Science.gov

Sample records for accurate structural parameters

  1. Accurate Structure and Dynamics of the Metal-Site of Paramagnetic Metalloproteins from NMR Parameters Using Natural Bond Orbitals

    PubMed Central

    2012-01-01

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal–ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal–ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for 15N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of 15N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of 15N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site. PMID:22329704

  2. Accurate parameter estimation for unbalanced three-phase system.

    PubMed

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS. PMID:25162056

  3. Accurate and robust estimation of camera parameters using RANSAC

    NASA Astrophysics Data System (ADS)

    Zhou, Fuqiang; Cui, Yi; Wang, Yexin; Liu, Liu; Gao, He

    2013-03-01

    Camera calibration plays an important role in the field of machine vision applications. The popularly used calibration approach based on 2D planar target sometimes fails to give reliable and accurate results due to the inaccurate or incorrect localization of feature points. To solve this problem, an accurate and robust estimation method for camera parameters based on RANSAC algorithm is proposed to detect the unreliability and provide the corresponding solutions. Through this method, most of the outliers are removed and the calibration errors that are the main factors influencing measurement accuracy are reduced. Both simulative and real experiments have been carried out to evaluate the performance of the proposed method and the results show that the proposed method is robust under large noise condition and quite efficient to improve the calibration accuracy compared with the original state.

  4. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGESBeta

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  5. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  6. Accurate and transferable extended Hückel-type tight-binding parameters

    NASA Astrophysics Data System (ADS)

    Cerdá, J.; Soria, F.

    2000-03-01

    We show how the simple extended Hückel theory can be easily parametrized in order to yield accurate band structures for bulk materials, while the resulting optimized atomic orbital basis sets present good transferability properties. The number of parameters involved is exceedingly small, typically ten or eleven per structural phase. We apply the method to almost fifty elemental and compound bulk phases.

  7. Direct computation of parameters for accurate polarizable force fields

    SciTech Connect

    Verstraelen, Toon Vandenbrande, Steven; Ayers, Paul W.

    2014-11-21

    We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham Density Functional Theory (DFT), approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization, and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.

  8. Accurate 3D quantification of the bronchial parameters in MDCT

    NASA Astrophysics Data System (ADS)

    Saragaglia, A.; Fetita, C.; Preteux, F.; Brillet, P. Y.; Grenier, P. A.

    2005-08-01

    The assessment of bronchial reactivity and wall remodeling in asthma plays a crucial role in better understanding such a disease and evaluating therapeutic responses. Today, multi-detector computed tomography (MDCT) makes it possible to perform an accurate estimation of bronchial parameters (lumen and wall areas) by allowing a quantitative analysis in a cross-section plane orthogonal to the bronchus axis. This paper provides the tools for such an analysis by developing a 3D investigation method which relies on 3D reconstruction of bronchial lumen and central axis computation. Cross-section images at bronchial locations interactively selected along the central axis are generated at appropriate spatial resolution. An automated approach is then developed for accurately segmenting the inner and outer bronchi contours on the cross-section images. It combines mathematical morphology operators, such as "connection cost", and energy-controlled propagation in order to overcome the difficulties raised by vessel adjacencies and wall irregularities. The segmentation accuracy was validated with respect to a 3D mathematically-modeled phantom of a pair bronchus-vessel which mimics the characteristics of real data in terms of gray-level distribution, caliber and orientation. When applying the developed quantification approach to such a model with calibers ranging from 3 to 10 mm diameter, the lumen area relative errors varied from 3.7% to 0.15%, while the bronchus area was estimated with a relative error less than 5.1%.

  9. Accurate Prediction of Docked Protein Structure Similarity.

    PubMed

    Akbal-Delibas, Bahar; Pomplun, Marc; Haspel, Nurit

    2015-09-01

    One of the major challenges for protein-protein docking methods is to accurately discriminate nativelike structures. The protein docking community agrees on the existence of a relationship between various favorable intermolecular interactions (e.g. Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native structure. Different docking algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights against specific training data to evaluate and rank candidate structures. However, the exact form of this relationship is unknown and the accuracy of such methods is impaired by the pervasiveness of false positives. Unlike the conventional scoring functions, we propose a novel machine learning approach that not only ranks the candidate structures relative to each other but also indicates how similar each candidate is to the native conformation. We trained the AccuRMSD neural network with an extensive dataset using the back-propagation learning algorithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å error margin. PMID:26335807

  10. Identification of accurate nonlinear rainfall-runoff models with unique parameters

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N.

    2009-04-01

    We propose a strategy to identify models with unique parameters that yield accurate streamflow predictions, given a time-series of rainfall inputs. The procedure consists of five general steps. First, an a priori range of model structures is specified based on prior general and site-specific hydrologic knowledge. To this end, we rely on a flexible model code that allows a specification of a wide range of model structures, from simple to complex. Second, using global optimization each model structure is calibrated to a record of rainfall-runoff data, yielding optimal parameter values for each model structure. Third, accuracy of each model structure is determined by estimating model prediction errors using independent validation and statistical theory. Fourth, parameter identifiability of each calibrated model structure is estimated by means of Monte Carlo Markov Chain simulation. Finally, an assessment is made about each model structure in terms of its accuracy of mimicking rainfall-runoff processes (step 3), and the uniqueness of its parameters (step 4). The procedure results in the identification of the most complex and accurate model supported by the data, without causing parameter equifinality. As such, it provides insight into the information content of the data for identifying nonlinear rainfall-runoff models. We illustrate the method using rainfall-runoff data records from several MOPEX basins in the US.

  11. Accurate lattice parameter measurements of stoichiometric uranium dioxide

    NASA Astrophysics Data System (ADS)

    Leinders, Gregory; Cardinaels, Thomas; Binnemans, Koen; Verwerft, Marc

    2015-04-01

    The paper presents and discusses lattice parameter analyses of pure, stoichiometric UO2. Attention was paid to prepare stoichiometric samples and to maintain stoichiometry throughout the analyses. The lattice parameter of UO2.000±0.001 was evaluated as being 547.127 ± 0.008 pm at 20 °C, which is substantially higher than many published values for the UO2 lattice constant and has an improved precision by about one order of magnitude. The higher value of the lattice constant is mainly attributed to the avoidance of hyperstoichiometry in the present study and to a minor extent to the use of the currently accepted Cu Kα1 X-ray wavelength value. Many of the early studies used Cu Kα1 wavelength values that differ from the currently accepted value, which also contributed to an underestimation of the true lattice parameter.

  12. Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors

    PubMed Central

    CLIFFORD, Gari; SAMENI, Reza; WARD, Mr. Jay; ROBINSON, Julian; WOLFBERG, Adam J.

    2011-01-01

    OBJECTIVE To evaluate the accuracy of a novel system for measuring fetal heart rate and ST-segment changes using non-invasive electrodes on the maternal abdomen. STUDY DESIGN Fetal ECGs were recorded using abdominal sensors from 32 term laboring women who had a fetal scalp electrode (FSE) placed for a clinical indication. RESULTS Good quality data for FHR estimation was available in 91.2% of the FSE segments, and 89.9% of the abdominal electrode segments. The root mean square (RMS) error between the FHR data calculated by both methods over all processed segments was 0.36 beats per minute. ST deviation from the isoelectric point ranged from 0 to 14.2% of R-wave amplitude. The RMS error between the ST change calculated by both methods averaged over all processed segments was 3.2%. CONCLUSION FHR and ST change acquired from the maternal abdomen is highly accurate and on average is clinically indistinguishable from FHR and ST change calculated using FSE data. PMID:21514560

  13. Isomerism of Cyanomethanimine: Accurate Structural, Energetic, and Spectroscopic Characterization.

    PubMed

    Puzzarini, Cristina

    2015-11-25

    The structures, relative stabilities, and rotational and vibrational parameters of the Z-C-, E-C-, and N-cyanomethanimine isomers have been evaluated using state-of-the-art quantum-chemical approaches. Equilibrium geometries have been calculated by means of a composite scheme based on coupled-cluster calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The latter approach is proved to provide molecular structures with an accuracy of 0.001-0.002 Å and 0.05-0.1° for bond lengths and angles, respectively. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled-cluster theory, including up to single, double, triple, and quadruple excitations, and corrected for core-electron correlation and anharmonic zero-point vibrational energy, have been used to accurately determine relative energies and the Z-E isomerization barrier with an accuracy of about 1 kJ/mol. Vibrational and rotational spectroscopic parameters have been investigated by means of hybrid schemes that allow us to obtain rotational constants accurate to about a few megahertz and vibrational frequencies with a mean absolute error of ∼1%. Where available, for all properties considered, a very good agreement with experimental data has been observed. PMID:26529434

  14. Distillation tray structural parameter study: Phase 1

    NASA Technical Reports Server (NTRS)

    Winter, J. Ronald

    1991-01-01

    The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.

  15. Predicting accurate line shape parameters for CO2 transitions

    NASA Astrophysics Data System (ADS)

    Gamache, Robert R.; Lamouroux, Julien

    2013-11-01

    The vibrational dependence of CO2 half-widths and line shifts are given by a modification of the model proposed by Gamache and Hartmann [Gamache R, Hartmann J-M. J Quant Spectrosc Radiat Transfer 2004;83:119]. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power and a reference ro-vibrational transition. Calculations were made for 24 bands for lower rotational quantum numbers from 0 to 160 for N2-, O2-, air-, and self-collisions with CO2. These data were extrapolated to J″=200 to accommodate several databases. Comparison of the CRB calculations with measurement gives very high confidence in the data. In the model a Quantum Coordinate is defined by (c1 |Δν1|+c2 |Δν2|+c3|Δν3|)p. The power p is adjusted and a linear least-squares fit to the data by the model expression is made. The procedure is iterated on the correlation coefficient, R, until [|R|-1] is less than a threshold. The results demonstrate the appropriateness of the model. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From the data of the fits, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO2 databases to have complete information for the line shape parameters.

  16. Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    PubMed Central

    Loewe, Axel; Wilhelms, Mathias; Schmid, Jochen; Krause, Mathias J.; Fischer, Fathima; Thomas, Dierk; Scholz, Eberhard P.; Dössel, Olaf; Seemann, Gunnar

    2016-01-01

    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non

  17. Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?

    PubMed Central

    Reinbolt, Jeffrey A.; Haftka, Raphael T.; Chmielewski, Terese L.; Fregly, Benjamin J.

    2013-01-01

    Variations in joint parameter values (axis positions and orientations in body segments) and inertial parameter values (segment masses, mass centers, and moments of inertia) as well as kinematic noise alter the results of inverse dynamics analyses of gait. Three-dimensional linkage models with joint constraints have been proposed as one way to minimize the effects of noisy kinematic data. Such models can also be used to perform gait optimizations to predict post-treatment function given pre-treatment gait data. This study evaluates whether accurate patient-specific joint and inertial parameter values are needed in three-dimensional linkage models to produce accurate inverse dynamics results for gait. The study was performed in two stages. First, we used optimization analyses to evaluate whether patient-specific joint and inertial parameter values can be calibrated accurately from noisy kinematic data, and second, we used Monte Carlo analyses to evaluate how errors in joint and inertial parameter values affect inverse dynamics calculations. Both stages were performed using a dynamic, 27 degree-of-freedom, full-body linkage model and synthetic (i.e., computer generated) gait data corresponding to a nominal experimental gait motion. In general, joint but not inertial parameter values could be found accurately from noisy kinematic data. Root-mean-square (RMS) errors were 3° and 4 mm for joint parameter values and 1 kg, 22 mm, and 74,500 kg*mm2 for inertial parameter values. Furthermore, errors in joint but not inertial parameter values had a significant effect on calculated lower-extremity inverse dynamics joint torques. The worst RMS torque error averaged 4% bodyweight*height (BW*H) due to joint parameter variations but less than 0.25% BW*H due to inertial parameter variations. These results suggest that inverse dynamics analyses of gait utilizing linkage models with joint constraints should calibrate the model’s joint parameter values to obtain accurate joint

  18. Structure parameters in molecular tunneling ionization theory

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Li, Wei; Zhao, Song-Feng

    2014-04-01

    We extracted the accurate structure parameters in molecular tunneling ionization theory (so called MO-ADK theory) for 22 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model.

  19. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  20. Measuring accurate body parameters of dressed humans with large-scale motion using a Kinect sensor.

    PubMed

    Xu, Huanghao; Yu, Yao; Zhou, Yu; Li, Yang; Du, Sidan

    2013-01-01

    Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods. PMID:24064597

  1. Accurate equilibrium structures of fluoro- and chloroderivatives of methane

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Demaison, Jean; Rudolph, Heinz Dieter

    2014-11-01

    This work is a systematic study of molecular structure of fluoro-, chloro-, and fluorochloromethanes. For the first time, the accurate ab initio structure is computed for 10 molecules (CF4, CClF3, CCl2F2, CCl3F, CHClF2, CHCl2F, CH2F2, CH2ClF, CH2Cl2, and CCl4) at the coupled cluster level of electronic structure theory including single and double excitations augmented by a perturbational estimate of the effects of connected triple excitations [CCSD(T)] with all electrons being correlated and Gaussian basis sets of at least quadruple-ζ quality. Furthermore, when possible, namely for the molecules CH2F2, CH2Cl2, CH2ClF, CHClF2, and CCl2F2, accurate semi-experimental equilibrium (rSEe) structure has also been determined. This is achieved through a least-squares structural refinement procedure based on the equilibrium rotational constants of all available isotopomers, determined by correcting the experimental ground-state rotational constants with computed ab initio vibration-rotation interaction constants and electronic g-factors. The computed and semi-experimental equilibrium structures are in excellent agreement with each other, but the rSEe structure is generally more accurate, in particular for the CF and CCl bond lengths. The carbon-halogen bond length is discussed within the framework of the ligand close-packing model as a function of the atomic charges. For this purpose, the accurate equilibrium structures of some other molecules with alternative ligands, such as CH3Li, CF3CCH, and CF3CN, are also computed.

  2. Accurate and efficient reconstruction of deep phylogenies from structured RNAs

    PubMed Central

    Stocsits, Roman R.; Letsch, Harald; Hertel, Jana; Misof, Bernhard; Stadler, Peter F.

    2009-01-01

    Ribosomal RNA (rRNA) genes are probably the most frequently used data source in phylogenetic reconstruction. Individual columns of rRNA alignments are not independent as a consequence of their highly conserved secondary structures. Unless explicitly taken into account, these correlation can distort the phylogenetic signal and/or lead to gross overestimates of tree stability. Maximum likelihood and Bayesian approaches are of course amenable to using RNA-specific substitution models that treat conserved base pairs appropriately, but require accurate secondary structure models as input. So far, however, no accurate and easy-to-use tool has been available for computing structure-aware alignments and consensus structures that can deal with the large rRNAs. The RNAsalsa approach is designed to fill this gap. Capitalizing on the improved accuracy of pairwise consensus structures and informed by a priori knowledge of group-specific structural constraints, the tool provides both alignments and consensus structures that are of sufficient accuracy for routine phylogenetic analysis based on RNA-specific substitution models. The power of the approach is demonstrated using two rRNA data sets: a mitochondrial rRNA set of 26 Mammalia, and a collection of 28S nuclear rRNAs representative of the five major echinoderm groups. PMID:19723687

  3. Accurate and efficient reconstruction of deep phylogenies from structured RNAs.

    PubMed

    Stocsits, Roman R; Letsch, Harald; Hertel, Jana; Misof, Bernhard; Stadler, Peter F

    2009-10-01

    Ribosomal RNA (rRNA) genes are probably the most frequently used data source in phylogenetic reconstruction. Individual columns of rRNA alignments are not independent as a consequence of their highly conserved secondary structures. Unless explicitly taken into account, these correlation can distort the phylogenetic signal and/or lead to gross overestimates of tree stability. Maximum likelihood and Bayesian approaches are of course amenable to using RNA-specific substitution models that treat conserved base pairs appropriately, but require accurate secondary structure models as input. So far, however, no accurate and easy-to-use tool has been available for computing structure-aware alignments and consensus structures that can deal with the large rRNAs. The RNAsalsa approach is designed to fill this gap. Capitalizing on the improved accuracy of pairwise consensus structures and informed by a priori knowledge of group-specific structural constraints, the tool provides both alignments and consensus structures that are of sufficient accuracy for routine phylogenetic analysis based on RNA-specific substitution models. The power of the approach is demonstrated using two rRNA data sets: a mitochondrial rRNA set of 26 Mammalia, and a collection of 28S nuclear rRNAs representative of the five major echinoderm groups. PMID:19723687

  4. An accurate Fortran code for computing hydrogenic continuum wave functions at a wide range of parameters

    NASA Astrophysics Data System (ADS)

    Peng, Liang-You; Gong, Qihuang

    2010-12-01

    The accurate computations of hydrogenic continuum wave functions are very important in many branches of physics such as electron-atom collisions, cold atom physics, and atomic ionization in strong laser fields, etc. Although there already exist various algorithms and codes, most of them are only reliable in a certain ranges of parameters. In some practical applications, accurate continuum wave functions need to be calculated at extremely low energies, large radial distances and/or large angular momentum number. Here we provide such a code, which can generate accurate hydrogenic continuum wave functions and corresponding Coulomb phase shifts at a wide range of parameters. Without any essential restrict to angular momentum number, the present code is able to give reliable results at the electron energy range [10,10] eV for radial distances of [10,10] a.u. We also find the present code is very efficient, which should find numerous applications in many fields such as strong field physics. Program summaryProgram title: HContinuumGautchi Catalogue identifier: AEHD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1233 No. of bytes in distributed program, including test data, etc.: 7405 Distribution format: tar.gz Programming language: Fortran90 in fixed format Computer: AMD Processors Operating system: Linux RAM: 20 MBytes Classification: 2.7, 4.5 Nature of problem: The accurate computation of atomic continuum wave functions is very important in many research fields such as strong field physics and cold atom physics. Although there have already existed various algorithms and codes, most of them can only be applicable and reliable in a certain range of parameters. We present here an accurate FORTRAN program for

  5. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  6. Accurate optical parameter extraction procedure for broadband near-infrared spectroscopy of brain matter

    PubMed Central

    Najafizadeh, Laleh; Gandjbakhche, Amir H.; Pourrezaei, Kambiz; Daryoush, Afshin

    2013-01-01

    Abstract. Modeling behavior of broadband (30 to 1000 MHz) frequency modulated near-infrared (NIR) photons through a phantom is the basis for accurate extraction of optical absorption and scattering parameters of biological turbid media. Photon dynamics in a phantom are predicted using both analytical and numerical simulation and are related to the measured insertion loss (IL) and insertion phase (IP) for a given geometry based on phantom optical parameters. Accuracy of the extracted optical parameters using finite element method (FEM) simulation is compared to baseline analytical calculations from the diffusion equation (DE) for homogenous brain phantoms. NIR spectroscopy is performed using custom-designed, broadband, free-space optical transmitter (Tx) and receiver (Rx) modules that are developed for photon migration at wavelengths of 680, 780, and 820 nm. Differential detection between two optical Rx locations separated by 0.3 cm is employed to eliminate systemic artifacts associated with interfaces of the optical Tx and Rx with the phantoms. Optical parameter extraction is achieved for four solid phantom samples using the least-square-error method in MATLAB (for DE) and COMSOL (for FEM) simulation by fitting data to measured results over broadband and narrowband frequency modulation. Confidence in numerical modeling of the photonic behavior using FEM has been established here by comparing the transmission mode’s experimental results with the predictions made by DE and FEM for known commercial solid brain phantoms. PMID:23322361

  7. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  8. BIOFILM IMAGE RECONSTRUCTION FOR ASSESSING STRUCTURAL PARAMETERS

    PubMed Central

    Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk

    2011-01-01

    The structure of biofilms can be numerically quantified from microscopy images using structural parameters. These parameters are used in biofilm image analysis to compare biofilms, to monitor temporal variation in biofilm structure, to quantify the effects of antibiotics on biofilm structure and to determine the effects of environmental conditions on biofilm structure. It is often hypothesized that biofilms with similar structural parameter values will have similar structures; however, this hypothesis has never been tested. The main goal was to test the hypothesis that the commonly used structural parameters can characterize the differences or similarities between biofilm structures. To achieve this goal 1) biofilm image reconstruction was developed as a new tool for assessing structural parameters, 2) independent reconstructions using the same starting structural parameters were tested to see how they differed from each other, 3) the effect of the original image parameter values on reconstruction success was evaluated and 4) the effect of the number and type of the parameters on reconstruction success was evaluated. It was found that two biofilms characterized by identical commonly used structural parameter values may look different, that the number and size of clusters in the original biofilm image affect image reconstruction success and that, in general, a small set of arbitrarily selected parameters may not reveal relevant differences between biofilm structures. PMID:21280029

  9. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  10. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. PMID:26121186

  11. Precise and accurate assessment of uncertainties in model parameters from stellar interferometry. Application to stellar diameters

    NASA Astrophysics Data System (ADS)

    Lachaume, Regis; Rabus, Markus; Jordan, Andres

    2015-08-01

    In stellar interferometry, the assumption that the observables can be seen as Gaussian, independent variables is the norm. In particular, neither the optical interferometry FITS (OIFITS) format nor the most popular fitting software in the field, LITpro, offer means to specify a covariance matrix or non-Gaussian uncertainties. Interferometric observables are correlated by construct, though. Also, the calibration by an instrumental transfer function ensures that the resulting observables are not Gaussian, even if uncalibrated ones happened to be so.While analytic frameworks have been published in the past, they are cumbersome and there is no generic implementation available. We propose here a relatively simple way of dealing with correlated errors without the need to extend the OIFITS specification or making some Gaussian assumptions. By repeatedly picking at random which interferograms, which calibrator stars, and which are the errors on their diameters, and performing the data processing on the bootstrapped data, we derive a sampling of p(O), the multivariate probability density function (PDF) of the observables O. The results can be stored in a normal OIFITS file. Then, given a model m with parameters P predicting observables O = m(P), we can estimate the PDF of the model parameters f(P) = p(m(P)) by using a density estimation of the observables' PDF p.With observations repeated over different baselines, on nights several days apart, and with a significant set of calibrators systematic errors are de facto taken into account. We apply the technique to a precise and accurate assessment of stellar diameters obtained at the Very Large Telescope Interferometer with PIONIER.

  12. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    SciTech Connect

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-09-15

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.

  13. Accurate parameters for HD 209458 and its planet from HST spectrophotometry

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2016-08-01

    We present updated parameters for the star HD 209458 and its transiting giant planet. The stellar angular diameter θ=0.2254±0.0017 mas is obtained from the average ratio between the absolute flux observed with the Hubble Space Telescope and that of the best-fitting Kurucz model atmosphere. This angular diameter represents an improvement in precision of more than four times compared to available interferometric determinations. The stellar radius R⋆=1.20±0.05 R⊙ is ascertained by combining the angular diameter with the Hipparcos trigonometric parallax, which is the main contributor to its uncertainty, and therefore the radius accuracy should be significantly improved with Gaia's measurements. The radius of the exoplanet Rp=1.41±0.06 RJ is derived from the corresponding transit depth in the light curve and our stellar radius. From the model fitting, we accurately determine the effective temperature, Teff=6071±20 K, which is in perfect agreement with the value of 6070±24 K calculated from the angular diameter and the integrated spectral energy distribution. We also find precise values from recent Padova Isochrones, such as R⋆=1.20±0.06 R⊙ and Teff=6099±41 K. We arrive at a consistent picture from these methods and compare the results with those from the literature.

  14. Parameter identification of civil engineering structures

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  15. Parameter estimation for distributed parameter models of complex, flexible structures

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.

    1991-01-01

    Distributed parameter modeling of structural dynamics has been limited to simple spacecraft configurations because of the difficulty of handling several distributed parameter systems linked at their boundaries. Although there is other computer software able to generate such models or complex, flexible spacecraft, unfortunately, neither is suitable for parameter estimation. Because of this limitation the computer software PDEMOD is being developed for the express purposes of modeling, control system analysis, parameter estimation and structure optimization. PDEMOD is capable of modeling complex, flexible spacecraft which consist of a three-dimensional network of flexible beams and rigid bodies. Each beam has bending (Bernoulli-Euler or Timoshenko) in two directions, torsion, and elongation degrees of freedom. The rigid bodies can be attached to the beam ends at any angle or body location. PDEMOD is also capable of performing parameter estimation based on matching experimental modal frequencies and static deflection test data. The underlying formulation and the results of using this approach for test data of the Mini-MAST truss will be discussed. The resulting accuracy of the parameter estimates when using such limited data can impact significantly the instrumentation requirements for on-orbit tests.

  16. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation

    PubMed Central

    Ralph, Duncan K.; Matsen, Frederick A.

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM “factorization” strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM. PMID:26751373

  17. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation.

    PubMed

    Ralph, Duncan K; Matsen, Frederick A

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM. PMID:26751373

  18. Effects of Structural Errors on Parameter Estimates

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Paper introduces concept of near equivalence in probability between different parameters or mathematical models of physical system. One in series of papers, each establishes different part of rigorous theory of mathematical modeling based on concepts of structural error, identifiability, and equivalence. This installment focuses upon effects of additive structural errors on degree of bias in estimates parameters.

  19. Accurate protein structure modeling using sparse NMR data and homologous structure information

    PubMed Central

    Thompson, James M.; Sgourakis, Nikolaos G.; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L.; Szyperski, Thomas; Montelione, Gaetano T.; Baker, David

    2012-01-01

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining , 13C, and 15N backbone and 13Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2–1.9 Å relative to the conventional determined NMR ensembles and of 0.9–1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments. PMID:22665781

  20. Accurate analytical method for the extraction of solar cell model parameters

    NASA Astrophysics Data System (ADS)

    Phang, J. C. H.; Chan, D. S. H.; Phillips, J. R.

    1984-05-01

    Single diode solar cell model parameters are rapidly extracted from experimental data by means of the presently derived analytical expressions. The parameter values obtained have a less than 5 percent error for most solar cells, in light of the extraction of model parameters for two cells of differing quality which were compared with parameters extracted by means of the iterative method.

  1. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was

  2. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    SciTech Connect

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; Ge, Jian; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Wang, Ji; and others

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T {sub eff}, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ∼ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T {sub eff}, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An

  3. Accurate and rapid optical characterization of an anisotropic guided structure based on a neural method.

    PubMed

    Robert, Stéphane; Battie, Yann; Jamon, Damien; Royer, Francois

    2007-04-10

    Optimal performances of integrated optical devices are obtained by the use of an accurate and reliable characterization method. The parameters of interest, i.e., optical indices and thickness of the waveguide structure, are calculated from effective indices by means of an inversion procedure. We demonstrate how an artificial neural network can achieve such a process. The artificial neural network used is a multilayer perceptron. The first result concerns a simulated anisotropic waveguide. The accuracy in the determination of optical indices and waveguide thickness is 5 x 10(-5) and 4 nm, respectively. Then an experimental application on a silica-titania thin film is performed. In addition, effective indices are measured by m-lines spectroscopy. Finally, a comparison with a classical optimization algorithm demonstrates the robustness of the neural method. PMID:17384718

  4. Accurate nuclear masses from a three parameter Kohn-Sham DFT approach (BCPM)

    SciTech Connect

    Baldo, M.; Robledo, L. M.; Schuck, P.; Vinas, X.

    2012-10-20

    Given the promising features of the recently proposed Barcelona-Catania-Paris (BCP) functional [1], it is the purpose of this work to still improve on it. It is, for instance, shown that the number of open parameters can be reduced from 4-5 to 2-3, i.e. by practically a factor of two without deteriorating the results.

  5. Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited

    SciTech Connect

    Fogtmann-Schulz, Alexandra; Hinrup, Brian; Van Eylen, Vincent; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Silva Aguirre, Víctor; Tingley, Brandon

    2014-02-01

    Since the discovery of Kepler-10, the system has received considerable interest because it contains a small, rocky planet which orbits the star in less than a day. The system's parameters, announced by the Kepler team and subsequently used in further research, were based on only five months of data. We have reanalyzed this system using the full span of 29 months of Kepler photometric data, and obtained improved information about its star and the planets. A detailed asteroseismic analysis of the extended time series provides a significant improvement on the stellar parameters: not only can we state that Kepler-10 is the oldest known rocky-planet-harboring system at 10.41 ± 1.36 Gyr, but these parameters combined with improved planetary parameters from new transit fits gives us the radius of Kepler-10b to within just 125 km. A new analysis of the full planetary phase curve leads to new estimates on the planetary temperature and albedo, which remain degenerate in the Kepler band. Our modeling suggests that the flux level during the occultation is slightly lower than at the transit wings, which would imply that the nightside of this planet has a non-negligible temperature.

  6. Towards the computations of accurate spectroscopic parameters and vibrational spectra for organic compounds

    NASA Astrophysics Data System (ADS)

    Hochlaf, M.; Puzzarini, C.; Senent, M. L.

    2015-07-01

    We present multi-component computations for rotational constants, vibrational and torsional levels of medium-sized molecules. Through the treatment of two organic sulphur molecules, ethyl mercaptan and dimethyl sulphide, which are relevant for atmospheric and astrophysical media, we point out the outstanding capabilities of explicitly correlated coupled clusters (CCSD(T)-F12) method in conjunction with the cc-pVTZ-F12 basis set for the accurate predictions of such quantities. Indeed, we show that the CCSD(T)-F12/cc-pVTZ-F12 equilibrium rotational constants are in good agreement with those obtained by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set (CBS) limit and core-correlation effects [CCSD(T)/CBS+CV], thus leading to values of ground-state rotational constants rather close to the corresponding experimental data. For vibrational and torsional levels, our analysis reveals that the anharmonic frequencies derived from CCSD(T)-F12/cc-pVTZ-F12 harmonic frequencies and anharmonic corrections (Δν = ω - ν) at the CCSD/cc-pVTZ level closely agree with experimental results. The pattern of the torsional transitions and the shape of the potential energy surfaces along the torsional modes are also well reproduced using the CCSD(T)-F12/cc-pVTZ-F12 energies. Interestingly, this good accuracy is accompanied with a strong reduction of the computational costs. This makes the procedures proposed here as schemes of choice for effective and accurate prediction of spectroscopic properties of organic compounds. Finally, popular density functional approaches are compared with the coupled cluster (CC) methodologies in torsional studies. The long-range CAM-B3LYP functional of Handy and co-workers is recommended for large systems.

  7. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1991-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  8. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1990-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  9. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  10. Beyond Ellipse(s): Accurately Modelling the Isophotal Structure of Galaxies with ISOFIT and CMODEL

    NASA Astrophysics Data System (ADS)

    Ciambur, B. C.

    2015-09-01

    This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.

  11. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  12. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    PubMed Central

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-01-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154

  13. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS.

    PubMed

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-01-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154

  14. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  15. Accurate solutions, parameter studies and comparisons for the Euler and potential flow equations

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Batina, John T.

    1988-01-01

    Parameter studies are conducted using the Euler and potential flow equation models for steady and unsteady flows in both two and three dimensions. The Euler code is an implicit, upwind, finite volume code which uses the Van Leer method of flux vector splitting which has been recently extended for use on dynamic meshes and maintain all the properties of the original splitting. The potential flow code is an implicit, finite difference method for solving the transonic small disturbance equations and incorporates both entropy and vorticity corrections into the solution procedures thereby extending its applicability into regimes where shock strength normally precludes its use. Parameter studies resulting in benchmark type calculations include the effects of spatial and temporal refinement, spatial order of accuracy, far field boundary conditions for steady flow, frequency of oscillation, and the use of subiterations at each time step to reduce linearization and factorization errors. Comparisons between Euler and potential flow results are made, as well as with experimental data where available.

  16. Accurate solutions, parameter studies and comparisons for the Euler and potential flow equations

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Batina, John T.

    1988-01-01

    Parameter studies are conducted using the Euler and potential flow equation models for unsteady and steady flows in both two and three dimensions. The Euler code is an implicit, upwind, finite volume code which uses the Van Leer method of flux-vector-splitting which has been recently extended for use on dynamic meshes and maintain all the properties of the original splitting. The potential flow code is an implicit, finite difference method for solving the transonic small disturbance equations and incorporates both entropy and vorticity corrections into the solution procedures thereby extending its applicability into regimes where shock strength normally precludes its use. Parameter studies resulting in benchmark type calculations include the effects of spatial and temporal refinement, spatial order of accuracy, far field boundary conditions for steady flow, frequency of oscillation, and the use of subiterations at each time step to reduce linearization and factorization errors. Comparisons between Euler and potential flows results are made as well as with experimental data where available.

  17. Can a combination of ultrasonographic parameters accurately evaluate concussion and guide return-to-play decisions?

    PubMed

    Cartwright, Michael S; Dupuis, Janae E; Bargoil, Jessica M; Foster, Dana C

    2015-09-01

    Mild traumatic brain injury, often referred to as concussion, is a common, potentially debilitating, and costly condition. One of the main challenges in diagnosing and managing concussion is that there is not currently an objective test to determine the presence of a concussion and to guide return-to-play decisions for athletes. Traditional neuroimaging tests, such as brain magnetic resonance imaging, are normal in concussion, and therefore diagnosis and management are guided by reported symptoms. Some athletes will under-report symptoms to accelerate their return-to-play and others will over-report symptoms out of fear of further injury or misinterpretation of underlying conditions, such as migraine headache. Therefore, an objective measure is needed to assist in several facets of concussion management. Limited data in animal and human testing indicates that intracranial pressure increases slightly and cerebrovascular reactivity (the ability of the cerebral arteries to auto-regulate in response to changes in carbon dioxide) decreases slightly following mild traumatic brain injury. We hypothesize that a combination of ultrasonographic measurements (optic nerve sheath diameter and transcranial Doppler assessment of cerebrovascular reactivity) into a single index will allow for an accurate and non-invasive measurement of intracranial pressure and cerebrovascular reactivity, and this index will be clinically relevant and useful for guiding concussion diagnosis and management. Ultrasound is an ideal modality for the evaluation of concussion because it is portable (allowing for evaluation in many settings, such as on the playing field or in a combat zone), radiation-free (making repeat scans safe), and relatively inexpensive (resulting in nearly universal availability). This paper reviews the literature supporting our hypothesis that an ultrasonographic index can assist in the diagnosis and management of concussion, and it also presents limited data regarding the

  18. Natural frequencies of structures with interval parameters

    NASA Astrophysics Data System (ADS)

    Sofi, A.; Muscolino, G.; Elishakoff, I.

    2015-07-01

    This paper deals with the evaluation of the lower and upper bounds of the natural frequencies of structures with uncertain-but-bounded parameters. The solution of the generalized interval eigenvalue problem is pursued by taking into account the actual variability and dependencies of uncertain structural parameters affecting the mass and stiffness matrices. To this aim, interval uncertainties are handled by applying the improved interval analysis via extra unitary interval (EUI), recently introduced by the first two authors. By associating an EUI to each uncertain-but-bounded parameter, the cases of mass and stiffness matrices affected by fully disjoint, completely or partially coincident uncertainties are considered. Then, based on sensitivity analysis, it is shown that the bounds of the interval eigenvalues can be evaluated as solution of two appropriate deterministic eigenvalue problems without requiring any combinatorial procedure. If the eigenvalues are monotonic functions of the uncertain parameters, then the exact bounds are obtained. The accuracy of the proposed method is demonstrated by numerical results concerning truss and beam structures with material and/or geometrical uncertainties.

  19. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters

    PubMed Central

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-01-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. PMID:25883146

  20. Accurate Analytical and Statistical Approaches to Reduce O-C Discrepancies in the Precessional Parameters

    NASA Astrophysics Data System (ADS)

    Martínez, M. J.; Marco, F. J.; López, J. A.

    2009-02-01

    The Hipparcos catalog provides a reference frame at optical wavelengths for the new International Celestial Reference System (ICRS). This new reference system was adopted following the resolution agreed at the 23rd IAU General Assembly held in Kyoto in 1997. Differences in the Hipparcos system of proper motions and the previous materialization of the reference frame, the FK5, are expected to be caused only by the combined effects of the motion of the equinox of the FK5 and the precession of the equator and the ecliptic. Several authors have pointed out an inconsistency between the differences in proper motion of the Hipparcos-FK5 and the correction of the precessional values derived from VLBI and lunar laser ranging (LLR) observations. Most of them have claimed that these discrepancies are due to slightly biased proper motions in the FK5 catalog. The different mathematical models that have been employed to explain these errors have not fully accounted for the discrepancies in the correction of the precessional parameters. Our goal here is to offer an explanation for this fact. We propose the use of independent parametric and nonparametric models. The introduction of a nonparametric model, combined with the inner product in the square integrable functions over the unitary sphere, would give us values which do not depend on the possible interdependencies existing in the data set. The evidence shows that zonal studies are needed. This would lead us to introduce a local nonparametric model. All these models will provide independent corrections to the precessional values, which could then be compared in order to study the reliability in each case. Finally, we obtain values for the precession corrections that are very consistent with those that are currently adopted.

  1. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html. PMID:18376982

  2. Accurate response surface approximations for weight equations based on structural optimization

    NASA Astrophysics Data System (ADS)

    Papila, Melih

    Accurate weight prediction methods are vitally important for aircraft design optimization. Therefore, designers seek weight prediction techniques with low computational cost and high accuracy, and usually require a compromise between the two. The compromise can be achieved by combining stress analysis and response surface (RS) methodology. While stress analysis provides accurate weight information, RS techniques help to transmit effectively this information to the optimization procedure. The focus of this dissertation is structural weight equations in the form of RS approximations and their accuracy when fitted to results of structural optimizations that are based on finite element analyses. Use of RS methodology filters out the numerical noise in structural optimization results and provides a smooth weight function that can easily be used in gradient-based configuration optimization. In engineering applications RS approximations of low order polynomials are widely used, but the weight may not be modeled well by low-order polynomials, leading to bias errors. In addition, some structural optimization results may have high-amplitude errors (outliers) that may severely affect the accuracy of the weight equation. Statistical techniques associated with RS methodology are sought in order to deal with these two difficulties: (1) high-amplitude numerical noise (outliers) and (2) approximation model inadequacy. The investigation starts with reducing approximation error by identifying and repairing outliers. A potential reason for outliers in optimization results is premature convergence, and outliers of such nature may be corrected by employing different convergence settings. It is demonstrated that outlier repair can lead to accuracy improvements over the more standard approach of removing outliers. The adequacy of approximation is then studied by a modified lack-of-fit approach, and RS errors due to the approximation model are reduced by using higher order polynomials. In

  3. Estimating Building Simulation Parameters via Bayesian Structure Learning

    SciTech Connect

    Edwards, Richard E; New, Joshua Ryan; Parker, Lynne Edwards

    2013-01-01

    Many key building design policies are made using sophisticated computer simulations such as EnergyPlus (E+), the DOE flagship whole-building energy simulation engine. E+ and other sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. Currently, these problems are addressed by having an engineer manually calibrate simulation parameters to real world data or using algorithmic optimization methods to adjust the building parameters. However, some simulations engines, like E+, are computationally expensive, which makes repeatedly evaluating the simulation engine costly. This work explores addressing this issue by automatically discovering the simulation's internal input and output dependencies from 20 Gigabytes of E+ simulation data, future extensions will use 200 Terabytes of E+ simulation data. The model is validated by inferring building parameters for E+ simulations with ground truth building parameters. Our results indicate that the model accurately represents parameter means with some deviation from the means, but does not support inferring parameter values that exist on the distribution's tail.

  4. Identification of bolted lap joints parameters in assembled structures

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-02-01

    Bolted lap joints have significant influence on the dynamical behaviour of the assembled structures due to creation of strong local flexibility and damping. In modelling the dynamical behaviour of assembled structures the joint interface model must be represented accurately. A nonlinear model for bolted lap joints and interfaces is proposed capable of representing the dominant physics involved in the joint such as micro/macro-slip. The joint interface is modelled using a combination of linear and nonlinear springs and a damper to simulate the damping effects of the joint. An estimate of the response of the structure with a nonlinear model for the bolted joint under external excitations is obtained using the method of multiple scales. The parameters of the model, i.e. the spring constants and the damper coefficient, are functions of normal and tangential stresses at the joint interface and are identified by minimizing the difference between the model predictions and the experimentally measured data.

  5. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    PubMed

    Subramanian, Swetha; Mast, T Douglas

    2015-10-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. PMID:26352462

  6. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Subramanian, Swetha; Mast, T. Douglas

    2015-09-01

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  7. Accurate structural and spectroscopic characterization of prebiotic molecules: The neutral and cationic acetyl cyanide and their related species.

    PubMed

    Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C

    2015-11-14

    In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations. PMID:26567669

  8. Bayesian statistical treatment of the fluorescence of AFLP bands leads to accurate genetic structure inference.

    PubMed

    Gaggiotti, Oscar E

    2010-11-01

    Ever since the introduction of allozymes in the 1960s, evolutionary biologists and ecologists have continued to search for more powerful molecular markers to estimate important parameters such as effective population size and migration rates and to make inferences about the demographic history of populations, the relationships between individuals and the genetic architecture of phenotypic variation (Bensch & Akesson 2005; Bonin et al. 2007). Choosing a marker requires a thorough consideration of the trade-offs associated with the different techniques and the type of data obtained from them. Some markers can be very informative but require substantial amounts of start-up time (e.g. microsatellites), while others require very little time but are much less polymorphic. Amplified fragment length polymorphism (AFLP) is a firmly established molecular marker technique that falls in this latter category. AFLPs are widely distributed throughout the genome and can be used on organisms for which there is no a priori sequence information (Meudt & Clarke 2007). These properties together with their moderate cost and short start-up time have made them the method of choice for many molecular ecology studies of wild species (Bensch & Akesson 2005). However, they have a major disadvantage, they are dominant. This represents a very important limitation because many statistical genetics methods appropriate for molecular ecology studies require the use of codominant markers. In this issue, Foll et al. (2010) present an innovative hierarchical Bayesian method that overcomes this limitation. The proposed approach represents a comprehensive statistical treatment of the fluorescence of AFLP bands and leads to accurate inferences about the genetic structure of natural populations. Besides allowing a quasi-codominant treatment of AFLPs, this new method also solves the difficult problems posed by subjectivity in the scoring of AFLP bands. PMID:20958811

  9. Accurate characterization of the stellar and orbital parameters of the exoplanetary system WASP-33 b from orbital dynamics

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2016-01-01

    By using the most recently published Doppler tomography measurements and accurate theoretical modelling of the oblateness-driven orbital precessions, we tightly constrain some of the physical and orbital parameters of the planetary system hosted by the fast rotating star WASP-33. In particular, the measurements of the orbital inclination ip to the plane of the sky and of the sky-projected spin-orbit misalignment λ at two epochs about six years apart allowed for the determination of the longitude of the ascending node Ω and of the orbital inclination I to the apparent equatorial plane at the same epochs. As a consequence, average rates of change dot{Ω }_exp, dot{I}_exp of this two orbital elements, accurate to a ≈10-2 deg yr-1 level, were calculated as well. By comparing them to general theoretical expressions dot{Ω }_{J_2}, dot{I}_{J_2} for their precessions induced by an oblate star whose symmetry axis is arbitrarily oriented, we were able to determine the angle i⋆ between the line of sight the star's spin {S}^{star } and its first even zonal harmonic J_2^{star } obtaining i^{star } = {142}^{+10}_{-11} deg, J_2^{star } = 2.1^{+0.8}_{-0.5}times; 10^{-4}. As a by-product, the angle between {S}^{star } and the orbital angular momentum L is as large as about ψ ≈ 100 ° psi; ^{2008} = 99^{+5}_{-4} deg, ψ ^{{2014}} = 103^{+5}_{-4} deg and changes at a rate dot{ψ }= 0.{7}^{+1.5}_{-1.6} deg {yr}^{-1}. The predicted general relativistic Lense-Thirring precessions, of the order of ≈10-3deg yr-1, are, at present, about one order of magnitude below the measurability threshold.

  10. Accurate structural study of langasite-family Ca3TaGa3Si2O14 crystal

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.

    2016-03-01

    An accurate X-ray diffraction study of Ca3TaGa3Si2O14 single crystal has been performed using two datasets obtained on a diffractometer equipped with a CCD area detector ( a = 8.1056(2) Å, c = 4.9800(1) Å, sp. gr. P321, Z = 1, R/ wR = 0.486/0.488%). A model structure is determined which is characterized by a high degree of reproducibility of structural parameters. Each site in Ca3TaGa3Si2O14 is occupied by atoms of only one type. Nevertheless, its structural feature is asymmetric disordering of sites of Ca, Ta, Ga, and two out of three oxygen atoms occupying special and general sites. A transition of some part of Ca atoms (~3%) from 3 e sites on the twofold symmetry axis to general 6 g sites is revealed.

  11. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    PubMed Central

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm−1 accuracy. PMID:27138292

  12. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions.

    PubMed

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe(-) using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm(-1) or 153.236(34) meV. The fine structures of Fe(-) were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm(-1) accuracy. PMID:27138292

  13. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-05-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe‑ using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm‑1 or 153.236(34) meV. The fine structures of Fe‑ were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm‑1 accuracy.

  14. Determination of structure parameters in molecular tunnelling ionisation model

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Zhao, Song-Feng; Zhang, Cai-Rong; Li, Wei; Zhou, Xiao-Xin

    2014-04-01

    We extracted the accurate structure parameters in a molecular tunnelling ionisation model (the so-called MO-ADK model) for 23 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behaviour are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model. We show that the orientation-dependent ionisation rate reflects the shape of the ionising orbitals in general. The influences of the Stark shifts of the energy levels on the orientation-dependent ionisation rates of the polar molecules are studied. We also examine the angle-dependent ionisation rates (or probabilities) based on the MO-ADK model by comparing with the molecular strong-field approximation calculations and with recent experimental measurements.

  15. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  16. Parameter identification of material constants in a composite shell structure

    SciTech Connect

    Martinez, D.R.; Carne, T.G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently, comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test-verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. In this work a parameter identification procedure was used to determine the elastic constants of a cylindrical, graphite epoxy composite shell. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem. 17 refs., 7 figs.

  17. CoMOGrad and PHOG: From Computer Vision to Fast and Accurate Protein Tertiary Structure Retrieval

    PubMed Central

    Karim, Rezaul; Aziz, Mohd. Momin Al; Shatabda, Swakkhar; Rahman, M. Sohel; Mia, Md. Abul Kashem; Zaman, Farhana; Rakin, Salman

    2015-01-01

    The number of entries in a structural database of proteins is increasing day by day. Methods for retrieving protein tertiary structures from such a large database have turn out to be the key to comparative analysis of structures that plays an important role to understand proteins and their functions. In this paper, we present fast and accurate methods for the retrieval of proteins having tertiary structures similar to a query protein from a large database. Our proposed methods borrow ideas from the field of computer vision. The speed and accuracy of our methods come from the two newly introduced features- the co-occurrence matrix of the oriented gradient and pyramid histogram of oriented gradient- and the use of Euclidean distance as the distance measure. Experimental results clearly indicate the superiority of our approach in both running time and accuracy. Our method is readily available for use from this website: http://research.buet.ac.bd:8080/Comograd/. PMID:26293226

  18. CoMOGrad and PHOG: From Computer Vision to Fast and Accurate Protein Tertiary Structure Retrieval.

    PubMed

    Karim, Rezaul; Aziz, Mohd Momin Al; Shatabda, Swakkhar; Rahman, M Sohel; Mia, Md Abul Kashem; Zaman, Farhana; Rakin, Salman

    2015-01-01

    The number of entries in a structural database of proteins is increasing day by day. Methods for retrieving protein tertiary structures from such a large database have turn out to be the key to comparative analysis of structures that plays an important role to understand proteins and their functions. In this paper, we present fast and accurate methods for the retrieval of proteins having tertiary structures similar to a query protein from a large database. Our proposed methods borrow ideas from the field of computer vision. The speed and accuracy of our methods come from the two newly introduced features- the co-occurrence matrix of the oriented gradient and pyramid histogram of oriented gradient- and the use of Euclidean distance as the distance measure. Experimental results clearly indicate the superiority of our approach in both running time and accuracy. Our method is readily available for use from this website: http://research.buet.ac.bd:8080/Comograd/. PMID:26293226

  19. EXAFS Energy Shift and Structural Parameters

    NASA Astrophysics Data System (ADS)

    Kelly, Shelly D.; Ravel, Bruce

    2007-02-01

    In EXAFS analysis, the energy shift parameter is used to align the theoretical calculated spectrum to the energy grid of the measured spectrum. Unrealistically large energy shift values, sometimes in excess of 20 eV, are at times published in research articles. We therefore see the need for a concise discussion of the EXAFS energy shift parameter. This paper is intended as a learning tool for the proper alignment of theory to measured EXAFS spectra and proper interpretation of the energy shift parameter.

  20. Reconstruction of biofilm images: combining local and global structural parameters.

    PubMed

    Resat, Haluk; Renslow, Ryan S; Beyenal, Haluk

    2014-10-01

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process. PMID:25377487

  1. Reconstruction of biofilm images: combining local and global structural parameters

    SciTech Connect

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-11-07

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  2. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields.

    PubMed

    Geng, Hao; Jiang, Fan; Wu, Yun-Dong

    2016-05-19

    Cyclic peptides (CPs) are promising candidates for drugs, chemical biology tools, and self-assembling nanomaterials. However, the development of reliable and accurate computational methods for their structure prediction has been challenging. Here, 20 all-trans CPs of 5-12 residues selected from Cambridge Structure Database have been simulated using replica-exchange molecular dynamics with four different force fields. Our recently developed residue-specific force fields RSFF1 and RSFF2 can correctly identify the crystal-like conformations of more than half CPs as the most populated conformation. The RSFF2 performs the best, which consistently predicts the crystal structures of 17 out of 20 CPs with rmsd < 1.1 Å. We also compared the backbone (ϕ, ψ) sampling of residues in CPs with those in short linear peptides and in globular proteins. In general, unlike linear peptides, CPs have local conformational free energies and entropies quite similar to globular proteins. PMID:27128113

  3. Screened exchange hybrid density functional for accurate and efficient structures and interaction energies.

    PubMed

    Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan

    2016-06-21

    We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results. PMID:27240749

  4. Parameter identification of material constants in a composite shell structure

    NASA Technical Reports Server (NTRS)

    Martinez, David R.; Carne, Thomas G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  5. Accurate Damage Location in Complex Composite Structures and Industrial Environments using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Eaton, M.; Pearson, M.; Lee, W.; Pullin, R.

    2015-07-01

    The ability to accurately locate damage in any given structure is a highly desirable attribute for an effective structural health monitoring system and could help to reduce operating costs and improve safety. This becomes a far greater challenge in complex geometries and materials, such as modern composite airframes. The poor translation of promising laboratory based SHM demonstrators to industrial environments forms a barrier to commercial up take of technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic stress waves released by the growth of damage. It offers very sensitive damage detection, using a sparse array of sensors to detect and globally locate damage within a structure. However its application to complex structures commonly yields poor accuracy due to anisotropic wave propagation and the interruption of wave propagation by structural features such as holes and thickness changes. This work adopts an empirical mapping technique for AE location, known as Delta T Mapping, which uses experimental training data to account for such structural complexities. The technique is applied to a complex geometry composite aerospace structure undergoing certification testing. The component consists of a carbon fibre composite tube with varying wall thickness and multiple holes, that was loaded under bending. The damage location was validated using X-ray CT scanning and the Delta T Mapping technique was shown to improve location accuracy when compared with commercial algorithms. The onset and progression of damage were monitored throughout the test and used to inform future design iterations.

  6. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    PubMed Central

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.

    2014-01-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409

  7. Accurate Inference of Subtle Population Structure (and Other Genetic Discontinuities) Using Principal Coordinates

    PubMed Central

    Reeves, Patrick A.; Richards, Christopher M.

    2009-01-01

    Background Accurate inference of genetic discontinuities between populations is an essential component of intraspecific biodiversity and evolution studies, as well as associative genetics. The most widely-used methods to infer population structure are model-based, Bayesian MCMC procedures that minimize Hardy-Weinberg and linkage disequilibrium within subpopulations. These methods are useful, but suffer from large computational requirements and a dependence on modeling assumptions that may not be met in real data sets. Here we describe the development of a new approach, PCO-MC, which couples principal coordinate analysis to a clustering procedure for the inference of population structure from multilocus genotype data. Methodology/Principal Findings PCO-MC uses data from all principal coordinate axes simultaneously to calculate a multidimensional “density landscape”, from which the number of subpopulations, and the membership within subpopulations, is determined using a valley-seeking algorithm. Using extensive simulations, we show that this approach outperforms a Bayesian MCMC procedure when many loci (e.g. 100) are sampled, but that the Bayesian procedure is marginally superior with few loci (e.g. 10). When presented with sufficient data, PCO-MC accurately delineated subpopulations with population Fst values as low as 0.03 (G'st>0.2), whereas the limit of resolution of the Bayesian approach was Fst = 0.05 (G'st>0.35). Conclusions/Significance We draw a distinction between population structure inference for describing biodiversity as opposed to Type I error control in associative genetics. We suggest that discrete assignments, like those produced by PCO-MC, are appropriate for circumscribing units of biodiversity whereas expression of population structure as a continuous variable is more useful for case-control correction in structured association studies. PMID:19172174

  8. Improved centroid moment tensor analyses in the NIED AQUA (Accurate and QUick Analysis system for source parameters)

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Asano, Y.; Matsumoto, T.

    2012-12-01

    The rapid determination of hypocentral parameters and their transmission to the public are valuable components of disaster mitigation. We have operated an automatic system for this purpose—termed the Accurate and QUick Analysis system for source parameters (AQUA)—since 2005 (Matsumura et al., 2006). In this system, the initial hypocenter, the moment tensor (MT), and the centroid moment tensor (CMT) solutions are automatically determined and posted on the NIED Hi-net Web site (www.hinet.bosai.go.jp). This paper describes improvements made to the AQUA to overcome limitations that became apparent after the 2011 Tohoku Earthquake (05:46:17, March 11, 2011 in UTC). The improvements included the processing of NIED F-net velocity-type strong motion records, because NIED F-net broadband seismographs are saturated for great earthquakes such as the 2011 Tohoku Earthquake. These velocity-type strong motion seismographs provide unsaturated records not only for the 2011 Tohoku Earthquake, but also for recording stations located close to the epicenters of M>7 earthquakes. We used 0.005-0.020 Hz records for M>7.5 earthquakes, in contrast to the 0.01-0.05 Hz records employed in the original system. The initial hypocenters determined based on arrival times picked by using seismograms recorded by NIED Hi-net stations can have large errors in terms of magnitude and hypocenter location, especially for great earthquakes or earthquakes located far from the onland Hi-net network. The size of the 2011 Tohoku Earthquake was initially underestimated in the AQUA to be around M5 at the initial stage of rupture. Numerous aftershocks occurred at the outer rise east of the Japan trench, where a great earthquake is anticipated to occur. Hence, we modified the system to repeat the MT analyses assuming a larger size, for all earthquakes for which the magnitude was initially underestimated. We also broadened the search range of centroid depth for earthquakes located far from the onland Hi

  9. "Cosmological Parameters from Large Scale Structure"

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    2005-01-01

    This grant has provided primary support for graduate student Mark Neyrinck, and some support for the PI and for colleague Nick Gnedin, who helped co-supervise Neyrinck. This award had two major goals. First, to continue to develop and apply methods for measuring galaxy power spectra on large, linear scales, with a view to constraining cosmological parameters. And second, to begin try to understand galaxy clustering at smaller. nonlinear scales well enough to constrain cosmology from those scales also. Under this grant, the PI and collaborators, notably Max Tegmark. continued to improve their technology for measuring power spectra from galaxy surveys at large, linear scales. and to apply the technology to surveys as the data become available. We believe that our methods are best in the world. These measurements become the foundation from which we and other groups measure cosmological parameters.

  10. Using Dielectric Properties to Design Nonempirical Hybrid Functionals for Accurate Electronic Structure

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    2015-03-01

    Building upon a recently proposed self-consistent hybrid (sc-hybrid) functional, where the optimal dielectric screening is included self-consistently, we propose an improved form by incorporating range-separation of the exchange part. We discuss the choice of the non-empirical parameters defining range separation, and we present results for condensed media including semiconductors, amorphous insulators, and molecular crystals. We find that the range-separated sc-hybrid functional further improves upon the electronic gaps obtained with full-range sc-hybrids, thus providing an accurate functional for high throughput band gap engineering. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and ARL Grant Number W911NF-12-2-0023.

  11. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.

    PubMed

    Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo

    2016-05-15

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817

  12. Cross-sectional structural parameters from densitometry

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Whalen, Robert T.

    2002-01-01

    Bone densitometry has previously been used to obtain cross-sectional properties of bone from a single X-ray projection across the bone width. Using three unique projections, we have extended the method to obtain the principal area moments of inertia and orientations of the principal axes at each scan cross-section along the length of the scan. Various aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of cross-sectional properties. Factors considered included X-ray photon energy, initial scan orientation, the angle spanned by the three scans (included angle), and I(min)/I(max) ratios. Principal moments of inertia were accurate to within +/-3.1% and principal angles were within +/-1 degrees of the expected value for phantoms scanned with included angles of 60 degrees and 90 degrees at the higher X-ray photon energy (140 kVp). Low standard deviations in the error (0.68-1.84%) also indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 degrees. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (I(min)/I(max)) values when various included angles are used make this technique viable for future in vivo studies.

  13. The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures

    PubMed Central

    Holton, James M; Classen, Scott; Frankel, Kenneth A; Tainer, John A

    2014-01-01

    In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree. These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its protein-solvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill. Database Coordinates and structure factors for the real data have been submitted to the Protein Data Bank under accession 4tws. PMID:25040949

  14. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  15. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  16. conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure.

    PubMed

    Kieslich, Chris A; Smadbeck, James; Khoury, George A; Floudas, Christodoulos A

    2016-03-28

    Accurate prediction of protein secondary structure remains a crucial step in most approaches to the protein-folding problem, yet the prediction of ordered secondary structure, specifically beta-strands, remains a challenge. We developed a consensus secondary structure prediction method, conSSert, which is based on support vector machines (SVM) and provides exceptional accuracy for the prediction of beta-strands with QE accuracy of over 0.82 and a Q2-EH of 0.86. conSSert uses as input probabilities for the three types of secondary structure (helix, strand, and coil) that are predicted by four top performing methods: PSSpred, PSIPRED, SPINE-X, and RAPTOR. conSSert was trained/tested using 4261 protein chains from PDBSelect25, and 8632 chains from PISCES. Further validation was performed using targets from CASP9, CASP10, and CASP11. Our data suggest that poor performance in strand prediction is likely a result of training bias and not solely due to the nonlocal nature of beta-sheet contacts. conSSert is freely available for noncommercial use as a webservice: http://ares.tamu.edu/conSSert/ . PMID:26928531

  17. Critical parameters of superconducting materials and structures

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Sterne, P.A.; Dykes, J.W.; Mosley, W.D.; Chaiken, A.; Ralls, K.; Radousky, H.

    1995-02-01

    We report here the completion of a one year project to investigate the synthesis, electronic structure, defect structure, and physical transport properties of high temperature superconducting oxide materials. During the course of this project we produced some of the finest samples of single crystal detwinned YBa{sub 2}Cu{sub 3}O{sub 7}, and stoichiometrically perfect (Ba,K)BiO{sub 3}. We deduced the Fermi surface of YBa{sub 2}Cu{sub 3}O{sub 7}, (La,Sr){sub 2}CuO{sub 4}, and (Ba,K)BiO{sub 3} through the recording of the electron momentum density in these materials as measured by positron annihilation spectroscopy and angle resolved photoemission. We also performed extensive studies on Pr substituted (Y,Pr)Ba{sub 2}Cu{sub 3}O{sub 7} so as to further understand the origin of the electron pairing leading to superconductivity.

  18. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism

    PubMed Central

    Kieslich, Chris A.; Tamamis, Phanourios; Guzman, Yannis A.; Onel, Melis; Floudas, Christodoulos A.

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/. PMID:26859389

  19. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  20. Distributed parameter modeling of repeated truss structures

    NASA Technical Reports Server (NTRS)

    Wang, Han-Ching

    1994-01-01

    A new approach to find homogeneous models for beam-like repeated flexible structures is proposed which conceptually involves two steps. The first step involves the approximation of 3-D non-homogeneous model by a 1-D periodic beam model. The structure is modeled as a 3-D non-homogeneous continuum. The displacement field is approximated by Taylor series expansion. Then, the cross sectional mass and stiffness matrices are obtained by energy equivalence using their additive properties. Due to the repeated nature of the flexible bodies, the mass, and stiffness matrices are also periodic. This procedure is systematic and requires less dynamics detail. The first step involves the homogenization from a 1-D periodic beam model to a 1-D homogeneous beam model. The periodic beam model is homogenized into an equivalent homogeneous beam model using the additive property of compliance along the generic axis. The major departure from previous approaches in literature is using compliance instead of stiffness in homogenization. An obvious justification is that the stiffness is additive at each cross section but not along the generic axis. The homogenized model preserves many properties of the original periodic model.

  1. GGOS and the EOP - the key role of SLR for a stable estimation of highly accurate Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Panzetta, Francesca; Müller, Horst; Gerstl, Michael

    2016-04-01

    The GGOS vision is to integrate geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. In order to reach this goal, the common estimation of station coordinates, Stokes coefficients and Earth Orientation Parameters (EOP) is necessary. Satellite Laser Ranging (SLR) provides the ability to study correlations between the different parameter groups since the observed satellite orbit dynamics are sensitive to the above mentioned geodetic parameters. To decrease the correlations, SLR observations to multiple satellites have to be combined. In this paper, we compare the estimated EOP of (i) single satellite SLR solutions and (ii) multi-satellite SLR solutions. Therefore, we jointly estimate station coordinates, EOP, Stokes coefficients and orbit parameters using different satellite constellations. A special focus in this investigation is put on the de-correlation of different geodetic parameter groups due to the combination of SLR observations. Besides SLR observations to spherical satellites (commonly used), we discuss the impact of SLR observations to non-spherical satellites such as, e.g., the JASON-2 satellite. The goal of this study is to discuss the existing parameter interactions and to present a strategy how to obtain reliable estimates of station coordinates, EOP, orbit parameter and Stokes coefficients in one common adjustment. Thereby, the benefits of a multi-satellite SLR solution are evaluated.

  2. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    PubMed

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  3. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations

    PubMed Central

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-01-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-‘one-click’ experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  4. Numerical parameter constraints for accurate PIC-DSMC simulation of breakdown from arc initiation to stable arcs

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Hopkins, Matthew; Moore, Stan; Boerner, Jeremiah; Cartwright, Keith

    2015-09-01

    Simulation of breakdown is important for understanding and designing a variety of applications such as mitigating undesirable discharge events. Such simulations need to be accurate through early time arc initiation to late time stable arc behavior. Here we examine constraints on the timestep and mesh size required for arc simulations using the particle-in-cell (PIC) method with direct simulation Monte Carlo (DMSC) collisions. Accurate simulation of electron avalanche across a fixed voltage drop and constant neutral density (reduced field of 1000 Td) was found to require a timestep ~ 1/100 of the mean time between collisions and a mesh size ~ 1/25 the mean free path. These constraints are much smaller than the typical PIC-DSMC requirements for timestep and mesh size. Both constraints are related to the fact that charged particles are accelerated by the external field. Thus gradients in the electron energy distribution function can exist at scales smaller than the mean free path and these must be resolved by the mesh size for accurate collision rates. Additionally, the timestep must be small enough that the particle energy change due to the fields be small in order to capture gradients in the cross sections versus energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. On the utility of spectroscopic imaging as a tool for generating geometrically accurate MR images and parameter maps in the presence of field inhomogeneities and chemical shift effects.

    PubMed

    Bakker, Chris J G; de Leeuw, Hendrik; van de Maat, Gerrit H; van Gorp, Jetse S; Bouwman, Job G; Seevinck, Peter R

    2013-01-01

    Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates. Experiments were done on a clinical system with standard facilities for imaging and spectroscopy. Images were acquired with a regular spin echo sequence and a corresponding spectroscopic imaging sequence. In the latter, successive samples of the acquired echo were used for the reconstruction of a series of evenly spaced images in the time and frequency domain. Experiments were done with a spatial linearity phantom and a series of test objects representing a wide range of susceptibility- and chemical-shift-induced off-resonance conditions. In contrast to regular spin echo imaging, spectroscopic imaging was shown to be immune to off-resonance effects, such as those caused by field inhomogeneity, susceptibility, chemical shift, f(0) offset and field drift, and to yield geometrically accurate images and parameter maps that allowed object structures to be localized in world coordinates. From these illustrative examples and a discussion of the limitations of purely phase-encoded imaging techniques, it is concluded that spectroscopic imaging offers a fundamental solution to the geometric deficiencies of MRI which may evolve toward a practical solution when full advantage will be taken of current developments with regard to scan time reduction. This perspective is backed up by a demonstration of the significant scan time reduction that may be achieved by the use of compressed sensing for a simple phantom. PMID:22898694

  6. Discretely disordered photonic bandgap structures: a more accurate invariant measure calculation

    NASA Astrophysics Data System (ADS)

    Kissel, Glen J.

    2009-02-01

    In the one-dimensional optical analog to Anderson localization, a periodically layered medium has one or more parameters randomly disordered. Such a randomized system can be modeled by an infinite product of 2x2 random transfer matrices with the upper Lyapunov exponent of the matrix product identified as the localization factor (inverse localization length) for the model. The theorem of Furstenberg allows us, at least theoretically, to calculate this upper Lyapunov exponent. In Furstenberg's formula we not only integrate with respect to the probability measure of the random matrices, but also with respect to the invariant probability measure of the direction of the vector propagated by the random matrices. This invariant measure is difficult to find analytically, and, as a result, the most successful approach is to determine the invariant measure numerically. A Monte Carlo simulation which uses accumulated bin counts to track the direction of the propagated vector through a long chain of random matrices does a good job of estimating the invariant probability measure, but with a level of uncertainty. A potentially more accurate numerical technique by Froyland and Aihara obtains the invariant measure as a left eigenvector of a large sparse matrix containing probability values determined by the action of the random matrices on input vectors. We first apply these two techniques to a random Fibonacci sequence whose Lyapunov exponent was determined by Viswanath. We then demonstrate these techniques on a quarter-wave stack model with binary discrete disorder in layer thickness, and compare results to the continuously disordered counterpart.

  7. Can structured data fields accurately measure quality of care? The example of falls.

    PubMed

    Ganz, David A; Almeida, Shone; Roth, Carol P; Reuben, David B; Wenger, Neil S

    2012-01-01

    By automating collection of data elements, electronic health records may simplify the process of measuring the quality of medical care. Using data from a quality improvement initiative in primary care medical groups, we sought to determine whether the quality of care for falls and fear of falling in outpatients aged 75 and older could be accurately measured solely from codable (non-free-text) data in a structured visit note. A traditional medical record review by trained abstractors served as the criterion standard. Among 215 patient records reviewed, we found a structured visit note in 54% of charts within 3 mo of the date patients had been identified as having falls or fear of falling. The reliability of an algorithm based on codable data was at least good (kappa of at least 0.61) compared with full medical record review for three care processes recommended for patients with two falls or one fall with injury in the past year: orthostatic vital signs, vision test/eye examination, and home safety evaluation. However, the automated algorithm routinely underestimated quality of care. Performance standards based on automated measurement of quality of care from electronic health records need to account for documentation occurring in nonstructured form. PMID:23408222

  8. Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.

    PubMed

    Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E

    2016-08-01

    Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system. PMID:27332140

  9. A non-empirical, parameter-free, hybrid functional for accurate calculations of optoelectronic properties of finite systems

    NASA Astrophysics Data System (ADS)

    Brawand, Nicholas; Vörös, Márton; Govoni, Marco; Galli, Giulia

    The accurate prediction of optoelectronic properties of molecules and solids is a persisting challenge for current density functional theory (DFT) based methods. We propose a hybrid functional where the mixing fraction of exact and local exchange is determined by a non-empirical, system dependent function. This functional yields ionization potentials, fundamental and optical gaps of many, diverse systems in excellent agreement with experiments, including organic and inorganic molecules and nanocrystals. We further demonstrate that the newly defined hybrid functional gives the correct alignment between the energy level of the exemplary TTF-TCNQ donor-acceptor system. DOE-BES: DE-FG02-06ER46262.

  10. Towards an accurate specific reaction parameter density functional for water dissociation on Ni(111): RPBE versus PW91.

    PubMed

    Jiang, Bin; Guo, Hua

    2016-08-01

    In search for an accurate description of the dissociative chemisorption of water on the Ni(111) surface, we report a new nine-dimensional potential energy surface (PES) based on a large number of density functional theory points using the RPBE functional. Seven-dimensional quantum dynamical calculations have been carried out on the RPBE PES, followed by site averaging and lattice effect corrections, yielding sticking probabilities that are compared with both the previous theoretical results based on a PW91 PES and experiment. It is shown that the RPBE functional increases the reaction barrier, but has otherwise a minor impact on the PES topography. Better agreement with experimental results is obtained with the new PES, but the agreement is still not quantitative. Possible sources of the remaining discrepancies are discussed. PMID:27436348

  11. An accurate and simple technique of determination of the maximum power point and measurement of some solar cell parameters

    NASA Astrophysics Data System (ADS)

    Deb, S.; Maitra, K.; Roychoudhuri, A.

    1985-06-01

    In the wake of the energy crisis, attempts are being made to develop a variety of energy conversion devices, such as solar cells. The single most important operational characteristic for a conversion element generating electricity is the V against I curve. Three points on this characteristic curve are of paramount importance, including the short-circuit, the open-circuit, and the maximum power point. The present paper has the objective to propose a new simple and accurate method of determining the maximum power point (Vm, Im) of the V against I characteristics, based on a geometrical interpretation. The method is general enough to be applicable to any energy conversion device having a nonlinear V against I characteristic. The paper provides also a method for determining the fill factor (FF), the series resistance (Rs), and the diode ideality factor (A) from a single set of connected observations.

  12. Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak

    2016-07-01

    This paper presents a Hierarchical Bayesian model updating framework to account for the effects of ambient temperature and excitation amplitude. The proposed approach is applied for model calibration, response prediction and damage identification of a footbridge under changing environmental/ambient conditions. The concrete Young's modulus of the footbridge deck is the considered updating structural parameter with its mean and variance modeled as functions of temperature and excitation amplitude. The identified modal parameters over 27 months of continuous monitoring of the footbridge are used to calibrate the updating parameters. One of the objectives of this study is to show that by increasing the levels of information in the updating process, the posterior variation of the updating structural parameter (concrete Young's modulus) is reduced. To this end, the calibration is performed at three information levels using (1) the identified modal parameters, (2) modal parameters and ambient temperatures, and (3) modal parameters, ambient temperatures, and excitation amplitudes. The calibrated model is then validated by comparing the model-predicted natural frequencies and those identified from measured data after deliberate change to the structural mass. It is shown that accounting for modeling error uncertainties is crucial for reliable response prediction, and accounting only the estimated variability of the updating structural parameter is not sufficient for accurate response predictions. Finally, the calibrated model is used for damage identification of the footbridge.

  13. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  14. Structural stability augmentation system design using BODEDIRECT: A quick and accurate approach

    NASA Technical Reports Server (NTRS)

    Goslin, T. J.; Ho, J. K.

    1989-01-01

    A methodology is presented for a modal suppression control law design using flight test data instead of mathematical models to obtain the required gain and phase information about the flexible airplane. This approach is referred to as BODEDIRECT. The purpose of the BODEDIRECT program is to provide a method of analyzing the modal phase relationships measured directly from the airplane. These measurements can be achieved with a frequency sweep at the control surface input while measuring the outputs of interest. The measured Bode-models can be used directly for analysis in the frequency domain, and for control law design. Besides providing a more accurate representation for the system inputs and outputs of interest, this method is quick and relatively inexpensive. To date, the BODEDIRECT program has been tested and verified for computational integrity. Its capabilities include calculation of series, parallel and loop closure connections between Bode-model representations. System PSD, together with gain and phase margins of stability may be calculated for successive loop closures of multi-input/multi-output systems. Current plans include extensive flight testing to obtain a Bode-model representation of a commercial aircraft for design of a structural stability augmentation system.

  15. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.

    PubMed

    Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua

    2015-01-13

    We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207

  16. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation

    PubMed Central

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-01-01

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  17. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    NASA Astrophysics Data System (ADS)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  18. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation.

    PubMed

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-06-20

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  19. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  20. Accurate determination of interface trap state parameters by admittance spectroscopy in the presence of a Schottky barrier contact: Application to ZnO-based solar cells

    NASA Astrophysics Data System (ADS)

    Marin, Andrew T.; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2013-04-01

    This work shows that when a Schottky barrier is present in a photovoltaic device, such as in a device with an ITO/ZnO contact, equivalent circuit analysis must be performed with admittance spectroscopy to accurately determine the pn junction interface recombination parameters (i.e., capture cross section and density of trap states). Without equivalent circuit analysis, a Schottky barrier can produce an error of ˜4-orders of magnitude in the capture cross section and ˜50% error in the measured density of trap states. Using a solution processed ZnO/Cu2O photovoltaic test system, we apply our analysis to clearly separate the contributions of interface states at the pn junction from the Schottky barrier at the ITO/ZnO contact so that the interface state recombination parameters can be accurately characterized. This work is widely applicable to the multitude of photovoltaic devices, which use ZnO adjacent to ITO.

  1. Learning the Structure of High-Dimensional Manifolds with Self-Organizing Maps for Accurate Information Extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Lili

    This work aims to improve the capability of accurate information extraction from high-dimensional data, with a specific neural learning paradigm, the Self-Organizing Map (SOM). The SOM is an unsupervised learning algorithm that can faithfully sense the manifold structure and support supervised learning of relevant information from the data. Yet open problems regarding SOM learning exist. We focus on the following two issues. (1) Evaluation of topology preservation. Topology preservation is essential for SOMs in faithful representation of manifold structure. However, in reality, topology violations are not unusual, especially when the data have complicated structure. Measures capable of accurately quantifying and informatively expressing topology violations are lacking. One contribution of this work is a new measure, the Weighted Differential Topographic Function (WDTF), which differentiates an existing measure, the Topographic Function (TF), and incorporates detailed data distribution as an importance weighting of violations to distinguish severe violations from insignificant ones. Another contribution is an interactive visual tool, TopoView, which facilitates the visual inspection of violations on the SOM lattice. We show the effectiveness of the combined use of the WDTF and TopoView through a simple two-dimensional data set and two hyperspectral images. (2) Learning multiple latent variables from high-dimensional data. We use an existing two-layer SOM-hybrid supervised architecture, which captures the manifold structure in its SOM hidden layer, and then, uses its output layer to perform the supervised learning of latent variables. In the customary way, the output layer only uses the strongest output of the SOM neurons. This severely limits the learning capability. We allow multiple, k, strongest responses of the SOM neurons for the supervised learning. Moreover, the fact that different latent variables can be best learned with different values of k motivates a

  2. A two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion

    PubMed Central

    Kostylev, Maxim; Wilson, David

    2014-01-01

    Lignocellulosic biomass is a potential source of renewable, low-carbon-footprint liquid fuels. Biomass recalcitrance and enzyme cost are key challenges associated with the large-scale production of cellulosic fuel. Kinetic modeling of enzymatic cellulose digestion has been complicated by the heterogeneous nature of the substrate and by the fact that a true steady state cannot be attained. We present a two-parameter kinetic model based on the Michaelis-Menten scheme (Michaelis L and Menten ML. (1913) Biochem Z 49:333–369), but with a time-dependent activity coefficient analogous to fractal-like kinetics formulated by Kopelman (Kopelman R. (1988) Science 241:1620–1626). We provide a mathematical derivation and experimental support to show that one of the parameters is a total activity coefficient and the other is an intrinsic constant that reflects the ability of the cellulases to overcome substrate recalcitrance. The model is applicable to individual cellulases and their mixtures at low-to-medium enzyme loads. Using biomass degrading enzymes from a cellulolytic bacterium Thermobifida fusca we show that the model can be used for mechanistic studies of enzymatic cellulose digestion. We also demonstrate that it applies to the crude supernatant of the widely studied cellulolytic fungus Trichoderma reesei and can thus be used to compare cellulases from different organisms. The two parameters may serve a similar role to Vmax, KM, and kcat in classical kinetics. A similar approach may be applicable to other enzymes with heterogeneous substrates and where a steady state is not achievable. PMID:23837567

  3. Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs.

    PubMed

    Nicolotti, Orazio; Gillet, Valerie J; Fleming, Peter J; Green, Darren V S

    2002-11-01

    Deriving quantitative structure-activity relationship (QSAR) models that are accurate, reliable, and easily interpretable is a difficult task. In this study, two new methods have been developed that aim to find useful QSAR models that represent an appropriate balance between model accuracy and complexity. Both methods are based on genetic programming (GP). The first method, referred to as genetic QSAR (or GPQSAR), uses a penalty function to control model complexity. GPQSAR is designed to derive a single linear model that represents an appropriate balance between the variance and the number of descriptors selected for the model. The second method, referred to as multiobjective genetic QSAR (MoQSAR), is based on multiobjective GP and represents a new way of thinking of QSAR. Specifically, QSAR is considered as a multiobjective optimization problem that comprises a number of competitive objectives. Typical objectives include model fitting, the total number of terms, and the occurrence of nonlinear terms. MoQSAR results in a family of equivalent QSAR models where each QSAR represents a different tradeoff in the objectives. A practical consideration often overlooked in QSAR studies is the need for the model to promote an understanding of the biochemical response under investigation. To accomplish this, chemically intuitive descriptors are needed but do not always give rise to statistically robust models. This problem is addressed by the addition of a further objective, called chemical desirability, that aims to reward models that consist of descriptors that are easily interpretable by chemists. GPQSAR and MoQSAR have been tested on various data sets including the Selwood data set and two different solubility data sets. The study demonstrates that the MoQSAR method is able to find models that are at least as good as models derived using standard statistical approaches and also yields models that allow a medicinal chemist to trade statistical robustness for chemical

  4. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    SciTech Connect

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho E-mail: hlkim@kangwon.ac.kr

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  5. Application of differential evolutionary optimization methodology for parameter structure identification in groundwater modeling

    NASA Astrophysics Data System (ADS)

    Chiu, Yung-Chia

    2014-12-01

    Parameter structure identification is formulated in terms of solving an inverse problem, which allows for a determination of an appropriate level of parameter structure complexity, and the identification of its pattern and the associated parameter values. With the increasing complexity of parameter structure identification in groundwater modeling, demand for robust, fast, and accurate optimizers is on the rise among researchers from groundwater hydrology fields. A novel global optimizer, differential evolution (DE), has been proposed to solve the parameter-structure-identification problem. The Voronoi tessellation is adopted for the automatic parameterization. The stepwise regression method and the error covariance matrix are used to determine the optimal structure complexity. Numerical experiments with a continuous hydraulic conductivity distribution are conducted to demonstrate the proposed methodology. The results indicate that the DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters and mutation schemes implemented in the DE is employed to examine their influence on the objective function. The comparison between DE and genetic algorithm shows the advantage of DE in terms of robustness and efficiency. The proposed methodology is also applied to a real groundwater system, Pingtung Plain in Taiwan, and the properties of aquifers are successfully identified.

  6. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  7. Effective Parameters on Seismic Design of Rectangular Underground Structures

    SciTech Connect

    Amiri, G. Ghodrati; Maddah, N.; Mohebi, B.

    2008-07-08

    Underground structures are a significant part of the transportation in the modern society and in the seismic zones should withstand against both seismic and static loadings. Embedded structures should conform to ground deformations during the earthquake but almost exact evaluation of structure to ground distortion is critical. Several two-dimensional finite difference models are used to find effective parameters on racking ratio (structure to ground distortion) including flexibility ratio, various cross sections, embedment depth, and Poisson's ratio of soil. Results show that influence of different cross sections, by themselves is negligible but embedment depth in addition to flexibility ratio and Poisson's ratio is known as a consequential parameter. A comparison with pseudo-static method (simplified frame analysis) is also performed. The results show that for a stiffer structure than soil, racking ratio decreases as the depth of burial decreases; on the other hand, shallow and flexible structures can suffer greater distortion than deeper ones up to 30 percents.

  8. Coupling 1D Navier Stokes equation with autoregulation lumped parameter networks for accurate cerebral blood flow modeling

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2014-11-01

    The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is critical to cerebral blood flow modeling, as well as investigations into pathological conditions. We discuss a one-dimensional nonlinear model of blood flow in the cerebral arteries that includes coupling of autoregulatory lumped parameter networks. The model is tested to reproduce a common clinical test to assess autoregulatory function - the carotid artery compression test. The change in the flow velocity at the middle cerebral artery (MCA) during carotid compression and release demonstrated strong agreement with published measurements. The model is then used to investigate vasospasm of the MCA, a common clinical concern following subarachnoid hemorrhage. Vasospasm was modeled by prescribing vessel area reduction in the middle portion of the MCA. Our model showed similar increases in velocity for moderate vasospasms, however, for serious vasospasm (~ 90% area reduction), the blood flow velocity demonstrated decrease due to blood flow rerouting. This demonstrates a potentially important phenomenon, which otherwise would lead to false-negative decisions on clinical vasospasm if not properly anticipated.

  9. Calibration of DFT Functionals for the Prediction of 57Fe Mössbauer Spectral Parameters in Iron-Nitrosyl and Iron-Sulfur Complexes: Accurate Geometries Prove Essential

    PubMed Central

    Sandala, Gregory M.; Hopmann, Kathrin H.; Ghosh, Abhik

    2011-01-01

    structure. Significant improvements to the isomer shift calibrations are obtained for B3LYP and B3LYP* when geometries obtained with the OLYP functional are used. In addition, greatly improved performance of these functionals is found if the complete test set is grouped separately into Fe–NO and Fe–S complexes. Calibration fits including only Fe–NO complexes are found to be excellent, while those containing the non-nitrosyl Fe–S complexes alone are found to demonstrate less accurate correlations. Similar trends are also found with OLYP, OPBE, PW91, and BP86. Correlations between experimental and calculated QSs were also investigated. Generally, universal and separate Fe–NO and Fe–S fit parameters obtained to determine QSs are found to be of good to excellent quality for every density functional examined, especially if [Fe4(NO)4(μ3-S)4]− is removed from the test set. PMID:22039359

  10. Uncertainty in dual permeability model parameters for structured soils

    PubMed Central

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2013-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains. PMID:24478531

  11. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    1994-01-01

    A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.

  12. Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field

    PubMed Central

    Baker, Christopher M.; Lopes, Pedro E. M.; Zhu, Xiao; Roux, Benoît; MacKerell, Alexander D.

    2010-01-01

    Lennard-Jones (LJ) parameters for a variety of model compounds have previously been optimized within the CHARMM Drude polarizable force field to reproduce accurately pure liquid phase thermodynamic properties as well as additional target data. While the polarizable force field resulting from this optimization procedure has been shown to satisfactorily reproduce a wide range of experimental reference data across numerous series of small molecules, a slight but systematic overestimate of the hydration free energies has also been noted. Here, the reproduction of experimental hydration free energies is greatly improved by the introduction of pair-specific LJ parameters between solute heavy atoms and water oxygen atoms that override the standard LJ parameters obtained from combining rules. The changes are small and a systematic protocol is developed for the optimization of pair-specific LJ parameters and applied to the development of pair-specific LJ parameters for alkanes, alcohols and ethers. The resulting parameters not only yield hydration free energies in good agreement with experimental values, but also provide a framework upon which other pair-specific LJ parameters can be added as new compounds are parametrized within the CHARMM Drude polarizable force field. Detailed analysis of the contributions to the hydration free energies reveals that the dispersion interaction is the main source of the systematic errors in the hydration free energies. This information suggests that the systematic error may result from problems with the LJ combining rules and is combined with analysis of the pair-specific LJ parameters obtained in this work to identify a preliminary improved combining rule. PMID:20401166

  13. Identification of uncertain structural parameters in flexible boosters

    NASA Astrophysics Data System (ADS)

    Sawai, Shujiro; Kawaguchi, Jun'ichiro; Matsuo, Hiroki

    A novel algorithm for identification of unknown structural parameters in flexible boosters is presented here. In this method, first of all coefficient matrices in recursive form are estimated based on sensor outputs, which is followed by identifying structural parameters utilizing matrix relations between those and system description form. This algorithm is relatively robust and promising, since neither modal coordinates nor state reconstruction is required, in which tremendous amount of efforts have been to be concentrated to. Numerical discussion here was carried out and it demonstrated its practical effectiveness.

  14. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  15. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    NASA Astrophysics Data System (ADS)

    Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.

    2016-04-01

    Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.

  16. Using a quadratic parameter sinusoid model to characterize the structure of EEG sleep spindles

    PubMed Central

    Palliyali, Abdul J.; Ahmed, Mohammad N.; Ahmed, Beena

    2015-01-01

    Sleep spindles are essentially non-stationary signals that display time and frequency-varying characteristics within their envelope, which makes it difficult to accurately identify its instantaneous frequency and amplitude. To allow a better parameterization of the structure of spindle, we propose modeling spindles using a Quadratic Parameter Sinusoid (QPS). The QPS is well suited to model spindle activity as it utilizes a quadratic representation to capture the inherent duration and frequency variations within spindles. The effectiveness of our proposed model and estimation technique was quantitatively evaluated in parameter determination experiments using simulated spindle-like signals and real spindles in the presence of background EEG. We used the QPS parameters to predict the energy and frequency of spindles with a mean accuracy of 92.34 and 97.73% respectively. We also show that the QPS parameters provide a quantification of the amplitude and frequency variations occurring within sleep spindles that can be observed visually and related to their characteristic “waxing and waning” shape. We analyze the variations in the parameters values to present how they can be used to understand the inter- and intra-participant variations in spindle structure. Finally, we present a comparison of the QPS parameters of spindles and non-spindles, which shows a substantial difference in parameter values between the two classes. PMID:25999833

  17. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies

    ERIC Educational Resources Information Center

    Smith, Carrie E.; Cribbie, Robert A.

    2013-01-01

    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  18. Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters

    SciTech Connect

    Bialasiewicz, J.T.

    1995-06-01

    The goal of this research is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the Pseudo-Random Binary Sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL`s Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

  19. PROMALS3D web server for accurate multiple protein sequence and structure alignments.

    PubMed

    Pei, Jimin; Tang, Ming; Grishin, Nick V

    2008-07-01

    Multiple sequence alignments are essential in computational sequence and structural analysis, with applications in homology detection, structure modeling, function prediction and phylogenetic analysis. We report PROMALS3D web server for constructing alignments for multiple protein sequences and/or structures using information from available 3D structures, database homologs and predicted secondary structures. PROMALS3D shows higher alignment accuracy than a number of other advanced methods. Input of PROMALS3D web server can be FASTA format protein sequences, PDB format protein structures and/or user-defined alignment constraints. The output page provides alignments with several formats, including a colored alignment augmented with useful information about sequence grouping, predicted secondary structures and consensus sequences. Intermediate results of sequence and structural database searches are also available. The PROMALS3D web server is available at: http://prodata.swmed.edu/promals3d/. PMID:18503087

  20. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure. PMID:19950907

  1. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  2. Wheat streak mosaic virus-Structural parameters for a Potyvirus

    SciTech Connect

    Parker, Lauren; Kendall, Amy; Berger, P.H.; Shiel, P.J.; Stubbs, Gerald . E-mail: gerald.stubbs@vanderbilt.edu

    2005-09-15

    Wheat streak mosaic virus is a Tritimovirus, a member of the Potyviridae family, which includes the very large Potyvirus genus. We have examined wheat streak mosaic virus by electron microscopy and fiber diffraction from partially oriented sols, and analyzed the results to estimate the symmetry and structural parameters of the viral helix. The virions have an apparent radius of 63 {+-} 5 A. The viral helix has a pitch of 33.4 A {+-} 0.6 A. There appear to be 6.9 subunits per turn of the helix, although we cannot completely eliminate values of 5.9 or 7.9 for this parameter.

  3. Order parameter in complex dipolar structures: Microscopic modeling

    NASA Astrophysics Data System (ADS)

    Prosandeev, S.; Bellaiche, L.

    2008-02-01

    Microscopic models have been used to reveal the existence of an order parameter that is associated with many complex dipolar structures in magnets and ferroelectrics. This order parameter involves a double cross product of the local dipoles with their positions. It provides a measure of subtle microscopic features, such as the helicity of the two domains inherent to onion states, curvature of the dipolar pattern in flower states, or characteristics of sets of vortices with opposite chirality (e.g., distance between the vortex centers and/or the magnitude of their local dipoles).

  4. The role of structural parameters in DNA cyclization

    DOE PAGESBeta

    Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; Alexandrov, Boian S.

    2016-02-04

    The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.

  5. PDBparam: Online Resource for Computing Structural Parameters of Proteins

    PubMed Central

    Nagarajan, R.; Archana, A.; Thangakani, A. Mary; Jemimah, S.; Velmurugan, D.; Gromiha, M. Michael

    2016-01-01

    Understanding the structure–function relationship in proteins is a longstanding goal in molecular and computational biology. The development of structure-based parameters has helped to relate the structure with the function of a protein. Although several structural features have been reported in the literature, no single server can calculate a wide-ranging set of structure-based features from protein three-dimensional structures. In this work, we have developed a web-based tool, PDBparam, for computing more than 50 structure-based features for any given protein structure. These features are classified into four major categories: (i) interresidue interactions, which include short-, medium-, and long-range interactions, contact order, long-range order, total contact distance, contact number, and multiple contact index, (ii) secondary structure propensities such as α-helical propensity, β-sheet propensity, and propensity of amino acids to exist at various positions of α-helix and amino acid compositions in high B-value regions, (iii) physicochemical properties containing ionic interactions, hydrogen bond interactions, hydrophobic interactions, disulfide interactions, aromatic interactions, surrounding hydrophobicity, and buriedness, and (iv) identification of binding site residues in protein–protein, protein–nucleic acid, and protein–ligand complexes. The server can be freely accessed at http://www.iitm.ac.in/bioinfo/pdbparam/. We suggest the use of PDBparam as an effective tool for analyzing protein structures. PMID:27330281

  6. Structural and parameter uncertainty in Bayesian cost-effectiveness models

    PubMed Central

    Jackson, Christopher H; Sharples, Linda D; Thompson, Simon G

    2010-01-01

    Health economic decision models are subject to various forms of uncertainty, including uncertainty about the parameters of the model and about the model structure. These uncertainties can be handled within a Bayesian framework, which also allows evidence from previous studies to be combined with the data. As an example, we consider a Markov model for assessing the cost-effectiveness of implantable cardioverter defibrillators. Using Markov chain Monte Carlo posterior simulation, uncertainty about the parameters of the model is formally incorporated in the estimates of expected cost and effectiveness. We extend these methods to include uncertainty about the choice between plausible model structures. This is accounted for by averaging the posterior distributions from the competing models using weights that are derived from the pseudo-marginal-likelihood and the deviance information criterion, which are measures of expected predictive utility. We also show how these cost-effectiveness calculations can be performed efficiently in the widely used software WinBUGS. PMID:20383261

  7. Controllability of brushite structural parameters using an applied magnetic field.

    PubMed

    Kuznetsov, V N; Yanovska, A A; Stanislavov, A S; Danilchenko, S N; Kalinkevich, A N; Sukhodub, L F

    2016-03-01

    The paper studies the influence of low intensity static magnetic field on brushite structural and microstructural parameters using the X-ray diffraction and the transmission electron microscopy. This effect was shown to have various influences on DCPD (Dicalcium Phosphate Dihydrate) structure depending on a magnetic field configuration or time of synthesis, which allows achieving controllability of the main properties of an obtained material. The influence of the magnetic field leads mostly to the decrease of crystallite sizes with no impact on the crystal lattice parameters. In (0 2 0) and (1 5 0) planes the growth of crystallite sizes is observed after 2 and 3 days of crystallization, respectively. The analysis of different contributions to peak broadening in [0 b 0] direction showed a similar trend for the crystallite sizes with the lower lattice microstrains after 2 days of synthesis. The effect similar to the preferred orientation was observed and classified with the Harris method. PMID:26706562

  8. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php. PMID:18763837

  9. Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision.

    PubMed

    Roses, A D

    2016-02-01

    Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion-deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well-phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation. Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles. PMID:26517180

  10. Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm.

    PubMed

    Ergül, Özgür; Gürel, Levent

    2013-03-01

    Accurate electromagnetic modeling of complicated optical structures poses several challenges. Optical metamaterial and plasmonic structures are composed of multiple coexisting dielectric and/or conducting parts. Such composite structures may possess diverse values of conductivities and dielectric constants, including negative permittivity and permeability. Further challenges are the large sizes of the structures with respect to wavelength and the complexities of the geometries. In order to overcome these challenges and to achieve rigorous and efficient electromagnetic modeling of three-dimensional optical composite structures, we have developed a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Precise formulation of composite structures is achieved with the so-called "electric and magnetic current combined-field integral equation." Surface integral equations are carefully discretized with piecewise linear basis functions, and the ensuing dense matrix equations are solved iteratively with parallel MLFMA. The hierarchical strategy is used for the efficient parallelization of MLFMA on distributed-memory architectures. In this paper, fast and accurate solutions of large-scale canonical and complicated real-life problems, such as optical metamaterials, discretized with tens of millions of unknowns are presented in order to demonstrate the capabilities of the proposed electromagnetic solver. PMID:23456127

  11. Fine structure in proton radioactivity: An accurate tool to ascertain the breaking of axial symmetry in {sup 145}Tm

    SciTech Connect

    Arumugam, P.; Ferreira, L. S.; Maglione, E.

    2008-10-15

    With a proper formalism for proton emission from triaxially deformed nuclei, we perform exact calculations of decay widths for the decays to ground and first excited 2{sup +} states in the daughter nucleus. Our results for rotational spectrum, decay width and fine structure in the case of the nucleus {sup 145}Tm lead for the first time to an accurate identification of triaxial deformation using proton emission. This work also puts in evidence the advantage of proton emission over the conventional probes to study nuclear structure at the proton drip-line.

  12. Accurate Fabrication of Hydroxyapatite Bone Models with Porous Scaffold Structures by Using Stereolithography

    NASA Astrophysics Data System (ADS)

    Maeda, Chiaki; Tasaki, Satoko; Kirihara, Soshu

    2011-05-01

    Computer graphic models of bioscaffolds with four-coordinate lattice structures of solid rods in artificial bones were designed by using a computer aided design. The scaffold models composed of acryl resin with hydroxyapatite particles at 45vol. % were fabricated by using stereolithography of a computer aided manufacturing. After dewaxing and sintering heat treatment processes, the ceramics scaffold models with four-coordinate lattices and fine hydroxyapatite microstructures were obtained successfully. By using a computer aided analysis, it was found that bio-fluids could flow extensively inside the sintered scaffolds. This result shows that the lattice structures will realize appropriate bio-fluid circulations and promote regenerations of new bones.

  13. Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction

    PubMed Central

    Braun, Tatjana; Koehler Leman, Julia; Lange, Oliver F.

    2015-01-01

    Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs. PMID:26713437

  14. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  15. Interplay between Peptide Bond Geometrical Parameters in Nonglobular Structural Contexts

    PubMed Central

    Esposito, Luciana; De Simone, Alfonso; Vitagliano, Luigi

    2013-01-01

    Several investigations performed in the last two decades have unveiled that geometrical parameters of protein backbone show a remarkable variability. Although these studies have provided interesting insights into one of the basic aspects of protein structure, they have been conducted on globular and water-soluble proteins. We report here a detailed analysis of backbone geometrical parameters in nonglobular proteins/peptides. We considered membrane proteins and two distinct fibrous systems (amyloid-forming and collagen-like peptides). Present data show that in these systems the local conformation plays a major role in dictating the amplitude of the bond angle N-Cα-C and the propensity of the peptide bond to adopt planar/nonplanar states. Since the trends detected here are in line with the concept of the mutual influence of local geometry and conformation previously established for globular and water-soluble proteins, our analysis demonstrates that the interplay of backbone geometrical parameters is an intrinsic and general property of protein/peptide structures that is preserved also in nonglobular contexts. For amyloid-forming peptides significant distortions of the N-Cα-C bond angle, indicative of sterical hidden strain, may occur in correspondence with side chain interdigitation. The correlation between the dihedral angles Δω/ψ in collagen-like models may have interesting implications for triple helix stability. PMID:24455689

  16. A new order parameter in complex dipolar structures

    NASA Astrophysics Data System (ADS)

    Prosandeev, Sergey; Bellaiche, Laurent

    2008-03-01

    Microscopic models have been used to reveal the existence of a new order parameter that is associated with many complex dipolar structures in magnets and ferroelectrics. This overlooked order parameter involves a double cross product of the local dipoles with their positions. It provides a measure of subtle microscopic features, such as the helicity of the two domains inherent to onion states, curvature of the dipolar pattern in flower states or characteristics of set of vortices with opposite chirality (e.g., distance between vortices' centers and/or magnitude of their local dipoles). This work is mostly supported by DOE grant DE-FG02-05ER46188. We also acknowledge support from ONR grant N00014-04-1-0413 and NSF grants DMR-0701558, DMR-0404335 and DMR-0080054 (C-SPIN). Some computations were made possible thanks to the MRI Grants 0421099 and 0722625 from NSF.

  17. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information

    PubMed Central

    Pollastri, Gianluca; Martin, Alberto JM; Mooney, Catherine; Vullo, Alessandro

    2007-01-01

    Background Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio. Results Here we develop high-throughput machine learning systems for the prediction of protein secondary structure and solvent accessibility that exploit homology to proteins of known structure, where available, in the form of simple structural frequency profiles extracted from sets of PDB templates. We compare these systems to their state-of-the-art ab initio counterparts, and with a number of baselines in which secondary structures and solvent accessibilities are extracted directly from the templates. We show that structural information from templates greatly improves secondary structure and solvent accessibility prediction quality, and that, on average, the systems significantly enrich the information contained in the templates. For sequence similarity exceeding 30%, secondary structure prediction quality is approximately 90%, close to its theoretical maximum, and 2-class solvent accessibility roughly 85%. Gains are robust with respect to template selection noise, and significant for marginal sequence similarity and for short alignments, supporting the claim that these improved predictions may prove beneficial beyond the case in which clear homology is available. Conclusion The predictive system are publicly available at the address . PMID:17570843

  18. Constrained maximum likelihood modal parameter identification applied to structural dynamics

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Peeters, Bart; Guillaume, Patrick; De Troyer, Tim

    2016-05-01

    A new modal parameter estimation method to directly establish modal models of structural dynamic systems satisfying two physically motivated constraints will be presented. The constraints imposed in the identified modal model are the reciprocity of the frequency response functions (FRFs) and the estimation of normal (real) modes. The motivation behind the first constraint (i.e. reciprocity) comes from the fact that modal analysis theory shows that the FRF matrix and therefore the residue matrices are symmetric for non-gyroscopic, non-circulatory, and passive mechanical systems. In other words, such types of systems are expected to obey Maxwell-Betti's reciprocity principle. The second constraint (i.e. real mode shapes) is motivated by the fact that analytical models of structures are assumed to either be undamped or proportional damped. Therefore, normal (real) modes are needed for comparison with these analytical models. The work done in this paper is a further development of a recently introduced modal parameter identification method called ML-MM that enables us to establish modal model that satisfies such motivated constraints. The proposed constrained ML-MM method is applied to two real experimental datasets measured on fully trimmed cars. This type of data is still considered as a significant challenge in modal analysis. The results clearly demonstrate the applicability of the method to real structures with significant non-proportional damping and high modal densities.

  19. A new class of atomic basis functions for accurate electronic structure calculations of molecules

    NASA Astrophysics Data System (ADS)

    Laikov, Dimitri N.

    2005-11-01

    A new general approach is developed for obtaining systematic sequences of atomic single-particle basis sets for use in correlated electronic structure calculations of molecules. All the constituent functions are defined as the solutions of variational problems and are of three types: a minimal Hartree-Fock set, additional functions to represent low-lying excited configurations, and general functions for describing electron correlation. The latter are determined to minimize a functional derived from the closed-shell second-order correlation energy expression. Generally-contracted Gaussian expansions are developed to approximate these general functions in the non-relativistic case and within a scalar-relativistic approximation.

  20. Identification of structural parameters from helicopter dynamic test data

    NASA Technical Reports Server (NTRS)

    Giansante, N.; Flannelly, W. G.

    1974-01-01

    A method is presented for obtaining the mass, stiffness, and damping parameters of a linear mathematical model, having fewer degrees of freedom than the structure it represents, directly from dynamic response measurements on the actual helicopter without a priori knowledge of the physical characteristics of the fuselage. The only input information required in the formulation is the approximate natural frequency of each mode and mobility data measured proximate to these frequencies with sinusoidal force excitation applied at only one point on the vehicle. The practicality and numerical soundness of the theoretical development was demonstrated through a computer simulation of an experimental program.

  1. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    SciTech Connect

    Wills, John M; Mattsson, Ann E

    2012-06-06

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  2. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  3. Effects of the projectile electronic structure on Bethe-Bloch stopping parameters for Ag

    NASA Astrophysics Data System (ADS)

    Moussa, D.; Damache, S.; Ouichaoui, S.

    2010-06-01

    Energy losses of protons and alpha particles in silver have been accurately measured under the same experimental conditions over the velocity range E=(0.192-2.595) MeV/amu using the transmission method. Deduced S(E) stopping powers are compared to most accurate ones from the literature, to values generated by the SRIM-2008 computer code and to ICRU-49 compilation. They were analyzed in the framework of modified Bethe-Bloch theory for extracting Ag target mean excitation and ionization potential, I, and Barkas effect parameter, b. Values of ( 466±5) eV and 1.20±0.01 for these two parameters were inferred from the proton S(E) data while the alpha particle data yielded values of (438±4) eV and 1.38±0.01, respectively. The ( I, b) stopping parameters thus exhibit opposite variations as the projectile charge increases, similarly as we have found previously for nickel [6]. This can be ascribed only to an effect of the projectile electronic structure at low velocities. The obtained results are discussed in comparison to previous ones reported in the literature.

  4. A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures.

    PubMed

    Mangipudi, K R; Radisch, V; Holzer, L; Volkert, C A

    2016-04-01

    We present an automated focused ion beam nanotomography method for nanoporous microstructures with open porosity, and apply it to reconstruct nanoporous gold (np-Au) structures with ligament sizes on the order of a few tens of nanometers. This method uses serial sectioning of a well-defined wedge-shaped geometry to determine the thickness of individual slices from the changes in the sample width in successive cross-sectional images. The pore space of a selected region of the np-Au is infiltrated with ion-beam-deposited Pt composite before serial sectioning. The cross-sectional images are binarized and stacked according to the individual slice thicknesses, and then processed using standard reconstruction methods. For the image conditions and sample geometry used here, we are able to determine the thickness of individual slices with an accuracy much smaller than a pixel. The accuracy of the new method based on actual slice thickness is assessed by comparing it with (i) a reconstruction using the same cross-sectional images but assuming a constant slice thickness, and (ii) a reconstruction using traditional FIB-tomography method employing constant slice thickness. The morphology and topology of the structures are characterized using ligament and pore size distributions, interface shape distribution functions, interface normal distributions, and genus. The results suggest that the morphology and topology of the final reconstructions are significantly influenced when a constant slice thickness is assumed. The study reveals grain-to-grain variations in the morphology and topology of np-Au. PMID:26906523

  5. Structure, vibrations, and hydrogen bond parameters of dibenzotetraaza[14]annulene

    NASA Astrophysics Data System (ADS)

    Gawinkowski, S.; Eilmes, J.; Waluk, J.

    2010-07-01

    Geometry and vibrational structure of dibenzo[ b, i][1,4,8,11]tetraaza[14]annulene (TAA) have been studied using infrared and Raman spectroscopy combined with quantum-chemical calculations. The assignments were proposed for 106 out of the total of 108 TAA vibrations, based on comparison of the theoretical predictions with the experimental data obtained for the parent molecule and its isotopomer in which the NH protons were replaced by deuterons. Reassignments were suggesteded for the NH stretching and out-of-plane vibrations. The values of the parameters of the intramolecular NH⋯N hydrogen bonds were analysed in comparison with the corresponding data for porphyrin and porphycene, molecules with the same structural motif, a cavity composed of four nitrogen atoms and two inner protons. Both experiment and calculations suggest that the molecule of TAA is not planar and is present in a trans tautomeric form, with the protons located on the opposite nitrogen atoms.

  6. Application of Differential Evolutionary Optimization Methodology for Parameter Structure Identification in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.

    2013-12-01

    With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.

  7. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    SciTech Connect

    Doherty, Kimberly R. Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  8. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    NASA Technical Reports Server (NTRS)

    Hull, P. V.; Tinker, M. L.

    2007-01-01

    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  9. THE LUMINOSITY PROFILE AND STRUCTURAL PARAMETERS OF THE ANDROMEDA GALAXY

    SciTech Connect

    Courteau, Stephane; Widrow, Lawrence M.; McDonald, Michael; Guhathakurta, Puragra; Zhu Yucong

    2011-09-20

    We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n {approx_equal} 2.2 {+-} .3 and effective radius R{sub e} = 1.0 {+-} 0.2 kpc, and a dust-free exponential disk of scale length R{sub d} = 5.3 {+-} .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ({epsilon} = 1 - b/a) of the bulge and the disk from the IRAC image are 0.37 {+-} 0.03 and 0.73 {+-} 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index {approx_equal} - 2.5 {+-} 0.2 (or -3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R{sub min} {approx}< 1.2 kpc. The disk takes over in the range 1.2 kpc {approx}< R{sub min} {approx}< 9 kpc, whereas the halo dominates at R{sub min} {approx}> 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the

  10. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    SciTech Connect

    Dunn, Nicholas J. H.; Noid, W. G.

    2015-12-28

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.

  11. Voronoi-cell finite difference method for accurate electronic structure calculation of polyatomic molecules on unstructured grids

    SciTech Connect

    Son, Sang-Kil

    2011-03-01

    We introduce a new numerical grid-based method on unstructured grids in the three-dimensional real-space to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a discrete Laplacian operator based on Voronoi cells and their natural neighbors, featuring high adaptivity and simplicity. To resolve multicenter Coulomb singularity in all-electron calculations of polyatomic molecules, this method utilizes highly adaptive molecular grids which consist of spherical atomic grids. It provides accurate and efficient solutions for the Schroedinger equation and the Poisson equation with the all-electron Coulomb potentials regardless of the coordinate system and the molecular symmetry. For numerical examples, we assess accuracy of the VFD method for electronic structures of one-electron polyatomic systems, and apply the method to the density-functional theory for many-electron polyatomic molecules.

  12. Variation in the modal parameters of space structures

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of gravity and suspension influences on space structural test articles is presented. A modular test article including deployable, erectable, and rotary modules was assembled in three one- and two-dimensional structures. The two deployable modules utilized cable diagonal bracing rather than rigid cross members; within a bay of one of the deployable modules, the cable preload was adjustable. A friction lock was used on the alpha joint to either allow or prohibit rotary motion. Suspension systems with plunge fundamentals of 1, 2, and 5 Hz were used for ground testing to evaluate the influences of suspension stiffness. Assembly and reassembly testing was performed, as was testing on two separate shipsets at two test sites. Trends and statistical variances in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset and suspension. Linear finite element modeling of each structure provided analytical results for 0-g unsuspended and 1-g suspended models, which are correlated with the analytical model.

  13. Microsolvation of 2-thiouracil: molecular structure and spectroscopic parameters of the thiouracil-water complex.

    PubMed

    Puzzarini, Cristina; Biczysko, Malgorzata

    2015-05-28

    State-of-the-art quantum-chemical computations have been employed to accurately determine the equilibrium structure and interaction energy of the 2-thiouracil-water complex, thus extending available reference data for biomolecule solvation patterns. The coupled-cluster level of theory in conjunction with a triple-ζ basis set has been considered together with extrapolation to the basis set limit, performed by employing second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections. On the basis of the comparison of experiment and theory for 2-thiouracil [ Puzzarini et al. Phys. Chem. Chem. Phys. 2013 , 15 , 16965 - 16975 ], structural changes due to water complexation have been pointed out. Molecular and spectroscopic properties of the 2-thiouracil-water complex have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the accurate determination of the molecular dipole moment and of the spectroscopic parameters required for predicting the rotational spectrum. PMID:25474644

  14. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN M31

    SciTech Connect

    Wang Song; Ma Jun

    2013-08-01

    In this paper, we present surface brightness profiles for 79 globular clusters in M31, using images observed with the Hubble Space Telescope, some of which are from new observations. The structural and dynamical parameters are derived from fitting the profiles to several different models for the first time. The results show that in the majority of cases, King models fit the M31 clusters just as well as Wilson models and better than Sersic models. However, there are 11 clusters best fitted by Sersic models with the Sersic index n > 2, meaning that they have cuspy central density profiles. These clusters may be the well-known core-collapsed candidates. There is a bimodality in the size distribution of M31 clusters at large radii, which is different from their Galactic counterparts. In general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a ''fundamental plane'' for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.

  15. Effect of mechanical parameters on dielectric elastomer minimum energy structures

    NASA Astrophysics Data System (ADS)

    Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert R.

    2013-04-01

    Soft robotics may provide many advantages compared to traditional robotics approaches based on rigid materials, such as intrinsically safe physical human-robot interaction, efficient/stable locomotion, adaptive morphology, etc. The objective of this study is to develop a compliant structural actuator for soft a soft robot using dielectric elastomer minimum energy structures (DEMES). DEMES consist of a pre-stretched dielectric elastomer actuator (DEA) bonded to an initially planar flexible frame, which deforms into an out-of-plane shape which allows for large actuation stroke. Our initial goal is a one-dimensional bending actuator with 90 degree stroke. Along with frame shape, the actuation performance of DEMES depends on mechanical parameters such as thickness of the materials and pre-stretch of the elastomer membrane. We report here the characterization results on the effect of mechanical parameters on the actuator performance. The tested devices use a cm-size flexible-PCB (polyimide, 50 μm thickness) as the frame-material. For the DEA, PDMS (approximately 50 μm thickness) and carbon black mixed with silicone were used as membrane and electrode, respectively. The actuators were characterized by measuring the tip angle and the blocking force as functions of applied voltage. Different pre-stretch methods (uniaxial, biaxial and their ratio), and frame geometries (rectangular with different width, triangular and circular) were used. In order to compare actuators with different geometries, the same electrode area was used in all the devices. The results showed that the initial tip angle scales inversely with the frame width, the actuation stroke and the blocking force are inversely related (leading to an interesting design trade-off), using anisotropic pre-stretch increased the actuation stroke and the initial bending angle, and the circular frame shape exhibited the highest actuation performance.

  16. Structural Design Parameters for Highly Birefringent Coordination Polymers.

    PubMed

    Thompson, John R; Katz, Michael J; Williams, Vance E; Leznoff, Daniel B

    2015-07-01

    A series of coordination polymer materials incorporating the highly anisotropic 2-(2-pyridyl)-1,10-phenanthroline (phenpy) building block have been synthesized and structurally characterized. M(phenpy)[Au(CN)2]2 (M = Cd, Mn) are isostructural and form a 1-D chain through bridging [Au(CN)2](-) units and extend into a 2-D sheet through aurophilic interactions. M(phenpy)(H2O)[Au(CN)2]2·2H2O (M = Cd, Mn, and Zn) are also isostructural but differ from the first set via the inclusion of a water molecule into the coordination sphere, resulting in a 1-D topology through aurophilic interactions. In(phenpy)(Cl)2[Au(CN)2]·0.5H2O forms a dimer through bridging chlorides and contains a free [Au(CN)2](-) unit. In the plane of the primary crystal growth direction, the birefringence values (Δn) of 0.37(2) (Cd(phenpy)[Au(CN)2]2), 0.50(3) (In(phenpy)(Cl)2[Au(CN)2]·0.5H2O), 0.56(3) and 0.59(6) (M(phenpy)(H2O)[Au(CN)2]2·2H2O M = Cd and Zn, respectively) were determined. β, a structural parameter defined by phenpy units rotated in the A-C plane relative to the light propagation (C) direction, was found to correlate to Δn magnitudes. The addition of a carbon-carbon double bond to terpy has increased the molecular polarizability anisotropy of the building block, and all structures have reduced deviation from planarity in comparison to terpy and terpy derivative structures, leading to these higher Δn values, which are among the highest reported for crystalline solids. PMID:26098267

  17. Accurate 3D rigid-body target motion and structure estimation by using GMTI/HRR with template information

    NASA Astrophysics Data System (ADS)

    Wu, Shunguang; Hong, Lang

    2008-04-01

    A framework of simultaneously estimating the motion and structure parameters of a 3D object by using high range resolution (HRR) and ground moving target indicator (GMTI) measurements with template information is given. By decoupling the motion and structure information and employing rigid-body constraints, we have developed the kinematic and measurement equations of the problem. Since the kinematic system is unobservable by using only one scan HRR and GMTI measurements, we designed an architecture to run the motion and structure filters in parallel by using multi-scan measurements. Moreover, to improve the estimation accuracy in large noise and/or false alarm environments, an interacting multi-template joint tracking (IMTJT) algorithm is proposed. Simulation results have shown that the averaged root mean square errors for both motion and structure state vectors have been significantly reduced by using the template information.

  18. Spatial dependence clusters in the estimation of forest structural parameters

    NASA Astrophysics Data System (ADS)

    Wulder, Michael Albert

    1999-12-01

    In this thesis we provide a summary of the methods by which remote sensing may be applied in forestry, while also acknowledging the various limitations which are faced. The application of spatial statistics to high spatial resolution imagery is explored as a means of increasing the information which may be extracted from digital images. A number of high spatial resolution optical remote sensing satellites that are soon to be launched will increase the availability of imagery for the monitoring of forest structure. This technological advancement is timely as current forest management practices have been altered to reflect the need for sustainable ecosystem level management. The low accuracy level at which forest structural parameters have been estimated in the past is partly due to low image spatial resolution. A large pixel is often composed of a number of surface features, resulting in a spectral value which is due to the reflectance characteristics of all surface features within that pixel. In the case of small pixels, a portion of a surface feature may be represented by a single pixel. When a single pixel represents a portion of a surface object, the potential to isolate distinct surface features exists. Spatial statistics, such as the Gets statistic, provide for an image processing method to isolate distinct surface features. In this thesis, high spatial resolution imagery sensed over a forested landscape is processed with spatial statistics to combine distinct image objects into clusters, representing individual or groups of trees. Tree clusters are a means to deal with the inevitable foliage overlap which occurs within complex mixed and deciduous forest stands. The generation of image objects, that is, clusters, is necessary to deal with the presence of spectrally mixed pixels. The ability to estimate forest inventory and biophysical parameters from image clusters generated from spatially dependent image features is tested in this thesis. The inventory

  19. Effects of the projectile electronic structure on stopping parameters for nickel

    NASA Astrophysics Data System (ADS)

    Damache, S.; Ouichaoui, S.; Moussa, D.; Dib, A.

    2006-08-01

    The stopping powers of nickel foils for 1H+, 2H+ and 4He2+ ions have been accurately measured over the energy range E ≈ (0.166-2.725) MeV/amu. The data were compared to those reported in the literature and to values derived by the SRIM-2003 code. They were analysed in the framework of the modified Bethe-Bloch theory to extract the target mean excitation and ionisation potential, I, and the Barkas effect parameter, b. The values derived from the proton and the alpha particle data are {I = (311.11 ± 2.61) eV, b = 1.38 ± 0.01} and {I = (276.12 ± 2.84) eV, b = 1.58 ± 0.01}, respectively. They thus show opposite variations of the I and b parameters as the projectile charge increases, presumably due only to the incident ions electronic structure. Besides, the reduced stopping power data for incident deuterons show to be fully consistent with those for protons indicating no effect of the projectile isotopic structure on the target stopping parameters. These results are discussed in comparison with ones reported in the literature.

  20. Dynamic parameters in models of atmospheric vortex structures

    NASA Astrophysics Data System (ADS)

    Dobryshman, E. M.; Kochina, V. G.; Letunova, T. A.

    2013-09-01

    Vortex simulation and the computation of fields of dynamic parameters of vortex structures (velocity, rotor velocity, and helicity) are carried out with the use of exact hydrodynamic equations in a cylindrical coordinate system. Components of centripetal and Coriolis accelerations are taken into account in the initial equations. Internal and external solutions are defined. Internal solutions ignore the disturbances of the pressure field, but they are considered in external solutions. The simulation is carried out so that the effect of accounting for spatial coordinates on the structure of the above fields is pronounced. It is shown that the initial kinetic energy of rotating motion transforms into the kinetic energy of radial and vertical velocity components in models with centripetal acceleration. In models with Coriolis acceleration, the Rossby effect is clearly pronounced. The method of an "inverse problem" is used for finding external solutions, i.e., reconstruction of the pressure field at specified velocity components. Computations have shown that tangential components mainly contribute to the velocity and helicity vortex moduli at the initial stage.

  1. Modal parameter extraction from large operating structures using ambient excitation

    SciTech Connect

    James, G.H. III; Carne, T.G.; Mayes, R.L.

    1995-12-31

    A technique called the Natural Excitation Technique or has been developed to response extract response parameters from large operational structure when subjected to random and unmeasured forces such as wind, road noise, aerodynamics, or waves. Six applications of NExT to ambient excitation testing and NExT analysis are surveyed in this paper with a minimum of technical detail. In the first application, NExT was applied to a controlled-yaw Horizontal-Axis Wind Turbine (HAWT). By controlling the yaw degree of freedom an important class of rotating coordinate system effects are reduced. A new shape extraction procedure was applied to this data set with good results. The second application was to a free-yaw HAWT. The complexity of the response has prompted further analytical studies and the development of a specialized visualization package. The third application of NExT was to a parked three-bladed Vertical-Axis Wind Turbine (VAWT) in which traditional modal testing could not excite all modes of interest. The shape extraction process used cross-correlation functions directly in a time-domain shape-fitting routine. The fourth application was to ground transportation systems. Ongoing work to improve driver and passenger comfort in tractor-trailer vehicles and to refine automobile body and tire models will use NExT. NExT has been used to process ambient vibration data for Finite Element Model correlation and is being used to study Structural Health Monitoring with ambient excitation. Shape fitting was performed using amplitude and phase information taken directly from the cross-spectra. The final application is to an offshore structure. This work is on-going, however initial studies have found a high-modal density, high noise content, and sparse data set.

  2. Extraction of accurate structure-factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources.

    PubMed

    Srajer, V; Crosson, S; Schmidt, M; Key, J; Schotte, F; Anderson, S; Perman, B; Ren, Z; Teng, T Y; Bourgeois, D; Wulff, M; Moffat, K

    2000-07-01

    Wavelength normalization is an essential part of processing of Laue X-ray diffraction data and is critically important for deriving accurate structure-factor amplitudes. The results of wavelength normalization for Laue data obtained in nanosecond time-resolved experiments at the ID09 beamline at the European Synchrotron Radiation Facility, Grenoble, France, are presented. Several wiggler and undulator insertion devices with complex spectra were used. The results show that even in the most challenging cases, such as wiggler/undulator tandems or single-line undulators, accurate wavelength normalization does not require unusually redundant Laue data and can be accomplished using typical Laue data sets. Single-line undulator spectra derived from Laue data compare well with the measured incident X-ray spectra. Successful wavelength normalization of the undulator data was also confirmed by the observed signal in nanosecond time-resolved experiments. Single-line undulators, which are attractive for time-resolved experiments due to their high peak intensity and low polychromatic background, are compared with wigglers, based on data obtained on the same crystal. PMID:16609201

  3. A subsurface structure change associated with the eruptive activity at Sakurajima Volcano, Japan, inferred from an accurately controlled source

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Yamaoka, Koshun; Miyamachi, Hiroki; Watanabe, Toshiki; Kunitomo, Takahiro; Ikuta, Ryoya; Yakiwara, Hiroshi; Iguchi, Masato

    2015-07-01

    Temporal variations of Green functions associated with the eruptive activity at Sakurajima Volcano, Japan, were estimated using an accurately controlled routinely operated signal system (ACROSS). We deconvolved 400 s waveforms of the ACROSS signal at nearby stations by a known source time function and stacked the results based on the time relative to individual eruptions and the eruption intervals; the quantities obtained by this procedure are Green functions corresponding to various stages of the eruptive activity. We found an energy decrease in the later phase of the Green functions in active eruptive periods. This energy decrease, localized in the 2-6 s window of the Green functions, is difficult to explain by contamination from volcanic earthquakes and tremors. The decrease could be more reasonably attributed to a subsurface structure change caused by the volcanic activity.

  4. Accurate molecular structures and infrared spectra of trans-2,3-dideuterooxirane, methyloxirane, and trans-2,3-dimethyloxirane

    SciTech Connect

    Barone, Vincenzo; Biczysko, Malgorzata Bloino, Julien; Puzzarini, Cristina

    2014-07-21

    Oxirane derivatives are the most used benchmarks for chiroptical spectroscopies in view of their small size and relative rigidity. The molecular structure, vibrational harmonic and anharmonic frequencies, and infrared intensities of the ground electronic states are analyzed in this paper. Equilibrium structure and harmonic force fields have been evaluated by means of high-level quantum-chemical calculations at the coupled-cluster level including single and double excitations together with a perturbative treatment of triples (CCSD(T)). Extrapolation to the complete basis-set limit as well as core-correlation effects have also been taken into account. Anharmonic contributions have been computed at the CCSD(T)/cc-pVTZ level for trans-2,3-dideuterooxirane. These data can serve as references to evaluate the accuracy of less expensive computational approaches rooted in the density functional theory (DFT). The latter have been used within hybrid CC/DFT approaches, which have been applied to simulate fully anharmonic infrared (IR) spectra. Finally, the best theoretical estimates of the equilibrium structures and vibrational wavenumbers are compared to the most accurate experimental data and show in all cases very good agreement, i.e., within 0.001 Å, 0.1 deg, 10 cm{sup −1}, and 0.5 km mol{sup −1}, for bond lengths, angles, wavenumbers, and IR intensities, respectively.

  5. THE STAR CLUSTERS OF THE LARGE MAGELLANIC CLOUD: STRUCTURAL PARAMETERS

    SciTech Connect

    Werchan, Felicia; Zaritsky, Dennis E-mail: dzaritsky@as.arizona.edu

    2011-08-15

    We present and analyze the radial luminosity profiles of a sample of 1066 stellar clusters in the Large Magellanic Cloud (LMC). By design, this study closely follows the compilation by Hill and Zaritsky of the structural parameters of stellar clusters in the Small Magellanic Cloud (SMC). Both King and Elson-Fall-Freeman model profiles are fit to V-band surface brightness profiles measured from the Magellanic Cloud Photometric Survey images. We tabulate the concentration, central surface brightness, tidal radii, 90% enclosed luminosity radii (r{sub 90}), and local background luminosity density. Over two-thirds of the clusters in the sample are adequately fit by one or both of these models. One notable and systematic exception, as in the SMC, is those clusters that lack a central brightness concentration, the 'ring' clusters. While the bulk properties of the clusters are similar between the LMC and SMC populations, we find that the LMC lacks clusters that are as large, either in terms of core radii or r{sub 90}, as the largest in the SMC, perhaps a signature of larger tidal stresses in the LMC.

  6. Analysing DNA structural parameters using a mesoscopic model

    NASA Astrophysics Data System (ADS)

    Amarante, Tauanne D.; Weber, Gerald

    2014-03-01

    The Peyrard-Bishop model is a mesoscopic approximation to model DNA and RNA molecules. Several variants of this model exists, from 3D Hamiltonians, including torsional angles, to simpler 2D versions. Currently, we are able to parametrize the 2D variants of the model which allows us to extract important information about the molecule. For example, with this technique we were able recently to obtain the hydrogen bonds of RNA from melting temperatures, which previously were obtainable only from NMR measurements. Here, we take the 3D torsional Hamiltonian and set the angles to zero. Curiously, in doing this we do not recover the traditional 2D Hamiltonians. Instead, we obtain a different 2D Hamiltonian which now includes a base pair step distance, commonly known as rise. A detailed knowledge of the rise distance is important as it determines the overall length of the DNA molecule. This 2D Hamiltonian provides us with the exciting prospect of obtaining DNA structural parameters from melting temperatures. Our results of the rise distance at low salt concentration are in good qualitative agreement with those from several published x-ray measurements. We also found an important dependence of the rise distance with salt concentration. In contrast to our previous calculations, the elastic constants now show little dependence with salt concentrations which appears to be closer to what is seen experimentally in DNA flexibility experiments.

  7. Extracting galactic structure parameters from multivariated density estimation

    NASA Technical Reports Server (NTRS)

    Chen, B.; Creze, M.; Robin, A.; Bienayme, O.

    1992-01-01

    Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.

  8. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Song-Feng, Zhao; Fang, Huang; Guo-Li, Wang; Xiao-Xin, Zhou

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  9. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov-Popov-Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  10. Materials and characterization using acoustic nonlinearity parameters and harmonic generation - Effects of crystalline and amorphous structures

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1990-01-01

    The effects of material structure on the nonlinearity parameters are reviewed. Problems discussed include definition of nonlinearity parameters, square-law nonlinearity and collinear beam-mixing, structure dependence of the nonlinearity parameters, negative nonlinearity parameters, and implications for materials characterization.

  11. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite.

    PubMed

    Moran, Robert F; McKay, David; Pickard, Chris J; Berry, Andrew J; Griffin, John M; Ashbrook, Sharon E

    2016-04-21

    The structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio random structure searching (AIRSS) to generate a series of candidate structures for hydrous wadsleyite (β-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth's transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg(2+) and randomly placing two H(+) in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1-H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (∼1.6 wt%) to be dominated by protonated O1 sites, with O3/O4-H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies. PMID:27020937

  12. Construct a new method accurately extracting parameters associate with absorption and scattering coefficients of epithelium and stroma: using perpendicular and oblique fiber bundle probes

    NASA Astrophysics Data System (ADS)

    Hsieh, H. P.; Sung, K. B.; Hsu, F. W.

    2014-05-01

    Diffuse reflectance spectroscopy has been applied as a non-invasive method to measure tissue optical properties, which are associate with anatomical information. The algorithm widely used to extract, optical parameters from reflectance spectra is the regression method, which is time-consuming and frequently converge to local maxima. In this study, the effects of parameters changes on spectra are analyzed in different fiber geometries, source-detector separations and wavelengths. In the end of this paper, a new fitting algorithm is proposed base on parameters features found. The new algorithm is expected to enhance the accuracy of parameters extracted and save 75% of the process time.

  13. Projection filters for modal parameter estimate for flexible structures

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Chen, Chung-Wen

    1987-01-01

    Single-mode projection filters are developed for eigensystem parameter estimates from both analytical results and test data. Explicit formulations of these projection filters are derived using the pseudoinverse matrices of the controllability and observability matrices in general use. A global minimum optimization algorithm is developed to update the filter parameters by using interval analysis method. Modal parameters can be attracted and updated in the global sense within a specific region by passing the experimental data through the projection filters. For illustration of this method, a numerical example is shown by using a one-dimensional global optimization algorithm to estimate model frequencies and dampings.

  14. Parameter Optimization and Field Validation of the Functional–Structural Model GREENLAB for Maize

    PubMed Central

    GUO, YAN; MA, YUNTAO; ZHAN, ZHIGANG; LI, BAOGUO; DINGKUHN, MICHAEL; LUQUET, DELPHINE; DE REFFYE, PHILIPPE

    2006-01-01

    • Background and Aims There are three reasons for the increasing demand for crop models that build the plant on the basis of architectural principles and organogenetic processes: (1) realistic concepts for developing new crops need to be guided by such models; (2) there is an increasing interest in crop phenotypic plasticity, based on variable architecture and morphology; and (3) engineering of mechanized cropping systems requires information on crop architecture. The functional–structural model GREENLAB was recently presented that simulates resource-dependent plasticity of plant architecture. This study introduces a new methodology for crop parameter optimization against measured data called multi-fitting, validates the calibrated model for maize with independent field data, and describes a technique for 3D visualization of outputs. • Methods Maize was grown near Beijing during the 2000, 2001 and 2003 (two sowing dates) summer seasons in a block design with four to five replications. Detailed morphological and topological observations were made on the plant architecture throughout the development of the four crops. Data obtained in 2000 was used to establish target files for parameter optimization using the generalized least square method, and parameter accuracy was evaluated by coefficient of variance. In situ plant digitization was used to establish 3D symbol files for organs that were then used to translate model outputs directly into 3D representations for each time step of model execution. •Key Results and Conclusions Multi-fitting against several target files obtained at different growth stages gave better parameter accuracy than single fitting at maturity only, and permitted extracting generic organ expansion kinetics from the static observations. The 2000 model gave excellent predictions of plant architecture and vegetative growth for the other three seasons having different temperature regimes, but predictions of inter-seasonal variability of

  15. Microwave spectra and gas phase structural parameters for N-hydroxypyridine-2(1H)-thione.

    PubMed

    Daly, Adam M; Mitchell, Erik G; Sanchez, Daniel A; Block, Eric; Kukolich, Stephen G

    2011-12-22

    The microwave spectrum for N-hydroxypyridine-2(1H)-thione (pyrithione) was measured in the frequency range 6-18 GHz, providing accurate rotational constants and nitrogen quadrupole coupling strengths for three isotopologues, C(5)H(4)(32)S(14)NOH, C(5)H(4)(32)S(14)NOD, and C(5)H(4)(34)S(14)NOH. Pyrithione was found to be in a higher concentration in the gas phase than the other tautomer, 2-mercaptopyridine-N-oxide (MPO). Microwave spectroscopy is best suited to determine which structure predominates in the gas phase. The measured rotational constants were used to accurately determine the coordinates of the substituted atoms and provided sufficient data to determine some of the important structural parameters for pyrithione, the only tautomer observed in the present work. The spectra were obtained using a pulsed-beam Fourier transform microwave spectrometer, with sufficient resolution to allow accurate measurements of the (14)N nuclear quadrupole hyperfine interactions. Ab initio calculations provided structural parameters and quadrupole coupling strengths that are in very good agreement with measured values. The experimental rotational constants for the parent compound are A = 3212.10(1), B = 1609.328(7), and C = 1072.208(6) MHz, yielding the inertial defect Δ(0) = -0.023 amu·Å(2) for the C(5)H(4)(32)S(14)NOH isotopologue. The observed near zero inertial defect clearly indicates a planar structure. The least-squares fit structural analysis yielded the experimental bond lengths R(O-H) = 0.93(2) Å, R(C-S) = 1.66(2) Å, and angle (N-O-H) = 105(4)° for the ground state structure. PMID:22070758

  16. Constructing Approximate Confidence Intervals for Parameters with Structural Equation Models

    ERIC Educational Resources Information Center

    Cheung, Mike W. -L.

    2009-01-01

    Confidence intervals (CIs) for parameters are usually constructed based on the estimated standard errors. These are known as Wald CIs. This article argues that likelihood-based CIs (CIs based on likelihood ratio statistics) are often preferred to Wald CIs. It shows how the likelihood-based CIs and the Wald CIs for many statistics and psychometric…

  17. Identification of random variation in structures and their parameter estimates.

    SciTech Connect

    Farrar, C. R.; Aumann, R. J.; McCarty, A. A.; Olson, C. C.

    2002-01-01

    Structures that are members of an ensemble of nominally identical systems actually differ due to variations in details among individuals. Furthermore, there are variations in the system response of an individual structure that can be attributed to unmeasured conditions (such as temperature and humidity) that are present during experiments. Finally, noise is present in all measurements of structural excitations and responses. For these reasons, there is always random variation associated with the characterizations of structural dynamic systems, and descriptions of results must be in statistical or probabilistic terms;. This study identifies and assesses the sources and the degrees of randomness in a metric of structural dynamics of a given system through experiments and analysis.

  18. Derivation of tree stem structural parameters from static terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Lin, Yi; Liu, Yajing; Niu, Zheng

    2014-11-01

    Accurate tree-level characteristic information is increasingly demanded for forest management and environment protection. The cutting-edge remote sensing technique of terrestrial laser scanning (TLS) shows the potential of filling this gap. This study focuses on exploring the methods for deriving various tree stem structural parameters, such as stem position, diameter at breast height (DBH), the degree of stem shrinkage, and the elevation angle and azimuth angle of stem inclination. The data for test was collected with a Leica HDS6100 TLS system in Seurasaari, Southern Finland in September 2010. In the field, the reference positions and DBHs of 100 trees were measured manually. The isolation of individual trees is based on interactive segmentation of point clouds. The estimation of stem position and DBH is based on the schematic of layering and then least-square-based circle fitting in each layer. The slope of robust fit line between the height of each layer and DBH is used to characterize the stem shrinkage. The elevation angle of stem inclination is described by the angle between the ground plane and the fitted stem axis. The angle between the north direction and the fitted stem axis gives the azimuth angle of stem inclination. The estimation of the DBHs performed with R square (R2) of 0.93 and root mean square error (RMSE) of 0.038m.The average angle corresponding to stem shrinkage is -1.86°. The elevation angles of stem inclinations are ranged from 31° to 88.3°. The results have basically validated TLS for deriving multiple structural parameters of stem, which help better grasp tree specialties.

  19. Direct structural parameter identification by modal test results

    NASA Technical Reports Server (NTRS)

    Chen, J.-C.; Kuo, C.-P.; Garba, J. A.

    1983-01-01

    A direct identification procedure is proposed to obtain the mass and stiffness matrices based on the test measured eigenvalues and eigenvectors. The method is based on the theory of matrix perturbation in which the correct mass and stiffness matrices are expanded in terms of analytical values plus a modification matrix. The simplicity of the procedure enables real time operation during the structural testing.

  20. Influence of solvent parameters on structure of polyhydroxybutyrate films

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Iordanskii, A. L.

    2012-07-01

    The polarity of dissolvent increases the perfection of a crystal structure and decrease the amount of amorphous phase of polyhydroxybutyrate (PHB). It is shown, that the amount of a defective crystal phase in films PHB is directly proportional to magnitude of cohesive energy of dissolvent.

  1. Cosmological parameter estimation with large scale structure observations

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, Cl(z1,z2), calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard P(k) analysis with the new Cl(z1,z2) method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the P(k) analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, C0(z1,z2).

  2. Structure parameters in rotating Couette-Poiseuille channel flow

    NASA Technical Reports Server (NTRS)

    Knightly, George H.; Sather, D.

    1986-01-01

    It is well-known that a number of steady state problems in fluid mechanics involving systems of nonlinear partial differential equations can be reduced to the problem of solving a single operator equation of the form: v + lambda Av + lambda B(v) = 0, v is the summation of H, lambda is the summation of one-dimensional Euclid space, where H is an appropriate (real or complex) Hilbert space. Here lambda is a typical load parameter, e.g., the Reynolds number, A is a linear operator, and B is a quadratic operator generated by a bilinear form. In this setting many bifurcation and stability results for problems were obtained. A rotating Couette-Poiseuille channel flow was studied, and it showed that, in general, the superposition of a Poiseuille flow on a rotating Couette channel flow is destabilizing.

  3. Accurate fundamental parameters of CoRoT asteroseismic targets. The solar-like stars HD 49933, HD 175726, HD 181420, and HD 181906

    NASA Astrophysics Data System (ADS)

    Bruntt, H.

    2009-10-01

    Context: The CoRoT satellite has provided high-quality light curves of several solar-like stars. Analysis of these light curves provides oscillation frequencies that make it possible to probe the interior of the stars. However, additional constraints on the fundamental parameters of the stars are important for the theoretical modelling to be successful. Aims: We estimate the fundamental parameters (mass, radius, and luminosity) of the first four solar-like targets to be observed in the asteroseismic field. In addition, we determine their effective temperature, metallicity, and detailed abundance patterns. Methods: To constrain the stellar mass, radius and age we used the shotgun software, which compares the location of the stars in the Hertzsprung-Russell diagram with theoretical evolution models. This method takes the uncertainties of the observed parameters into account, including the large separation determined from the solar-like oscillations. We determined the effective temperatures and abundance patterns in the stars from the analysis of high-resolution spectra obtained with the HARPS, NARVAL, ELODIE and FEROS spectrographs. Results: We determined the mass, radius, and luminosity of the four CoRoT targets to within 5{-}10%, 2{-}4% and 5{-}13%, respectively. The quality of the stellar spectra determines how well we can constrain the effective temperature. For the two best spectra we get 1-σ uncertainties below 60 K and 100{-}150 K for the other two. The uncertainty on the surface gravity is less than 0.08 dex for three stars, while it is 0.15 dex for HD 181906. The reason for the larger uncertainty is that the spectrum has two components with a luminosity ratio of L_p/Ls = 0.50±0.15. While Hipparcos astrometric data strongly suggest it is a binary star, we find evidence that the fainter star may be a background star, since it is less luminous but hotter.

  4. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGESBeta

    Perras, Frédéric A.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional

  5. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    SciTech Connect

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  6. On the atmospheric structure and fundamental parameters of red supergiants

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Freytag, B.; Scholz, M.; Wood, P. R.; Hauschildt, P. H.

    2015-01-01

    We present near-infrared spectro-interferometric studies of red supergiant (RSG) stars using the VLTI/AMBER instrument, which are compared to previously obtained similar observations of AGB stars. Our observations indicate spatially extended atmospheric molecular layers of water vapor and CO, similar as previously observed for Mira stars. Data of VY~CMa indicate that the molecular layers are asymmetric, possibly clumpy. Thanks to the spectro-interferometric capabilities of the VLTI/AMBER instrument, we can isolate continuum bandpasses, estimate fundamental parameters of our sources, locate them in the HR diagram, and compare their positions to recent evolutionary tracks. For the example of VY CMa, this puts it close to evolutionary tracks of initial mass 25-32 M ⊙. Comparisons of our data to hydrostatic model atmospheres, 3d simulations of convection, and 1d dynamic model atmospheres based on self-excited pulsation models indicate that none of these models can presently explain the observed atmospheric extensions for RSGs. The mechanism that levitates the atmospheres of red supergiant is thus a currently unsolved problem.

  7. Cosmological parameter estimation with large scale structure observations

    SciTech Connect

    Dio, Enea Di; Montanari, Francesco; Durrer, Ruth; Lesgourgues, Julien E-mail: Francesco.Montanari@unige.ch E-mail: Julien.Lesgourgues@cern.ch

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, C{sub ℓ}(z{sub 1},z{sub 2}), calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard P(k) analysis with the new C{sub ℓ}(z{sub 1},z{sub 2}) method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the P(k) analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, C{sub 0}(z{sub 1},z{sub 2})

  8. Estimates of forest structure parameters from GLAS data and multi-angle imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Yu, Ying; Yang, Xiguang; Fan, Wenyi

    2015-06-01

    Quantitative estimates of forest vertical and spatial distribution using remote sensing technology play an important role in better understanding forest ecosystem function, forest carbon storage and the global carbon cycle. Although most remote sensing systems can provide horizontal distribution of canopies, information concerning the vertical distribution of canopies cannot be detected. Fortunately, laser radars have become available, such as GLAS (Geoscience laser altimeter system). Because laser radar can penetrate foliage, it is superior to other remote sensing technologies for detecting vertical forest structure and has higher accuracy. GLAS waveform data were used in this study to retrieve average tree height and biomass in a GLAS footprint area in Heilongjiang Province. However, GLAS data are not spatially continuous. To fill the gaps, MISR (multi- angle imaging spectrometer) spectral radiance was chosen to predict the regional continuous tree height by developing a multivariate linear regression model. We compared tree height estimated by the regression model and GLAS data. The results confirmed that estimates of tree height and biomass based on GLAS data are considerably more accurate than estimates based on traditional methods. The accuracy is approximately 90%. MISR can be used to estimate tree height in continuous areas with a robust regression model. The R2, precision and root mean square error of the regression model were 0.8, 83% and 1 m, respectively. This study provides an important reference for mapping forest vertical parameters.

  9. Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were

  10. Accurate calculations on 12 Λ-S and 28 Ω states of BN+ cation: potential energy curves, spectroscopic parameters and spin-orbit coupling.

    PubMed

    Shi, Deheng; Liu, Qionglan; Sun, Jinfeng; Zhu, Zunlue

    2014-03-25

    The potential energy curves (PECs) of 28 Ω states generated from the 12 states (X(4)Σ(-), 1(2)Π, 1(2)Σ(-), 1(2)Δ, 1(2)Σ(+), 2(2)Π, A(4)Π, B(4)Σ(-), 3(2)Π, 1(6)Σ(-), 2(2)Σ(-) and 1(6)Π) of the BN(+) cation are studied for the first time for internuclear separations from about 0.1 to 1.0 nm using an ab initio quantum chemical method. All the Λ-S states correlate to the first four dissociation channels. The 1(6)Σ(-), 3(2)Π and A(4)Π states are found to be the inverted ones. The 1(2)Σ(+), 2(2)Π, 3(2)Π and 2(2)Σ(-) states are found to possess the double well. The PECs are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction. Core-valence correlation correction is included by a cc-pCV5Z basis set. Scalar relativistic correction is calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. The convergent behavior of present calculations is discussed with respect to the basis set and level of theory. The spin-orbit coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian using the all-electron cc-pCV5Z basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are obtained, and the vibrational properties of 1(2)Σ(+), 2(2)Π, 3(2)Π and 2(2)Σ(-) states are evaluated. Analyses demonstrate that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The conclusion is gained that the effect of spin-orbit coupling on the spectroscopic parameters are not obvious almost for all the Λ-S states involved in the present paper. PMID:24334021

  11. Accurate calculations on 9 Λ-S and 28 Ω states of NSe radical in the gas phase: potential energy curves, spectroscopic parameters and spin-orbit couplings.

    PubMed

    Shi, Deheng; Li, Peiling; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of 28 Ω states generated from 9 Λ-S states (X(2)Π, 1(4)Π, 1(6)Π, 1(2)Σ(+), 1(4)Σ(+), 1(6)Σ(+), 1(4)Σ(-), 2(4)Π and 1(4)Δ) are studied for the first time using an ab initio quantum chemical method. All the 9 Λ-S states correlate to the first two dissociation limits, N((4)Su)+Se((3)Pg) and N((4)Su)+Se((3)Dg), of NSe radical. Of these Λ-S states, the 1(6)Σ(+), 1(4)Σ(+), 1(6)Π, 2(4)Π and 1(4)Δ are found to be rather weakly bound states. The 1(2)Σ(+) is found to be unstable and has double wells. And the 1(6)Σ(+), 1(4)Σ(+), 1(4)Π and 1(6)Π are found to be the inverted ones with the SO coupling included. The PEC calculations are made by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification. The spin-orbit coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. The convergence of the present calculations is discussed with respect to the basis set and the level of theory. Core-valence correlation corrections are included with a cc-pCVTZ basis set. Scalar relativistic corrections are calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of spin-orbit coupling constants is discussed in brief for some Λ-S states with one shallow well on each PEC. The spectroscopic parameters of 9 Λ-S and 28 Ω states are determined by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation with Numerov's method. The splitting energy in the X(2)Π Λ-S state is determined to be about 864.92 cm(-1), which agrees favorably with the measurements of 891.80 cm(-1). Moreover, other spectroscopic parameters of Λ-S and Ω states involved here are

  12. Accurate wavelength calibration method for flat-field grating spectrometers.

    PubMed

    Du, Xuewei; Li, Chaoyang; Xu, Zhe; Wang, Qiuping

    2011-09-01

    A portable spectrometer prototype is built to study wavelength calibration for flat-field grating spectrometers. An accurate calibration method called parameter fitting is presented. Both optical and structural parameters of the spectrometer are included in the wavelength calibration model, which accurately describes the relationship between wavelength and pixel position. Along with higher calibration accuracy, the proposed calibration method can provide information about errors in the installation of the optical components, which will be helpful for spectrometer alignment. PMID:21929865

  13. Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

    PubMed Central

    Badran, Yasser Ali; Abdelaziz, Alsayed Saad; Shehab, Mohamed Ahmed; Mohamed, Hazem Abdelsabour Dief; Emara, Absel-Aziz Ali; Elnabtity, Ali Mohamed Ali; Ghanem, Maged Mohammed; ELHelaly, Hesham Abdel Azim

    2016-01-01

    Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies. PMID:27141192

  14. The Araucaria Project: accurate stellar parameters and distance to evolved eclipsing binary ASAS J180057-2333.8 in Sagittarius Arm

    NASA Astrophysics Data System (ADS)

    Suchomska, K.; Graczyk, D.; Smolec, R.; Pietrzyński, G.; Gieren, W.; Stȩpień, K.; Konorski, P.; Pilecki, B.; Villanova, S.; Thompson, I. B.; Górski, M.; Karczmarek, P.; Wielgórski, P.; Anderson, R. I.

    2015-07-01

    We have analyzed the double-lined eclipsing binary system ASAS J180057-2333.8 from the All Sky Automated Survey (ASAS) catalogue. We measure absolute physical and orbital parameters for this system based on archival V-band and I-band ASAS photometry, as well as on high-resolution spectroscopic data obtained with ESO 3.6 m/HARPS and CORALIE spectrographs. The physical and orbital parameters of the system were derived with an accuracy of about 0.5-3 per cent. The system is a very rare configuration of two bright well-detached giants of spectral types K1 and K4 and luminosity class II. The radii of the stars are R1 = 52.12 ± 1.38 and R2 = 67.63 ± 1.40 R⊙ and their masses are M1 = 4.914 ± 0.021 and M2 = 4.875 ± 0.021 M⊙. The exquisite accuracy of 0.5 per cent obtained for the masses of the components is one of the best mass determinations for giants. We derived a precise distance to the system of 2.14 ± 0.06 kpc (stat.) ± 0.05 (syst.) which places the star in the Sagittarius-Carina arm. The Galactic rotational velocity of the star is Θs = 258 ± 26 km s-1 assuming Θ0 = 238 km s-1. A comparison with PARSEC isochrones places the system at the early phase of core helium burning with an age of slightly larger than 100 million years. The effect of overshooting on stellar evolutionary tracks was explored using the MESA star code.

  15. A density functional study of the electronic structure and spin Hamiltonian parameters of mononuclear thiomolybdenyl complexes.

    PubMed

    Drew, Simon C; Young, Charles G; Hanson, Graeme R

    2007-04-01

    The electron paramagnetic resonance spin Hamiltonian parameters of mononuclear thiomolybdenyl complexes based upon the tris(pyrazolyl)borate ligand, together with their molybdenyl analogues, are calculated using density functional theory. The electronic g matrix and 95Mo hyperfine matrix are calculated as second-order response properties from the coupled-perturbed Kohn-Sham equations. The scalar relativistic zero-order regular approximation (ZORA) is used with an all-electron basis and an accurate mean-field spin-orbit operator which includes all one- and two-electron terms. The principal values and relative orientations of the g and A interaction matrices obtained from the experimental spectra in a previous EPR study are compared with those obtained from unrestricted Kohn-Sham calculations at the BP86 and B3LYP level, and the latter are found to be in good quantitative agreement. A quasi-restricted approach is used to analyze the influence of the various molecular orbitals on g and A. In all complexes the ground state magnetic orbital is dX2-Y2-based and the orientation of the A matrix is directly related to the orientation of this orbital. The largest single contribution to the orientation of the g matrix arises from the spin-orbit coupling of the dYZ-based lowest-unoccupied molecular orbital into the ground state. A number of smaller, cumulative charge-transfer contributions augment the d-d contributions. A comparison of the theoretical EPR parameters obtained using both crystallographic and gas-phase geometry-optimized structures of Tp*MoO(bdt) (Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate, bdt = 1,2-benzenedithiolate) suggests a correspondence between the metal-dithiolate fold angle and the angle of noncoincidence between g and A. PMID:17305330

  16. Nuclear structure with accurate chiral perturbation theory nucleon-nucleon potential: Application to 6Li and 10B

    SciTech Connect

    Navratil, P; Caurier, E

    2003-10-14

    The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.

  17. Photochemical parameters of atmospheric source gases: accurate determination of OH reaction rate constants over atmospheric temperatures, UV and IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.

    2012-12-01

    The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of

  18. Accurate calculations on the 22 electronic states and 54 spin-orbit states of the O2 molecule: potential energy curves, spectroscopic parameters and spin-orbit coupling.

    PubMed

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue; Shulin, Zhang

    2014-04-24

    The potential energy curves (PECs) of 54 spin-orbit states generated from the 22 electronic states of O2 molecule are investigated for the first time for internuclear separations from about 0.1 to 1.0nm. Of the 22 electronic states, the X(3)Σg(-), A(')(3)Δu, A(3)Σu(+), B(3)Σu(-), C(3)Πg, a(1)Δg, b(1)Σg(+), c(1)Σu(-), d(1)Πg, f(1)Σu(+), 1(5)Πg, 1(3)Πu, 2(3)Σg(-), 1(5)Σu(-), 2(1)Σu(-) and 2(1)Δg are found to be bound, whereas the 1(5)Σg(+), 2(5)Σg(+), 1(1)Πu, 1(5)Δg, 1(5)Πu and 2(1)Πu are found to be repulsive ones. The B(3)Σu(-) and d(1)Πg states possess the double well. And the 1(3)Πu, C(3)Πg, A'(3)Δu, 1(5)Δg and 2(5)Σg(+) states are the inverted ones when the spin-orbit coupling is included. The PEC calculations are done by the complete active space self-consistent field (CASSCF) method, which is followed by the internally contracted multireference configuration interaction (icMRCI) approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections are taken into account. The convergence of present calculations is evaluated with respect to the basis set and level of theory. The vibrational properties are discussed for the 1(5)Πg, 1(3)Πu, d(1)Πg and 1(5)Σu(-) states and for the second well of the B(3)Σu(-) state. The spin-orbit coupling effect is accounted for by the state interaction method with the Breit-Pauli Hamiltonian. The PECs of all the electronic states and spin-orbit states are extrapolated to the complete basis set limit. The spectroscopic parameters are obtained, and compared with available experimental and other theoretical results. Analyses demonstrate that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The conclusion is obtained that the effect of spin-orbit coupling on the spectroscopic parameters are small almost for all the electronic states involved in this paper except for the 1(5)Σu(-), 1(5)Πg and 1(3)Πu. PMID:24486866

  19. Accurate calculations on the 12 electronic states and 23 Ω states of the SiBr+ cation: potential energy curves, spectroscopic parameters and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Liu, Qionglan; Yu, Wei; Sun, Jinfeng; Zhu, Zunlue

    2014-05-01

    The potential energy curves (PECs) of 23 Ω states generated from the 12 electronic states (X1 Σ +, 21 Σ +, 11 Σ -, 11 Π, 21 Π, 11 Δ, 13 Σ +, 23 Σ +, 13 Σ -, a3 Π, 23 Π and 13 Δ) are studied for the first time. All the states correlate to the first dissociation channel of the SiBr+ cation. Of these electronic states, the 23 Σ + is the repulsive one without the spin-orbit coupling, whereas it becomes the bound one with the spin-orbit coupling added. On the one hand, without the spin-orbit coupling, the 11 Π, 21 Π and 23 Π are the rather weakly bound states, and only the 11 Π state possesses the double well; on the other hand, with the spin-orbit coupling included, the a3 Π and 11 Π states possess the double well, and the 13 Σ + and 13 Σ - are the inverted states. The PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with the Davidson modification. Scalar relativistic correction is calculated by the third-order Douglas-Kroll Hamiltonian approximation with a cc-pVTZ-DK basis set. Core-valence correlation correction is included with a cc-pCVTZ basis set. The spin-orbit coupling is accounted for by the state interaction method with the Breit-Pauli Hamiltonian using the all-electron aug-cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of the spin-orbit coupling constant is discussed in brief. The spectroscopic parameters are evaluated for the 11 bound electronic states and the 23 bound Ω states, and are compared with available measurements. Excellent agreement has been found between the present results and the experimental data. It demonstrates that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the a3 Π 0 + and a3 Π 1 states to the X1 Σ + 0+ state are calculated for several low vibrational levels, and

  20. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    NASA Astrophysics Data System (ADS)

    Long, Xu; Ge, Fei; Wang, Lei; Hong, Youshi

    2009-06-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  1. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  2. Solid-solid structural transformations in Lennard-Jones clusters: accurate simulations versus the harmonic superposition approximation.

    PubMed

    Sharapov, Vladimir A; Mandelshtam, Vladimir A

    2007-10-18

    We consider systems undergoing very-low-temperature solid-solid transitions associated with minima of similar energy but different symmetry, and separated by a high potential barrier. In such cases the well-known "broken-ergodicity" problem is often difficult to overcome, even using the most advanced Monte Carlo (MC) techniques, including the replica exchange method (REM). The methodology that we develop in this paper is suitable for the above specified cases and is numerically accurate and efficient. It is based on a new MC move implemented within the REM framework, in which trial points are generated analytically using an auxiliary harmonic superposition system that mimics well the true system at low temperatures. Due to the new move, the low-temperature random walks are able to frequently switch the relevant potential energy funnels leading to an efficient sampling. Numerically accurate results are obtained for a number of Lennard-Jones clusters, including those that have so far been treated only by the harmonic superposition approximation (HSA). The latter is believed to provide good estimates for low-temperature equilibrium properties but is manifestly uncontrollable and is difficult to validate. The present results provide a good test for the HSA and demonstrate its reliability, particularly for estimation of the solid-solid transition temperatures in most cases considered. PMID:17685597

  3. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. PMID:24675610

  4. Impact of Post Hoc Measurement Model Overspecification on Structural Parameter Integrity

    ERIC Educational Resources Information Center

    Fan, Weihua; Hancock, Gregory R.

    2006-01-01

    In the common two-step structural equation modeling process, modifications are routinely made to the measurement portion of the model prior to assessing structural relations. The effect of such measurement model modifications on the structural parameter estimates, however, is not well known and is the subject of the current investigation. For a…

  5. Effect of UV light on different structural and transport parameters of cellophane membranes

    SciTech Connect

    Benavente, J.; Vazquez, M.I.; De Abajo, J.

    1996-01-01

    A comparative study of UV light influence on structural and transport parameters of cellophane membranes was made. Changes in the chemical structure and electrical behavior of cellophane membranes were considered by determining the hydraulic permeability, salt diffusion coefficient, and resistance values, as well as some geometrical parameters, for an untreated membrane and two differently UV-treated cellophane membranes. Differences in the characteristic parameters for the three samples showed that radiation mainly affected the membrane structure, while only small changes in membrane electrical behavior were determined.

  6. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MS(n) and accurate mass determination by ESI TOF.

    PubMed

    Nägele, Edgar; Moritz, Ralf

    2005-10-01

    Today, it is necessary to identify relevant compounds appearing in discovery and development of new drug substances in the pharmaceutical industry. For that purpose, the measurement of accurate molecular mass and empirical formula calculation is very important for structure elucidation in addition to other available analytical methods. In this work, the identification and confirmation of degradation products in a finished dosage form of the antibiotic drug amoxicillin obtained under stress conditions will be demonstrated. Structure elucidation is performed utilizing liquid chromatography (LC) ion trap MS/MS and MS3 together with accurate mass measurement of the molecular ions and of the collision induced dissociation (CID) fragments by liquid chromatography electro spray ionization time-of-flight mass spectrometry (LC/ESI-TOF). PMID:16099170

  7. RCK: accurate and efficient inference of sequence- and structure-based protein–RNA binding models from RNAcompete data

    PubMed Central

    Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie

    2016-01-01

    Motivation: Protein–RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein–RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. Results: We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein–RNA structure-based models on an unprecedented scale. Availability and Implementation: Software and models are freely available at http://rck.csail.mit.edu/ Contact: bab@mit.edu Supplementary information

  8. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    SciTech Connect

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  9. Structural modelling and control design under incomplete parameter information: The maximum-entropy approach

    NASA Technical Reports Server (NTRS)

    Hyland, D. C.

    1983-01-01

    A stochastic structural control model is described. In contrast to the customary deterministic model, the stochastic minimum data/maximum entropy model directly incorporates the least possible a priori parameter information. The approach is to adopt this model as the basic design model, thus incorporating the effects of parameter uncertainty at a fundamental level, and design mean-square optimal controls (that is, choose the control law to minimize the average of a quadratic performance index over the parameter ensemble).

  10. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  11. Parameter identification methods for improving structural dynamic models. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1988-01-01

    There is an increasing need to develop Parameter Identification methods for improving structural dynamic models, based on the inability of engineers to produce mathematical models which correlate with experimental data. This research explores the efficiency of combining Component Mode Synthesis (substructuring) methods with Parameter Identification procedures in order to improve analytical modeling of structural components and their connections. Improvements are computed in terms of physical stiffness and damping parameters in order that the physical characteristics of the model can be better understood. Connections involving both viscous and friction damping are investigated. Substructuring methods are utilized to reduce the complexity of the identification problem. Component and inter-component structural connection properties are evaluated and identified independently, thus simplifying the identification problem. It is shown that modal test data is effective for identifying modeling problems associated with structural components, and for determining the stiffness and damping properties of intercomponent connections. In general, Parameter Identification is improved when greater quantities of experimental data are available.

  12. Distributions of electric parameters in MOS structures on 3C-SiC substrate

    NASA Astrophysics Data System (ADS)

    Piskorski, Krzysztof; Przewlocki, Henryk M.; Esteve, Romain; Bakowski, Mietek

    2013-02-01

    In this work studies of some electrical parameters of the MOS structure based on 3C-SiC substrate are presented. The effective contact potential difference ϕ MS , the barrier height at the gate-dielectric interface E BG and the flat-band in semiconductor voltage V FB were measured using several electric and photoelectric techniques. Values of these parameters obtained on structures with different gate areas decrease monotonically with increasing parameter R, defined as the ratio of the gate perimeter to the gate area. Such behavior confirmed results obtained on MOS structures on silicon substrate and also supported our hypothesis that the mechanical stress in the dielectric layer under the metal gate causes non uniform distribution of some parameters over the gate area of MOS structure.

  13. Distributions of electric parameters in MOS structures on 3C-SiC substrate

    NASA Astrophysics Data System (ADS)

    Piskorski, Krzysztof; Przewlocki, Henryk; Esteve, Romain; Bakowski, Mietek

    2013-02-01

    In this work studies of some electrical parameters of the MOS structure based on 3C-SiC substrate are presented. The effective contact potential difference ϕMS, the barrier height at the gate-dielectric interface E BG and the flat-band in semiconductor voltage V FB were measured using several electric and photoelectric techniques. Values of these parameters obtained on structures with different gate areas decrease monotonically with increasing parameter R, defined as the ratio of the gate perimeter to the gate area. Such behavior confirmed results obtained on MOS structures on silicon substrate and also supported our hypothesis that the mechanical stress in the dielectric layer under the metal gate causes non uniform distribution of some parameters over the gate area of MOS structure.

  14. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  15. Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2005-01-01

    A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…

  16. Determination of Structural Parameters of Thin-Film Photocatalytic Materials by BDS

    NASA Astrophysics Data System (ADS)

    Korte, Dorota; Franko, Mladen

    2015-09-01

    A method for determination of structural parameters of some thin-film photocatalytic materials is presented. The analysis was based on the material's thermal parameter dependences on its surface structure or porosity and was thus performed by the use of beam deflection spectroscopy (BDS) supported by theoretical analysis made in the framework of complex geometrical optics. The results obtained by BDS were than compared with those received on the basis of AFM and SEM measurements and found to be in good agreement.

  17. Accurate determination of the fine-structure intervals in the 3P ground states of C-13 and C-12 by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Cooksy, A. L.; Saykally, R. J.; Brown, J. M.; Evenson, K. M.

    1986-01-01

    Accurate values are presented for the fine-structure intervals in the 3P ground state of neutral atomic C-12 and C-13 as obtained from laser magnetic resonance spectroscopy. The rigorous analysis of C-13 hyperfine structure, the measurement of resonant fields for C-12 transitions at several additional far-infrared laser frequencies, and the increased precision of the C-12 measurements, permit significant improvement in the evaluation of these energies relative to earlier work. These results will expedite the direct and precise measurement of these transitions in interstellar sources and should assist in the determination of the interstellar C-12/C-13 abundance ratio.

  18. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    PubMed

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. PMID:27114055

  19. CC/DFT Route toward Accurate Structures and Spectroscopic Features for Observed and Elusive Conformers of Flexible Molecules: Pyruvic Acid as a Case Study.

    PubMed

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina

    2015-09-01

    The structures and relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semiexperimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt-, and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol(-1). Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm(-1) are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones, and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC

  20. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations.

    PubMed

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T-C; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators. PMID:27131699

  1. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T.-C.; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators.

  2. Gap between technically accurate information and socially appropriate information for structural health monitoring system installed into tall buildings

    NASA Astrophysics Data System (ADS)

    Mita, Akira

    2016-04-01

    The importance of the structural health monitoring system for tall buildings is now widely recognized by at least structural engineers and managers at large real estate companies to ensure the structural safety immediately after a large earthquake and appeal the quantitative safety of buildings to potential tenants. Some leading real estate companies decided to install the system into all tall buildings. Considering this tendency, a pilot project for the west area of Shinjuku Station supported by the Japan Science and Technology Agency was started by the author team to explore a possibility of using the system to provide safe spaces for commuters and residents. The system was installed into six tall buildings. From our experience, it turned out that viewing only from technological aspects was not sufficient for the system to be accepted and to be really useful. Safe spaces require not only the structural safety but also the soundness of key functions of the building. We need help from social scientists, medical doctors, city planners etc. to further improve the integrity of the system.

  3. Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.

    1994-01-01

    A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.

  4. Correlation and assessment of structural airplane crash data with flight parameters at impact

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1982-01-01

    Crash deceleration pulse data from a crash dynamics program on general aviation airplanes and from transport crash data were analyzed. Structural airplane crash data and flight parameters at impact were correlated. Uncoupled equations for the normal and longitudinal floor impulses in the cabin area of the airplane were derived, and analytical expressions for structural crushing during impact and horizontal slide out were also determined. Agreement was found between experimental and analytical data for general aviation and transport airplanes over a relatively wide range of impact parameter. Two possible applications of the impulse data are presented: a postcrash evaluation of crash test parameters and an assumed crash scenario.

  5. Early Type Galaxies and Structural Parameters from ESO Public Survey KiDS

    NASA Astrophysics Data System (ADS)

    Roy, N.; Napolitano, N. R.; La Barbera, F.; Tortora, C.; Getman, F.; Radovich, M.; Capaccioli, M.

    The Kilo Degree survey (KiDS) is a large-scale optical imaging survey carried out with the VLT Survey Telescope (VST), which is the ideal tool for galaxy evolution studies. We expect to observe millions of galaxies for which we extract the structural parameters in four wavebands (u, g, r and i). This sample will represent the largest dataset with measured structural parameters up to a redshift z = 0. 5. In this paper we will introduce the sample, and describe the 2D fitting procedure using the 2DPHOT environment and the validation of the parameters with an external catalog.

  6. Resonance parameters based analysis for metallic thickness optimization of a bimetallic plasmonic structure

    NASA Astrophysics Data System (ADS)

    Bera, Mahua; Banerjee, Jayeta; Ray, Mina

    2014-02-01

    Metallic film thickness optimization in mono- and bimetallic plasmonic structures has been carried out in order to determine the correct device parameters. Different resonance parameters, such as reflectivity, phase, field enhancement, and the complex amplitude reflectance Argand diagram (CARAD), have been investigated for the proposed optimization procedure. Comparison of mono- and bimetallic plasmonic structures has been carried out in the context of these resonance parameters with simultaneous angular and spectral interrogation. Differential phase analysis has also been performed and its application to sensing has been discussed along with a proposed interferometric set-up.

  7. {ital Ab} {ital initio} investigation of the N{sub 2}{endash}HF complex: Accurate structure and energetics

    SciTech Connect

    Woon, D.E.; Dunning, T.H. Jr.; Peterson, K.A.

    1996-04-01

    Augmented correlation consistent basis sets of double (aug-cc-pVDZ), triple (aug-cc-pVTZ), and modified quadruple zeta (aug-cc-pVQZ{prime}) quality have been employed to describe the N{sub 2}{endash}HF potential energy surface at the Hartree{endash}Fock level and with single reference correlated wave functions including Mo/ller{endash}Plesset perturbation theory (MP2, MP3, MP4) and coupled cluster methods [CCSD, CCSD(T)]. The most accurate computed equilibrium binding energies {ital D}{sub {ital e}} are (with counterpoise correction) 810 cm{sup {minus}1} (MP4/aug-cc-pVQZ{prime}) and 788 cm{sup {minus}1} [CCSD(T)/aug-cc-pVQZ{prime}]. Estimated complete basis set limits of 814 cm{sup {minus}1} (MP4) and 793 cm{sup {minus}1} [CCSD(T)] indicate that the large basis set results are essentially converged. Harmonic frequencies and zero-point energies were determined through the aug-cc-pVTZ level. Combining the zero point energies computed at the aug-cc-pVTZ level with the equilibrium binding energies computed at the aug-cc-pVQZ{prime} level, we predict {ital D}{sub 0} values of 322 and 296 cm{sup {minus}1}, respectively, at the MP4 and CCSD(T) levels of theory. Using experimental anharmonic frequencies, on the other hand, the CCSD(T) value of {ital D}{sub 0} is increased to 415 cm{sup {minus}1}, in good agreement with the experimental value recently reported by Miller and co-workers, 398{plus_minus}2 cm{sup {minus}1}. {copyright} {ital 1996 American Institute of Physics.}

  8. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    PubMed

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets. PMID:26460680

  9. Accurate modeling of spectral fine-structure in Earth radiance spectra measured with the Global Ozone Monitoring Experiment.

    PubMed

    van Deelen, Rutger; Hasekamp, Otto P; Landgraf, Jochen

    2007-01-10

    We present what we believe to be a novel approach to simulating the spectral fine structure (<1 nm) in measurements of spectrometers such as the Global Ozone Monitoring Experiment (GOME). GOME measures the Earth's radiance spectra and daily solar irradiance spectra from which a reflectivity spectrum is commonly extracted. The high-frequency structures contained in such a spectrum are, apart from atmospheric absorption, caused by Raman scattering and by a shift between the solar irradiance and the Earth's radiance spectrum. Normally, an a priori high-resolution solar spectrum is used to simulate these structures. We present an alternative method in which all the required information on the solar spectrum is retrieved from the GOME measurements. We investigate two approaches for the spectral range of 390-400 nm. First, a solar spectrum is reconstructed on a fine spectral grid from the GOME solar measurement. This approach leads to undersampling errors of up to 0.5% in the modeling of the Earth's radiance spectra. Second, a combination of the solar measurement and one of the Earth's radiance measurement is used to retrieve a solar spectrum. This approach effectively removes the undersampling error and results in residuals close to the GOME measurement noise of 0.1%. PMID:17268571

  10. Comparative study of exchange-correlation functionals for accurate predictions of structural and magnetic properties of multiferroic oxides

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew J.

    2016-05-01

    We systematically compare predictions of various exchange correlation functionals for the structural and magnetic properties of perovskite Sr1 -xBaxMnO3 (0 ≤x ≤1 )—a representative class of multiferroic oxides. The local spin density approximation (LSDA) and spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof parametrization (sPBE) make substantial different predictions for ferroelectric atomic distortions, tetragonality, and ground state magnetic ordering. Neither approximation quantitatively reproduces all the measured structural and magnetic properties of perovskite Sr0.5Ba0.5MnO3 . The spin-dependent generalized gradient approximation with Perdew-Burke-Ernzerhof revised for solids parametrization (sPBEsol) and the charge-only Perdew-Burke-Ernzerhof parametrized generalized gradient approximation with Hubbard U and Hund's J extensions both provide overall better agreement with measured structural and magnetic properties of Sr0.5Ba0.5MnO3 , compared to LSDA and sPBE. Using these two methods, we find that different from previous predictions, perovskite BaMnO3 has large Mn off-center displacements and is close to a ferromagnetic-to-antiferromagnetic phase boundary, making it a promising candidate to induce effective giant magnetoelectric effects and to achieve cross-field control of polarization and magnetism.

  11. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase.

    PubMed

    Komuro, Yasuaki; Re, Suyong; Kobayashi, Chigusa; Muneyuki, Eiro; Sugita, Yuji

    2014-09-01

    Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins. PMID:26588553

  12. The structural parameters of self-assembled quantum dots determined from the optical spectra

    SciTech Connect

    Hong, Boon Hon; Beaumont, Matthew; Rybchenko, Sergey I.; Itskevich, Igor E.; Haywood, Stephanie K.; Tinkler, Lloyd; Hugues, Maxime

    2013-12-04

    Structural parameters of InGaAs/GaAs self-assembled quantum dots (SAQDs), which were grown using In-flush technique, were deduced using optical spectroscopy combined with computer modeling. The results are in excellent agreement with the experimental data obtained from transmission electron microscopy. The developed approach suggests a promising alternative to structural characterization methods for SAQDs.

  13. Evaluation of Structural Equation Mixture Models: Parameter Estimates and Correct Class Assignment

    ERIC Educational Resources Information Center

    Tueller, Stephen; Lubke, Gitta

    2010-01-01

    Structural equation mixture models (SEMMs) are latent class models that permit the estimation of a structural equation model within each class. Fitting SEMMs is illustrated using data from 1 wave of the Notre Dame Longitudinal Study of Aging. Based on the model used in the illustration, SEMM parameter estimation and correct class assignment are…

  14. Parameter-space screening: a powerful tool for high-throughput crystal structure determination.

    PubMed

    Liu, Zhi-Jie; Lin, Dawei; Tempel, Wolfram; Praissman, Jeremy L; Rose, John P; Wang, Bi-Cheng

    2005-05-01

    The determination of protein structures on a genomic scale requires both computing capacity and efficiency increases at many stages along the complex process. By combining bioinformatics workflow-management techniques, cluster-based computing and popular crystallographic structure-determination software packages, an efficient and powerful new tool for structural biology/genomics has been developed. Using the workflow manager and a simple web interface, the researcher can, in a few easy steps, set up hundreds of structure-determination jobs, each using a slightly different set of program input parameters, thus efficiently screening parameter space for the optimal input-parameter combination, i.e. a set of parameters that leads to a successful structure determination. Upon completion, results from the programs are harvested, analyzed, sorted based on success and presented to the user via the web interface. This approach has been applied with success in more than 30 cases. Examples of successful structure determinations based on single-wavelength scattering (SAS) are described and include cases where the 'rational' crystallographer-based selection of input parameters values had failed. PMID:15858261

  15. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives.

    PubMed

    Chen, Kewei; Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2015-09-18

    Dephytylated chlorophylls (chlorophyllides and pheophorbides) are the starting point of the chlorophyll catabolism in green tissues, components of the chlorophyll pattern in storage/processed food vegetables, as well as the favoured structural arrangement for chlorophyll absorption. In addition, dephytylated native chlorophylls are prone to several modifications of their structure yielding pyro-, 13(2)-hydroxy- and 15(1)-hydroxy-lactone derivatives. Despite of these outstanding remarks only few of them have been analysed by MS(n). Besides new protocols for obtaining standards, we have developed a new high throughput methodology able to determine the fragmentation pathway of 16 dephytylated chlorophyll derivatives, elucidating the structures of the new product ions and new mechanisms of fragmentation. The new methodology combines, by first time, high resolution time-of-flight mass spectrometry and powerful post-processing software. Native chlorophyllides and pheophorbides mainly exhibit product ions that involve the fragmentation of D ring, as well as additional exclusive product ions. The introduction of an oxygenated function at E ring enhances the progress of fragmentation reactions through the β-keto ester group, developing also exclusive product ions for 13(2)-hydroxy derivatives and for 15(1)-hydroxy-lactone ones. Consequently, while MS(2)-based reactions of phytylated chlorophyll derivatives point to fragmentations at the phytyl and propionic chains, dephytylated chlorophyll derivatives behave different as the absence of phytyl makes β-keto ester group and E ring more prone to fragmentation. Proposals of the key reaction mechanisms underlying the origin of new product ions have been made. PMID:26277027

  16. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  17. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation

    NASA Astrophysics Data System (ADS)

    Jahanshahi, Mohammad R.; Masri, Sami F.

    2013-03-01

    In mechanical, aerospace and civil structures, cracks are important defects that can cause catastrophes if neglected. Visual inspection is currently the predominant method for crack assessment. This approach is tedious, labor-intensive, subjective and highly qualitative. An inexpensive alternative to current monitoring methods is to use a robotic system that could perform autonomous crack detection and quantification. To reach this goal, several image-based crack detection approaches have been developed; however, the crack thickness quantification, which is an essential element for a reliable structural condition assessment, has not been sufficiently investigated. In this paper, a new contact-less crack quantification methodology, based on computer vision and image processing concepts, is introduced and evaluated against a crack quantification approach which was previously developed by the authors. The proposed approach in this study utilizes depth perception to quantify crack thickness and, as opposed to most previous studies, needs no scale attachment to the region under inspection, which makes this approach ideal for incorporation with autonomous or semi-autonomous mobile inspection systems. Validation tests are performed to evaluate the performance of the proposed approach, and the results show that the new proposed approach outperforms the previously developed one.

  18. Large eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGESBeta

    Maurer, K. D.; Bohrer, G.; Ivanov, V. Y.

    2014-11-27

    Surface roughness parameters are at the core of every model representation of the coupling and interactions between land-surface and atmosphere, and are used in every model of surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and do not vary them in response to spatial or temporal changes to canopy structure. In part, this is due to the difficulty of reducing the complexity of canopy structure and its spatiotemporal dynamic and heterogeneity to less than a handful of parameters describing its effects of atmosphere–surface interactions. In this study we use large-eddy simulationsmore » to explore, in silico, the effects of canopy structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but were able to find positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, and between eddy-penetration depth and maximum canopy height and leaf area index. Using a decade of wind and canopy structure observations in a site in Michigan, we tested the effectiveness of our model-resolved parameters in predicting the frictional velocity over heterogeneous and disturbed canopies. We compared it with three other semi-empirical models and with a decade of meteorological observations. We found that parameterizations with fixed representations of roughness performed relatively well. Nonetheless, some empirical approaches that incorporate seasonal and inter-annual changes to the canopy structure performed even better than

  19. A PDE-based methodology for modeling, parameter estimation and feedback control in structural and structural acoustic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    A problem of continued interest concerns the control of vibrations in a flexible structure and the related problem of reducing structure-borne noise in structural acoustic systems. In both cases, piezoceramic patches bonded to the structures have been successfully used as control actuators. Through the application of a controlling voltage, the patches can be used to reduce structural vibrations which in turn lead to methods for reducing structure-borne noise. A PDE-based methodology for modeling, estimating physical parameters, and implementing a feedback control scheme for problems of this type is discussed. While the illustrating example is a circular plate, the methodology is sufficiently general so as to be applicable in a variety of structural and structural acoustic systems.

  20. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.)

    PubMed Central

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2015-01-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp. PMID:25362073

  1. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear

  2. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives.

    PubMed

    Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María

    2015-08-01

    Phytylated chlorophyll derivatives undergo specific oxidative reactions through the natural metabolism or during food processing or storage, and consequently pyro-, 13(2)-hydroxy-, 15(1)-hydroxy-lactone chlorophylls, and pheophytins (a and b) are originated. New analytical procedures have been developed here to reproduce controlled oxidation reactions that specifically, and in reasonable amounts, produce those natural target standards. At the same time and under the same conditions, 16 natural chlorophyll derivatives have been analyzed by APCI-HPLC-hrMS(2) and most of them by the first time. The combination of the high-resolution MS mode with powerful post-processing software has allowed the identification of new fragmentation patterns, characterizing specific product ions for some particular standards. In addition, new hypotheses and reaction mechanisms for the established MS(2)-based reactions have been proposed. As a general rule, the main product ions involve the phytyl and the propionic chains but the introduction of oxygenated functional groups at the isocyclic ring produces new and specific productions and at the same time inhibits some particular fragmentations. It is noteworthy that all b derivatives, except 15(1)-hydroxy-lactone compounds, undergo specific CO losses. We propose a new reaction mechanism based in the structural configuration of a and b chlorophyll derivatives that explain the exclusive CO fragmentation in all b series except for 15(1)-hydroxy-lactone b and all a series compounds. PMID:26091781

  3. An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation.

    PubMed

    Imai, Shunsuke; Kumar, Parimal; Hellen, Christopher U T; D'Souza, Victoria M; Wagner, Gerhard

    2016-09-01

    Many viruses bypass canonical cap-dependent translation in host cells by using internal ribosomal entry sites (IRESs) in their transcripts; IRESs hijack initiation factors for the assembly of initiation complexes. However, it is currently unknown how IRES RNAs recognize initiation factors that have no endogenous RNA binding partners; in a prominent example, the IRES of encephalomyocarditis virus (EMCV) interacts with the HEAT-1 domain of eukaryotic initiation factor 4G (eIF4G). Here we report the solution structure of the J-K region of this IRES and show that its stems are precisely organized to position protein-recognition bulges. This multisite interaction mechanism operates on an all-or-nothing principle in which all domains are required. This preorganization is accomplished by an 'adjuster module': a pentaloop motif that acts as a dual-sided docking station for base-pair receptors. Because subtle changes in the orientation abrogate protein capture, our study highlights how a viral RNA acquires affinity for a target protein. PMID:27525590

  4. Assessing General Relationships Between Above-Ground Biomass and Vegetation Structure Parameters for Improved Carbon Estimate from Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, W.; Lee, S.; Strahler, A. H.; Woodcock, C. E.; Schaaf, C.; Yao, T.; Ranson, J.; Sun, G.; Blair, J. B.

    2009-12-01

    Lidar remote sensing uses vegetation height to estimate large-scale above-ground biomass. However, lidar height and biomass relationships are empirical and thus often lead to large uncertainties in above-ground biomass estimates. This study uses vegetation structure measurements from field: an airborne lidar (Laser Vegetation Imaging Sensor, LVIS)) and a full wave form ground-based lidar (Echidna® validation instrument, EVI) collected in the New England region in 2003 and 2007, to investigate using additional vegetation structure parameters besides height for improved above-ground biomass estimation from lidar. Our field data analysis shows that using woody volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve above-ground biomass estimates at large scale. This result is comparable to previous work by Chave et al. (2005), which focused on individual trees. However this study uses a slightly different approach, and our woody volume is estimated differently from Chave et al. (2005). Previous studies found that RH50 is a good predictor of above-ground biomass (Drake et al., 2002; 2003). Our LVIS data analysis shows that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, perform similarly or even better than RH50. We also found that the close relationship of RH100*cover and RH50*cover with woody volume explains why they are good predictors of above-ground biomass. RH50 is highly related to RH100*cover, and this explains why RH50 is a better predictor of biomass than RH100. This study shows that using structure parameters combining height and gap fraction improve above-ground biomass estimate compared to height alone, and fusion of lidar and optical remote sensing (to provide vegetation type) will provide better above-ground biomass estimates than lidar alone. Ground lidar analysis

  5. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jun, LIU; Huang, Wei; Hongjie, Fan

    2016-02-01

    A novel method for finding the initial structure parameters of an optical system via the genetic algorithm (GA) is proposed in this research. Usually, optical designers start their designs from the commonly used structures from a patent database; however, it is time consuming to modify the patented structures to meet the specification. A high-performance design result largely depends on the choice of the starting point. Accordingly, it would be highly desirable to be able to calculate the initial structure parameters automatically. In this paper, a method that combines a genetic algorithm and aberration analysis is used to determine an appropriate initial structure of an optical system. We use a three-mirror system as an example to demonstrate the validity and reliability of this method. On-axis and off-axis telecentric three-mirror systems are obtained based on this method.

  6. Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R. C.; Reboredo, Fernando A.

    2016-05-01

    We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc2O3, Y2O3, and La2O3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local, semi-local, and hybrid Density Functional Theory (DFT) approximations as well as with experimental measurements. The DMC method yields cohesive energies for these oxides with a mean absolute deviation from experimental measurements of 0.18(2) eV, while with local, semi-local, and hybrid DFT approximations, the deviation is 3.06, 0.94, and 1.23 eV, respectively. For lattice constants, the mean absolute deviations in DMC, local, semi-local, and hybrid DFT approximations are 0.017(1), 0.07, 0.05, and 0.04 Å, respectively. DMC is a highly accurate method, outperforming the DFT approximations in describing the cohesive energies and structural parameters of these binary oxides.

  7. Method of m-line spectroscopy, a good tool to determine and control the optical parameters of waveguide structures

    NASA Astrophysics Data System (ADS)

    Auguściuk, ElŻbieta

    2013-01-01

    Method of spectroscopy m-line is an accurate method for determination of the optical parameters of the planar and stripe waveguides. In this method, the laser beam is coupled to the waveguide (e.g. by the prism) in the form of discrete angles. If the layer of the solid or liquid material is deposited on the waveguide, the change in the coupling angle is observed. Modified method of the m-line spectroscopy allows for determination of the optical parameters of deposited layers with high accuracy. Moreover, modification of the waveguide structure obtained via deposition of consecutive layers and changes the ability to propagate not only in the same waveguide. Modified method of m-line spectroscopy has found many potential applications in various areas such as: technological control of the applied layers quality; modification of the light propagation in the waveguide structures; utilization in the preventive medicine for diabetic diseases; food-control of the level of nutrients in vegetables (e.g. sugar level in white beets).

  8. Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo.

    PubMed

    Santana, Juan A; Krogel, Jaron T; Kent, Paul R C; Reboredo, Fernando A

    2016-05-01

    We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc2O3, Y2O3, and La2O3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local, semi-local, and hybrid Density Functional Theory (DFT) approximations as well as with experimental measurements. The DMC method yields cohesive energies for these oxides with a mean absolute deviation from experimental measurements of 0.18(2) eV, while with local, semi-local, and hybrid DFT approximations, the deviation is 3.06, 0.94, and 1.23 eV, respectively. For lattice constants, the mean absolute deviations in DMC, local, semi-local, and hybrid DFT approximations are 0.017(1), 0.07, 0.05, and 0.04 Å, respectively. DMC is a highly accurate method, outperforming the DFT approximations in describing the cohesive energies and structural parameters of these binary oxides. PMID:27155647

  9. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Ni-Meister, Wenge; Lee, Shihyan; Strahler, Alan H.; Woodcock, Curtis E.; Schaaf, Crystal; Yao, Tian; Ranson, K. Jon; Sun, Guoqing; Blair, J. Bryan

    2010-06-01

    Lidar-based aboveground biomass is derived based on the empirical relationship between lidar-measured vegetation height and aboveground biomass, often leading to large uncertainties of aboveground biomass estimates at large scales. This study investigates whether the use of any additional lidar-derived vegetation structure parameters besides height improves aboveground biomass estimation. The analysis uses data collected in the field and with the Laser Vegetation Imaging Sensor (LVIS), and the Echidna® validation instrument (EVI), a ground-based hemispherical-scanning lidar data in New England in 2003 and 2007. Our field data analysis shows that using wood volume (approximated by the product of basal area and top 10% tree height) and vegetation type (conifer/softwood or deciduous/hardwood forests, providing wood density) has the potential to improve aboveground biomass estimates at large scales. This result is comparable to previous individual-tree based analyses. Our LVIS data analysis indicates that structure parameters that combine height and gap fraction, such as RH100*cover and RH50*cover, are closely related to wood volume and thus biomass particularly for conifer forests. RH100*cover and RH50*cover perform similarly or even better than RH50, a good biomass predictor found in previous study. This study shows that the use of structure parameters that combine height and gap fraction (rather than height alone) improves the aboveground biomass estimate, and that the fusion of lidar and optical remote sensing (to provide vegetation type) will provide better aboveground biomass estimates than using lidar alone. Our ground lidar analysis shows that EVI provides good estimates of wood volume, and thus accurate estimates of aboveground biomass particularly at the stand level.

  10. Modal parameters of space structures in 1 G and 0 G

    NASA Technical Reports Server (NTRS)

    Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett

    1993-01-01

    Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.

  11. Effect of counter- and co-ions on the structural transport parameters of sulfoacid cationite membranes

    NASA Astrophysics Data System (ADS)

    Demina, O. A.; Falina, I. V.; Kononenko, N. A.; Demin, A. V.

    2016-08-01

    The diffusion permeability and specific electroconductivity of MK-40 sulfoacid cationite and Nafion 425 membranes are studied experimentally in NaOH, NaCl, and HCl solutions with various concentrations. The resulting concentration dependences of the electrodiffusion characteristics and data on the nonexchange sorption of the electrolytes are used to calculate the structural transport parameters of the membranes in terms of a two-phase conduction model. Analysis of a set of parameters, including the electroconductivity and diffusion permeability of the membrane gel phase, the volume fractions of the conductive phases, and a parameter that reflects their relative positions, the Donnan constant, and the diffusion coefficients of counter and co-ions in the membrane gel phase reveals the effect the nature of counter- and co-ions has on the electrodiffusion, structural, and sorption characteristics of sulfoacid cationite membranes with different types of structure.

  12. Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters.

    PubMed

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. PMID:27014050

  13. Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters

    PubMed Central

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. PMID:27014050

  14. Analysis of Parameters Assessment on Laminated Rubber-Metal Spring for Structural Vibration

    NASA Astrophysics Data System (ADS)

    Salim, M. A.; Putra, A.; Mansor, M. R.; Musthafah, M. T.; Akop, M. Z.; Abdullah, M. A.

    2016-02-01

    This paper presents the analysis of parameter assessment on laminated rubber-metal spring (LR-MS) for vibrating structure. Three parameters were selected for the assessment which are mass, Young's modulus and radius. Natural rubber materials has been used to develop the LR-MS model. Three analyses were later conducted based on the selected parameters to the LR-MS performance which are natural frequency, location of the internal resonance frequency and transmissibility of internal resonance. Results of the analysis performed were plotted in frequency domain function graph. Transmissibility of laminated rubber-metal spring (LR-MS) is changed by changing the value of the parameter. This occurrence was referred to the theory from open literature then final conclusion has been make which are these parameters have a potential to give an effects and trends for LR-MS transmissibility.

  15. Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded parameters

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiping; Wang, Xiaojun

    2005-04-01

    Generalized eigenvalue problems from the modal analysis are often converted to the standard eigenvalue problems. In this paper, it evaluates the upper and lower bounds on the eigenvalues of the standard eigenvalue problem of structures subject to severely deficient information about the structural parameters. Here, we focus on non-probabilistic interval analysis models of uncertainty, which are adapted to the case of severe lack of information on uncertainty. Non-probabilistic, interval analysis method in which uncertainties are defined by interval numbers appears as an alternative to the classical probabilistic models. For the standard eigenvalue problem of structures with uncertain-but-bounded parameters, the vertex solution theorem, the positive semi-definite solution theorem and the parameter decomposition solution theorem for the standard eigenvalue problem are presented, and compared with Deif's solution theorem in numerical examples. It is shown that, for the upper and lower bounds on the eigenvalues of the standard eigenvalue problem with uncertain-but-bounded parameters, the presented vertex solution theorem is unconditional, and the positive semi-definite solution theorem and the parameter decomposition solution theorem have less limitary conditions compared with Deif's solution theorem. The effectiveness of the vertex solution theorem, the positive semi-definite solution theorem and the parameter decomposition solution theorem are illustrated by numerical examples

  16. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  17. Forest canopy structural parameters and Leaf Area Index retrieval using multi-sensors synergy observations

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo; Wang, Jindi; Song, Jinling; Zhou, Hongmin; Pang, Yong; Cai, Wenwen; Chen, Baisong

    2009-08-01

    Leaf Area Index (LAI) is a key vegetation structural parameter in ecosystem. Our new approach is on forest LAI retrieval by GOMS model (Geometrical-Optical model considering the effect of crown shape and Mutual Shadowing) inversion using multi-sensor observations. The mountainous terrain forest area in Dayekou in Gansu province of China is selected as our study area. The model inversion method by integrating MODIS, MISR and LIDAR data for forest canopy LAI retrieval is proposed. In the MODIS sub-pixel scale, four scene components' spectrum (sunlit canopy, sunlit background, shaded canopy and shaded background) of GOMS model are extracted from SPOT data. And tree heights are extracted from airborne LIDAR data. The extracted four scene components and tree heights are taken as the a priori knowledge applied in GOMS model inversion for improving forest canopy structural parameters estimation accuracy. According to the field investigation, BRDF data set of needle forest pixels is collected by combining MODIS BRDF product and MISR BRF product. Then forest canopy parameters are retrieved based on GOMS. Finally, LAI of forest canopy is estimated by the retrieved structural parameters and it is compared with ground measurement. Results indicate that it is possible to improve the forest canopy structural parameters estimation accuracy by combining observations of passive and active remote sensors.

  18. The effect of neutron radiation on the photoelectric parameters of ITO-GaSe structures

    SciTech Connect

    Kovalyuk, Z. D. Litovchenko, P. G.; Politanska, O. A.; Sydor, O. N.; Katerynchuk, V. N.; Lastovetsky, V. F.; Litovchenko, O. P.; Dubovoy, V. K.; Polivtsev, L. A.

    2007-05-15

    The effect of 1-MeV neutrons on the photoelectric parameters of ITO-GaSe heterostructures was studied. It is shown that the observed variations in the current-voltage characteristics are caused by the effect of penetrating radiation on both components of the structure, which brings about an increase in the resistance of the heterostructures. The presence of exciton fine structure in the photosensitivity spectra after irradiation indicates that GaSe retains high structural quality notwithstanding the introduced radiation defects. The results obtained are accounted for by spatial redistribution of doping impurity in GaSe and structural changes in the ITO films.

  19. Band structure parameters of metallic diamond from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Achatz, P.; Nicolaou, A.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Bustarret, E.

    2015-07-01

    The electronic band structure of heavily boron doped diamond was investigated by angle-resolved photoemission spectroscopy on (100)-oriented epilayers. A unique set of Luttinger parameters was deduced from a comparison of the experimental band structure of metallic diamond along the Δ (Γ X ) and Σ (Γ K ) high-symmetry directions of the reciprocal space, with theoretical band structure calculations performed both within the local density approximation and by an analytical k . p approach. In this way, we were able to describe the experimental band structure over a large three-dimensional region of the reciprocal space and to estimate hole effective masses in agreement with previous theoretical and experimental papers.

  20. Characterization of the Local Structure in Liquid Water by Various Order Parameters

    PubMed Central

    2015-01-01

    A wide range of geometric order parameters have been suggested to characterize the local structure of liquid water and its tetrahedral arrangement, but their respective merits have remained elusive. Here, we consider a series of popular order parameters and analyze molecular dynamics simulations of water, in the bulk and in the hydration shell of a hydrophobic solute, at 298 and 260 K. We show that these parameters are weakly correlated and probe different distortions, for example the angular versus radial disorders. We first combine these complementary descriptions to analyze the structural rearrangements leading to the density maximum in liquid water. Our results reveal no sign of a heterogeneous mixture and show that the density maximum arises from the depletion in interstitial water molecules upon cooling. In the hydration shell of the hydrophobic moiety of propanol, the order parameters suggest that the water local structure is similar to that in the bulk, with only a very weak depletion in ordered configurations, thus confirming the absence of any iceberg-type structure. Finally, we show that the main structural fluctuations that affect water reorientation dynamics in the bulk are angular distortions, which we explain by the jump hydrogen-bond exchange mechanism. PMID:26054933

  1. How to accurately bypass damage

    PubMed Central

    Broyde, Suse; Patel, Dinshaw J.

    2016-01-01

    Ultraviolet radiation can cause cancer through DNA damage — specifically, by linking adjacent thymine bases. Crystal structures show how the enzyme DNA polymerase η accurately bypasses such lesions, offering protection. PMID:20577203

  2. Influence of nitric acid treatment in different media on X-ray structural parameters of coal

    SciTech Connect

    Sudip Maity; Ashim Choudhury

    2008-11-15

    The treatment of coal with nitric acid in aqueous and non-aqueous media introduces changes in the chemical and spatial structure of the organic mass. Four coals of different rank have been treated with nitric acid in aqueous and glacial acetic acid media for assessing the changes in the structural parameters by the X-ray diffraction (XRD) technique. Slow-scan XRD has been performed for the raw and treated coals, and X-ray structural parameters (d002, Lc, and Nc) and aromaticity (fa) have been determined by profile-fitting software. Considerable variation of the structural parameters has been observed with respect to the raw coals. The d002 values have decreased in aqueous medium but increased in acetic acid medium; however, Lc, Nc, and fa values have increased in aqueous medium but decreased in acetic acid medium. It is also observed that considerable oxidation takes place during nitric acid treatment in aqueous medium, but nitration is the predominant phenomenon in acetic acid medium. Disordering of the coal structure increases in acetic acid medium, but a reverse trend is observed in the aqueous medium. As a result, structurally modified coals (SMCs) are derived as new coal-derived substances. 15 refs., 6 figs., 3 tabs.

  3. Measurement of manufacturing resolution for two photon polymerization structures with different manufacturing parameters

    NASA Astrophysics Data System (ADS)

    Chung, Tien-Tung; Li, Wan-Jou; Chen, Sheng-Yuan; Hoi, Chi-Hou

    2015-02-01

    This paper studied manufacturing resolutions of micro structures made by two photon polymerization (TPP) technology with different manufacturing parameters. The light source used for the TPP manufacturing system was a low-cost 532 nm Nd:YAG green laser, and the material used was commercial resin Photomer 3015. Two objective lenses, one with magnification of 100 times (100x) and numerical aperture (NA) of 1.3 and the other with 50x and NA0.8 were used in TPP production. The manufacturing resolution, which is also named as voxel size, changed with different manufacturing parameters such as laser power and exposure time. The measurement results of TPP structures manufactured with different manufacturing parameters indicated that the minimum line width produced by the 100x-NA1.3 lens could be reduced down to 67 nanometer (nm), which was quite good for TPP systems with low-cost Nd:YAG laser.

  4. Single-Mode Projection Filters for Modal Parameter Identification for Flexible Structures

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Chen, Chung-Wen

    1988-01-01

    Single-mode projection filters are developed for eigensystem parameter identification from both analytical results and test data. Explicit formulations of these projection filters are derived using the orthogonal matrices of the controllability and observability matrices in the general sense. A global minimum optimization algorithm is applied to update the filter parameters by using the interval analysis method. The updated modal parameters represent the characteristics of the test data. For illustration of this new approach, a numerical simulation for the MAST beam structure is shown by using a one-dimensional global optimization algorithm to identify modal frequencies and damping. Another numerical simulation of a ten-mode structure is also presented by using a two-dimensional global optimization algorithm to illustrate the feasibility of the new method. The projection filters are practical for parallel processing implementation.

  5. Big Bang-Big Crunch optimization for parameter estimation in structural systems

    NASA Astrophysics Data System (ADS)

    Tang, Hesheng; Zhou, Jin; Xue, Songtao; Xie, Liyu

    2010-11-01

    A new approach to parameter estimation of structural systems using the recently developed Big Bang-Big Crunch (BB-BC) optimization is proposed, in which the parameter estimation is formulated as a multi-modal optimization problem with high dimension. The BB-BC method is inspired by one of the theories of the evolution of universe. The potentialities of BB-BC are its inherent numerical simplicity, high convergence speed, and easy implementation. The performances of the proposed method are investigated with simulation results for identifying the parameters of structural systems under conditions including limited output data, noise-polluted signals, and no priori knowledge of mass, damping, or stiffness. It is observed that BB-BC gives comparatively better results than existing methods. Moreover the method is computationally simpler.

  6. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

  7. Effect of scintillometer height on structure parameter of the refractive index of air measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

  8. Methods for the identification of material parameters in distributed models for flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Crowley, J. M.; Rosen, I. G.

    1986-01-01

    Theoretical and numerical results are presented for inverse problems involving estimation of spatially varying parameters such as stiffness and damping in distributed models for elastic structures such as Euler-Bernoulli beams. An outline of algorithms used and a summary of computational experiences are presented.

  9. Simultaneous optimization of actuator position and control parameter for adaptive mechanical structures

    NASA Astrophysics Data System (ADS)

    Weber, Christian-Toralf; Gabbert, Ulrich; Enzmann, Marc R.

    1998-07-01

    The design of adaptive mechanical structures is divided into three parts: the structural design, the controller design and the placement of actuators and sensors. The objective of the design is to create a mechanical structure, which corresponds with the physical and technical requirements. The controller design includes the definition of the optimal controller law and the parameters required to create an actuator adjustment from the perceptible signals of the structural answer. The placement of the actuators and of the sensors give an answer to the question about the optimal distribution of the actuators and sensors in the structure. The sensor placement determines which signals are available to the automatic controller. The position of the actuators in the mechanical structure determines at which points control forces may act to influence the structural behavior in a suitable manner. The determination of the optimal position of the actuators require information about the controller design, the sensor position and the layout and the behavior of the structure. Based on the ideas of the shape optimization and topology optimization, a procedure will be presented, to handle simultaneously the discrete positions of the actuators and the continuous parameters of the controller. The method is based on an augmented Lagrangian function to include additional conditions and the discontinuity of the discrete variables into the objective function. The method will be demonstrated by an test example.

  10. Simulating solute transport in a structured field soil: uncertainty in parameter identification and predictions.

    PubMed

    Larsbo, Mats; Jarvis, Nicholas

    2005-01-01

    Dual-permeability models have been developed to account for the significant effects of macropore flow on contaminant transport, but their use is hampered by difficulties in estimating the additional parameters required. Therefore, our objective was to evaluate data requirements for parameter identification for predictive modeling with the dual-permeability model MACRO. Two different approaches were compared: sequential uncertainty fitting (SUFI) and generalized likelihood uncertainty estimation (GLUE). We investigated six parameters controlling macropore flow and pesticide sorption and degradation, applying MACRO to a comprehensive field data set of bromide andbentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2dioxide] transport in a structured soil. The GLUE analyses of parameter conditioning for different combinations of observations showed that both resident and flux concentrations were needed to obtain highly conditioned and unbiased parameters and that observations of tracer transport generally improved the conditioning of macropore flow parameters. The GLUE "behavioral" parameter sets covered wider parameter ranges than the SUFI posterior uncertainty domains. Nevertheless, estimation uncertainty ranges defined by the 5th and 95th percentiles were similar and many simulations randomly sampled from the SUFI posterior uncertainty domains had negative model efficiencies (minimum of -3.2). This is because parameter correlations are neglected in SUFI and the posterior uncertainty domains were not always determined correctly. For the same reasons, uncertainty ranges for predictions of bentazone losses through drainflow for good agricultural practice in southern Sweden were 27% larger for SUFI compared with GLUE. Although SUFI proved to be an efficient parameter estimation tool, GLUE seems better suited as a method of uncertainty estimation for predictions. PMID:15758115

  11. Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems

    NASA Astrophysics Data System (ADS)

    Weng, Falu; Mao, Weijie

    2012-03-01

    The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.

  12. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGESBeta

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.

    2015-04-30

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at

  13. Effects of three-dimensional Earth structure on CMT earthquake parameters

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, Vala; Ekström, Göran

    2010-04-01

    We investigate errors in centroid earthquake parameters due to unmodeled structural heterogeneity. We generate a simulated dataset consisting of synthetic seismograms for 50 earthquakes and 150 stations distributed globally. To generate the synthetic seismograms we use a spectral-element wave-propagation package (SPECFEM3D_GLOBE) that accounts for the Earth's three-dimensional structure. An established centroid-moment-tensor inversion algorithm from the Global CMT project is used to invert the synthetic dataset, with and without added noise, for earthquake source parameters. This algorithm uses a one-dimensional earth structure, together with approximate corrections for three-dimensional structure, to model the seismograms. We interpret the differences between the estimated source parameters and the parameters used to compute the synthetic dataset as errors due to unmodeled structural heterogeneity and the presence of noise. We expect that the errors obtained in this study are representative of the errors in the Global CMT catalogue. We find that the errors in scalar moment, moment-tensor elements and location are small on average. The depth and centroid time are, however, biased by a small amount. We find that the error in depth can be reduced significantly by applying corrections for the difference in the velocity structure at the source and receiver locations from the Earth's average structure in the CMT inversions. This modification has a minimal effect on the errors in centroid time. We do not find large errors in scalar moments, even where the crustal thickness at the source is very different from the Earth's average crustal thickness.

  14. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Zheng, T. Q.; Zhang, W.; Fang, J.; Liu, Y. M.

    2011-11-01

    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  15. Parameter identification of structural systems possessing one or two nonlinear normal modes

    NASA Astrophysics Data System (ADS)

    Fahey, Sean O'flaherty

    2000-09-01

    In this Dissertation, we develop, and provide proof of principle for, parameter identification techniques for structural systems that can be described in terms of one or two nonlinear normal modes. We model the dynamics of these modes by second-order ordinary-differential equations based on the principles of mechanics, past experience, and engineering judgment. We perform a number of separate experiments on a two-mass structure using several different types of excitation. For the linear tests, the theoretical system response is known in closed-form. For the nonlinear test, we use the method of multiple scales to determine second-order uniform expansions of the model equations and hence determine the approximations to responses of the structure. Then, we estimate the linear and nonlinear parameters by regressive fits between the theoretically and experimentally obtained response relations. We report deviations and agreements between model and experiment.

  16. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.

    PubMed

    Kong, Liang; Zhang, Lichao; Lv, Jinfeng

    2014-03-01

    Extracting good representation from protein sequence is fundamental for protein structural classes prediction tasks. In this paper, we propose a novel and powerful method to predict protein structural classes based on the predicted secondary structure information. At the feature extraction stage, a 13-dimensional feature vector is extracted to characterize general contents and spatial arrangements of the secondary structural elements of a given protein sequence. Specially, four segment-level features are designed to elevate discriminative ability for proteins from the α/β and α+β classes. After the features are extracted, a multi-class non-linear support vector machine classifier is used to implement protein structural classes prediction. We report extensive experiments comparing the proposed method to the state-of-the-art in protein structural classes prediction on three widely used low-similarity benchmark datasets: FC699, 1189 and 640. Our method achieves competitive performance on prediction accuracies, especially for the overall prediction accuracies which have exceeded the best reported results on all of the three datasets. PMID:24316044

  17. Measuring the matter energy density and Hubble parameter from large scale structure

    SciTech Connect

    Lee, Seokcheon

    2014-02-01

    We investigate the method to measure both the present value of the matter energy density contrast and the Hubble parameter directly from the measurement of the linear growth rate which is obtained from the large scale structure of the Universe. From this method, one can obtain the value of the nuisance cosmological parameter Ω{sub m0} (the present value of the matter energy density contrast) within 3% error if the growth rate measurement can be reached z > 3.5. One can also investigate the evolution of the Hubble parameter without any prior on the value of H{sub 0} (the current value of the Hubble parameter). Especially, estimating the Hubble parameter are insensitive to the errors on the measurement of the normalized growth rate fσ{sub 8}. However, this method requires the high z (z > 3.5) measurement of the growth rate in order to get the less than 5% errors on the measurements of H(z) at z ≤ 1.2 with the redshift bin Δz = 0.2. Thus, this will be suitable for the next generation large scale structure galaxy surveys like WFMOS and LSST.

  18. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  19. Electronic band structure and effective mass parameters of Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Lu Low, Kain; Yang, Yue; Han, Genquan; Fan, Weijun; Yeo, Yee-Chia

    2012-11-01

    This work investigates the electronic band structures of bulk Ge1-xSnx alloys using the empirical pseudopotential method (EPM) for Sn composition x varying from 0 to 0.2. The adjustable form factors of EPM were tuned in order to reproduce the band features that agree well with the reported experimental data. Based on the adjusted pseudopotential form factors, the band structures of Ge1-xSnx alloys were calculated along high symmetry lines in the Brillouin zone. The effective masses at the band edges were extracted by using a parabolic line fit. The bowing parameters of hole and electron effective masses were then derived by fitting the effective mass at different Sn compositions by a quadratic polynomial. The hole and electron effective mass were examined for bulk Ge1-xSnx alloys along specific directions or orientations on various crystal planes. In addition, employing the effective-mass Hamiltonian for diamond semiconductor, band edge dispersion at the Γ-point calculated by 8-band k.p. method was fitted to that obtained from EPM approach. The Luttinger-like parameters were also derived for Ge1-xSnx alloys. They were obtained by adjusting the effective-mass parameters of k.p method to fit the k.p band structure to that of the EPM. These effective masses and derived Luttinger parameters are useful for the design of optical and electronic devices based on Ge1-xSnx alloys.

  20. State and model error estimation for distributed parameter systems. [in large space structure control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1979-01-01

    In-flight estimation of large structure model errors in order to detect inevitable deficiencies in large structure controller/estimator models is discussed. Such an estimation process is particularly applicable in the area of shape control system design required to maintain a prescribed static structural shape and, in addition, suppress dynamic disturbances due to the vehicle vibrational modes. The paper outlines a solution to the problem of static shape estimation where the vehicle shape must be reconstructed from a set of measurements discretely located throughout the structure. The estimation process is based on the principle of least-squares that inherently contains the definition and explicit computation of model error estimates that are optimal in some sense. Consequently, a solution is provided for the problem of estimation of static model errors (e.g., external loads). A generalized formulation applicable to distributed parameters systems is first worked out and then applied to a one-dimensional beam-like structural configuration.

  1. Under proper control, oxidation of proteins with known chemical structure provides an accurate and absolute method for the determination of their molar concentration.

    PubMed

    Guermant, C; Azarkan, M; Smolders, N; Baeyens-Volant, D; Nijs, M; Paul, C; Brygier, J; Vincentelli, J; Looze, Y

    2000-01-01

    Oxidation at 120 degrees C of inorganic and organic (including amino acids, di- and tripeptides) model compounds by K(2)Cr(2)O(7) in the presence of H(2)SO(4) (mass fraction: 0.572), Ag(2)SO(4) (catalyst), and HgSO(4) results in the quantitative conversion of their C-atoms into CO(2) within 24 h or less. Under these stressed, well-defined conditions, the S-atoms present in cysteine and cystine residues are oxidized into SO(3) while, interestingly, the oxidation states of all the other (including the N-) atoms normally present in a protein do remain quite unchanged. When the chemical structure of a given protein is available, the total number of electrons the protein is able to transfer to K(2)Cr(2)O(7) and thereof, the total number of moles of Cr(3+) ions which the protein is able to generate upon oxidation can be accurately calculated. In such cases, unknown protein molar concentrations can thus be determined through straightforward spectrophotometric measurements of Cr(3+) concentrations. The values of molar absorption coefficients for several well-characterized proteins have been redetermined on this basis and observed to be in excellent agreement with the most precise values reported in the literature, which fully assesses the validity of the method. When applied to highly purified proteins of known chemical structure (more generally of known atomic composition), this method is absolute and accurate (+/-1%). Furthermore, it is well adapted to series measurements since available commercial kits for chemical oxygen demand (COD) measurements can readily be adapted to work under the experimental conditions recommended here for the protein assay. PMID:10610688

  2. Parameter Estimation in Hybrid Active-Passive Laminated Sandwich Composite Structures

    SciTech Connect

    Araujo, A. L.; Mota Soares, C. M.; Mota Soares, C. A.

    2010-05-21

    In this article we present recent developments regarding parameter estimation in sandwich structures with viscoelastic frequency dependent core and elastic laminated skin layers, with piezoelectric patch sensors and actuators bonded to the exterior surfaces of the sandwich. The frequency dependent viscoelastic properties of the core material are modelled using fractional derivative models, with unknown parameters that are to be estimated by an inverse technique, using experimentally measured natural frequencies and associated modal loss factors. The inverse problem is formulated as a constrained minimization problem, and gradient based optimization techniques are employed. An application case is presented and discussed, focused on identification of viscoelastic frequency dependent core material properties.

  3. Interlocking order parameter fluctuations in structural transitions between adsorbed polymer phases.

    PubMed

    Martins, Paulo H L; Bachmann, Michael

    2016-01-21

    By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the numbers of surface-monomer and monomer-monomer contacts under various solvent and thermal conditions. This pair of contact numbers represents an appropriate set of order parameters that enables the distinct discrimination of significantly different compact phases of polymer adsorption. Depending on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis helps understand the transitions from compact filmlike adsorbed polymer conformations into layered morphologies and dissolved adsorbed structures, respectively, in more detail. PMID:26690091

  4. Influence of Structural Parameters on a Novel Metamaterial Absorber Structure at K-band Frequency

    NASA Astrophysics Data System (ADS)

    Cuong, Tran Manh; Thuy, Nguyen Thi; Tuan, Le Anh

    2016-05-01

    Metamaterials nowadays continue to gain attention thanks to their special electromagnetic characteristics. An increasing number of studies are being conducted on the absolute electromagnetic absorber configurations of high impedance surface materials at a certain frequency band. These configurations are usually fabricated with a layer of metal structure based on a dielectric sheet. In this study, we present an optimal design of a novel electromagnetic absorber metamaterial configuration working at a 23-GHz frequency range (K band).

  5. Parameter estimation of structural dynamic models using eigenvalue and eigenvector information

    SciTech Connect

    Allen, J.J.; Martinez, D.R.

    1990-11-01

    Structural system identification methods are analytical techniques for reconciling test data with analytical models. The response data frequently used to compare a finite element model and test data are the eigenvalues of the system. However, eigenvalues alone cannot assure an adequate model. Eigenvectors also provide valuable information for the process of updating finite element models. For large order, complex finite element models, ad-hoc procedures have often proven inadequate for model parameter updating. Therefore, parameter estimation techniques such as Bayes estimation or mathematical programming have been applied. Mathematical programming techniques can be use for parameter estimation allowing a very general definition of the objective function and constraints. This paper will present the application of mathematical programming techniques of parameter estimation to the updating of a finite element model of an electronic package. The following topics will be discussed in the paper. The mathematical programming formulation of the parameter estimation problem, which uses both eigenvalue and eigenvector response data. The software implementation of this technique. The application of this methodology to the estimation of parameters of an electronics package model.

  6. Model structure and parameter identification in soil carbon models using incubation data

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos

    2015-04-01

    Models of soil organic matter dynamics play an important role in integrating different sources of information and help to predict future behavior of carbon stocks and fluxes in soils. In particular, compartment-based models have proved successful at integrating data from laboratory and field experiments to estimate the range of cycling rates of organic matter found in different soils. Complex models with particular mechanisms explaining processes related to the stabilization and destabilization of organic matter usually include a large number of parameters than simpler models that omit detailed mechanisms. This poses a challenge to parameterize complex models. Depending on the type of data available, the estimation of parameters in complex models may lead to identifiability problems, i.e. obtaining different combinations of parameters that give equally good predictions in relation to the observed data. In this contribution, I explore the problem of identifiability in soil organic matter models, pointing out combinations of empirical data and model structure that can minimize identifiability issues. In particular, I will show how common datasets from incubation experiments can only help to uniquely identify small number of parameters for simple models. Isotopic data and soil fractionations can help to reduce identifiability issues, but only to a limited extend. In medium-complexity models including stabilization and destabilization mechanisms, only up to 4 to 5 parameters may be uniquely identified when a full set of respiration fluxes, stocks, fractions and isotopic data are integrated to inform parameter estimation.

  7. The identification of a distributed parameter model for a flexible structure

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Gates, S. S.; Rosen, I. G.; Wang, Y.

    1988-01-01

    A computational method is developed for the estimation of parameters in a distributed model for a flexible structure. The structure we consider (part of the RPL experiment) consists of a cantilevered beam with a thruster and linear accelerometer at the free end. The thruster is fed by a pressurized hose whose horizontal motion effects the transverse vibration of the beam. The Euler-Bernoulli theory is used to model the vibration of the beam and treat the hose thruster assembly as a lumped or point mass dashpot spring system at the tip. Measurements of linear acceleration at the tip are used to estimate the hose parameters (mass, stiffness, damping) and a Voigt-Kelvin viscoelastic structural damping parameter for the beam using a least squares fit to the data. Spline based approximations are considered to the hybrid (coupled ordinary and partial differential equations) systems; theoretical convergence results and numerical studies with both simulation and actual experimental data obtained from the structure are presented and discussed.

  8. The identification of a distributed parameter model for a flexible structure

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Gates, S. S.; Rosen, I. G.; Wang, Y.

    1986-01-01

    A computational method is developed for the estimation of parameters in a distributed model for a flexible structure. The structure we consider (part of the RPL experiment) consists of a cantilevered beam with a thruster and linear accelerometer at the free end. The thruster is fed by a pressurized hose whose horizontal motion effects the transverse vibration of the beam. The Euler-Bernoulli theory is used to model the vibration of the beam and treat the hose-thruster assembly as a lumped or point mass-dashpot-spring system at the tip. Using measurements of linear acceleration at the tip, it is estimated that the parameters (mass, stiffness, damping) and a Voight-Kelvin viscoelastic structural damping parameter for the beam using a least squares fit to the data. Spline based approximations to the hybrid (coupled ordinary and partial differential equations) system are considered; theoretical convergence results and numerical studies with both simulation and actual experimental data obtained from the structure are presented and discussed.

  9. Complete regional waveform modeling to estimate seismic velocity structure and source parameters for CTBT monitoring

    SciTech Connect

    Bredbeck, T; Rodgers, A; Walter, W

    1999-07-23

    The velocity structures and source parameters estimated by waveform modeling provide valuable information for CTBT monitoring. The inferred crustal and uppermost mantle structures advance understanding of tectonics and guides regionalization for event location and identification efforts. Estimation of source parameters such as seismic moment, depth and mechanism (whether earthquake, explosion or collapse) is crucial to event identification. In this paper we briefly outline some of the waveform modeling research for CTBT monitoring performed in the last year. In the future we will estimate structure for new regions by modeling waveforms of large well-observed events along additional paths. Of particular interest will be the estimation of velocity structure in aseismic regions such as most of Africa and the Former Soviet Union. Our previous work on aseismic regions in the Middle East, north Africa and south Asia give us confidence to proceed with our current methods. Using the inferred velocity models we plan to estimate source parameters for smaller events. It is especially important to obtain seismic moments of earthquakes for use in applying the Magnitude-Distance Amplitude Correction (MDAC; Taylor et al., 1999) to regional body-wave amplitudes for discrimination and calibrating the coda-based magnitude scales.

  10. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  11. Determination of the structure of {gamma}-alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model

    SciTech Connect

    Paglia, Gianluca; Rohl, Andrew L.; Gale, Julian D.; Buckley, Craig E.

    2005-06-01

    We have performed an extensive computational study of {gamma}-Al{sub 2}O{sub 3}, beginning with the geometric analysis of approximately 1.47 billion spinel-based structural candidates, followed by derivative method energy minimization calculations of approximately 122 000 structures. Optimization of the spinel-based structural models demonstrated that structures exhibiting nonspinel site occupancy after simulation were more energetically favorable, as suggested in other computational studies. More importantly, none of the spinel structures exhibited simulated diffraction patterns that were characteristic of {gamma}-Al{sub 2}O{sub 3}. This suggests that cations of {gamma}-Al{sub 2}O{sub 3} are not exclusively held in spinel positions, that the spinel model of {gamma}-Al{sub 2}O{sub 3} does not accurately reflect its structure, and that a representative structure cannot be achieved from molecular modeling when the spinel representation is used as the starting structure. The latter two of these three findings are extremely important when trying to accurately model the structure. A second set of starting models were generated with a large number of cations occupying c symmetry positions, based on the findings from recent experiments. Optimization of the new c symmetry-based structural models resulted in simulated diffraction patterns that were characteristic of {gamma}-Al{sub 2}O{sub 3}. The modeling, conducted using supercells, yields a more accurate and complete determination of the defect structure of {gamma}-Al{sub 2}O{sub 3} than can be achieved with current experimental techniques. The results show that on average over 40% of the cations in the structure occupy nonspinel positions, and approximately two-thirds of these occupy c symmetry positions. The structures exhibit variable occupancy in the site positions that follow local symmetry exclusion rules. This variation was predominantly represented by a migration of cations away from a symmetry positions to other

  12. Determination of the structure of γ -alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model

    NASA Astrophysics Data System (ADS)

    Paglia, Gianluca; Rohl, Andrew L.; Buckley, Craig E.; Gale, Julian D.

    2005-06-01

    We have performed an extensive computational study of γ-Al2O3 , beginning with the geometric analysis of approximately 1.47 billion spinel-based structural candidates, followed by derivative method energy minimization calculations of approximately 122 000 structures. Optimization of the spinel-based structural models demonstrated that structures exhibiting nonspinel site occupancy after simulation were more energetically favorable, as suggested in other computational studies. More importantly, none of the spinel structures exhibited simulated diffraction patterns that were characteristic of γ-Al2O3 . This suggests that cations of γ-Al2O3 are not exclusively held in spinel positions, that the spinel model of γ-Al2O3 does not accurately reflect its structure, and that a representative structure cannot be achieved from molecular modeling when the spinel representation is used as the starting structure. The latter two of these three findings are extremely important when trying to accurately model the structure. A second set of starting models were generated with a large number of cations occupying c symmetry positions, based on the findings from recent experiments. Optimization of the new c symmetry-based structural models resulted in simulated diffraction patterns that were characteristic of γ-Al2O3 . The modeling, conducted using supercells, yields a more accurate and complete determination of the defect structure of γ-Al2O3 than can be achieved with current experimental techniques. The results show that on average over 40% of the cations in the structure occupy nonspinel positions, and approximately two-thirds of these occupy c symmetry positions. The structures exhibit variable occupancy in the site positions that follow local symmetry exclusion rules. This variation was predominantly represented by a migration of cations away from a symmetry positions to other tetrahedral site positions during optimization which were found not to affect the diffraction

  13. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging

    PubMed Central

    Kanick, Stephen Chad; McClatchy, David M.; Krishnaswamy, Venkataramanan; Elliott, Jonathan T.; Paulsen, Keith D.; Pogue, Brian W.

    2014-01-01

    This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns (fx) can be used to quantitatively map the anisotropic scattering phase function distribution (P(θs)) in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance (Rd) in terms of dimensionless scattering (μs′fx−1) and γ, a metric of the first two moments of the P(θs) distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of Rd spectra sampled at multiple fx in the frequency range [0.05-0.5] mm−1 allowed accurate estimation of both μs′(λ) in the relevant tissue range [0.4-1.8] mm−1, and γ(λ) in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited γ-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications. PMID:25360357

  14. Characterizing Woody Vegetation Spectral and Structural Parameters with a 3-D Scene Model

    NASA Astrophysics Data System (ADS)

    Qin, W.; Yang, L.

    2004-05-01

    Quantification of structural and biophysical parameters of woody vegetation is of great significance in understanding vegetation condition, dynamics and functionality. Such information over a landscape scale is crucial for global and regional land cover characterization, global carbon-cycle research, forest resource inventories, and fire fuel estimation. While great efforts and progress have been made in mapping general land cover types over large area, at present, the ability to quantify regional woody vegetation structural and biophysical parameters is limited. One approach to address this research issue is through an integration of physically based 3-D scene model with multiangle and multispectral remote sensing data and in-situ measurements. The first step of this work is to model woody vegetation structure and its radiation regime using a physically based 3-D scene model and field data, before a robust operational algorithm can be developed for retrieval of important woody vegetation structural/biophysical parameters. In this study, we use an advanced 3-D scene model recently developed by Qin and Gerstl (2000), based on L-systems and radiosity theories. This 3-D scene model has been successfully applied to semi-arid shrubland to study structure and radiation regime at a regional scale. We apply this 3-D scene model to a more complicated and heterogeneous forest environment dominated by deciduous and coniferous trees. The data used in this study are from a field campaign conducted by NASA in a portion of the Superior National Forest (SNF) near Ely, Minnesota during the summers of 1983 and 1984, and supplement data collected during our revisit to the same area of SNF in summer of 2003. The model is first validated with reflectance measurements at different scales (ground observations, helicopter, aircraft, and satellite). Then its ability to characterize the structural and spectral parameters of the forest scene is evaluated. Based on the results from this study

  15. Prediction model of atmospheric refractive index structure parameter in coastal area

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Li, Bifeng; Wu, Xiaojun; Liu, Chuanhui; Hu, Zhihui; Xu, Pengfei

    2015-09-01

    In this paper, we focus on the prediction of atmospheric refractive index structure parameter (?) in coastal area using the routine meteorological parameters. Based on the micrometeorology, macrometeorology and Monin-Obukhov similarity theory, three modified prediction models of ? are presented in combination with the long-term observation data of ? and meteorological parameters in coastal city, respectively. For different weather, the applicable cases of three ? prediction models are comparatively analysed and their applicable effects are comprehensively evaluated. The results indicate that the modified micrometeorology model of ? shows better applicability for overcast sky, the offshore macrometeorology model of ? displays better predictability for sunny day and the offshore Thiermann model provides better availability for overcast sky, cloudy day, overcast to sunny or sunny to overcast day.

  16. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  17. Magnetic fields, plasma densities, and plasma beta parameters estimated from high-frequency zebra fine structures

    NASA Astrophysics Data System (ADS)

    Karlický, M.; Jiricka, K.

    2002-10-01

    Using the recent model of the radio zebra fine structures (Ledenev et al. 2001) the magnetic fields, plasma densities, and plasma beta parameters are estimated from high-frequency zebra fine structures. It was found that in the flare radio source of high-frequency (1-2 GHz) zebras the densities and magnetic fields vary in the intervals of (1-4)×1010 cm-3 and 40-230 G, respectively. Assuming then the flare temperature as about of 107K, the plasma beta parameters in the zebra radio sources are in the 0.05-0.81 interval. Thus the plasma pressure effects in such radio sources, especially in those with many zebra lines, are not negligible.

  18. Investigation of Tsunami Hydrodynamic Parameters in Inundation Zones with Different Structural Layouts

    NASA Astrophysics Data System (ADS)

    Ozer Sozdinler, Ceren; Yalciner, Ahmet Cevdet; Zaytsev, Andrey

    2015-03-01

    In this study, we analyze the tsunami parameter "hydrodynamic demand" (HD) using advanced numerical modeling. The HD can be defined as the square of the Froude number, which represents the relative value of the drag force (damage level) of tsunami waves in the inundation zone. The other key hydrodynamic parameters investigated in this study include maximum flow depth (inundation depth), maximum current velocity and its direction, and maximum water elevation and discharge flux occurring during tsunami inundation. The analyses are performed on regular-shaped basins with various orientations and distribution of coastal and land structures in order to provide comparisons of the results in a number of different case studies. We also provide information for defining damage levels in residential areas and for testing the performance of coastal protection structures.

  19. Accurate stopping power measurements for (0.21-2.68) MeV/u 1H+ and 4He+ ions crossing thin Al foils; extraction of the (I, b) parameters

    NASA Astrophysics Data System (ADS)

    Moussa, D.; Damache, S.; Ouichaoui, S.

    2015-01-01

    The stopping powers of thin Al foils for H+ and 4He+ ions have been measured over the energy range E = (206.03- 2680.05) keV/amu with an overall relative uncertainty better than 1% using the transmission method. The derived S (E) experimental data are compared to previous ones from the literature, to values derived by the SRIM-2008 code or compiled in the ICRU-49 report, and to the predictions of Sigmund-Schinner binary collision stopping theory. Besides, the S (E) data for H+ ions together with those for He2+ ions reported by Andersen et al. (1977) have been analyzed over the energy interval E > 1.0 MeV using the modified Bethe-Bloch stopping theory. The following sets of values have been inferred for the mean excitation potential, I, and the Barkas-Andersen parameter, b, for H+ and He+ projectiles, respectively: { (I = 164 ± 3) eV, b = 1.40 } and { (I = 163 ± 2.5) eV, b = 1.38 } . As expected, the I parameter is found to be independent of the projectile electronic structure presumably indicating that the contribution of charge exchange effects becomes negligible as the projectile velocity increases. Therefore, the I parameter must be determined from precise stopping power measurements performed at high projectile energies where the Bethe stopping theory is fully valid.

  20. Evaluation of structural equation mixture models Parameter estimates and correct class assignment

    PubMed Central

    Tueller, Stephen; Lubke, Gitta

    2009-01-01

    Structural Equation Mixture Models(SEMMs) are latent class models that permit the estimation of a structural equation model within each class. Fitting SEMMs is illustrated using data from one wave of the Notre Dame Longitudinal Study of Aging. Based on the model used in the illustration, SEMM parameter estimation and correct class assignment are investigated in a large scale simulation study. Design factors of the simulation study are (im)balanced class proportions, (im)balanced factor variances, sample size, and class separation. We compare the fit of models with correct and misspecified within-class structural relations. In addition, we investigate the potential to fit SEMMs with binary indicators. The structure of within-class distributions can be recovered under a wide variety of conditions, indicating the general potential and flexibility of SEMMs to test complex within-class models. Correct class assignment is limited. PMID:20582328

  1. Structural characterization of coagulant Moringa oleifera Lectin and its effect on hemostatic parameters.

    PubMed

    Luz, Luciana de Andrade; Silva, Mariana Cristina Cabral; Ferreira, Rodrigo da Silva; Santana, Lucimeire Aparecida; Silva-Lucca, Rosemeire Aparecida; Mentele, Reinhard; Oliva, Maria Luiza Vilela; Paiva, Patricia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso

    2013-07-01

    Lectins are carbohydrate recognition proteins. cMoL, a coagulant Moringa oleifera Lectin, was isolated from seeds of the plant. Structural studies revealed a heat-stable and pH resistant protein with 101 amino acids, 11.67 theoretical pI and 81% similarity with a M. oleifera flocculent protein. Secondary structure content was estimated as 46% α-helix, 12% β-sheets, 17% β-turns and 25% unordered structures belonging to the α/β tertiary structure class. cMoL significantly prolonged the time required for blood coagulation, activated partial thromboplastin (aPTT) and prothrombin times (PT), but was not so effective in prolonging aPTT in asialofetuin presence. cMoL acted as an anticoagulant protein on in vitro blood coagulation parameters and at least on aPTT, the lectin interacted through the carbohydrate recognition domain. PMID:23537800

  2. Near minimum-time maneuvers of large space structures using parameter optimization

    NASA Technical Reports Server (NTRS)

    Carter, M. T.; Vadali, S. R.; Singh, T.

    1993-01-01

    Near minimum-time attitude maneuvers for large, inherently-flexible space structures with finite fuel supplies are investigated. The open loop maneuver is determined with the Sequential Quadratic Programming (SQP) algorithm, which optimizes a bang-off-bang control parameter set for the given maneuver. Torque smoothing is used to prevent discontinuities in the control which would excite the flexible structure. Additional system dynamics such as thruster inefficiency, spring forces and pressure leaks are identified from preliminary experiments on the ASTREX test article.

  3. Estimating free-body modal parameters from tests of a constrained structure

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    1993-01-01

    Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.

  4. Effect of radiation and thermal treatment on structural and transport parameters for cellulose regenerated membranes

    NASA Astrophysics Data System (ADS)

    Váquez, M. I.; Galán, P.; Casado, J.; Ariza, M. J.; Benavente, J.

    2004-11-01

    Modifications caused by different types of ionizing radiation and thermal treatment on transport, chemical and structural parameters of polymeric (regenerated cellulose) membranes have been studied. Particularly, the effect of different types of radiation (ultraviolet light (UV) and ionising radiation (Ir) with different doses) and heating at 60 °C on transport and electrical parameters for a cellophane membrane has been considered by determining salt permeability and electrical resistance for the different samples. These parameters were obtained from salt diffusion and impedance spectroscopy (IS) measurements with the membranes in contact with NaCl solutions at different concentrations. Chemical surface and structural modifications of the polymer matrix due to the treatments have also been determined by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (ATR mode). Results obtained from infrared spectroscopy seem to indicate that ionising radiation modifies the proportion of OH links, which is related to the dose of irradiation. XPS analysis only shows small differences in the atomic concentration and shape of the C 1s spectra. On the other hand, an increase of salt permeability for heated and UV-treated membranes was obtained, while this parameter decreases in the case of irradiated membranes. This result could be related to a change in the packing of the polymer chains, which results in an increase of the fractional void volume in the case of heat- and UV-treated membranes and the opposite effect for the irradiated ones; for these latter, a correlation between the irradiation dose and the decrease in permeability values was also obtained. IS results show a decrease in the electrical resistance of all treated samples. This fact can be due to the most open structure of heated and UV-treated samples, previously indicated; however, due to the closer structure assumed for the irradiated sample, this point might be related to the presence of free

  5. Temperature dependence diode parameters studies of Al/CuPc/n-Si/Al structure

    NASA Astrophysics Data System (ADS)

    Kumar, Ratnesh; Kaur, Ramneek; Sharma, Mamta; Kaur, Maninder; Tripathi, S. K.

    2015-08-01

    This paper presents the fabrication of Al/CuPc/n-Si/Al metal-organic-semiconductor diode. The copper phthalocyanine as organic layer is deposited on Si substrate by thermal evaporation technique. The temperature dependent current-voltage measurements are performed on Al/CuPc/n-Si structure. The important diode parameters i.e. the barrier height and ideality factor have been calculated. The temperature dependence of barrier height and ideality factor has been studied.

  6. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    SciTech Connect

    Zhang, Xuesong; Liang, Faming; Yu, Beibei; Zong, Ziliang

    2011-11-09

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associated with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.

  7. Testing the hypothesis on the relationship between aerodynamic roughness length and albedo using vegetation structure parameters.

    PubMed

    Cho, Jaeil; Miyazaki, Shin; Yeh, Pat J-F; Kim, Wonsik; Kanae, Shinjiro; Oki, Taikan

    2012-03-01

    Surface albedo (α) and aerodynamic roughness length (z(0)), which partition surface net radiation into energy fluxes, are critical land surface properties for biosphere-atmosphere interactions and climate variability. Previous studies suggested that canopy structure parameters influence both α and z(0); however, no field data have been reported to quantify their relationships. Here, we hypothesize that a functional relationship between α and z(0) exists for a vegetated surface, since both land surface parameters can be conceptually related to the characteristics of canopy structure. We test this hypothesis by using the observed data collected from 50 site-years of field measurements from sites worldwide covering various vegetated surfaces. On the basis of these data, a negative linear relationship between α and log(z(0)) was found, which is related to the canopy structural parameter. We believe that our finding is a big step toward the estimation of z(0) with high accuracy. This can be used, for example, in the parameterization of land properties and the observation of z(0) using satellite remote sensing. PMID:21562788

  8. 3D parameter to quantify the anisotropy measurement of periodic structures on rough surfaces.

    PubMed

    Guillemot, G; Bigerelle, M; Khawaja, Z

    2014-01-01

    In this paper, a new 3D roughness parameter, Sreg, is proposed to quantify the regularity of a surface, independent of the amplitude and the scanning length units of the surface. The efficiency of this parameter is tested on noisy periodical surfaces with degrees of anisotropy. This parameter lies between zero (perfect noise) and 100% (a perfect periodic surface). This parameter enables the identification of the anisotropy directions of regularity for a given surface. For a periodical surface, the greater the noise, the lower the anisotropy. A direction function is proposed to analyse the direction of regularity of a rough surface, which then permits characterization of the directional regularity of the topography. The regularity parameter can be used for several purposes: to identify the direction of periodical structures formed by laser-pulsed radiations on the surface of solid workpieces; to examine the reproducibility of surface machining methods such as finishing process; and to identify the surface regularity produced by abrasive machining, such as precision surface grain, abrasive slotting, and lapping. PMID:23824916

  9. Parameter degeneracy in neutrino oscillation — Solution network and structural overview

    NASA Astrophysics Data System (ADS)

    Minakata, Hisakazu; Uchinami, Shoichi

    2010-04-01

    It is known that there is a phenomenon called “parameter degeneracy” in neutrino oscillation measurement of lepton mixing parameters; A set of the oscillation probabilities, e.g., P( ν μ → ν e ) and its CP-conjugate Pleft( {{{bar ν }_μ } to {{bar ν }_e}} right) at a particular neutrino energy does not determine uniquely the values of θ 13 and δ. With use of the approximate form of the oscillation probability á la Cervera et al., a complete analysis of the eightfold parameter degeneracy is presented. We propose a unified view of the various types of the degeneracy as invariance of the oscillation probabilities under discrete mappings of the mixing parameters. Explicit form of the mapping is obtained either by symmetry argument, or by deriving exact analytic expressions of all the degeneracy solutions for a given true solution. Due to the one-to-one mapping structure the degeneracy solutions are shown to form a network. We extend our analysis into the parameter degeneracy in T- and CPT-conjugate measurement as well as to the setup with the golden and the silver channels, P( ν e → ν μ ) and P( ν e → ν τ ). Some characteristic features of the degeneracy solutions in CP-conjugate measurement, in particular their energy dependences, are illuminated by utilizing the explicit analytic solutions.

  10. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  11. Basic structural parameters for the design of composite structures as ligament augmentation devices.

    PubMed

    Causa, F; Sarracino, F; De Santis, R; Netti, P A; Ambrosio, L; Nicolais, L

    2006-01-01

    Composite structures are designed to mimic the morphology and mechanical properties of natural ligaments. Filament winding technology has been implemented in order to obtain a composite material based on a polyurethane matrix (HydroThaneTM ), reinforced with degradable and non-degradable fibers. The mechanical properties of the matrix and fiber have been analysed to define the optimal type, volume ratio and winding angle of the reinforcement. The typical J-shaped stress-strain curve, displayed by natural tendons and ligaments, is reproduced. The mechanical behaviour of HydroThaneTM reinforced with poly(ethylene terephthalate) (PET) fibers were modified by varying the winding angle of the fibers. Fibers comprising poly(l-lactic acid) (PLLA), poly(glycolic acid) (PGA) and PET, individually and in combination, were considered as candidate materials for the reinforcement of a composite ligament augmentation device (LAD). Mechanical and degradation studies demonstrated that, by combining different types of fiber, at a fixed volume fraction and winding angle (20 degrees ), it is possible to optimize mechanical properties and degradation kinetics of the device. PMID:20799213

  12. Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T{sub 6} bovine insulin derivatives

    SciTech Connect

    Frankaer, Christian Grundahl; Mossin, Susanne; Ståhl, Kenny; Harris, Pernille

    2014-01-01

    The level of structural detail around the metal sites in Ni{sup 2+} and Cu{sup 2+} T{sub 6} insulin derivatives was significantly improved by using a combination of single-crystal X-ray crystallography and X-ray absorption spectroscopy. Photoreduction and subsequent radiation damage of the Cu{sup 2+} sites in Cu insulin was followed by XANES spectroscopy. Using synchrotron radiation (SR), the crystal structures of T{sub 6} bovine insulin complexed with Ni{sup 2+} and Cu{sup 2+} were solved to 1.50 and 1.45 Å resolution, respectively. The level of detail around the metal centres in these structures was highly limited, and the coordination of water in Cu site II of the copper insulin derivative was deteriorated as a consequence of radiation damage. To provide more detail, X-ray absorption spectroscopy (XAS) was used to improve the information level about metal coordination in each derivative. The nickel derivative contains hexacoordinated Ni{sup 2+} with trigonal symmetry, whereas the copper derivative contains tetragonally distorted hexacoordinated Cu{sup 2+} as a result of the Jahn–Teller effect, with a significantly longer coordination distance for one of the three water molecules in the coordination sphere. That the copper centre is of type II was further confirmed by electron paramagnetic resonance (EPR). The coordination distances were refined from EXAFS with standard deviations within 0.01 Å. The insulin derivative containing Cu{sup 2+} is sensitive towards photoreduction when exposed to SR. During the reduction of Cu{sup 2+} to Cu{sup +}, the coordination geometry of copper changes towards lower coordination numbers. Primary damage, i.e. photoreduction, was followed directly by XANES as a function of radiation dose, while secondary damage in the form of structural changes around the Cu atoms after exposure to different radiation doses was studied by crystallography using a laboratory diffractometer. Protection against photoreduction and subsequent

  13. A modal test of a space-truss for structural parameter identification

    SciTech Connect

    Carne, T.G.; Mayes, R.L.; Levine-West, M.B.

    1992-12-01

    The Jet Propulsion Laboratory is developing a large space-truss to support a micro-precision interferometer. A finite element model will be used to design and place passive and active elements in the truss to suppress vibration. To improve the model`s predictive capability, it is desirable to identify uncertain structural parameters in the model by utilizing experimental modal data. Testing of both the components and the system was performed to obtain the data necessary to identify the structural parameters. Extracting a modal model, absent of bias errors, from measured data requires great care in test design and implementation. Testing procedures that are discussed include: verification of non-constraining shaker attachment, quantification of the non-linear structural response, and the design and effects of suspension systems used to simulate a free structure. In addition to these procedures, the accuracy of the measured frequency response functions are evaluated by comparing functions measured with random excitation, using various frequency resolutions, and with step sine excitation.

  14. A modal test of a space-truss for structural parameter identification

    SciTech Connect

    Carne, T.G.; Mayes, R.L. ); Levine-West, M.B. )

    1992-01-01

    The Jet Propulsion Laboratory is developing a large space-truss to support a micro-precision interferometer. A finite element model will be used to design and place passive and active elements in the truss to suppress vibration. To improve the model's predictive capability, it is desirable to identify uncertain structural parameters in the model by utilizing experimental modal data. Testing of both the components and the system was performed to obtain the data necessary to identify the structural parameters. Extracting a modal model, absent of bias errors, from measured data requires great care in test design and implementation. Testing procedures that are discussed include: verification of non-constraining shaker attachment, quantification of the non-linear structural response, and the design and effects of suspension systems used to simulate a free structure. In addition to these procedures, the accuracy of the measured frequency response functions are evaluated by comparing functions measured with random excitation, using various frequency resolutions, and with step sine excitation.

  15. Developing dynamic digital image techniques with continuous parameters to detect structural damage.

    PubMed

    Shih, Ming-Hsiang; Sung, Wen-Pei

    2013-01-01

    Several earthquakes with strong magnitude occurred globally at various locations, especially the unforgettable tsunami disaster caused by the earthquake in Indonesia and Japan. If the characteristics of structures can be well understood to implement new technology, the damages caused by most natural disasters can be significantly alleviated. In this research, dynamic digital image correlation method for using continuous parameter is applied for developing a low-cost digital image correlation coefficient method with advanced digital cameras and high-speed computers. The experimental study using cantilever test object with defect control confirms that the vibration mode calculated using this proposed method can highly express the defect locations. This proposed method combined with the sensitivity of Inter-Story Drift Mode Shape, IDMS, can also reveal the damage degree of damage structure. These test and analysis results indicate that this proposed method is high enough for applying to achieve the object of real-time online monitoring of structure. PMID:24023530

  16. Review of parameters influencing the structural response of a submerged body under cavitation conditions

    NASA Astrophysics Data System (ADS)

    Escaler, X.; De La Torre, O.; Farhat, M.

    2015-12-01

    Submerged structures that operate under extreme flows are prone to suffer large scale cavitation attached to their surfaces. Under such conditions the added mass effects differ from the expected ones in pure liquids. Moreover, the existence of small gaps between the structure and surrounding bodies filled with fluid also influence the dynamic response. A series of experiments and numerical simulations have been carried out with a truncated NACA0009 hydrofoil mounted as a cantilever beam at the LMH-EPFL cavitation tunnel. The three first modes of vibration have been determined and analysed under various hydrodynamic conditions ranging from air and still water to partial cavitation and supercavitation. A remote nonintrusive excitation system with piezoelectric patches has been used for the experiments. The effects of the cavity properties and the lateral gap size on the natural frequencies and mode shapes have been determined. As a result, the significance of several parameters in the design of such structures is discussed.

  17. Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules.

    PubMed

    Brémond, Éric; Savarese, Marika; Su, Neil Qiang; Pérez-Jiménez, Ángel José; Xu, Xin; Sancho-García, Juan Carlos; Adamo, Carlo

    2016-02-01

    In this Letter we report the error analysis of 59 exchange-correlation functionals in evaluating the structural parameters of small- and medium-sized organic molecules. From this analysis, recently developed double hybrids, such as xDH-PBE0, emerge as the most reliable methods, while global hybrids confirm their robustness in reproducing molecular structures. Notably the M06-L density functional is the only semilocal method reaching an accuracy comparable to hybrids'. A comparison with errors obtained on energetic databases (including thermochemistry, reaction barriers, and interaction energies) indicate that most of the functionals have a coherent behavior, showing low (or high) deviations on both energy and structure data sets. Only a few of them are more prone toward one of these two properties. PMID:26730741

  18. Parametric optimal bounded feedback control for smart parameter-controllable composite structures

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.; Duan, Y. F.

    2015-03-01

    Deterministic and stochastic parametric optimal bounded control problems are presented for smart composite structures such as magneto-rheological visco-elastomer based sandwich beam with controllable bounded parameters subjected to initial disturbances and stochastic excitations. The parametric controls by actively adjusting system parameters differ from the conventional additive controls by systemic external inputs. The dynamical programming equations for the optimal parametric controls are derived based on the deterministic and stochastic dynamical programming principles. The optimal bounded functions of controls are firstly obtained from the equations with the bounded control constraints based on the bang-bang control strategy. Then the optimal bounded parametric control laws are obtained by the inversion of the nonlinear functions. The stability of the optimally controlled systems is proved according to the Lyapunov method. Finally, the proposed optimal bounded parametric feedback control strategy is applied to single-degree-of-freedom and two-degree-of-freedom dynamic systems with nonlinear parametric bounded control terms under initial disturbances and earthquake excitations and then to a magneto-rheological visco-elastomer based sandwich beam system with nonlinear parametric bounded control terms under stochastic excitations. The effective vibration suppression is illustrated with numerical results. The proposed optimal parametric control strategy is applicable to other smart composite structures with nonlinear controllable parameters.

  19. Effect of lateral structure parameters of SiGe HBTs on synthesized active inductors

    NASA Astrophysics Data System (ADS)

    Yan-Xiao, Zhao; Wan-Rong, Zhang; Huang, Xin; Hong-Yun, Xie; Dong-Yue, Jin; Qiang, Fu

    2016-03-01

    The effect of lateral structure parameters of transistors including emitter width, emitter length, and emitter stripe number on the performance parameters of the active inductor (AI), such as the effective inductance Ls, quality factor Q, and self-resonant frequency ω0 is analyzed based on 0.35-μm SiGe BiCMOS process. The simulation results show that for AI operated under fixed current density JC, the HBT lateral structure parameters have significant effect on Ls but little influence on Q and ω0, and the larger Ls can be realized by the narrow, short emitter stripe and few emitter stripes of SiGe HBTs. On the other hand, for AI with fixed HBT size, smaller JC is beneficial for AI to obtain larger Ls, but with a cost of smaller Q and ω0. In addition, under the fixed collector current IC, the larger the size of HBT is, the larger Ls becomes, but the smaller Q and ω0 become. The obtained results provide a reference for selecting geometry of transistors and operational condition in the design of active inductors. Project supported by the Natural Science Foundation of Beijing, China (Grant Nos. 4142007 and 4122014), the National Natural Science Foundation of China (Grant No. 61574010), and the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J13LN09).

  20. Fine-structure constant constraints on dark energy. II. Extending the parameter space

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Pinho, A. M. M.; Carreira, P.; Gusart, A.; López, J.; Rocha, C. I. S. A.

    2016-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α , are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ , to the electromagnetic sector) the α variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, w0). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and early dark energy parametrizations. Even in these extended cases we find that the current data constrains the coupling ζ at the 1 0-6 level and w0 to a few percent (marginalizing over other parameters), thus confirming the robustness of earlier analyses. On the other hand, the additional parameters are typically not well constrained. We also highlight the implications of our results for constraints on violations of the weak equivalence principle and improvements to be expected from forthcoming measurements with high-resolution ultrastable spectrographs.

  1. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Macciò, Andrea V.

    2014-07-01

    We present the evolution of the structure of relaxed cold dark matter (CDM) haloes in the cosmology from the Planck satellite. Our simulations cover five decades in halo mass, from dwarf galaxies to galaxy clusters. Because of the increased matter density and power spectrum normalization the concentration-mass relation in the Planck cosmology has a ˜20 per cent higher normalization at redshift z = 0 compared to Wilkinson Microwave Anisotropy Probe cosmology. We confirm that CDM haloes are better described by the Einasto profile; for example, at scales near galaxy half-light radii CDM haloes have significantly steeper density profiles than implied by Navarro-Frenk-White (NFW) fits. There is a scatter of ˜0.2 dex in the Einasto shape parameter at fixed halo mass, adding further to the diversity of CDM halo profiles. The evolution of the concentration-mass relation in our simulations is not reproduced by any of the analytic models in the literature. We thus provide a simple fitting formula that accurately describes the evolution between redshifts z = 5 and 0 for both NFW and Einasto fits. Finally, the observed concentrations and halo masses of spiral galaxies, groups and clusters of galaxies at low redshifts are in good agreement with our simulations, suggesting only mild halo response to galaxy formation on these scales.

  2. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE PAGESBeta

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  3. Evaluation and optimization of the structural parameter of diesel nozzle basing on synchrotron radiation imaging techniques

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, Y.; Gong, H.; Li, L.

    2016-04-01

    Lacking of efficient methods, industry currently uses one only parameter—fuel flow rate—to evaluate the nozzle quality, which is far from satisfying the current emission regulations worldwide. By utilizing synchrotron radiation high energy X-ray in Shanghai Synchrotron Radiation Facility (SSRF), together with the imaging techniques, the 3D models of two nozzles with the same design dimensions were established, and the influence of parameters fluctuation in the azimuthal direction were analyzed in detail. Results indicate that, due to the orifice misalignment, even with the same design dimension, the inlet rounding radius of orifices differs greatly, and its fluctuation in azimuthal direction is also large. This difference will cause variation in the flow characteristics at orifice outlet and then further affect the spray characteristics. The study also indicates that, more precise investigation and insight into the evaluation and optimization of diesel nozzle structural parameter are needed.

  4. A key factor to the spin parameter of uniformly rotating compact stars: crust structure

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua

    2016-04-01

    We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ∼ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) ‑ 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.

  5. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    SciTech Connect

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure of the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.

  6. Magnetic flux structure and formfactor of SANS in a superconductor with multicomponent order parameter

    NASA Astrophysics Data System (ADS)

    Zeltser, A. S.; Pashkevich, Yu. G.; Filippov, A. E.

    1999-09-01

    Possible observable consequences of a recently described scenario of vortex generation in superconductors with multicomponent order parameter are discussed. According to this scenario the vortices appear inside domain boundaries separating the phases with different realizations of the equilibrium order parameter. It is shown that, as a rule, solitary vortex has an anisotropic distribution of the current and magnetic field even in absence of anisotropy in gradient terms. The lattice formed by such vortices has symmetry lower than hexagonal or tetragonal ones. It is simulated with the help of brownian dynamics. Ordered structure manifests itself in the correlation function for magnetic field density and, as a result, in the positions, intensity and formfactor of the peaks of small angle neutron scattering (SANS).

  7. THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES

    SciTech Connect

    Griffith, Roger L.; Kirkpatrick, J. Davy; Cooper, Michael C.; Newman, Jeffrey A.; Moustakas, Leonidas A.; Stern, Daniel; Comerford, Julia M.; Davis, Marc; Lotz, Jennifer M.; Koekemoer, Anton M.; Barden, Marco; Conselice, Christopher J.; Capak, Peter L.; Scoville, Nick; Sheth, Kartik; Shopbell, Patrick; Faber, S. M.; Koo, David C.; Willmer, Christopher N. A.; and others

    2012-05-01

    We present the Advanced Camera for Surveys General Catalog (ACS-GC), a photometric and morphological database using publicly available data obtained with the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope. The goal of the ACS-GC database is to provide a large statistical sample of galaxies with reliable structural and distance measurements to probe the evolution of galaxies over a wide range of look-back times. The ACS-GC includes approximately 470,000 astronomical sources (stars + galaxies) derived from the AEGIS, COSMOS, GEMS, and GOODS surveys. GALAPAGOS was used to construct photometric (SEXTRACTOR) and morphological (GALFIT) catalogs. The analysis assumes a single Sersic model for each object to derive quantitative structural parameters. We include publicly available redshifts from the DEEP2, COMBO-17, TKRS, PEARS, ACES, CFHTLS, and zCOSMOS surveys to supply redshifts (spectroscopic and photometric) for a considerable fraction ({approx}74%) of the imaging sample. The ACS-GC includes color postage stamps, GALFIT residual images, and photometry, structural parameters, and redshifts combined into a single catalog.

  8. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation

    PubMed Central

    Misyura, S. Y.

    2016-01-01

    Methane hydrate dissociation at negative temperatures was studied experimentally for different artificial and natural samples, differing by macro- and micro-structural parameters. Four characteristic dissociation types are discussed in the paper. The internal kinetics of artificial granule gas hydrates and clathrate hydrates in coal is dependent on the porosity, defectiveness and gas filtration rate. The density of pores distribution in the crust of formed ice decreases by the several orders of magnitude and this change significantly the rate of decay. Existing models for describing dissociation at negative temperatures do not take into account the structural parameters of samples. The dissociation is regulated by internal physical processes that must be considered in the simulation. Non-isothermal dissociation with constant external heat flux was simulated numerically. The dissociation is simulated with consideration of heat and mass transfer, kinetics of phase transformation and gas filtering through a porous medium of granules for the negative temperatures. It is shown that the gas hydrate dissociation in the presence of mainly microporous structures is fundamentally different from the disintegration of gas hydrates containing meso and macropores. PMID:27445113

  9. Synthesis, molecular structure, spectroscopic analysis, thermodynamic parameters and molecular modeling studies of (2-methoxyphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Şahin, Zarife Sibel; Kantar, Günay Kaya; Şaşmaz, Selami; Büyükgüngör, Orhan

    2015-05-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new (2-methoxyphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, (2-methoxyphenyl)oxalate, (I), (C16H14O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies, 1H and 13C NMR chemical shifts have been investigated by B3LYP/6-31G(d,p) method using density functional theory (DFT). The calculated results show that the predicted geometry can well reproduce structural parameters. In addition, global chemical reactivity descriptors, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) and thermodynamic properties have also been studied. The energetic behavior of title compound has been examined in solvent media using polarizable continuum model (PCM).

  10. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation

    NASA Astrophysics Data System (ADS)

    Misyura, S. Y.

    2016-07-01

    Methane hydrate dissociation at negative temperatures was studied experimentally for different artificial and natural samples, differing by macro- and micro-structural parameters. Four characteristic dissociation types are discussed in the paper. The internal kinetics of artificial granule gas hydrates and clathrate hydrates in coal is dependent on the porosity, defectiveness and gas filtration rate. The density of pores distribution in the crust of formed ice decreases by the several orders of magnitude and this change significantly the rate of decay. Existing models for describing dissociation at negative temperatures do not take into account the structural parameters of samples. The dissociation is regulated by internal physical processes that must be considered in the simulation. Non-isothermal dissociation with constant external heat flux was simulated numerically. The dissociation is simulated with consideration of heat and mass transfer, kinetics of phase transformation and gas filtering through a porous medium of granules for the negative temperatures. It is shown that the gas hydrate dissociation in the presence of mainly microporous structures is fundamentally different from the disintegration of gas hydrates containing meso and macropores.

  11. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation.

    PubMed

    Misyura, S Y

    2016-01-01

    Methane hydrate dissociation at negative temperatures was studied experimentally for different artificial and natural samples, differing by macro- and micro-structural parameters. Four characteristic dissociation types are discussed in the paper. The internal kinetics of artificial granule gas hydrates and clathrate hydrates in coal is dependent on the porosity, defectiveness and gas filtration rate. The density of pores distribution in the crust of formed ice decreases by the several orders of magnitude and this change significantly the rate of decay. Existing models for describing dissociation at negative temperatures do not take into account the structural parameters of samples. The dissociation is regulated by internal physical processes that must be considered in the simulation. Non-isothermal dissociation with constant external heat flux was simulated numerically. The dissociation is simulated with consideration of heat and mass transfer, kinetics of phase transformation and gas filtering through a porous medium of granules for the negative temperatures. It is shown that the gas hydrate dissociation in the presence of mainly microporous structures is fundamentally different from the disintegration of gas hydrates containing meso and macropores. PMID:27445113

  12. Effect of reactive magnetron sputtering parameters on structural and electrical properties of hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Szymańska, Magdalena; Gierałtowska, Sylwia; Wachnicki, Łukasz; Grobelny, Marcin; Makowska, Katarzyna; Mroczyński, Robert

    2014-05-01

    The purpose of this work was to compare the structural and electrical properties of magnetron sputtered hafnium oxide (HfOx) and hafnium oxynitride (HfOxNy) thin films. A careful analysis of the influence of deposition process parameters, among them: pressure in the reactor chamber, Ar and O2 flow rate, power applied to the reactor chamber and deposition time, on electro-physical properties of HfOx and HfOxNy layers has been performed. In the course of this work we performed number of experiments by means of Taguchi's orthogonal arrays approach. Such a method allowed for the determination of dielectric layers properties depending on process parameters with relatively low amount of experiments. Moreover, the effects of post-deposition annealing on electrical characteristics of metal-insulator-semiconductor (MIS) structures with HfOx or HfOxNy gate dielectric and its structural properties have also been reported. Investigated hafnia thin films were characterized by means of spectroscopic ellipsometry (SE), electrical characteristics measurements, atomic force microscopy (AFM), X-ray diffraction spectroscopy (XRD) and Rutherford backscattering spectrometry (RBS).

  13. Earthquake focal parameters and lithospheric structure of the anatolian plateau from complete regional waveform modeling

    SciTech Connect

    Rodgers, A

    2000-12-28

    This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studies and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.

  14. Diagenetic facies controls on pore structure and rock electrical parameters in tight gas sandstone

    NASA Astrophysics Data System (ADS)

    Liu, Hongping; Zhao, Yanchao; Luo, Yang; Chen, Zhaoyou; He, Sheng

    2015-08-01

    Rock electrical parameters of tight gas sandstone show large variations in the T2 member in Dingbei Block, Ordos Basin, China. Applying the same rock electrical parameters in water saturation calculations would lead to large errors. Based on casting thin sections, x-ray diffraction, scanning electron microscopy (SEM), cathode luminescence, porosity and permeability, image analysis, and high-pressure mercury intrusion/withdrawal method, identification of the diagenetic facies are first conducted, and then their pore structure and their relationship with rock electrical parameters are investigated. Five diagenetic facies (A-E), which are identified based mainly on pore types and authigenic minerals, have different pore structure and rock electrical parameters. Conceptual models that incorporate the rock properties of each diagenetic facies have been built, before applying the electrical efficiency theory to explain the values of cementation exponent (m) and saturation exponent (n). A conventional network model, a shunt pore model, a netted pore model, and a dotted line model are utilized to mimic the intergranular pores, authigenic kaolinite intercrystal pores, carbonate-cement dissolution pores, and clay-matrix intercrystal pores, respectively. A decrease of the contents of large pores increases electrical efficiency and therefore reduces m. The saturation exponent, which depends on the distribution of water and gas, can be better understood by applying the different pore models. In the shunt and netted pore models, gas displacement starts from the larger pores and smaller pores provide alternative conduction pathways, hence sustaining electrical efficiency and decreasing n. Clay-matrix intercrystal pores are mainly micropores, since the brine in the rocks are isolated after gas displacement, reducing overall electrical efficiency and dramatically increasing the value of n in the diagenetic facies, which is dominated by clay-matrix intercrystal pores.

  15. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy

    PubMed Central

    2015-01-01

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain 1H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1–1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen (1H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  16. Essential parameters for structural analysis and dereplication by (1)H NMR spectroscopy.

    PubMed

    Pauli, Guido F; Chen, Shao-Nong; Lankin, David C; Bisson, Jonathan; Case, Ryan J; Chadwick, Lucas R; Gödecke, Tanja; Inui, Taichi; Krunic, Aleksej; Jaki, Birgit U; McAlpine, James B; Mo, Shunyan; Napolitano, José G; Orjala, Jimmy; Lehtivarjo, Juuso; Korhonen, Samuli-Petrus; Niemitz, Matthias

    2014-06-27

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain (1)H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1-1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen ((1)H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  17. Estimating Rheological Parameters of Anhydrite from Folded Evaporite sequences: Implications for Internal Dynamics of Salt Structure

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Schmalholz, Stefan M.; Urai, Janos L.; Raith, Alexander

    2015-04-01

    Salt structures have been identified as a potential target for hydrocarbon, CO2, or radioactive waste storage. The most suitable locations for magazines are considered in the thick and relatively homogeneous rock salt layers. However, salt structures often consist of the evaporite sequence including rock salt intercalated with other rock types e.g.: anhydrite, gypsum, potassium and magnesium salt, calcite, dolomite, or shale. The presence of such heterogeneities causes a serious disturbance in the structure management. Detailed analysis of the internal architecture and internal dynamics of the salt structure are crucial for evaluating them as suitable repositories and also their long-term stability. The goal of this study is to analyse the influence of the presence of anhydrite layers on the internal dynamics of salt structures. Anhydrite is a common rock in evaporite sequences. Its physical and mechanical properties strongly differ from the properties of rock salt. The density of anhydrite is much higher than the density of salt, thus anhydrite is likely to sink in salt causing the disturbance of the surrounding structures. This suggestion was the starting point to the discussion about the long-term stability of the magazines in salt structures [1]. However, the other important parameter that has to be taken into account is the viscosity of anhydrite. The high viscosity ratio between salt and anhydrite can restrain the layer from sinking. The rheological behaviour of anhydrite has been studied in laboratory experiments [2], but the results only provide information about the short-term behaviour. The long-term behaviour can be best predicted using indirect methods e.g. based on the analysis of natural structures that developed over geological time scale. One of the most promising are fold structures, the shape of which is very sensitive to the rheological parameters of the deforming materials. Folds can develop in mechanically stratified materials during layer

  18. Using Crystal Structure Groups to Understand Mössbauer parameters of Ferric Sulfates

    NASA Astrophysics Data System (ADS)

    Knutson, J.; Dyar, M. D.; Sklute, E. C.; Lane, M. D.; Bishop, J. L.

    2008-12-01

    A Mössbauer doublet assigned to ferric sulfate (Fe3D2) was identified in Paso Robles, Mars, spectra by Morris et al. (2006), who noted that its parameters are not diagnostic of any specific mineral because a number of different sulfates with varying parageneses might be responsible for this doublet. Work by Lane et al. (2008) used a multi-instrument approach based on Fe3+ sulfate spectra acquired with VNIR and midinfrared reflectance, mid-infrared emission and Mössbauer spectrometers to narrow down the possible ferric sulfate phases present at Paso Robles to ferricopiapite possibly mixed with other ferric sulfates such as butlerite, parabutlerite, fibroferrite, or metahomanite. Thus, we explore here the crystal-chemical rationale behind these interpretations of the Mössbauer results, using similarities and difference among mineral structures to explore which phases might have similar coordination polyhedra around the Fe atoms in sulfates. Work by Hawthorne et al. (2000) organizes the sulfate minerals into groups with analogous crystal structures. Mössbauer doublets assigned to ferric sulfates ubiquitously have isomer shifts (IS) of 0.40-53 mm/s so that IS is non-diagnostic. However, quadrupole splitting of doublets in these mineral groups has a wide range (0-1.4 mm/s) and the variation can be systematically correlated with different structure types. Members of the hydration series Fe2(SO4)3 · n H2O, which includes quenstedtite, coquimbite, paracoquimbite, kornelite, and lausenite have Mössbauer spectra that closely resemble singlets because of their near-zero QS. These minerals share structures involving finite clusters of sulfate tetrahedral and Fe octahedral or chains of depolymerized clusters, and all mineral species with these structures share similar Mössbauer parameters. At the other extreme, ferric sulfates with structures based on infinite sheets (hydrotalcite, alunite, jarosite), tend to have large electric field gradients at the nucleus of the Fe3

  19. Recent Developments in Parameter Estimation and Structure Identification of Biochemical and Genomic Systems

    PubMed Central

    Chou, I-Chun; Voit, Eberhard O.

    2009-01-01

    The organization, regulation and dynamical responses of biological systems are in many cases too complex to allow intuitive predictions and require the support of mathematical modeling for quantitative assessments and a reliable understanding of system functioning. All steps of constructing mathematical models for biological systems are challenging, but arguably the most difficult task among them is the estimation of model parameters and the identification of the structure and regulation of the underlying biological networks. Recent advancements in modern high-throughput techniques have been allowing the generation of time series data that characterize the dynamics of genomic, proteomic, metabolic, and physiological responses and enable us, at least in principle, to tackle estimation and identification tasks using “top-down” or “inverse” approaches. While the rewards of a successful inverse estimation or identification are great, the process of extracting structural and regulatory information is technically difficult. The challenges can generally be categorized into four areas, namely, issues related to the data, the model, the mathematical structure of the system, and the optimization and support algorithms. Many recent articles have addressed inverse problems within the modeling framework of Biochemical Systems Theory (BST). BST was chosen for these tasks because of its unique structural flexibility and the fact that the structure and regulation of a biological system are mapped essentially one-to-one onto the parameters of the describing model. The proposed methods mainly focused on various optimization algorithms, but also on support techniques, including methods for circumventing the time consuming numerical integration of systems of differential equations, smoothing overly noisy data, estimating slopes of time series, reducing the complexity of the inference task, and constraining the parameter search space. Other methods targeted issues of data

  20. Electronic Level Structure and Excitation Modes in Semiconductor Superlattices and D-Parameter Theory.

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    1990-01-01

    The electronic level structure of a doped semiconductor superlattice such as GaAs-Al_chiGa _{1-chi}As has been calculated self-consistently in a tight-binding envelope function approximation, where inhomogeneous potentials related to depletion regions in real systems have been incorporated. Fermi-level pinning associated with depletion regions at the ends of the superlattice gives rise to surface -localized states lying in the miniband gaps and exhibiting localized eigenstates. Varying barrier transparency and doping density are shown to affect the location of these surface levels within the minigap. The application of a gate voltage across the superlattice structure produces drastic changes ill the level structure, including transitions from the extended to localized behavior in some eigenstates concurrent to shifts in their energies. We further present a theoretical study of the far-infrared response of these systems using the d-parameter formalism. The d( omega) functions, which parametrize the optical response of surfaces, provide position and coupling strengths for all possible optically active modes. d parameters have been used in the study of surfaces and the formalism is adapted here to the study of semiconductor superlattice systems. Intra- and inter-miniband plasma modes as well as single-particle-like transitions, are studied in 'bulk' and in finite-size superlattices. A series of surface modes, related to the charge depletion in the end layers of the superlattice, are distinguishable from the bulk modes. These additional modes are characterized by strong oscillations of the induced charge density near the surface layers, in contrast to the bulk modes which exhibit oscillations throughout the superlattice. The d-parameter formalism is further developed to study a quasi-zero-dimensional quantum dot system with electrons confined inside dots.

  1. Structure Parameters of Synaptic Vesicles Quantified by Small-Angle X-Ray Scattering

    PubMed Central

    Castorph, Simon; Riedel, Dietmar; Arleth, Lise; Sztucki, Michael; Jahn, Reinhard; Holt, Matthew; Salditt, Tim

    2010-01-01

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons, and which are crucial in neurotransmission. After a rise in internal [Ca2+] during neuronal stimulation, SVs fuse with the plasma membrane releasing their neurotransmitter content, which then signals neighboring neurons. SVs are subsequently recycled and refilled with neurotransmitter for further rounds of release. Recently, tremendous progress has been made in elucidating the molecular composition of SVs, as well as putative protein-protein interactions. However, what is lacking is an empirical description of SV structure at the supramolecular level—which is necessary to enable us to fully understand the processes of membrane fusion, retrieval, and recycling. Using small-angle x-ray scattering, we have directly investigated the size and structure of purified SVs. From this information, we deduced detailed size and density parameters for the protein layers responsible for SV function, as well as information about the lipid bilayer. To achieve a convincing model fit, a laterally anisotropic structure for the protein shell is needed, as a rotationally symmetric density profile does not explain the data. Not only does our model confirm many of the preexisting ideas concerning SV structure, but also for the first time, to our knowledge, it indicates structural refinements, such as the presence of protein microdomains. PMID:20371319

  2. Vibration suppression of distributed parameter flexible structures by Integral Consensus Control

    NASA Astrophysics Data System (ADS)

    Omidi, Ehsan; Mahmoodi, S. Nima

    2016-03-01

    Integral Consensus Control (ICC) is proposed and implemented in this paper for the first time, as a novel approach for vibration control in distributed parameter flexible structures. The ICC consists of multiple parallel first-order lossy integrators, with the goal of targeting all major participating resonant modes in the oscillation of the structure. The vibration control design is taken to a different level, by integrating the concept of consensus control design into the new dynamics. Each control patch on the flexible structure is considered as a node of a network, and a communication topology with consensus control terms are augmented in the controller design dynamics. The result is an effective vibration controller, which is also robust to failures and inconsistencies in the control system. A cantilever is used as a sample flexible structure to investigate the control method. Multi-agent representation of the system, state estimator dynamics and the ICC model are designed for the structure. Extensive numerical simulations have been conducted to show the suppression performance of the ICC under different input disturbances. A comparative study is presented to show the advantage of the decentralized design over the conventional centralized approach. The new consensus control design provides new possibilities to vibration control problems, where an effective, robust and synchronized suppression is needed.

  3. Structure and electronic parameters of a-Si:H deposited by DC-MASD

    SciTech Connect

    Golikova, O.A.; Kuznetsov, A.N.; Kudoyarova, V.K.; Kazanin, M.M.; Adriaenssens, G.J.; Herremans, H.

    1997-07-01

    A systematic study of structure and electronic parameters of a-Si:H deposited by dc-magnetron assisted SiH{sub 4} decomposition (MASD) depending on substrate temperature, gas pressure, gas flow and grid mounting has been carried out. Correlation between the film microstructure, dangling bond density and electron mobility-life time product were established. The photoconductivity changes under light soaking were shown to be minimal when the films contained hydrogen in the (SiH{sub 2}){sub n} chains.

  4. Parameter identification and synchronization for uncertain network group with different structures

    NASA Astrophysics Data System (ADS)

    Li, Chengren; Lü, Ling; Sun, Ying; Wang, Ying; Wang, Wenjun; Sun, Ao

    2016-09-01

    We design a novel synchronization technique to research the synchronization of network group constituted of uncertain networks with different structures. Based on Lyapunov theorem, the selection principles of the control inputs and the parameter identification laws of the networks are determined, and synchronization conditions of the network group are obtained. Some numerical simulations are provided to verify the correctness and effectiveness of the synchronization technique. We find that the network number, the number of network nodes and network connections indeed will not affect the stability of synchronization of network group.

  5. Morphological parameters of a Spitzer survey of stellar structure in galaxies

    SciTech Connect

    Holwerda, B. W.; Muñoz-Mateos, J.-C.; Sheth, K.; Kim, T.; Meidt, S.; Mizusawa, T.; Hinz, J. L.; Zaritsky, D.; Regan, M. W.; Gil de Paz, A.; Menéndez-Delmestre, K.; Seibert, M.; Ho, L. C.; Gadotti, D. A.; Erroz-Ferrer, S. E-mail: benne.holwerda@gmail.com [Instituto de Astrofísica de Canarias, Vía Láctea s and others

    2014-01-20

    The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), asymmetry (A), smoothness (S), the Gini index (G), the relative contribution of the brightest pixels to the second-order moment of the flux (M {sub 20}), ellipticity (E), and the Gini index of the second-order moment (G{sub M} ) have all been applied to morphologically classify galaxies at various wavelengths. Here, we present a catalog of these parameters for the Spitzer Survey of stellar structure in Galaxies, a volume-limited, near-infrared (NIR) imaging survey of nearby galaxies using the 3.6 and 4.5 μm channels of the Infrared Array Camera on board the Spitzer Space Telescope. Our goal is to provide a reference catalog of NIR quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies—those typically found on the Hubble tuning fork—lie in this parameter space and show that there is a tight relation between concentration (C {sub 82}) and M {sub 20} for normal galaxies. M {sub 20} can be used to classify galaxies into earlier and later types (i.e., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer NIR imaging. We find that four relations, based on the parameters A and S, G and M {sub 20}, G{sub M} , C, and M {sub 20}, respectively, select outliers in morphological parameter space, but each selects different subsets of galaxies. Two criteria (G{sub M} > 0.6, G > –0.115 × M {sub 20} + 0.384) seem most appropriate to identify possible mergers and the merger fraction in NIR surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on

  6. Influence of structural parameters on tunable photonic band gaps modulated by liquid crystals

    NASA Astrophysics Data System (ADS)

    Huang, Aiqin; Zheng, Jihong; Jiang, Yanmeng; Zhou, Zengjun; Tang, Pingyu; Zhuang, Songlin

    2011-10-01

    Tunable photonic crystals (PCs), which are infiltrated with nematic liquid crystals (LCs), tune photonic band gap (PBG) by rotating directors of LCs when applied with the external electrical field. Using the plane wave expansion method, we simulated the PBG structure of two-dimensional tunable PCs with a triangular lattice of circular column, square column and hexagon column, respectively. When PCs are composed of LCs and different substrate materials such as germanium (Ge) and silicon (Si), the influence of structural parameters including column shape and packing ration on PBG is discussed separately. Numerical simulations show that absolute PBG can't be found at any conditions, however large tuning range of polarized wave can be achieved by rotating directors of LCs. The simulation results provide theoretical guidance for the fabrication of field-sensitive polarizer with big tunable band range.

  7. An all fiber-optic multi-parameter structure health monitoring system.

    PubMed

    Hu, Chennan; Yu, Zhihao; Wang, Anbo

    2016-09-01

    In this work, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificial crack. The multiplexing capability of this system was also preliminarily demonstrated. PMID:27607635

  8. Uncertainty quantification of relative acoustic nonlinearity parameter of guided waves for damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Mao, Zhu; Todd, Michael D.; Su, Zhongqing; Qing, Xinlin

    2015-03-01

    Nonlinear guided waves have been studied extensively for the characterization of micro-damage in plate-like structures, such as early-stage fatigue and thermal degradation in metals. Meanwhile, an increasing number of studies have reported the use of nonlinear acoustic techniques for detection of impact damage, fatigue, and thermal fatigue in composite structures. Among these techniques, the (relative) acoustic nonlinearity parameter, extracted from acousto-ultrasonic waves based on second-harmonic generation, has been considered one of the most popular tools for quantifying the detection of nonlinearity in inspected structures. Considering the complex nature of nonlinearities involved in composite materials (even under healthy conditions), and operational/environmental variability and measurement noise, the calculation of the relative acoustic nonlinearity parameter (RANP) from experimental data may suffer from considerable uncertainties, which may impair the quality of damage detection. In this study, we aim to quantify the uncertainty of the magnitude of the RANP estimator in the context of impact damage identification in unidirectional carbon fiber laminates. First, the principles of nonlinear ultrasonics are revisited briefly. A general probability density function of the RANP is then obtained through numerical evaluation in a theoretical setting. Using piezoelectric wavers, continuous sine waves are generated in the sample. Steady-state responses are acquired and processed to produce histograms of the RANP estimates before and after the impact damage. These observed histograms are consistent with the predicted distributions, and examination of the distributions demonstrates the significance of uncertainty quantification when using the RANP for damage detection in composite structures.

  9. Design optimization of structural parameters for highly sensitive photonic crystal label-free biosensors.

    PubMed

    Ju, Jonghyun; Han, Yun-ah; Kim, Seok-min

    2013-01-01

    The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC) label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV), full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1) the PWV can be measured by the reflection peak measurement instruments, (2) the grating pitch and duty can be manufactured using conventional lithography systems, and (3) the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU-1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm. PMID:23470487

  10. Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters.

    PubMed

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2016-05-01

    This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L(-1), are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment. PMID:26820643

  11. Biomechanical and structural parameters of tendons in rats subjected to swimming exercise.

    PubMed

    Bezerra, M A; Santos de Lira, K D; Coutinho, M P G; de Mesquita, G N; Novaes, K A; da Silva, R T B; de Brito Nascimento, A K; Inácio Teixeira, M F H B; Moraes, S R A

    2013-12-01

    The aim of this study was to evaluate the effect of swimming exercise, without overloading, on the biomechanical parameters of the calcaneal tendon of rats. 27 male Wistar rats (70 days) were distributed randomly into 2 groups, Control Group (CG; n=15) with restricted movements inside the cage and Swimming Group (SG; n=12), subjected to exercise training in a tank with a water temperature of 30±1°C, for 1 h/day, 5 days/week for 8 weeks. All animals were kept in a reversed light/dark cycle of 12 h with access to food and water ad libitum. After that, they were anesthetized and had their calcaneus tendons collected from their left rear paws. The tendon was submitted to a mechanical test on a conventional test machine. From the stress vs. strain curve, the biomechanical data were analyzed. For the statistical analysis, the Student-T test was used (p<0.05). Of the variables examined, the maximum tension (p=0.009), maximum force (p=0.03), energy of deformation/tendon cross sectional area (p=0.017) and elastic modulus of the tendon (p=0.013) showed positive outcomes in SG. There was no difference in the other parameters. The results indicate that the swimming exercise training, without overloading, was an important stimulus for improving the biomechanical parameters and structural properties of the calcaneal tendon. PMID:23740340

  12. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra

    NASA Astrophysics Data System (ADS)

    Lazarakis, P.; Bug, M. U.; Gargioni, E.; Guatelli, S.; Rabus, H.; Rosenfeld, A. B.

    2012-03-01

    The concept of nanodosimetry is based on the assumption that initial damage to cells is related to the number of ionizations (the ionization cluster size) directly produced by single particles within, or in the close vicinity of, short segments of DNA. The ionization cluster-size distribution and other nanodosimetric quantities, however, are not directly measurable in biological targets and our current knowledge is mostly based on numerical simulations of particle tracks in water, calculating track structure parameters for nanometric target volumes. The assessment of nanodosimetric quantities derived from particle-track calculations using different Monte Carlo codes plays, therefore, an important role for a more accurate evaluation of the initial damage to cells and, as a consequence, of the biological effectiveness of ionizing radiation. The aim of this work is to assess the differences in the calculated nanodosimetric quantities obtained with Geant4-DNA as compared to those of the ad hoc particle-track Monte Carlo code ‘PTra’ developed at Physikalisch-Technische Bundesanstalt (PTB), Germany. The comparison of the two codes was made for incident electrons of energy in the range between 50 eV and 10 keV, for protons of energy between 300 keV and 10 MeV, and for alpha particles of energy between 1 and 10 MeV as these were the energy ranges available in both codes at the time this investigation was carried out. Good agreement was found for nanodosimetric characteristics of track structure calculated in the high-energy range of each particle type. For lower energies, significant differences were observed, most notably in the estimates of the biological effectiveness. The largest relative differences obtained were over 50%; however, generally the order of magnitude was between 10% and 20%.

  13. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.

    PubMed

    Lazarakis, P; Bug, M U; Gargioni, E; Guatelli, S; Rabus, H; Rosenfeld, A B

    2012-03-01

    The concept of nanodosimetry is based on the assumption that initial damage to cells is related to the number of ionizations (the ionization cluster size) directly produced by single particles within, or in the close vicinity of, short segments of DNA. The ionization cluster-size distribution and other nanodosimetric quantities, however, are not directly measurable in biological targets and our current knowledge is mostly based on numerical simulations of particle tracks in water, calculating track structure parameters for nanometric target volumes. The assessment of nanodosimetric quantities derived from particle-track calculations using different Monte Carlo codes plays, therefore, an important role for a more accurate evaluation of the initial damage to cells and, as a consequence, of the biological effectiveness of ionizing radiation. The aim of this work is to assess the differences in the calculated nanodosimetric quantities obtained with Geant4-DNA as compared to those of the ad hoc particle-track Monte Carlo code 'PTra' developed at Physikalisch-Technische Bundesanstalt (PTB), Germany. The comparison of the two codes was made for incident electrons of energy in the range between 50 eV and 10 keV, for protons of energy between 300 keV and 10 MeV, and for alpha particles of energy between 1 and 10 MeV as these were the energy ranges available in both codes at the time this investigation was carried out. Good agreement was found for nanodosimetric characteristics of track structure calculated in the high-energy range of each particle type. For lower energies, significant differences were observed, most notably in the estimates of the biological effectiveness. The largest relative differences obtained were over 50%; however, generally the order of magnitude was between 10% and 20%. PMID:22330641

  14. Structural Parameters Calibration for Binocular Stereo Vision Sensors Using a Double-Sphere Target.

    PubMed

    Wei, Zhenzhong; Zhao, Kai

    2016-01-01

    Structural parameter calibration for the binocular stereo vision sensor (BSVS) is an important guarantee for high-precision measurements. We propose a method to calibrate the structural parameters of BSVS based on a double-sphere target. The target, consisting of two identical spheres with a known fixed distance, is freely placed in different positions and orientations. Any three non-collinear sphere centres determine a spatial plane whose normal vector under the two camera-coordinate-frames is obtained by means of an intermediate parallel plane calculated by the image points of sphere centres and the depth-scale factors. Hence, the rotation matrix R is solved. The translation vector T is determined using a linear method derived from the epipolar geometry. Furthermore, R and T are refined by nonlinear optimization. We also provide theoretical analysis on the error propagation related to the positional deviation of the sphere image and an approach to mitigate its effect. Computer simulations are conducted to test the performance of the proposed method with respect to the image noise level, target placement times and the depth-scale factor. Experimental results on real data show that the accuracy of measurement is higher than 0.9‰, with a distance of 800 mm and a view field of 250 × 200 mm². PMID:27420063

  15. Model parameter extraction for obliquely propagating surface acoustic waves in infinitely long grating structures

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Chen, Jing; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we propose the use of the “longitudinal resonance condition” for the characterization of the two-dimensional propagation of surface acoustic waves (SAWs) in periodic grating structures, and also show a procedure for extracting parameters required in the behavior model from the full-wave analysis. The condition is given by β xp = π, where p is the grating period and β x is the wavenumber of the grating mode in the longitudinal direction (x). This is based on the fact that in conventional SAW resonators, acoustic resonances including transverse ones occur when β x is real but the longitudinal resonance condition is mostly satisfied. The longitudinal resonance condition is applied to a simple model, and the wavenumber β y in the lateral direction (y) is expressed as a simple function of the angular frequency ω. The full-wave analysis is applied for SAWs propagating in an infinite grating on a 128°YX-LiNbO3 substrate, and the anisotropy parameter γ is extracted by the fitting with the derived equation. The fitted result agrees well with the original numerical result. It is also indicated that γ estimated by this technique is significantly different from the value estimated without taking the effects of the grating structure into account.

  16. Poisson Parameters of Antimicrobial Activity: A Quantitative Structure-Activity Approach

    PubMed Central

    Sestraş, Radu E.; Jäntschi, Lorentz; Bolboacă, Sorana D.

    2012-01-01

    A contingency of observed antimicrobial activities measured for several compounds vs. a series of bacteria was analyzed. A factor analysis revealed the existence of a certain probability distribution function of the antimicrobial activity. A quantitative structure-activity relationship analysis for the overall antimicrobial ability was conducted using the population statistics associated with identified probability distribution function. The antimicrobial activity proved to follow the Poisson distribution if just one factor varies (such as chemical compound or bacteria). The Poisson parameter estimating antimicrobial effect, giving both mean and variance of the antimicrobial activity, was used to develop structure-activity models describing the effect of compounds on bacteria and fungi species. Two approaches were employed to obtain the models, and for every approach, a model was selected, further investigated and found to be statistically significant. The best predictive model for antimicrobial effect on bacteria and fungi species was identified using graphical representation of observed vs. calculated values as well as several predictive power parameters. PMID:22606039

  17. Structural Parameters of M81 Globular Clusters: Analysis of their Intensity Profile

    NASA Astrophysics Data System (ADS)

    Santiago-Cortés, M.; Mayya, Y. D.; Rosa-González, D.

    2014-09-01

    We present here an analysis of the surface brightness profiles on the Hubble Space Telescope (HST) F435W and F814W images for 110 Globular Clusters (GCs) in M81. The structural parameters for each of these clusters were obtained by fitting a King model to the observed profiles. The profiles are well-fitted by the King model in the majority of the GCs. We used these structural parameters to classify the GCs based on their halo and core properties. Based on the physical extent of the halo, measured as the isophotal radius at μ_I = 24 mag/arcsec^2 , we divided the clusters into two groups — compact and classical. By analyzing the core properties, we found 7 cuspy clusters, with properties similar to the cuspy clusters found in the Milky Way. In addition, we found 2 clusters that have a blue excess in the core, similar to the brightest GC in M81. We show that all clusters at galactocentric distance less than 4 kpc are tidally limited in M81.

  18. Test-retest variability in structural parameters measured with glaucoma imaging devices.

    PubMed

    Araie, Makoto

    2013-01-01

    In addition to classical stereo-disc photography, various glaucoma imaging devices were developed in the last two decades to quantitatively measure and record glaucoma-related structural parameters of the eye. In determining whether or not the glaucomatous damage progressed from baseline and in estimating the number of test results' optimal frequency needed to confirm disease progression, information relating to the test-retest variability of measurement results provided by each imaging device is indispensable. Such information enables the clinician to apply these devices in practice. The test-retest variability of a system is usually estimated using the Bland-Altman analysis and by calculating the coefficient of variation (CV), intraclass correlation coefficient (ICC), and minimum detectable changes (MDC). The reported CV, ICC, and MDC values for glaucoma-related structural parameter measurement results of stereo-disc photographs, confocal scanning laser ophthalmoscopes, scanning laser polarimeters, time-domain optical coherence tomography (OCT), spectral-domain OCT (SD-OCT), anterior-segment OCT, and ultrasound biomicroscope are systematically reviewed in this manuscript, which will enable the clinician to interpret measurement results provided by each glaucoma imaging devices and thus be useful in practice. Although SD-OCT systems may be currently prevailing because of the volume of information provided and the relatively better test-retest variability, these systems need improvement in their test-retest variability measurement capabilities. PMID:23138681

  19. Structural Parameters Calibration for Binocular Stereo Vision Sensors Using a Double-Sphere Target

    PubMed Central

    Wei, Zhenzhong; Zhao, Kai

    2016-01-01

    Structural parameter calibration for the binocular stereo vision sensor (BSVS) is an important guarantee for high-precision measurements. We propose a method to calibrate the structural parameters of BSVS based on a double-sphere target. The target, consisting of two identical spheres with a known fixed distance, is freely placed in different positions and orientations. Any three non-collinear sphere centres determine a spatial plane whose normal vector under the two camera-coordinate-frames is obtained by means of an intermediate parallel plane calculated by the image points of sphere centres and the depth-scale factors. Hence, the rotation matrix R is solved. The translation vector T is determined using a linear method derived from the epipolar geometry. Furthermore, R and T are refined by nonlinear optimization. We also provide theoretical analysis on the error propagation related to the positional deviation of the sphere image and an approach to mitigate its effect. Computer simulations are conducted to test the performance of the proposed method with respect to the image noise level, target placement times and the depth-scale factor. Experimental results on real data show that the accuracy of measurement is higher than 0.9‰, with a distance of 800 mm and a view field of 250 × 200 mm2. PMID:27420063

  20. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  1. The fungal community structure of barley malts from diverse geographical regions correlates with malt quality parameters.

    PubMed

    Kaur, Mandeep; Bowman, John P; Stewart, Doug C; Evans, David E

    2015-12-23

    Malt is a preferred base for fermentations that produce beer or whisky. Barley for malt is grown under diverse environments in different geographical locations. Malt provides an ecological niche for a varied range of microorganisms with both positive and negative effects on its quality for brewing. Little information exists in the literature on the microbial community structure of Australian malt as well as broader global geographical differences in the associated fungal and bacterial communities. The aims of the present study were to compare the bacterial and fungal community structures of Australian commercial malt with its international counterparts originating from different geographical regions using terminal restriction fragment length polymorphism (TRFLP) fingerprinting and clone library analyses of ribosomal RNA genes. Further, the relationship between malt associated microbial communities and conventional malt quality parameters was also compared. Results showed that differences in fungal communities of malts from different geographical location were more pronounced than bacterial communities. TRFLP analysis discriminated high quality commercial malts with low fungal loads from malts deliberately infected with fungal inocula (Fusarium/Penicillium). Malt moisture, beta-amylase, α-amylase and limit dextrinase contents showed significant correlations with fungal community structure. This investigation concluded that fungal community structure was more important to subsequent malt quality outcomes than bacteria. PMID:26340674

  2. Effect of chemical fixatives on accurate preservation of Escherichia coli and Bacillus subtilis structure in cells prepared by freeze-substitution

    SciTech Connect

    Graham, L.L.; Beveridge, T.J. )

    1990-04-01

    Five chemical fixatives were evaluated for their ability to accurately preserve bacterial ultrastructure during freeze-substitution of select Escherichia coli and Bacillus subtilis strains. Radioisotopes were specifically incorporated into the peptidoglycan, lipopolysaccharide, and nucleic acids of E. coli SFK11 and W7 and into the peptidoglycan and RNA of B. subtilis 168 and W23. The ease of extraction of radiolabels, as assessed by liquid scintillation counting during all stages of processing for freeze-substitution, was used as an indicator of cell structural integrity and retention of cellular chemical composition. Subsequent visual examination by electron microscopy was used to confirm ultrastructural conformation. The fixatives used were: 2% (wt/vol) osmium tetroxide and 2% (wt/vol) uranyl acetate; 2% (vol/vol) glutaraldehyde and 2% (wt/vol) uranyl acetate; 2% (vol/vol) acrolein and 2% (wt/vol) uranyl acetate; 2% (wt/vol) gallic acid; and 2% (wt/vol) uranyl acetate. All fixatives were prepared in a substitution solvent of anhydrous acetone. Extraction of cellular constituents depended on the chemical fixative used. A combination of 2% osmium tetroxide-2% uranyl acetate or 2% gallic acid alone resulted in optimum fixation as ascertained by least extraction of radiolabels. In both gram-positive and gram-negative organisms, high levels of radiolabel were detected in the processing fluids in which 2% acrolein-2% uranyl acetate, 2% glutaraldehyde-2% uranyl acetate, or 2% uranyl acetate alone were used as fixatives. Ultrastructural variations were observed in cells freeze-substituted in the presence of different chemical fixatives. We recommend the use of osmium tetroxide and uranyl acetate in acetone for routine freeze-substitution of eubacteria, while gallic acid is recommended for use when microanalytical processing necessitates the omission of osmium.

  3. STAR COUNT DENSITY PROFILES AND STRUCTURAL PARAMETERS OF 26 GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Miocchi, P.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Pallanca, C.; Sanna, N.; Pasquato, M.; Beccari, G.

    2013-09-10

    We used an appropriate combination of high-resolution Hubble Space Telescope observations and wide-field, ground-based data to derive the radial stellar density profiles of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system, a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This collection of data represents the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13, and M62 is not confirmed; (2) the majority of clusters in our sample are fit equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distance; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at {approx}0.3 for about 80% of the clusters and a secondary peak at {approx}0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with that expected from simulations of cluster dynamical evolution and the ratio between these two radii correlates well with an empirical dynamical-age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.

  4. Microwave, r0 Structural Parameters, Conformational Stability, and Vibrational Assignment of (Chloromethyl)fluorosilane.

    PubMed

    Guirgis, Gamil A; Sawant, Dattatray K; Brenner, Reid E; Deodhar, Bhushan S; Seifert, Nathan A; Geboes, Yannick; Pate, Brooks H; Herrebout, Wouter A; Hickman, Daniel V; Durig, James R

    2015-11-25

    The FT-microwave spectrum (6.5-26 GHz) of (chloromethyl)fluorosilane (ClCH2-SiH2F) has been recorded and 250 transitions for the parent species along with (13)C, (37)Cl, (29)Si, and (30)Si isotopologues have been assigned for trans conformer. Infrared spectra (3100 to 400 cm(-1)) of gas, solid, and the variable temperature (-100 to -60 °C) studies of the infrared spectra of the sample dissolved in xenon have been recorded. Additionally, the variable temperature (-153 to -133 °C) studies of the Raman spectra of the sample dissolved in krypton have been recorded. The enthalpy difference between the trans and gauche conformers in xenon solutions has been determined to be 109 ± 15 cm(-1) (1.47 ± 0.16 kJ mol(-1)), and in krypton solution, the enthalpy difference has been determined to be 97 ± 16 cm(-1) (1.16 ± 0.19 kJ mol(-1)) with the trans conformer as the more stable form. Approximately 46 ± 2% of the trans form is present at ambient temperature. By utilizing the microwave rotational constants of five isotopologues for trans and the structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, adjusted r0 parameters have been obtained for trans conformer. The r0 structural parameter values for the trans form are for the heavy atom distances (Å): Si-F = 1.608 (3); C-Cl = 1.771 (3); Si-C = 1.884 (3); and angles (deg): ∠FSiC = 108.9 (5); ∠ClCSi = 104.9 (5). The results are discussed and compared to some related molecules. PMID:26436757

  5. Parameters of turbulent structures at the periphery of the FT-2 tokamak

    SciTech Connect

    Shatalin, S. V.; Vekshina, E. O.; Vicente, J.; Vazhnov, P. V.; Esipov, L. A.; Lashkul, S. I.; Sidorov, A. V.

    2011-05-15

    Results are presented from probe measurements carried out in the scrape-off layer of the FT-2 tokamak in the course of additional lower hybrid heating, during which an L-H transition was observed. The objective of this study was to obtain information on the parameters of blobs-turbulent structures with enhanced plasma density. The measurements were performed not only on the low-field side of the torus, but also on the high-field side, which is still poorly studied. Coherent structures with radial velocities directed both toward the vessel wall and into the plasma column were revealed at the tokamak periphery. Blobs propagating toward the vessel wall were found to prevail both before and after the L-H transition. The average radial velocity of blobs in the L- and H-modes was determined experimentally. The dependence of the radial blob velocity on the transverse size and density of the structure agrees with the ballooning mode model. It is found that the average value of the poloidal blob velocity is four to five times higher than the average radial velocity. The results of measurements carried out on both sides of the torus indicate the presence of internal poloidal polarization of blobs. The average drift velocity of such polarized structures is directed toward the vessel wall. The L-H transition is accompanied by a reduction in the radial velocity. At the same time, the average plasma density inside the structures observed on the low-field side increases appreciably during the transition. The obtained dependences of the radial blob velocity on the plasma density inside the structure generally agree with predictions of the ballooning mode model.

  6. Uncertainty calculation for modal parameters used with stochastic subspace identification: an application to a bridge structure

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Ting; Loh, Chin-Hsiung; Chao, Shu-Hsien

    2015-03-01

    Stochastic subspace identification method (SSI) has been proven to be an efficient algorithm for the identification of liner-time-invariant system using multivariate measurements. Generally, the estimated modal parameters through SSI may be afflicted with statistical uncertainty, e.g. undefined measurement noises, non-stationary excitation, finite number of data samples etc. Therefore, the identified results are subjected to variance errors. Accordingly, the concept of the stabilization diagram can help users to identify the correct model, i.e. through removing the spurious modes. Modal parameters are estimated at successive model orders where the physical modes of the system are extracted and separated from the spurious modes. Besides, an uncertainty computation scheme was derived for the calculation of uncertainty bounds for modal parameters at some given model order. The uncertainty bounds of damping ratios are particularly interesting, as the estimation of damping ratios are difficult to obtain. In this paper, an automated stochastic subspace identification algorithm is addressed. First, the identification of modal parameters through covariance-driven stochastic subspace identification from the output-only measurements is used for discussion. A systematic way of investigation on the criteria for the stabilization diagram is presented. Secondly, an automated algorithm of post-processing on stabilization diagram is demonstrated. Finally, the computation of uncertainty bounds for each mode with all model order in the stabilization diagram is utilized to determine system natural frequencies and damping ratios. Demonstration of this study on the system identification of a three-span steel bridge under operation condition is presented. It is shown that the proposed new operation procedure for the automated covariance-driven stochastic subspace identification can enhance the robustness and reliability in structural health monitoring.

  7. Accurate Crystal Structure Refinement of La{sub 3}Ta{sub 0.25}Zr{sub 0.50}Ga{sub 5.25}O{sub 14}

    SciTech Connect

    Dudka, A. P.; Chitra, R.; Choudhury, R. R.; Pisarevsky, Yu. V.; Simonov, V. I.

    2010-11-15

    An accurate X-ray diffraction study of a La{sub 3}Ta{sub 0.25}Zr{sub 0.50}Ga{sub 5.25}O{sub 14} single crystal (a = 8.2574(4) A, c = 5.1465(4) A, sp. gr. P321, Z = 1, R/R{sub w} = 0.62/0.57% for 4144 unique reflections and 91 parameters) has been performed with a simultaneous neutron diffraction analysis. Tantalum, zirconium, and gallium atoms are found to occupy the mixed octahedral position (symmetry 32). Gallium atoms and a few zirconium atoms are in the position on axis 2 in the tetrahedron. The tetrahedral position on axis 3 is completely occupied by gallium atoms, while the large polyhedron on axis 2 is occupied by lanthanum atoms. The high resolution and averaging of the results obtained in two independent X-ray experiments with the same sample provided accu- rate structural data, in particular, on the anharmonicity of thermal atomic vibrations (atomic displacements). The X-ray and neutron diffraction data on the atomic displacements are compared.

  8. A model-based, Bayesian characterization of subsurface corrosion parameters in composite multi-layered structures

    NASA Astrophysics Data System (ADS)

    Reed, Heather; Hoppe, Wally

    2016-02-01

    Thermographic NDE approaches to detect subsurface corrosion defects of multi-layered structures with composite top layers have proven difficult due to the fact that the thermal conductivity of composite materials is larger in lateral directions (the plane parallel to the surface) than in the through-thickness directions. This causes heat to dissipate faster laterally than through the thickness when a heat source is applied to the surface of the structure, making it difficult for subsurface damage effects to manifest on the surface, where the heat source and inspection typically occur. To address this, a heat induction approach is presented that excites the damaged, metallic bottom layer directly by Joule heating, resulting in more observable damage effects on the surface than what could be expected for traditional thermographic methods on this type of structure. To characterize the subsurface damage parameters (defect location, diameter, and depth), Bayesian inversion of numerically-simulated noisy data, using a high-fidelity, coupled electromagnetic-heat transfer model is employed. Stochastic estimation methods such as Markov chain Monte Carlo (MCMC) allow for quantification of uncertainty surrounding the damage parameters, which is important as this directly translates into uncertainty surrounding the component reliability. However, because thousands of high-fidelity finite element models are computationally costly to evaluate, as is typical in most MCMC methods, the use of Bayesian inversion is rarely feasible in real-time. To address this, a projection-based reduced order modeling (ROM) tracking and interpolation scheme is formulated within the MCMC sampling method for the multi-physics problem, resulting in significant speedup of solution time with little loss of accuracy, enabling near-real time stochastic estimation of damage.

  9. Calculation of the geometrical three-point parameter constant appearing in the second order accurate effective medium theory expression for the B-term diffusion coefficient in fully porous and porous-shell random sphere packings.

    PubMed

    Deridder, Sander; Desmet, Gert

    2012-02-01

    Using computational fluid dynamics (CFD), the effective B-term diffusion constant γ(eff) has been calculated for four different random sphere packings with different particle size distributions and packing geometries. Both fully porous and porous-shell sphere packings are considered. The obtained γ(eff)-values have subsequently been used to determine the value of the three-point geometrical constant (ζ₂) appearing in the 2nd-order accurate effective medium theory expression for γ(eff). It was found that, whereas the 1st-order accurate effective medium theory expression is accurate to within 5% over most part of the retention factor range, the 2nd-order accurate expression is accurate to within 1% when calculated with the best-fit ζ₂-value. Depending on the exact microscopic geometry, the best-fit ζ₂-values typically lie in the range of 0.20-0.30, holding over the entire range of intra-particle diffusion coefficients typically encountered for small molecules (0.1 ≤ D(pz)/D(m) ≤ 0.5). These values are in agreement with the ζ₂-value proposed by Thovert et al. for the random packing they considered. PMID:22236565

  10. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.

    PubMed

    Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas

    2013-01-01

    Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments. PMID:23974151

  11. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    PubMed

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. PMID:27612711

  12. Identification of Capacitive MEMS Accelerometer Structure Parameters for Human Body Dynamics Measurements

    PubMed Central

    Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas

    2013-01-01

    Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments. PMID:23974151

  13. Validation of refractive index structure parameter estimation for certain infrared bands.

    PubMed

    Sivaslıgil, Mustafa; Erol, Cemil Berin; Polat, Özgür Murat; Sarı, Hüseyin

    2013-05-10

    Variation of the atmospheric refraction index due to turbulent fluctuations is one of the key factors that affect the performance of electro-optical and infrared systems and sensors. Therefore, any prior knowledge about the degree of variation in the refractive index is critical in the success of field studies such as search and rescue missions, military applications, and remote sensing studies where these systems are used frequently. There are many studies in the literature in which the optical turbulence effects are modeled by estimation of the refractive index structure parameter, C(n)(2), from meteorological data for all levels of the atmosphere. This paper presents a modified approach for bulk-method-based C(n)(2) estimation. According to this approach, conventional wind speed, humidity, and temperature values above the surface by at least two levels are used as input data for Monin-Obukhov similarity theory in the estimation of similarity scaling constants with a finite difference approximation and a bulk-method-based C(n)(2) estimation. Compared with the bulk method, this approach provides the potential for using more than two levels of standard meteorological data, application of the scintillation effects of estimated C(n)(2) on the images, and a much simpler solution than traditional ones due to elimination of the roughness parameters, which are difficult to obtain and which increase the complexity, the execution time, and the number of additional input parameters of the algorithm. As a result of these studies, Atmospheric Turbulence Model Software is developed and the results are validated in comparison to the C(n)(2) model presented by Tunick. PMID:23669824

  14. Relationship of Volumetric Bone Mineral Density and Structural Parameters with ERα Gene Polymorphisms

    PubMed Central

    Cepollaro, C.; Lauretani, F.; Gozzini, A.; Masi, L.; Falchetti, A.; Monte, F.; Carbonell-Sala, S.; Tanini, A.; Corsi, A.M.; Bandinelli, S.; Ferrucci, L.; Brandi, M.L.

    2009-01-01

    Bone mineral density (BMD) contributes to bone strength, and methods for clinical assessment of bone quality characteristics beyond what can be gathered by BMD are awaited. Peripheral quantitative computed tomography (pQCT) allows for separate assessments of cortical and trabecular bone, providing information on bone geometry. Previous studies examining the relationship between estrogen receptor α (ERα) gene polymorphisms and BMD have been performed in large populations. However, only limited information is available on the possible segregation of ERα gene polymorphisms with bone structural properties. The aim of our study was to evaluate the association of XbaI and PvuII ERα gene polymorphisms with QCT parameters. We studied 900 subjects (541 women, 449 men) participating to the InCHIANTI study. By tibial pQCT we evaluated trabecular volumetric BMD, cortical volumetric BMD, cortical bone area, and cortical thickness (CtTh). Subjects were genotyped for ERα gene PvuII and XbaI polymorphisms. Analysis of variance was used for statistical analysis. Male subjects with PP and XX genotypes had higher geometric parameters, and female subjects with XX and PP genotypes showed higher densitometric parameters than other genotypes; however, the differences did not reach statistical significance. After adjustment for potential confounders, we found a significant (P = 0.002) CtTh difference across PvuII polymorphism in male subjects, with higher CtTh values in PP genotypes with respect to Pp and pp genotypes. These results show a relationship between the presence of the P allele and higher values of CtTh in male subjects, indicating for ERα a role in the control of tibial bone geometry. PMID:17505773

  15. Impact factors and the optimal parameter of acoustic structure quantification in the assessment of liver fibrosis.

    PubMed

    Huang, Yang; Liu, Guang-Jian; Liao, Bing; Huang, Guang-Liang; Liang, Jin-Yu; Zhou, Lu-Yao; Wang, Fen; Li, Wei; Xie, Xiao-Yan; Wang, Wei; Lu, Ming-De

    2015-09-01

    The aims of the present study are to assess the impact factors on acoustic structure quantification (ASQ) ultrasound and find the optimal parameter for the assessment of liver fibrosis. Twenty healthy volunteers underwent ASQ examinations to evaluate impact factors in ASQ image acquisition and analysis. An additional 113 patients with liver diseases underwent standardized ASQ examinations, and the results were compared with histologic staging of liver fibrosis. We found that the right liver displayed lower values of ASQ parameters than the left (p = 0.000-0.021). Receive gain experienced no significant impact except gain 70 (p = 0.193-1.000). With regard to different diameter of involved vessels in regions of interest, the group ≤2.0 mm differed significantly with the group 2.1-5.0 mm (p = 0.000-0.033) and the group >5.0 mm (p = 0.000-0.062). However, the region of interest size (p = 0.438-1.000) and depth (p = 0.072-0.764) had no statistical impact. Good intra- and inter-operator reproducibilities were found in both image acquisitions and offline image analyses. In the liver fibrosis study, the focal disturbance ratio had the highest correlation with histologic fibrosis stage (r = 0.67, p < 0.001). In conclusion, the testing position, receive gain and involved vessels were the main factors in ASQ examinations and focal disturbance ratio was the optimal parameter in the assessment of liver fibrosis. PMID:26055966

  16. Fabrication and parameters calculation of room temperature terahertz detector with micro-bridge structure

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Weizhi; Gou, Jun; Wu, Zhiming; Jiang, Yadong

    2015-01-01

    Room temperature terahertz (THz) detector indicates great potentials in imaging application because of real-time, compact bulk and unique spectral characteristics. Different dimension THz detectors based on micro-bridge structure were designed and simulated to get optimizing microbolometer parameters from the simulation results of membrane temperature changing and THz absorption. Those microbolometers were fabricated with complex semiconductor process and three dimension deformations of micro-bridges were obtained by laser scanning confocal microscope to identify the focal plane array micro-bridge design. The noise equivalent power of THz detector achieves 123 pW/Hz1/2 and average response time of the detector is 6.7 ms, which is suitable for the application of active THz imaging.

  17. Soil air CO2 concentration as an integrative parameter of soil structure

    NASA Astrophysics Data System (ADS)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  18. Synoptic classification and horizontal homogeneity of the refractive index structure function parameter in the surface layer

    NASA Astrophysics Data System (ADS)

    Boyle, P. J.; Davidson, K. L.

    1984-02-01

    This is a two part report. The first part describes an investigation of the feasibility of using the synoptic scale classification scheme described in the Refractive Effects Guidebook (REG) to predict the level of optical turbulence in the surface layer as measured by C sub n squared, the refractive index structure function parameter. Data were examined from nine experiments which took place in the north Pacific and north Atlantic. The measurement experiments spanned five years and included all four seasons. The REG appears to be useful in a limited way in predicting ranges of C sub n squared in the surface layer. Inclusion of local factors would increase predictability. The second part deals with horizontal homogeneity of the surface layer C sub n squared as measured during the JASIN experiment in the North Atlantic in 1978. Periods of homogeneity lasting between one and two days were encountered along 200 km sectors and for up to nine hours over the entire JASIN experimental area.

  19. Characteristic Structural Parameters for the γ-Peptide 14-Helix:Importance of Subunit Preorganization

    PubMed Central

    Guo, Li; Zhang, Weicheng; Reidenbach, Andrew G.; Giuliano, Michael W.; Guzei, Ilia A.; Spenser, Lara C.; Gellman, Samuel H.

    2012-01-01

    We report crystallographic data for a set of homologous γ-peptides that contain a Boc-protected residue derived from the flexible gabapentin monomer at the N-terminus and cyclically constrained γ-residues at all other positions. The crystallized γ-peptides range in length from 3 to 7 residues. Previously only one atomic-resolution structure had been available for a short γ-peptide 14-helix. The new data provided here allow derivation of characteristic parameters for the γ-peptide 14-helix, and establish guidelines for characterizing 14-helical folding in solution via 2D NMR. In addition, the results suggest that the substitution pattern of a γ-residue has a profound effect on the propensity for 14-helical folding. PMID:21567680

  20. Robust H infinity control design for the space station with structured parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Geller, David; Sunkel, John

    1992-01-01

    A robust H-infinity control design methodology and its application to a Space Station attitude and momentum control problem are presented. This new approach incorporates nonlinear multi-parameter variations in the state-space formulation of H-infinity control theory. An application of this robust H-infinity control synthesis technique to the Space Station control problem yields a remarkable result in stability robustness with respect to the moments-of-inertia variation of about 73% in one of the structured uncertainty directions. The performance and stability of this new robust H-infinity controller for the Space Station are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique.

  1. Electronic-Structure Theory of Organic Semiconductors: Charge-Transport Parameters and Metal/Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Coropceanu, Veaceslav; Li, Hong; Winget, Paul; Zhu, Lingyun; Brédas, Jean-Luc

    2013-07-01

    We focus this review on the theoretical description, at the density functional theory level, of two key processes that are common to electronic devices based on organic semiconductors (such as organic light-emitting diodes, field-effect transistors, and solar cells), namely charge transport and charge injection from electrodes. By using representative examples of current interest, our main goal is to introduce some of the reliable theoretical methodologies that can best depict these processes. We first discuss the evaluation of the microscopic parameters that determine charge-carrier transport in organic molecular crystals, i.e., electronic couplings and electron-vibration couplings. We then examine the electronic structure at interfaces between an organic layer and a metal or conducting oxide electrode, with an emphasis on the work-function modifications induced by the organic layer and on the interfacial energy-level alignments.

  2. Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem

    NASA Astrophysics Data System (ADS)

    Chukov, S. N.; Golubkov, M. S.; Ryumin, A. G.

    2010-11-01

    It is shown that some structural-functional parameters of humic acids from the surface (0-5 cm) layer of a typical chernozem differ from those in a deeper (5-20 cm) layer. The Cha-to-Cfa ratio in the surface layer is by 1.7 times lower, and the concentration of free radicals is by almost an order of magnitude lower than that in the layer of 5-20 cm. The stimulating effect of humic acids from the surface layer on the processes of photosynthesis is sharply retarded, whereas their effect on respiration of Chlorella vulgaris is more pronounced. Humic acids from the deeper layer of chernozem have a much stronger stimulating effect on photosynthesis and a very weak stimulating effect of respiration. The concentration of free radicals in humic acids and the activity of physiological processes of photosynthesis in Chlorella vulgaris display a tight correlative relationship.

  3. Elements of an algorithm for optimizing a parameter-structural neural network

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  4. Structural Parameters for Globular Clusters in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ma, Jun

    2012-06-01

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy Eb with mass M mod indicates that the "fundamental plane" does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  5. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Wang Song; Ma Jun

    2012-06-15

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy E{sub b} with mass M{sub mod} indicates that the 'fundamental plane' does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  6. VizieR Online Data Catalog: Structural parameters of galaxies in CANDELS (van der Wel+, 2012)

    NASA Astrophysics Data System (ADS)

    van der Wel, A.; Bell, E. F.; Haussler, B.; McGrath, E. J.; Chang, Y.-Y.; Guo, Y.; McIntosh, D. H.; Rix, H.-W.; Barden, M.; Cheung, E.; Faber, S. M.; Ferguson, H. C.; Galametz, A.; Grogin, N. A.; Hartley, W.; Kartaltepe, J. S.; Kocevski, D. D.; Koekemoer, A. M.; Lotz, J.; Mozena, M.; Peth, M. A.; Peng, C. Y.

    2012-11-01

    In this paper we describe the measurements of structural parameters of 109533 unique objects in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) WFC3/IR data, representing roughly 2/3 of the full survey. Our online materials will be updated with the final 1/3 of the survey once observations have been completed by the end of 2013. A full description of the CANDELS observing program is given by Grogin et al. (2011ApJS..197...35G) and Koekemoer et al. (2011ApJS..197...36K). CANDELS is a WFC3 and parallel ACS, 902 orbit HST imaging survey; here we concentrate on the WFC3 data only, which cover 800arcmin2 and are distributed over five widely separated fields (GOODS-S, GOODS-N, COSMOS, UDS and EGS). In table 1, structural parameters for three fields are summarized, namely, the UDS field (Lawrence et al. 2007MNRAS.379.1599L - see Cat. II/314), the Cosmological Evolution Survey field (COSMOS; Scoville et al. 2007ApJS..172....1S - see Cat. II/284) (both 9'x24' and each at "wide" depth), and the GOODS-South field (GOODS-S; Giavalisco et al. 2004, Cat. II/261); "wide" is over 4'x10' and "deep" is over 7'x10'. The CANDELS observations are augmented by previously obtained WFC3/IR data from the ERS program (Windhorst et al. 2011ApJS..193...27W) in the northern part of the GOODS-S field (4'x9' at a 2 orbit depth in F098M, F125W, and F160W) and the UDF program (Bouwens et al. 2010ApJ...709L.133B) embedded in the GOODS-S deep area (1 pointing with ~15 orbits in F105W and F125W, and 28 orbits in F160W). (2 data files).

  7. The atmosphere structure of coronal hole and solar wind parameters connection

    NASA Astrophysics Data System (ADS)

    Prosovetsky, Dmitry; Myagkova, Irina

    The problem of high-speed solar wind acceleration and the dependence of its parameters on atmosphere structure of coronal holes at different altitudes is one of the key problems in modern solar physics. UV and microwave observations may be useful for investigations in this direction. We have analyzed the results of measurements on board spacecrafts SOHO and ACE, and also the observation data in a microwave range obtained by radio heliographs of Nobeyama, SSR and Nancy, magnetic field measurements in an observatory the Kit Peak. The dependence of solar wind speed from magnetic flux at low levels of solar atmosphere was confirmed. However such dependence at coronal level was not founded. We notice this fact doesn't allow performing forecasting solar wind parameters from super-radial divergence of magnetic field lines. The strong dependence of solar wind speed from the flux of microwave emission has been founded for 17 GHz, 5.7 GHz and 327 MHz which correspond to altitudes from the top chro-mosphere to coronal heights. However such dependence is absent for frequency 150.9 MHz at high coronal levels. We assume this fact connected with the presence of two solar wind acceleration mechanisms from coronal holes of the middle and top corona. The observations of scintillation in the radio emissions of a solar corona for a high-speed and slow solar wind confirm this assumption. Geomagnetic disturbances depending on coronal hole structure at different altitudes of solar atmosphere were studied. The obtained results specify that high-latitude magnetic disturbances depend on relation of magnetic field vector component in coronal holes. During investigated time period the most powerful high latitude magnetic disturbances (Kp and AE) were observed when the southern magnetic field component dominates inside coronal holes at cromospheric altitudes.

  8. Accuracy in Parameter Estimation for Targeted Effects in Structural Equation Modeling: Sample Size Planning for Narrow Confidence Intervals

    ERIC Educational Resources Information Center

    Lai, Keke; Kelley, Ken

    2011-01-01

    In addition to evaluating a structural equation model (SEM) as a whole, often the model parameters are of interest and confidence intervals for those parameters are formed. Given a model with a good overall fit, it is entirely possible for the targeted effects of interest to have very wide confidence intervals, thus giving little information about…

  9. Sting_RDB: a relational database of structural parameters for protein analysis with support for data warehousing and data mining.

    PubMed

    Oliveira, S R M; Almeida, G V; Souza, K R R; Rodrigues, D N; Kuser-Falcão, P R; Yamagishi, M E B; Santos, E H; Vieira, F D; Jardine, J G; Neshich, G

    2007-01-01

    An effective strategy for managing protein databases is to provide mechanisms to transform raw data into consistent, accurate and reliable information. Such mechanisms will greatly reduce operational inefficiencies and improve one's ability to better handle scientific objectives and interpret the research results. To achieve this challenging goal for the STING project, we introduce Sting_RDB, a relational database of structural parameters for protein analysis with support for data warehousing and data mining. In this article, we highlight the main features of Sting_RDB and show how a user can explore it for efficient and biologically relevant queries. Considering its importance for molecular biologists, effort has been made to advance Sting_RDB toward data quality assessment. To the best of our knowledge, Sting_RDB is one of the most comprehensive data repositories for protein analysis, now also capable of providing its users with a data quality indicator. This paper differs from our previous study in many aspects. First, we introduce Sting_RDB, a relational database with mechanisms for efficient and relevant queries using SQL. Sting_rdb evolved from the earlier, text (flat file)-based database, in which data consistency and integrity was not guaranteed. Second, we provide support for data warehousing and mining. Third, the data quality indicator was introduced. Finally and probably most importantly, complex queries that could not be posed on a text-based database, are now easily implemented. Further details are accessible at the Sting_RDB demo web page: http://www.cbi.cnptia.embrapa.br/StingRDB. PMID:18058712

  10. Infrared and Raman spectra, r0 structural parameters, conformational stability, and vibrational assignment of 2-cyanoethylamine

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Darkhalil, Ikhlas D.; Klaassen, Joshua J.

    2012-09-01

    The infrared spectra (4000-200 cm-1) of the gas and solid and the Raman spectrum (4000-40 cm-1) of the liquid have been recorded. Vibrational fundamentals have been identified for four of the possible five stable conformers and complete vibrational assignments have been made for the Gg and Gt forms where the Capital G is for Gauche for the orientation around the Csbnd C bond and the lower cases g and t for gauche and trans orientation for the amine. These forms are the two lowest energy conformers. Vibrational assignments have been supported by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force constants, fundamental frequencies, infrared intensities, Raman activities, and depolarization ratios. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. The enthalpy differences between the Gg and Gt conformers was determined to be 75 cm-1 and for the Gg to Tg form 333 cm-1. The r0 structural parameters have been obtained for the two most stable conformers from predicted parameters from ab initio MP2(full)/6-311+G(d,p) calculations adjusted to fit the previously reported microwave rotational constants. The determined heavy atom structural values for the Gg [Gt] conformer are: the distances (Å) N1sbnd C2 = 1.461(3) [1.453(3)], C2sbnd C3 = 1.535(3) [1.545(3)], C3sbnd C4 = 1.466(3) [1.463(3)], C4tbnd N5 = 1.161(3) [1.161(3)] and angles (°) ∠N1C2C3 = 109.5(5) [116.0(5)], ∠C2C3C4 = 111.1(5) [111.1(5)], ∠C3C4N5 = 177.4(5) [177.0(5)]. These parameters are compared to those estimated from the microwave study. The results are discussed and compared to the corresponding properties of some similar molecules.

  11. Correlation between Parameters of Calcaneal Quantitative Ultrasound and Hip Structural Analysis in Osteoporotic Fracture Patients

    PubMed Central

    Zheng, Hailiang; Li, Ming; Yin, Pengbin; Peng, Ye; Gao, Yuan; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Background Calcaneal quantitative ultrasound (QUS), which is used in the evaluation of osteoporosis, is believed to be intimately associated with the characteristics of the proximal femur. However, the specific associations of calcaneal QUS with characteristics of the hip sub-regions remain unclear. Design A cross-sectional assessment of 53 osteoporotic patients was performed for the skeletal status of the heel and hip. Methods We prospectively enrolled 53 female osteoporotic patients with femoral fractures. Calcaneal QUS, dual energy X-ray absorptiometry (DXA), and hip structural analysis (HSA) were performed for each patient. Femoral heads were obtained during the surgery, and principal compressive trabeculae (PCT) were extracted by a three-dimensional printing technique-assisted method. Pearson’s correlation between QUS measurement with DXA, HSA-derived parameters and Young’s modulus were calculated in order to evaluate the specific association of QUS with the parameters for the hip sub-regions, including the femoral neck, trochanteric and Ward’s areas, and the femoral shaft, respectively. Results Significant correlations were found between estimated BMD (Est.BMD) and BMD of different sub-regions of proximal femur. However, the correlation coefficient of trochanteric area (r = 0.356, p = 0.009) was higher than that of the neck area (r = 0.297, p = 0.031) and total proximal femur (r = 0.291, p = 0.034). Furthermore, the quantitative ultrasound index (QUI) was significantly correlated with the HSA-derived parameters of the trochanteric area (r value: 0.315–0.356, all p<0.05) as well as with the Young’s modulus of PCT from the femoral head (r = 0.589, p<0.001). Conclusion The calcaneal bone had an intimate association with the trochanteric cancellous bone. To a certain extent, the parameters of the calcaneal QUS can reflect the characteristics of the trochanteric area of the proximal hip, although not specifically reflective of those of the femoral neck

  12. STEP and STEPSPL: Computer programs for aerodynamic model structure determination and parameter estimation

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1986-01-01

    The successful parametric modeling of the aerodynamics for an airplane operating at high angles of attack or sideslip is performed in two phases. First the aerodynamic model structure must be determined and second the associated aerodynamic parameters (stability and control derivatives) must be estimated for that model. The purpose of this paper is to document two versions of a stepwise regression computer program which were developed for the determination of airplane aerodynamic model structure and to provide two examples of their use on computer generated data. References are provided for the application of the programs to real flight data. The two computer programs that are the subject of this report, STEP and STEPSPL, are written in FORTRAN IV (ANSI l966) compatible with a CDC FTN4 compiler. Both programs are adaptations of a standard forward stepwise regression algorithm. The purpose of the adaptation is to facilitate the selection of a adequate mathematical model of the aerodynamic force and moment coefficients of an airplane from flight test data. The major difference between STEP and STEPSPL is in the basis for the model. The basis for the model in STEP is the standard polynomial Taylor's series expansion of the aerodynamic function about some steady-state trim condition. Program STEPSPL utilizes a set of spline basis functions.

  13. STRUCTURAL PARAMETERS OF SEVEN SMALL MAGELLANIC CLOUD INTERMEDIATE-AGE AND OLD STAR CLUSTERS

    SciTech Connect

    Glatt, Katharina; Grebel, Eva K.; Kayser, Andrea; Gallagher, John S.; Harbeck, Daniel; Nota, Antonella; Sabbi, Elena; Sirianni, Marco; Clementini, Gisella; Tosi, Monica; Da Costa, Gary; Koch, Andreas

    2009-11-15

    We present structural parameters for the seven intermediate-age and old star clusters NGC 121, Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC). We fit King profiles and Elson, Fall, and Freeman profiles to both surface-brightness and star-count data taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Clusters older than {approx}1 Gyr show a spread in cluster core radii that increases with age, while the youngest clusters have relatively compact cores. No evidence for post-core-collapse clusters was found. We find no correlation between core radius and distance from the SMC center, although consistent with other studies of dwarf galaxies, some relatively old and massive clusters have low densities. The oldest SMC star cluster, the only globular NGC121, is the most elliptical object of the studied clusters. No correlation is seen between ellipticity and distance from the SMC center. The structures of these massive intermediate-age (1-8 Gyr) SMC star clusters thus appear to primarily result from internal evolutionary processes.

  14. The structural, optical and magnetic parameter of manganese doped strontium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Sumalatha, B.; Omkaram, I.; Rajavardhana Rao, T.; Linga Raju, Ch.

    2013-02-01

    Glasses with composition 10SrO:(30-x)ZnO:60B2O3:xMnO, 0≤x≤0.9 (all compositions in wt%) have been prepared and investigated by X-ray diffraction, EPR, Optical absorption and FT-IR spectroscopic techniques. The XRD pattern of all the glasses confirmed the formation of an amorphous structure. The EPR spectra of all glass samples exhibit resonance signals at g≈2.0 with a sextet of hyperfine lines. The spin concentration (N) and temperature dependence of EPR signals were studied for Mn2+ ions in strontium zinc borate glass samples. The zero-field splitting parameter D has been evaluated from the intensities of the allowed hyperfine lines. The paramagnetic susceptibility (χ) was calculated from EPR data at different temperatures and the Curie temperature (θp) was calculated from the 1/χ verses T graph. The optical absorption spectra exhibit a single broad band near 470 nm and this has been attributed to the spin-allowed 5Eg→5T2g transition of Mn3+ ions in octahedral symmetry. The theoretical optical basicity (Λth) of these glasses have also been evaluated. The FTIR studies show BO3 and BO4 structural units in strontium zinc borate glasses.

  15. Performance of DFT+U method for prediction of structural and thermodynamic parameters of monazite-type ceramics.

    PubMed

    Blanca Romero, Ariadna; Kowalski, Piotr M; Beridze, George; Schlenz, Hartmut; Bosbach, Dirk

    2014-07-01

    We performed a density functional theory (DFT) study of the monazite-type ceramics using DFT+U method, where the Hubbard U parameters are derived ab initio, with the main goal in testing the predictive power of this computational method for modeling of f-electron materials that are of interest in nuclear waste management. We show that DFT+U approach with PBEsol as the exchange-correlation functional significantly improves description of structures and thermodynamic parameters of lanthanide-bearing oxides and monazites over commonly used standard DFT (PBE) approach. We found that it is essential to use the Hubbard U parameter derived for a given element and a given structure to reproduce the structural parameters of the measured materials. We obtained exceptionally good description of the structural parameters with U parameter derived using the linear response approach of Cococcioni and de Gironcoli (Phys. Rev. B 2005, 71, 035105). This shows that affordable methods, such as DFT+U with a clever choice of exchange-correlation functional and the Hubbard U parameter can lead to a good description of f-electron materials. PMID:24760757

  16. Far infrared spectra, conformational equilibria, vibrational assignments, ab initio calculations and structural parameters for 2-bromoethanol

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Shen, S.; Guirgis, G. A.

    2001-01-01

    The far infrared spectrum from 370 to 50 cm -1 of gaseous 2-bromoethanol, BrCH 2CH 2OH, was recorded at a resolution of 0.10 cm -1. The fundamental O-H torsion of the more stable gauche ( Gg') conformer, where the capital G refers to internal rotation around the C-C bond and the lower case g to the internal rotation around the C-O bond, was observed as a series of Q-branch transitions beginning at 340 cm -1. The corresponding O-H torsional modes were observed for two of the other high energy conformers, Tg (285 cm -1) and Tt (234 cm -1). The heavy atom asymmetric torsion (rotation around C-C bond) for the Gg' conformer has been observed at 140 cm -1. Variable temperature (-63 to -100°C) studies of the infrared spectra (4000-400 cm -1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm -1 (4.92±0.48 kJ/mol) for the Gg'/ Tt and 315±40 cm -1 (3.76±0.48 kJ/mol) for the Gg'/ Tg, with the Gg' conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree-Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg' conformers.

  17. Parameters of arterial function and structure in adult patients after coarctation repair.

    PubMed

    Trojnarska, Olga; Mizia-Stec, Katarzyna; Gabriel, Marcin; Szczepaniak-Chicheł, Ludwina; Katarzyńska-Szymańska, Agnieszka; Grajek, Stefan; Tykarski, Andrzej; Gąsior, Zbigniew; Kramer, Lucyna

    2011-07-01

    Regardless of a successful operation, patients with coarctation of aorta (CoAo) are exposed to the risk of hypertension and a propensity to vascular and end-organ damage. The aim of this study is to evaluate the influence of residual aorta stenosis as well as the age at the operation on the parameters of arterial function and structure in patients after CoAo repair. Eighty-five patients after CoAo repair (53 males; mean age: 34.6 ± 10.3 years, mean age at the repair: 10.9 ± 8.2 years) were enrolled in the study. The control group consisted of 30 healthy subjects (18 males; mean age: 33.6 ± 8.2 years). Indices of systemic arterial remodeling [flow-mediated dilatation (FMD), nitroglycerine-mediated vasodilatation (NMD), carotid intima-media thickness (IMT), pulse wave velocity (PWV)] were analyzed in all study patients. In normotensive patients after CoAo repair (47/55%), a significantly increased PWV was observed in comparison to the control group (6.8 ± 1.2 vs. 5.4 ± 0.9 m/s; p = 0.003), with no difference in IMT values (0.53 ± 0.1 vs. 0.51 ± 0.1 mm; p = 0.06). Mean FMD (4.8 ± 2.8 vs. 8.5 ± 2.3%; p = 0.00003) and NMD (11.3 ± 4.6 vs. 19.8 ± 7.2%; p = 0.00001) were lower than in the controls. In patients with a residual aorta stenosis (46/54%), defined as an arm-leg pressure gradient ≥ 20 mmHg, no differences were found within the scope of both systolic and diastolic blood pressure and of all of the examined vascular parameters. No significant correlations were revealed between the vascular parameters and the gradient across descending aorta as well as the age at the operation. Residual stenosis in the descending aorta does not affect the arterial vasodilatation nor stiffness in patients after CoAo repair. An early surgery does not influence the remodeling of the vessels, which supports the thesis that CoAo is a generalized vascular disease and that even an early operation cannot prevent the progressive and vascular changes and end-organ damage. PMID

  18. Simultaneous Joint Inversion of Seismic AVO and Controlled Source Electromagnetic Data by Direct Estimation of Common Parameter Structure

    NASA Astrophysics Data System (ADS)

    Lien, M.

    2012-12-01

    We are concerned with the inverse problem of identifying changes in saturation for monitoring of underground reservoirs with application to CO2 sequestration and oil production monitoring. The inverse problem is at the outset ill-posed, where non-uniqueness and instability issues can lead to large uncertainties in the resulting parameter estimates. Constraining the inversion with a higher degree of information by combining information from different data sets will be important to improve the quality of the model calibration and thereby the reliability of the resulting reservoir predictions. For this, the simultaneous joint inversion of seismic AVO and controlled source electromagnetic (CSEM) data is considered. With simultaneous joint inversion, one secures that the final result from the inversion honors all available data. AVO and CSEM represent different sources of information. The seismic signals provide information about the elastic properties of the reservoir with relatively high spatial resolution, whereas CSEM data probe the electric properties of the subsediments at the extreme low frequency limit. Hence, the coupling of the two data types is not trivial. An increasingly popular approach for simultaneous joint inversion of disparate data sets is structure-coupled joint inversion. Here the coupling of the data sets is obtained by imposing structural dependency between the different geophysical model parameters (i.e. the elastic and electric properties of the reservoir). The idea is that some of the main property changes in the different model parameters are likely to occur over the same interfaces/structures representing e.g. changes in lithology or fluid saturation. We propose a novel approach for structure-coupled joint inversion, where the coupling of the different data sets is obtained by facilitating for estimation of parameter structure directly. The approach is based on a generic method for parameter representation providing a joint relation to a

  19. Retrieval of Vegetation Structural Parameters and 3-D Reconstruction of Forest Canopies Using Ground-Based Echidna® Lidar

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Woodcock, C. E.; Jupp, D. L.; Culvenor, D.; Newnham, G.; Lovell, J.

    2010-12-01

    A ground-based, scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves structural parameters of forest stands rapidly and accurately, and by merging multiple scans into a single point cloud, the lidar also provides 3-D stand reconstructions. Echidna lidar technology scans with pulses of light at 1064 nm wavelength and digitizes the full return waveform sufficiently finely to recover and distinguish the differing shapes of return pulses as they are scattered by leaves, trunks, and branches. Deployments in New England in 2007 and the southern Sierra Nevada of California in 2008 tested the ability of the instrument to retrieve mean tree diameter, stem count density (stems/ha), basal area, and above-ground woody biomass from single scans at points beneath the forest canopy. Parameters retrieved from five scans located within six 1-ha stand sites matched manually-measured parameters with values of R2 = 0.94-0.99 in New England and 0.92-0.95 in the Sierra Nevada. Retrieved leaf area index (LAI) values were similar to those of LAI-2000 and hemispherical photography. In New England, an analysis of variance showed that EVI-retrieved values were not significantly different from other methods (power = 0.84 or higher). In the Sierra, R2 = 0.96 and 0.81 for hemispherical photos and LAI-2000, respectively. Foliage profiles, which measure leaf area with canopy height, showed distinctly different shapes for the stands, depending on species composition and age structure. New England stand heights, obtained from foliage profiles, were not significantly different (power = 0.91) from RH100 values observed by LVIS in 2003. Three-dimensional stand reconstruction identifies one or more “hits” along the pulse path coupled with the peak return of each hit expressed as apparent reflectance. Returns are classified as trunk, leaf, or ground returns based on the shape of the return pulse and its location. These data provide a point

  20. TIDAL DISRUPTION, GLOBAL MASS FUNCTION, AND STRUCTURAL PARAMETER EVOLUTION IN STAR CLUSTERS

    SciTech Connect

    Trenti, Michele; Vesperini, Enrico; Pasquato, Mario

    2010-01-10

    We present a unified picture for the evolution of star clusters on the two-body relaxation timescale. We use direct N-body simulations of star clusters in a galactic tidal field starting from different multimass King models, up to 10% of primordial binaries and up to N{sub tot} = 65, 536 particles. An additional run also includes a central Intermediate Mass Black Hole. We find that for the broad range of initial conditions we have studied the stellar mass function of these systems presents a universal evolution, which depends only on the fractional mass loss. The structure of the system, as measured by the core to half-mass radius ratio, also evolves toward a universal state, which is set by the efficiency of heating on the visible population of stars induced by dynamical interactions in the core of the system. Interactions with dark remnants (white dwarfs, neutron stars, and stellar mass black holes) are dominant over the heating induced by a moderate population of primordial binaries (3%-5%), especially under the assumption that most of the neutron stars and black holes are retained in the system. All our models without primordial binaries undergo a deep gravothermal collapse in the radial mass profile. However, their projected light distribution can be well fitted by medium concentration King models (with parameter W{sub 0} approx 8), even though there tends to be an excess over the best fit for the innermost points of the surface brightness. This excess is consistent with a shallow cusp in the surface brightness (mu approx R {sup -n}u with nu approx 0.4-0.7), like it has been observed for many globular clusters from high-resolution Hubble Space Telescope imaging. Generally, fitting a King profile to derive the structural parameters yields to larger fluctuations in the core size than defining the core as the radius where the surface brightness is one half of its central value. Classification of core-collapsed globular clusters based on their surface brightness

  1. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones

    PubMed Central

    2013-01-01

    Objective This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. Methods The cellular synthetic bones in 4 density groups (Groups 1–4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Results and Conclusion Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice. PMID

  2. Tidal Disruption, Global Mass Function, and Structural Parameter Evolution in Star Clusters

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Vesperini, Enrico; Pasquato, Mario

    2010-01-01

    We present a unified picture for the evolution of star clusters on the two-body relaxation timescale. We use direct N-body simulations of star clusters in a galactic tidal field starting from different multimass King models, up to 10% of primordial binaries and up to N tot = 65, 536 particles. An additional run also includes a central Intermediate Mass Black Hole. We find that for the broad range of initial conditions we have studied the stellar mass function of these systems presents a universal evolution, which depends only on the fractional mass loss. The structure of the system, as measured by the core to half-mass radius ratio, also evolves toward a universal state, which is set by the efficiency of heating on the visible population of stars induced by dynamical interactions in the core of the system. Interactions with dark remnants (white dwarfs, neutron stars, and stellar mass black holes) are dominant over the heating induced by a moderate population of primordial binaries (3%-5%), especially under the assumption that most of the neutron stars and black holes are retained in the system. All our models without primordial binaries undergo a deep gravothermal collapse in the radial mass profile. However, their projected light distribution can be well fitted by medium concentration King models (with parameter W 0 ~ 8), even though there tends to be an excess over the best fit for the innermost points of the surface brightness. This excess is consistent with a shallow cusp in the surface brightness (μ ~ R -ν with ν ~ 0.4-0.7), like it has been observed for many globular clusters from high-resolution Hubble Space Telescope imaging. Generally, fitting a King profile to derive the structural parameters yields to larger fluctuations in the core size than defining the core as the radius where the surface brightness is one half of its central value. Classification of core-collapsed globular clusters based on their surface brightness profile may thus fail in systems

  3. Conformational stability, r0 structural parameters, and vibrational assignments of mono-substituted cyclobutanes: Fluorocyclobutane

    NASA Astrophysics Data System (ADS)

    Ganguly, Arindam; Klaassen, Joshua J.; Guirgis, Gamil A.; Gounev, Todor K.; Durig, James R.

    2011-08-01

    Variable temperature (-55 to -100 °C) studies of the infrared spectra (3500-400 cm -1) of fluorocyclobutane, c-C 4H 7F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496 ± 40 cm -1 (5.93 ± 0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8 ± 1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732 ± 47 cm -1 (9.04 ± 0.44 kJ/mol) and the average value of 602 ± 20 cm -1 from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (Å) C-F = 1.383(3) [1.407(3)], C α-C β = 1.543(3) [1.546(3)], C β-C γ = 1.554(3) [1.554(3)] and angles (°) ∠C αC βC γ = 85.0(5) [89.2(5)], ∠C βC αC β = 89.3(5) [89.2(5)], ∠F-(C βC αC β) = 117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.

  4. Composition and structure variation for magnetron sputtered tantalum oxynitride thin films, as function of deposition parameters

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Pătru, M.; Crisan, A.; Munteanu, D.; Crăciun, D.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Moura, C.; Cunha, L.

    2015-12-01

    Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited using a pure Ta target and a working atmosphere with a constant N2/O2 ratio. The choice of this constant ratio limits the study concerning the influence of each reactive gas, but allows a deeper understanding of the aspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous. This work begins by analysing the data obtained directly from the film deposition stage, followed by the analysis of the morphology, composition and structure. For a better understanding regarding the influence of the deposition parameters, the analyses are presented by using the following criterion: the films were divided into two sets, one of them produced with grounded substrate holder and the other with a polarization of -50 V. Each one of these sets was produced with different partial pressure of the reactive gases P(N2 + O2). All the films exhibited a O/N ratio higher than the N/O ratio in the deposition chamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increase of the O content is observed, associated to the strong decrease of the N content, when P(N2 + O2) is higher than 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazing incidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-ray reflectivity studies found out that the density of the films depended on the deposition conditions: the higher the gas pressure, the lower the density. Firstly, a dominant β-Ta structure is observed, for low P(N2 + O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2 + O2); thirdly, the films are amorphous for the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOy films are explained, with detail, in the text.

  5. The application of stereological methods for estimating structural parameters in the human heart.

    PubMed

    Tang, Yong; Nyengaard, Jens R; Andersen, Johnnie B; Baandrup, Ulrik; Gundersen, Hans Jørgen G

    2009-10-01

    This study describes and exemplifies generally applicable design-based stereological methods for obtaining quantitative estimates of the numbers and sizes of capillaries, cardiomyocytes, and cardiomyocyte nuclei in immersion-fixed human left ventricles (N = 6). The design-based stereological methods are valid in all cardiac investigations onto quantifying changes in structure and function as seen under various conditions such as during development, aging, hypertrophy, and following ischemia/reperfusion. The applied principles of unbiased stereology were as follows: 1) uniform random sampling was taken at all levels, also in respect to orientations, for estimates of length and mean sizes. 2) All global structural quantities were estimated as total quantity = density x volume of the left ventricle. As an example, the left ventricle contains 1.5 x 10(9) capillaries with a total length of just below 200 km. 3) Stereological methods were used for estimating the volume density, surface area density, and length density of capillaries and cardiomyocytes. The numerical density of cardiomyocyte nuclei and capillaries was estimated, using the optical and physical disector, respectively. 4) In all local quantities, "size" was estimated either directly, using unbiased estimators to obtain the average individual size and size distribution parameters, or indirectly, using the relationship that: average size = total quantity/total number. In the six hearts constituting this study, we observed the anticipated correlation between left ventricular volume and global estimates such as total number of capillaries. There were no correlation between local quantities and total left ventricular volume (e.g., average star volume of individual cardiomyocytes). PMID:19714657

  6. Intrinsic parameters for the structure control of nonionic reverse micelles in styrene: SAXS and rheometry studies.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Aramaki, Kenji

    2011-05-17

    Shape, size, and internal structure of nonionic reverse micelle in styrene depending on surfactant chain length, concentration, temperature, and water addition have been investigated using a small-angle X-ray scattering (SAXS) technique. The generalized indirect Fourier transformation (GIFT) method has been employed to deduce real-space structural information. The consistency of the GIFT method has been tested by the geometrical model fittings, and the micellar aggregation number (N(agg)) has been determined. It was found that diglycerol monocaprate (C(10)G(2)), diglycerol monolaurate (C(12)G(2)), and diglycerol monomyristate (C(14)G(2)), spontaneously self-assemble into reverse micelles in organic solvent styrene under ambient conditions. The micellar size and the N(agg) decrease with an increase in surfactant chain length, a scenario that could be understood from the modification of the critical packing parameter (cpp). A clear picture of one-dimensional (1-D) micellar growth was observed with an increase in surfactant weight fraction (W(s)) in the C(10)G(2) system, which eventually formed rodlike micelles at W(s) ≥ 15%. On the other hand, micelles shrunk favoring a rod-to-sphere type transition upon heating. Reverse micelles swelled with water, forming a water pool at the micellar core; the size of water-incorporated reverse micelles was much bigger than that of the empty micelles. Model fittings showed that water addition not only increase the micellar size but also increase the N(agg). Zero-shear viscosity was found to decrease with surfactant chain but increase with W(s), supporting the results derived from SAXS. PMID:21488609

  7. Exaggerated allometric structures in relation to demographic and ecological parameters in Lucanus cervus (Coleoptera: Lucanidae).

    PubMed

    Romiti, Federico; Tini, Massimiliano; Redolfi De Zan, Lara; Chiari, Stefano; Zauli, Agnese; Carpaneto, Giuseppe M

    2015-10-01

    Enlarged weapons and ornamental traits under sexual selection often show a positive allometric relationship with the overall body size. The present study explores the allometry of mandibles and their supporting structure, the head, in males of the European stag beetle, Lucanus cervus. This species shows a remarkable dimorphism in mandible shape and size that are used by males in intraspecific combats. Stag beetles were captured, measured, weighed, and released in the framework of a capture-mark-recapture study. The relationship of mandible length (ML) and head width in respect to the overall body size was described by a segmented regression model. A linear relationship was detected between ML and head width. The scaling relationships for both ML and head width identified the same switchpoint, highlighting the advantages of using combined results of weapons and their supporting structures in such analysis. These results led to a more consistent distinction of males in two morphologies: minor and major. The survival probability of individuals was dependent on the morphological class and was higher for minor males than for major. Elytron length and body mass of the individuals did not show any significant variation during the season. Differences in predatory pressure were detected between morphs by the collection and analysis of body fragments due to the predatory activity of corvids. Morphological differences and shift in demographic and ecological parameters between the two classes suggested that selection continues to favor intrasexual dimorphism in this species throughout a trade-off mechanism between costs and benefits of carrying exaggerated traits. PMID:26220669

  8. Genetic structure and forensic parameters of 38 Indels for human identification purposes in eight Mexican populations.

    PubMed

    Martínez-Cortés, G; Gusmão, L; Pereira, R; Salcido, V H; Favela-Mendoza, A F; Muñoz-Valle, J F; Inclán-Sánchez, A; López-Hernández, L B; Rangel-Villalobos, H

    2015-07-01

    Insertion-deletions for human identification purposes (HID-Indels) offer advantages to solve particular forensic situations and complex paternity cases. In Mexico, admixed population known as Mestizos is the largest (∼90%), plus a number of Amerindian groups (∼10%), which have not been studied with HID-Indels. For this reason, allele frequencies and forensic parameters for 38 HID-Indels were estimated in 531 unrelated individuals from one Amerindian (Purépecha) and seven Mestizo populations from different regions of the country. Genotype distribution was in agreement with Hardy-Weinberg expectations in almost all loci/populations. The linkage disequilibrium (LD) test did not reveal possible associations between loci pairs in all eight Mexican populations. The combined power of discrimination was high in all populations (PD >99.99999999998%). However, the power of exclusion of the 38 HID-Indel system (PE >99.6863%) was reduced regarding most of autosomal STR kits. The assessment of genetic structure (AMOVA) and relationships between populations (FST) demonstrated significant differences among Mexican populations, mainly of the Purépecha Amerindian group. Among Mexican-Mestizos, three population clusters consistent with geography were defined: (i) North-West region: Chihuahua, Sinaloa, and Jalisco; (ii) Central-Southern region: Mexico City, Veracruz and Yucatan; (iii) South region: Chiapas. In brief, this report validates the inclusion of the 38 HID-Indel system in forensic casework and paternity cases in seven Mexican-Mestizo populations from different regions, and in one Mexican Amerindian group. PMID:25988907

  9. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Haiying Qi; Bo Hou; Changhe Chen; Xuchang Xu

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters. Structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. 16 refs., 9 figs.

  10. Effect of Process Parameters on the Structure and Properties of Galvanized Sheets

    NASA Astrophysics Data System (ADS)

    Shukla, S. K.; Saha, B. B.; Triathi, B. D.; Avtar, Ram

    2010-07-01

    The effect of galvanizing parameters on the structure (spangle size and coating microstructure) and properties (formability and corrosion resistance) of galvanized sheets was studied in a hot dip process simulator (HDPS) in a conventional Pb bearing (0.08-0.10%) zinc bath by varying zinc bath Al level (0.10-0.28%), bath temperature (718-743 K), dipping time (1.5-3.5 s), wiping gas flow rate (200-450 lpm), nozzle distance (15-17 mm) and wiping delay time (0.1-2.1 s). Al level in the range of 0.18-0.24% in combination with dipping time of 1.5-2.5 s and bath temperature of 718-733 K results in superior formability ( E cv: ~9.3 mm) of the composite (thickness: 0.8 mm). High post-dip cooling rates (~25 K/s) suppress spangle growth (spangle size: ~2 mm). The spangle size of the GI sheet strongly influences the corrosion rate which increases from 5.8 to 9.2 mpy with a decrease in spangle size from 17.5 to 3 mm. By controlling the Al level (0.20%) in zinc bath and bath temperature (733 K), the corrosion rate of mini-spangle GI sheet can be controlled to a level of 5.5 mpy.

  11. Nonlinear FE simulations of structural behavior parameters of reinforced concrete beam with epoxy-bonded FRP

    NASA Astrophysics Data System (ADS)

    Sasmal, Saptarshi; Kalidoss, S.

    2015-05-01

    In the present study, investigations on fiber-reinforced plastic (FRP) plated-reinforced concrete (RC) beam are carried out. Numerical investigations are performed by using a nonlinear finite element analysis by incorporating cracking and crushing of concrete. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic load using the servo-hydraulic actuator in displacement control mode. Further, the validated numerical models are used to evaluate the influence of different parameters. It is found from the investigations that increase in the elastic modulus of adhesive layer and CFRP laminate increases the interfacial stresses whereas increase in laminate modulus decreases the displacement and reinforcement strain of the beam. It is also observed that increase in the adhesive layer can largely reduce the interfacial stresses, whereas increase in laminate thickness increases it. However, increase in laminate thickness decreases the displacement and reinforcement strain of the beam significantly. It is mention worthy that increase in laminate length reduces the interfacial stresses, whereas CFRP width change does not affect the interfacial stresses. The study will be useful for the design and practicing engineers for arriving at the FRP-based strengthening schemes for RC structures judiciously.

  12. The Fundamental Parameters and Chromospheric Structure of the M Supergiant VV Cephei

    NASA Astrophysics Data System (ADS)

    Bennett, Philip D.

    2013-07-01

    The long-period binary VV Cephei (M2 Iab + B0-2, V=4.9, P=20.34 yr) is the brightest M supergiant eclipsing binary in the sky. The M star primary is a close spectral match to that of Betelgeuse. In the ultraviolet (UV), the early B-type hot companion dominates the spectrum, and as the system emerges from eclipse, the line of sight to the B star probes deep into the outer atmosphere (the "chromosphere") of the M supergiant. The UV spectrum of VV Cep has been observed from total eclipse (in 1997-98) through quadrature (2002) and periastron (2005) at a total of 22 epochs, 20 of these using STIS high-resolution ( 100,000) ultraviolet spectroscopy from the Hubble Space Telescope, and two with the Far Ultraviolet Spectroscopic Explorer satellite. I will present a brief overview of spectrum formation in the system, and focus on the subset of the STIS observations (those immediately following the egress from totality) that probed the chromosphere of VV Cephei. From these observations, I have constructed a spatially-resolved empirical model chromosphere that includes the temperature, density, velocity, and ionization structure of the outer atmosphere of VV Cep above the classical photosphere. I will present these results, and also constraints on the fundamental stellar and orbital parameters provided by these UV observations.

  13. Experimental study on detonation parameters and cellular structures of fuel cloud

    NASA Astrophysics Data System (ADS)

    Xie, Li-Feng; Li, Bin; Zhang, Yu-Lei

    2012-04-01

    In this paper, detonation parameters of fuel cloud, such as propylene oxide (PO), isopropyl nitrate (IPN), hexane, 90# oil and decane were measured in a self-designed and constructed vertical shock tube. Results show that the detonation pressure and velocity of PO increase to a peak value and then decrease smoothly with increasing equivalence ratio. Several nitrate sensitizers were added into PO to make fuel mixtures, and test results indicated that the additives can efficiently enhance detonation velocity and pressure of fuel cloud and one type of additive n-propyl nitrate (NPN) played the best in the improvement. The critical initiation energy that directly initiated detonation of all the test liquid fuel clouds showed a U-shape curve relationship with equivalence ratios. The optimum concentration lies on the rich-fuel side ( ϕ > 1). The critical initiation energy is closely related to molecular structure and volatility of fuels. IPN and PO have similar critical values while that of alkanes are larger. Detonation cell sizes of PO were respectively investigated at 25°C, 35°C and 50°C with smoked foil technique. The cell width shows a U-shape curve relationship with equivalence ratios at all temperatures. The minimal cell width also lies on the rich-fuel side ( ϕ > 1). The cell width of PO vapor is slightly larger than that of PO cloud. Therefore, the detonation reaction of PO at normal temperature is controlled by gas phase reaction.

  14. Calibration of the Mixing-Length Free Parameter for White Dwarf Structures

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Ludwig, H.-G.; Freytag, B.; Fontaine, G.; Steffen, M.; Brassard, P.

    2015-06-01

    We present a comparison of our grid of 3D radiation-hydrodynamical simulations for 70 pure-hydrogen DA white dwarfs, in the surface gravity range 7.0 ≤log g≤ 9.0, with 1D envelope models based on the mixing-length theory (MLT) for convection. We perform a calibration of the mixing-length parameter for the lower part of the convection zone. The 3D simulations are often restricted to the upper convective layers, and in those cases, we rely on the asymptotic entropy value of the adiabatic 3D upflows to calibrate 1D envelopes. Our results can be applied to 1D structure calculations, and in particular for pulsation and convective mixing studies. We demonstrate that while the 1D MLT only provides a bottom boundary of the convection zone based on the Schwarzschild criterion, the 3D stratifications are more complex. There is a large overshoot region below the convective layers that is likely critical for chemical diffusion applications.

  15. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Qi, Haiying; Hou, Bo; Chen, Changhe; Xu, Xuchang

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 degrees C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters, such as bed temperature, CO2 concentration, and solids concentration. In addition, structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 degrees C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. PMID:16856750

  16. Optical properties, structural parameters, and bonding of highly textured rocksalt tantalum nitride films

    NASA Astrophysics Data System (ADS)

    Matenoglou, G. M.; Koutsokeras, L. E.; Lekka, Ch. E.; Abadias, G.; Camelio, S.; Evangelakis, G. A.; Kosmidis, C.; Patsalas, P.

    2008-12-01

    Tantalum nitride is an interesting solid with exceptional properties and it might be considered as a representative model system of the d3s2 transition metal nitrides. In this work highly textured, stoichiometric, rocksalt TaN(111) films have been grown on Si(100) by pulsed laser deposition. The films were under a triaxial stress, which has been determined by the sin2 ψ method. The stress-free lattice parameter was found to be 0.433±0.001 nm, a value which has been also determined by ab initio calculations within the local spin density approximation. The optical properties of TaN have been studied using spectroscopic ellipsometry and detailed band structure calculations. The electron conductivity of TaN is due to the Ta 5dt2g band that intercepts the Fermi level and is the source of intraband absorption. The plasma energies of fully dense rocksalt TaN were found to be 9.45 and 9.7 eV based on the experimental results and ab initio calculations, respectively. Additional optical absorption bands were also observed around 1.9 and 7.3 eV and attributed to be due to crystal field splitting of the Ta 5d band (t2g→eg transition) and the N p→Ta d interband transition, respectively.

  17. A stereo imaging system for measuring structural parameters of plant canopies.

    PubMed

    Biskup, Bernhard; Scharr, Hanno; Schurr, Ulrich; Rascher, Uwe

    2007-10-01

    Plants constantly adapt their leaf orientation in response to fluctuations in the environment, to maintain radiation use efficiency in the face of varying intensity and incidence direction of sunlight. Various methods exist for measuring structural canopy parameters such as leaf angle distribution. However, direct methods tend to be labour-intensive, while indirect methods usually give statistical information on stand level rather than on individual leaves. We present an area-based, binocular stereo system composed of commercially available components that allows three-dimensional reconstruction of small- to medium-sized canopies on the level of single leaves under field conditions. Spatial orientation of single leaves is computed with automated processes using modern, well-established stereo matching and segmentation techniques, which were adapted for the properties of plant canopies, providing high spatial and temporal resolution (angle measurements with an accuracy of approx. +/-5 degrees and a maximum sampling rate of three frames per second). The applicability of our approach is demonstrated in three case studies: (1) the dihedral leaflet angle of an individual soybean was tracked to monitor nocturnal and daytime leaf movement showing different frequencies and amplitudes; (2) drought stress was diagnosed in soybean by quantifying changes in the zenith leaflet angle distribution; and (3) the diurnal course of the zenith leaf angle distribution of a closed soybean canopy was measured. PMID:17727419

  18. Applications of the theory of optimal control of distributed-parameter systems to structural optimization

    NASA Technical Reports Server (NTRS)

    Armand, J. P.

    1972-01-01

    An extension of classical methods of optimal control theory for systems described by ordinary differential equations to distributed-parameter systems described by partial differential equations is presented. An application is given involving the minimum-mass design of a simply-supported shear plate with a fixed fundamental frequency of vibration. An optimal plate thickness distribution in analytical form is found. The case of a minimum-mass design of an elastic sandwich plate whose fundamental frequency of free vibration is fixed. Under the most general conditions, the optimization problem reduces to the solution of two simultaneous partial differential equations involving the optimal thickness distribution and the modal displacement. One equation is the uniform energy distribution expression which was found by Ashley and McIntosh for the optimal design of one-dimensional structures with frequency constraints, and by Prager and Taylor for various design criteria in one and two dimensions. The second equation requires dynamic equilibrium at the preassigned vibration frequency.

  19. Grading More Accurately

    ERIC Educational Resources Information Center

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  20. Revisiting Melton: Analyzing the correlation structure of geomorphological and climatological parameters

    NASA Astrophysics Data System (ADS)

    Carothers, R. A.; Sangireddy, H.; Passalacqua, P.

    2013-12-01

    In his expansive 1957 study of over 80 basins in Arizona, Colorado, New Mexico, and Utah, Mark Melton measured key morphometric, soil, land cover, and climatic parameters [Melton, 1957]. He identified correlations between morphological parameters and climatic regimes in an attempt to characterize the geomorphology of the basin as a function of climate and vegetation. Using modern techniques such as high resolution digital terrain models in combination with high spatial resolution weather station records, vector soil maps, seamless raster geological data, and land cover vector maps, we revisit Melton's 1957 dataset with the following hypotheses: (1) Patterns of channelization carry strong, codependent signatures in the form of statistical correlations of rainfall variability, soil type, and vegetation patterns. (2) Channelization patterns reflect the erosion processes on sub-catchment scale and the subsequent processes of vegetation recovery and gullying. In order to characterize various topographic and climatic parameters, we obtain elevation and land cover data from the USGS National Elevation dataset, climate data from the Western Regional Climate Center and PRISM climate group database, and soil type from the USDA STATSGO soil database. We generate a correlative high resolution database on vegetation, soil cover, lithology, and climatology for the basins identified by Melton in his 1957 study. Using the GeoNet framework developed by Passalacqua et al. [2010], we extract various morphological parameters such as slope, drainage density, and stream frequency. We also calculate metrics for patterns of channelization such as number of channelized pixels in a basin and channel head density. In order to understand the correlation structure between climate and morphological variables, we compute the Pearson's correlation coefficient similar to Melton's analysis and also explore other statistical procedures to characterize the feedbacks between these variables. By

  1. Accurate projector calibration method by using an optical coaxial camera.

    PubMed

    Huang, Shujun; Xie, Lili; Wang, Zhangying; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2015-02-01

    Digital light processing (DLP) projectors have been widely utilized to project digital structured-light patterns in 3D imaging systems. In order to obtain accurate 3D shape data, it is important to calibrate DLP projectors to obtain the internal parameters. The existing projector calibration methods have complicated procedures or low accuracy of the obtained parameters. This paper presents a novel method to accurately calibrate a DLP projector by using an optical coaxial camera. The optical coaxial geometry is realized by a plate beam splitter, so the DLP projector can be treated as a true inverse camera. A plate having discrete markers on the surface is used to calibrate the projector. The corresponding projector pixel coordinate of each marker on the plate is determined by projecting vertical and horizontal sinusoidal fringe patterns on the plate surface and calculating the absolute phase. The internal parameters of the DLP projector are obtained by the corresponding point pair between the projector pixel coordinate and the world coordinate of discrete markers. Experimental results show that the proposed method can accurately calibrate the internal parameters of a DLP projector. PMID:25967789

  2. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis

    PubMed Central

    Ravanfar, Seyed Alireza; Abdul Razak, Hashim; Ismail, Zubaidah; Monajemi, Hooman

    2015-01-01

    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage. PMID:26371005

  3. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis.

    PubMed

    Ravanfar, Seyed Alireza; Razak, Hashim Abdul; Ismail, Zubaidah; Monajemi, Hooman

    2015-01-01

    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage. PMID:26371005

  4. [Dissociation of structural and functional parameters of the retina and optic nerve in a patient with Alzheimer's disease (clinical case)].

    PubMed

    Erichev, V P; Panyushkina, L A; Ronzina, I A

    2015-01-01

    Visual impairment is often one of the earliest sings of Alzheimer's disease. This article reports a clinical case of a female patient diagnosed with mild dementia due to Alzheimer's disease. As revealed by a comprehensive examination, her visual fields and visual evoked potentials were markedly changed, while morphometric parameters of the retina and optic nerve appeared normal. Such a significant dissociation of structural and functional parameters may indicate a more proximal involvement of visual pathways in Alzheimer's disease. PMID:26080589

  5. Estimation of parameters in linear structural relationships: Sensitivity to the choice of the ratio of error variances

    NASA Technical Reports Server (NTRS)

    Lakshminarayanan, M. Y.; Gunst, R. F.

    1984-01-01

    Maximum likelihood estimation of parameters in linear structural relationships under normality assumptions requires knowledge of one or more of the model parameters if no replication is available. The most common assumption added to the model definition is that the ratio of the error variances of the response and predictor variates is known. The use of asymptotic formulae for variances and mean squared errors as a function of sample size and the assumed value for the error variance ratio is investigated.

  6. Estimation of parameters in linear structural relationships Sensitivity to the choice of the ratio of error variances

    NASA Technical Reports Server (NTRS)

    Lakshminarayanan, M. Y.; Gunst, R. F.

    1984-01-01

    Maximum likelihood estimation of parameters in linear structural relationships under normality assumptions requires knowledge of one or more of the model parameters if no replication is available. The most common assumption added to the model definition is that the ratio of the error variances of the response and predictor variates is known. This paper investigates the use of asymptotic formulae for variances and mean squared errors as a function of sample size and the assumed value for the error variance ratio.

  7. Reliability analysis of structural ceramic components using a three-parameter Weibull distribution

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Powers, Lynn M.; Starlinger, Alois

    1992-01-01

    Described here are nonlinear regression estimators for the three-parameter Weibull distribution. Issues relating to the bias and invariance associated with these estimators are examined numerically using Monte Carlo simulation methods. The estimators were used to extract parameters from sintered silicon nitride failure data. A reliability analysis was performed on a turbopump blade utilizing the three-parameter Weibull distribution and the estimates from the sintered silicon nitride data.

  8. Quantitative Genetics and Functional–Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    PubMed Central

    Letort, Véronique; Mahe, Paul; Cournède, Paul-Henry; de Reffye, Philippe; Courtois, Brigitte

    2008-01-01

    Background and Aims Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype × environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional–structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits – such as cob weight – and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment × genotype

  9. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  10. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  11. VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters

    NASA Astrophysics Data System (ADS)

    Arroyo-Torres, B.; Martí-Vidal, I.; Marcaide, J. M.; Wittkowski, M.; Guirado, J. C.; Hauschildt, P. H.; Quirrenbach, A.; Fabregat, J.

    2014-06-01

    Aims: The main goal of this research is to determine the angular size and the atmospheric structures of cool giant stars (ɛ Oct, β Peg, NU Pav, ψ Peg, and γ Hya) and to compare them with hydrostatic stellar model atmospheres, to estimate the fundamental parameters, and to obtain a better understanding of the circumstellar environment. Methods: We conducted spectro-interferometric observations of ɛ Oct, β Peg, NU Pav, and ψ Peg in the near-infrared K band (2.13-2.47 μm), and γ Hya (1.9-2.47 μm) with the VLTI/AMBER instrument at medium spectral resolution (~1500). To obtain the fundamental parameters, we compared our data with hydrostatic atmosphere models (PHOENIX). Results: We estimated the Rosseland angular diameters of ɛ Oct, β Peg, NU Pav, ψ Peg, and γ Hya to be 11.66±1.50 mas, 16.87±1.00 mas, 13.03±1.75 mas, 6.31±0.35 mas, and 3.78±0.65 mas, respectively. Together with distances and bolometric fluxes (obtained from the literature), we estimated radii, effective temperatures, and luminosities of our targets. In the β Peg visibility, we observed a molecular layer of CO with a size similar to that modeled with PHOENIX. However, there is an additional slope in absorption starting around 2.3 μm. This slope is possibly due to a shell of H2O that is not modeled with PHOENIX (the size of the layer increases to about 5% with respect to the near-continuum level). The visibility of ψ Peg shows a low increase in the CO bands, compatible with the modeling of the PHOENIX model. The visibility data of ɛ Oct, NU Pav, and γ Hya show no increase in molecular bands. Conclusions: The spectra and visibilities predicted by the PHOENIX atmospheres agree with the spectra and the visibilities observed in our stars (except for β Peg). This indicates that the opacity of the molecular bands is adequately included in the model, and the atmospheres of our targets have an extension similar to the modeled atmospheres. The atmosphere of β Peg is more extended than

  12. Estimation of forest structure parameters in tropical dry forest ecosystems integrating MISR and MODIS image

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando

    structure information from a semiempirical BRDF model has been explored. A hybrid inversion scheme was developed for a robust and rapid inversion of the RPV model over large areas, and the biophysical interpretation of model parameters and its implications in land surface studies are analyzed.

  13. Structural parameters and blue stragglers in Sagittarius dwarf spheroidal galaxy globular clusters

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Jílková, Lucie; Carraro, Giovanni; Catelan, Márcio; Amigo, Pía.

    2012-04-01

    We present BV photometry of four Sagittarius dwarf spheroidal galaxy globular clusters: Arp 2, NGC 5634, Palomar 12 and Terzan 8, obtained with the Danish Telescope at ESO La Silla. We measure the structural parameters of the clusters using a King profile fitting, obtaining the first reliable measurements of the tidal radius of Arp 2 and Terzan 8. These two clusters are remarkably extended and with low concentrations; with a concentration of only c= 0.41 ± 0.02, Terzan 8 is less concentrated than any cluster in our Galaxy. Blue stragglers are identified in the four clusters, and their spatial distribution is compared to those of horizontal branch and red giant branch stars. The blue straggler properties do not provide evidence of mass segregation in Terzan 8, while Arp 2 probably shares the same status, although with less confidence. In the case of NGC 5634 and Palomar 12, blue stragglers are significantly less populous, and their analysis suggests that the two clusters have probably undergone mass segregation. References: (1) Peterson (1976); (2) Kron, Hewitt & Wasserman (1984); (3) Chernoff & Djorgovski (1989); (4) Trager, Djorgovski & King (1993); (5) Trager et al. (1995); (6) Rosenberg et al. (1998); (7) Mackey & Gilmore (2003b); (8) McLaughlin & van der Marel (2005) and (9) Carballo-Bello et al. (2012).

  14. Effect of Scintillometer Height on Structure Parameter of the Refractive Index of Air Measurements

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Howell, T. A.; Hartogensis, O.; Basu, S.; Scanlon, B. R.

    2009-12-01

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn2). Cn2 represents the turbulent strength of the atmosphere and describes the ability of the atmosphere to transport heat and humidity. The main objective of this study was to evaluate the effect of scintillometer height on Cn2 measurements and on the estimation of latent heat fluxes. The study was conducted during the 2009 summer growing season in the USDA-ARS Conservation and Production Research Laboratory (CPRL) at Bushland [350 11' N, 1020 06' W; 1,170 m elevation MSL], Texas. Field experiment consisted of two steps: (1) cross-calibration of scintillometers and (2) measurement of Cn2 at different heights. In the first step, three large aperture scintillometers (LAS) were deployed across two large lysimeter fields with bare soil surfaces. During the 3-week cross-calibration period, all three scintillometers were installed at a 2-m height with a path length of 420 m. Cn2 was monitored at a 1-min interval and averaged for 15-min periods. Cn2 measurements were synchronized with weather station and weighing lysimeter measurements. After the cross-calibration period, scintillometers were installed at 2-, 2.5- and 3-m heights, and Cn2 measurements were continued for another 3-week period. In addition to the Cn2 measurements, net radiation (Rn) and soil heat fluxes (G) were measured in both lysimeter fields. Cn2 values were corrected for inner scale dependence before cross calibration and estimation of sensible heat fluxes. Measurements of wind speed, air temperature, and relative humidity were used with Cn2 data to derive sensible heat fluxes. Latent heat fluxes were estimated as a residual from the energy balance and compared with lysimeter data. Results of cross calibration and effects of scintillometer height on the estimation of latent heat fluxes were reported and

  15. Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1984-01-01

    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented.

  16. Texture analysis of high-resolution Cartosat-1 data for separation of forest structural parameters

    NASA Astrophysics Data System (ADS)

    Kimothi, M. M.; Mohan, S.; Ajai, .

    2006-12-01

    Image texture has always been a primary visual cue for defining areas and relates to the visual perception of coarseness or smoothness of image features. When defined in a quantitive sense, texture is a property that relates to the nature of spatial variability of pixels values. With the ever-increasing spatial resolution of remotely sensed data, the role of image texture in image classification has increased. In the present study Cartosat-1 data have been analyzed for extraction of textural differences in different age and height plots of six major forest dominating tree species (viz Pinus roxbhurghii, Pinus caribea, tctona grandis, Shorea robusta, termenalia sps. and Eucalyptus spps) growing in tropical and subtropical part of India. These species were distributed in experimental plots of Forest Research Institute, Dehardun and in natural forest area of Dehradun Forest Division, Uttaranchal State, India. Gray-Level Co-occurrence Matrix (GLCM) statistical method with 3 × 3 and 5 × 5 pixel window sizes have been used for the calculation of textural features in the Cartosat-1 data Among the six GLCM, measures, maximum contribution of textural information were found in contrast, mean and variance followed by dissimilarity, entropy and homogeneity measures. The perusal of the data shows that texture parameters extracted from Cartosat-1 were strongly related to forest vegetation structural attributes like stand density, height, and canopy gap and crown diameter of the forest tree stands. This study has indicated that large textural difference between the different forest stand (old, mature and young) have led to better separation of different height and forest age classes. This may be the reason that Old mature dense forests of Chir Pine, Sal and teak found high range of variation ( 2.1 - 4) and contrast ( 3 - 8.5), while the young plantations of 2-3 years old showed the low spatial variation (0.7 - 2.1) and contrast ( 1 - 3). The differences in variance and contrast

  17. The Model Parameter Estimation Experiment (MOPEX): Its structure, connection to other international initiatives and future directions

    SciTech Connect

    Wagener, T; Hogue, T; Schaake, J; Duan, Q; Gupta, H; Andreassian, V; Hall, A; Leavesley, G

    2006-05-08

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modelers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community and briefly states future directions.

  18. The Model Parameter Estimation Experiment (MOPEX): Its structure, connection to other international initiatives and future directions

    USGS Publications Warehouse

    Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.

    2006-01-01

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.

  19. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980

    SciTech Connect

    Negus-de Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    The executive study presents the results and progress of efforts toward understanding shale gas production from the Devonian shale in Appalachia. A correlation was found between the geochemical parameters of the shale in eastern Kentucky and shale gas production there. Tasks on resource inventory tasks and shale characterization include regional structure studies, production studies, geophysical studies, structure studies, fracture density and orientation, and fracture studies. (DLC)

  20. Quantitative Assessment of Protein Structural Models by Comparison of H/D Exchange MS Data with Exchange Behavior Accurately Predicted by DXCOREX

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Pantazatos, Dennis; Li, Sheng; Hamuro, Yoshitomo; Hilser, Vincent J.; Woods, Virgil L.

    2012-01-01

    Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca2+-independent phospholipase A2. The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.

  1. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.

    PubMed

    Knights, Jonathan; Rohatagi, Shashank

    2015-12-01

    Although there is a body of literature focused on minimizing the effect of dosing inaccuracies on pharmacokinetic (PK) parameter estimation, most of the work centers on missing doses. No attempt has been made to specifically characterize the effect of error in reported dosing times. Additionally, existing work has largely dealt with cases in which the compound of interest is dosed at an interval no less than its terminal half-life. This work provides a case study investigating how error in patient reported dosing times might affect the accuracy of structural model parameter estimation under sparse sampling conditions when the dosing interval is less than the terminal half-life of the compound, and the underlying kinetics are monoexponential. Additional effects due to noncompliance with dosing events are not explored and it is assumed that the structural model and reasonable initial estimates of the model parameters are known. Under the conditions of our simulations, with structural model CV % ranging from ~20 to 60 %, parameter estimation inaccuracy derived from error in reported dosing times was largely controlled around 10 % on average. Given that no observed dosing was included in the design and sparse sampling was utilized, we believe these error results represent a practical ceiling given the variability and parameter estimates for the one-compartment model. The findings suggest additional investigations may be of interest and are noteworthy given the inability of current PK software platforms to accommodate error in dosing times. PMID:26209956

  2. Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2016-03-01

    The electron paramagnetic resonance (EPR) parameters [i.e. g factors gi (i=x, y, z) and hyperfine structure constants Ai] and the local lattice structure for the Cu2+ centre in Tl2Zn(SO4)2·6H2O (TZSH) crystal were theoretically investigated by utilising the perturbation formulae of these parameters for a 3d9 ion under rhombically elongated octahedra. In the calculations, the admixture of d orbitals in the ground state and the ligand orbital and spin-orbit coupling interactions are taken into account based on the cluster approach. The theoretical EPR parameters show good agreement with the observed values, and the Cu2+-H2O bond lengths are obtained as follows: Rx≈1.98 Å, Ry≈2.09 Å, Rz≈2.32 Å. The results are discussed.

  3. An improved filtering method based on EEMD and wavelet-threshold for modal parameter identification of hydraulic structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lian, Jijian; Liu, Fang

    2016-02-01

    Modal parameter identification is a core issue in the health monitoring and damage detection of hydraulic structures. The parameters are mainly obtained from the measured vibrational response under ambient excitation. However, the response signal is mixed with noise and interference signals, which will cover the structure vibration information; therefore, the parameter cannot be identified. This paper proposes an improved filtering method based on an ensemble empirical mode decomposition (EEMD) and wavelet threshold method. A 'noise index' is presented to estimate the noise degree of the components decomposed by the EEMD, and this index is related to the wavelet threshold calculation. In addition, the improved filtering method combined with an eigensystem realization algorithm (ERA) and a singular entropy (SE) is applied to an operational modal identification of a roof overflow powerhouse with a bulb tubular unit.

  4. Reliability analysis of structural ceramic components using a three-parameter Weibull distribution

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Powers, Lynn M.; Starlinger, Alois

    1992-01-01

    Described here are nonlinear regression estimators for the three-Weibull distribution. Issues relating to the bias and invariance associated with these estimators are examined numerically using Monte Carlo simulation methods. The estimators were used to extract parameters from sintered silicon nitride failure data. A reliability analysis was performed on a turbopump blade utilizing the three-parameter Weibull distribution and the estimates from the sintered silicon nitride data.

  5. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    EPA Science Inventory

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  6. Examination of Trends in Covariance Structure Model Parameters: An Application to the Study of Increasing Complexity of Ability Measures.

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2001-01-01

    Outlines a covariance structure analysis approach to the study of parameter trends. Uses the program RAMONA to illustrate the method by fitting a corresponding confirmatory factor analysis model to correlational data from a study involving several psychometric tests and fluid intelligence tasks. (SLD)

  7. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  8. Accurate measurement of time

    NASA Astrophysics Data System (ADS)

    Itano, Wayne M.; Ramsey, Norman F.

    1993-07-01

    The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.

  9. Electronic transport in QD based structures: from basic parameters to opto-electronic device simulations

    NASA Astrophysics Data System (ADS)

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-05-01

    We present a theoretical model that explains the optoelectronic response of nanodevices based on large quantum dot (QD) arrays. The model is grounded on rate equations in the self-consistent field regime and it accurately describes the most important part of the system: the tunnel junctions. We demonstrate that the ratio between the optical terms and the transport rates determines the final device response. Furthermore, we showed that to obtain a net photocurrent the QD has to be asymmetrically coupled to the leads.

  10. FILMPAR: A parallel algorithm designed for the efficient and accurate computation of thin film flow on functional surfaces containing micro-structure

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Thompson, H. M.; Gaskell, P. H.

    2009-12-01

    , industrial and physical applications. However, despite recent modelling advances, the accurate numerical solution of the equations governing such problems is still at a relatively early stage. Indeed, recent studies employing a simplifying long-wave approximation have shown that highly efficient numerical methods are necessary to solve the resulting lubrication equations in order to achieve the level of grid resolution required to accurately capture the effects of micro- and nano-scale topographical features. Solution method: A portable parallel multigrid algorithm has been developed for the above purpose, for the particular case of flow over submerged topographical features. Within the multigrid framework adopted, a W-cycle is used to accelerate convergence in respect of the time dependent nature of the problem, with relaxation sweeps performed using a fixed number of pre- and post-Red-Black Gauss-Seidel Newton iterations. In addition, the algorithm incorporates automatic adaptive time-stepping to avoid the computational expense associated with repeated time-step failure. Running time: 1.31 minutes using 128 processors on BlueGene/P with a problem size of over 16.7 million mesh points.

  11. Assessment of structural model and parameter uncertainty with a multi-model system for soil water balance models

    NASA Astrophysics Data System (ADS)

    Michalik, Thomas; Multsch, Sebastian; Frede, Hans-Georg; Breuer, Lutz

    2016-04-01

    Water for agriculture is strongly limited in arid and semi-arid regions and often of low quality in terms of salinity. The application of saline waters for irrigation increases the salt load in the rooting zone and has to be managed by leaching to maintain a healthy soil, i.e. to wash out salts by additional irrigation. Dynamic simulation models are helpful tools to calculate the root zone water fluxes and soil salinity content in order to investigate best management practices. However, there is little information on structural and parameter uncertainty for simulations regarding the water and salt balance of saline irrigation. Hence, we established a multi-model system with four different models (AquaCrop, RZWQM, SWAP, Hydrus1D/UNSATCHEM) to analyze the structural and parameter uncertainty by using the Global Likelihood and Uncertainty Estimation (GLUE) method. Hydrus1D/UNSATCHEM and SWAP were set up with multiple sets of different implemented functions (e.g. matric and osmotic stress for root water uptake) which results in a broad range of different model structures. The simulations were evaluated against soil water and salinity content observations. The posterior distribution of the GLUE analysis gives behavioral parameters sets and reveals uncertainty intervals for parameter uncertainty. Throughout all of the model sets, most parameters accounting for the soil water balance show a low uncertainty, only one or two out of five to six parameters in each model set displays a high uncertainty (e.g. pore-size distribution index in SWAP and Hydrus1D/UNSATCHEM). The differences between the models and model setups reveal the structural uncertainty. The highest structural uncertainty is observed for deep percolation fluxes between the model sets of Hydrus1D/UNSATCHEM (~200 mm) and RZWQM (~500 mm) that are more than twice as high for the latter. The model sets show a high variation in uncertainty intervals for deep percolation as well, with an interquartile range (IQR) of

  12. Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.

    1993-01-01

    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.

  13. Accurate electron affinity of Co and fine-structure splittings of C o- via slow-electron velocity-map imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Ning, Chuangang

    2016-05-01

    The high-resolution photoelectron spectra of C o- were obtained via the slow-electron velocity-map imaging method. The electron affinity of cobalt element was determined to be 5341.45 (37 ) c m-1 or 662.256(46) meV. The fine structure of C o- was well resolved. The fine-structure intervals C o-(F34) -C o-(F33) and C o-(F34) -C o-(F32) were found to be 920.9 (6 ) c m-1 and 1550.3 (9 ) c m-1 , respectively. The accuracy was improved by a factor of more than ten with respect to the previous laser photodetachment threshold measurement.

  14. Clinical application of a novel automatic algorithm for actigraphy-based activity and rest period identification to accurately determine awake and asleep ambulatory blood pressure parameters and cardiovascular risk.

    PubMed

    Crespo, Cristina; Fernández, José R; Aboy, Mateo; Mojón, Artemio

    2013-03-01

    This paper reports the results of a study designed to determine whether there are statistically significant differences between the values of ambulatory blood pressure monitoring (ABPM) parameters obtained using different methods-fixed schedule, diary, and automatic algorithm based on actigraphy-of defining the main activity and rest periods, and to determine the clinical relevance of such differences. We studied 233 patients (98 men/135 women), 61.29 ± .83 yrs of age (mean ± SD). Statistical methods were used to measure agreement in the diagnosis and classification of subjects within the context of ABPM and cardiovascular disease risk assessment. The results show that there are statistically significant differences both at the group and individual levels. Those at the individual level have clinically significant implications, as they can result in a different classification, and, therefore, different diagnosis and treatment for individual subjects. The use of an automatic algorithm based on actigraphy can lead to better individual treatment by correcting the accuracy problems associated with the fixed schedule on patients whose actual activity/rest routine differs from the fixed schedule assumed, and it also overcomes the limitations and reliability issues associated with the use of diaries. PMID:23130607

  15. High frequency 3-component waveform inversion for source and structural parameters. Final report, 31 December 1993--30 June 1998

    SciTech Connect

    Harvey, D.J.; Lavehio, A.L.

    1998-09-01

    The authors present the results of three studies to develop and verify techniques to classify weak seismic events. (1) The method and results of full waveform inversion for both detailed source parameters and structure parameters are described. Input data were seismograms from industrial explosions in Eastern Kazakhstan recorded by the NRDC seismic network in 1987. Very good fits were produced between the synthetic seismograms and the observed data on all three components simultaneously and for P-wave, Rayleigh wave, and Love wave. They interpreted some of the inverted source parameters as characteristic of several different types of industrial surface mining operations. (2) The same technique was used to determine detailed source and structure parameters using an event that is highly relevant to nuclear monitoring. They determined that a salt mine collapse near Solikamsk, the Ural Mountains on 5 January 1995 was most likely a mine collapse instead of an underground explosions. (3) This study was carried out jointly by the Seismology Group of the University of Colorado and the Russian team from the Int`l Institute of Earthquake Prediction Theory and Math. Geophysics. They developed a new technique to identify a seismic event based on simultaneous inversion of surface wave amplitude spectra and signs of first motions of body wave. They applied this technique to several events near the Chinese test site at Lop Nor and demonstrated significant differences in source parameters characterizing explosions and natural earthquakes in this region.

  16. Simulating the effects of quasar structure on parameters from geodetic VLBI

    NASA Astrophysics Data System (ADS)

    Shabala, Stanislav S.; McCallum, Jamie N.; Plank, Lucia; Böhm, Johannes

    2015-09-01

    We investigate the effects of quasar structure on geodetic very long baseline interferometry (VLBI) measurements. We create catalogues of simulated and real quasars with a range of structure indices, and use these to generate synthetic CONT11 observations with the Vienna VLBI Software simulator tool. We systematically investigate the effects of quasars with different amounts of source structure, and find that source structure can affect station positions at the one-millimetre level. This effect is stronger for isolated stations. Overall, source structure is found to contribute to about 10 % of the troposphere and clock effects. Our simulations confirm analytical predictions that source structure mitigation strategies must be developed in order to achieve millimetre-level VLBI position accuracy.

  17. Scaling up the Single Transducer Thickness-Independent Ultrasonic Imaging Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.

    1998-01-01

    Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.

  18. Insights in the electronic structure and redox reaction energy in LiFePO{sub 4} battery material from an accurate Tran-Blaha modified Becke Johnson potential

    SciTech Connect

    Araujo, Rafael B.; Almeida, J. de S; Ferreira da Silva, A.; Ahuja, Rajeev

    2015-09-28

    The main goals of this paper are to investigate the accuracy of the Tran-Blaha modified Becke Johnson (TB-mBJ) potential to predict the electronic structure of lithium iron phosphate and the related redox reaction energy with the lithium deintercalation process. The computed electronic structures show that the TB-mBJ method is able to partially localize Fe-3d electrons in LiFePO{sub 4} and FePO{sub 4} which usually is a problem for the generalized gradient approximation (GGA) due to the self interaction error. The energy band gap is also improved by the TB-mBJ calculations in comparison with the GGA results. It turned out, however, that the redox reaction energy evaluated by the TB-mBJ technique is not in good agreement with the measured one. It is speculated that this disagreement in the computed redox energy and the experimental value is due to the lack of a formal expression to evaluate the exchange and correlation energy. Therefore, the TB-mBJ is an efficient method to improve the prediction of the electronic structures coming form the standard GGA functional in LiFePO{sub 4} and FePO{sub 4}. However, it does not appear to have the same efficiency for evaluating the redox reaction energies for the investigated system.

  19. Insights in the electronic structure and redox reaction energy in LiFePO4 battery material from an accurate Tran-Blaha modified Becke Johnson potential

    NASA Astrophysics Data System (ADS)

    B. Araujo, Rafael; S. de Almeida, J.; Ferreira da Silva, A.; Ahuja, Rajeev

    2015-09-01

    The main goals of this paper are to investigate the accuracy of the Tran-Blaha modified Becke Johnson (TB-mBJ) potential to predict the electronic structure of lithium iron phosphate and the related redox reaction energy with the lithium deintercalation process. The computed electronic structures show that the TB-mBJ method is able to partially localize Fe-3d electrons in LiFePO4 and FePO4 which usually is a problem for the generalized gradient approximation (GGA) due to the self interaction error. The energy band gap is also improved by the TB-mBJ calculations in comparison with the GGA results. It turned out, however, that the redox reaction energy evaluated by the TB-mBJ technique is not in good agreement with the measured one. It is speculated that this disagreement in the computed redox energy and the experimental value is due to the lack of a formal expression to evaluate the exchange and correlation energy. Therefore, the TB-mBJ is an efficient method to improve the prediction of the electronic structures coming form the standard GGA functional in LiFePO4 and FePO4. However, it does not appear to have the same efficiency for evaluating the redox reaction energies for the investigated system.

  20. Effect of glass structure on spin Hamiltonian parameters: Cu doped tellurite glasses

    SciTech Connect

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K.

    2015-06-24

    Cu-doped glasses with compositions [(70TeO{sub 2}−(30−x)ZnO−xPbO){sub 0.98}− (CuO){sub 0.02}] (x = 5, 10, 15, 20) were prepared using the melt quenching technique and characterized by EPR. Cu{sup 2+} ions are found to be in distorted oxygen octahedral cage and their corresponding spin Hamiltonian (splitting) parameters are deduced for all glasses as a function of increasing PbO. Finally, effect of the matrix on spin Hamiltonian parameters of Cu{sup 2+} ions are correlated with the help of EPR and earlier Raman analysis.

  1. The Identification of Nanoscale Structures According to a Parameters of Acoustic Structuroscopy Method

    NASA Astrophysics Data System (ADS)

    Ababkov, N. V.; Smirnov, A. N.; Bykova, N. V.

    2016-04-01

    The fracture surface of a destroyed steam turbine rotor is studied by acoustic structuroscopy method. The structural-phase state of the metal of the destroyed rotor of a steam turbine is studied using the methods of electron microscopy. It was established that in the areas of control, where the values of the acoustic characteristics have significant differences from the rest of the metal, detected nanocrystalline structure. The possibility of determining the structure of the nanoscale metal by acoustic structuroscopy is shown.

  2. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  3. Distinguishing the effects of model structural error and parameter uncertainty on predictions of pesticide leaching under climate change

    NASA Astrophysics Data System (ADS)

    Steffens, K.; Larsbo, M.; Moeys, J.; Jarvis, N.; Lewan, E.

    2012-04-01

    Studying climate change impacts on pesticide leaching is laced with various sources of uncertainty, which must be assessed in as detailed way as possible in order to understand the reliability of predictions of pesticide leaching under current and future climate conditions. One dilemma in this respect is the difficulty in separating the effects of model structural error from parameter uncertainty. An example of the former is that most of the commonly-used pesticide transport models only consider temperature-dependent degradation, whereas temperature also influences transport in soils through its effect on sorption and diffusion. Especially for climate impact assessments of pesticide leaching, the processes and parameters that depend on soil temperature and moisture should be carefully considered. Two functions, one describing temperature-dependent sorption and one for temperature-dependent diffusion, were therefore introduced as options into the process-oriented 1D pesticide fate and transport model MACRO5.2, which resulted in four structurally different versions of the MACRO-model. The aims of the study were to assess (i) the uncertainty related to model structure in relation to parameter uncertainty and (ii) the importance of these sources of uncertainty in long-term predictions of leaching in the perspective of climate change. A case study for leaching of the mobile herbicide Bentazone was performed in a two-step procedure. First, acceptable parameter sets were identified by evaluating model performance using the Nash-Sutcliff criteria against comprehensive data from a one-year field experiment on a clay soil in Lanna (Southern Sweden). Eight sensitive and uncertain parameters were sampled from uniform distributions in a Monte-Carlo approach, separately for each of the four model versions. In a second step, each model-version with its particular ensemble of different acceptable parameter combinations was used to predict leaching for a present (1970-1999) and a

  4. Corticothalamic dynamics: Structure of parameter space, spectra, instabilities, and reduced model

    NASA Astrophysics Data System (ADS)

    Roberts, J. A.; Robinson, P. A.

    2012-01-01

    Linear instabilities are analyzed in a physiologically based mean-field corticothalamic model and a reduced-parameter model derived from it. In both models, the stable zone corresponding to normal arousal states is bounded by a series of surfaces demarcating the onsets of instabilities. The stable zone is found to depend on delay and rate parameters, whose values have a simple relationship to the number of instabilities and dominant frequencies on the stable zone's boundary. The dominant frequencies of linear activity inside the stable zone are found to lie in clearly delineated regions, each corresponding to an instability surface on its boundary and having approximately the same dominant frequency. These regions are ordered in parameter space according to their dominant frequencies, and an instability associated with the intrathalamic loop is shown to have the highest frequency that can become unstable. This reveals an important role for the thalamus in controlling the stability and bandwidth of dynamics in the corticothalamic system as a whole. The reduced model is found to agree well with the full model in a wide region of parameter space and, thus, is a useful guide to the full model's dynamics.

  5. Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree-Fock energies, and small subsets of the database

    NASA Astrophysics Data System (ADS)

    Malshe, M.; Pukrittayakamee, A.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2009-09-01

    A novel method is presented that significantly reduces the computational bottleneck of executing high-level, electronic structure calculations of the energies and their gradients for a large database that adequately samples the configuration space of importance for systems containing more than four atoms that are undergoing multiple, simultaneous reactions in several energetically open channels. The basis of the method is the high-degree of correlation that generally exists between the Hartree-Fock (HF) and higher-level electronic structure energies. It is shown that if the input vector to a neural network (NN) includes both the configuration coordinates and the HF energies of a small subset of the database, MP4(SDQ) energies with the same basis set can be predicted for the entire database using only the HF and MP4(SDQ) energies for the small subset and the HF energies for the remainder of the database. The predictive error is shown to be less than or equal to the NN fitting error if a NN is fitted to the entire database of higher-level electronic structure energies. The general method is applied to the computation of MP4(SDQ) energies of 68 308 configurations that comprise the database for the simultaneous, unimolecular decomposition of vinyl bromide into six different reaction channels. The predictive accuracy of the method is investigated by employing successively smaller subsets of the database to train the NN to predict the MP4(SDQ) energies of the remaining configurations of the database. The results indicate that for this system, the subset can be as small as 8% of the total number of configurations in the database without loss of accuracy beyond that expected if a NN is employed to fit the higher-level energies for the entire database. The utilization of this procedure is shown to save about 78% of the total computational time required for the execution of the MP4(SDQ) calculations. The sampling error involved with selection of the subset is shown to be

  6. Analysing structural error and parameter uncertainty of two Eucalyptus models differing in representation of autotrophic respiration

    NASA Astrophysics Data System (ADS)

    Minunno, F.; van Oijen, M.; Cameron, D. R.; Cerasoli, S.; Pereira, J. S.; Tomé, M.

    2012-04-01

    In the context of global climate change, the quantification of carbon fluxes in forest ecosystems and how they vary inter-annually are important issues. Process-based models are flexible tools that permit assessing ecosystem productivity at different spatial and temporal scales and for different management and environmental conditions. On the other hand, carbon and water fluxes at the ecosystem scale may be measured using eddy covariance techniques, thus providing useful data for testing and validation of models. The principal aim of the work was to calibrate and evaluate two versions of a process-based model that differ in the autotrophic respiration (RA) modelling. The original version (3PGN) is based on a constant ratio between the net primary production (PN) and the gross primary production (PG), while, in a new version (3PGN*), developed by the authors, RA was modelled as a function of temperature and biomass. The two model versions were calibrated and evaluated using a comprehensive dataset consisting of forest growth experimental data and eddy-covariance measurements. The two model versions were calibrated and evaluated under a Bayesian framework consisting in model calibration, model comparison and analysis of model-data mismatch. Sensitivity and uncertainty analyses of 3PGN and 3PGN* were also carried out. The BC showed that the data were informative for almost 70% of the parameters. BC also allowed identification of the parameters to which the models were most sensitive and to assess parameter correlations. Key parameters were those for carbon allocation, some of the parameters related to water stress and site fertility. Bayesian model comparison showed that the 3PGN*, with the new autotrophic respiration model based on maintenance and growth respiration, has higher conditional probability of being correct than the original 3PGN, based on the simple NPP vs. GPP ratio.

  7. Structure and electrical characterization of gallium arsenide nanowires with different V/III ratio growth parameters

    SciTech Connect

    Muhammad, R.; Ahamad, R.; Ibrahim, Z.; Othaman, Z.

    2014-03-05

    Gallium arsenide (GaAs) nanowires were grown vertically on GaAs(111)B substrate by gold-assisted using metal-organic chemical vapour deposition. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and conductivity atomic force microscopy (CAFM) analysis were carried out to investigate the effects of V/III ratio on structural properties and current-voltage changes in the wires. Results show that GaAs NWs grow preferably in the wurtzite crystal structure than zinc blende crystal structure with increasing V/III ratio. Additionally, CAFM studies have revealed that zincblende nanowires indicate ohmic characteristic compared to oscillation current occurred for wurtzite structures. The GaAs NWs with high quality structures are needed in solar cells technology for trapping energy that directly converts of sunlight into electricity with maximum capacity.

  8. A new 3D grid method for accurate electronic structure calculation of polyatomic molecules: The Voronoi-cell finite difference method

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Chu, Shih-I.

    2008-05-01

    We introduce a new computational method on unstructured grids in the three-dimensional (3D) spaces to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a simple discrete Laplacian operator on unstructured grids based on Voronoi cells and their natural neighbors. The feature of unstructured grids enables us to choose intuitive pictures for an optimal molecular grid system. The new VFD method achieves highly adaptability by the Voronoi-cell diagram and yet simplicity by the finite difference scheme. It has no limitation in local refinement of grids in the vicinity of nuclear positions and provides an explicit expression at each grid without any integration. This method augmented by unstructured molecular grids is suitable for solving the Schr"odinger equation with the realistic 3D Coulomb potentials regardless of symmetry of molecules. For numerical examples, we test accuracies for electronic structures of one-electron polyatomic systems: linear H2^+ and triangular H3^++. We also extend VFD to the density functional theory (DFT) for many-electron polyatomic molecules.

  9. Direct system parameter identification of mechanical structures with application to modal analysis

    NASA Technical Reports Server (NTRS)

    Leuridan, J. M.; Brown, D. L.; Allemang, R. J.

    1982-01-01

    In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.

  10. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling.

    PubMed

    Sutton, Jonathan E; Guo, Wei; Katsoulakis, Markos A; Vlachos, Dionisios G

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells. PMID:27001728

  11. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  12. A theoretical study of the influence of technological friction stir welding parameters on weld structures

    NASA Astrophysics Data System (ADS)

    Astafurov, Sergey; Shilko, Evgeny; Kolubaev, Evgeny; Psakhie, Sergey

    2015-10-01

    Computer simulation by the movable cellular automaton method was performed to study the dynamics of friction stir welding of duralumin plates. It was shown that the ratio of the rotation rate to the translational velocity of the rotating tool has a great influence on the quality of the welded joint. A suitably chosen ratio of these parameters combined with an additional ultrasonic impact reduces considerably the porosity and the amount of microcracks in the weld.

  13. Key parameters governing the dynamic response of long-period structures

    NASA Astrophysics Data System (ADS)

    Fukuwa, N.; Tobita, J.

    2008-04-01

    The present study describes the important factors (period, duration, and intensity) involved in evaluating input ground motion and structural response for the design of long-period structures such as high-rise buildings and base-isolated buildings. First, the fundamental dynamic properties of high-rise buildings are explained based on the results of newly introduced vibration observations programs. Next, the distribution of the predominant period and duration of seismic ground motion within the Nobi Plain, one of the largest sedimentary plains in Japan, is discussed with respect to the possibility of resonance of long-period structures. Finally, we introduce a recently developed long-stroke shaking table that is intended to convince structural engineers and building owners to take adequate countermeasures against large floor response in high-rise buildings because of resonance.

  14. Effect of Reactive Sputtering Parameters on TiAlN Nanocoating Structure and Morphology

    SciTech Connect

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2010-10-24

    The effect of substrate bias and nitrogen flow rate on the TiAlN nanocoating structure and morphology has been investigated by using reactive unbalance DC magnetron sputtering. TiAlN nanocoating was deposited on the tungsten carbide insert tool and the structure and morphology were characterized by using XRD and AFM, respectively. The substrate bias was varied between 0 to -221 V and the nitrogen flow rate was varied between 30 to 72 sccm. The results showed that the structure of TiAlN nanocoating consisted of mainly (111) and (200) plane. The structure was significatly influenced by substrate bias in promoting finer crystal size and increased crystal plane spacing while the rms roughness of nanocoating was influenced by substrate bias and nitrogen flow rate.

  15. Experiences in extraction of contact parameters from process-evaluation test-structures

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo

    1988-01-01

    Six-terminal-contact test structures are introduced for characterizing ohmic contacts between a metal and a heavily doped semiconductor layer. Specifically, the six-terminal test structure supplies the additional information needed in order to calculate the transmission length and eventual corrections to the characteristic resistance per unit width due to finite contact length. The essential feature of this test structure is a square contact with four taps in the lower (semiconductor) layer. Every other one of these taps is used for current injection ('front'). From the voltage drop at the opposite tap and the side taps, the 'end' resistance and the 'side' resistances are calculated. The test structures are shown to give valuable information complementary to the common front resistance measurements. The interfacial resistivity is obtained directly after proper correction for flange effects.

  16. Effect of Reactive Sputtering Parameters on TiAlN Nanocoating Structure and Morphology

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2010-10-01

    The effect of substrate bias and nitrogen flow rate on the TiAlN nanocoating structure and morphology has been investigated by using reactive unbalance DC magnetron sputtering. TiAlN nanocoating was deposited on the tungsten carbide insert tool and the structure and morphology were characterized by using XRD and AFM, respectively. The substrate bias was varied between 0 to -221 V and the nitrogen flow rate was varied between 30 to 72 sccm. The results showed that the structure of TiAlN nanocoating consisted of mainly (111) and (200) plane. The structure was significatly influenced by substrate bias in promoting finer crystal size and increased crystal plane