CoMOGrad and PHOG: From Computer Vision to Fast and Accurate Protein Tertiary Structure Retrieval

    PubMed Central

    Karim, Rezaul; Aziz, Mohd. Momin Al; Shatabda, Swakkhar; Rahman, M. Sohel; Mia, Md. Abul Kashem; Zaman, Farhana; Rakin, Salman

    2015-01-01

    The number of entries in a structural database of proteins is increasing day by day. Methods for retrieving protein tertiary structures from such a large database have turn out to be the key to comparative analysis of structures that plays an important role to understand proteins and their functions. In this paper, we present fast and accurate methods for the retrieval of proteins having tertiary structures similar to a query protein from a large database. Our proposed methods borrow ideas from the field of computer vision. The speed and accuracy of our methods come from the two newly introduced features- the co-occurrence matrix of the oriented gradient and pyramid histogram of oriented gradient- and the use of Euclidean distance as the distance measure. Experimental results clearly indicate the superiority of our approach in both running time and accuracy. Our method is readily available for use from this website: http://research.buet.ac.bd:8080/Comograd/. PMID:26293226

  14. CoMOGrad and PHOG: From Computer Vision to Fast and Accurate Protein Tertiary Structure Retrieval.

    PubMed

    Karim, Rezaul; Aziz, Mohd Momin Al; Shatabda, Swakkhar; Rahman, M Sohel; Mia, Md Abul Kashem; Zaman, Farhana; Rakin, Salman

    2015-01-01

    The number of entries in a structural database of proteins is increasing day by day. Methods for retrieving protein tertiary structures from such a large database have turn out to be the key to comparative analysis of structures that plays an important role to understand proteins and their functions. In this paper, we present fast and accurate methods for the retrieval of proteins having tertiary structures similar to a query protein from a large database. Our proposed methods borrow ideas from the field of computer vision. The speed and accuracy of our methods come from the two newly introduced features- the co-occurrence matrix of the oriented gradient and pyramid histogram of oriented gradient- and the use of Euclidean distance as the distance measure. Experimental results clearly indicate the superiority of our approach in both running time and accuracy. Our method is readily available for use from this website: http://research.buet.ac.bd:8080/Comograd/. PMID:26293226

  15. Efficient and Accurate Explicit Integration Algorithms with Application to Viscoplastic Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.

    1994-01-01

    Several explicit integration algorithms with self-adative time integration strategies are developed and investigated for efficiency and accuracy. These algorithms involve the Runge-Kutta second order, the lower Runge-Kutta method of orders one and two, and the exponential integration method. The algorithms are applied to viscoplastic models put forth by Freed and Verrilli and Bodner and Partom for thermal/mechanical loadings (including tensile, relaxation, and cyclic loadings). The large amount of computations performed showed that, for comparable accuracy, the efficiency of an integration algorithm depends significantly on the type of application (loading). However, in general, for the aforementioned loadings and viscoplastic models, the exponential integration algorithm with the proposed self-adaptive time integration strategy worked more (or comparably) efficiently and accurately than the other integration algorithms. Using this strategy for integrating viscoplastic models may lead to considerable savings in computer time (better efficiency) without adversely affecting the accuracy of the results. This conclusion should encourage the utilization of viscoplastic models in the stress analysis and design of structural components.

  16. MONA: An accurate two-phase well flow model based on phase slippage

    SciTech Connect

    Asheim, H.

    1984-10-01

    In two phase flow, holdup and pressure loss are related to interfacial slippage. A model based on the slippage concept has been developed and tested using production well data from Forties, the Ekofisk area, and flowline data from Prudhoe Bay. The model developed turned out considerably more accurate than the standard models used for comparison.

  17. Creation of Anatomically Accurate Computer-Aided Design (CAD) Solid Models from Medical Images

    NASA Technical Reports Server (NTRS)

    Stewart, John E.; Graham, R. Scott; Samareh, Jamshid A.; Oberlander, Eric J.; Broaddus, William C.

    1999-01-01

    Most surgical instrumentation and implants used in the world today are designed with sophisticated Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) software. This software automates the mechanical development of a product from its conceptual design through manufacturing. CAD software also provides a means of manipulating solid models prior to Finite Element Modeling (FEM). Few surgical products are designed in conjunction with accurate CAD models of human anatomy because of the difficulty with which these models are created. We have developed a novel technique that creates anatomically accurate, patient specific CAD solids from medical images in a matter of minutes.

  18. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields.

    PubMed

    Geng, Hao; Jiang, Fan; Wu, Yun-Dong

    2016-05-19

    Cyclic peptides (CPs) are promising candidates for drugs, chemical biology tools, and self-assembling nanomaterials. However, the development of reliable and accurate computational methods for their structure prediction has been challenging. Here, 20 all-trans CPs of 5-12 residues selected from Cambridge Structure Database have been simulated using replica-exchange molecular dynamics with four different force fields. Our recently developed residue-specific force fields RSFF1 and RSFF2 can correctly identify the crystal-like conformations of more than half CPs as the most populated conformation. The RSFF2 performs the best, which consistently predicts the crystal structures of 17 out of 20 CPs with rmsd < 1.1 Å. We also compared the backbone (ϕ, ψ) sampling of residues in CPs with those in short linear peptides and in globular proteins. In general, unlike linear peptides, CPs have local conformational free energies and entropies quite similar to globular proteins. PMID:27128113

  19. Accurate Structure and Dynamics of the Metal-Site of Paramagnetic Metalloproteins from NMR Parameters Using Natural Bond Orbitals

    PubMed Central

    2012-01-01

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal–ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal–ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for 15N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of 15N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of 15N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site. PMID:22329704

  20. Global climate modeling of Saturn's atmosphere: fast and accurate radiative transfer and exploration of seasonal variability

    NASA Astrophysics Data System (ADS)

    Guerlet, Sandrine; Spiga, A.; Sylvestre, M.; Fouchet, T.; Millour, E.; Wordsworth, R.; Leconte, J.; Forget, F.

    2013-10-01

    Recent observations of Saturn’s stratospheric thermal structure and composition revealed new phenomena: an equatorial oscillation in temperature, reminiscent of the Earth's Quasi-Biennal Oscillation ; strong meridional contrasts of hydrocarbons ; a warm “beacon” associated with the powerful 2010 storm. Those signatures cannot be reproduced by 1D photochemical and radiative models and suggest that atmospheric dynamics plays a key role. This motivated us to develop a complete 3D General Circulation Model (GCM) for Saturn, based on the LMDz hydrodynamical core, to explore the circulation, seasonal variability, and wave activity in Saturn's atmosphere. In order to closely reproduce Saturn's radiative forcing, a particular emphasis was put in obtaining fast and accurate radiative transfer calculations. Our radiative model uses correlated-k distributions and spectral discretization tailored for Saturn's atmosphere. We include internal heat flux, ring shadowing and aerosols. We will report on the sensitivity of the model to spectral discretization, spectroscopic databases, and aerosol scenarios (varying particle sizes, opacities and vertical structures). We will also discuss the radiative effect of the ring shadowing on Saturn's atmosphere. We will present a comparison of temperature fields obtained with this new radiative equilibrium model to that inferred from Cassini/CIRS observations. In the troposphere, our model reproduces the observed temperature knee caused by heating at the top of the tropospheric aerosol layer. In the lower stratosphere (20mbar structure is governed by the dynamical equatorial oscillation. In the upper stratosphere (p<0.1 mbar), our modeled temperature is 5-10K too low compared to measurements. This suggests that processes other than radiative heating/cooling by trace

  1. An accurate modeling, simulation, and analysis tool for predicting and estimating Raman LIDAR system performance

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Russo, Leonard P.; Barrett, John L.; Odhner, Jefferson E.; Egbert, Paul I.

    2007-09-01

    BAE Systems presents the results of a program to model the performance of Raman LIDAR systems for the remote detection of atmospheric gases, air polluting hydrocarbons, chemical and biological weapons, and other molecular species of interest. Our model, which integrates remote Raman spectroscopy, 2D and 3D LADAR, and USAF atmospheric propagation codes permits accurate determination of the performance of a Raman LIDAR system. The very high predictive performance accuracy of our model is due to the very accurate calculation of the differential scattering cross section for the specie of interest at user selected wavelengths. We show excellent correlation of our calculated cross section data, used in our model, with experimental data obtained from both laboratory measurements and the published literature. In addition, the use of standard USAF atmospheric models provides very accurate determination of the atmospheric extinction at both the excitation and Raman shifted wavelengths.

  2. A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites

    PubMed Central

    Santolini, Marc; Mora, Thierry; Hakim, Vincent

    2014-01-01

    The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond

  3. Accurate Damage Location in Complex Composite Structures and Industrial Environments using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Eaton, M.; Pearson, M.; Lee, W.; Pullin, R.

    2015-07-01

    The ability to accurately locate damage in any given structure is a highly desirable attribute for an effective structural health monitoring system and could help to reduce operating costs and improve safety. This becomes a far greater challenge in complex geometries and materials, such as modern composite airframes. The poor translation of promising laboratory based SHM demonstrators to industrial environments forms a barrier to commercial up take of technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic stress waves released by the growth of damage. It offers very sensitive damage detection, using a sparse array of sensors to detect and globally locate damage within a structure. However its application to complex structures commonly yields poor accuracy due to anisotropic wave propagation and the interruption of wave propagation by structural features such as holes and thickness changes. This work adopts an empirical mapping technique for AE location, known as Delta T Mapping, which uses experimental training data to account for such structural complexities. The technique is applied to a complex geometry composite aerospace structure undergoing certification testing. The component consists of a carbon fibre composite tube with varying wall thickness and multiple holes, that was loaded under bending. The damage location was validated using X-ray CT scanning and the Delta T Mapping technique was shown to improve location accuracy when compared with commercial algorithms. The onset and progression of damage were monitored throughout the test and used to inform future design iterations.

  4. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments

    SciTech Connect

    Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd

    2012-01-01

    The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.

  5. Accurate structural study of langasite-family Ca3TaGa3Si2O14 crystal

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.

    2016-03-01

    An accurate X-ray diffraction study of Ca3TaGa3Si2O14 single crystal has been performed using two datasets obtained on a diffractometer equipped with a CCD area detector ( a = 8.1056(2) Å, c = 4.9800(1) Å, sp. gr. P321, Z = 1, R/ wR = 0.486/0.488%). A model structure is determined which is characterized by a high degree of reproducibility of structural parameters. Each site in Ca3TaGa3Si2O14 is occupied by atoms of only one type. Nevertheless, its structural feature is asymmetric disordering of sites of Ca, Ta, Ga, and two out of three oxygen atoms occupying special and general sites. A transition of some part of Ca atoms (~3%) from 3 e sites on the twofold symmetry axis to general 6 g sites is revealed.

  6. PROMALS3D web server for accurate multiple protein sequence and structure alignments.

    PubMed

    Pei, Jimin; Tang, Ming; Grishin, Nick V

    2008-07-01

    Multiple sequence alignments are essential in computational sequence and structural analysis, with applications in homology detection, structure modeling, function prediction and phylogenetic analysis. We report PROMALS3D web server for constructing alignments for multiple protein sequences and/or structures using information from available 3D structures, database homologs and predicted secondary structures. PROMALS3D shows higher alignment accuracy than a number of other advanced methods. Input of PROMALS3D web server can be FASTA format protein sequences, PDB format protein structures and/or user-defined alignment constraints. The output page provides alignments with several formats, including a colored alignment augmented with useful information about sequence grouping, predicted secondary structures and consensus sequences. Intermediate results of sequence and structural database searches are also available. The PROMALS3D web server is available at: http://prodata.swmed.edu/promals3d/. PMID:18503087

  7. Physical and Numerical Model Studies of Cross-flow Turbines Towards Accurate Parameterization in Array Simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2014-12-01

    Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of

  8. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    SciTech Connect

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-12-10

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance LAMBDACDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and LAMBDACDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the LAMBDACDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass

  9. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  10. Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young

    2015-07-01

    This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.

  11. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  12. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  13. Accurate and rapid optical characterization of an anisotropic guided structure based on a neural method.

    PubMed

    Robert, Stéphane; Battie, Yann; Jamon, Damien; Royer, Francois

    2007-04-10

    Optimal performances of integrated optical devices are obtained by the use of an accurate and reliable characterization method. The parameters of interest, i.e., optical indices and thickness of the waveguide structure, are calculated from effective indices by means of an inversion procedure. We demonstrate how an artificial neural network can achieve such a process. The artificial neural network used is a multilayer perceptron. The first result concerns a simulated anisotropic waveguide. The accuracy in the determination of optical indices and waveguide thickness is 5 x 10(-5) and 4 nm, respectively. Then an experimental application on a silica-titania thin film is performed. In addition, effective indices are measured by m-lines spectroscopy. Finally, a comparison with a classical optimization algorithm demonstrates the robustness of the neural method. PMID:17384718

  14. Accurate calculation and modeling of the adiabatic connection in density functional theory

    NASA Astrophysics Data System (ADS)

    Teale, A. M.; Coriani, S.; Helgaker, T.

    2010-04-01

    Using a recently implemented technique for the calculation of the adiabatic connection (AC) of density functional theory (DFT) based on Lieb maximization with respect to the external potential, the AC is studied for atoms and molecules containing up to ten electrons: the helium isoelectronic series, the hydrogen molecule, the beryllium isoelectronic series, the neon atom, and the water molecule. The calculation of AC curves by Lieb maximization at various levels of electronic-structure theory is discussed. For each system, the AC curve is calculated using Hartree-Fock (HF) theory, second-order Møller-Plesset (MP2) theory, coupled-cluster singles-and-doubles (CCSD) theory, and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, expanding the molecular orbitals and the effective external potential in large Gaussian basis sets. The HF AC curve includes a small correlation-energy contribution in the context of DFT, arising from orbital relaxation as the electron-electron interaction is switched on under the constraint that the wave function is always a single determinant. The MP2 and CCSD AC curves recover the bulk of the dynamical correlation energy and their shapes can be understood in terms of a simple energy model constructed from a consideration of the doubles-energy expression at different interaction strengths. Differentiation of this energy expression with respect to the interaction strength leads to a simple two-parameter doubles model (AC-D) for the AC integrand (and hence the correlation energy of DFT) as a function of the interaction strength. The structure of the triples-energy contribution is considered in a similar fashion, leading to a quadratic model for the triples correction to the AC curve (AC-T). From a consideration of the structure of a two-level configuration-interaction (CI) energy expression of the hydrogen molecule, a simple two-parameter CI model (AC-CI) is proposed to account for the effects of static correlation on the

  15. Can structured data fields accurately measure quality of care? The example of falls.

    PubMed

    Ganz, David A; Almeida, Shone; Roth, Carol P; Reuben, David B; Wenger, Neil S

    2012-01-01

    By automating collection of data elements, electronic health records may simplify the process of measuring the quality of medical care. Using data from a quality improvement initiative in primary care medical groups, we sought to determine whether the quality of care for falls and fear of falling in outpatients aged 75 and older could be accurately measured solely from codable (non-free-text) data in a structured visit note. A traditional medical record review by trained abstractors served as the criterion standard. Among 215 patient records reviewed, we found a structured visit note in 54% of charts within 3 mo of the date patients had been identified as having falls or fear of falling. The reliability of an algorithm based on codable data was at least good (kappa of at least 0.61) compared with full medical record review for three care processes recommended for patients with two falls or one fall with injury in the past year: orthostatic vital signs, vision test/eye examination, and home safety evaluation. However, the automated algorithm routinely underestimated quality of care. Performance standards based on automated measurement of quality of care from electronic health records need to account for documentation occurring in nonstructured form. PMID:23408222

  16. Material Models for Accurate Simulation of Sheet Metal Forming and Springback

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito

    2010-06-01

    For anisotropic sheet metals, modeling of anisotropy and the Bauschinger effect is discussed in the framework of Yoshida-Uemori kinematic hardening model incorporating with anisotropic yield functions. The performances of the models in predicting yield loci, cyclic stress-strain responses on several types of steel and aluminum sheets are demonstrated by comparing the numerical simulation results with the corresponding experimental observations. From some examples of FE simulation of sheet metal forming and springback, it is concluded that modeling of both the anisotropy and the Bauschinger effect is essential for the accurate numerical simulation.

  17. Regularized Structural Equation Modeling

    PubMed Central

    Jacobucci, Ross; Grimm, Kevin J.; McArdle, John J.

    2016-01-01

    A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM’s utility. PMID:27398019

  18. Development of modified cable models to simulate accurate neuronal active behaviors

    PubMed Central

    2014-01-01

    In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical details of dendrites) of spinal motoneurons were systematically compared with their reduced single unbranched cable (SUC, which reduces the dendrites to a single electrically equivalent cable) counterpart under passive and active conditions. The SUC models matched the R3D model's passive properties but failed to match key active properties, especially active behaviors originating from dendrites. For instance, persistent inward currents (PIC) hysteresis, frequency-current (FI) relationship secondary range slope, firing hysteresis, plateau potential partial deactivation, staircase currents, synaptic current transfer ratio, and regional FI relationships were not accurately reproduced by the SUC models. The dendritic morphology oversimplification and lack of dendritic active conductances spatial segregation in the SUC models caused significant underestimation of those behaviors. Next, SUC models were modified by adding key branching features in an attempt to restore their active behaviors. The addition of primary dendritic branching only partially restored some active behaviors, whereas the addition of secondary dendritic branching restored most behaviors. Importantly, the proposed modified models successfully replicated the active properties without sacrificing model simplicity, making them attractive candidates for running R3D single neuron and network simulations with accurate firing behaviors. The present results indicate that using reduced models to examine PIC behaviors in spinal motoneurons is unwarranted. PMID:25277743

  19. Discretely disordered photonic bandgap structures: a more accurate invariant measure calculation

    NASA Astrophysics Data System (ADS)

    Kissel, Glen J.

    2009-02-01

    In the one-dimensional optical analog to Anderson localization, a periodically layered medium has one or more parameters randomly disordered. Such a randomized system can be modeled by an infinite product of 2x2 random transfer matrices with the upper Lyapunov exponent of the matrix product identified as the localization factor (inverse localization length) for the model. The theorem of Furstenberg allows us, at least theoretically, to calculate this upper Lyapunov exponent. In Furstenberg's formula we not only integrate with respect to the probability measure of the random matrices, but also with respect to the invariant probability measure of the direction of the vector propagated by the random matrices. This invariant measure is difficult to find analytically, and, as a result, the most successful approach is to determine the invariant measure numerically. A Monte Carlo simulation which uses accumulated bin counts to track the direction of the propagated vector through a long chain of random matrices does a good job of estimating the invariant probability measure, but with a level of uncertainty. A potentially more accurate numerical technique by Froyland and Aihara obtains the invariant measure as a left eigenvector of a large sparse matrix containing probability values determined by the action of the random matrices on input vectors. We first apply these two techniques to a random Fibonacci sequence whose Lyapunov exponent was determined by Viswanath. We then demonstrate these techniques on a quarter-wave stack model with binary discrete disorder in layer thickness, and compare results to the continuously disordered counterpart.

  20. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information

    PubMed Central

    Pollastri, Gianluca; Martin, Alberto JM; Mooney, Catherine; Vullo, Alessandro

    2007-01-01

    Background Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio. Results Here we develop high-throughput machine learning systems for the prediction of protein secondary structure and solvent accessibility that exploit homology to proteins of known structure, where available, in the form of simple structural frequency profiles extracted from sets of PDB templates. We compare these systems to their state-of-the-art ab initio counterparts, and with a number of baselines in which secondary structures and solvent accessibilities are extracted directly from the templates. We show that structural information from templates greatly improves secondary structure and solvent accessibility prediction quality, and that, on average, the systems significantly enrich the information contained in the templates. For sequence similarity exceeding 30%, secondary structure prediction quality is approximately 90%, close to its theoretical maximum, and 2-class solvent accessibility roughly 85%. Gains are robust with respect to template selection noise, and significant for marginal sequence similarity and for short alignments, supporting the claim that these improved predictions may prove beneficial beyond the case in which clear homology is available. Conclusion The predictive system are publicly available at the address . PMID:17570843

  1. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  2. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions

    SciTech Connect

    D’Adamo, Giuseppe; Pelissetto, Andrea; Pierleoni, Carlo

    2014-12-28

    A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmann inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.

  3. The S-model: A highly accurate MOST model for CAD

    NASA Astrophysics Data System (ADS)

    Satter, J. H.

    1986-09-01

    A new MOST model which combines simplicity and a logical structure with a high accuracy of only 0.5-4.5% is presented. The model is suited for enhancement and depletion devices with either large or small dimensions. It includes the effects of scattering and carrier-velocity saturation as well as the influence of the intrinsic source and drain series resistance. The decrease of the drain current due to substrate bias is incorporated too. The model is in the first place intended for digital purposes. All necessary quantities are calculated in a straightforward manner without iteration. An almost entirely new way of determining the parameters is described and a new cluster parameter is introduced, which is responsible for the high accuracy of the model. The total number of parameters is 7. A still simpler β expression is derived, which is suitable for only one value of the substrate bias and contains only three parameters, while maintaining the accuracy. The way in which the parameters are determined is readily suited for automatic measurement. A simple linear regression procedure programmed in the computer, which controls the measurements, produces the parameter values.

  4. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  5. Building an accurate 3D model of a circular feature for robot vision

    NASA Astrophysics Data System (ADS)

    Li, L.

    2012-06-01

    In this paper, an accurate 3D model analysis of a circular feature is built with error compensation for robot vision. We propose an efficient method of fitting ellipses to data points by minimizing the algebraic distance subject to the constraint that a conic should be an ellipse and solving the ellipse parameters through a direct ellipse fitting method by analysing the 3D geometrical representation in a perspective projection scheme, the 3D position of a circular feature with known radius can be obtained. A set of identical circles, machined on a calibration board whose centres were known, was calibrated with a camera and did the model analysis that our method developed. Experimental results show that our method is more accurate than other methods.

  6. Final Report for "Accurate Numerical Models of the Secondary Electron Yield from Grazing-incidence Collisions".

    SciTech Connect

    Seth A Veitzer

    2008-10-21

    Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.

  7. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.

    PubMed

    Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua

    2015-01-13

    We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207

  8. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation

    PubMed Central

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-01-01

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  9. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    NASA Astrophysics Data System (ADS)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  10. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation.

    PubMed

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-06-20

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  11. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    PubMed Central

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-01-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769

  12. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-01-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769

  13. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    NASA Astrophysics Data System (ADS)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  14. Accurate and efficient halo-based galaxy clustering modelling with simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Guo, Hong

    2016-06-01

    Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.

  15. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.

    2015-09-01

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  16. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.

    PubMed

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2016-10-01

    The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. PMID:27272707

  17. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.

    PubMed

    Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M

    2014-12-01

    Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration. PMID:25195174

  18. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George E

    2009-01-01

    We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease. PMID:19965026

  19. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. PMID:26121186

  20. Accurate Analytic Results for the Steady State Distribution of the Eigen Model

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun

    2016-04-01

    Eigen model of molecular evolution is popular in studying complex biological and biomedical systems. Using the Hamilton-Jacobi equation method, we have calculated analytic equations for the steady state distribution of the Eigen model with a relative accuracy of O(1/N), where N is the length of genome. Our results can be applied for the case of small genome length N, as well as the cases where the direct numerics can not give accurate result, e.g., the tail of distribution.

  1. Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction

    PubMed Central

    Braun, Tatjana; Koehler Leman, Julia; Lange, Oliver F.

    2015-01-01

    Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs. PMID:26713437

  2. Bayesian statistical treatment of the fluorescence of AFLP bands leads to accurate genetic structure inference.

    PubMed

    Gaggiotti, Oscar E

    2010-11-01

    Ever since the introduction of allozymes in the 1960s, evolutionary biologists and ecologists have continued to search for more powerful molecular markers to estimate important parameters such as effective population size and migration rates and to make inferences about the demographic history of populations, the relationships between individuals and the genetic architecture of phenotypic variation (Bensch & Akesson 2005; Bonin et al. 2007). Choosing a marker requires a thorough consideration of the trade-offs associated with the different techniques and the type of data obtained from them. Some markers can be very informative but require substantial amounts of start-up time (e.g. microsatellites), while others require very little time but are much less polymorphic. Amplified fragment length polymorphism (AFLP) is a firmly established molecular marker technique that falls in this latter category. AFLPs are widely distributed throughout the genome and can be used on organisms for which there is no a priori sequence information (Meudt & Clarke 2007). These properties together with their moderate cost and short start-up time have made them the method of choice for many molecular ecology studies of wild species (Bensch & Akesson 2005). However, they have a major disadvantage, they are dominant. This represents a very important limitation because many statistical genetics methods appropriate for molecular ecology studies require the use of codominant markers. In this issue, Foll et al. (2010) present an innovative hierarchical Bayesian method that overcomes this limitation. The proposed approach represents a comprehensive statistical treatment of the fluorescence of AFLP bands and leads to accurate inferences about the genetic structure of natural populations. Besides allowing a quasi-codominant treatment of AFLPs, this new method also solves the difficult problems posed by subjectivity in the scoring of AFLP bands. PMID:20958811

  3. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  4. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    SciTech Connect

    Song, Shoujun Ge, Lefei; Ma, Shaojie; Zhang, Man

    2014-04-15

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.

  5. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  6. An accurate and computationally efficient model for membrane-type circular-symmetric micro-hotplates.

    PubMed

    Khan, Usman; Falconi, Christian

    2014-01-01

    Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214

  7. An Accurate and Computationally Efficient Model for Membrane-Type Circular-Symmetric Micro-Hotplates

    PubMed Central

    Khan, Usman; Falconi, Christian

    2014-01-01

    Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214

  8. A Method for Accurate in silico modeling of Ultrasound Transducer Arrays

    PubMed Central

    Guenther, Drake A.; Walker, William F.

    2009-01-01

    This paper presents a new approach to improve the in silico modeling of ultrasound transducer arrays. While current simulation tools accurately predict the theoretical element spatio-temporal pressure response, transducers do not always behave as theorized. In practice, using the probe's physical dimensions and published specifications in silico, often results in unsatisfactory agreement between simulation and experiment. We describe a general optimization procedure used to maximize the correlation between the observed and simulated spatio-temporal response of a pulsed single element in a commercial ultrasound probe. A linear systems approach is employed to model element angular sensitivity, lens effects, and diffraction phenomena. A numerical deconvolution method is described to characterize the intrinsic electro-mechanical impulse response of the element. Once the response of the element and optimal element characteristics are known, prediction of the pressure response for arbitrary apertures and excitation signals is performed through direct convolution using available tools. We achieve a correlation of 0.846 between the experimental emitted waveform and simulated waveform when using the probe's physical specifications in silico. A far superior correlation of 0.988 is achieved when using the optimized in silico model. Electronic noise appears to be the main effect preventing the realization of higher correlation coefficients. More accurate in silico modeling will improve the evaluation and design of ultrasound transducers as well as aid in the development of sophisticated beamforming strategies. PMID:19041997

  9. What input data are needed to accurately model electromagnetic fields from mobile phone base stations?

    PubMed

    Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel

    2015-01-01

    The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available. PMID:24472756

  10. Accurate verification of the conserved-vector-current and standard-model predictions

    SciTech Connect

    Sirlin, A.; Zucchini, R.

    1986-10-20

    An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.

  11. Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks

    PubMed Central

    Fu, Jun-Song; Liu, Yun

    2015-01-01

    Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211

  12. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  13. Applying an accurate spherical model to gamma-ray burst afterglow observations

    NASA Astrophysics Data System (ADS)

    Leventis, K.; van der Horst, A. J.; van Eerten, H. J.; Wijers, R. A. M. J.

    2013-05-01

    We present results of model fits to afterglow data sets of GRB 970508, GRB 980703 and GRB 070125, characterized by long and broad-band coverage. The model assumes synchrotron radiation (including self-absorption) from a spherical adiabatic blast wave and consists of analytic flux prescriptions based on numerical results. For the first time it combines the accuracy of hydrodynamic simulations through different stages of the outflow dynamics with the flexibility of simple heuristic formulas. The prescriptions are especially geared towards accurate description of the dynamical transition of the outflow from relativistic to Newtonian velocities in an arbitrary power-law density environment. We show that the spherical model can accurately describe the data only in the case of GRB 970508, for which we find a circumburst medium density n ∝ r-2. We investigate in detail the implied spectra and physical parameters of that burst. For the microphysics we show evidence for equipartition between the fraction of energy density carried by relativistic electrons and magnetic field. We also find that for the blast wave to be adiabatic, the fraction of electrons accelerated at the shock has to be smaller than 1. We present best-fitting parameters for the afterglows of all three bursts, including uncertainties in the parameters of GRB 970508, and compare the inferred values to those obtained by different authors.

  14. Fully Automated Generation of Accurate Digital Surface Models with Sub-Meter Resolution from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Wohlfeil, J.; Hirschmüller, H.; Piltz, B.; Börner, A.; Suppa, M.

    2012-07-01

    Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM) are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images' relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.

  15. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  16. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    PubMed Central

    Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2013-01-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  17. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull.

    PubMed

    Gröning, Flora; Jones, Marc E H; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E; Fagan, Michael J

    2013-07-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  18. An accurate and comprehensive model of thin fluid flows with inertia on curved substrates

    NASA Astrophysics Data System (ADS)

    Roberts, A. J.; Li, Zhenquan

    2006-04-01

    Consider the three-dimensional flow of a viscous Newtonian fluid upon a curved two-dimensional substrate when the fluid film is thin, as occurs in many draining, coating and biological flows. We derive a comprehensive model of the dynamics of the film, the model being expressed in terms of the film thickness eta and the average lateral velocity bar{bm u}. Centre manifold theory assures us that the model accurately and systematically includes the effects of the curvature of substrate, gravitational body force, fluid inertia and dissipation. The model resolves wavelike phenomena in the dynamics of viscous fluid flows over arbitrarily curved substrates such as cylinders, tubes and spheres. We briefly illustrate its use in simulating drop formation on cylindrical fibres, wave transitions, three-dimensional instabilities, Faraday waves, viscous hydraulic jumps, flow vortices in a compound channel and flow down and up a step. These models are the most complete models for thin-film flow of a Newtonian fluid; many other thin-film models can be obtained by different restrictions and truncations of the model derived here.

  19. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. PMID:24375512

  20. Digitalized accurate modeling of SPCB with multi-spiral surface based on CPC algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Yanhua; Gu, Lizhi

    2015-09-01

    The main methods of the existing multi-spiral surface geometry modeling include spatial analytic geometry algorithms, graphical method, interpolation and approximation algorithms. However, there are some shortcomings in these modeling methods, such as large amount of calculation, complex process, visible errors, and so on. The above methods have, to some extent, restricted the design and manufacture of the premium and high-precision products with spiral surface considerably. This paper introduces the concepts of the spatially parallel coupling with multi-spiral surface and spatially parallel coupling body. The typical geometry and topological features of each spiral surface forming the multi-spiral surface body are determined, by using the extraction principle of datum point cluster, the algorithm of coupling point cluster by removing singular point, and the "spatially parallel coupling" principle based on the non-uniform B-spline for each spiral surface. The orientation and quantitative relationships of datum point cluster and coupling point cluster in Euclidean space are determined accurately and in digital description and expression, coupling coalescence of the surfaces with multi-coupling point clusters under the Pro/E environment. The digitally accurate modeling of spatially parallel coupling body with multi-spiral surface is realized. The smooth and fairing processing is done to the three-blade end-milling cutter's end section area by applying the principle of spatially parallel coupling with multi-spiral surface, and the alternative entity model is processed in the four axis machining center after the end mill is disposed. And the algorithm is verified and then applied effectively to the transition area among the multi-spiral surface. The proposed model and algorithms may be used in design and manufacture of the multi-spiral surface body products, as well as in solving essentially the problems of considerable modeling errors in computer graphics and

  1. Accurate 3d Textured Models of Vessels for the Improvement of the Educational Tools of a Museum

    NASA Astrophysics Data System (ADS)

    Soile, S.; Adam, K.; Ioannidis, C.; Georgopoulos, A.

    2013-02-01

    Besides the demonstration of the findings, modern museums organize educational programs which aim to experience and knowledge sharing combined with entertainment rather than to pure learning. Toward that effort, 2D and 3D digital representations are gradually replacing the traditional recording of the findings through photos or drawings. The present paper refers to a project that aims to create 3D textured models of two lekythoi that are exhibited in the National Archaeological Museum of Athens in Greece; on the surfaces of these lekythoi scenes of the adventures of Odysseus are depicted. The project is expected to support the production of an educational movie and some other relevant interactive educational programs for the museum. The creation of accurate developments of the paintings and of accurate 3D models is the basis for the visualization of the adventures of the mythical hero. The data collection was made by using a structured light scanner consisting of two machine vision cameras that are used for the determination of geometry of the object, a high resolution camera for the recording of the texture, and a DLP projector. The creation of the final accurate 3D textured model is a complicated and tiring procedure which includes the collection of geometric data, the creation of the surface, the noise filtering, the merging of individual surfaces, the creation of a c-mesh, the creation of the UV map, the provision of the texture and, finally, the general processing of the 3D textured object. For a better result a combination of commercial and in-house software made for the automation of various steps of the procedure was used. The results derived from the above procedure were especially satisfactory in terms of accuracy and quality of the model. However, the procedure was proved to be time consuming while the use of various software packages presumes the services of a specialist.

  2. Simple and accurate modelling of the gravitational potential produced by thick and thin exponential discs

    NASA Astrophysics Data System (ADS)

    Smith, R.; Flynn, C.; Candlish, G. N.; Fellhauer, M.; Gibson, B. K.

    2015-04-01

    We present accurate models of the gravitational potential produced by a radially exponential disc mass distribution. The models are produced by combining three separate Miyamoto-Nagai discs. Such models have been used previously to model the disc of the Milky Way, but here we extend this framework to allow its application to discs of any mass, scalelength, and a wide range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models have the advantage of simplicity of implementation, and we expect faster run speeds over a double exponential disc treatment. The potentials are fully analytical, and differentiable at all points. The mass distribution of our models deviates from the radial mass distribution of a pure exponential disc by <0.4 per cent out to 4 disc scalelengths, and <1.9 per cent out to 10 disc scalelengths. We tabulate fitting parameters which facilitate construction of exponential discs for any scalelength, and a wide range of disc thickness (a user-friendly, web-based interface is also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant disc galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky Way thin and thick disc, and a discy dwarf galaxy.

  3. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.

    PubMed

    Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit

    2015-05-01

    A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies. PMID:25502920

  4. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  5. Turtle utricle dynamic behavior using a combined anatomically accurate model and experimentally measured hair bundle stiffness

    PubMed Central

    Davis, J.L.; Grant, J.W.

    2014-01-01

    Anatomically correct turtle utricle geometry was incorporated into two finite element models. The geometrically accurate model included appropriately shaped macular surface and otoconial layer, compact gel and column filament (or shear) layer thicknesses and thickness distributions. The first model included a shear layer where the effects of hair bundle stiffness was included as part of the shear layer modulus. This solid model’s undamped natural frequency was matched to an experimentally measured value. This frequency match established a realistic value of the effective shear layer Young’s modulus of 16 Pascals. We feel this is the most accurate prediction of this shear layer modulus and fits with other estimates (Kondrachuk, 2001b). The second model incorporated only beam elements in the shear layer to represent hair cell bundle stiffness. The beam element stiffness’s were further distributed to represent their location on the neuroepithelial surface. Experimentally measured striola hair cell bundles mean stiffness values were used in the striolar region and the mean extrastriola hair cell bundles stiffness values were used in this region. The results from this second model indicated that hair cell bundle stiffness contributes approximately 40% to the overall stiffness of the shear layer– hair cell bundle complex. This analysis shows that high mass saccules, in general, achieve high gain at the sacrifice of frequency bandwidth. We propose the mechanism by which this can be achieved is through increase the otoconial layer mass. The theoretical difference in gain (deflection per acceleration) is shown for saccules with large otoconial layer mass relative to saccules and utricles with small otoconial layer mass. Also discussed is the necessity of these high mass saccules to increase their overall system shear layer stiffness. Undamped natural frequencies and mode shapes for these sensors are shown. PMID:25445820

  6. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  7. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  8. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models

    SciTech Connect

    Fu, Q.; Sun, W.B.; Yang, P.

    1998-09-01

    An accurate parameterization is presented for the infrared radiative properties of cirrus clouds. For the single-scattering calculations, a composite scheme is developed for randomly oriented hexagonal ice crystals by comparing results from Mie theory, anomalous diffraction theory (ADT), the geometric optics method (GOM), and the finite-difference time domain technique. This scheme employs a linear combination of single-scattering properties from the Mie theory, ADT, and GOM, which is accurate for a wide range of size parameters. Following the approach of Q. Fu, the extinction coefficient, absorption coefficient, and asymmetry factor are parameterized as functions of the cloud ice water content and generalized effective size (D{sub ge}). The present parameterization of the single-scattering properties of cirrus clouds is validated by examining the bulk radiative properties for a wide range of atmospheric conditions. Compared with reference results, the typical relative error in emissivity due to the parameterization is {approximately}2.2%. The accuracy of this parameterization guarantees its reliability in applications to climate models. The present parameterization complements the scheme for the solar radiative properties of cirrus clouds developed by Q. Fu for use in numerical models.

  9. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements

    PubMed Central

    Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761

  10. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    PubMed

    Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761

  11. Fractional Order Modeling of Atmospheric Turbulence - A More Accurate Modeling Methodology for Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2014-01-01

    The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.

  12. Achieving accurate nuetron-multiplicity analysis of metals and oxides with weighted point model equations.

    SciTech Connect

    Burward-Hoy, J. M.; Geist, W. H.; Krick, M. S.; Mayo, D. R.

    2004-01-01

    Neutron multiplicity counting is a technique for the rapid, nondestructive measurement of plutonium mass in pure and impure materials. This technique is very powerful because it uses the measured coincidence count rates to determine the sample mass without requiring a set of representative standards for calibration. Interpreting measured singles, doubles, and triples count rates using the three-parameter standard point model accurately determines plutonium mass, neutron multiplication, and the ratio of ({alpha},n) to spontaneous-fission neutrons (alpha) for oxides of moderate mass. However, underlying standard point model assumptions - including constant neutron energy and constant multiplication throughout the sample - cause significant biases for the mass, multiplication, and alpha in measurements of metal and large, dense oxides.

  13. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases). PMID:26430979

  14. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for Climate Modeling

    NASA Astrophysics Data System (ADS)

    Kopparla, P.; Natraj, V.; Spurr, R. J. D.; Shia, R. L.; Yung, Y. L.

    2014-12-01

    Radiative transfer (RT) computations are an essential component of energy budget calculations in climate models. However, full treatment of RT processes is computationally expensive, prompting usage of 2-stream approximations in operational climate models. This simplification introduces errors of the order of 10% in the top of the atmosphere (TOA) fluxes [Randles et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT simulations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those (few) optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Here, we extend the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Comparisons between the new model, called Universal Principal Component Analysis model for Radiative Transfer (UPCART), 2-stream models (such as those used in climate applications) and line-by-line RT models are performed, in order for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the TOA for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and solar and viewing geometries. We demonstrate that very accurate radiative forcing estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases as compared to an exact line-by-line RT model. The model is comparable in speeds to 2-stream models, potentially rendering UPCART useful for operational General Circulation Models (GCMs). The operational speed and accuracy of UPCART can be further

  15. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation

    PubMed Central

    Gray, Alan; Harlen, Oliver G.; Harris, Sarah A.; Khalid, Syma; Leung, Yuk Ming; Lonsdale, Richard; Mulholland, Adrian J.; Pearson, Arwen R.; Read, Daniel J.; Richardson, Robin A.

    2015-01-01

    Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational. PMID:25615870

  16. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  17. Are Quasi-Steady-State Approximated Models Suitable for Quantifying Intrinsic Noise Accurately?

    PubMed Central

    Sengupta, Dola; Kar, Sandip

    2015-01-01

    Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approximation (QSSA) to reduce the huge computational time required for intrinsic noise quantification using Gillespie stochastic simulation algorithm (SSA). However, the question still remains whether the stochastic QSSA model measures the intrinsic noise as accurately as the SSA performed for a detailed mechanistic model or not? To address this issue, we have constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting switching behavior and performed stochastic simulations with them. Our results strongly suggest that the performance of a stochastic QSSA model in comparison to SSA performed for a mechanistic model critically relies on the absolute values of the mRNA and protein half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the stochastic QSSA model calculations will depend on the level of bursting frequency generated due to the absolute value of the half-life of either mRNA or protein or for both the species. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the protein level with greater accuracy and for larger combinations of half-life values of mRNA and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached for limited combinations of absolute values of half-lives. Further, we have clearly demonstrated that the abundance levels of mRNA and protein hardly matter for such comparison between QSSA and mechanistic models. Based on our findings, we conclude that QSSA model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided we make a rational choice based on experimental half-life values available in literature. PMID:26327626

  18. Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models.

    PubMed

    Argudo, David; Bethel, Neville P; Marcoline, Frank V; Grabe, Michael

    2016-07-01

    Biological membranes deform in response to resident proteins leading to a coupling between membrane shape and protein localization. Additionally, the membrane influences the function of membrane proteins. Here we review contributions to this field from continuum elastic membrane models focusing on the class of models that couple the protein to the membrane. While it has been argued that continuum models cannot reproduce the distortions observed in fully-atomistic molecular dynamics simulations, we suggest that this failure can be overcome by using chemically accurate representations of the protein. We outline our recent advances along these lines with our hybrid continuum-atomistic model, and we show the model is in excellent agreement with fully-atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy of continuum-atomistic methodologies will make it possible to simulate large scale, slow biological processes, such as membrane morphological changes, that are currently beyond the scope of other computational approaches. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26853937

  19. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina

    PubMed Central

    Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish

    2016-01-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  20. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    PubMed

    Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish

    2016-04-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  1. What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur.

    PubMed

    Panagiotopoulou, O; Wilshin, S D; Rayfield, E J; Shefelbine, S J; Hutchinson, J R

    2012-02-01

    Finite element modelling is well entrenched in comparative vertebrate biomechanics as a tool to assess the mechanical design of skeletal structures and to better comprehend the complex interaction of their form-function relationships. But what makes a reliable subject-specific finite element model? To approach this question, we here present a set of convergence and sensitivity analyses and a validation study as an example, for finite element analysis (FEA) in general, of ways to ensure a reliable model. We detail how choices of element size, type and material properties in FEA influence the results of simulations. We also present an empirical model for estimating heterogeneous material properties throughout an elephant femur (but of broad applicability to FEA). We then use an ex vivo experimental validation test of a cadaveric femur to check our FEA results and find that the heterogeneous model matches the experimental results extremely well, and far better than the homogeneous model. We emphasize how considering heterogeneous material properties in FEA may be critical, so this should become standard practice in comparative FEA studies along with convergence analyses, consideration of element size, type and experimental validation. These steps may be required to obtain accurate models and derive reliable conclusions from them. PMID:21752810

  2. Development and application of accurate analytical models for single active electron potentials

    NASA Astrophysics Data System (ADS)

    Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas

    2015-05-01

    The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).

  3. Accurate and efficient modeling of global seismic wave propagation for an attenuative Earth model including the center

    NASA Astrophysics Data System (ADS)

    Toyokuni, Genti; Takenaka, Hiroshi

    2012-06-01

    We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic

  4. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure. PMID:19950907

  5. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  6. Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges?

    PubMed

    Searcy, Christopher A; Shaffer, H Bradley

    2016-04-01

    Defining species' niches is central to understanding their distributions and is thus fundamental to basic ecology and climate change projections. Ecological niche models (ENMs) are a key component of making accurate projections and include descriptions of the niche in terms of both response curves and rankings of variable importance. In this study, we evaluate Maxent's ranking of environmental variables based on their importance in delimiting species' range boundaries by asking whether these same variables also govern annual recruitment based on long-term demographic studies. We found that Maxent-based assessments of variable importance in setting range boundaries in the California tiger salamander (Ambystoma californiense; CTS) correlate very well with how important those variables are in governing ongoing recruitment of CTS at the population level. This strong correlation suggests that Maxent's ranking of variable importance captures biologically realistic assessments of factors governing population persistence. However, this result holds only when Maxent models are built using best-practice procedures and variables are ranked based on permutation importance. Our study highlights the need for building high-quality niche models and provides encouraging evidence that when such models are built, they can reflect important aspects of a species' ecology. PMID:27028071

  7. Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

    PubMed Central

    Linaro, Daniele; Storace, Marco; Giugliano, Michele

    2011-01-01

    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here. PMID:21423712

  8. Accurate integral equation theory for the central force model of liquid water and ionic solutions

    NASA Astrophysics Data System (ADS)

    Ichiye, Toshiko; Haymet, A. D. J.

    1988-10-01

    The atom-atom pair correlation functions and thermodynamics of the central force model of water, introduced by Lemberg, Stillinger, and Rahman, have been calculated accurately by an integral equation method which incorporates two new developments. First, a rapid new scheme has been used to solve the Ornstein-Zernike equation. This scheme combines the renormalization methods of Allnatt, and Rossky and Friedman with an extension of the trigonometric basis-set solution of Labik and co-workers. Second, by adding approximate ``bridge'' functions to the hypernetted-chain (HNC) integral equation, we have obtained predictions for liquid water in which the hydrogen bond length and number are in good agreement with ``exact'' computer simulations of the same model force laws. In addition, for dilute ionic solutions, the ion-oxygen and ion-hydrogen coordination numbers display both the physically correct stoichiometry and good agreement with earlier simulations. These results represent a measurable improvement over both a previous HNC solution of the central force model and the ex-RISM integral equation solutions for the TIPS and other rigid molecule models of water.

  9. An accurate and efficient Lagrangian sub-grid model for multi-particle dispersion

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Mazzitelli, Irene; Lanotte, Alessandra S.

    2014-11-01

    Many natural and industrial processes involve the dispersion of particle in turbulent flows. Despite recent theoretical progresses in the understanding of particle dynamics in simple turbulent flows, complex geometries often call for numerical approaches based on eulerian Large Eddy Simulation (LES). One important issue related to the Lagrangian integration of tracers in under-resolved velocity fields is connected to the lack of spatial correlations at unresolved scales. Here we propose a computationally efficient Lagrangian model for the sub-grid velocity of tracers dispersed in statistically homogeneous and isotropic turbulent flows. The model incorporates the multi-scale nature of turbulent temporal and spatial correlations that are essential to correctly reproduce the dynamics of multi-particle dispersion. The new model is able to describe the Lagrangian temporal and spatial correlations in clouds of particles. In particular we show that pairs and tetrads dispersion compare well with results from Direct Numerical Simulations of statistically isotropic and homogeneous 3d turbulence. This model may offer an accurate and efficient way to describe multi-particle dispersion in under resolved turbulent velocity fields such as the one employed in eulerian LES. This work is part of the research programmes FP112 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). We acknowledge support from the EU COST Action MP0806.

  10. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. PMID:27260782

  11. Models in biology: ‘accurate descriptions of our pathetic thinking’

    PubMed Central

    2014-01-01

    In this essay I will sketch some ideas for how to think about models in biology. I will begin by trying to dispel the myth that quantitative modeling is somehow foreign to biology. I will then point out the distinction between forward and reverse modeling and focus thereafter on the former. Instead of going into mathematical technicalities about different varieties of models, I will focus on their logical structure, in terms of assumptions and conclusions. A model is a logical machine for deducing the latter from the former. If the model is correct, then, if you believe its assumptions, you must, as a matter of logic, also believe its conclusions. This leads to consideration of the assumptions underlying models. If these are based on fundamental physical laws, then it may be reasonable to treat the model as ‘predictive’, in the sense that it is not subject to falsification and we can rely on its conclusions. However, at the molecular level, models are more often derived from phenomenology and guesswork. In this case, the model is a test of its assumptions and must be falsifiable. I will discuss three models from this perspective, each of which yields biological insights, and this will lead to some guidelines for prospective model builders. PMID:24886484

  12. Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data

    NASA Astrophysics Data System (ADS)

    Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej

    2016-04-01

    GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.

  13. Development of Accurate Chemical Equilibrium Models for the Hanford Waste Tanks: New Thermodynamic Measurements and Model Applications

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham

    2003-03-27

    Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.

  14. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.

    PubMed

    van Wyk, Marnus J; Bingle, Marianne; Meyer, Frans J C

    2005-09-01

    International bodies such as International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineering (IEEE) make provision for human exposure assessment based on SAR calculations (or measurements) and basic restrictions. In the case of base station exposure this is mostly applicable to occupational exposure scenarios in the very near field of these antennas where the conservative reference level criteria could be unnecessarily restrictive. This study presents a variety of critical aspects that need to be considered when calculating SAR in a human body close to a mobile phone base station antenna. A hybrid FEM/MoM technique is proposed as a suitable numerical method to obtain accurate results. The verification of the FEM/MoM implementation has been presented in a previous publication; the focus of this study is an investigation into the detail that must be included in a numerical model of the antenna, to accurately represent the real-world scenario. This is accomplished by comparing numerical results to measurements for a generic GSM base station antenna and appropriate, representative canonical and human phantoms. The results show that it is critical to take the disturbance effect of the human phantom (a large conductive body) on the base station antenna into account when the antenna-phantom spacing is less than 300 mm. For these small spacings, the antenna structure must be modeled in detail. The conclusion is that it is feasible to calculate, using the proposed techniques and methodology, accurate occupational compliance zones around base station antennas based on a SAR profile and basic restriction guidelines. PMID:15931680

  15. SMARTIES: Spheroids Modelled Accurately with a Robust T-matrix Implementation for Electromagnetic Scattering

    NASA Astrophysics Data System (ADS)

    Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.

    2016-03-01

    SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.

  16. Accurate calculation of conductive conductances in complex geometries for spacecrafts thermal models

    NASA Astrophysics Data System (ADS)

    Garmendia, Iñaki; Anglada, Eva; Vallejo, Haritz; Seco, Miguel

    2016-02-01

    The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of the conductive and radiative conductances. Several established methods for the determination of conductive conductances exist but they present some limitations for complex geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared with traditionally used methods showing the advantages of these two new methods.

  17. A fast and accurate PCA based radiative transfer model: Extension to the broadband shortwave region

    NASA Astrophysics Data System (ADS)

    Kopparla, Pushkar; Natraj, Vijay; Spurr, Robert; Shia, Run-Lie; Crisp, David; Yung, Yuk L.

    2016-04-01

    Accurate radiative transfer (RT) calculations are necessary for many earth-atmosphere applications, from remote sensing retrieval to climate modeling. A Principal Component Analysis (PCA)-based spectral binning method has been shown to provide an order of magnitude increase in computational speed while maintaining an overall accuracy of 0.01% (compared to line-by-line calculations) over narrow spectral bands. In this paper, we have extended the PCA method for RT calculations over the entire shortwave region of the spectrum from 0.3 to 3 microns. The region is divided into 33 spectral fields covering all major gas absorption regimes. We find that the RT performance runtimes are shorter by factors between 10 and 100, while root mean square errors are of order 0.01%.

  18. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  19. Modelling ionospheric density structures

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.

    1989-01-01

    Large-scale density structures are a common feature in the high-latitude ionsphere. The structures were observed in the dayside cusp, polar cap, and nocturnal auroral region over a range of altitudes, including the E-region, F-region and topside ionosphere. The origins, lifetimes and transport characteristics of large-scale density structures were studied with the aid of a three-dimensional, time-dependent ionospheric model. Blob creation due to particle precipitation, the effect that structured electric fields have on the ionosphere, and the lifetimes and transport characteristics of density structures for different seasonal, solar cycle, and interplanetary magnetic field (IMF) conditions were studied. The main conclusions drawn are: (1) the observed precipitation energy fluxes are sufficient for blob creation if the plasma is exposed to the precipitation for 5 to 10 minutes; (2) structured electric fields produce structured electron densities, ion temperatures, and ion composition; (3) the lifetime of an F-region density structure depends on several factors, including the initial location where it was formed, the magnitude of the perturbation, season, solar cycle and IMF; and (4) depending on the IMF, horizontal plasma convection can cause an initial structure to break up into multiple structures of various sizes, remain as a single distorted structure, or become stretched into elongated segments.

  20. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  1. Oxygen-enhanced MRI accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models

    PubMed Central

    O’Connor, James PB; Boult, Jessica KR; Jamin, Yann; Babur, Muhammad; Finegan, Katherine G; Williams, Kaye J; Little, Ross A; Jackson, Alan; Parker, Geoff JM; Reynolds, Andrew R; Waterton, John C; Robinson, Simon P

    2015-01-01

    There is a clinical need for non-invasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning and therapy monitoring. Oxygen enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed “Oxy-R fraction”) would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here we demonstrate that OE-MRI signals are accurate, precise and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia non-invasively and is immediately translatable to the clinic. PMID:26659574

  2. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions

    SciTech Connect

    Nielsen, Jens; D’Avezac, Mayeul; Hetherington, James; Stamatakis, Michail

    2013-12-14

    Ab initio kinetic Monte Carlo (KMC) simulations have been successfully applied for over two decades to elucidate the underlying physico-chemical phenomena on the surfaces of heterogeneous catalysts. These simulations necessitate detailed knowledge of the kinetics of elementary reactions constituting the reaction mechanism, and the energetics of the species participating in the chemistry. The information about the energetics is encoded in the formation energies of gas and surface-bound species, and the lateral interactions between adsorbates on the catalytic surface, which can be modeled at different levels of detail. The majority of previous works accounted for only pairwise-additive first nearest-neighbor interactions. More recently, cluster-expansion Hamiltonians incorporating long-range interactions and many-body terms have been used for detailed estimations of catalytic rate [C. Wu, D. J. Schmidt, C. Wolverton, and W. F. Schneider, J. Catal. 286, 88 (2012)]. In view of the increasing interest in accurate predictions of catalytic performance, there is a need for general-purpose KMC approaches incorporating detailed cluster expansion models for the adlayer energetics. We have addressed this need by building on the previously introduced graph-theoretical KMC framework, and we have developed Zacros, a FORTRAN2003 KMC package for simulating catalytic chemistries. To tackle the high computational cost in the presence of long-range interactions we introduce parallelization with OpenMP. We further benchmark our framework by simulating a KMC analogue of the NO oxidation system established by Schneider and co-workers [J. Catal. 286, 88 (2012)]. We show that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.

  3. Random generalized linear model: a highly accurate and interpretable ensemble predictor

    PubMed Central

    2013-01-01

    Background Ensemble predictors such as the random forest are known to have superior accuracy but their black-box predictions are difficult to interpret. In contrast, a generalized linear model (GLM) is very interpretable especially when forward feature selection is used to construct the model. However, forward feature selection tends to overfit the data and leads to low predictive accuracy. Therefore, it remains an important research goal to combine the advantages of ensemble predictors (high accuracy) with the advantages of forward regression modeling (interpretability). To address this goal several articles have explored GLM based ensemble predictors. Since limited evaluations suggested that these ensemble predictors were less accurate than alternative predictors, they have found little attention in the literature. Results Comprehensive evaluations involving hundreds of genomic data sets, the UCI machine learning benchmark data, and simulations are used to give GLM based ensemble predictors a new and careful look. A novel bootstrap aggregated (bagged) GLM predictor that incorporates several elements of randomness and instability (random subspace method, optional interaction terms, forward variable selection) often outperforms a host of alternative prediction methods including random forests and penalized regression models (ridge regression, elastic net, lasso). This random generalized linear model (RGLM) predictor provides variable importance measures that can be used to define a “thinned” ensemble predictor (involving few features) that retains excellent predictive accuracy. Conclusion RGLM is a state of the art predictor that shares the advantages of a random forest (excellent predictive accuracy, feature importance measures, out-of-bag estimates of accuracy) with those of a forward selected generalized linear model (interpretability). These methods are implemented in the freely available R software package randomGLM. PMID:23323760

  4. An Accurate In Vitro Model of the E. coli Envelope

    PubMed Central

    Clifton, Luke A.; Holt, Stephen A.; Hughes, Arwel V.; Daulton, Emma L.; Arunmanee, Wanatchaporn; Heinrich, Frank; Khalid, Syma; Jefferies, Damien; Charlton, Timothy R.; Webster, John R. P.; Kinane, Christian J.

    2015-01-01

    Abstract Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development. PMID:27346898

  5. An accurate in vitro model of the E. coli envelope.

    PubMed

    Clifton, Luke A; Holt, Stephen A; Hughes, Arwel V; Daulton, Emma L; Arunmanee, Wanatchaporn; Heinrich, Frank; Khalid, Syma; Jefferies, Damien; Charlton, Timothy R; Webster, John R P; Kinane, Christian J; Lakey, Jeremy H

    2015-10-01

    Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir-Blodgett and Langmuir-Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development. PMID:26331292

  6. A stochastic model of kinetochore–microtubule attachment accurately describes fission yeast chromosome segregation

    PubMed Central

    Gay, Guillaume; Courtheoux, Thibault; Reyes, Céline

    2012-01-01

    In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B–like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B–like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy. PMID:22412019

  7. Computationally efficient and accurate enantioselectivity modeling by clusters of molecular dynamics simulations.

    PubMed

    Wijma, Hein J; Marrink, Siewert J; Janssen, Dick B

    2014-07-28

    Computational approaches could decrease the need for the laborious high-throughput experimental screening that is often required to improve enzymes by mutagenesis. Here, we report that using multiple short molecular dynamics (MD) simulations makes it possible to accurately model enantioselectivity for large numbers of enzyme-substrate combinations at low computational costs. We chose four different haloalkane dehalogenases as model systems because of the availability of a large set of experimental data on the enantioselective conversion of 45 different substrates. To model the enantioselectivity, we quantified the frequency of occurrence of catalytically productive conformations (near attack conformations) for pairs of enantiomers during MD simulations. We found that the angle of nucleophilic attack that leads to carbon-halogen bond cleavage was a critical variable that limited the occurrence of productive conformations; enantiomers for which this angle reached values close to 180° were preferentially converted. A cluster of 20-40 very short (10 ps) MD simulations allowed adequate conformational sampling and resulted in much better agreement to experimental enantioselectivities than single long MD simulations (22 ns), while the computational costs were 50-100 fold lower. With single long MD simulations, the dynamics of enzyme-substrate complexes remained confined to a conformational subspace that rarely changed significantly, whereas with multiple short MD simulations a larger diversity of conformations of enzyme-substrate complexes was observed. PMID:24916632

  8. Accurate models for P-gp drug recognition induced from a cancer cell line cytotoxicity screen.

    PubMed

    Levatić, Jurica; Ćurak, Jasna; Kralj, Marijeta; Šmuc, Tomislav; Osmak, Maja; Supek, Fran

    2013-07-25

    P-glycoprotein (P-gp, MDR1) is a promiscuous drug efflux pump of substantial pharmacological importance. Taking advantage of large-scale cytotoxicity screening data involving 60 cancer cell lines, we correlated the differential biological activities of ∼13,000 compounds against cellular P-gp levels. We created a large set of 934 high-confidence P-gp substrates or nonsubstrates by enforcing agreement with an orthogonal criterion involving P-gp overexpressing ADR-RES cells. A support vector machine (SVM) was 86.7% accurate in discriminating P-gp substrates on independent test data, exceeding previous models. Two molecular features had an overarching influence: nearly all P-gp substrates were large (>35 atoms including H) and dense (specific volume of <7.3 Å(3)/atom) molecules. Seven other descriptors and 24 molecular fragments ("effluxophores") were found enriched in the (non)substrates and incorporated into interpretable rule-based models. Biological experiments on an independent P-gp overexpressing cell line, the vincristine-resistant VK2, allowed us to reclassify six compounds previously annotated as substrates, validating our method's predictive ability. Models are freely available at http://pgp.biozyne.com . PMID:23772653

  9. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    PubMed Central

    2011-01-01

    Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645

  10. Accurate mathematical models to describe the lactation curve of Lacaune dairy sheep under intensive management.

    PubMed

    Elvira, L; Hernandez, F; Cuesta, P; Cano, S; Gonzalez-Martin, J-V; Astiz, S

    2013-06-01

    Although the intensive production system of Lacaune dairy sheep is the only profitable method for producers outside of the French Roquefort area, little is known about this type of systems. This study evaluated yield records of 3677 Lacaune sheep under intensive management between 2005 and 2010 in order to describe the lactation curve of this breed and to investigate the suitability of different mathematical functions for modeling this curve. A total of 7873 complete lactations during a 40-week lactation period corresponding to 201 281 pieces of weekly yield data were used. First, five mathematical functions were evaluated on the basis of the residual mean square, determination coefficient, Durbin Watson and Runs Test values. The two better models were found to be Pollott Additive and fractional polynomial (FP). In the second part of the study, the milk yield, peak of milk yield, day of peak and persistency of the lactations were calculated with Pollot Additive and FP models and compared with the real data. The results indicate that both models gave an extremely accurate fit to Lacaune lactation curves in order to predict milk yields (P = 0.871), with the FP model being the best choice to provide a good fit to an extensive amount of real data and applicable on farm without specific statistical software. On the other hand, the interpretation of the parameters of the Pollott Additive function helps to understand the biology of the udder of the Lacaune sheep. The characteristics of the Lacaune lactation curve and milk yield are affected by lactation number and length. The lactation curves obtained in the present study allow the early identification of ewes with low milk yield potential, which will help to optimize farm profitability. PMID:23257242

  11. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for (Exo-)Planetary Retrieval Models

    NASA Astrophysics Data System (ADS)

    Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.

    2015-12-01

    Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work

  12. Using Dielectric Properties to Design Nonempirical Hybrid Functionals for Accurate Electronic Structure

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    2015-03-01

    Building upon a recently proposed self-consistent hybrid (sc-hybrid) functional, where the optimal dielectric screening is included self-consistently, we propose an improved form by incorporating range-separation of the exchange part. We discuss the choice of the non-empirical parameters defining range separation, and we present results for condensed media including semiconductors, amorphous insulators, and molecular crystals. We find that the range-separated sc-hybrid functional further improves upon the electronic gaps obtained with full-range sc-hybrids, thus providing an accurate functional for high throughput band gap engineering. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and ARL Grant Number W911NF-12-2-0023.

  13. Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests.

    PubMed

    Gao, Yaozong; Shao, Yeqin; Lian, Jun; Wang, Andrew Z; Chen, Ronald C; Shen, Dinggang

    2016-06-01

    Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a non-local external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation. PMID:26800531

  14. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php. PMID:18763837

  15. Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision.

    PubMed

    Roses, A D

    2016-02-01

    Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion-deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well-phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation. Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles. PMID:26517180

  16. Accurate modeling of cache replacement policies in a Data-Grid.

    SciTech Connect

    Otoo, Ekow J.; Shoshani, Arie

    2003-01-23

    Caching techniques have been used to improve the performance gap of storage hierarchies in computing systems. In data intensive applications that access large data files over wide area network environment, such as a data grid,caching mechanism can significantly improve the data access performance under appropriate workloads. In a data grid, it is envisioned that local disk storage resources retain or cache the data files being used by local application. Under a workload of shared access and high locality of reference, the performance of the caching techniques depends heavily on the replacement policies being used. A replacement policy effectively determines which set of objects must be evicted when space is needed. Unlike cache replacement policies in virtual memory paging or database buffering, developing an optimal replacement policy for data grids is complicated by the fact that the file objects being cached have varying sizes and varying transfer and processing costs that vary with time. We present an accurate model for evaluating various replacement policies and propose a new replacement algorithm referred to as ''Least Cost Beneficial based on K backward references (LCB-K).'' Using this modeling technique, we compare LCB-K with various replacement policies such as Least Frequently Used (LFU), Least Recently Used (LRU), Greedy DualSize (GDS), etc., using synthetic and actual workload of accesses to and from tertiary storage systems. The results obtained show that (LCB-K) and (GDS) are the most cost effective cache replacement policies for storage resource management in data grids.

  17. New possibilities of accurate particle characterisation by applying direct boundary models to analytical centrifugation

    NASA Astrophysics Data System (ADS)

    Walter, Johannes; Thajudeen, Thaseem; Süß, Sebastian; Segets, Doris; Peukert, Wolfgang

    2015-04-01

    Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles.

  18. Accurate structural and spectroscopic characterization of prebiotic molecules: The neutral and cationic acetyl cyanide and their related species.

    PubMed

    Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C

    2015-11-14

    In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations. PMID:26567669

  19. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  20. Fine structure in proton radioactivity: An accurate tool to ascertain the breaking of axial symmetry in {sup 145}Tm

    SciTech Connect

    Arumugam, P.; Ferreira, L. S.; Maglione, E.

    2008-10-15

    With a proper formalism for proton emission from triaxially deformed nuclei, we perform exact calculations of decay widths for the decays to ground and first excited 2{sup +} states in the daughter nucleus. Our results for rotational spectrum, decay width and fine structure in the case of the nucleus {sup 145}Tm lead for the first time to an accurate identification of triaxial deformation using proton emission. This work also puts in evidence the advantage of proton emission over the conventional probes to study nuclear structure at the proton drip-line.

  1. Towards more accurate isoscapes encouraging results from wine, water and marijuana data/model and model/model comparisons.

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Cerling, T.

    2006-12-01

    Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across

  2. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models

    SciTech Connect

    Hu, Y.X.; Stamnes, K. )

    1993-04-01

    A new parameterization of the radiative Properties of water clouds is presented. Cloud optical properties for valent radius throughout the solar and both solar and terrestrial spectra and for cloud equivalent radii in the range 2.5-60 [mu]m are calculated from Mie theory. It is found that cloud optical properties depend mainly on equivalent radius throughout the solar and terrestrial spectrum and are insensitive to the details of the droplet size distribution, such as shape, skewness, width, and modality (single or bimodal). This suggests that in cloud models, aimed at predicting the evolution of cloud microphysics with climate change, it is sufficient to determine the third and the second moments of the size distribution (the ratio of which determines the equivalent radius). It also implies that measurements of the cloud liquid water content and the extinction coefficient are sufficient to determine cloud optical properties experimentally (i.e., measuring the complete droplet size distribution is not required). Based on the detailed calculations, the optical properties are parameterized as a function of cloud liquid water path and equivalent cloud droplet radius by using a nonlinear least-square fitting. The parameterization is performed separately for the range of radii 2.5-12 [mu]m, 12-30,[mu]m, and 30-60 [mu]m. Cloud heating and cooling rates are computed from this parameterization by using a comprehensive radiation model. Comparison with similar results obtained from exact Mie scattering calculations shows that this parameterization yields very accurate results and that it is several thousand times faster. This parameterization separates the dependence of cloud optical properties on droplet size and liquid water content, and is suitable for inclusion into climate models. 22 refs., 7 figs., 6 tabs.

  3. Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination

    NASA Astrophysics Data System (ADS)

    Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael

    2014-05-01

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of

  4. Physical resist models and their calibration: their readiness for accurate EUV lithography simulation

    NASA Astrophysics Data System (ADS)

    Klostermann, U. K.; Mülders, T.; Schmöller, T.; Lorusso, G. F.; Hendrickx, E.

    2010-04-01

    In this paper, we discuss the performance of EUV resist models in terms of predictive accuracy, and we assess the readiness of the corresponding model calibration methodology. The study is done on an extensive OPC data set collected at IMEC for the ShinEtsu resist SEVR-59 on the ASML EUV Alpha Demo Tool (ADT), with the data set including more than thousand CD values. We address practical aspects such as the speed of calibration and selection of calibration patterns. The model is calibrated on 12 process window data series varying in pattern width (32, 36, 40 nm), orientation (H, V) and pitch (dense, isolated). The minimum measured feature size at nominal process condition is a 32 nm CD at a dense pitch of 64 nm. Mask metrology is applied to verify and eventually correct nominal width of the drawn CD. Cross-sectional SEM information is included in the calibration to tune the simulated resist loss and sidewall angle. The achieved calibration RMS is ~ 1.0 nm. We show what elements are important to obtain a well calibrated model. We discuss the impact of 3D mask effects on the Bossung tilt. We demonstrate that a correct representation of the flare level during the calibration is important to achieve a high predictability at various flare conditions. Although the model calibration is performed on a limited subset of the measurement data (one dimensional structures only), its accuracy is validated based on a large number of OPC patterns (at nominal dose and focus conditions) not included in the calibration; validation RMS results as small as 1 nm can be reached. Furthermore, we study the model's extendibility to two-dimensional end of line (EOL) structures. Finally, we correlate the experimentally observed fingerprint of the CD uniformity to a model, where EUV tool specific signatures are taken into account.

  5. Accurate prediction of the refractive index of polymers using first principles and data modeling

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.

  6. Structural model of channelrhodopsin.

    PubMed

    Watanabe, Hiroshi C; Welke, Kai; Schneider, Franziska; Tsunoda, Satoshi; Zhang, Feng; Deisseroth, Karl; Hegemann, Peter; Elstner, Marcus

    2012-03-01

    Channelrhodopsins (ChRs) are light-gated cation channels that mediate ion transport across membranes in microalgae (vectorial catalysis). ChRs are now widely used for the analysis of neural networks in tissues and living animals with light (optogenetics). For elucidation of functional mechanisms at the atomic level, as well as for further engineering and application, a detailed structure is urgently needed. In the absence of an experimental structure, here we develop a structural ChR model based on several molecular computational approaches, capitalizing on characteristic patterns in amino acid sequences of ChR1, ChR2, Volvox ChRs, Mesostigma ChR, and the recently identified ChR of the halophilic alga Dunaliella salina. In the present model, we identify remarkable structural motifs that may explain fundamental electrophysiological properties of ChR2, ChR1, and their mutants, and in a crucial validation of the model, we successfully reproduce the excitation energy predicted by absorption spectra. PMID:22241469

  7. New possibilities of accurate particle characterisation by applying direct boundary models to analytical centrifugation.

    PubMed

    Walter, Johannes; Thajudeen, Thaseem; Süss, Sebastian; Segets, Doris; Peukert, Wolfgang

    2015-04-21

    Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles. PMID:25789666

  8. Precise and accurate assessment of uncertainties in model parameters from stellar interferometry. Application to stellar diameters

    NASA Astrophysics Data System (ADS)

    Lachaume, Regis; Rabus, Markus; Jordan, Andres

    2015-08-01

    In stellar interferometry, the assumption that the observables can be seen as Gaussian, independent variables is the norm. In particular, neither the optical interferometry FITS (OIFITS) format nor the most popular fitting software in the field, LITpro, offer means to specify a covariance matrix or non-Gaussian uncertainties. Interferometric observables are correlated by construct, though. Also, the calibration by an instrumental transfer function ensures that the resulting observables are not Gaussian, even if uncalibrated ones happened to be so.While analytic frameworks have been published in the past, they are cumbersome and there is no generic implementation available. We propose here a relatively simple way of dealing with correlated errors without the need to extend the OIFITS specification or making some Gaussian assumptions. By repeatedly picking at random which interferograms, which calibrator stars, and which are the errors on their diameters, and performing the data processing on the bootstrapped data, we derive a sampling of p(O), the multivariate probability density function (PDF) of the observables O. The results can be stored in a normal OIFITS file. Then, given a model m with parameters P predicting observables O = m(P), we can estimate the PDF of the model parameters f(P) = p(m(P)) by using a density estimation of the observables' PDF p.With observations repeated over different baselines, on nights several days apart, and with a significant set of calibrators systematic errors are de facto taken into account. We apply the technique to a precise and accurate assessment of stellar diameters obtained at the Very Large Telescope Interferometer with PIONIER.

  9. Stable, accurate and efficient computation of normal modes for horizontal stratified models

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Chen, Xiaofei

    2016-08-01

    We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of `family of secular functions' that we herein call `adaptive mode observers' is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of `turning point', our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.

  10. Stable, accurate and efficient computation of normal modes for horizontal stratified models

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Chen, Xiaofei

    2016-06-01

    We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of "family of secular functions" that we herein call "adaptive mode observers", is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of "turning point", our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.

  11. Condensed Antenna Structural Models for Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1985-01-01

    Condensed degree-of-freedom models are compared with large degree-of-freedom finite-element models of a representative antenna-tipping and alidade structure, for both locked and free-rotor configurations. It is shown that: (1) the effective-mass models accurately reproduce the lower-mode natural frequencies of the finite element model; (2) frequency responses for the two types of models are in agreement up to at least 16 rad/s for specific points; and (3) transient responses computed for the same points are in good agreement. It is concluded that the effective-mass model, which best represents the five lower modes of the finite-element model, is a sufficient representation of the structure for future incorporation with a total servo control structure dynamic simulation.

  12. Towards more accurate wind and solar power prediction by improving NWP model physics

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    nighttime to well mixed conditions during the day presents a big challenge to NWP models. Fast decrease and successive increase in hub-height wind speed after sunrise, and the formation of nocturnal low level jets will be discussed. For PV, the life cycle of low stratus clouds and fog is crucial. Capturing these processes correctly depends on the accurate simulation of diffusion or vertical momentum transport and the interaction with other atmospheric and soil processes within the numerical weather model. Results from Single Column Model simulations and 3d case studies will be presented. Emphasis is placed on wind forecasts; however, some references to highlights concerning the PV-developments will also be given. *) ORKA: Optimierung von Ensembleprognosen regenerativer Einspeisung für den Kürzestfristbereich am Anwendungsbeispiel der Netzsicherheitsrechnungen **) EWeLiNE: Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger, www.projekt-eweline.de

  13. A new class of atomic basis functions for accurate electronic structure calculations of molecules

    NASA Astrophysics Data System (ADS)

    Laikov, Dimitri N.

    2005-11-01

    A new general approach is developed for obtaining systematic sequences of atomic single-particle basis sets for use in correlated electronic structure calculations of molecules. All the constituent functions are defined as the solutions of variational problems and are of three types: a minimal Hartree-Fock set, additional functions to represent low-lying excited configurations, and general functions for describing electron correlation. The latter are determined to minimize a functional derived from the closed-shell second-order correlation energy expression. Generally-contracted Gaussian expansions are developed to approximate these general functions in the non-relativistic case and within a scalar-relativistic approximation.

  14. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model

    SciTech Connect

    Gan, Yangzhou; Zhao, Qunfei; Xia, Zeyang E-mail: jing.xiong@siat.ac.cn; Hu, Ying; Xiong, Jing E-mail: jing.xiong@siat.ac.cn; Zhang, Jianwei

    2015-01-15

    Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0

  15. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    SciTech Connect

    Wills, John M; Mattsson, Ann E

    2012-06-06

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  16. Modeling solar magnetic structures

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1985-01-01

    Some ideas in the theoretical study of force-free magnetic fields and magnetostatic fields, which are relevant to the effort of using magnetograph data as inputs to model the quasi-static, large-scale magnetic structures in the solar atmosphere are discussed. Basic physical principles will be emphasized. An attempt will be made to assess what we may learn, physically, from the models based on these ideas. There is prospect for learning useful physics and this ought to be an incentive for intensifying the efforts to improve vector magnetograph technology and to solve the basic radiative-transfer problems encountered in the interpretation of magnetograph raw data.

  17. Towards accurate kinetic modeling of prompt NO formation in hydrocarbon flames via the NCN pathway

    SciTech Connect

    Sutton, Jeffrey A.; Fleming, James W.

    2008-08-15

    A basic kinetic mechanism that can predict the appropriate prompt-NO precursor NCN, as shown by experiment, with relative accuracy while still producing postflame NO results that can be calculated as accurately as or more accurately than through the former HCN pathway is presented for the first time. The basic NCN submechanism should be a starting point for future NCN kinetic and prompt NO formation refinement.

  18. A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures.

    PubMed

    Mangipudi, K R; Radisch, V; Holzer, L; Volkert, C A

    2016-04-01

    We present an automated focused ion beam nanotomography method for nanoporous microstructures with open porosity, and apply it to reconstruct nanoporous gold (np-Au) structures with ligament sizes on the order of a few tens of nanometers. This method uses serial sectioning of a well-defined wedge-shaped geometry to determine the thickness of individual slices from the changes in the sample width in successive cross-sectional images. The pore space of a selected region of the np-Au is infiltrated with ion-beam-deposited Pt composite before serial sectioning. The cross-sectional images are binarized and stacked according to the individual slice thicknesses, and then processed using standard reconstruction methods. For the image conditions and sample geometry used here, we are able to determine the thickness of individual slices with an accuracy much smaller than a pixel. The accuracy of the new method based on actual slice thickness is assessed by comparing it with (i) a reconstruction using the same cross-sectional images but assuming a constant slice thickness, and (ii) a reconstruction using traditional FIB-tomography method employing constant slice thickness. The morphology and topology of the structures are characterized using ligament and pore size distributions, interface shape distribution functions, interface normal distributions, and genus. The results suggest that the morphology and topology of the final reconstructions are significantly influenced when a constant slice thickness is assumed. The study reveals grain-to-grain variations in the morphology and topology of np-Au. PMID:26906523

  19. A Fibre-Reinforced Poroviscoelastic Model Accurately Describes the Biomechanical Behaviour of the Rat Achilles Tendon

    PubMed Central

    Heuijerjans, Ashley; Matikainen, Marko K.; Julkunen, Petro; Eliasson, Pernilla; Aspenberg, Per; Isaksson, Hanna

    2015-01-01

    Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon’s biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendon’s main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendon

  20. Nuclear structure with accurate chiral perturbation theory nucleon-nucleon potential: Application to 6Li and 10B

    SciTech Connect

    Navratil, P; Caurier, E

    2003-10-14

    The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.

  1. CC/DFT Route toward Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as a Case Study.

    PubMed

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina

    2015-09-01

    The structures and relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semiexperimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt-, and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol(-1). Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm(-1) are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones, and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC

  2. Structural modeling for multicell composite rotor blades

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  3. Structural characteristic responses for finite element model updating of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Linren; Wang, Lei; Ou, Jinping

    2014-04-01

    The field measurements of structures are very important to the structural finite element (FE) model updating because the errors and uncertainties of a FE model are corrected directly through closing the discrepancies between the analytical responses from FE model and the measurements from field testing of a structure. Usually, the accurate and reliable field measurements are very limited. Therefore, it is very important to make full use of the limited and valuable field measurements in structural model updating to achieve a best result with the lowest cost. In this paper, structural FE model updating is investigated in the point of view of solving a mathematical problem, and different amount and category of structural dynamic responses and static responses are considered as constraints to explore their effects on the updated results of different degree and types of structural damages. The numerical studies are carried out on a space truss. Accounting for the numerical results, some inherent phenomena and connections taking account of the updating parameters, output responses and the updated results are revealed and discussed. Some useful and practicable suggestions about using the field measurements for FE model updating are provided to achieve efficient and reliable results.

  4. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation

    SciTech Connect

    Gray, Alan; Harlen, Oliver G.; Harris, Sarah A.; Khalid, Syma; Leung, Yuk Ming; Lonsdale, Richard; Mulholland, Adrian J.; Pearson, Arwen R.; Read, Daniel J.; Richardson, Robin A.

    2015-01-01

    The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.

  5. Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?

    PubMed Central

    Filizola, Marta

    2009-01-01

    For years conventional drug design at G-protein coupled receptors (GPCRs) has mainly focused on the inhibition of a single receptor at a usually well-defined ligand-binding site. The recent discovery of more and more physiologically relevant GPCR dimers/oligomers suggests that selectively targeting these complexes or designing small molecules that inhibit receptor-receptor interactions might provide new opportunities for novel drug discovery. To uncover the fundamental mechanisms and dynamics governing GPCR dimerization/oligomerization, it is crucial to understand the dynamic process of receptor-receptor association, and to identify regions that are suitable for selective drug binding. This minireview highlights current progress in the development of increasingly accurate dynamic molecular models of GPCR oligomers based on structural, biochemical, and biophysical information that has recently appeared in the literature. In view of this new information, there has never been a more exciting time for computational research into GPCRs than at present. Information-driven modern molecular models of GPCR complexes are expected to efficiently guide the rational design of GPCR oligomer-specific drugs, possibly allowing researchers to reach for the high-hanging fruits in GPCR drug discovery, i.e. more potent and selective drugs for efficient therapeutic interventions. PMID:19465029

  6. Morphometric analysis of Russian Plain's small lakes on the base of accurate digital bathymetric models

    NASA Astrophysics Data System (ADS)

    Naumenko, Mikhail; Guzivaty, Vadim; Sapelko, Tatiana

    2016-04-01

    Lake morphometry refers to physical factors (shape, size, structure, etc) that determine the lake depression. Morphology has a great influence on lake ecological characteristics especially on water thermal conditions and mixing depth. Depth analyses, including sediment measurement at various depths, volumes of strata and shoreline characteristics are often critical to the investigation of biological, chemical and physical properties of fresh waters as well as theoretical retention time. Management techniques such as loading capacity for effluents and selective removal of undesirable components of the biota are also dependent on detailed knowledge of the morphometry and flow characteristics. During the recent years a lake bathymetric surveys were carried out by using echo sounder with a high bottom depth resolution and GPS coordinate determination. Few digital bathymetric models have been created with 10*10 m spatial grid for some small lakes of Russian Plain which the areas not exceed 1-2 sq. km. The statistical characteristics of the depth and slopes distribution of these lakes calculated on an equidistant grid. It will provide the level-surface-volume variations of small lakes and reservoirs, calculated through combination of various satellite images. We discuss the methodological aspects of creating of morphometric models of depths and slopes of small lakes as well as the advantages of digital models over traditional methods.

  7. Voronoi-cell finite difference method for accurate electronic structure calculation of polyatomic molecules on unstructured grids

    SciTech Connect

    Son, Sang-Kil

    2011-03-01

    We introduce a new numerical grid-based method on unstructured grids in the three-dimensional real-space to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a discrete Laplacian operator based on Voronoi cells and their natural neighbors, featuring high adaptivity and simplicity. To resolve multicenter Coulomb singularity in all-electron calculations of polyatomic molecules, this method utilizes highly adaptive molecular grids which consist of spherical atomic grids. It provides accurate and efficient solutions for the Schroedinger equation and the Poisson equation with the all-electron Coulomb potentials regardless of the coordinate system and the molecular symmetry. For numerical examples, we assess accuracy of the VFD method for electronic structures of one-electron polyatomic systems, and apply the method to the density-functional theory for many-electron polyatomic molecules.

  8. TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.

    1993-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.

  9. Is scintillometer measurement accurate enough for evaluating remote sensing based energy balance ET models?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three evapotranspiration (ET) measurement/retrieval techniques used in this study, lysimeter, scintillometer and remote sensing vary in their level of complexity, accuracy, resolution and applicability. The lysimeter with its point measurement is the most accurate and direct method to measure ET...

  10. Making the most of your prognostic factors: presenting a more accurate survival model for breast cancer patients.

    PubMed

    Knorr, K L; Hilsenbeck, S G; Wenger, C R; Pounds, G; Oldaker, T; Vendely, P; Pandian, M R; Harrington, D; Clark, G M

    1992-01-01

    Determining an appropriate level of adjuvant therapy is one of the most difficult facets of treating breast cancer patients. Although the myriad of prognostic factors aid in this decision, often they give conflicting reports of a patient's prognosis. What we need is a survival model which can properly utilize the information contained in these factors and give an accurate, reliable account of the patient's probability of recurrence. We also need a method of evaluating these models' predictive ability instead of simply measuring goodness-of-fit, as is currently done. Often, prognostic factors are broken into two categories such as positive or negative. But this dichotomization may hide valuable prognostic information. We investigated whether continuous representations of factors, including standard transformations--logarithmic, square root, categorical, and smoothers--might more accurately estimate the underlying relationship between each factor and survival. We chose the logistic regression model, a special case of the commonly used Cox model, to test our hypothesis. The model containing continuous transformed factors fit the data more closely than the model containing the traditional dichotomized factors. In order to appropriately evaluate these models, we introduce three predictive validity statistics--the Calibration score, the Overall Calibration score, and the Brier score--designed to assess the model's accuracy and reliability. These standardized scores showed the transformed factors predicted three year survival accurately and reliably. The scores can also be used to assess models or compare across studies. PMID:1391991

  11. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    SciTech Connect

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  12. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.)

    PubMed Central

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2015-01-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp. PMID:25362073

  13. A structural model for metallic glasses

    NASA Astrophysics Data System (ADS)

    Miracle, Daniel B.

    2004-10-01

    Despite the intense interest in metallic glasses for a variety of engineering applications, many details of their structure remain a mystery. Here, we present the first compelling atomic structural model for metallic glasses. This structural model is based on a new sphere-packing scheme-the dense packing of atomic clusters. Random positioning of solvent atoms and medium-range atomic order of solute atoms are combined to reproduce diffraction data successfully over radial distances up to ~1 nm. Although metallic glasses can have any number of chemically distinct solute species, this model shows that they contain no more than three topologically distinct solutes and that these solutes have specific and predictable sizes relative to the solvent atoms. Finally, this model includes defects that provide richness to the structural description of metallic glasses. The model accurately predicts the number of solute atoms in the first coordination shell of a typical solvent atom, and provides a remarkable ability to predict metallic-glass compositions accurately for a wide range of simple and complex alloys.

  14. Extraction of accurate structure-factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources.

    PubMed

    Srajer, V; Crosson, S; Schmidt, M; Key, J; Schotte, F; Anderson, S; Perman, B; Ren, Z; Teng, T Y; Bourgeois, D; Wulff, M; Moffat, K

    2000-07-01

    Wavelength normalization is an essential part of processing of Laue X-ray diffraction data and is critically important for deriving accurate structure-factor amplitudes. The results of wavelength normalization for Laue data obtained in nanosecond time-resolved experiments at the ID09 beamline at the European Synchrotron Radiation Facility, Grenoble, France, are presented. Several wiggler and undulator insertion devices with complex spectra were used. The results show that even in the most challenging cases, such as wiggler/undulator tandems or single-line undulators, accurate wavelength normalization does not require unusually redundant Laue data and can be accomplished using typical Laue data sets. Single-line undulator spectra derived from Laue data compare well with the measured incident X-ray spectra. Successful wavelength normalization of the undulator data was also confirmed by the observed signal in nanosecond time-resolved experiments. Single-line undulators, which are attractive for time-resolved experiments due to their high peak intensity and low polychromatic background, are compared with wigglers, based on data obtained on the same crystal. PMID:16609201

  15. A subsurface structure change associated with the eruptive activity at Sakurajima Volcano, Japan, inferred from an accurately controlled source

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Yamaoka, Koshun; Miyamachi, Hiroki; Watanabe, Toshiki; Kunitomo, Takahiro; Ikuta, Ryoya; Yakiwara, Hiroshi; Iguchi, Masato

    2015-07-01

    Temporal variations of Green functions associated with the eruptive activity at Sakurajima Volcano, Japan, were estimated using an accurately controlled routinely operated signal system (ACROSS). We deconvolved 400 s waveforms of the ACROSS signal at nearby stations by a known source time function and stacked the results based on the time relative to individual eruptions and the eruption intervals; the quantities obtained by this procedure are Green functions corresponding to various stages of the eruptive activity. We found an energy decrease in the later phase of the Green functions in active eruptive periods. This energy decrease, localized in the 2-6 s window of the Green functions, is difficult to explain by contamination from volcanic earthquakes and tremors. The decrease could be more reasonably attributed to a subsurface structure change caused by the volcanic activity.

  16. A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model

    PubMed Central

    White, E.; Woolley, M.; Bienemann, A.; Johnson, D.E.; Wyatt, M.; Murray, G.; Taylor, H.; Gill, S.S.

    2011-01-01

    Achieving accurate intracranial electrode or catheter placement is critical in clinical practice in order to maximise the efficacy of deep brain stimulation and drug delivery respectively as well as to minimise side-effects. We have developed a highly accurate and robust method for MRI-guided, stereotactic delivery of catheters and electrodes to deep target structures in the brain of pigs. This study outlines the development of this equipment and animal model. Specifically this system enables reliable head immobilisation, acquisition of high-resolution MR images, precise co-registration of MRI and stereotactic spaces and overall rigidity to facilitate accurate burr hole-generation and catheter implantation. To demonstrate the utility of this system, in this study a total of twelve catheters were implanted into the putamen of six Large White Landrace pigs. All implants were accurately placed into the putamen. Target accuracy had a mean Euclidean distance of 0.623 mm (standard deviation of 0.33 mm). This method has allowed us to accurately insert fine cannulae, suitable for the administration of therapeutic agents by convection-enhanced delivery (CED), into the brain of pigs. This study provides summary evidence of a robust system for catheter implantation into the brain of a large animal model. We are currently using this stereotactic system, implantation procedure and animal model to develop catheter-based drug delivery systems that will be translated into human clinical trials, as well as to model the distribution of therapeutic agents administered by CED over large volumes of brain. PMID:21074564

  17. Accurate molecular structures and infrared spectra of trans-2,3-dideuterooxirane, methyloxirane, and trans-2,3-dimethyloxirane

    SciTech Connect

    Barone, Vincenzo; Biczysko, Malgorzata Bloino, Julien; Puzzarini, Cristina

    2014-07-21

    Oxirane derivatives are the most used benchmarks for chiroptical spectroscopies in view of their small size and relative rigidity. The molecular structure, vibrational harmonic and anharmonic frequencies, and infrared intensities of the ground electronic states are analyzed in this paper. Equilibrium structure and harmonic force fields have been evaluated by means of high-level quantum-chemical calculations at the coupled-cluster level including single and double excitations together with a perturbative treatment of triples (CCSD(T)). Extrapolation to the complete basis-set limit as well as core-correlation effects have also been taken into account. Anharmonic contributions have been computed at the CCSD(T)/cc-pVTZ level for trans-2,3-dideuterooxirane. These data can serve as references to evaluate the accuracy of less expensive computational approaches rooted in the density functional theory (DFT). The latter have been used within hybrid CC/DFT approaches, which have been applied to simulate fully anharmonic infrared (IR) spectra. Finally, the best theoretical estimates of the equilibrium structures and vibrational wavenumbers are compared to the most accurate experimental data and show in all cases very good agreement, i.e., within 0.001 Å, 0.1 deg, 10 cm{sup −1}, and 0.5 km mol{sup −1}, for bond lengths, angles, wavenumbers, and IR intensities, respectively.

  18. Regolith-structure modeling

    NASA Technical Reports Server (NTRS)

    Ko, Hon-Yim; Sture, Stein

    1991-01-01

    shielding for habitation and workspace. The habitat module is treated as a rigid cylindrical tube with a smooth exterior. By making the cylinder rigid, a complex interaction problem is reduced to a situation where we can consider the support regolith and the shielding regolith as behaving independently of the structural properties of the cylindrical structure. Medium-dense lunar simulant was placed around a scaled model of the habitat module to provide a radiation shield. This embankment-type shield was constructed in relatively thin but fine layers by compacting, by mechanical vibratory means, layer upon layer of simulant placed adjacent to the horizontally-aligned cylinder. The slope angles were constructed at 55 degrees. The model described above was studied in a geotechnical centrifuge, which allows for the scaling of model dimensions to prototype dimensions by increasing the acceleration of gravity on the model. The deformation response can be scaled up to prototype dimensions to provide an assessment of the deformation patterns of the lunar structure. The actual process of local and/or global growth of instabilities or skip planes can also be observed.

  19. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  20. Learning the Structure of High-Dimensional Manifolds with Self-Organizing Maps for Accurate Information Extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Lili

    This work aims to improve the capability of accurate information extraction from high-dimensional data, with a specific neural learning paradigm, the Self-Organizing Map (SOM). The SOM is an unsupervised learning algorithm that can faithfully sense the manifold structure and support supervised learning of relevant information from the data. Yet open problems regarding SOM learning exist. We focus on the following two issues. (1) Evaluation of topology preservation. Topology preservation is essential for SOMs in faithful representation of manifold structure. However, in reality, topology violations are not unusual, especially when the data have complicated structure. Measures capable of accurately quantifying and informatively expressing topology violations are lacking. One contribution of this work is a new measure, the Weighted Differential Topographic Function (WDTF), which differentiates an existing measure, the Topographic Function (TF), and incorporates detailed data distribution as an importance weighting of violations to distinguish severe violations from insignificant ones. Another contribution is an interactive visual tool, TopoView, which facilitates the visual inspection of violations on the SOM lattice. We show the effectiveness of the combined use of the WDTF and TopoView through a simple two-dimensional data set and two hyperspectral images. (2) Learning multiple latent variables from high-dimensional data. We use an existing two-layer SOM-hybrid supervised architecture, which captures the manifold structure in its SOM hidden layer, and then, uses its output layer to perform the supervised learning of latent variables. In the customary way, the output layer only uses the strongest output of the SOM neurons. This severely limits the learning capability. We allow multiple, k, strongest responses of the SOM neurons for the supervised learning. Moreover, the fact that different latent variables can be best learned with different values of k motivates a

  1. Accurate cortical tissue classification on MRI by modeling cortical folding patterns.

    PubMed

    Kim, Hosung; Caldairou, Benoit; Hwang, Ji-Wook; Mansi, Tommaso; Hong, Seok-Jun; Bernasconi, Neda; Bernasconi, Andrea

    2015-09-01

    Accurate tissue classification is a crucial prerequisite to MRI morphometry. Automated methods based on intensity histograms constructed from the entire volume are challenged by regional intensity variations due to local radiofrequency artifacts as well as disparities in tissue composition, laminar architecture and folding patterns. Current work proposes a novel anatomy-driven method in which parcels conforming cortical folding were regionally extracted from the brain. Each parcel is subsequently classified using nonparametric mean shift clustering. Evaluation was carried out on manually labeled images from two datasets acquired at 3.0 Tesla (n = 15) and 1.5 Tesla (n = 20). In both datasets, we observed high tissue classification accuracy of the proposed method (Dice index >97.6% at 3.0 Tesla, and >89.2% at 1.5 Tesla). Moreover, our method consistently outperformed state-of-the-art classification routines available in SPM8 and FSL-FAST, as well as a recently proposed local classifier that partitions the brain into cubes. Contour-based analyses localized more accurate white matter-gray matter (GM) interface classification of the proposed framework compared to the other algorithms, particularly in central and occipital cortices that generally display bright GM due to their highly degree of myelination. Excellent accuracy was maintained, even in the absence of correction for intensity inhomogeneity. The presented anatomy-driven local classification algorithm may significantly improve cortical boundary definition, with possible benefits for morphometric inference and biomarker discovery. PMID:26037453

  2. Effective and accurate approach for modeling of commensurate-incommensurate transition in krypton monolayer on graphite.

    PubMed

    Ustinov, E A

    2014-10-01

    Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system. PMID:25296827

  3. Effective and accurate approach for modeling of commensurate–incommensurate transition in krypton monolayer on graphite

    SciTech Connect

    Ustinov, E. A.

    2014-10-07

    Commensurate–incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs–Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton–graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton–carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas–solid and solid–solid system.

  4. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  5. An accurate elasto-plastic frictional tangential force displacement model for granular-flow simulations: Displacement-driven formulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Vu-Quoc, Loc

    2007-07-01

    We present in this paper the displacement-driven version of a tangential force-displacement (TFD) model that accounts for both elastic and plastic deformations together with interfacial friction occurring in collisions of spherical particles. This elasto-plastic frictional TFD model, with its force-driven version presented in [L. Vu-Quoc, L. Lesburg, X. Zhang. An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation, Journal of Computational Physics 196(1) (2004) 298-326], is consistent with the elasto-plastic frictional normal force-displacement (NFD) model presented in [L. Vu-Quoc, X. Zhang. An elasto-plastic contact force-displacement model in the normal direction: displacement-driven version, Proceedings of the Royal Society of London, Series A 455 (1991) 4013-4044]. Both the NFD model and the present TFD model are based on the concept of additive decomposition of the radius of contact area into an elastic part and a plastic part. The effect of permanent indentation after impact is represented by a correction to the radius of curvature. The effect of material softening due to plastic flow is represented by a correction to the elastic moduli. The proposed TFD model is accurate, and is validated against nonlinear finite element analyses involving plastic flows in both the loading and unloading conditions. The proposed consistent displacement-driven, elasto-plastic NFD and TFD models are designed for implementation in computer codes using the discrete-element method (DEM) for granular-flow simulations. The model is shown to be accurate and is validated against nonlinear elasto-plastic finite-element analysis.

  6. Hierarchical Bayesian model updating for structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak; Lombaert, Geert; Papadimitriou, Costas

    2015-12-01

    A new probabilistic finite element (FE) model updating technique based on Hierarchical Bayesian modeling is proposed for identification of civil structural systems under changing ambient/environmental conditions. The performance of the proposed technique is investigated for (1) uncertainty quantification of model updating parameters, and (2) probabilistic damage identification of the structural systems. Accurate estimation of the uncertainty in modeling parameters such as mass or stiffness is a challenging task. Several Bayesian model updating frameworks have been proposed in the literature that can successfully provide the "parameter estimation uncertainty" of model parameters with the assumption that there is no underlying inherent variability in the updating parameters. However, this assumption may not be valid for civil structures where structural mass and stiffness have inherent variability due to different sources of uncertainty such as changing ambient temperature, temperature gradient, wind speed, and traffic loads. Hierarchical Bayesian model updating is capable of predicting the overall uncertainty/variability of updating parameters by assuming time-variability of the underlying linear system. A general solution based on Gibbs Sampler is proposed to estimate the joint probability distributions of the updating parameters. The performance of the proposed Hierarchical approach is evaluated numerically for uncertainty quantification and damage identification of a 3-story shear building model. Effects of modeling errors and incomplete modal data are considered in the numerical study.

  7. Structural Modeling Using "Scanning and Mapping" Technique

    NASA Technical Reports Server (NTRS)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar

  8. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    NASA Astrophysics Data System (ADS)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  9. How to Construct More Accurate Student Models: Comparing and Optimizing Knowledge Tracing and Performance Factor Analysis

    ERIC Educational Resources Information Center

    Gong, Yue; Beck, Joseph E.; Heffernan, Neil T.

    2011-01-01

    Student modeling is a fundamental concept applicable to a variety of intelligent tutoring systems (ITS). However, there is not a lot of practical guidance on how to construct and train such models. This paper compares two approaches for student modeling, Knowledge Tracing (KT) and Performance Factors Analysis (PFA), by evaluating their predictive…

  10. Evolutionary triplet models of structured RNA.

    PubMed

    Bradley, Robert K; Holmes, Ian

    2009-08-01

    The reconstruction and synthesis of ancestral RNAs is a feasible goal for paleogenetics. This will require new bioinformatics methods, including a robust statistical framework for reconstructing histories of substitutions, indels and structural changes. We describe a "transducer composition" algorithm for extending pairwise probabilistic models of RNA structural evolution to models of multiple sequences related by a phylogenetic tree. This algorithm draws on formal models of computational linguistics as well as the 1985 protosequence algorithm of David Sankoff. The output of the composition algorithm is a multiple-sequence stochastic context-free grammar. We describe dynamic programming algorithms, which are robust to null cycles and empty bifurcations, for parsing this grammar. Example applications include structural alignment of non-coding RNAs, propagation of structural information from an experimentally-characterized sequence to its homologs, and inference of the ancestral structure of a set of diverged RNAs. We implemented the above algorithms for a simple model of pairwise RNA structural evolution; in particular, the algorithms for maximum likelihood (ML) alignment of three known RNA structures and a known phylogeny and inference of the common ancestral structure. We compared this ML algorithm to a variety of related, but simpler, techniques, including ML alignment algorithms for simpler models that omitted various aspects of the full model and also a posterior-decoding alignment algorithm for one of the simpler models. In our tests, incorporation of basepair structure was the most important factor for accurate alignment inference; appropriate use of posterior-decoding was next; and fine details of the model were least important. Posterior-decoding heuristics can be substantially faster than exact phylogenetic inference, so this motivates the use of sum-over-pairs heuristics where possible (and approximate sum-over-pairs). For more exact probabilistic

  11. Structural model of uramarsite

    SciTech Connect

    Rastsvetaeva, R. K.; Sidorenko, G. A.; Ivanova, A. G.; Chukanov, N. V.

    2008-09-15

    The structural model of uramarsite, a new mineral of the uran-mica family from the Bota-Burum deposit (South Kazakhstan), is determined using a single-crystal X-ray diffraction analysis. The parameters of the triclinic unit cell are as follows: a = 7.173(2) A, b = 7.167(5) A, c = 9.30(1) A, {alpha} = 90.13(7){sup o}, {beta} = 90.09(4){sup o}, {gamma} = 89.96(4){sup o}, and space group P1. The crystal chemical formula of uramarsite is: (UO{sub 2}){sub 2}[AsO{sub 4}][PO{sub 4},AsO{sub 4}][NH{sub 4}][H{sub 3}O] . 6H{sub 2}O (Z = 1). Uramarsite is the second ammonium-containing mineral of uranium and an arsenate analogue of uramphite. In the case of uramarsite, the lowering of the symmetry from tetragonal to triclinic, which is accompanied by a triclinic distortion of the tetragonal unit cell, is apparently caused by the ordering of the As and P atoms and the NH{sub 4}, H{sub 3}O, and H{sub 2}O groups.

  12. More accurate predictions with transonic Navier-Stokes methods through improved turbulence modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A.

    1989-01-01

    Significant improvements in predictive accuracies for off-design conditions are achievable through better turbulence modeling; and, without necessarily adding any significant complication to the numerics. One well established fact about turbulence is it is slow to respond to changes in the mean strain field. With the 'equilibrium' algebraic turbulence models no attempt is made to model this characteristic and as a consequence these turbulence models exaggerate the turbulent boundary layer's ability to produce turbulent Reynolds shear stresses in regions of adverse pressure gradient. As a consequence, too little momentum loss within the boundary layer is predicted in the region of the shock wave and along the aft part of the airfoil where the surface pressure undergoes further increases. Recently, a 'nonequilibrium' algebraic turbulence model was formulated which attempts to capture this important characteristic of turbulence. This 'nonequilibrium' algebraic model employs an ordinary differential equation to model the slow response of the turbulence to changes in local flow conditions. In its original form, there was some question as to whether this 'nonequilibrium' model performed as well as the 'equilibrium' models for weak interaction cases. However, this turbulence model has since been further improved wherein it now appears that this turbulence model performs at least as well as the 'equilibrium' models for weak interaction cases and for strong interaction cases represents a very significant improvement. The performance of this turbulence model relative to popular 'equilibrium' models is illustrated for three airfoil test cases of the 1987 AIAA Viscous Transonic Airfoil Workshop, Reno, Nevada. A form of this 'nonequilibrium' turbulence model is currently being applied to wing flows for which similar improvements in predictive accuracy are being realized.

  13. Accurate modeling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension

    SciTech Connect

    Johnson, Timothy C.; Wellman, Dawn M.

    2015-06-26

    Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method is implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.

  14. A Viscoelastic Constitutive Model Can Accurately Represent Entire Creep Indentation Tests of Human Patella Cartilage

    PubMed Central

    Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.

    2013-01-01

    Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200

  15. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    SciTech Connect

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho E-mail: hlkim@kangwon.ac.kr

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  16. 3D Modeling of Branching Structures for Anatomical Instruction

    PubMed Central

    Mattingly, William A.; Chariker, Julia H.; Paris, Richard; Chang, Dar-jen; Pani, John R.

    2015-01-01

    Branching tubular structures are prevalent in many different organic and synthetic settings. From trees and vegetation in nature, to vascular structures throughout human and animal biology, these structures are always candidates for new methods of graphical and visual expression. We present a modeling tool for the creation and interactive modification of these structures. Parameters such as thickness and position of branching structures can be modified, while geometric constraints ensure that the resulting mesh will have an accurate anatomical structure by not having inconsistent geometry. We apply this method to the creation of accurate representations of the different types of retinal cells in the human eye. This method allows a user to quickly produce anatomically accurate structures with low polygon counts that are suitable for rendering at interactive rates on commodity computers and mobile devices. PMID:27087764

  17. Accurate determination of the superfluid-insulator transition in the one-dimensional Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Jakub; Delande, Dominique

    2008-11-01

    The quantum phase transition point between the insulator and the superfluid phase at unit filling factor of the infinite one-dimensional Bose-Hubbard model is numerically computed with a high accuracy. The method uses the infinite system version of the time evolving block decimation algorithm, here tested in a challenging case. We provide also the accurate estimate of the phase transition point at double occupancy.

  18. Accurate analytical method for the extraction of solar cell model parameters

    NASA Astrophysics Data System (ADS)

    Phang, J. C. H.; Chan, D. S. H.; Phillips, J. R.

    1984-05-01

    Single diode solar cell model parameters are rapidly extracted from experimental data by means of the presently derived analytical expressions. The parameter values obtained have a less than 5 percent error for most solar cells, in light of the extraction of model parameters for two cells of differing quality which were compared with parameters extracted by means of the iterative method.

  19. Active appearance model and deep learning for more accurate prostate segmentation on MRI

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Roth, Holger R.; Lu, Le; Wang, Shijun; Turkbey, Baris; Gandler, William; McCreedy, Evan S.; Agarwal, Harsh K.; Choyke, Peter; Summers, Ronald M.; McAuliffe, Matthew J.

    2016-03-01

    Prostate segmentation on 3D MR images is a challenging task due to image artifacts, large inter-patient prostate shape and texture variability, and lack of a clear prostate boundary specifically at apex and base levels. We propose a supervised machine learning model that combines atlas based Active Appearance Model (AAM) with a Deep Learning model to segment the prostate on MR images. The performance of the segmentation method is evaluated on 20 unseen MR image datasets. The proposed method combining AAM and Deep Learning achieves a mean Dice Similarity Coefficient (DSC) of 0.925 for whole 3D MR images of the prostate using axial cross-sections. The proposed model utilizes the adaptive atlas-based AAM model and Deep Learning to achieve significant segmentation accuracy.

  20. Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models

    PubMed Central

    Drugowitsch, Jan

    2016-01-01

    We present a new, fast approach for drawing boundary crossing samples from Wiener diffusion models. Diffusion models are widely applied to model choices and reaction times in two-choice decisions. Samples from these models can be used to simulate the choices and reaction times they predict. These samples, in turn, can be utilized to adjust the models’ parameters to match observed behavior from humans and other animals. Usually, such samples are drawn by simulating a stochastic differential equation in discrete time steps, which is slow and leads to biases in the reaction time estimates. Our method, instead, facilitates known expressions for first-passage time densities, which results in unbiased, exact samples and a hundred to thousand-fold speed increase in typical situations. In its most basic form it is restricted to diffusion models with symmetric boundaries and non-leaky accumulation, but our approach can be extended to also handle asymmetric boundaries or to approximate leaky accumulation. PMID:26864391

  1. Accurate calculation of binding energies for molecular clusters - Assessment of different models

    NASA Astrophysics Data System (ADS)

    Friedrich, Joachim; Fiedler, Benjamin

    2016-06-01

    In this work we test different strategies to compute high-level benchmark energies for medium-sized molecular clusters. We use the incremental scheme to obtain CCSD(T)/CBS energies for our test set and carefully validate the accuracy for binding energies by statistical measures. The local errors of the incremental scheme are <1 kJ/mol. Since they are smaller than the basis set errors, we obtain higher total accuracy due to the applicability of larger basis sets. The final CCSD(T)/CBS benchmark values are ΔE = - 278.01 kJ/mol for (H2O)10, ΔE = - 221.64 kJ/mol for (HF)10, ΔE = - 45.63 kJ/mol for (CH4)10, ΔE = - 19.52 kJ/mol for (H2)20 and ΔE = - 7.38 kJ/mol for (H2)10 . Furthermore we test state-of-the-art wave-function-based and DFT methods. Our benchmark data will be very useful for critical validations of new methods. We find focal-point-methods for estimating CCSD(T)/CBS energies to be highly accurate and efficient. For foQ-i3CCSD(T)-MP2/TZ we get a mean error of 0.34 kJ/mol and a standard deviation of 0.39 kJ/mol.

  2. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. PMID:26708965

  3. A new geometric-based model to accurately estimate arm and leg inertial estimates.

    PubMed

    Wicke, Jason; Dumas, Geneviève A

    2014-06-01

    Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. PMID:24735506

  4. Generalized Stoner-Wohlfarth model accurately describing the switching processes in pseudo-single ferromagnetic particles

    SciTech Connect

    Cimpoesu, Dorin Stoleriu, Laurentiu; Stancu, Alexandru

    2013-12-14

    We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.

  5. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  6. A model for the accurate computation of the lateral scattering of protons in water.

    PubMed

    Bellinzona, E V; Ciocca, M; Embriaco, A; Ferrari, A; Fontana, A; Mairani, A; Parodi, K; Rotondi, A; Sala, P; Tessonnier, T

    2016-02-21

    A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time. PMID:26808380

  7. A model for the accurate computation of the lateral scattering of protons in water

    NASA Astrophysics Data System (ADS)

    Bellinzona, E. V.; Ciocca, M.; Embriaco, A.; Ferrari, A.; Fontana, A.; Mairani, A.; Parodi, K.; Rotondi, A.; Sala, P.; Tessonnier, T.

    2016-02-01

    A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.

  8. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners

    PubMed Central

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-01-01

    Exterior orientation parameters’ (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model. PMID:27077855

  9. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners.

    PubMed

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-01-01

    Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model. PMID:27077855

  10. Dynamic saturation in Semiconductor Optical Amplifiers: accurate model, role of carrier density, and slow light.

    PubMed

    Berger, Perrine; Alouini, Mehdi; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel

    2010-01-18

    We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices. PMID:20173888

  11. Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.

    2013-12-01

    This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.

  12. How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins?

    NASA Astrophysics Data System (ADS)

    O'Brien, Edward P.; Morrison, Greg; Brooks, Bernard R.; Thirumalai, D.

    2009-03-01

    Single molecule Förster resonance energy transfer (FRET) experiments are used to infer the properties of the denatured state ensemble (DSE) of proteins. From the measured average FRET efficiency, ⟨E⟩, the distance distribution P(R ) is inferred by assuming that the DSE can be described as a polymer. The single parameter in the appropriate polymer model (Gaussian chain, wormlike chain, or self-avoiding walk) for P(R ) is determined by equating the calculated and measured ⟨E⟩. In order to assess the accuracy of this "standard procedure," we consider the generalized Rouse model (GRM), whose properties [⟨E⟩ and P(R )] can be analytically computed, and the Molecular Transfer Model for protein L for which accurate simulations can be carried out as a function of guanadinium hydrochloride (GdmCl) concentration. Using the precisely computed ⟨E⟩ for the GRM and protein L, we infer P(R ) using the standard procedure. We find that the mean end-to-end distance can be accurately inferred (less than 10% relative error) using ⟨E⟩ and polymer models for P(R ). However, the value extracted for the radius of gyration (Rg) and the persistence length (lp) are less accurate. For protein L, the errors in the inferred properties increase as the GdmCl concentration increases for all polymer models. The relative error in the inferred Rg and lp, with respect to the exact values, can be as large as 25% at the highest GdmCl concentration. We propose a self-consistency test, requiring measurements of ⟨E⟩ by attaching dyes to different residues in the protein, to assess the validity of describing DSE using the Gaussian model. Application of the self-consistency test to the GRM shows that even for this simple model, which exhibits an order→disorder transition, the Gaussian P(R ) is inadequate. Analysis of experimental data of FRET efficiencies with dyes at several locations for the cold shock protein, and simulations results for protein L, for which accurate FRET

  13. Use of human in vitro skin models for accurate and ethical risk assessment: metabolic considerations.

    PubMed

    Hewitt, Nicola J; Edwards, Robert J; Fritsche, Ellen; Goebel, Carsten; Aeby, Pierre; Scheel, Julia; Reisinger, Kerstin; Ouédraogo, Gladys; Duche, Daniel; Eilstein, Joan; Latil, Alain; Kenny, Julia; Moore, Claire; Kuehnl, Jochen; Barroso, Joao; Fautz, Rolf; Pfuhler, Stefan

    2013-06-01

    Several human skin models employing primary cells and immortalized cell lines used as monocultures or combined to produce reconstituted 3D skin constructs have been developed. Furthermore, these models have been included in European genotoxicity and sensitization/irritation assay validation projects. In order to help interpret data, Cosmetics Europe (formerly COLIPA) facilitated research projects that measured a variety of defined phase I and II enzyme activities and created a complete proteomic profile of xenobiotic metabolizing enzymes (XMEs) in native human skin and compared them with data obtained from a number of in vitro models of human skin. Here, we have summarized our findings on the current knowledge of the metabolic capacity of native human skin and in vitro models and made an overall assessment of the metabolic capacity from gene expression, proteomic expression, and substrate metabolism data. The known low expression and function of phase I enzymes in native whole skin were reflected in the in vitro models. Some XMEs in whole skin were not detected in in vitro models and vice versa, and some major hepatic XMEs such as cytochrome P450-monooxygenases were absent or measured only at very low levels in the skin. Conversely, despite varying mRNA and protein levels of phase II enzymes, functional activity of glutathione S-transferases, N-acetyltransferase 1, and UDP-glucuronosyltransferases were all readily measurable in whole skin and in vitro skin models at activity levels similar to those measured in the liver. These projects have enabled a better understanding of the contribution of XMEs to toxicity endpoints. PMID:23539547

  14. Linking Models and Data on Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Fisk, J.; Thomas, R.; Dubayah, R.; Moorcroft, P.; Shugart, H.

    2008-12-01

    Forested ecosystems consist of a dynamic mosaic of patches on the landscape at different stages of recovery from disturbances. Recent studies have addressed this heterogeneity by combining remotely sensed measurements of vegetation structure, and advanced ecological models that track the dynamics of vegetation structure, to produce accurate estimates of both carbon stocks and fluxes at a set of important study sites. Now future satellite missions such as DESDYNI hold the potential to provide key data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics globally. Here, we developed and analyzed a set of models to quantify the effects of limited sampling and/or coarse resolution averaging of structure measurements on model predictions. Generally, both limited sampling and coarse resolution averaging caused model initialization error, and led to subsequent prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tended to compensate at larger scales. However, with inadequate sampling, overly coarse resolution data, and non-linear dynamics, errors in initialization led to bias. This study provides a generalized framework for assessing the tradeoffs between the quantity and quality of data on vegetation structure, and the science from models which depend on it.

  15. Oscillating water column structural model

    SciTech Connect

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan; Gordon, Margaret Ellen

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  16. Toward Accurate Modeling of the Effect of Ion-Pair Formation on Solute Redox Potential.

    PubMed

    Qu, Xiaohui; Persson, Kristin A

    2016-09-13

    A scheme to model the dependence of a solute redox potential on the supporting electrolyte is proposed, and the results are compared to experimental observations and other reported theoretical models. An improved agreement with experiment is exhibited if the effect of the supporting electrolyte on the redox potential is modeled through a concentration change induced via ion pair formation with the salt, rather than by only considering the direct impact on the redox potential of the solute itself. To exemplify the approach, the scheme is applied to the concentration-dependent redox potential of select molecules proposed for nonaqueous flow batteries. However, the methodology is general and enables rational computational electrolyte design through tuning of the operating window of electrochemical systems by shifting the redox potential of its solutes; including potentially both salts as well as redox active molecules. PMID:27500744

  17. A Structural Modelling Study on Marine Sediments Toxicity

    PubMed Central

    Jäntschi, Lorentz; Bolboacã, Sorana D.

    2008-01-01

    Quantitative structure-activity relationship models were obtained by applying the Molecular Descriptor Family approach to eight ordnance compounds with different toxicity on five marine species (arbacia punctulata, dinophilus gyrociliatus, sciaenops ocellatus, opossum shrimp, and ulva fasciata). The selection of the best among molecular descriptors generated and calculated from the ordnance compounds structures lead to accurate monovariate models. The resulting models obtained for six endpoints proved to be accurate in estimation (the squared correlation coefficient varied from 0.8186 to 0.9997) and prediction (the correlation coefficient obtained in leave-one-out analysis varied from 0.7263 to 0.9984). PMID:18728732

  18. Fast and accurate modeling of molecular atomization energies with machine learning.

    PubMed

    Rupp, Matthias; Tkatchenko, Alexandre; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2012-02-01

    We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of ∼10  kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves. PMID:22400967

  19. Rapid Bayesian point source inversion using pattern recognition --- bridging the gap between regional scaling relations and accurate physical modelling

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Kaeufl, P.; De Wit, R. W. L.; Trampert, J.

    2014-12-01

    Obtaining knowledge about source parameters in (near) real-time during or shortly after an earthquake is essential for mitigating damage and directing resources in the aftermath of the event. Therefore, a variety of real-time source-inversion algorithms have been developed over recent decades. This has been driven by the ever-growing availability of dense seismograph networks in many seismogenic areas of the world and the significant advances in real-time telemetry. By definition, these algorithms rely on short time-windows of sparse, local and regional observations, resulting in source estimates that are highly sensitive to observational errors, noise and missing data. In order to obtain estimates more rapidly, many algorithms are either entirely based on empirical scaling relations or make simplifying assumptions about the Earth's structure, which can in turn lead to biased results. It is therefore essential that realistic uncertainty bounds are estimated along with the parameters. A natural means of propagating probabilistic information on source parameters through the entire processing chain from first observations to potential end users and decision makers is provided by the Bayesian formalism.We present a novel method based on pattern recognition allowing us to incorporate highly accurate physical modelling into an uncertainty-aware real-time inversion algorithm. The algorithm is based on a pre-computed Green's functions database, containing a large set of source-receiver paths in a highly heterogeneous crustal model. Unlike similar methods, which often employ a grid search, we use a supervised learning algorithm to relate synthetic waveforms to point source parameters. This training procedure has to be performed only once and leads to a representation of the posterior probability density function p(m|d) --- the distribution of source parameters m given observations d --- which can be evaluated quickly for new data.Owing to the flexibility of the pattern

  20. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    SciTech Connect

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  1. The Effects of Video Modeling with Voiceover Instruction on Accurate Implementation of Discrete-Trial Instruction

    ERIC Educational Resources Information Center

    Vladescu, Jason C.; Carroll, Regina; Paden, Amber; Kodak, Tiffany M.

    2012-01-01

    The present study replicates and extends previous research on the use of video modeling (VM) with voiceover instruction to train staff to implement discrete-trial instruction (DTI). After staff trainees reached the mastery criterion when teaching an adult confederate with VM, they taught a child with a developmental disability using DTI. The…

  2. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models

    NASA Technical Reports Server (NTRS)

    Ellison, Donald; Conway, Bruce; Englander, Jacob

    2015-01-01

    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.

  3. Developing an Accurate CFD Based Gust Model for the Truss Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2013-01-01

    The increased flexibility of long endurance aircraft having high aspect ratio wings necessitates attention to gust response and perhaps the incorporation of gust load alleviation. The design of civil transport aircraft with a strut or truss-braced high aspect ratio wing furthermore requires gust response analysis in the transonic cruise range. This requirement motivates the use of high fidelity nonlinear computational fluid dynamics (CFD) for gust response analysis. This paper presents the development of a CFD based gust model for the truss braced wing aircraft. A sharp-edged gust provides the gust system identification. The result of the system identification is several thousand time steps of instantaneous pressure coefficients over the entire vehicle. This data is filtered and downsampled to provide the snapshot data set from which a reduced order model is developed. A stochastic singular value decomposition algorithm is used to obtain a proper orthogonal decomposition (POD). The POD model is combined with a convolution integral to predict the time varying pressure coefficient distribution due to a novel gust profile. Finally the unsteady surface pressure response of the truss braced wing vehicle to a one-minus-cosine gust, simulated using the reduced order model, is compared with the full CFD.

  4. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions.

    PubMed

    Chon, K H; Cohen, R J; Holstein-Rathlou, N H

    1997-01-01

    A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise. PMID:9236985

  5. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    PubMed

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra. PMID:23918398

  6. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    SciTech Connect

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-11-15

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was

  7. Are satellite based rainfall estimates accurate enough for crop modelling under Sahelian climate?

    NASA Astrophysics Data System (ADS)

    Ramarohetra, J.; Sultan, B.

    2012-04-01

    Agriculture is considered as the most climate dependant human activity. In West Africa and especially in the sudano-sahelian zone, rain-fed agriculture - that represents 93% of cultivated areas and is the means of support of 70% of the active population - is highly vulnerable to precipitation variability. To better understand and anticipate climate impacts on agriculture, crop models - that estimate crop yield from climate information (e.g rainfall, temperature, insolation, humidity) - have been developed. These crop models are useful (i) in ex ante analysis to quantify the impact of different strategies implementation - crop management (e.g. choice of varieties, sowing date), crop insurance or medium-range weather forecast - on yields, (ii) for early warning systems and to (iii) assess future food security. Yet, the successful application of these models depends on the accuracy of their climatic drivers. In the sudano-sahelian zone , the quality of precipitation estimations is then a key factor to understand and anticipate climate impacts on agriculture via crop modelling and yield estimations. Different kinds of precipitation estimations can be used. Ground measurements have long-time series but an insufficient network density, a large proportion of missing values, delay in reporting time, and they have limited availability. An answer to these shortcomings may lie in the field of remote sensing that provides satellite-based precipitation estimations. However, satellite-based rainfall estimates (SRFE) are not a direct measurement but rather an estimation of precipitation. Used as an input for crop models, it determines the performance of the simulated yield, hence SRFE require validation. The SARRAH crop model is used to model three different varieties of pearl millet (HKP, MTDO, Souna3) in a square degree centred on 13.5°N and 2.5°E, in Niger. Eight satellite-based rainfall daily products (PERSIANN, CMORPH, TRMM 3b42-RT, GSMAP MKV+, GPCP, TRMM 3b42v6, RFEv2 and

  8. A Framework for Accurate Geospatial Modeling of Recharge and Discharge Maps using Image Ranking and Machine Learning

    NASA Astrophysics Data System (ADS)

    Yahja, A.; Kim, C.; Lin, Y.; Bajcsy, P.

    2008-12-01

    This paper addresses the problem of accurate estimation of geospatial models from a set of groundwater recharge & discharge (R&D) maps and from auxiliary remote sensing and terrestrial raster measurements. The motivation for our work is driven by the cost of field measurements, and by the limitations of currently available physics-based modeling techniques that do not include all relevant variables and allow accurate predictions only at coarse spatial scales. The goal is to improve our understanding of the underlying physical phenomena and increase the accuracy of geospatial models--with a combination of remote sensing, field measurements and physics-based modeling. Our approach is to process a set of R&D maps generated from interpolated sparse field measurements using existing physics-based models, and identify the R&D map that would be the most suitable for extracting a set of rules between the auxiliary variables of interest and the R&D map labels. We implemented this approach by ranking R&D maps using information entropy and mutual information criteria, and then by deriving a set of rules using a machine learning technique, such as the decision tree method. The novelty of our work is in developing a general framework for building geospatial models with the ultimate goal of minimizing cost and maximizing model accuracy. The framework is demonstrated for groundwater R&D rate models but could be applied to other similar studies, for instance, to understanding hypoxia based on physics-based models and remotely sensed variables. Furthermore, our key contribution is in designing a ranking method for R&D maps that allows us to analyze multiple plausible R&D maps with a different number of zones which was not possible in our earlier prototype of the framework called Spatial Pattern to Learn. We will present experimental results using examples R&D and other maps from an area in Wisconsin.

  9. An accurate two-phase approximate solution to the acute viral infection model

    SciTech Connect

    Perelson, Alan S

    2009-01-01

    During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.

  10. Features of creation of highly accurate models of triumphal pylons for archaeological reconstruction

    NASA Astrophysics Data System (ADS)

    Grishkanich, A. S.; Sidorov, I. S.; Redka, D. N.

    2015-12-01

    Cited a measuring operation for determining the geometric characteristics of objects in space and geodetic survey objects on the ground. In the course of the work, data were obtained on a relative positioning of the pylons in space. There are deviations from verticality. In comparison with traditional surveying this testing method is preferable because it allows you to get in semi-automated mode, the CAD model of the object is high for subsequent analysis that is more economical-ly advantageous.

  11. Mathematical model accurately predicts protein release from an affinity-based delivery system.

    PubMed

    Vulic, Katarina; Pakulska, Malgosia M; Sonthalia, Rohit; Ramachandran, Arun; Shoichet, Molly S

    2015-01-10

    Affinity-based controlled release modulates the delivery of protein or small molecule therapeutics through transient dissociation/association. To understand which parameters can be used to tune release, we used a mathematical model based on simple binding kinetics. A comprehensive asymptotic analysis revealed three characteristic regimes for therapeutic release from affinity-based systems. These regimes can be controlled by diffusion or unbinding kinetics, and can exhibit release over either a single stage or two stages. This analysis fundamentally changes the way we think of controlling release from affinity-based systems and thereby explains some of the discrepancies in the literature on which parameters influence affinity-based release. The rate of protein release from affinity-based systems is determined by the balance of diffusion of the therapeutic agent through the hydrogel and the dissociation kinetics of the affinity pair. Equations for tuning protein release rate by altering the strength (KD) of the affinity interaction, the concentration of binding ligand in the system, the rate of dissociation (koff) of the complex, and the hydrogel size and geometry, are provided. We validated our model by collapsing the model simulations and the experimental data from a recently described affinity release system, to a single master curve. Importantly, this mathematical analysis can be applied to any single species affinity-based system to determine the parameters required for a desired release profile. PMID:25449806

  12. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data.

    PubMed

    Pagán, Josué; De Orbe, M Irene; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L; Mora, J Vivancos; Moya, José M; Ayala, José L

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  13. Towards a More Accurate Solar Power Forecast By Improving NWP Model Physics

    NASA Astrophysics Data System (ADS)

    Köhler, C.; Lee, D.; Steiner, A.; Ritter, B.

    2014-12-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the uncertainties associated with the large share of weather-dependent power sources. Precise power forecast, well-timed energy trading on the stock market, and electrical grid stability can be maintained. The research project EWeLiNE is a collaboration of the German Weather Service (DWD), the Fraunhofer Institute (IWES) and three German transmission system operators (TSOs). Together, wind and photovoltaic (PV) power forecasts shall be improved by combining optimized NWP and enhanced power forecast models. The conducted work focuses on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. Not only the representation of the model cloud characteristics, but also special events like Sahara dust over Germany and the solar eclipse in 2015 are treated and their effect on solar power accounted for. An overview of the EWeLiNE project and results of the ongoing research will be presented.

  14. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    PubMed Central

    Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  15. Effects of the inlet conditions and blood models on accurate prediction of hemodynamics in the stented coronary arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2015-05-01

    Hemodynamics altered by stent implantation is well-known to be closely related to in-stent restenosis. Computational fluid dynamics (CFD) method has been used to investigate the hemodynamics in stented arteries in detail and help to analyze the performances of stents. In this study, blood models with Newtonian or non-Newtonian properties were numerically investigated for the hemodynamics at steady or pulsatile inlet conditions respectively employing CFD based on the finite volume method. The results showed that the blood model with non-Newtonian property decreased the area of low wall shear stress (WSS) compared with the blood model with Newtonian property and the magnitude of WSS varied with the magnitude and waveform of the inlet velocity. The study indicates that the inlet conditions and blood models are all important for accurately predicting the hemodynamics. This will be beneficial to estimate the performances of stents and also help clinicians to select the proper stents for the patients.

  16. A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements

    PubMed Central

    Reynolds, Andrew M.; Lihoreau, Mathieu; Chittka, Lars

    2013-01-01

    Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays, bees' visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments. PMID:23505353

  17. Key Issues for an Accurate Modelling of GaSb TPV Converters

    NASA Astrophysics Data System (ADS)

    Martín, Diego; Algora, Carlos

    2003-01-01

    GaSb TPV devices are commonly manufactured by Zn diffusion from the vapour phase on a n-type substrate, leading to very high doping concentrations in a narrow emitter. This fact emphasizes the need of a careful modelling that must include high doping effects to simulate the optoelectronic behaviour of devices. In this work the key parameters that have strong influence on the performance of GaSb TPV devices are underlined, more reliable values are suggested and our first results on the study of the absorption coefficient dependence with p-type high doping concentration are presented.

  18. SPAR Model Structural Efficiencies

    SciTech Connect

    John Schroeder; Dan Henry

    2013-04-01

    The Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are supporting initiatives aimed at improving the quality of probabilistic risk assessments (PRAs). Included in these initiatives are the resolution of key technical issues that are have been judged to have the most significant influence on the baseline core damage frequency of the NRC’s Standardized Plant Analysis Risk (SPAR) models and licensee PRA models. Previous work addressed issues associated with support system initiating event analysis and loss of off-site power/station blackout analysis. The key technical issues were: • Development of a standard methodology and implementation of support system initiating events • Treatment of loss of offsite power • Development of standard approach for emergency core cooling following containment failure Some of the related issues were not fully resolved. This project continues the effort to resolve outstanding issues. The work scope was intended to include substantial collaboration with EPRI; however, EPRI has had other higher priority initiatives to support. Therefore this project has addressed SPAR modeling issues. The issues addressed are • SPAR model transparency • Common cause failure modeling deficiencies and approaches • Ac and dc modeling deficiencies and approaches • Instrumentation and control system modeling deficiencies and approaches

  19. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    PubMed

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics. PMID:19529172

  20. Accurate modeling of SiPM detectors coupled to FE electronics for timing performance analysis

    NASA Astrophysics Data System (ADS)

    Ciciriello, F.; Corsi, F.; Licciulli, F.; Marzocca, C.; Matarrese, G.; Del Guerra, A.; Bisogni, M. G.

    2013-08-01

    It has already been shown how the shape of the current pulse produced by a SiPM in response to an incident photon is sensibly affected by the characteristics of the front-end electronics (FEE) used to read out the detector. When the application requires to approach the best theoretical time performance of the detection system, the influence of all the parasitics associated to the coupling SiPM-FEE can play a relevant role and must be adequately modeled. In particular, it has been reported that the shape of the current pulse is affected by the parasitic inductance of the wiring connection between SiPM and FEE. In this contribution, we extend the validity of a previously presented SiPM model to account for the wiring inductance. Various combinations of the main performance parameters of the FEE (input resistance and bandwidth) have been simulated in order to evaluate their influence on the time accuracy of the detection system, when the time pick-off of each single event is extracted by means of a leading edge discriminator (LED) technique.

  1. Considering mask pellicle effect for more accurate OPC model at 45nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo

    2008-11-01

    Now it comes to the 45nm technology node, which should be the first generation of the immersion micro-lithography. And the brand-new lithography tool makes many optical effects, which can be ignored at 90nm and 65nm nodes, now have significant impact on the pattern transmission process from design to silicon. Among all the effects, one that needs to be pay attention to is the mask pellicle effect's impact on the critical dimension variation. With the implement of hyper-NA lithography tools, light transmits the mask pellicle vertically is not a good approximation now, and the image blurring induced by the mask pellicle should be taken into account in the computational microlithography. In this works, we investigate how the mask pellicle impacts the accuracy of the OPC model. And we will show that considering the extremely tight critical dimension control spec for 45nm generation node, to take the mask pellicle effect into the OPC model now becomes necessary.

  2. Faster and more accurate graphical model identification of tandem mass spectra using trellises

    PubMed Central

    Wang, Shengjie; Halloran, John T.; Bilmes, Jeff A.; Noble, William S.

    2016-01-01

    Tandem mass spectrometry (MS/MS) is the dominant high throughput technology for identifying and quantifying proteins in complex biological samples. Analysis of the tens of thousands of fragmentation spectra produced by an MS/MS experiment begins by assigning to each observed spectrum the peptide that is hypothesized to be responsible for generating the spectrum. This assignment is typically done by searching each spectrum against a database of peptides. To our knowledge, all existing MS/MS search engines compute scores individually between a given observed spectrum and each possible candidate peptide from the database. In this work, we use a trellis, a data structure capable of jointly representing a large set of candidate peptides, to avoid redundantly recomputing common sub-computations among different candidates. We show how trellises may be used to significantly speed up existing scoring algorithms, and we theoretically quantify the expected speedup afforded by trellises. Furthermore, we demonstrate that compact trellis representations of whole sets of peptides enables efficient discriminative learning of a dynamic Bayesian network for spectrum identification, leading to greatly improved spectrum identification accuracy. Contact: bilmes@uw.edu or william-noble@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307634

  3. Accurate modeling of light trapping in thin film silicon solar cells

    SciTech Connect

    Abouelsaood, A.A.; Ghannam, M.Y.; Poortmans, J.; Mertens, R.P.

    1997-12-31

    An attempt is made to assess the accuracy of the simplifying assumption of total retransmission of light inside the escape or loss cone which is made in many models of optical confinement in thin-film silicon solar cells. A closed form expression is derived for the absorption enhancement factor as a function of the refractive index in the low-absorption limit for a thin-film cell with a flat front surface and a lambertian back reflector. Numerical calculations are carried out to investigate similar systems with antireflection coatings, and the investigation of cells with a textured front surface is achieved using a modified version of the existing ray-tracing computer simulation program TEXTURE.

  4. Accurate programmable electrocardiogram generator using a dynamical model implemented on a microcontroller

    NASA Astrophysics Data System (ADS)

    Chien Chang, Jia-Ren; Tai, Cheng-Chi

    2006-07-01

    This article reports on the design and development of a complete, programmable electrocardiogram (ECG) generator, which can be used for the testing, calibration and maintenance of electrocardiograph equipment. A modified mathematical model, developed from the three coupled ordinary differential equations of McSharry et al. [IEEE Trans. Biomed. Eng. 50, 289, (2003)], was used to locate precisely the positions of the onset, termination, angle, and duration of individual components in an ECG. Generator facilities are provided so the user can adjust the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave settings. The heart rate can be adjusted in increments of 1BPM (beats per minute), from 20to176BPM, while the amplitude of the ECG signal can be set from 0.1to400mV with a 0.1mV resolution. Experimental results show that the proposed concept and the resulting system are feasible.

  5. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  6. Biomechanical modeling provides more accurate data for neuronavigation than rigid registration

    PubMed Central

    Garlapati, Revanth Reddy; Roy, Aditi; Joldes, Grand Roman; Wittek, Adam; Mostayed, Ahmed; Doyle, Barry; Warfield, Simon Keith; Kikinis, Ron; Knuckey, Neville; Bunt, Stuart; Miller, Karol

    2015-01-01

    It is possible to improve neuronavigation during image-guided surgery by warping the high-quality preoperative brain images so that they correspond with the current intraoperative configuration of the brain. In this work, the accuracy of registration results obtained using comprehensive biomechanical models is compared to the accuracy of rigid registration, the technology currently available to patients. This comparison allows us to investigate whether biomechanical modeling provides good quality image data for neuronavigation for a larger proportion of patients than rigid registration. Preoperative images for 33 cases of neurosurgery were warped onto their respective intraoperative configurations using both biomechanics-based method and rigid registration. We used a Hausdorff distance-based evaluation process that measures the difference between images to quantify the performance of both methods of registration. A statistical test for difference in proportions was conducted to evaluate the null hypothesis that the proportion of patients for whom improved neuronavigation can be achieved, is the same for rigid and biomechanics-based registration. The null hypothesis was confidently rejected (p-value<10−4). Even the modified hypothesis that less than 25% of patients would benefit from the use of biomechanics-based registration was rejected at a significance level of 5% (p-value = 0.02). The biomechanics-based method proved particularly effective for cases experiencing large craniotomy-induced brain deformations. The outcome of this analysis suggests that our nonlinear biomechanics-based methods are beneficial to a large proportion of patients and can be considered for use in the operating theatre as one possible method of improving neuronavigation and surgical outcomes. PMID:24460486

  7. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    NASA Astrophysics Data System (ADS)

    Savanevych, V. E.; Briukhovetskyi, O. B.; Sokovikova, N. S.; Bezkrovny, M. M.; Vavilova, I. B.; Ivashchenko, Yu. M.; Elenin, L. V.; Khlamov, S. V.; Movsesian, Ia. S.; Dashkova, A. M.; Pogorelov, A. V.

    2015-08-01

    We describe a new iteration method to estimate asteroid coordinates, based on a subpixel Gaussian model of the discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixel potentials) of the CCD frame. In this model, the kind of coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The method that is developed, which is flexible in adapting to any form of object image, has a high measurement accuracy along with a low calculating complexity, due to the maximum-likelihood procedure that is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for minimization of the quadratic form. Since 2010, the method has been tested as the basis of our Collection Light Technology (COLITEC) software, which has been installed at several observatories across the world with the aim of the automatic discovery of asteroids and comets in sets of CCD frames. As a result, four comets (C/2010 X1 (Elenin), P/2011 NO1(Elenin), C/2012 S1 (ISON) and P/2013 V3 (Nevski)) as well as more than 1500 small Solar system bodies (including five near-Earth objects (NEOs), 21 Trojan asteroids of Jupiter and one Centaur object) have been discovered. We discuss these results, which allowed us to compare the accuracy parameters of the new method and confirm its efficiency. In 2014, the COLITEC software was recommended to all members of the Gaia-FUN-SSO network for analysing observations as a tool to detect faint moving objects in frames.

  8. Under proper control, oxidation of proteins with known chemical structure provides an accurate and absolute method for the determination of their molar concentration.

    PubMed

    Guermant, C; Azarkan, M; Smolders, N; Baeyens-Volant, D; Nijs, M; Paul, C; Brygier, J; Vincentelli, J; Looze, Y

    2000-01-01

    Oxidation at 120 degrees C of inorganic and organic (including amino acids, di- and tripeptides) model compounds by K(2)Cr(2)O(7) in the presence of H(2)SO(4) (mass fraction: 0.572), Ag(2)SO(4) (catalyst), and HgSO(4) results in the quantitative conversion of their C-atoms into CO(2) within 24 h or less. Under these stressed, well-defined conditions, the S-atoms present in cysteine and cystine residues are oxidized into SO(3) while, interestingly, the oxidation states of all the other (including the N-) atoms normally present in a protein do remain quite unchanged. When the chemical structure of a given protein is available, the total number of electrons the protein is able to transfer to K(2)Cr(2)O(7) and thereof, the total number of moles of Cr(3+) ions which the protein is able to generate upon oxidation can be accurately calculated. In such cases, unknown protein molar concentrations can thus be determined through straightforward spectrophotometric measurements of Cr(3+) concentrations. The values of molar absorption coefficients for several well-characterized proteins have been redetermined on this basis and observed to be in excellent agreement with the most precise values reported in the literature, which fully assesses the validity of the method. When applied to highly purified proteins of known chemical structure (more generally of known atomic composition), this method is absolute and accurate (+/-1%). Furthermore, it is well adapted to series measurements since available commercial kits for chemical oxygen demand (COD) measurements can readily be adapted to work under the experimental conditions recommended here for the protein assay. PMID:10610688

  9. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-01

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C8 and C10 between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C8 and 7% for C10. Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

  10. Fold assessment for comparative protein structure modeling.

    PubMed

    Melo, Francisco; Sali, Andrej

    2007-11-01

    Accurate and automated assessment of both geometrical errors and incompleteness of comparative protein structure models is necessary for an adequate use of the models. Here, we describe a composite score for discriminating between models with the correct and incorrect fold. To find an accurate composite score, we designed and applied a genetic algorithm method that searched for a most informative subset of 21 input model features as well as their optimized nonlinear transformation into the composite score. The 21 input features included various statistical potential scores, stereochemistry quality descriptors, sequence alignment scores, geometrical descriptors, and measures of protein packing. The optimized composite score was found to depend on (1) a statistical potential z-score for residue accessibilities and distances, (2) model compactness, and (3) percentage sequence identity of the alignment used to build the model. The accuracy of the composite score was compared with the accuracy of assessment by single and combined features as well as by other commonly used assessment methods. The testing set was representative of models produced by automated comparative modeling on a genomic scale. The composite score performed better than any other tested score in terms of the maximum correct classification rate (i.e., 3.3% false positives and 2.5% false negatives) as well as the sensitivity and specificity across the whole range of thresholds. The composite score was implemented in our program MODELLER-8 and was used to assess models in the MODBASE database that contains comparative models for domains in approximately 1.3 million protein sequences. PMID:17905832

  11. Accurate estimation of retinal vessel width using bagged decision trees and an extended multiresolution Hermite model.

    PubMed

    Lupaşcu, Carmen Alina; Tegolo, Domenico; Trucco, Emanuele

    2013-12-01

    We present an algorithm estimating the width of retinal vessels in fundus camera images. The algorithm uses a novel parametric surface model of the cross-sectional intensities of vessels, and ensembles of bagged decision trees to estimate the local width from the parameters of the best-fit surface. We report comparative tests with REVIEW, currently the public database of reference for retinal width estimation, containing 16 images with 193 annotated vessel segments and 5066 profile points annotated manually by three independent experts. Comparative tests are reported also with our own set of 378 vessel widths selected sparsely in 38 images from the Tayside Scotland diabetic retinopathy screening programme and annotated manually by two clinicians. We obtain considerably better accuracies compared to leading methods in REVIEW tests and in Tayside tests. An important advantage of our method is its stability (success rate, i.e., meaningful measurement returned, of 100% on all REVIEW data sets and on the Tayside data set) compared to a variety of methods from the literature. We also find that results depend crucially on testing data and conditions, and discuss criteria for selecting a training set yielding optimal accuracy. PMID:24001930

  12. Accurate analytical modelling of cosmic ray induced failure rates of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Bauer, Friedhelm D.

    2009-06-01

    A new, simple and efficient approach is presented to conduct estimations of the cosmic ray induced failure rate for high voltage silicon power devices early in the design phase. This allows combining common design issues such as device losses and safe operating area with the constraints imposed by the reliability to result in a better and overall more efficient design methodology. Starting from an experimental and theoretical background brought forth a few yeas ago [Kabza H et al. Cosmic radiation as a cause for power device failure and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 9-12, Zeller HR. Cosmic ray induced breakdown in high voltage semiconductor devices, microscopic model and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 339-40, and Matsuda H et al. Analysis of GTO failure mode during d.c. blocking. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 221-5], an exact solution of the failure rate integral is derived and presented in a form which lends itself to be combined with the results available from commercial semiconductor simulation tools. Hence, failure rate integrals can be obtained with relative ease for realistic two- and even three-dimensional semiconductor geometries. Two case studies relating to IGBT cell design and planar junction termination layout demonstrate the purpose of the method.

  13. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    PubMed

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin. PMID:19054059

  14. Accurate Estimation of Protein Folding and Unfolding Times: Beyond Markov State Models.

    PubMed

    Suárez, Ernesto; Adelman, Joshua L; Zuckerman, Daniel M

    2016-08-01

    Because standard molecular dynamics (MD) simulations are unable to access time scales of interest in complex biomolecular systems, it is common to "stitch together" information from multiple shorter trajectories using approximate Markov state model (MSM) analysis. However, MSMs may require significant tuning and can yield biased results. Here, by analyzing some of the longest protein MD data sets available (>100 μs per protein), we show that estimators constructed based on exact non-Markovian (NM) principles can yield significantly improved mean first-passage times (MFPTs) for protein folding and unfolding. In some cases, MSM bias of more than an order of magnitude can be corrected when identical trajectory data are reanalyzed by non-Markovian approaches. The NM analysis includes "history" information, higher order time correlations compared to MSMs, that is available in every MD trajectory. The NM strategy is insensitive to fine details of the states used and works well when a fine time-discretization (i.e., small "lag time") is used. PMID:27340835

  15. Small pores in soils: Is the physico-chemical environment accurately reflected in biogeochemical models ?

    NASA Astrophysics Data System (ADS)

    Weber, Tobias K. D.; Riedel, Thomas

    2015-04-01

    Free water is a prerequesite to chemical reactions and biological activity in earth's upper crust essential to life. The void volume between the solid compounds provides space for water, air, and organisms that thrive on the consumption of minerals and organic matter thereby regulating soil carbon turnover. However, not all water in the pore space in soils and sediments is in its liquid state. This is a result of the adhesive forces which reduce the water activity in small pores and charged mineral surfaces. This water has a lower tendency to react chemically in solution as this additional binding energy lowers its activity. In this work, we estimated the amount of soil pore water that is thermodynamically different from a simple aqueous solution. The quantity of soil pore water with properties different to liquid water was found to systematically increase with increasing clay content. The significance of this is that the grain size and surface area apparently affects the thermodynamic state of water. This implies that current methods to determine the amount of water content, traditionally determined from bulk density or gravimetric water content after drying at 105°C overestimates the amount of free water in a soil especially at higher clay content. Our findings have consequences for biogeochemical processes in soils, e.g. nutrients may be contained in water which is not free which could enhance preservation. From water activity measurements on a set of various soils with 0 to 100 wt-% clay, we can show that 5 to 130 mg H2O per g of soil can generally be considered as unsuitable for microbial respiration. These results may therefore provide a unifying explanation for the grain size dependency of organic matter preservation in sedimentary environments and call for a revised view on the biogeochemical environment in soils and sediments. This could allow a different type of process oriented modelling.

  16. Development of Comprehensive Modeling Techniques for Smart Composite Structures

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    2001-01-01

    A new smart composite laminate model using the coupled thermal-piezoelectric-mechanical (t-p-m) theory is developed to investigate the behavior of multifield coupling due to segmented and distributed piezoelectric actuators. The model addresses structural response under various kinds of loading conditions, mechanical, thermal and electrical. The higher order displacement theory, which can accurately capture the transverse shear effects in the laminated composites, is used to model structural behavior of arbitrary thickness. Thus, the theory has the ability of characterizing in-plane warping and traction free boundary conditions while rendering computational efficiency. To provide more accurate evaluation of coupling effects due to electrical and thermal loading as well as the interaction between all fields, the temperature and electrical fields are modeled using higher order descriptions, which can accurately satisfy the surface boundary conditions of heat flux and electrical potential.

  17. Material modeling and structural analysis with the microplane constitutive model

    NASA Astrophysics Data System (ADS)

    Brocca, Michele

    The microplane model is a versatile and powerful approach to constitutive modeling in which the stress-strain relations are defined in terms of vectors rather than tensors on planes of all possible orientations. Such planes are called the microplanes and are representative of the microstructure of the material. The microplane model with kinematic constraint has been successfully employed in the past in the modeling of concrete, soils, ice, rocks, fiber composites and other quasibrittle materials. The microplane model provides a powerful and efficient numerical and theoretical framework for the development and implementation of constitutive models for any kind of material. The dissertation presents a review of the background from which the microplane model stems, highlighting differences and similarities with other approaches. The basic structure of the microplane model is then presented, together with its extension to finite strain deformation. To show the effectiveness of the microplane model approach, some examples are given demonstrating applications of microplane models in structural analysis with the finite element method. Some new constitutive models are also introduced for materials characterized by very different properties and microstructures, showing that the approach is indeed very versatile and provides a robust basis for the study of a broad range of problems. New models are introduced for metal plasticity, shape memory alloys and cellular materials. The new models are compared quantitatively with the existing models and experimental data. In particular, the newly introduced microplane models for metal plasticity are compared with the classical J2-flow theory for incremental plasticity. An existing microplane model for concrete is employed in finite element analysis of the 'tube-squash' test, in which concrete undergoes very large deviatoric deformation, and of the size effect in compressive failure of concrete columns. The microplane model for shape

  18. Measuring and modelling the structure of chocolate

    NASA Astrophysics Data System (ADS)

    Le Révérend, Benjamin J. D.; Fryer, Peter J.; Smart, Ian; Bakalis, Serafim

    2015-01-01

    The cocoa butter present in chocolate exists as six different polymorphs. To achieve the desired crystal form (βV), traditional chocolate manufacturers use relatively slow cooling (<2°C/min). A newer generation of rapid cooling systems has been suggested requiring further understanding of fat crystallisation. To allow better control and understanding of these processes and newer rapid cooling processes, it is necessary to understand both heat transfer and crystallization kinetics. The proposed model aims to predict the temperature in the chocolate products during processing as well as the crystal structure of cocoa butter throughout the process. A set of ordinary differential equations describes the kinetics of fat crystallisation. The parameters were obtained by fitting the model to a set of DSC curves. The heat transfer equations were coupled to the kinetic model and solved using commercially available CFD software. A method using single crystal XRD was developed using a novel subtraction method to quantify the cocoa butter structure in chocolate directly and results were compared to the ones predicted from the model. The model was proven to predict phase change temperature during processing accurately (±1°C). Furthermore, it was possible to correctly predict phase changes and polymorphous transitions. The good agreement between the model and experimental data on the model geometry allows a better design and control of industrial processes.

  19. Spectrally formulated modeling of a cable-harnessed structure

    NASA Astrophysics Data System (ADS)

    Choi, Jiduck; Inman, Daniel J.

    2014-07-01

    To obtain predictive modeling of the spacecraft, we investigate the effects of adding cables to a simple structure with the goal of developing an understanding of the effects of cables interacting with a structure. In this paper, we present modeling of a cable-harnessed structure by means of the Spectral Element Method (SEM). A double beam model is used to emulate a cable-harnessed structure. SEM modeling can define the location and the number of connections between the two beams in a convenient fashion. The presented modeling is applied and compared with the conventional FEM. The modeling approach was compared and validated with experimental measurements. The validated modeling was implemented to investigate the effect of the number of connections and of the spring stiffness of interconnections. The results show that the proposed modeling can be used as an accurate and efficient solution methodology for a cable-harnessed structure.

  20. Accurate prediction of interference minima in linear molecular harmonic spectra by a modified two-center model

    NASA Astrophysics Data System (ADS)

    Xin, Cui; Di-Yu, Zhang; Gao, Chen; Ji-Gen, Chen; Si-Liang, Zeng; Fu-Ming, Guo; Yu-Jun, Yang

    2016-03-01

    We demonstrate that the interference minima in the linear molecular harmonic spectra can be accurately predicted by a modified two-center model. Based on systematically investigating the interference minima in the linear molecular harmonic spectra by the strong-field approximation (SFA), it is found that the locations of the harmonic minima are related not only to the nuclear distance between the two main atoms contributing to the harmonic generation, but also to the symmetry of the molecular orbital. Therefore, we modify the initial phase difference between the double wave sources in the two-center model, and predict the harmonic minimum positions consistent with those simulated by SFA. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11274001, 11274141, 11304116, 11247024, and 11034003), and the Jilin Provincial Research Foundation for Basic Research, China (Grant Nos. 20130101012JC and 20140101168JC).

  1. Accurate prediction model of bead geometry in crimping butt of the laser brazing using generalized regression neural network

    NASA Astrophysics Data System (ADS)

    Rong, Y. M.; Chang, Y.; Huang, Y.; Zhang, G. J.; Shao, X. Y.

    2015-12-01

    There are few researches that concentrate on the prediction of the bead geometry for laser brazing with crimping butt. This paper addressed the accurate prediction of the bead profile by developing a generalized regression neural network (GRNN) algorithm. Firstly GRNN model was developed and trained to decrease the prediction error that may be influenced by the sample size. Then the prediction accuracy was demonstrated by comparing with other articles and back propagation artificial neural network (BPNN) algorithm. Eventually the reliability and stability of GRNN model were discussed from the points of average relative error (ARE), mean square error (MSE) and root mean square error (RMSE), while the maximum ARE and MSE were 6.94% and 0.0303 that were clearly less than those (14.28% and 0.0832) predicted by BPNN. Obviously, it was proved that the prediction accuracy was improved at least 2 times, and the stability was also increased much more.

  2. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models

    NASA Astrophysics Data System (ADS)

    Pau, George Shu Heng; Shen, Chaopeng; Riley, William J.; Liu, Yaning

    2016-02-01

    The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities.

  3. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear

  4. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  5. Accurate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes Using In Situ NMR Imaging and Inverse Modeling.

    PubMed

    Sethurajan, Athinthra Krishnaswamy; Krachkovskiy, Sergey A; Halalay, Ion C; Goward, Gillian R; Protas, Bartosz

    2015-09-17

    We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data. PMID:26247105

  6. Geometric modeling of inflatable structures for lunar base.

    PubMed

    Nowak, P S; Sadeh, W Z; Morroni, L A

    1992-07-01

    A modular inflatable structure consisting of thin, composite membranes is presented for use in a lunar base. Results from a linear elastic analysis of the structure indicate that it is feasible in the lunar environment. Further analysis requires solving nonlinear equations and accurately specifying the geometries of the structural members. A computerized geometric modeling technique, using bicubic Bezier surfaces to generate the geometries of the inflatable structure, was conducted. Simulated results are used to create three-dimensional wire frames and solid renderings of the individual components of the inflatable structure. The component geometries are connected into modules, which are then assembled based upon the desired architecture of the structure. PMID:11537646

  7. SU-E-T-475: An Accurate Linear Model of Tomotherapy MLC-Detector System for Patient Specific Delivery QA

    SciTech Connect

    Chen, Y; Mo, X; Chen, M; Olivera, G; Parnell, D; Key, S; Lu, W; Reeher, M; Galmarini, D

    2014-06-01

    Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms.

  8. Toward accurate modelling of the non-linear matter bispectrum: standard perturbation theory and transients from initial conditions

    NASA Astrophysics Data System (ADS)

    McCullagh, Nuala; Jeong, Donghui; Szalay, Alexander S.

    2016-01-01

    Accurate modelling of non-linearities in the galaxy bispectrum, the Fourier transform of the galaxy three-point correlation function, is essential to fully exploit it as a cosmological probe. In this paper, we present numerical and theoretical challenges in modelling the non-linear bispectrum. First, we test the robustness of the matter bispectrum measured from N-body simulations using different initial conditions generators. We run a suite of N-body simulations using the Zel'dovich approximation and second-order Lagrangian perturbation theory (2LPT) at different starting redshifts, and find that transients from initial decaying modes systematically reduce the non-linearities in the matter bispectrum. To achieve 1 per cent accuracy in the matter bispectrum at z ≤ 3 on scales k < 1 h Mpc-1, 2LPT initial conditions generator with initial redshift z ≳ 100 is required. We then compare various analytical formulas and empirical fitting functions for modelling the non-linear matter bispectrum, and discuss the regimes for which each is valid. We find that the next-to-leading order (one-loop) correction from standard perturbation theory matches with N-body results on quasi-linear scales for z ≥ 1. We find that the fitting formula in Gil-Marín et al. accurately predicts the matter bispectrum for z ≤ 1 on a wide range of scales, but at higher redshifts, the fitting formula given in Scoccimarro & Couchman gives the best agreement with measurements from N-body simulations.

  9. Nonlinear Modeling of Joint Dominated Structures

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.

    1990-01-01

    The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.

  10. A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning.

    PubMed

    Wang, Guotai; Zhang, Shaoting; Xie, Hongzhi; Metaxas, Dimitris N; Gu, Lixu

    2015-01-01

    Shape prior plays an important role in accurate and robust liver segmentation. However, liver shapes have complex variations and accurate modeling of liver shapes is challenging. Using large-scale training data can improve the accuracy but it limits the computational efficiency. In order to obtain accurate liver shape priors without sacrificing the efficiency when dealing with large-scale training data, we investigate effective and scalable shape prior modeling method that is more applicable in clinical liver surgical planning system. We employed the Sparse Shape Composition (SSC) to represent liver shapes by an optimized sparse combination of shapes in the repository, without any assumptions on parametric distributions of liver shapes. To leverage large-scale training data and improve the computational efficiency of SSC, we also introduced a homotopy-based method to quickly solve the L1-norm optimization problem in SSC. This method takes advantage of the sparsity of shape modeling, and solves the original optimization problem in SSC by continuously transforming it into a series of simplified problems whose solution is fast to compute. When new training shapes arrive gradually, the homotopy strategy updates the optimal solution on the fly and avoids re-computing it from scratch. Experiments showed that SSC had a high accuracy and efficiency in dealing with complex liver shape variations, excluding gross errors and preserving local details on the input liver shape. The homotopy-based SSC had a high computational efficiency, and its runtime increased very slowly when repository's capacity and vertex number rose to a large degree. When repository's capacity was 10,000, with 2000 vertices on each shape, homotopy method cost merely about 11.29 s to solve the optimization problem in SSC, nearly 2000 times faster than interior point method. The dice similarity coefficient (DSC), average symmetric surface distance (ASD), and maximum symmetric surface distance measurement

  11. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  12. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  13. SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models

    PubMed Central

    2014-01-01

    Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894

  14. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  15. Model reduction for flexible structures

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek; Juang, Jer-Nan

    1990-01-01

    Several conditions for a near-optimal reduction of general dynamic systems are presented focusing on the reduction in balanced and modal coordinates. It is shown that model and balanced reductions give very different results for the flexible structure with closely-spaced natural frequencies. In general, balanced reduction is found to give better results. A robust model reduction technique was developed to study the sensitivity of modeling error to variations in the damping of a structure. New concepts of grammians defined over a finite time and/or a frequency interval are proposed including computational procedures for evaluating them. Application of the model reduction technique to these grammians is considered to lead to a near-optimal reduced model which closely reproduces the full system output in the time and/or frequency interval.

  16. Network model with structured nodes

    NASA Astrophysics Data System (ADS)

    Frisco, Pierluigi

    2011-08-01

    We present a network model in which words over a specific alphabet, called structures, are associated to each node and undirected edges are added depending on some distance measure between different structures. This model shifts the underlying principle of network generation from a purely mathematical one to an information-based one. It is shown how this model differs from the Barábasi-Albert and duplication models and how it can generate networks with topological features similar to biological networks: power law degree distribution, low average path length, clustering coefficient independent from the network size, etc. Two biological networks: S. cerevisiae gene network and E. coli protein-protein interaction network, are replicated using this model.

  17. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM{sup +}-up scheme

    SciTech Connect

    Chang, Chih-Hao . E-mail: chchang@engineering.ucsb.edu; Liou, Meng-Sing . E-mail: meng-sing.liou@grc.nasa.gov

    2007-07-01

    In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM{sup +} scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM{sup +}-up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion.

  18. Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model

    NASA Astrophysics Data System (ADS)

    Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart

    2013-09-01

    The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.

  19. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.

    2012-03-01

    Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.

  20. Modelling structured data with Probabilistic Graphical Models

    NASA Astrophysics Data System (ADS)

    Forbes, F.

    2016-05-01

    Most clustering and classification methods are based on the assumption that the objects to be clustered are independent. However, in more and more modern applications, data are structured in a way that makes this assumption not realistic and potentially misleading. A typical example that can be viewed as a clustering task is image segmentation where the objects are the pixels on a regular grid and depend on neighbouring pixels on this grid. Also, when data are geographically located, it is of interest to cluster data with an underlying dependence structure accounting for some spatial localisation. These spatial interactions can be naturally encoded via a graph not necessarily regular as a grid. Data sets can then be modelled via Markov random fields and mixture models (e.g. the so-called MRF and Hidden MRF). More generally, probabilistic graphical models are tools that can be used to represent and manipulate data in a structured way while modeling uncertainty. This chapter introduces the basic concepts. The two main classes of probabilistic graphical models are considered: Bayesian networks and Markov networks. The key concept of conditional independence and its link to Markov properties is presented. The main problems that can be solved with such tools are described. Some illustrations are given associated with some practical work.

  1. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  2. Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates

    NASA Astrophysics Data System (ADS)

    Yogurtcu, Osman N.; Johnson, Margaret E.

    2015-08-01

    The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute

  3. Mapping of photon distribution and imaging of MR-derived anatomically accurate optical models of the female breast

    NASA Astrophysics Data System (ADS)

    Barbour, San-Lian S.; Barbour, Randall L.; Koo, Ping C.; Graber, Harry L.; Chang, Jenghwa

    1995-05-01

    results reported are the first to demonstrate that high quality images of small added inclusions can be obtained from anatomically accurate models of thick tissues having arbitrary boundaries based on the analysis of diffusely sscattered light.

  4. Structure Model Analysis of the Kashima 34m Telescope

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi; Nakamura, Toshio; Saita, Takeshi; Horiguchi, Junji; Yuge, Kouhei

    2001-03-01

    Deformation analysis of the Kashima 34-m radio telescope is performed. Although the telescope has a large aperture and accurate reflector panels, the dish support structures determine the high-frequency performance. Especially in millimeter wavelength, deformations above 1-mm affect the telescope efficiency seriously. We have modeled 34-m telescopes into elements and used a finite element method FEM to simulate accurate telescope deformations. The first results we obtained agreed well with the realistic deformation. Future analysis and telescope evaluations based on computer simulations are possible with this FEM model.

  5. Solid-solid structural transformations in Lennard-Jones clusters: accurate simulations versus the harmonic superposition approximation.

    PubMed

    Sharapov, Vladimir A; Mandelshtam, Vladimir A

    2007-10-18

    We consider systems undergoing very-low-temperature solid-solid transitions associated with minima of similar energy but different symmetry, and separated by a high potential barrier. In such cases the well-known "broken-ergodicity" problem is often difficult to overcome, even using the most advanced Monte Carlo (MC) techniques, including the replica exchange method (REM). The methodology that we develop in this paper is suitable for the above specified cases and is numerically accurate and efficient. It is based on a new MC move implemented within the REM framework, in which trial points are generated analytically using an auxiliary harmonic superposition system that mimics well the true system at low temperatures. Due to the new move, the low-temperature random walks are able to frequently switch the relevant potential energy funnels leading to an efficient sampling. Numerically accurate results are obtained for a number of Lennard-Jones clusters, including those that have so far been treated only by the harmonic superposition approximation (HSA). The latter is believed to provide good estimates for low-temperature equilibrium properties but is manifestly uncontrollable and is difficult to validate. The present results provide a good test for the HSA and demonstrate its reliability, particularly for estimation of the solid-solid transition temperatures in most cases considered. PMID:17685597

  6. An accurate numerical solution to the Saint-Venant-Hirano model for mixed-sediment morphodynamics in rivers

    NASA Astrophysics Data System (ADS)

    Stecca, Guglielmo; Siviglia, Annunziato; Blom, Astrid

    2016-07-01

    We present an accurate numerical approximation to the Saint-Venant-Hirano model for mixed-sediment morphodynamics in one space dimension. Our solution procedure originates from the fully-unsteady matrix-vector formulation developed in [54]. The principal part of the problem is solved by an explicit Finite Volume upwind method of the path-conservative type, by which all the variables are updated simultaneously in a coupled fashion. The solution to the principal part is embedded into a splitting procedure for the treatment of frictional source terms. The numerical scheme is extended to second-order accuracy and includes a bookkeeping procedure for handling the evolution of size stratification in the substrate. We develop a concept of balancedness for the vertical mass flux between the substrate and active layer under bed degradation, which prevents the occurrence of non-physical oscillations in the grainsize distribution of the substrate. We suitably modify the numerical scheme to respect this principle. We finally verify the accuracy in our solution to the equations, and its ability to reproduce one-dimensional morphodynamics due to streamwise and vertical sorting, using three test cases. In detail, (i) we empirically assess the balancedness of vertical mass fluxes under degradation; (ii) we study the convergence to the analytical linearised solution for the propagation of infinitesimal-amplitude waves [54], which is here employed for the first time to assess a mixed-sediment model; (iii) we reproduce Ribberink's E8-E9 flume experiment [46].

  7. An accurate locally active memristor model for S-type negative differential resistance in NbOx

    NASA Astrophysics Data System (ADS)

    Gibson, Gary A.; Musunuru, Srinitya; Zhang, Jiaming; Vandenberghe, Ken; Lee, James; Hsieh, Cheng-Chih; Jackson, Warren; Jeon, Yoocharn; Henze, Dick; Li, Zhiyong; Stanley Williams, R.

    2016-01-01

    A number of important commercial applications would benefit from the introduction of easily manufactured devices that exhibit current-controlled, or "S-type," negative differential resistance (NDR). A leading example is emerging non-volatile memory based on crossbar array architectures. Due to the inherently linear current vs. voltage characteristics of candidate non-volatile memristor memory elements, individual memory cells in these crossbar arrays can be addressed only if a highly non-linear circuit element, termed a "selector," is incorporated in the cell. Selectors based on a layer of niobium oxide sandwiched between two electrodes have been investigated by a number of groups because the NDR they exhibit provides a promisingly large non-linearity. We have developed a highly accurate compact dynamical model for their electrical conduction that shows that the NDR in these devices results from a thermal feedback mechanism. A series of electrothermal measurements and numerical simulations corroborate this model. These results reveal that the leakage currents can be minimized by thermally isolating the selector or by incorporating materials with larger activation energies for electron motion.

  8. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  9. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.

    PubMed

    Długosz, Maciej; Antosiewicz, Jan M

    2015-07-01

    Proper treatment of hydrodynamic interactions is of importance in evaluation of rigid-body mobility tensors of biomolecules in Stokes flow and in simulations of their folding and solution conformation, as well as in simulations of the translational and rotational dynamics of either flexible or rigid molecules in biological systems at low Reynolds numbers. With macromolecules conveniently modeled in calculations or in dynamic simulations as ensembles of spherical frictional elements, various approximations to hydrodynamic interactions, such as the two-body, far-field Rotne-Prager approach, are commonly used, either without concern or as a compromise between the accuracy and the numerical complexity. Strikingly, even though the analytical Rotne-Prager approach fails to describe (both in the qualitative and quantitative sense) mobilities in the simplest system consisting of two spheres, when the distance between their surfaces is of the order of their size, it is commonly applied to model hydrodynamic effects in macromolecular systems. Here, we closely investigate hydrodynamic effects in two and three-body systems, consisting of bead-shell molecular models, using either the analytical Rotne-Prager approach, or an accurate numerical scheme that correctly accounts for the many-body character of hydrodynamic interactions and their short-range behavior. We analyze mobilities, and translational and rotational velocities of bodies resulting from direct forces acting on them. We show, that with the sufficient number of frictional elements in hydrodynamic models of interacting bodies, the far-field approximation is able to provide a description of hydrodynamic effects that is in a reasonable qualitative as well as quantitative agreement with the description resulting from the application of the virtually exact numerical scheme, even for small separations between bodies. PMID:26068580

  10. X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models

    NASA Astrophysics Data System (ADS)

    Gritsyk, P. A.; Somov, B. V.

    2016-08-01

    The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.

  11. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. PMID:24675610

  12. Multiple lesion track structure model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1992-01-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.

  13. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MS(n) and accurate mass determination by ESI TOF.

    PubMed

    Nägele, Edgar; Moritz, Ralf

    2005-10-01

    Today, it is necessary to identify relevant compounds appearing in discovery and development of new drug substances in the pharmaceutical industry. For that purpose, the measurement of accurate molecular mass and empirical formula calculation is very important for structure elucidation in addition to other available analytical methods. In this work, the identification and confirmation of degradation products in a finished dosage form of the antibiotic drug amoxicillin obtained under stress conditions will be demonstrated. Structure elucidation is performed utilizing liquid chromatography (LC) ion trap MS/MS and MS3 together with accurate mass measurement of the molecular ions and of the collision induced dissociation (CID) fragments by liquid chromatography electro spray ionization time-of-flight mass spectrometry (LC/ESI-TOF). PMID:16099170

  14. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model.

    PubMed

    Sundaramurthy, Aravind; Alai, Aaron; Ganpule, Shailesh; Holmberg, Aaron; Plougonven, Erwan; Chandra, Namas

    2012-09-01

    Blast waves generated by improvised explosive devices (IEDs) cause traumatic brain injury (TBI) in soldiers and civilians. In vivo animal models that use shock tubes are extensively used in laboratories to simulate field conditions, to identify mechanisms of injury, and to develop injury thresholds. In this article, we place rats in different locations along the length of the shock tube (i.e., inside, outside, and near the exit), to examine the role of animal placement location (APL) in the biomechanical load experienced by the animal. We found that the biomechanical load on the brain and internal organs in the thoracic cavity (lungs and heart) varied significantly depending on the APL. When the specimen is positioned outside, organs in the thoracic cavity experience a higher pressure for a longer duration, in contrast to APL inside the shock tube. This in turn will possibly alter the injury type, severity, and lethality. We found that the optimal APL is where the Friedlander waveform is first formed inside the shock tube. Once the optimal APL was determined, the effect of the incident blast intensity on the surface and intracranial pressure was measured and analyzed. Noticeably, surface and intracranial pressure increases linearly with the incident peak overpressures, though surface pressures are significantly higher than the other two. Further, we developed and validated an anatomically accurate finite element model of the rat head. With this model, we determined that the main pathway of pressure transmission to the brain was through the skull and not through the snout; however, the snout plays a secondary role in diffracting the incoming blast wave towards the skull. PMID:22620716

  15. Structures in Molecular Clouds: Modeling

    SciTech Connect

    Kane, J O; Mizuta, A; Pound, M W; Remington, B A; Ryutov, D D

    2006-04-20

    We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.

  16. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method

    SciTech Connect

    Guo, En-Yu; Chawla, Nikhilesh; Jing, Tao; Torquato, Salvatore; Jiao, Yang

    2014-03-01

    Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.

  17. Accurate 3D rigid-body target motion and structure estimation by using GMTI/HRR with template information

    NASA Astrophysics Data System (ADS)

    Wu, Shunguang; Hong, Lang

    2008-04-01

    A framework of simultaneously estimating the motion and structure parameters of a 3D object by using high range resolution (HRR) and ground moving target indicator (GMTI) measurements with template information is given. By decoupling the motion and structure information and employing rigid-body constraints, we have developed the kinematic and measurement equations of the problem. Since the kinematic system is unobservable by using only one scan HRR and GMTI measurements, we designed an architecture to run the motion and structure filters in parallel by using multi-scan measurements. Moreover, to improve the estimation accuracy in large noise and/or false alarm environments, an interacting multi-template joint tracking (IMTJT) algorithm is proposed. Simulation results have shown that the averaged root mean square errors for both motion and structure state vectors have been significantly reduced by using the template information.

  18. Accuracy of functional surfaces on comparatively modeled protein structures

    PubMed Central

    Zhao, Jieling; Dundas, Joe; Kachalo, Sema; Ouyang, Zheng; Liang, Jie

    2012-01-01

    Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the tempalte protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured. PMID:21541664

  19. Modelling the Constraints of Spatial Environment in Fauna Movement Simulations: Comparison of a Boundaries Accurate Function and a Cost Function

    NASA Astrophysics Data System (ADS)

    Jolivet, L.; Cohen, M.; Ruas, A.

    2015-08-01

    Landscape influences fauna movement at different levels, from habitat selection to choices of movements' direction. Our goal is to provide a development frame in order to test simulation functions for animal's movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influences are identified depending on landscape elements and on animal species. Knowledge were gathered from ecologists, literature and observation datasets. Second, we analysed the description of animal movement recorded with GPS at fine scale, corresponding to high temporal frequency and good location accuracy. Analysing this type of data provides information on the relation between landscape features and movements. We implemented an agent-based simulation approach to calculate potential trajectories constrained by the spatial environment and individual's behaviour. We tested two functions that consider space differently: one function takes into account the geometry and the types of landscape elements and one cost function sums up the spatial surroundings of an individual. Results highlight the fact that the cost function exaggerates the distances travelled by an individual and simplifies movement patterns. The geometry accurate function represents a good bottom-up approach for discovering interesting areas or obstacles for movements.

  20. A Support Vector Machine model for the prediction of proteotypic peptides for accurate mass and time proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.

    2008-07-01

    Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php

  1. Importance of housekeeping gene selection for accurate reverse transcription-quantitative polymerase chain reaction in a wound healing model.

    PubMed

    Turabelidze, Anna; Guo, Shujuan; DiPietro, Luisa A

    2010-01-01

    Studies in the field of wound healing have utilized a variety of different housekeeping genes for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. However, nearly all of these studies assume that the selected normalization gene is stably expressed throughout the course of the repair process. The purpose of our current investigation was to identify the most stable housekeeping genes for studying gene expression in mouse wound healing using RT-qPCR. To identify which housekeeping genes are optimal for studying gene expression in wound healing, we examined all articles published in Wound Repair and Regeneration that cited RT-qPCR during the period of January/February 2008 until July/August 2009. We determined that ACTβ, GAPDH, 18S, and β2M were the most frequently used housekeeping genes in human, mouse, and pig studies. We also investigated nine commonly used housekeeping genes that are not generally used in wound healing models: GUS, TBP, RPLP2, ATP5B, SDHA, UBC, CANX, CYC1, and YWHAZ. We observed that wounded and unwounded tissues have contrasting housekeeping gene expression stability. The results demonstrate that commonly used housekeeping genes must be validated as accurate normalizing genes for each individual experimental condition. PMID:20731795

  2. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    PubMed Central

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  3. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    NASA Astrophysics Data System (ADS)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  4. Track structure in biological models.

    PubMed

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation. PMID:11537218

  5. Accurate determination of the fine-structure intervals in the 3P ground states of C-13 and C-12 by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Cooksy, A. L.; Saykally, R. J.; Brown, J. M.; Evenson, K. M.

    1986-01-01

    Accurate values are presented for the fine-structure intervals in the 3P ground state of neutral atomic C-12 and C-13 as obtained from laser magnetic resonance spectroscopy. The rigorous analysis of C-13 hyperfine structure, the measurement of resonant fields for C-12 transitions at several additional far-infrared laser frequencies, and the increased precision of the C-12 measurements, permit significant improvement in the evaluation of these energies relative to earlier work. These results will expedite the direct and precise measurement of these transitions in interstellar sources and should assist in the determination of the interstellar C-12/C-13 abundance ratio.

  6. Mathematical models for accurate prediction of atmospheric visibility with particular reference to the seasonal and environmental patterns in Hong Kong.

    PubMed

    Mui, K W; Wong, L T; Chung, L Y

    2009-11-01

    Atmospheric visibility impairment has gained increasing concern as it is associated with the existence of a number of aerosols as well as common air pollutants and produces unfavorable conditions for observation, dispersion, and transportation. This study analyzed the atmospheric visibility data measured in urban and suburban Hong Kong (two selected stations) with respect to time-matched mass concentrations of common air pollutants including nitrogen dioxide (NO(2)), nitrogen monoxide (NO), respirable suspended particulates (PM(10)), sulfur dioxide (SO(2)), carbon monoxide (CO), and meteorological parameters including air temperature, relative humidity, and wind speed. No significant difference in atmospheric visibility was reported between the two measurement locations (p > or = 0.6, t test); and good atmospheric visibility was observed more frequently in summer and autumn than in winter and spring (p < 0.01, t test). It was also found that atmospheric visibility increased with temperature but decreased with the concentrations of SO(2), CO, PM(10), NO, and NO(2). The results showed that atmospheric visibility was season dependent and would have significant correlations with temperature, the mass concentrations of PM(10) and NO(2), and the air pollution index API (correlation coefficients mid R: R mid R: > or = 0.7, p < or = 0.0001, t test). Mathematical expressions catering to the seasonal variations of atmospheric visibility were thus proposed. By comparison, the proposed visibility prediction models were more accurate than some existing regional models. In addition to improving visibility prediction accuracy, this study would be useful for understanding the context of low atmospheric visibility, exploring possible remedial measures, and evaluating the impact of air pollution and atmospheric visibility impairment in this region. PMID:18951139

  7. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    PubMed

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. PMID:27114055

  8. A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs

    NASA Astrophysics Data System (ADS)

    Bouneb, I.; Kerrour, F.

    2016-03-01

    Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc

  9. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain

    PubMed Central

    Koesters, Thomas; Friedman, Kent P.; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Babb, James; Jelescu, Ileana O.; Faul, David; Boada, Fernando E.; Shepherd, Timothy M.

    2016-01-01

    Simultaneous PET/MR of the brain is a promising new technology for characterizing patients with suspected cognitive impairment or epilepsy. Unlike CT though, MR signal intensities do not provide a direct correlate to PET photon attenuation correction (AC) and inaccurate radiotracer standard uptake value (SUV) estimation could limit future PET/MR clinical applications. We tested a novel AC method that supplements standard Dixon-based tissue segmentation with a superimposed model-based bone compartment. Methods We directly compared SUV estimation for MR-based AC methods to reference CT AC in 16 patients undergoing same-day, single 18FDG dose PET/CT and PET/MR for suspected neurodegeneration. Three Dixon-based MR AC methods were compared to CT – standard Dixon 4-compartment segmentation alone, Dixon with a superimposed model-based bone compartment, and Dixon with a superimposed bone compartment and linear attenuation correction optimized specifically for brain tissue. The brain was segmented using a 3D T1-weighted volumetric MR sequence and SUV estimations compared to CT AC for whole-image, whole-brain and 91 FreeSurfer-based regions-of-interest. Results Modifying the linear AC value specifically for brain and superimposing a model-based bone compartment reduced whole-brain SUV estimation bias of Dixon-based PET/MR AC by 95% compared to reference CT AC (P < 0.05) – this resulted in a residual −0.3% whole-brain mean SUV bias. Further, brain regional analysis demonstrated only 3 frontal lobe regions with SUV estimation bias of 5% or greater (P < 0.05). These biases appeared to correlate with high individual variability in the frontal bone thickness and pneumatization. Conclusion Bone compartment and linear AC modifications result in a highly accurate MR AC method in subjects with suspected neurodegeneration. This prototype MR AC solution appears equivalent than other recently proposed solutions, and does not require additional MR sequences and scan time. These

  10. Gap between technically accurate information and socially appropriate information for structural health monitoring system installed into tall buildings

    NASA Astrophysics Data System (ADS)

    Mita, Akira

    2016-04-01

    The importance of the structural health monitoring system for tall buildings is now widely recognized by at least structural engineers and managers at large real estate companies to ensure the structural safety immediately after a large earthquake and appeal the quantitative safety of buildings to potential tenants. Some leading real estate companies decided to install the system into all tall buildings. Considering this tendency, a pilot project for the west area of Shinjuku Station supported by the Japan Science and Technology Agency was started by the author team to explore a possibility of using the system to provide safe spaces for commuters and residents. The system was installed into six tall buildings. From our experience, it turned out that viewing only from technological aspects was not sufficient for the system to be accepted and to be really useful. Safe spaces require not only the structural safety but also the soundness of key functions of the building. We need help from social scientists, medical doctors, city planners etc. to further improve the integrity of the system.

  11. Structure and modeling of turbulence

    SciTech Connect

    Novikov, E.A.

    1995-12-31

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).

  12. {ital Ab} {ital initio} investigation of the N{sub 2}{endash}HF complex: Accurate structure and energetics

    SciTech Connect

    Woon, D.E.; Dunning, T.H. Jr.; Peterson, K.A.

    1996-04-01

    Augmented correlation consistent basis sets of double (aug-cc-pVDZ), triple (aug-cc-pVTZ), and modified quadruple zeta (aug-cc-pVQZ{prime}) quality have been employed to describe the N{sub 2}{endash}HF potential energy surface at the Hartree{endash}Fock level and with single reference correlated wave functions including Mo/ller{endash}Plesset perturbation theory (MP2, MP3, MP4) and coupled cluster methods [CCSD, CCSD(T)]. The most accurate computed equilibrium binding energies {ital D}{sub {ital e}} are (with counterpoise correction) 810 cm{sup {minus}1} (MP4/aug-cc-pVQZ{prime}) and 788 cm{sup {minus}1} [CCSD(T)/aug-cc-pVQZ{prime}]. Estimated complete basis set limits of 814 cm{sup {minus}1} (MP4) and 793 cm{sup {minus}1} [CCSD(T)] indicate that the large basis set results are essentially converged. Harmonic frequencies and zero-point energies were determined through the aug-cc-pVTZ level. Combining the zero point energies computed at the aug-cc-pVTZ level with the equilibrium binding energies computed at the aug-cc-pVQZ{prime} level, we predict {ital D}{sub 0} values of 322 and 296 cm{sup {minus}1}, respectively, at the MP4 and CCSD(T) levels of theory. Using experimental anharmonic frequencies, on the other hand, the CCSD(T) value of {ital D}{sub 0} is increased to 415 cm{sup {minus}1}, in good agreement with the experimental value recently reported by Miller and co-workers, 398{plus_minus}2 cm{sup {minus}1}. {copyright} {ital 1996 American Institute of Physics.}

  13. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets. PMID:26460680

  14. Comparative study of exchange-correlation functionals for accurate predictions of structural and magnetic properties of multiferroic oxides

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew J.

    2016-05-01

    We systematically compare predictions of various exchange correlation functionals for the structural and magnetic properties of perovskite Sr1 -xBaxMnO3 (0 ≤x ≤1 )—a representative class of multiferroic oxides. The local spin density approximation (LSDA) and spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof parametrization (sPBE) make substantial different predictions for ferroelectric atomic distortions, tetragonality, and ground state magnetic ordering. Neither approximation quantitatively reproduces all the measured structural and magnetic properties of perovskite Sr0.5Ba0.5MnO3 . The spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof revised for solids parametrization (sPBEsol) and the charge-only Perdew-Burke-Ernzerhof parametrized generalized gradient approximation with Hubbard U and Hund's J extensions both provide overall better agreement with measured structural and magnetic properties of Sr0.5Ba0.5MnO3 , compared to LSDA and sPBE. Using these two methods, we find that different from previous predictions, perovskite BaMnO3 has large Mn off-center displacements and is close to a ferromagnetic-to-antiferromagnetic phase boundary, making it a promising candidate to induce effective giant magnetoelectric effects and to achieve cross-field control of polarization and magnetism.

  15. Error Location in Structural Dynamic Model of a Rocket Structure

    NASA Astrophysics Data System (ADS)

    Sundararajan, T.; Sam, C.

    2012-06-01

    Structural dynamic characteristics of the aerospace structures are essential to obtain the structural responses due to dynamic loads during its mission. The structural dynamic parameters of the aerospace structures are frequencies, associated mode shape and damping. Usually finite element (FE) model of the aerospace structures are generated to estimate the frequencies and the associated mode shape. These FE models are validated by modal survey/ground resonance tests to ensure its completeness and correctness. The modeling deficiencies, if any, in these FE models have to be corrected. This paper describes the method to locate the FE modeling errors using residual force method.

  16. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  17. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model.

    PubMed

    Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  18. Fast Flexible Modeling of RNA Structure Using Internal Coordinates

    PubMed Central

    Flores, Samuel Coulbourn; Sherman, Michael A.; Bruns, Christopher M.; Eastman, Peter; Altman, Russ Biagio

    2015-01-01

    Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense. PMID:21778523

  19. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives.

    PubMed

    Chen, Kewei; Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2015-09-18

    Dephytylated chlorophylls (chlorophyllides and pheophorbides) are the starting point of the chlorophyll catabolism in green tissues, components of the chlorophyll pattern in storage/processed food vegetables, as well as the favoured structural arrangement for chlorophyll absorption. In addition, dephytylated native chlorophylls are prone to several modifications of their structure yielding pyro-, 13(2)-hydroxy- and 15(1)-hydroxy-lactone derivatives. Despite of these outstanding remarks only few of them have been analysed by MS(n). Besides new protocols for obtaining standards, we have developed a new high throughput methodology able to determine the fragmentation pathway of 16 dephytylated chlorophyll derivatives, elucidating the structures of the new product ions and new mechanisms of fragmentation. The new methodology combines, by first time, high resolution time-of-flight mass spectrometry and powerful post-processing software. Native chlorophyllides and pheophorbides mainly exhibit product ions that involve the fragmentation of D ring, as well as additional exclusive product ions. The introduction of an oxygenated function at E ring enhances the progress of fragmentation reactions through the β-keto ester group, developing also exclusive product ions for 13(2)-hydroxy derivatives and for 15(1)-hydroxy-lactone ones. Consequently, while MS(2)-based reactions of phytylated chlorophyll derivatives point to fragmentations at the phytyl and propionic chains, dephytylated chlorophyll derivatives behave different as the absence of phytyl makes β-keto ester group and E ring more prone to fragmentation. Proposals of the key reaction mechanisms underlying the origin of new product ions have been made. PMID:26277027

  20. Snow Micro-Structure Model

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implementedmore » using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  1. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  2. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation

    NASA Astrophysics Data System (ADS)

    Jahanshahi, Mohammad R.; Masri, Sami F.

    2013-03-01

    In mechanical, aerospace and civil structures, cracks are important defects that can cause catastrophes if neglected. Visual inspection is currently the predominant method for crack assessment. This approach is tedious, labor-intensive, subjective and highly qualitative. An inexpensive alternative to current monitoring methods is to use a robotic system that could perform autonomous crack detection and quantification. To reach this goal, several image-based crack detection approaches have been developed; however, the crack thickness quantification, which is an essential element for a reliable structural condition assessment, has not been sufficiently investigated. In this paper, a new contact-less crack quantification methodology, based on computer vision and image processing concepts, is introduced and evaluated against a crack quantification approach which was previously developed by the authors. The proposed approach in this study utilizes depth perception to quantify crack thickness and, as opposed to most previous studies, needs no scale attachment to the region under inspection, which makes this approach ideal for incorporation with autonomous or semi-autonomous mobile inspection systems. Validation tests are performed to evaluate the performance of the proposed approach, and the results show that the new proposed approach outperforms the previously developed one.

  3. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    SciTech Connect

    Supardiyono; Santosa, Bagus Jaya

    2012-06-20

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  4. A mathematical recursive model for accurate description of the phase behavior in the near-critical region by Generalized van der Waals Equation

    NASA Astrophysics Data System (ADS)

    Kim, Jibeom; Jeon, Joonhyeon

    2015-01-01

    Recently, related studies on Equation Of State (EOS) have reported that generalized van der Waals (GvdW) shows poor representations in the near critical region for non-polar and non-sphere molecules. Hence, there are still remains a problem of GvdW parameters to minimize loss in describing saturated vapor densities and vice versa. This paper describes a recursive model GvdW (rGvdW) for an accurate representation of pure fluid materials in the near critical region. For the performance evaluation of rGvdW in the near critical region, other EOS models are also applied together with two pure molecule group: alkane and amine. The comparison results show rGvdW provides much more accurate and reliable predictions of pressure than the others. The calculating model of EOS through this approach gives an additional insight into the physical significance of accurate prediction of pressure in the nearcritical region.

  5. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives.

    PubMed

    Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María

    2015-08-01

    Phytylated chlorophyll derivatives undergo specific oxidative reactions through the natural metabolism or during food processing or storage, and consequently pyro-, 13(2)-hydroxy-, 15(1)-hydroxy-lactone chlorophylls, and pheophytins (a and b) are originated. New analytical procedures have been developed here to reproduce controlled oxidation reactions that specifically, and in reasonable amounts, produce those natural target standards. At the same time and under the same conditions, 16 natural chlorophyll derivatives have been analyzed by APCI-HPLC-hrMS(2) and most of them by the first time. The combination of the high-resolution MS mode with powerful post-processing software has allowed the identification of new fragmentation patterns, characterizing specific product ions for some particular standards. In addition, new hypotheses and reaction mechanisms for the established MS(2)-based reactions have been proposed. As a general rule, the main product ions involve the phytyl and the propionic chains but the introduction of oxygenated functional groups at the isocyclic ring produces new and specific productions and at the same time inhibits some particular fragmentations. It is noteworthy that all b derivatives, except 15(1)-hydroxy-lactone compounds, undergo specific CO losses. We propose a new reaction mechanism based in the structural configuration of a and b chlorophyll derivatives that explain the exclusive CO fragmentation in all b series except for 15(1)-hydroxy-lactone b and all a series compounds. PMID:26091781

  6. An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation.

    PubMed

    Imai, Shunsuke; Kumar, Parimal; Hellen, Christopher U T; D'Souza, Victoria M; Wagner, Gerhard

    2016-09-01

    Many viruses bypass canonical cap-dependent translation in host cells by using internal ribosomal entry sites (IRESs) in their transcripts; IRESs hijack initiation factors for the assembly of initiation complexes. However, it is currently unknown how IRES RNAs recognize initiation factors that have no endogenous RNA binding partners; in a prominent example, the IRES of encephalomyocarditis virus (EMCV) interacts with the HEAT-1 domain of eukaryotic initiation factor 4G (eIF4G). Here we report the solution structure of the J-K region of this IRES and show that its stems are precisely organized to position protein-recognition bulges. This multisite interaction mechanism operates on an all-or-nothing principle in which all domains are required. This preorganization is accomplished by an 'adjuster module': a pentaloop motif that acts as a dual-sided docking station for base-pair receptors. Because subtle changes in the orientation abrogate protein capture, our study highlights how a viral RNA acquires affinity for a target protein. PMID:27525590

  7. Molecular modeling of nucleic acid structure

    PubMed Central

    Galindo-Murillo, Rodrigo; Bergonzo, Christina

    2013-01-01

    This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. This unit provides an overview of computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, generation of an initial model, and characterization of the overall three-dimensional structure. PMID:18428873

  8. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    SciTech Connect

    Nguyen, Hung T.; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Case, David A.

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb{sup +} and Sr{sup 2+}) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results from the Kovalenko–Hirata closure being closest to experiment for the cases studied here.

  9. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung T.; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Case, David A.

    2014-12-01

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb+ and Sr2+) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  10. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  11. Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed.

    PubMed

    Boyce, Christopher M; Holland, Daniel J; Scott, Stuart A; Dennis, John S

    2013-12-18

    Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537

  12. Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed

    PubMed Central

    2013-01-01

    Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537

  13. CISNET lung models: Comparison of model assumptions and model structures

    PubMed Central

    McMahon, Pamela M.; Hazelton, William; Kimmel, Marek; Clarke, Lauren

    2012-01-01

    Sophisticated modeling techniques can be powerful tools to help us understand the effects of cancer control interventions on population trends in cancer incidence and mortality. Readers of journal articles are however rarely supplied with modeling details. Six modeling groups collaborated as part of the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) to investigate the contribution of US tobacco control efforts towards reducing lung cancer deaths over the period 1975 to 2000. The models included in this monograph were developed independently and use distinct, complementary approaches towards modeling the natural history of lung cancer. The models used the same data for inputs and agreed on the design of the analysis and the outcome measures. This article highlights aspects of the models that are most relevant to similarities of or differences between the results. Structured comparisons can increase the transparency of these complex models. PMID:22882887

  14. TMT telescope structure thermal model

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Sadjadpour, Amir; Roberts, Scott

    2014-08-01

    The thermal behavior of the Thirty Meter Telescope (TMT) Telescope Structure (STR) and the STR mounted subsystems depends on the heat load of the System, the thermal properties of component materials and the environment as well as their interactions through convection, conduction and radiation. In this paper the thermal environment is described and the latest three-dimensional Computational Solid Dynamics (CSD) model is presented. The model tracks the diurnal temperature variation of the STR and the corresponding deformations. The resulting displacements are fed into the TMT Merit Function Routine (MFR), which converts them into translations and rotations of the optical surfaces. They, in turn, are multiplied by the TMT optical sensitivity matrix that delivers the corresponding pointing error. Thus the thermal performance of the structure can be assessed for requirement compliance, thermal drift correction strategies and look-up tables can be developed and design guidance can be provided. Results for a representative diurnal cycle based on measured temperature data from the TMT site on Mauna Kea and CFD simulations are presented and conclusions are drawn.

  15. Charge Central Interpretation of the Full Nonlinear PB Equation: Implications for Accurate and Scalable Modeling of Solvation Interactions.

    PubMed

    Xiao, Li; Wang, Changhao; Ye, Xiang; Luo, Ray

    2016-08-25

    Continuum solvation modeling based upon the Poisson-Boltzmann equation (PBE) is widely used in structural and functional analysis of biomolecules. In this work, we propose a charge-central interpretation of the full nonlinear PBE electrostatic interactions. The validity of the charge-central view or simply charge view, as formulated as a vacuum Poisson equation with effective charges, was first demonstrated by reproducing both electrostatic potentials and energies from the original solvated full nonlinear PBE. There are at least two benefits when the charge-central framework is applied. First the convergence analyses show that the use of polarization charges allows a much faster converging numerical procedure for electrostatic energy and forces calculation for the full nonlinear PBE. Second, the formulation of the solvated electrostatic interactions as effective charges in vacuum allows scalable algorithms to be deployed for large biomolecular systems. Here, we exploited the charge-view interpretation and developed a particle-particle particle-mesh (P3M) strategy for the full nonlinear PBE systems. We also studied the accuracy and convergence of solvation forces with the charge-view and the P3M methods. It is interesting to note that the convergence of both the charge-view and the P3M methods is more rapid than the original full nonlinear PBE method. Given the developments and validations documented here, we are working to adapt the P3M treatment of the full nonlinear PBE model to molecular dynamics simulations. PMID:27146097

  16. A thermodynamic model for structure-H hydrates

    SciTech Connect

    Mehta, A.P.; Sloan, E.D. . Chemical Engineering and Petroleum-Refining Dept.)

    1994-02-01

    A statistical thermodynamics model based on the original work of van der Waals and Platteeuw is presented for structure-H hydrates. The model is an extension of the hydrate prediction method generalized by Parrish and Prausnitz for structure-I and II hydrates. Four structure-H-forming systems, methane + adamantane, methane + neohexane, methane + isopentane, and methane + methylcyclohexane, were considered. Optimized Kihara core parameter are presented for each of the large hydrocarbon guest molecules. The optimized reference chemical potential difference and reference enthalpy difference for structure-H hydrates are also presented. The results show good agreement with the experimentally determined phase-equilibria conditions. A sensitivity analysis is presented for the parameters in the model, and their relative order of influence on the accurate evaluation of the equilibrium pressure is determined.

  17. Effective field model of roughness in magnetic nano-structures

    SciTech Connect

    Lepadatu, Serban

    2015-12-28

    An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domain wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.

  18. How to accurately bypass damage

    PubMed Central

    Broyde, Suse; Patel, Dinshaw J.

    2016-01-01

    Ultraviolet radiation can cause cancer through DNA damage — specifically, by linking adjacent thymine bases. Crystal structures show how the enzyme DNA polymerase η accurately bypasses such lesions, offering protection. PMID:20577203

  19. A curved piezo-structure model: implications on active structural acoustic control.

    PubMed

    Henry, J K; Clark, R L

    1999-09-01

    Current research in Active Structural Acoustic Control (ASAC) relies heavily upon accurately capturing the application physics associated with the structure being controlled. The application of ASAC to aircraft interior noise requires a greater understanding of the dynamics of the curved panels which compose the skin of an aircraft fuselage. This paper presents a model of a simply supported curved panel with attached piezoelectric transducers. The model is validated by comparison to previous work. Further, experimental results for a simply supported curved panel test structure are presented in support of the model. The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control. PMID:10489701

  20. Inferential modeling of 3D chromatin structure

    PubMed Central

    Wang, Siyu; Xu, Jinbo; Zeng, Jianyang

    2015-01-01

    For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen. PMID:25690896

  1. Interactive Modelling of Molecular Structures

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Kreylos, O.; Hamann, B.

    2004-12-01

    The "Nanotech Construction Kit" (NCK) [1] is a new project aimed at improving the understanding of molecular structures at a nanometer-scale level by visualization and interactive manipulation. Our very first prototype is a virtual-reality program allowing the construction of silica and carbon structures from scratch by assembling them one atom at a time. In silica crystals or glasses, the basic building block is an SiO4 unit, with the four oxygen atoms arranged around the central silicon atom in the shape of a regular tetrahedron. Two silicate units can connect to each other by their silicon atoms covalently bonding to one shared oxygen atom. Geometrically, this means that two tetrahedra can link at their vertices. Our program is based on geometric representations and uses simple force fields to simulate the interaction of building blocks, such as forming/breaking of bonds and repulsion. Together with stereoscopic visualization and direct manipulation of building blocks using wands or data gloves, this enables users to create realistic and complex molecular models in short amounts of time. The NCK can either be used as a standalone tool, to analyze or experiment with molecular structures, or it can be used in combination with "traditional" molecular dynamics (MD) simulations. In a first step, the NCK can create initial configurations for subsequent MD simulation. In a more evolved setup, the NCK can serve as a visual front-end for an ongoing MD simulation, visualizing changes in simulation state in real time. Additionally, the NCK can be used to change simulation state on-the-fly, to experiment with different simulation conditions, or force certain events, e.g., the forming of a bond, and observe the simulation's reaction. [1] http://graphics.cs.ucdavis.edu/~okreylos/ResDev/NanoTech

  2. Structural model uncertainty in stochastic simulation

    SciTech Connect

    McKay, M.D.; Morrison, J.D.

    1997-09-01

    Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.

  3. An ONIOM study of the Bergman reaction: a computationally efficient and accurate method for modeling the enediyne anticancer antibiotics

    NASA Astrophysics Data System (ADS)

    Feldgus, Steven; Shields, George C.

    2001-10-01

    The Bergman cyclization of large polycyclic enediyne systems that mimic the cores of the enediyne anticancer antibiotics was studied using the ONIOM hybrid method. Tests on small enediynes show that ONIOM can accurately match experimental data. The effect of the triggering reaction in the natural products is investigated, and we support the argument that it is strain effects that lower the cyclization barrier. The barrier for the triggered molecule is very low, leading to a reasonable half-life at biological temperatures. No evidence is found that would suggest a concerted cyclization/H-atom abstraction mechanism is necessary for DNA cleavage.

  4. The Specific Analysis of Structural Equation Models

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2004-01-01

    Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…

  5. Homogenization models for 2-D grid structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Cioranescu, D.; Rebnord, D. A.

    1992-01-01

    In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.

  6. Learning the Structure of Mixed Graphical Models

    PubMed Central

    Lee, Jason D.; Hastie, Trevor J.

    2014-01-01

    We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model. Supplementary materials for this paper are available online. PMID:26085782

  7. LYRA, a webserver for lymphocyte receptor structural modeling

    PubMed Central

    Klausen, Michael Schantz; Anderson, Mads Valdemar; Jespersen, Martin Closter; Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure. PMID:26007650

  8. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.

    PubMed

    Kong, Liang; Zhang, Lichao; Lv, Jinfeng

    2014-03-01

    Extracting good representation from protein sequence is fundamental for protein structural classes prediction tasks. In this paper, we propose a novel and powerful method to predict protein structural classes based on the predicted secondary structure information. At the feature extraction stage, a 13-dimensional feature vector is extracted to characterize general contents and spatial arrangements of the secondary structural elements of a given protein sequence. Specially, four segment-level features are designed to elevate discriminative ability for proteins from the α/β and α+β classes. After the features are extracted, a multi-class non-linear support vector machine classifier is used to implement protein structural classes prediction. We report extensive experiments comparing the proposed method to the state-of-the-art in protein structural classes prediction on three widely used low-similarity benchmark datasets: FC699, 1189 and 640. Our method achieves competitive performance on prediction accuracies, especially for the overall prediction accuracies which have exceeded the best reported results on all of the three datasets. PMID:24316044

  9. Model structure identification based on ensemble model evaluation

    NASA Astrophysics Data System (ADS)

    Van Hoey, S.; van der Kwast, J.; Nopens, I.; Seuntjens, P.; Pereira, F.

    2012-04-01

    Identifying the most appropriate hydrological model for a given problem is more than fitting the parameters of a fixed model structure to reproduce the measured hydrograph. Defining the most appropriate model structure is dependent of the modeling objective, the characteristics of the system under investigation and the available data. To be able to adapt to the different conditions and to propose different hypotheses of the underlying system, a flexible model structure is preferred in combination with a rejectionist analysis based on different diagnostics supporting the model objective. By confronting the model structures with the model diagnostics, an identification of the dominant processes is attempted. In the presented work, a set of 24 model structures was constructed, by combining interchangeable components representing different hypotheses of the system under study, the Nete catchment in Belgium. To address the effect of different model diagnostics on the performance of the selected model structures, an optimization of the model structures was performed to identify the parameter sets minimizing specific objective functions, focusing on low or high flow conditions. Furthermore, the different model structures are compared simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) approach. The rejection of inadequate model structures by specifying limits of acceptance and weighting of the accepted ones is the basis of the GLUE approach. Multiple measures are combined to give guidance about the suitability of the different structures and information about the identifiability and uncertainty of the parameters is extracted from the ensemble of selected structures. The results of the optimization demonstrate the relationship between the selected objective function and the behaviour of the model structures, but also the compensation for structural differences by different parameter values resulting in similar performance. The optimization gives

  10. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  11. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    SciTech Connect

    Doherty, Kimberly R. Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  12. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  13. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  14. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  15. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  16. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  17. Coherent structures and modeling: Some background comments

    NASA Technical Reports Server (NTRS)

    Kline, S. J.

    1987-01-01

    Coherent structures are discussed as a sequence of events (identifiable motions) in the flow which convert significant amounts of mechanical energies of the mean flow stream, into turbulent fluctuations. The use of structure information in modeling is also discussed.

  18. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  19. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Blanc, P.; Wald, L.; Ghedira, H.

    2015-07-01

    Routine measurements of the beam irradiance at normal incidence (DNI) include the irradiance originating from within the extent of the solar disc only (DNIS) whose angular extent is 0.266° ± 1.7 %, and that from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). This study investigates if the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and a collocated Sun and Aureole Measurement (SAM) instrument which offers reference measurements of the monochromatic profile of solar radiance, were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE) of 5 %, a relative bias of +1 % and acoefficient of determination greater than 0.97. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a Two Term Henyey-Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 22 and -19 % and a coefficient of determination of 0.89. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard DNI measurements.

  20. Matching structural, effective, and functional connectivity: a comparison between structural equation modeling and ancestral graphs.

    PubMed

    Bringmann, Laura F; Scholte, H Steven; Waldorp, Lourens J

    2013-01-01

    In this study, we examined the accuracy of ancestral graphs (AGs) to study effective connectivity in the brain. Unlike most other methods that estimate effective connectivity, an AG is able to explicitly model missing brain regions in a network model. We compared AGs with the conventional structural equation models (SEM). We used both methods to estimate connection strengths between six regions of interest of the visual cortex based on functional magnetic resonance imaging data of a motion perception task. In order to examine which method is more accurate to estimate effective connectivity, we compared the connection strengths of the AG and SEM models with connection probabilities resulting from probabilistic tractography obtained from diffusion tensor images. This was done by correlating the connection strengths of the best fitting AG and SEM models with the connection probabilities of the probabilistic tractography models. We show that, in general, AGs result in more accurate models to estimate effective connectivity than SEM. The reason for this is that missing regions are taken into account when modeling with AG but not when modeling with SEM: AG can be used to explicitly test the assumption of missing regions. If the set of regions is complete, SEM and AG perform about equally well. PMID:23662916

  1. Modeling, Analysis, and Optimization Issues for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  2. Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T{sub 6} bovine insulin derivatives

    SciTech Connect

    Frankaer, Christian Grundahl; Mossin, Susanne; Ståhl, Kenny; Harris, Pernille

    2014-01-01

    The level of structural detail around the metal sites in Ni{sup 2+} and Cu{sup 2+} T{sub 6} insulin derivatives was significantly improved by using a combination of single-crystal X-ray crystallography and X-ray absorption spectroscopy. Photoreduction and subsequent radiation damage of the Cu{sup 2+} sites in Cu insulin was followed by XANES spectroscopy. Using synchrotron radiation (SR), the crystal structures of T{sub 6} bovine insulin complexed with Ni{sup 2+} and Cu{sup 2+} were solved to 1.50 and 1.45 Å resolution, respectively. The level of detail around the metal centres in these structures was highly limited, and the coordination of water in Cu site II of the copper insulin derivative was deteriorated as a consequence of radiation damage. To provide more detail, X-ray absorption spectroscopy (XAS) was used to improve the information level about metal coordination in each derivative. The nickel derivative contains hexacoordinated Ni{sup 2+} with trigonal symmetry, whereas the copper derivative contains tetragonally distorted hexacoordinated Cu{sup 2+} as a result of the Jahn–Teller effect, with a significantly longer coordination distance for one of the three water molecules in the coordination sphere. That the copper centre is of type II was further confirmed by electron paramagnetic resonance (EPR). The coordination distances were refined from EXAFS with standard deviations within 0.01 Å. The insulin derivative containing Cu{sup 2+} is sensitive towards photoreduction when exposed to SR. During the reduction of Cu{sup 2+} to Cu{sup +}, the coordination geometry of copper changes towards lower coordination numbers. Primary damage, i.e. photoreduction, was followed directly by XANES as a function of radiation dose, while secondary damage in the form of structural changes around the Cu atoms after exposure to different radiation doses was studied by crystallography using a laboratory diffractometer. Protection against photoreduction and subsequent

  3. Challenges in structural approaches to cell modeling.

    PubMed

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863

  4. Multi-metric model-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jo, Hongki; Spencer, B. F.

    2014-04-01

    ABSTRACT The inspection and maintenance of bridges of all types is critical to the public safety and often critical to the economy of a region. Recent advanced sensor technologies provide accurate and easy-to-deploy means for structural health monitoring and, if the critical locations are known a priori, can be monitored by direct measurements. However, for today's complex civil infrastructure, the critical locations are numerous and often difficult to identify. This paper presents an innovative framework for structural monitoring at arbitrary locations on the structure combining computational models and limited physical sensor information. The use of multi-metric measurements is advocated to improve the accuracy of the approach. A numerical example is provided to illustrate the proposed hybrid monitoring framework, particularly focusing on fatigue life assessment of steel structures.

  5. Modeling of protein binary complexes using structural mass spectrometry data

    PubMed Central

    Kamal, J.K. Amisha; Chance, Mark R.

    2008-01-01

    In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints—positive and/or negative—in the docking step and are also used to decide the type of energy filter—electrostatics or desolvation—in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure. PMID:18042684

  6. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.

  7. Coupling 1D Navier Stokes equation with autoregulation lumped parameter networks for accurate cerebral blood flow modeling

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2014-11-01

    The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is critical to cerebral blood flow modeling, as well as investigations into pathological conditions. We discuss a one-dimensional nonlinear model of blood flow in the cerebral arteries that includes coupling of autoregulatory lumped parameter networks. The model is tested to reproduce a common clinical test to assess autoregulatory function - the carotid artery compression test. The change in the flow velocity at the middle cerebral artery (MCA) during carotid compression and release demonstrated strong agreement with published measurements. The model is then used to investigate vasospasm of the MCA, a common clinical concern following subarachnoid hemorrhage. Vasospasm was modeled by prescribing vessel area reduction in the middle portion of the MCA. Our model showed similar increases in velocity for moderate vasospasms, however, for serious vasospasm (~ 90% area reduction), the blood flow velocity demonstrated decrease due to blood flow rerouting. This demonstrates a potentially important phenomenon, which otherwise would lead to false-negative decisions on clinical vasospasm if not properly anticipated.

  8. Detailed and Highly Accurate 3d Models of High Mountain Areas by the Macs-Himalaya Aerial Camera Platform

    NASA Astrophysics Data System (ADS)

    Brauchle, J.; Hein, D.; Berger, R.

    2015-04-01

    Remote sensing in areas with extreme altitude differences is particularly challenging. In high mountain areas specifically, steep slopes result in reduced ground pixel resolution and degraded quality in the DEM. Exceptionally high brightness differences can in part no longer be imaged by the sensors. Nevertheless, detailed information about mountainous regions is highly relevant: time and again glacier lake outburst floods (GLOFs) and debris avalanches claim dozens of victims. Glaciers are sensitive to climate change and must be carefully monitored. Very detailed and accurate 3D maps provide a basic tool for the analysis of natural hazards and the monitoring of glacier surfaces in high mountain areas. There is a gap here, because the desired accuracies are often not achieved. It is for this reason that the DLR Institute of Optical Sensor Systems has developed a new aerial camera, the MACS-Himalaya. The measuring unit comprises four camera modules with an overall aperture angle of 116° perpendicular to the direction of flight. A High Dynamic Range (HDR) mode was introduced so that within a scene, bright areas such as sun-flooded snow and dark areas such as shaded stone can be imaged. In 2014, a measuring survey was performed on the Nepalese side of the Himalayas. The remote sensing system was carried by a Stemme S10 motor glider. Amongst other targets, the Seti Valley, Kali-Gandaki Valley and the Mt. Everest/Khumbu Region were imaged at heights up to 9,200 m. Products such as dense point clouds, DSMs and true orthomosaics with a ground pixel resolution of up to 15 cm were produced. Special challenges and gaps in the investigation of high mountain areas, approaches for resolution of these problems, the camera system and the state of evaluation are presented with examples.

  9. Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites

    PubMed Central

    Kates-Harbeck, Julian; Tilloy, Antoine; Prentiss, Mara

    2016-01-01

    Inspired by RecA-protein-based homology recognition, we consider the pairing of two long linear arrays of binding sites. We propose a fully reversible, physically realizable biased random walk model for rapid and accurate self-assembly due to the spontaneous pairing of matching binding sites, where the statistics of the searched sample are included. In the model, there are two bound conformations, and the free energy for each conformation is a weakly nonlinear function of the number of contiguous matched bound sites. PMID:23944487

  10. Accurate relativistic adapted Gaussian basis sets for francium through Ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.

    PubMed

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2013-10-15

    Accurate relativistic adapted Gaussian basis sets (RAGBSs) for 87 Fr up to 118 Uuo atoms without variational prolapse were developed here with the use of a polynomial version of the Generator Coordinate Dirac-Fock method. Two finite nuclear models have been used, the Gaussian and uniform sphere models. The largest RAGBS error, with respect to numerical Dirac-Fock results, is 15.4 miliHartree for Ununoctium with a basis set size of 33s30p19d14f functions. PMID:23913741

  11. Structure formation in the quasispherical Szekeres model

    SciTech Connect

    Bolejko, Krzysztof

    2006-06-15

    Structure formation in the Szekeres model is investigated. Since the Szekeres model is an inhomogeneous model with no symmetries, it is possible to examine the interaction of neighboring structures and its impact on the growth of a density contrast. It has been found that the mass flow from voids to clusters enhances the growth of the density contrast. In the model presented here, the growth of the density contrast is almost 8 times faster than in the linear approach.

  12. A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA

    PubMed Central

    Kladwang, Wipapat; Cordero, Pablo; Das, Rhiju

    2011-01-01

    We present a rapid experimental strategy for inferring base pairs in structured RNAs via an information-rich extension of classic chemical mapping approaches. The mutate-and-map method, previously applied to a DNA/RNA helix, systematically searches for single mutations that enhance the chemical accessibility of base-pairing partners distant in sequence. To test this strategy for structured RNAs, we have carried out mutate-and-map measurements for a 35-nt hairpin, called the MedLoop RNA, embedded within an 80-nt sequence. We demonstrate the synthesis of all 105 single mutants of the MedLoop RNA sequence and present high-throughput DMS, CMCT, and SHAPE modification measurements for this library at single-nucleotide resolution. The resulting two-dimensional data reveal visually clear, punctate features corresponding to RNA base pair interactions as well as more complex features; these signals can be qualitatively rationalized by comparison to secondary structure predictions. Finally, we present an automated, sequence-blind analysis that permits the confident identification of nine of the 10 MedLoop RNA base pairs at single-nucleotide resolution, while discriminating against all 1460 false-positive base pairs. These results establish the accuracy and information content of the mutate-and-map strategy and support its feasibility for rapidly characterizing the base-pairing patterns of larger and more complex RNA systems. PMID:21239468

  13. An accurate radiative heating and cooling algorithm for use in a dynamical model of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Wehrbein, W. M.; Leovy, C. B.

    1982-01-01

    The circulation of the middle atmosphere of the earth (15-90 km) is driven by the unequal distribution of net radiative heating. Calculations have shown that local radiative heating is nearly balanced by radiative cooling throughout parts of the stratosphere and mesosphere. The 15 micrometer band of CO2 is the dominant component of the infrared cooling. The present investigation is concerned with an algorithm regarding the involved cooling process. The algorithm was designed for the semispectral primitive equation model of the stratosphere and mesosphere described by Holton and Wehrbein (1980). The model consists of 16 layers, each nominally 5 km thick, between the base of the stratosphere at 100 mb (approximately 16 km) and the base of the thermosphere (approximately 96 km). The considered algorithm provides a convenient means of incorporating cooling due to CO2 into dynamical models of the middle atmosphere.

  14. The use of models in structural testing.

    NASA Technical Reports Server (NTRS)

    Horton, W. H.; Singhal, M. K.; Haack, T. A.

    1972-01-01

    The design, construction and instrumentation of plastic model shells used in elastic stability studies is discussed. The work demonstrates that specimens made of such materials are of great value in parametric studies because of their ease of manufacture and the simplicity of modification. Additionally, it is shown that they are most useful in the development of nondestructive test techniques. The paper indicates how deformation measurements made at low load levels can be used to accurately predict critical conditions.

  15. Efficient and physically accurate modeling and simulation of anisoplanatic imaging through the atmosphere: a space-variant volumetric image blur method

    NASA Astrophysics Data System (ADS)

    Reinhardt, Colin N.; Ritcey, James A.

    2015-09-01

    We present a novel method for efficient and physically-accurate modeling & simulation of anisoplanatic imaging through the atmosphere; in particular we present a new space-variant volumetric image blur algorithm. The method is based on the use of physical atmospheric meteorology models, such as vertical turbulence profiles and aerosol/molecular profiles which can be in general fully spatially-varying in 3 dimensions and also evolving in time. The space-variant modeling method relies on the metadata provided by 3D computer graphics modeling and rendering systems to decompose the image into a set of slices which can be treated in an independent but physically consistent manner to achieve simulated image blur effects which are more accurate and realistic than the homogeneous and stationary blurring methods which are commonly used today. We also present a simple illustrative example of the application of our algorithm, and show its results and performance are in agreement with the expected relative trends and behavior of the prescribed turbulence profile physical model used to define the initial spatially-varying environmental scenario conditions. We present the details of an efficient Fourier-transform-domain formulation of the SV volumetric blur algorithm and detailed algorithm pseudocode description of the method implementation and clarification of some nonobvious technical details.

  16. CLASH-VLT: Insights on the Mass Substructures in the Frontier Fields Cluster MACS J0416.1-2403 through Accurate Strong Lens Modeling

    NASA Astrophysics Data System (ADS)

    Grillo, C.; Suyu, S. H.; Rosati, P.; Mercurio, A.; Balestra, I.; Munari, E.; Nonino, M.; Caminha, G. B.; Lombardi, M.; De Lucia, G.; Borgani, S.; Gobat, R.; Biviano, A.; Girardi, M.; Umetsu, K.; Coe, D.; Koekemoer, A. M.; Postman, M.; Zitrin, A.; Halkola, A.; Broadhurst, T.; Sartoris, B.; Presotto, V.; Annunziatella, M.; Maier, C.; Fritz, A.; Vanzella, E.; Frye, B.

    2015-02-01

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1-2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M */M ⊙) ~= 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ~5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1-2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing tests of the

  17. CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING

    SciTech Connect

    Grillo, C.; Suyu, S. H.; Umetsu, K.; Rosati, P.; Caminha, G. B.; Mercurio, A.; Balestra, I.; Munari, E.; Nonino, M.; De Lucia, G.; Borgani, S.; Biviano, A.; Girardi, M.; Lombardi, M.; Gobat, R.; Zitrin, A.; Halkola, A. and others

    2015-02-10

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M {sub *}/M {sub ☉}) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing

  18. Linking models and data on vegetation structure

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.

    2010-06-01

    For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.

  19. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed Central

    Basso, Bruno; Hyndman, David W.; Kendall, Anthony D.; Grace, Peter R.; Robertson, G. Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability. PMID:26043188

  20. Model Specification Searches in Structural Equation Modeling Using Tabu Search.

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Drezner, Zvi; Schumacker, Randall E.

    1998-01-01

    Introduces an alternative structural equation modeling (SEM) specification search approach based on the Tabu search procedure. Using data with known structure, the procedure is illustrated, and its capabilities for specification searches in SEM are demonstrated. (Author/SLD)

  1. Optimized Null Model for Protein Structure Networks

    PubMed Central

    Lappe, Michael; Pržulj, Nataša

    2009-01-01

    Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by

  2. Mathematical Modeling: A Structured Process

    ERIC Educational Resources Information Center

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2015-01-01

    Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…

  3. Residual Structures in Latent Growth Curve Modeling

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  4. A Teaching Model for Truss Structures

    ERIC Educational Resources Information Center

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

  5. A two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion

    PubMed Central

    Kostylev, Maxim; Wilson, David

    2014-01-01

    Lignocellulosic biomass is a potential source of renewable, low-carbon-footprint liquid fuels. Biomass recalcitrance and enzyme cost are key challenges associated with the large-scale production of cellulosic fuel. Kinetic modeling of enzymatic cellulose digestion has been complicated by the heterogeneous nature of the substrate and by the fact that a true steady state cannot be attained. We present a two-parameter kinetic model based on the Michaelis-Menten scheme (Michaelis L and Menten ML. (1913) Biochem Z 49:333–369), but with a time-dependent activity coefficient analogous to fractal-like kinetics formulated by Kopelman (Kopelman R. (1988) Science 241:1620–1626). We provide a mathematical derivation and experimental support to show that one of the parameters is a total activity coefficient and the other is an intrinsic constant that reflects the ability of the cellulases to overcome substrate recalcitrance. The model is applicable to individual cellulases and their mixtures at low-to-medium enzyme loads. Using biomass degrading enzymes from a cellulolytic bacterium Thermobifida fusca we show that the model can be used for mechanistic studies of enzymatic cellulose digestion. We also demonstrate that it applies to the crude supernatant of the widely studied cellulolytic fungus Trichoderma reesei and can thus be used to compare cellulases from different organisms. The two parameters may serve a similar role to Vmax, KM, and kcat in classical kinetics. A similar approach may be applicable to other enzymes with heterogeneous substrates and where a steady state is not achievable. PMID:23837567

  6. Establishing Magnetic Resonance Imaging as an Accurate and Reliable Tool to Diagnose and Monitor Esophageal Cancer in a Rat Model

    PubMed Central

    Kosovec, Juliann E.; Zaidi, Ali H.; Komatsu, Yoshihiro; Kasi, Pashtoon M.; Cothron, Kyle; Thompson, Diane V.; Lynch, Edward; Jobe, Blair A.

    2014-01-01

    Objective To assess the reliability of magnetic resonance imaging (MRI) for detection of esophageal cancer in the Levrat model of end-to-side esophagojejunostomy. Background The Levrat model has proven utility in terms of its ability to replicate Barrett’s carcinogenesis by inducing gastroduodenoesophageal reflux (GDER). Due to lack of data on the utility of non-invasive methods for detection of esophageal cancer, treatment efficacy studies have been limited, as adenocarcinoma histology has only been validated post-mortem. It would therefore be of great value if the validity and reliability of MRI could be established in this setting. Methods Chronic GDER reflux was induced in 19 male Sprague-Dawley rats using the modified Levrat model. At 40 weeks post-surgery, all animals underwent endoscopy, MRI scanning, and post-mortem histological analysis of the esophagus and anastomosis. With post-mortem histology serving as the gold standard, assessment of presence of esophageal cancer was made by five esophageal specialists and five radiologists on endoscopy and MRI, respectively. Results The accuracy of MRI and endoscopic analysis to correctly identify cancer vs. no cancer was 85.3% and 50.5%, respectively. ROC curves demonstrated that MRI rating had an AUC of 0.966 (p<0.001) and endoscopy rating had an AUC of 0.534 (p = 0.804). The sensitivity and specificity of MRI for identifying cancer vs. no-cancer was 89.1% and 80% respectively, as compared to 45.5% and 57.5% for endoscopy. False positive rates of MRI and endoscopy were 20% and 42.5%, respectively. Conclusions MRI is a more reliable diagnostic method than endoscopy in the Levrat model. The non-invasiveness of the tool and its potential to volumetrically quantify the size and number of tumors likely makes it even more useful in evaluating novel agents and their efficacy in treatment studies of esophageal cancer. PMID:24705451

  7. Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data

    SciTech Connect

    Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.; Solberg, Timothy D.; Chetty, Indrin J.

    2009-12-15

    electron splitting. When DBS was used with electron splitting and combined with augmented charged particle range rejection, a technique recently introduced in BEAMnrc, relative efficiencies were {approx}420 ({approx}253 min on a single processor) and {approx}175 ({approx}58 min on a single processor) for the 10x10 and 40x40 cm{sup 2} field sizes, respectively. Calculations of the Siemens Primus treatment head with VMC++ produced relative efficiencies of {approx}1400 ({approx}6 min on a single processor) and {approx}60 ({approx}4 min on a single processor) for the 10x10 and 40x40 cm{sup 2} field sizes, respectively. BEAMnrc PHSP calculations with DBS alone or DBS in combination with charged particle range rejection were more efficient than the other efficiency enhancing techniques used. Using VMC++, accurate simulations of the entire linac treatment head were performed within minutes on a single processor. Noteworthy differences ({+-}1%-3%) in the mean energy, planar fluence, and angular and spectral distributions were observed with the NIST bremsstrahlung cross sections compared with those of Bethe-Heitler (BEAMnrc default bremsstrahlung cross section). However, MC calculated dose distributions in water phantoms (using combinations of VRTs/AEITs and cross-section data) agreed within 2% of measurements. Furthermore, MC calculated dose distributions in a simulated water/air/water phantom, using NIST cross sections, were within 2% agreement with the BEAMnrc Bethe-Heitler default case.

  8. Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data

    PubMed Central

    Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.; Solberg, Timothy D.; Chetty, Indrin J.

    2009-01-01

    DBS was used with electron splitting and combined with augmented charged particle range rejection, a technique recently introduced in BEAMnrc, relative efficiencies were ∼420 (∼253 min on a single processor) and ∼175 (∼58 min on a single processor) for the 10×10 and 40×40 cm2 field sizes, respectively. Calculations of the Siemens Primus treatment head with VMC++ produced relative efficiencies of ∼1400 (∼6 min on a single processor) and ∼60 (∼4 min on a single processor) for the 10×10 and 40×40 cm2 field sizes, respectively. BEAMnrc PHSP calculations with DBS alone or DBS in combination with charged particle range rejection were more efficient than the other efficiency enhancing techniques used. Using VMC++, accurate simulations of the entire linac treatment head were performed within minutes on a single processor. Noteworthy differences (±1%–3%) in the mean energy, planar fluence, and angular and spectral distributions were observed with the NIST bremsstrahlung cross sections compared with those of Bethe–Heitler (BEAMnrc default bremsstrahlung cross section). However, MC calculated dose distributions in water phantoms (using combinations of VRTs∕AEITs and cross-section data) agreed within 2% of measurements. Furthermore, MC calculated dose distributions in a simulated water∕air∕water phantom, using NIST cross sections, were within 2% agreement with the BEAMnrc Bethe–Heitler default case. PMID:20095258

  9. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  10. Building accurate sequence-to-affinity models from high-throughput in vitro protein-DNA binding data using FeatureREDUCE.

    PubMed

    Riley, Todd R; Lazarovici, Allan; Mann, Richard S; Bussemaker, Harmen J

    2015-01-01

    Transcription factors are crucial regulators of gene expression. Accurate quantitative definition of their intrinsic DNA binding preferences is critical to understanding their biological function. High-throughput in vitro technology has recently been used to deeply probe the DNA binding specificity of hundreds of eukaryotic transcription factors, yet algorithms for analyzing such data have not yet fully matured. Here, we present a general framework (FeatureREDUCE) for building sequence-to-affinity models based on a biophysically interpretable and extensible model of protein-DNA interaction that can account for dependencies between nucleotides within the binding interface or multiple modes of binding. When training on protein binding microarray (PBM) data, we use robust regression and modeling of technology-specific biases to infer specificity models of unprecedented accuracy and precision. We provide quantitative validation of our results by comparing to gold-standard data when available. PMID:26701911

  11. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Blanc, P.; Wald, L.; Ghedira, H.

    2015-12-01

    Routine measurements of the beam irradiance at normal incidence include the irradiance originating from within the extent of the solar disc only (DNIS), whose angular extent is 0.266° ± 1.7 %, and from a larger circumsolar region, called the circumsolar normal irradiance (CSNI). This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and the collocated Sun and Aureole Measurement instrument which offers reference measurements of the monochromatic profile of solar radiance were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE) of 6 % and a coefficient of determination greater than 0.96. The observed relative bias obtained with libRadtran is +2 %, while that obtained with SMARTS is -1 %. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a two-term Henyey-Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 27 and -24 % and a coefficient of determination of 0.882. Therefore, AERONET data may very well be used to model the monochromatic DNIS and the monochromatic CSNI. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard measurements of the beam irradiance.

  12. Toward Accurate Modelling of Enzymatic Reactions: All Electron Quantum Chemical Analysis combined with QM/MM Calculation of Chorismate Mutase

    SciTech Connect

    Ishida, Toyokazu

    2008-09-17

    To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.

  13. Determination of structure parameters in molecular tunnelling ionisation model

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Zhao, Song-Feng; Zhang, Cai-Rong; Li, Wei; Zhou, Xiao-Xin

    2014-04-01

    We extracted the accurate structure parameters in a molecular tunnelling ionisation model (the so-called MO-ADK model) for 23 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behaviour are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model. We show that the orientation-dependent ionisation rate reflects the shape of the ionising orbitals in general. The influences of the Stark shifts of the energy levels on the orientation-dependent ionisation rates of the polar molecules are studied. We also examine the angle-dependent ionisation rates (or probabilities) based on the MO-ADK model by comparing with the molecular strong-field approximation calculations and with recent experimental measurements.

  14. PREDICTING RNA STRUCTURE BY MULTIPLE TEMPLATE HOMOLOGY MODELING

    PubMed Central

    FLORES, SAMUEL C.; WAN, YAQI; RUSSELL, RICK; ALTMAN, RUSS B.

    2010-01-01

    Despite the importance of 3D structure to understand the myriad functions of RNAs in cells, most RNA molecules remain out of reach of crystallographic and NMR methods. However, certain structural information such as base pairing and some tertiary contacts can be determined readily for many RNAs by bioinformatics or relatively low cost experiments. Further, because RNA structure is highly modular, it is possible to deduce local 3D structure from the solved structures of evolutionarily related RNAs or even unrelated RNAs that share the same module. RNABuilder is a software package that generates model RNA structures by treating the kinematics and forces at separate, multiple levels of resolution. Kinematically, bonds in bases, certain stretches of residues, and some entire molecules are rigid while other bonds remain flexible. Forces act on the rigid bases and selected individual atoms. Here we use RNABuilder to predict the structure of the 200-nucleotide Azoarcus group I intron by homology modeling against fragments of the distantly-related Twort and Tetrahymena group I introns and by incorporating base pairing forces where necessary. In the absence of any information from the solved Azoarcus intron crystal structure, the model accurately depicts the global topology, secondary and tertiary connections, and gives an overall RMSD value of 4.6 Å relative to the crystal structure. The accuracy of the model is even higher in the intron core (RMSD = 3.5 Å), whereas deviations are modestly larger for peripheral regions that differ more substantially between the different introns. These results lay the groundwork for using this approach for larger and more diverse group I introns, as well for still larger RNAs and RNA-protein complexes such as group II introns and the ribosomal subunits. PMID:19908374

  15. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression.

    PubMed

    Safaei, B; Naseradinmousavi, P; Rahmani, A

    2016-04-01

    In the present paper, an analytical solution based on a molecular mechanics model is developed to evaluate the elastic critical axial buckling strain of chiral multi-walled carbon nanotubes (MWCNTs). To this end, the total potential energy of the system is calculated with the consideration of the both bond stretching and bond angular variations. Density functional theory (DFT) in the form of generalized gradient approximation (GGA) is implemented to evaluate force constants used in the molecular mechanics model. After that, based on the principle of molecular mechanics, explicit expressions are proposed to obtain elastic surface Young's modulus and Poisson's ratio of the single-walled carbon nanotubes corresponding to different types of chirality. Selected numerical results are presented to indicate the influence of the type of chirality, tube diameter, and number of tube walls in detailed. An excellent agreement is found between the present numerical results and those found in the literature which confirms the validity as well as the accuracy of the present closed-form solution. It is found that the value of critical axial buckling strain exhibit significant dependency on the type of chirality and number of tube walls. PMID:26930445

  16. Micromechanical models for textile structural composites

    NASA Technical Reports Server (NTRS)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  17. Model verification of large structural systems. [space shuttle model response

    NASA Technical Reports Server (NTRS)

    Lee, L. T.; Hasselman, T. K.

    1978-01-01

    A computer program for the application of parameter identification on the structural dynamic models of space shuttle and other large models with hundreds of degrees of freedom is described. Finite element, dynamic, analytic, and modal models are used to represent the structural system. The interface with math models is such that output from any structural analysis program applied to any structural configuration can be used directly. Processed data from either sine-sweep tests or resonant dwell tests are directly usable. The program uses measured modal data to condition the prior analystic model so as to improve the frequency match between model and test. A Bayesian estimator generates an improved analytical model and a linear estimator is used in an iterative fashion on highly nonlinear equations. Mass and stiffness scaling parameters are generated for an improved finite element model, and the optimum set of parameters is obtained in one step.