Science.gov

Sample records for accurate systemic redshifts

  1. Accurate photometric redshift probability density estimation - method comparison and application

    NASA Astrophysics Data System (ADS)

    Rau, Markus Michael; Seitz, Stella; Brimioulle, Fabrice; Frank, Eibe; Friedrich, Oliver; Gruen, Daniel; Hoyle, Ben

    2015-10-01

    We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift, which can be used to estimate the full redshift PDF of a galaxy sample. This method is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitude less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular neural network code (ANNZ). In our use case, this improvement reaches 50 per cent for high-redshift objects (z ≥ 0.75). We show that using these more accurate photometric redshift PDFs will lead to a reduction in the systematic biases by up to a factor of 4, when compared with less accurate PDFs obtained from commonly used methods. The cosmological analyses we examine and find improvement upon are the following: gravitational lensing cluster mass estimates, modelling of angular correlation functions and modelling of cosmic shear correlation functions.

  2. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  3. Can Self-Organizing Maps Accurately Predict Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Klose, C. D.

    2012-03-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using Δz = zphot - zspec) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods.

  4. Redshift

    NASA Astrophysics Data System (ADS)

    Huchra, J.; Murdin, P.

    2000-11-01

    The redshift (or blueshift) of an object is the displacement of its spectral features to longer (or shorter) wavelengths due to a combination of the gravitational redshift, Doppler motions and the general expansion of the Universe. More properly, the term RADIAL VELOCITY is used primarily for the Doppler motions, which are usually the result of gravitational interactions, while redshift is reserv...

  5. Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime

    NASA Astrophysics Data System (ADS)

    Reid, Beth A.; White, Martin

    2011-11-01

    Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for measuring the build-up of cosmological structure, which depends both on the expansion rate of the Universe and on our theory of gravity. The statistical precision with which redshift-space distortions can now be measured demands better control of our theoretical systematic errors. While many recent studies focus on understanding dark matter clustering in redshift space, galaxies occupy special places in the universe: dark matter haloes. In our detailed study of halo clustering and velocity statistics in 67.5 h-3 Gpc3 of N-body simulations, we uncover a complex dependence of redshift-space clustering on halo bias. We identify two distinct corrections which affect the halo redshift-space correlation function on quasi-linear scales (˜30-80 h-1 Mpc): the non-linear mapping between real-space and redshift-space positions, and the non-linear suppression of power in the velocity divergence field. We model the first non-perturbatively using the scale-dependent Gaussian streaming model, which we show is accurate at the <0.5 (2) per cent level in transforming real-space clustering and velocity statistics into redshift space on scales s > 10 (s > 25) h-1 Mpc for the monopole (quadrupole) halo correlation functions. The dominant correction to the Kaiser limit in this model scales like b3. We use standard perturbation theory to predict the real-space pairwise halo velocity statistics. Our fully analytic model is accurate at the 2 per cent level only on scales s > 40 h-1 Mpc for the range of halo masses we studied (with b= 1.4-2.8). We find that recent models of halo redshift-space clustering that neglect the corrections from the bispectrum and higher order terms from the non-linear real-space to redshift-space mapping will not have the accuracy required for current and future observational analyses. Finally, we note that our simulation results confirm the essential but non

  6. Towards an accurate model of redshift-space distortions: a bivariate Gaussian description for the galaxy pairwise velocity distributions

    NASA Astrophysics Data System (ADS)

    Bianchi, Davide; Chiesa, Matteo; Guzzo, Luigi

    2016-10-01

    As a step towards a more accurate modelling of redshift-space distortions (RSD) in galaxy surveys, we develop a general description of the probability distribution function of galaxy pairwise velocities within the framework of the so-called streaming model. For a given galaxy separation , such function can be described as a superposition of virtually infinite local distributions. We characterize these in terms of their moments and then consider the specific case in which they are Gaussian functions, each with its own mean μ and variance σ2. Based on physical considerations, we make the further crucial assumption that these two parameters are in turn distributed according to a bivariate Gaussian, with its own mean and covariance matrix. Tests using numerical simulations explicitly show that with this compact description one can correctly model redshift-space distorsions on all scales, fully capturing the overall linear and nonlinear dynamics of the galaxy flow at different separations. In particular, we naturally obtain Gaussian/exponential, skewed/unskewed distribution functions, depending on separation as observed in simulations and data. Also, the recently proposed single-Gaussian description of redshift-space distortions is included in this model as a limiting case, when the bivariate Gaussian is collapsed to a two-dimensional Dirac delta function. More work is needed, but these results indicate a very promising path to make definitive progress in our program to improve RSD estimators.

  7. Accurate PSF-matched photometry and photometric redshifts for the extreme deep field with the Chebyshev-Fourier functions

    NASA Astrophysics Data System (ADS)

    Jiménez-Teja, Y.; Benítez, N.; Molino, A.; Fernandes, C. A. C.

    2015-10-01

    Photometric redshifts, which have become the cornerstone of several of the largest astronomical surveys like PanStarrs, DES, J-PAS and LSST, require precise measurements of galaxy photometry in different bands using a consistent physical aperture. This is not trivial, due to the variation in the shape and width of the point spread function (PSF) introduced by wavelength differences, instrument positions and atmospheric conditions. Current methods to correct for this effect rely on a detailed knowledge of PSF characteristics as a function of the survey coordinates, which can be difficult due to the relative paucity of stars tracking the PSF behaviour. Here we show that it is possible to measure accurate, consistent multicolour photometry without knowing the shape of the PSF. The Chebyshev-Fourier functions (CHEFs) can fit the observed profile of each object and produce high signal-to-noise integrated flux measurements unaffected by the PSF. These total fluxes, which encompass all the galaxy populations, are much more useful for galaxy evolution studies than aperture photometry. We compare the total magnitudes and colours obtained using our software to traditional photometry with SEXTRACTOR, using real data from the COSMOS survey and the Hubble Ultra-Deep Field (HUDF). We also apply the CHEF technique to the recently published eXtreme Deep Field (XDF) and compare the results to those from COLORPRO on the HUDF. We produce a photometric catalogue with 35 732 sources (10 823 with signal-to-noise ratio ≥5), reaching a photometric redshift precision of 2 per cent due to the extraordinary depth and wavelength coverage of the eXtreme Deep Field images.

  8. Tracing high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret

    2016-10-01

    We study the cosmic web at redshifts 1.0 <= <= 1.8 using quasar systems based on quasar data from the SDSS DR7 QSO catalogue. Quasar systems were determined with a friend-of-friend (FoF) algorithm at a series of linking lengths. At the linking lengths l <= 30 h -1 Mpc the diameters of quasar systems are smaller than the diameters of random systems, and are comparable to the sizes of galaxy superclusters in the local Universe. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At larger linking lengths the diameters of quasar systems are comparable with the sizes of supercluster complexes in our cosmic neighbourhood. The richest quasar systems have diameters exceeding 500h Mpc. Very rich systems can be found also in random distribution but the percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples showing that the large-scale distribution of quasar systems differs from random distribution. Quasar system catalogues at our web pages (http://www.aai.ee/maret/QSOsystems.html) serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.

  9. Tracing a high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret; Tago, Erik; Lietzen, Heidi; Park, Changbom; Heinämäki, Pekka; Saar, Enn; Song, Hyunmi; Liivamägi, Lauri Juhan; Einasto, Jaan

    2014-08-01

    Context. To understand the formation, evolution, and present-day properties of the cosmic web we need to study it at low and high redshifts. Aims: We trace the cosmic web at redshifts that range from 1.0 ≤ z ≤ 1.8 by using the quasar (QSO) data from the SDSS DR7 QSO catalogue. Methods: We apply a friend-of-friend algorithm to the quasar and random catalogues to determine systems at a series of linking length and analyse richness and sizes of these systems. Results: At the linking lengths l ≤ 30 h-1 Mpc, the number of quasar systems is larger than the number of systems detected in random catalogues, and the systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe. The richest quasar systems have four members. The mean space density of quasar systems, ≈ 10-7 (h-1 Mpc)-3, is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 ≤ l ≤ 70 h-1 Mpc), the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. The percolating system, which penetrate the whole sample volume appears in a quasar sample at a smaller linking length than in random samples (85 h-1 Mpc). At the linking length 70 h-1 Mpc, the richest systems of quasars have diameters exceeding 500 h-1 Mpc. Quasar luminosities in systems are not correlated with the system richness. Conclusions: Quasar system catalogues in our web pages and at the Strasbourg Astronomical Data Center (CDS) serve as a database for searching superclusters of galaxies and for tracing the cosmic web at high redshifts. Appendix A is available in electronic form at http://www.aanda.orgThe catalogues are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  10. CO Emission from Low-Redshift QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Bechtold, J.; Black, J. H.

    1994-12-01

    By studying the physical conditions in galaxies at different redshifts, we can begin to understand the evolutionary process of starformation from early epochs to the present. Such studies have been performed at optical and centimeter wavelengths for a number of years. Due to advances in receiver and telescope technology at millimeter and submillimeter wavelengths, molecular line studies have recently been performed toward high redshift absorption line systems. Observations of the mm/submm CO lines in these very young galaxies provide a way to investigate abundances of and conditions in potential starforming material. CO provides some of the strongest emission lines associated with star formation in nearby disk galaxies. Here we report the detection of CO in emission toward 4 galaxies at redshifts of 0.02 to 0.40. From these observations we are able to compute the molecular mass of the starforming material. Studies of starformation in galaxies at low to mid-redshift ranges are important, because these systems represent a transitional phase between starformation at early epochs and the present. Our recent detections of CO emission indicate total molecular masses in three of the galaxies to be a few times 10(9) Msun, using the ``standard conversion factor'' for molecular hydrogen column density to integrated CO intensity ratio (N(H_2)/Ico) and an H_o=75km/s/Mpc and q_o= 0.5. The fourth system, the z=0.40 21 cm absorber toward PKS 1229-021, has a molecular mass of ~ 10(11) M_sunh(-2) . Together with data at other wavelengths, the z=0.40 absorber may be a in pre-starburst phase. All four of our sources were selected to be metal line systems (with high HI column densities) and possess strong FIR fluxes detected by IRAS at 60 and/or 100{microns }. The source possessing the brightest FIR emission among the four is the z=0.05 21 cm absorber toward S4 0248+43. The total observed FIR luminosity for this source is LFIR =3.0x10E11 Lsun. Taking into account its luminosity and

  11. How Accurately can we Calculate Thermal Systems?

    SciTech Connect

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-04-20

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.

  12. Gravitational mechanics of systems of galaxies. I. Corrections for errors in redshifts

    SciTech Connect

    Rood, H.J.

    1982-05-01

    Modern 21 cm hydrogen-line redshifts (published and unpublished), accurate to approx.8 km s/sup -1/, are used as standards to derive zero point corrections, rms uncertainties (sigma/sub V/), and the percentage of discordant (i.e., differing by more than 3 sigma/sub V/ from the zero point redshift) optical and 21 cm redshifts from earlier catalogs. Optical redshifts have a typical uncertainty of approx.100 km s/sup -1/ (independent of the epoch of the source of redshift), but the variation in sigma/sub V/ from source to source is considerable. Optical redshifts by Kelton (sigma/sub V/ = 43 km s/sup -1/), the Center for Astrophysics (Davis et al.) (sigma/sub V/ = 37 km s/sup -1/), and Rubin, Ford, and Thonnard (sigma/sub V/ = 8 km s/sup -1/) are especially noteworthy. The rms correction factor appropriate to optical redshifts listed in the First Reference Catalog (de Vaucouleurs and de Vaucouleurs) is 1.33 and that for the Second Reference Catalog (de Vaucouleurs, de Vaucouleurs, and Corwin) is 1.42. A new catalog of galaxy redshifts (CGR) containing known redshifts for approx.4000 galaxies and reliable estimates of rms uncertainties was compiled and is available for circulation.

  13. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  14. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  15. Is deuterium in high-redshift Lyman limit systems primordial?

    SciTech Connect

    Jedamzik, K.; Fuller, G.M.

    1997-07-01

    Detections of deuterium in high-redshift Lyman limit absorption systems along the line of sight to QSOs promise to reveal the primordial deuterium abundance. At present, the deuterium abundances (D/H) derived from the very few systems observed are significantly discordant. Assuming the validity of all the data, if this discordance does not reflect intrinsic primordial inhomogeneity, then it must arise from processes operating after the primordial nucleosynthesis epoch. We consider processes that might lead to significant deuterium production or destruction and yet allow the cloud to mimic a chemically unevolved system. These processes include, for example, anomalous/stochastic chemical evolution and D/{sup 4}He photodestruction. In general, we find it unlikely that these processes could have significantly altered D/H in Lyman limit clouds. We argue that chemical evolution scenarios, unless very finely tuned, cannot account for significant local deuterium depletion since they tend to overproduce {sup 12}C, even when allowance is made for possible outflow. Similarly, D/{sup 4}He photodestruction schemes engineered to locally produce or destroy deuterium founder on the necessity of requiring an improbably large {gamma}-ray source density. Future observations of D/H in Lyman limit systems may provide important insight into the initial conditions for the primordial nucleosynthesis process, early chemical evolution, and the galaxy formation process. {copyright} {ital 1997} {ital The American Astronomical Society}

  16. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  17. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  18. Neutral hydrogen at the present epoch: A constraint on the evolution of high redshift systems

    NASA Technical Reports Server (NTRS)

    Rao, Sandhya; Briggs, Frank H.

    1993-01-01

    Damped Lyman-alpha and metal absorption lines in the spectra of quasars indicate the presence of intervening gas-rich systems at high redshift (z greater than 2). These systems have characteristic size scales, velocity dispersions, and neutral hydrogen column densities (N(H1)) similar to present day spirals and are thus thought to be their progenitors. Constraints on galaxy evolution can be derived by comparing the H1 properties of high redshift systems to the present galaxy population. Good observational statistics on high redshift absorbers specify the number of these systems along the line of sight as a function of N(H1), the column density of neutral hydrogen per absorber. Similar statistics for nearby (z = 0) galaxies of which spirals are the only gas-rich systems that provide a significant cross-section for the interception of light from quasars is derived.

  19. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  20. SOPROLIFE System: An Accurate Diagnostic Enhancer

    PubMed Central

    Zeitouny, Mona; Feghali, Mireille; Nasr, Assaad; Abou-Samra, Philippe; Saleh, Nadine; Bourgeois, Denis; Farge, Pierre

    2014-01-01

    Objectives. The aim of this study was to evaluate a light-emitting diode fluorescence tool, the SOPROLIFE light-induced fluorescence evaluator, and compare it to the international caries detection and assessment system-II (ICDAS-II) in the detection of occlusal caries. Methods. A total of 219 permanent posterior teeth in 21 subjects, with age ranging from 15 to 65 years, were examined. An intraclass correlation coefficient (ICC) was computed to assess the reliability between the two diagnostic methods. Results. The results showed a high reliability between the two methods (ICC = 0.92; IC = 0.901–0.940; P < 0.001). The SOPROLIFE blue fluorescence mode had a high sensitivity (87%) and a high specificity (99%) when compared to ICDAS-II. Conclusion. Compared to the most used visual method in the diagnosis of occlusal caries lesions, the finding from this study suggests that SOPROLIFE can be used as a reproducible and reliable assessment tool. At a cut-off point, categorizing noncarious lesions and visual change in enamel, SOPROLIFE shows a high sensitivity and specificity. We can conclude that financially ICDAS is better than SOPROLIFE. However SOPROLIFE is easier for clinicians since it is a simple evaluation of images. Finally in terms of efficiency SOPROLIFE is not superior to ICDAS but tends to be equivalent with the same advantages. PMID:25401161

  1. Laser Guided Automated Calibrating System for Accurate Bracket Placement

    PubMed Central

    Anitha, A; Kumar, AJ; Mascarenhas, R; Husain, A

    2015-01-01

    Background: The basic premise of preadjusted bracket system is accurate bracket positioning. It is widely recognized that accurate bracket placement is of critical importance in the efficient application of biomechanics and in realizing the full potential of a preadjusted edgewise appliance. Aim: The purpose of this study was to design a calibrating system to accurately detect a point on a plane as well as to determine the accuracy of the Laser Guided Automated Calibrating (LGAC) System. Materials and Methods: To the lowest order of approximation a plane having two parallel lines is used to verify the accuracy of the system. On prescribing the distance of a point from the line, images of the plane are analyzed from controlled angles, calibrated and the point is identified with a laser marker. Results: The image was captured and analyzed using MATLAB ver. 7 software (The MathWorks Inc.). Each pixel in the image corresponded to a distance of 1cm/413 (10 mm/413) = 0.0242 mm (L/P). This implies any variations in distance above 0.024 mm can be measured and acted upon, and sets the highest possible accuracy for this system. Conclusion: A new automated system is introduced having an accuracy of 0.024 mm for accurate bracket placement. PMID:25745575

  2. Videometric terminal guidance method and system for UAV accurate landing

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Lei, Zhihui; Yu, Qifeng; Zhang, Hongliang; Shang, Yang; Du, Jing; Gui, Yang; Guo, Pengyu

    2012-06-01

    We present a videometric method and system to implement terminal guidance for Unmanned Aerial Vehicle(UAV) accurate landing. In the videometric system, two calibrated cameras attached to the ground are used, and a calibration method in which at least 5 control points are applied is developed to calibrate the inner and exterior parameters of the cameras. Cameras with 850nm spectral filter are used to recognize a 850nm LED target fixed on the UAV which can highlight itself in images with complicated background. NNLOG (normalized negative laplacian of gaussian) operator is developed for automatic target detection and tracking. Finally, 3-D position of the UAV with high accuracy can be calculated and transfered to control system to direct UAV accurate landing. The videometric system can work in the rate of 50Hz. Many real flight and static accuracy experiments demonstrate the correctness and veracity of the method proposed in this paper, and they also indicate the reliability and robustness of the system proposed in this paper. The static accuracy experiment results show that the deviation is less-than 10cm when target is far from the cameras and lessthan 2cm in 100m region. The real flight experiment results show that the deviation from DGPS is less-than 20cm. The system implement in this paper won the first prize in the AVIC Cup-International UAV Innovation Grand Prix, and it is the only one that achieved UAV accurate landing without GPS or DGPS.

  3. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  4. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  5. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  6. Accurate Parameter Estimation for Unbalanced Three-Phase System

    PubMed Central

    Chen, Yuan

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS. PMID:25162056

  7. Accurate parameter estimation for unbalanced three-phase system.

    PubMed

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS.

  8. Properties of the redshift

    NASA Technical Reports Server (NTRS)

    Tifft, William G.; Cocke, W. J.

    1990-01-01

    Central to any analysis of dynamical systems, or large scale motion, is the interpretation of redshifts of galaxies as classical Doppler velocity shifts. This is a testable assumption and for many years evidence has accumulated that is inconsistent with the assumption. Here, the authors review recent evidence suggesting systematic radial dependence and temporal variation of redshifts.

  9. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  10. Intervening O vi Quasar Absorption Systems at Low Redshift: A Significant Baryon Reservoir.

    PubMed

    Tripp; Savage; Jenkins

    2000-05-01

    Far-UV echelle spectroscopy of the radio-quiet QSO H1821+643 (zem=0.297), obtained with the Space Telescope Imaging Spectrograph (STIS) at approximately 7 km s-1 resolution, reveals four definite O vi absorption-line systems and one probable O vi absorber at 0.15redshift; these are likely intervening systems unrelated to the background QSO. In the case of the strong O vi system at zabs=0.22497, multiple components are detected in Si iii and O vi as well as H i Lyman series lines, and the differing component velocity centroids and b-values firmly establish that this is a multiphase absorption system. A weak O vi absorber is detected at zabs=0.22637, i.e., offset by approximately 340 km s-1 from the zabs=0.22497 system. Lyalpha absorption is detected at zabs=0.22613, but no Lyalpha absorption is significantly detected at 0.22637. Other weak O vi absorbers at zabs=0.24531 and 0.26659 and the probable O vi system at 0.21326 have widely diverse O vi/H i column density ratios with N(O vi)/N(H i) ranging from redshift intergalactic medium. We conservatively estimate that the cosmological mass density of the O vi systems is Omegab(Ovi&parr0; greater, similar0.0008 h-175. With an assumed metallicity of 1/10 solar and a conservative assumption that the fraction of oxygen in the O vi ionization stage is 0.2, we obtain Omegab(Ovi&parr0; greater, similar0.004 h-175. This is comparable to the combined cosmological mass density of stars and cool gas in galaxies and X-ray-emitting gas in galaxy clusters at low redshift.

  11. A Highly Accurate Face Recognition System Using Filtering Correlation

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Sayuri; Kodate, Kashiko

    2007-09-01

    The authors previously constructed a highly accurate fast face recognition optical correlator (FARCO) [E. Watanabe and K. Kodate: Opt. Rev. 12 (2005) 460], and subsequently developed an improved, super high-speed FARCO (S-FARCO), which is able to process several hundred thousand frames per second. The principal advantage of our new system is its wide applicability to any correlation scheme. Three different configurations were proposed, each depending on correlation speed. This paper describes and evaluates a software correlation filter. The face recognition function proved highly accurate, seeing that a low-resolution facial image size (64 × 64 pixels) has been successfully implemented. An operation speed of less than 10 ms was achieved using a personal computer with a central processing unit (CPU) of 3 GHz and 2 GB memory. When we applied the software correlation filter to a high-security cellular phone face recognition system, experiments on 30 female students over a period of three months yielded low error rates: 0% false acceptance rate and 2% false rejection rate. Therefore, the filtering correlation works effectively when applied to low resolution images such as web-based images or faces captured by a monitoring camera.

  12. The Global Geodetic Infrastructure for Accurate Monitoring of Earth Systems

    NASA Astrophysics Data System (ADS)

    Weston, Neil; Blackwell, Juliana; Wang, Yan; Willis, Zdenka

    2014-05-01

    The National Geodetic Survey (NGS) and the Integrated Ocean Observing System (IOOS), two Program Offices within the National Ocean Service, NOAA, routinely collect, analyze and disseminate observations and products from several of the 17 critical systems identified by the U.S. Group on Earth Observations. Gravity, sea level monitoring, coastal zone and ecosystem management, geo-hazards and deformation monitoring and ocean surface vector winds are the primary Earth systems that have active research and operational programs in NGS and IOOS. These Earth systems collect terrestrial data but most rely heavily on satellite-based sensors for analyzing impacts and monitoring global change. One fundamental component necessary for monitoring via satellites is having a stable, global geodetic infrastructure where an accurate reference frame is essential for consistent data collection and geo-referencing. This contribution will focus primarily on system monitoring, coastal zone management and global reference frames and how the scientific contributions from NGS and IOOS continue to advance our understanding of the Earth and the Global Geodetic Observing System.

  13. Simple and accurate optical height sensor for wafer inspection systems

    NASA Astrophysics Data System (ADS)

    Shimura, Kei; Nakai, Naoya; Taniguchi, Koichi; Itoh, Masahide

    2016-02-01

    An accurate method for measuring the wafer surface height is required for wafer inspection systems to adjust the focus of inspection optics quickly and precisely. A method for projecting a laser spot onto the wafer surface obliquely and for detecting its image displacement using a one-dimensional position-sensitive detector is known, and a variety of methods have been proposed for improving the accuracy by compensating the measurement error due to the surface patterns. We have developed a simple and accurate method in which an image of a reticle with eight slits is projected on the wafer surface and its reflected image is detected using an image sensor. The surface height is calculated by averaging the coordinates of the images of the slits in both the two directions in the captured image. Pattern-related measurement error was reduced by applying the coordinates averaging to the multiple-slit-projection method. Accuracy of better than 0.35 μm was achieved for a patterned wafer at the reference height and ±0.1 mm from the reference height in a simple configuration.

  14. Plasma Redshift Cosmology

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  15. Personalized Orthodontic Accurate Tooth Arrangement System with Complete Teeth Model.

    PubMed

    Cheng, Cheng; Cheng, Xiaosheng; Dai, Ning; Liu, Yi; Fan, Qilei; Hou, Yulin; Jiang, Xiaotong

    2015-09-01

    The accuracy, validity and lack of relation information between dental root and jaw in tooth arrangement are key problems in tooth arrangement technology. This paper aims to describe a newly developed virtual, personalized and accurate tooth arrangement system based on complete information about dental root and skull. Firstly, a feature constraint database of a 3D teeth model is established. Secondly, for computed simulation of tooth movement, the reference planes and lines are defined by the anatomical reference points. The matching mathematical model of teeth pattern and the principle of the specific pose transformation of rigid body are fully utilized. The relation of position between dental root and alveolar bone is considered during the design process. Finally, the relative pose relationships among various teeth are optimized using the object mover, and a personalized therapeutic schedule is formulated. Experimental results show that the virtual tooth arrangement system can arrange abnormal teeth very well and is sufficiently flexible. The relation of position between root and jaw is favorable. This newly developed system is characterized by high-speed processing and quantitative evaluation of the amount of 3D movement of an individual tooth.

  16. Accurate dispensing system for single oocytes using air ejection

    PubMed Central

    Feng, Lin; Sun, Yiling; Ohsumi, Chisato; Arai, Fumihito

    2013-01-01

    In this study, we propose a new approach to increase the success rate of single-oocyte dispensing and investigate the subsequent viability of the dispensed oocytes. We used a pair of capacitance sensors placed in a microfluidic chip to detect the oocyte, and custom-designed a special buffer zone in the microchannel to decelerate the flow velocity and reduce the hydraulic pressure acting on the oocyte. In the buffer zone, a semicircular bay, formed by equally spaced micro-pillars, is used to stop the oocyte at the dispensing nozzle hole. Finally, the oocyte is ejected by airflow to the culture array. The novel feature of the developed microfluidic system is that the extraordinary improvement in success rate is accompanied by a lack of change in oocyte survival rate (as assessed by a comparison of survival rates before and after the dispensing procedure). By using this device, we achieved a highly accurate single-oocyte dispensing process with a success rate of 100%. The oocyte survival rate is approximately 70%, regardless of whether or not the oocyte is dispensed. The newly proposed system has the advantages of high operation speed and potential usage for two-dimensional micropatterning. PMID:24404076

  17. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  18. New observations directly measuring the full continuous sizes of high redshift damped Lya systems

    NASA Astrophysics Data System (ADS)

    Cooke, Jeff; O'Meara, John

    2016-01-01

    The formation and evolution of galaxies requires large reservoirs of cold, neutral gas. The damped Lyman-α systems (DLAs), seen in absorption towards distant quasars and gamma ray bursts, are predicted to be the dominant reservoirs for this gas. Detailed properties of DLAs have been studied extensively for decades with great success. However, their size, fundamental in understanding their nature, has remained elusive, as quasar and gamma ray burst sightlines only probe comparatively tiny areas of the foreground DLAs. Here, we introduce a new approach to measure the full extent of DLAs in the sightlines to extended background sources. We present the discovery of z ~ 2 DLAs with column densities as high as log N(HI) = 21.1 ±0.4 cm-2 covering 90-100% of the luminous extent of background galaxies. Estimates of the sizes of the background galaxies range from a minimum of a few kpc2, to ˜100 kpc2, and demonstrate that high-column density neutral gas can span continuous areas 108-1010 times larger than previously explored in quasar or gamma ray burst sightlines. The DLAs are from our pilot survey that searches Lyman break and Lyman continuum galaxies at high redshift. The low luminosities, large sizes, and mass contents (~106-109 M⊙) implied by the early data suggest that DLAs contain the necessary fuel for galaxies, with many systems consistent with relatively massive, low-luminosity primeval galaxies.

  19. The high-ion content and kinematics of low-redshift Lyman limit systems

    SciTech Connect

    Fox, Andrew J.; Tumlinson, Jason; Bordoloi, Rongmon; Lehner, Nicolas; Howk, J. Christopher; Tripp, Todd M.; Katz, Neal; Prochaska, J. Xavier; Werk, Jessica K.; Oppenheimer, Benjamin D.; Davé, Romeel

    2013-12-01

    We study the high-ion content and kinematics of the circumgalactic medium around low-redshift galaxies using a sample of 23 Lyman limit systems (LLSs) at 0.08 < z < 0.93 observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. In Lehner et al., we recently showed that low-z LLSs have a bimodal metallicity distribution. Here we extend that analysis to search for differences between the high-ion and kinematic properties of the metal-poor and metal-rich branches. We find that metal-rich LLSs tend to show higher O VI columns and broader O VI profiles than metal-poor LLSs. The total H I line width (Δv {sub 90} statistic) in LLSs is not correlated with metallicity, indicating that the H I kinematics alone cannot be used to distinguish inflow from outflow and gas recycling. Among the 17 LLSs with O VI detections, all but two show evidence of kinematic sub-structure, in the form of O VI-H I centroid offsets, multiple components, or both. Using various scenarios for how the metallicities in the high-ion and low-ion phases of each LLS compare, we constrain the ionized hydrogen column in the O VI phase to lie in the range log N(H II) ∼ 17.6-20. The O VI phase of LLSs is a substantial baryon reservoir, with M(high-ion) ∼ 10{sup 8.5-10.9} (r/150 kpc){sup 2} M {sub ☉}, similar to the mass in the low-ion phase. Accounting for the O VI phase approximately doubles the contribution of low-z LLSs to the cosmic baryon budget.

  20. A new accurate pill recognition system using imprint information

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Kamata, Sei-ichiro

    2013-12-01

    Great achievements in modern medicine benefit human beings. Also, it has brought about an explosive growth of pharmaceuticals that current in the market. In daily life, pharmaceuticals sometimes confuse people when they are found unlabeled. In this paper, we propose an automatic pill recognition technique to solve this problem. It functions mainly based on the imprint feature of the pills, which is extracted by proposed MSWT (modified stroke width transform) and described by WSC (weighted shape context). Experiments show that our proposed pill recognition method can reach an accurate rate up to 92.03% within top 5 ranks when trying to classify more than 10 thousand query pill images into around 2000 categories.

  1. QSO Metal Absorption Systems at High Redshift and the Signature of Hierarchical Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Rauch, Michael; Haehnelt, Martin G.; Steinmetz, Matthias

    1997-05-01

    In a hierarchical cosmogony, galaxies build up by continuous merging of smaller structures. At z = 3, the matter content of a typical present-day galaxy is dispersed over several individual clumps embedded in sheetlike structures, often aligned along filaments. We have used hydrodynamical simulations to investigate the spatial distribution and absorption properties of metal-enriched gas in such regions of ongoing galaxy formation. The metal and hydrogen absorption features produced by the collapsing structures closely resemble observed QSO absorption systems over a wide range in H I column density. Strong C II and Si IV absorption occurs for lines of sight passing the densest regions close to the center of the protogalactic clumps, while C IV is a good tracer of the prominent filamentary structures and O VI becomes the strongest absorption feature for lines of sight passing through low-density regions far away from fully collapsed objects. The observed column density ratios of the different ionic species at z = 3 can be well reproduced if a mean metallicity [Z/H] = -2.5, relative abundances as found in metal-poor stars, a UV background with intensity J-22 = 3 at the Lyman limit, and either a power-law spectrum (J ~ ν-1.5) or the spectral shape proposed by Haardt & Madau are assumed. The observed scatter in [C/H] is about a magnitude larger than that in the simulations, which suggests an inhomogeneous metal distribution. Observed and simulated Doppler parameter distributions of H I and C IV absorption lines are in good agreement, which indicates that shock heating due to gravitational collapse is a second important heating agent in addition to photoionization heating. The large velocity spreads seen in some C IV systems may be due to the occasional alignments of the observer's line of sight with expanding large-scale filaments. Both high-ionization multicomponent heavy-element absorbers and damped Lyα systems can arise from groups of moderately sized protogalactic

  2. THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Ly{alpha} SYSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect

    Meiring, J. D.; Tripp, T. M.; Prochaska, J. X.; Werk, J.; Tumlinson, J.; Thom, C.; Sembach, K. R.; Jenkins, E. B.; O'Meara, J. M.

    2011-05-01

    We report on the first Cosmic Origins Spectrograph observations of damped Ly{alpha} systems (DLAs) and sub-damped Ly{alpha} systems (sub-DLAs) discovered in a new survey of the gaseous halos of low-redshift galaxies. From observations of 37 sightlines, we have discovered three DLAs and four sub-DLAs. We measure the neutral gas density {Omega}{sub HI}, and redshift density d N/d z, of DLA and sub-DLA systems at z < 0.35. We find d N/dz = 0.25{sup +0.24}-{sub 0.14} and {Omega}{sub HI} = 1.4{sup +1.3}{sub -0.7} x 10{sup -3} for DLAs, and d N/d z = 0.08{sup +0.19}{sub -0.06} with {Omega}{sub HI} = 4.2{sup +9.6}{sub -3.5} x 10{sup -5} for sub-DLAs over a redshift path {Delta}z = 11.9. To demonstrate the scientific potential of such systems, we present a detailed analysis of the DLA at z{sub abs} = 0.1140 in the spectrum of SDSS J1009+0713. Profile fits to the absorption lines determine log N(H I) = 20.68 {+-} 0.10 with a metallicity determined from the undepleted element sulfur of [S/H] = -0.62 {+-} 0.18. The abundance pattern of this DLA is similar to that of higher z DLAs, showing mild depletion of the refractory elements Fe and Ti with [S/Fe] = +0.24 {+-} 0.22 and [S/Ti] = +0.28 {+-} 0.15. Nitrogen is underabundant in this system with [N/H] = -1.40 {+-} 0.14, placing this DLA below the plateau of the [N/{alpha}] measurements in the local universe at similar metallicities. This DLA has a simple kinematic structure with only two components required to fit the profiles and a kinematic width of {Delta}v{sub 90} = 52 km s{sup -1}. Imaging of the QSO field with the Hubble Space Telescope/Wide Field Camera 3 reveals a spiral galaxy at very small impact parameter to the QSO and several galaxies within 10'', or 20 comoving kpc at the redshift of the DLA. Follow-up spectra with the Low Resolution Imaging Spectrometer on the Keck telescope reveal that none of the nearby galaxies are at the redshift of the DLA. The spiral galaxy is identified as the host galaxy of the QSO based

  3. An accurate continuous calibration system for high voltage current transformer

    NASA Astrophysics Data System (ADS)

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  4. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  5. Micron-Accurate Laser Fresnel-Diffraction Ranging System

    NASA Technical Reports Server (NTRS)

    Lehner, David; Campbell, Jonathan; Smith, Kelly; Sanders, Alvin; Allison, Stephen; Smaley, Larry

    2008-01-01

    Two versions of an optoelectronic system undergoing development are depicted. The system is expected to be capable of measuring a distance between 2 and 10 m with an error of no more than 1 micrometer. The system would be designed to exploit Fresnel diffraction of a laser beam. In particular, it would be designed to take advantage of the fact that a Fresnel diffraction pattern is ultrasensitive to distance. The two versions would differ in the following respects: In version 1, the focus of the telescope would be in the Fresnel region, and the telescope would have a small depth of focus. As a consequence, the Fresnel pattern would be imaged directly onto the photodetector array; in version 2, a multielement lens module would displace the Fresnel region from the vicinity of the pinhole to the vicinity of the optical receiver. As the distance to be measured varied, the location of the receiver relative to the displaced Fresnel-diffraction region would vary, thereby causing the Fresnel diffraction pattern on the focal plane to vary. The multielement lens module would also correct for aberrations. The processing of the digitized Fresnel diffraction pattern in the computer might be accelerated by using only parts of the pattern or even only one small part - the central pixel. As the distance from the pinhole increased, the central pixel would rapidly cycle between maximum and minimum light intensity. This in itself would not be sufficient to uniquely determine the distance. However, by varying the size of the pinhole or the wavelength of the laser, one could obtain a second cycle of variation of intensity that, in conjunction with the first cycle, could enable a unique determination of distance. Alternatively, for a single wavelength and a single pinhole size, it should suffice to consider the data from only two different key pixels in the Fresnel pattern.

  6. Developing accurate molecular mechanics force fields for conjugated molecular systems.

    PubMed

    Do, Hainam; Troisi, Alessandro

    2015-10-14

    A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel.

  7. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  8. The Development of a Digital Processing System for Accurate Range Determinations. [for Teleoperator Maneuvering Systems

    NASA Technical Reports Server (NTRS)

    Pujol, A., Jr.

    1983-01-01

    The development of an accurate close range (from 0.0 meters to 30.0 meters) radar system for Teleoperator Maneuvering Systems (TMS) is discussed. The system under investigation is a digital processor that converts incoming signals from the radar system into their related frequency spectra. Identification will be attempted by correlating spectral characteristics with accurate range determinataions. The system will utilize an analog to digital converter for sampling and converting the signal from the radar system into 16-bit digital words (two bytes) for RAM storage, data manipulations, and computations. To remove unwanted frequency components the data will be retrieved from RAM and digitally filtered using large scale integration (LSI) circuits. Filtering will be performed by a biquadratic routine within the chip which carries out the required filter algorithm. For conversion to a frequency spectrum the filtered data will be processed by a Fast Fourier Transform chip. Analysis and identification of spectral characteristics for accurate range determinations will be made by microcomputer computations.

  9. THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Ly{alpha} SYSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH: CHEMICAL ABUNDANCES AND AFFILIATED GALAXIES

    SciTech Connect

    Battisti, A. J.; Meiring, J. D.; Tripp, T. M.; Prochaska, J. X.; Werk, J. K.; Jenkins, E. B.; Lehner, N.; Tumlinson, J.; Thom, C.

    2012-01-10

    We present Cosmic Origins Spectrograph (COS) measurements of metal abundances in eight 0.083 < z{sub abs} < 0.321 damped Ly{alpha} (DLA) and sub-DLA absorption systems serendipitously discovered in the COS-Halos survey. We find that these systems show a large range in metallicities, with -1.10 < [Z/H] < 0.31, similar to the spread found at higher redshifts. These low-redshift systems on average have subsolar metallicities, but do show a rise in metallicity over cosmic time when compared to higher-redshift systems. We find that the average sub-DLA metallicity is higher than the average DLA metallicity at all redshifts. Nitrogen is underabundant with respect to {alpha}-group elements in all but perhaps one of the absorbers. In some cases, [N/{alpha}] is significantly below the lowest nitrogen measurements in nearby galaxies. Systems for which depletion patterns can be studied show little, if any, depletion, which is characteristic of Milky Way halo-type gas. We also identify affiliated galaxies for three of the sub-DLAs using spectra obtained from a Keck/Low Resolution Imaging Spectrometer (LRIS). None of these sub-DLAs arise in the stellar disks of luminous galaxies; instead, these absorbers may exist in galaxy halos at impact parameters ranging from 38 to 92 kpc. Multiple galaxies are present near two of the sub-DLAs, and galaxy interactions may play a role in the dispersal of the gas. Many of these low-redshift absorbers exhibit simple kinematics, but one sub-DLA has a complicated mix of at least 13 components spread over 150 km s{sup -1}. We find three galaxies near this sub-DLA, which also suggests that galaxy interactions roil the gas. This study reinforces the view that DLAs have a variety of origins, and low-redshift studies are crucial for understanding absorber-galaxy connections.

  10. Redshifts distribution in A262

    NASA Astrophysics Data System (ADS)

    Hassan, M. S. R.; Abidin, Z. Z.; Ibrahim, U. F. S. U.; Hashim, N.; Lee, D. A. A.

    2016-05-01

    Galaxy clusters are the largest virialized systems in the Universe containing a collection of galaxies of different redshifts. The redshift distribution of galaxies in galaxy clusters is concentrated at a certain redshift range which remarkably tells us that only the galaxies in a certain radial range belong to the galaxy cluster. This leads to a boundary estimation of the cluster. Background and foreground systems are represented by a histogram that determines whether some of the galaxies are too far or too high in redshift to be counted as the member of the cluster. With the recent advances in multifibre spectroscopy, it has become possible to perform detailed analysis of the redshift distribution of several galaxy clusters in the Abell Catalogue. This has given rise to significantly improved estimates of cluster membership, extent and dynamical history. Here we present a spectroscopic analysis of the galaxy cluster A262. We find 55 galaxies fall within z = 0.0143 and 0.0183 with velocity range 4450-5300 km s-1, and are therefore members of the cluster. We derived a new mean redshift of z = 0.016 173 ± 0.000 074 (4852 ± 22 km s-1) for the system of which we compare with our neutral hydrogen (H I) detection which peaks at 4970 ± 0.5 km s-1. It is found that the distribution of H I tends to be located at the edge of the cluster since most of spiral rich galaxies were away from cluster centre.

  11. Optical redshifts of 59 galaxies

    NASA Technical Reports Server (NTRS)

    Kelton, P. W.

    1980-01-01

    This paper presents the results of an observing program carried out to measure galaxy redshifts with the Cassegrain Digicon Spectrograph system on the McDonald Observatory 2.1 m Struve telescope. New redshift determinations are presented for 59 galaxies, obtained for emission line spectra by conventional wavelength determination techniques and for absorption line spectra by Fourier transform filtering and cross correlation techniques with respect to velocity standard spectra of NGC 3115 and NGC 4736. With respect to published redshifts for 29 galaxies, the new redshifts show a mean residual of -1 km/sec and rms residual of 49 km/sec, without apparent systematic trends, from -300 to +13,700 km/sec.

  12. The Impact of Stochastic Attenuation on Photometric Redshift Estimates

    NASA Astrophysics Data System (ADS)

    Tepper-García, Thorsten; Fritze-von Alvensleben, Uta

    2007-05-01

    INTRODUCTION: We model the effect of the stochastic absorption by neutral hydrogen (HI) present in the intergalactic medium (IGM), such as Lyalpha Forest, and associated with galaxies (LLS, DLAs), on the photometric redshifts, and compare these results to the predicted photometric redshifts of models where only a mean attenuation is taken into account. METHODS: We model the attenuation due to HI along a random line of sight (LOS) using differential distribution functions constrained from observations (Kim et al. 97,01) in a Monte Carlo fashion (Bershady et al. 99). We then calculate galaxy model spectra of a given spectral type at different redshifts using our Evolutionary Synthesis Code GALEV (Bicker et al. 04), and apply to each spectrum a different attenuation corresponding to a particular random LOS. We obtain in this way an ensemble of attenuated spectral energy distributiond (SED) in the HST and Johnson systems. Using AnalySED (Anders et al. 06), an analysis tool based on a chi-square test, and our template SEDs with mean attenuation-which span a grid in redshift and spectral type-we determine to which extent the redshifts of our simulated spectra are recovered. RESULTS: We find a substantial underestimate of the photometric redshifts of up to Δz=0.3, especially in the range z > 3.0. DISCUSSION: Based on our results, we emphasise the need for the accurate modelling of the attenuation in order to correctly interpret, using evolutionary synthesis codes such as GALEV, the observations of (high-redshift) galaxies observed in deep surveys, for which only photometric information is available.

  13. Photometric Redshifts in the IRAC Shallow Survey

    SciTech Connect

    Brodwin, M; Brown, M; Ashby, M; Bian, C; Brand, K; Dey, A; Eisenhardt, P; Eisenstein, D; Gonzalez, A; Huang, J; Kochanek, C; McKenzie, E; Pahre, M; Smith, H; Soifer, B; Stanford, S; Stern, D; Elston, R

    2006-06-13

    Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of {approx} 13 {micro}Jy in the 8.5 deg{sup 2} Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural-net and template-fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of {sigma} = 0.06 (1+z) is achieved for 95% of galaxies at 0 < z < 1.5. The accuracy is {sigma} = 0.12 (1 + z) for 95% of AGN at 0 < z < 3. Redshift probability functions, central to several ongoing studies of the galaxy population, are computed for the full sample. We demonstrate that these functions accurately represent the true redshift probability density, allowing the calculation of valid confidence intervals for all objects. These probability functions have already been used to successfully identify a population of Spitzer-selected high redshift (z > 1) galaxy clusters. We present one such spectroscopically confirmed cluster at = 1.24, ISCS J1434.2+3426. Finally, we present a measurement of the 4.5 {micro}m-selected galaxy redshift distribution.

  14. Clues to the nature of high-redshift O vi absorption systems from their lack of small-scale structure

    NASA Astrophysics Data System (ADS)

    Lopez, S.; Ellison, S.; D'Odorico, S.; Kim, T.-S.

    2007-07-01

    We present results of the first survey of high-redshift (< z>˜ 2.3) O VI absorption systems along parallel lines of sight toward two lensed QSOs. After a careful and well-defined search, we find ten intervening O VI systems - identified by the presence of the λλ1031, 1037 doublet lines, H I, and in most cases C IV, Si IV, and C III - and eight candidate systems for which we do not detect H I nor other metals. We assess the veracity of these systems by applying a classification scheme. Within the errors, all O VI systems appear at the same redshift and have similar line strengths in front of both QSO images, whereas in most cases C IV or Si IV show more differences across the lines of sight, either in radial velocity or line strength. We conclude that (1) the coherence length of O VI must be much larger than ≈ 1 h70-1 kpc, and (2) an important fraction of the C IV absorbers may not reside in the same volume as O VI. Given the inhomogeneous character of the data - different S/N ratios and degrees of blending - we pay special attention to the observational errors and their impact on the above conclusions. Since Doppler parameters are consistent with photoionization, we propose a model in which V IV occurs in two different photoionized phases, one large, with characteristic sizes of a few hundred kpc and bearing O VI, and another one a factor of ten smaller and containing C III. This model is able to explain the various transverse differences observed in column density and kinematics. We apply the model successfully to 2 kinds of absorbers, with low and high metallicity. In the low-metallicity regime, [C/H]~ -2, we find that [C/O] ≈ -0.7 is required to explain the observations, which hints at late (z⪉ 6) rather than early metal enrichment. In the high-metallicity regime, the observed dissociation between O VI and C IV gas might be produced by galactic outflows. Altogether, the relative abundances, inhomogeneous C IV and featureless O VI are consistent with gas

  15. CuBANz: Photometric redshift estimator

    NASA Astrophysics Data System (ADS)

    Samui, Saumyadip; Pal, Shanoli Samui

    2016-09-01

    CuBANz is a photometric redshift estimator code for high redshift galaxies that uses the back propagation neural network along with clustering of the training set, making it very efficient. The training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. u-g, g-r etc.) rather than the apparent magnitudes at various photometric bands, as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. The clustering method enables accurate determination of the redshifts. CuBANz considers uncertainty in the photometric measurements as well as uncertainty in the neural network training. The code is written in C.

  16. Using an Educational Electronic Documentation System to Help Nursing Students Accurately Identify Nursing Diagnoses

    ERIC Educational Resources Information Center

    Pobocik, Tamara J.

    2013-01-01

    The use of technology and electronic medical records in healthcare has exponentially increased. This quantitative research project used a pretest/posttest design, and reviewed how an educational electronic documentation system helped nursing students to identify the accurate related to statement of the nursing diagnosis for the patient in the case…

  17. Quasars as the formation sites of high-redshift ellipticals: a signature in the `associated' absorption-line systems?

    NASA Astrophysics Data System (ADS)

    Franceschini, A.; Gratton, R.

    1997-03-01

    Published data on the average metallicities and abundance ratios for absorption-line systems in high-redshift quasars suggest that a dichotomy may exist between the chemical composition of damped Lyman alpha (Lyalpha) systems (interpreted as intervening galaxies in the QSO line of sight) and the z_abs~=z_em absorption- line systems associated with the quasar. Intervening systems have smaller than solar metallicities, whereas associated absorbers have solar or greater than solar metallicities and small N/C ratios. While these results have to be confirmed by more precise abundance determinations, we argue that they may be explained by an early phase of efficient metal enrichment occurring only in the close environment of high-z QSOs, and characterized by an excess type-II supernova (SNII) activity. This is reminiscent of the SNII phase required to explain the abundance ratios (favouring alpha- over Fe-group elements) observed in the intracluster (IC) medium of local galaxy clusters. We explore the following scenario, to be tested by forthcoming observations of QSO absorption lines using very large optical telescopes. (a) Well-studied damped- Lyalpha, Lyalpha and metal lines in intervening systems trace only part of the history of metal production in the Universe - the one concerning slowly star-forming discs or dwarf irregulars. (b) The complementary class of early-type and bulge-dominated galaxies formed quickly (at z>~4-5) through a huge episode of star formation favouring high-mass stars. (c) The nucleus of the latter is the site of the subsequent formation of a quasar, which partly hides from view the dimmer host galaxy. (d) The products of a galactic wind, following the violent episode of star formation in the host galaxy and metal pollution of the IC medium in the forming cluster, could be directly observable in the z_abs~=z_em associated absorption systems on the QSO line of sight.

  18. Redshifts for 115 galaxies near the equator

    SciTech Connect

    Shectman, S.A.; Stefanik, R.P.; Latham, D.W.

    1983-04-01

    We report new redshifts for 115 bright galaxies located near the celestial equator. The spectra were observed with a blue-sensitive photon-counting Reticon on the 100-in. DuPont telescope, and the redshifts were derived using the data-analysis system developed for the CfA Redshift Survey. Comparisons with other measured redshifts suggest that these data are similar in quality to the redshifts measured at Mt. Hopkins for the CfA Redshift Survey; the velocity zero point is good to 10 to 15 km s/sup -1/, with a typical error of 35 km s/sup -1/, with a typical error of 35 km s/sup -1/ for the individual measurements.

  19. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    NASA Astrophysics Data System (ADS)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  20. Accurate GPS Time-Linked data Acquisition System (ATLAS II) user's manual.

    SciTech Connect

    Jones, Perry L.; Zayas, Jose R.; Ortiz-Moyet, Juan

    2004-02-01

    The Accurate Time-Linked data Acquisition System (ATLAS II) is a small, lightweight, time-synchronized, robust data acquisition system that is capable of acquiring simultaneous long-term time-series data from both a wind turbine rotor and ground-based instrumentation. This document is a user's manual for the ATLAS II hardware and software. It describes the hardware and software components of ATLAS II, and explains how to install and execute the software.

  1. Chemical Enrichment at High Redshifts: Understanding the Nature of Damped Lyα Systems in Hierarchical Models

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Lambas, Diego G.; Mosconi, Mirta B.; Cora, Sofia

    2001-08-01

    We use cosmological hydrodynamical simulations including star formation and metal enrichment to study the evolution of the chemical properties of galaxy-like objects at high redshift in the range 0.25systems (DLAs). The unweighted mean of abundance ratios and least-square linear regressions through the simulated DLAs yield intrinsic metallicity evolution for [Zn/H] and [Fe/H] consistent with results obtained from similar analyses of available observations. Our model statistically reproduces the mild evolution detected in the metallicity of the neutral hydrogen content of the universe, given by mass-weighted means, if observational constraints are considered (as suggested in 1998 by Boissée and co-workers). For the α-elements in the simulated DLAs, we find neither enhancement nor dependence on metallicity. Our results support the hypotheses that DLAs trace a variety of galactic objects with different formation histories and that both Type I and Type II supernovae are contributing to the chemical enrichment of the gas component, at least since z~2. This study indicates that DLAs could be understood as the building blocks that merged to form current normal galaxies within a hierarchical clustering scenario.

  2. Sky Mining - Application to Photomorphic Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  3. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Pérez-Fournon, I.; Balcells, M.; Moreno-Insertis, F.; Sánchez, F.

    2010-08-01

    Participants; Group photograph; Preface; Acknowledgements; 1. Galaxy formation and evolution: recent progress R. Ellis; 2. Galaxies at high redshift M. Dickinson; 3. High-redshift galaxies: the far-infrared and sub-millimeter view A. Franceschini; 4. Quasar absorption lines J. Bechtold; 5. Stellar population synthesis models at low and high redshift G. Bruzual A.; 6. Elliptical galaxies K. C. Freeman; 7. Disk galaxies K. C. Freeman; 8. Dark matter in disk galaxies K. C. Freeman.

  4. Accurate analysis of blood vessel sizes and stenotic lesions using stereoscopic DSA system.

    PubMed

    Fencil, L E; Doi, K; Hoffman, K R

    1988-01-01

    We have developed a technique to determine accurately the magnification factor and three-dimensional orientation of a vessel segment from a stereoscopic pair of digital subtraction angiograms (DSA). Our DSA system includes a stereoscopic x-ray tube with a 25-mm focal spot shift. The magnification and orientation of a selected vessel segment are determined from the distance and direction of the focal spot shift and the stereoscopic discrepancy in image positions for that segment. Our results indicate that the accuracies of determining the magnification and orientation are less than 1% and approximately 5 degrees, respectively. After the magnification and orientation are determined accurately, an iterative deconvolution technique for the measurement of vessel image size is applied to the selected vessel segment. This iterative deconvolution technique provides the best estimate of vessel image size by taking into account the unsharpness of the digital system. With this technique, the vessel image size can be determined to an accuracy of approximately 1.0 mm, which corresponds to one third the pixel size of our DSA system. Information derived from stereoscopic analysis and iterative deconvolution thus allows accurate calculation of actual vascular dimensions from DSA images.

  5. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  6. THE MOST METAL-POOR DAMPED Lyα SYSTEMS: AN INSIGHT INTO DWARF GALAXIES AT HIGH-REDSHIFT

    SciTech Connect

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.

    2015-02-10

    In this paper we analyze the kinematics, chemistry, and physical properties of a sample of the most metal-poor damped Lyα systems (DLAs), to uncover their links to modern-day galaxies. We present evidence that the DLA population as a whole exhibits a ''knee'' in the relative abundances of the α-capture and Fe-peak elements when the metallicity is [Fe/H] ≅ –2.0, assuming that Zn traces the buildup of Fe-peak elements. In this respect, the chemical evolution of DLAs is clearly different from that experienced by Milky Way halo stars, but resembles that of dwarf spheroidal galaxies in the Local Group. We also find a close correspondence between the kinematics of Local Group dwarf galaxies and of high-redshift metal-poor DLAs, which further strengthens this connection. On the basis of such similarities, we propose that the most metal-poor DLAs provide us with a unique opportunity to directly study the dwarf galaxy population more than ten billion years in the past, at a time when many dwarf galaxies were forming the bulk of their stars. To this end, we have measured some of the key physical properties of the DLA gas, including their neutral gas mass, size, kinetic temperature, density, and turbulence. We find that metal-poor DLAs contain a warm neutral medium with T {sub gas} ≅ 9600 K predominantly held up by thermal pressure. Furthermore, all of the DLAs in our sample exhibit a subsonic turbulent Mach number, implying that the gas distribution is largely smooth. These results are among the first empirical descriptions of the environments where the first few generations of stars may have formed in the universe.

  7. SPIDERz: SuPport vector classification for IDEntifying Redshifts

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Singal, J.

    2016-08-01

    SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.

  8. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  9. Accurate Vehicle Location System Using RFID, an Internet of Things Approach.

    PubMed

    Prinsloo, Jaco; Malekian, Reza

    2016-06-04

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved.

  10. Accurate Vehicle Location System Using RFID, an Internet of Things Approach.

    PubMed

    Prinsloo, Jaco; Malekian, Reza

    2016-01-01

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved. PMID:27271638

  11. Accurate Vehicle Location System Using RFID, an Internet of Things Approach

    PubMed Central

    Prinsloo, Jaco; Malekian, Reza

    2016-01-01

    Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID) technology in combination with GPS and the Global system for Mobile communication (GSM) technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz). The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved. PMID:27271638

  12. Prometheus: Scalable and Accurate Emulation of Task-Based Applications on Many-Core Systems.

    SciTech Connect

    Kestor, Gokcen; Gioiosa, Roberto; Chavarría-Miranda, Daniel

    2015-03-01

    Modeling the performance of non-deterministic parallel applications on future many-core systems requires the development of novel simulation and emulation techniques and tools. We present “Prometheus”, a fast, accurate and modular emulation framework for task-based applications. By raising the level of abstraction and focusing on runtime synchronization, Prometheus can accurately predict applications’ performance on very large many-core systems. We validate our emulation framework against two real platforms (AMD Interlagos and Intel MIC) and report error rates generally below 4%. We, then, evaluate Prometheus’ performance and scalability: our results show that Prometheus can emulate a task-based application on a system with 512K cores in 11.5 hours. We present two test cases that show how Prometheus can be used to study the performance and behavior of systems that present some of the characteristics expected from exascale supercomputer nodes, such as active power management and processors with a high number of cores but reduced cache per core.

  13. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  14. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Mortlock, Daniel J.; Peiris, Hiranya V.

    2016-08-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.

  15. Redshift Survey Strategies

    NASA Astrophysics Data System (ADS)

    Jones, A. W.; Bland-Hawthorn, J.; Kaiser, N.

    1994-12-01

    In the first half of 1995, the Anglo-Australian Observatory is due to commission a wide field (2.1(deg) ), 400-fiber, double spectrograph system (2dF) at the f/3.3 prime focus of the AAT 3.9m bi-national facility. The instrument should be able to measure ~ 4000 galaxy redshifts (assuming a magnitude limit of b_J ~\\ 20) in a single dark night and is therefore ideally suited to studies of large-scale structure. We have carried out simple 3D numerical simulations to judge the relative merits of sparse surveys and contiguous surveys. We generate a survey volume and fill it randomly with particles according to a selection function which mimics a magnitude-limited survey at b_J = 19.7. Each of the particles is perturbed by a gaussian random field according to the dimensionless power spectrum k(3) P(k) / 2pi (2) determined by Feldman, Kaiser & Peacock (1994) from the IRAS QDOT survey. We introduce some redshift-space distortion as described by Kaiser (1987), a `thermal' component measured from pairwise velocities (Davis & Peebles 1983), and `fingers of god' due to rich clusters at random density enhancements. Our particular concern is to understand how the window function W(2(k)) of the survey geometry compromises the accuracy of statistical measures [e.g., P(k), xi (r), xi (r_sigma ,r_pi )] commonly used in the study of large-scale structure. We also examine the reliability of various tools (e.g. genus) for describing the topological structure within a contiguous region of the survey.

  16. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  17. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  18. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.

    PubMed

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  19. Universal model for accurate calculation of tracer diffusion coefficients in gas, liquid and supercritical systems.

    PubMed

    Lito, Patrícia F; Magalhães, Ana L; Gomes, José R B; Silva, Carlos M

    2013-05-17

    In this work it is presented a new model for accurate calculation of binary diffusivities (D12) of solutes infinitely diluted in gas, liquid and supercritical solvents. It is based on a Lennard-Jones (LJ) model, and contains two parameters: the molecular diameter of the solvent and a diffusion activation energy. The model is universal since it is applicable to polar, weakly polar, and non-polar solutes and/or solvents, over wide ranges of temperature and density. Its validation was accomplished with the largest database ever compiled, namely 487 systems with 8293 points totally, covering polar (180 systems/2335 points) and non-polar or weakly polar (307 systems/5958 points) mixtures, for which the average errors were 2.65% and 2.97%, respectively. With regard to the physical states of the systems, the average deviations achieved were 1.56% for gaseous (73 systems/1036 points), 2.90% for supercritical (173 systems/4398 points), and 2.92% for liquid (241 systems/2859 points). Furthermore, the model exhibited excellent prediction ability. Ten expressions from the literature were adopted for comparison, but provided worse results or were not applicable to polar systems. A spreadsheet for D12 calculation is provided online for users in Supplementary Data.

  20. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  1. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  2. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional

    NASA Astrophysics Data System (ADS)

    Sun, Jianwei; Remsing, Richard C.; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L.; Perdew, John P.

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  3. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    PubMed

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science. PMID:27554409

  4. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms

    PubMed Central

    Lindner, Claudia; Wang, Ching-Wei; Huang, Cheng-Ta; Li, Chung-Hsing; Chang, Sheng-Wei; Cootes, Tim F.

    2016-01-01

    Cephalometric tracing is a standard analysis tool for orthodontic diagnosis and treatment planning. The aim of this study was to develop and validate a fully automatic landmark annotation (FALA) system for finding cephalometric landmarks in lateral cephalograms and its application to the classification of skeletal malformations. Digital cephalograms of 400 subjects (age range: 7–76 years) were available. All cephalograms had been manually traced by two experienced orthodontists with 19 cephalometric landmarks, and eight clinical parameters had been calculated for each subject. A FALA system to locate the 19 landmarks in lateral cephalograms was developed. The system was evaluated via comparison to the manual tracings, and the automatically located landmarks were used for classification of the clinical parameters. The system achieved an average point-to-point error of 1.2 mm, and 84.7% of landmarks were located within the clinically accepted precision range of 2.0 mm. The automatic landmark localisation performance was within the inter-observer variability between two clinical experts. The automatic classification achieved an average classification accuracy of 83.4% which was comparable to an experienced orthodontist. The FALA system rapidly and accurately locates and analyses cephalometric landmarks in lateral cephalograms, and has the potential to significantly improve the clinical work flow in orthodontic treatment. PMID:27645567

  5. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms.

    PubMed

    Lindner, Claudia; Wang, Ching-Wei; Huang, Cheng-Ta; Li, Chung-Hsing; Chang, Sheng-Wei; Cootes, Tim F

    2016-09-20

    Cephalometric tracing is a standard analysis tool for orthodontic diagnosis and treatment planning. The aim of this study was to develop and validate a fully automatic landmark annotation (FALA) system for finding cephalometric landmarks in lateral cephalograms and its application to the classification of skeletal malformations. Digital cephalograms of 400 subjects (age range: 7-76 years) were available. All cephalograms had been manually traced by two experienced orthodontists with 19 cephalometric landmarks, and eight clinical parameters had been calculated for each subject. A FALA system to locate the 19 landmarks in lateral cephalograms was developed. The system was evaluated via comparison to the manual tracings, and the automatically located landmarks were used for classification of the clinical parameters. The system achieved an average point-to-point error of 1.2 mm, and 84.7% of landmarks were located within the clinically accepted precision range of 2.0 mm. The automatic landmark localisation performance was within the inter-observer variability between two clinical experts. The automatic classification achieved an average classification accuracy of 83.4% which was comparable to an experienced orthodontist. The FALA system rapidly and accurately locates and analyses cephalometric landmarks in lateral cephalograms, and has the potential to significantly improve the clinical work flow in orthodontic treatment.

  6. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms.

    PubMed

    Lindner, Claudia; Wang, Ching-Wei; Huang, Cheng-Ta; Li, Chung-Hsing; Chang, Sheng-Wei; Cootes, Tim F

    2016-01-01

    Cephalometric tracing is a standard analysis tool for orthodontic diagnosis and treatment planning. The aim of this study was to develop and validate a fully automatic landmark annotation (FALA) system for finding cephalometric landmarks in lateral cephalograms and its application to the classification of skeletal malformations. Digital cephalograms of 400 subjects (age range: 7-76 years) were available. All cephalograms had been manually traced by two experienced orthodontists with 19 cephalometric landmarks, and eight clinical parameters had been calculated for each subject. A FALA system to locate the 19 landmarks in lateral cephalograms was developed. The system was evaluated via comparison to the manual tracings, and the automatically located landmarks were used for classification of the clinical parameters. The system achieved an average point-to-point error of 1.2 mm, and 84.7% of landmarks were located within the clinically accepted precision range of 2.0 mm. The automatic landmark localisation performance was within the inter-observer variability between two clinical experts. The automatic classification achieved an average classification accuracy of 83.4% which was comparable to an experienced orthodontist. The FALA system rapidly and accurately locates and analyses cephalometric landmarks in lateral cephalograms, and has the potential to significantly improve the clinical work flow in orthodontic treatment. PMID:27645567

  7. The Lyα properties of faint galaxies at z ∼ 2-3 with systemic redshifts and velocity dispersions from Keck-MOSFIRE

    SciTech Connect

    Erb, Dawn K.; Steidel, Charles C.; Trainor, Ryan F.; Strom, Allison L.; Konidaris, Nicholas P.; Matthews, Keith; Bogosavljević, Milan; Shapley, Alice E.; Nestor, Daniel B.; Mace, Gregory; McLean, Ian S.; Kulas, Kristin R.; Law, David R.; Rudie, Gwen C.; Reddy, Naveen A.; Pettini, Max

    2014-11-01

    We study the Lyα profiles of 36 spectroscopically detected Lyα-emitters (LAEs) at z ∼ 2-3, using Keck MOSFIRE to measure systemic redshifts and velocity dispersions from rest-frame optical nebular emission lines. The sample has a median optical magnitude R=26.0, and ranges from R≃23 to R>27, corresponding to rest-frame UV absolute magnitudes M {sub UV} ≅ –22 to M {sub UV} > –18.2. Dynamical masses range from M {sub dyn} < 1.3 × 10{sup 8} M {sub ☉} to M {sub dyn} = 6.8 × 10{sup 9} M {sub ☉}, with a median value of M {sub dyn} = 6.3 × 10{sup 8} M {sub ☉}. Thirty of the 36 Lyα emission lines are redshifted with respect to the systemic velocity with at least 1σ significance, and the velocity offset with respect to systemic Δv {sub Lyα} is correlated with the R-band magnitude, M {sub UV}, and the velocity dispersion measured from nebular emission lines with >3σ significance: brighter galaxies with larger velocity dispersions tend to have larger values of Δv {sub Lyα}. We also make use of a comparison sample of 122 UV-color-selected R<25.5 galaxies at z ∼ 2, all with Lyα emission and systemic redshifts measured from nebular emission lines. Using the combined LAE and comparison samples for a total of 158 individual galaxies, we find that Δv {sub Lyα} is anti-correlated with the Lyα equivalent width with 7σ significance. Our results are consistent with a scenario in which the Lyα profile is determined primarily by the properties of the gas near the systemic redshift; in such a scenario, the opacity to Lyα photons in lower mass galaxies may be reduced if large gaseous disks have not yet developed and if the gas is ionized by the harder spectrum of young, low metallicity stars.

  8. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  9. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  10. MARZ: Redshifting Program

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel

    2016-05-01

    MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.

  11. Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems.

    PubMed

    Huang, Shih-Chia; Chen, Bo-Hao

    2013-12-01

    Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves Similarity and F1 accuracy rates that are 76

  12. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  13. Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems.

    PubMed

    Huang, Shih-Chia; Chen, Bo-Hao

    2013-12-01

    Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves Similarity and F1 accuracy rates that are 76

  14. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  15. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  16. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

    SciTech Connect

    Dahlen, Tomas; Ferguson, Henry C.; Mobasher, Bahram; Faber, Sandra M.; Barro, Guillermo; Guo, Yicheng; Finlator, Kristian; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Pforr, Janine; Dickinson, Mark E.; Salvato, Mara; Wuyts, Stijn; Wiklind, Tommy; Acquaviva, Viviana; Huang, Jiasheng; Huang, Kuang-Han; Newman, Jeffrey A.; and others

    2013-10-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates.

  17. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking. PMID:27370490

  18. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  19. A new method to search for high-redshift clusters using photometric redshifts

    SciTech Connect

    Castignani, G.; Celotti, A.; Chiaberge, M.; Norman, C.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  20. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  1. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs).

    PubMed

    Bernhardt, Paul V; Bosch, Simone; Comba, Peter; Gahan, Lawrence R; Hanson, Graeme R; Mereacre, Valeriu; Noble, Christopher J; Powell, Annie K; Schenk, Gerhard; Wadepohl, Hubert

    2015-08-01

    The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe(III)2 and Fe(III)Fe(II)), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mössbauer spectroscopy, and the solution structural and electronic properties, investigated by mass spectrometry, electronic, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and Mössbauer spectroscopies and electrochemistry, are discussed in detail in order to understand the structures and relative stabilities in solution. In particular, with one of the ligands, a heterovalent Fe(III)Fe(II) species has been produced by chemical oxidation of the Fe(II)2 precursor. The phosphatase reactivities of the complexes, in particular, also of the heterovalent complex, are reported. These studies include pH-dependent as well as substrate concentration dependent studies, leading to pH profiles, catalytic efficiencies and turnover numbers, and indicate that the heterovalent diiron complex discussed here is an accurate PAP model system. PMID:26196255

  2. Generation IV nuclear energy systems and the need of accurate nuclear data

    NASA Astrophysics Data System (ADS)

    Colonna, N.

    2009-05-01

    To satisfy the world's demand of energy, constantly increasing over the years, a suitable mix of different energy sources has to be envisaged. In this scenario, an important role may be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. In this respect, a large effort is under way since a few years towards the development of advanced nuclear systems that would use more efficiently the uranium resources, and produce a minimal amount of long-lived nuclear waste. The main activity concerns Generation IV reactors, with full or partial waste recycling capability. Their design requires R&D in numerous fields. Among the different needs, it is of fundamental importance to improve the knowledge of basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. The main characteristics and principle of operation of the new generation nuclear systems are here described, together with the related needs of new and accurate nuclear data. Finally, an example of activity currently undergoing in the field is shown, with the recent experimental results obtained at the neutron facility n_TOF at CERN.

  3. Robust and accurate visual echo cancellation in a full-duplex projector-camera system.

    PubMed

    Liao, Miao; Yang, Ruigang; Zhang, Zhengyou

    2008-10-01

    In this paper we study the problem of "visual echo" in a full-duplex projector-camera system for telecollaboration applications. Visual echo is defined as the appearance of projected contents observed by the camera. It can potentially saturate the projected contents, similar to audio echo in telephone conversation. Our approach to visual echo cancellation includes an offline calibration procedure that records the geometric and photometric transfer between the projector and the camera in a look-up table. During run-time, projected contents in the captured video are identified using the calibration information and suppressed, therefore achieving the goal of cancelling visual echo. Our approach can accurately handle full-color images under arbitrary reflectance of display surfaces and photometric response of the projector or camera. It is robust to geometric registration errors and quantization effects and is therefore particularly effective for high-frequency contents such as texts and hand drawings. We demonstrate the effectiveness of our approach with a variety of real images in a full-duplex projector-camera system.

  4. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  5. Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system

    PubMed Central

    Sabri, Ylias M.; Ippolito, Samuel J.; Tardio, James; Bansal, Vipul; O'Mullane, Anthony P.; Bhargava, Suresh K.

    2014-01-01

    Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m3 or ~2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor. PMID:25338965

  6. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  7. Development of an accurate fluid management system for a pediatric continuous renal replacement therapy device

    PubMed Central

    SANTHANAKRISHNAN, ARVIND; NESTLE, TRENT T.; MOORE, BRIAN L.; YOGANATHAN, AJIT P.; PADEN, MATTHEW L.

    2013-01-01

    Acute kidney injury is common in critically ill children and renal replacement therapies provide a life saving therapy to a subset of these children. However, there is no Food and Drug Administration approved device to provide pediatric continuous renal replacement therapy (CRRT). Consequently, clinicians adapt approved adult CRRT devices for use in children due to lack of safer alternatives. Complications occur using adult CRRT devices in children due to inaccurate fluid balance (FB) between the volumes of ultrafiltrate (UF) removed and replacement fluid (RF) delivered. We demonstrate the design and validation of a pediatric fluid management system for obtaining accurate instantaneous and cumulative FB. Fluid transport was achieved via multiple novel pulsatile diaphragm pumps. The conservation of volume principle leveraging the physical property of fluid incompressibility along with mechanical coupling via a crankshaft was used for FB. Accuracy testing was conducted in vitro for 8-hour long continuous operation of the coupled UF and RF pumps. The mean cumulative FB error was <1% across filtration flows from 300 mL/hour to 3000 mL/hour. This approach of FB control in a pediatric specific CRRT device would represent a significant accuracy improvement over currently used clinical implementations. PMID:23644618

  8. Development of an accurate fluid management system for a pediatric continuous renal replacement therapy device.

    PubMed

    Santhanakrishnan, Arvind; Nestle, Trent T; Moore, Brian L; Yoganathan, Ajit P; Paden, Matthew L

    2013-01-01

    Acute kidney injury is common in critically ill children, and renal replacement therapies provide a life-saving therapy to a subset of these children. However, there is no Food and Drug Administration-approved device to provide pediatric continuous renal replacement therapy (CRRT). Consequently, clinicians adapt approved adult CRRT devices for use in children because of lack of safer alternatives. Complications occur using adult CRRT devices in children because of inaccurate fluid balance (FB) between the volumes of ultrafiltrate (UF) removed and replacement fluid (RF) delivered. We demonstrate the design and validation of a pediatric fluid management system for obtaining accurate instantaneous and cumulative FB. Fluid transport was achieved via multiple novel pulsatile diaphragm pumps. The conservation of volume principle leveraging the physical property of fluid incompressibility along with mechanical coupling via a crankshaft was used for FB. Accuracy testing was conducted in vitro for 8 hour long continuous operation of the coupled UF and RF pumps. The mean cumulative FB error was <1% across filtration flows from 300 to 3000 ml/hour. This approach of FB control in a pediatric-specific CRRT device would represent a significant accuracy improvement over currently used clinical implementations. PMID:23644618

  9. Equifinality and its violations in a redundant system: multifinger accurate force production

    PubMed Central

    Wilhelm, Luke; Zatsiorsky, Vladimir M.

    2013-01-01

    We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The “inverse piano” device was used to lift and lower one of the fingers smoothly. The subjects were instructed “not to intervene voluntarily” with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis. PMID:23904497

  10. Equifinality and its violations in a redundant system: multifinger accurate force production.

    PubMed

    Wilhelm, Luke; Zatsiorsky, Vladimir M; Latash, Mark L

    2013-10-01

    We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The "inverse piano" device was used to lift and lower one of the fingers smoothly. The subjects were instructed "not to intervene voluntarily" with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis. PMID:23904497

  11. Redshifts and Killing vectors

    NASA Astrophysics Data System (ADS)

    Harvey, Alex; Schucking, Engelbert; Surowitz, Eugene J.

    2006-11-01

    Current approaches to physics stress the importance of conservation laws due to spacetime and internal symmetries. In special and general relativity the generators of these symmetries are known as Killing vectors. We use them for the rigorous determination of gravitational and cosmological redshifts.

  12. Galaxy clustering with photometric surveys using PDF redshift information

    NASA Astrophysics Data System (ADS)

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-06-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colours, that are obtained through multiband imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are Δz = 0.1, the use of the entire PDF reduces the typical measurement bias from 5 per cent, when using single point estimates, to 3 per cent.

  13. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  14. BLAST: THE REDSHIFT SURVEY

    SciTech Connect

    Eales, Stephen; Dye, Simon; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Raymond, Gwenifer; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.; Hughes, David H.; Netterfield, Calvin B.; Viero, Marco P.; Patanchon, Guillaume; Siana, Brian

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed approx =8.7 deg{sup 2} centered on Great Observatories Origins Deep Survey-South at 250, 350, and 500 mum. In Dye et al., we presented the catalog of sources detected at 5sigma in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 82 of these counterparts. The spectra show that the BLAST counterparts are mostly star-forming galaxies but not extreme ones when compared to those found in the Sloan Digital Sky Survey. Roughly one quarter of the BLAST counterparts contain an active nucleus. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies, showing that the standard methods work well even when a galaxy contains a large amount of dust. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST bands. We find strong evolution out to z = 1, in the sense that there is a large increase in the space density of the most luminous galaxies. We have also investigated the evolution of the dust-mass function, finding similar strong evolution in the space density of the galaxies with the largest dust masses, showing that the luminosity evolution seen in many wavebands is associated with an increase in the reservoir of interstellar matter in galaxies.

  15. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Jiang, Steve B; Li, Changzhi

    2011-01-01

    Respiratory gating and tumor tracking are two promising motion-adaptive lung cancer treatments, minimizing incidence and severity of normal tissues and precisely delivering radiation dose to the tumor. Accurate respiration measurement is important in respiratory-gated radiotherapy. Conventional gating techniques are either invasive to the body or bring insufficient accuracy and discomfort to the patients. In this paper, we present an accurate noncontact means of measuring respiration for the use in gated lung cancer radiotherapy. We also present an accurate tumor tracking technique for dynamical beam tracking radiotherapy. Two 2.4 GHz miniature radars were used to monitor the chest wall and abdominal movements simultaneously to get high resolution and enhanced parameter identification. Ray tracing technique was used to investigate the impact of antenna size in clinical practice. It is shown that our multiple radar system can reliably measure respiration signals for respiratory gating and accurate tumor tracking in motion-adaptive lung cancer radiotherapy.

  16. Requirements on the Redshift Accuracy for future Supernova andNumber Count Surveys

    SciTech Connect

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-08-09

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters.

  17. On the gravitational redshift

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2014-08-01

    The study of the gravitational redshift-a relative wavelength increase of ≈2×10-6 was predicted for solar radiation by Einstein in 1908-is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect-we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the ratio of the gravitational force acting on an electron in a hydrogen atom situated in the Sun’s photosphere to the electrostatic force between the proton and the electron in such an atom is approximately 3×10-21. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. With Einstein’s early assumption that the frequencies of spectral lines depend only on the generating ions themselves as starting point, we show that a solution can be formulated based on a two-step process in analogy with Fermi’s treatment of the Doppler effect. It provides a sequence of physical processes in line with the conservation of energy and momentum resulting in the observed shift and does not employ a geometric description. The gravitational field affects the release of the photon and not the atomic transition. The control parameter is the speed of light. The atomic emission is then contrasted with the gravitational redshift of matter-antimatter annihilation events.

  18. High Redshift GRBs

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  19. High redshift GRBs

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Cannizzo, John K.

    2012-09-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  20. High-redshift cosmography

    SciTech Connect

    Vitagliano, Vincenzo; Xia, Jun-Qing; Liberati, Stefano; Viel, Matteo E-mail: xia@sissa.it E-mail: viel@oats.inaf.it

    2010-03-01

    We constrain the parameters describing the kinematical state of the universe using a cosmographic approach, which is fundamental in that it requires a very minimal set of assumptions (namely to specify a metric) and does not rely on the dynamical equations for gravity. On the data side, we consider the most recent compilations of Supernovae and Gamma Ray Bursts catalogues. This allows to further extend the cosmographic fit up to z = 6.6, i.e. up to redshift for which one could start to resolve the low z degeneracy among competing cosmological models. In order to reliably control the cosmographic approach at high redshifts, we adopt the expansion in the improved parameter y = z/(1+z). This series has the great advantage to hold also for z > 1 and hence it is the appropriate tool for handling data including non-nearby distance indicators. We find that Gamma Ray Bursts, probing higher redshifts than Supernovae, have constraining power and do require (and statistically allow) a cosmographic expansion at higher order than Supernovae alone. Exploiting the set of data from Union and GRBs catalogues, we show (for the first time in a purely cosmographic approach parametrized by deceleration q{sub 0}, jerk j{sub 0}, snap s{sub 0}) a definitively negative deceleration parameter q{sub 0} up to the 3σ confidence level. We present also forecasts for realistic data sets that are likely to be obtained in the next few years.

  1. Metals at high redshifts

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick

    The amount of metals present in the Universe and its cosmological evolution is a key issue for our understanding of how star formation proceeds from the collapse of the first objects to the formation of present day galaxies. We discuss here recent results at the two extremes of the density scale. 1. Part of the tenuous intergalactic medium (IGM) revealed by neutral hydrogen absorptions in the spectra of remote quasars (the so-called Lyman-α forest) contains metals. This is not surprising as there is a close interplay between the formation of galaxies and the evolution of the IGM. The IGM acts as the baryonic reservoir from which galaxies form, while star formation in the forming galaxies strongly influences the IGM by enrichment with metals and the emission of ionizing radiation. The spatial distribution of metals in the IGM is largely unknown however. The possibility remains that metals are associated with the filaments and sheets of the dark matter spatial distribution where stars are expected to form, whereas the space delineated by these features remains unpolluted. 2. Damped Lyman-α (DLA) systems observed in the spectra of high-redshift quasars are considered as the progenitors of present-day galaxies. Indeed, the large neutral hydrogen column densities observed and the presence of metals imply that the gas is somehow closely associated with regions of star formation. The nature of the absorbing objects is unclear however. It is probable that very different objects contribute to this population of absorption systems. Here we concentrate on summarizing the properties of the gas: presence of dust in small amount; nucleosynthesis signature and lack of H_2 molecules. The presence of H_2 molecules has been investigated in the course of a mini-survey with UVES at the VLT. The upper limits on the molecular fraction, f = 2N(H_2)/(2N(H_2)+N(HI)), derived in eight systems are in the range 1.2 ×10^-7 - 1.6 × 10^-5. There is no evidence in this sample for any

  2. Bayesian photometric redshifts with empirical training sets

    NASA Astrophysics Data System (ADS)

    Wolf, Christian

    2009-07-01

    We combine in a single framework the two complementary benefits of χ2 template fits and empirical training sets used e.g. in neural nets: χ2 is more reliable when its probability density functions (PDFs) are inspected for multiple peaks, while empirical training is more accurate when calibration and priors of query data and training set match. We present a χ2 empirical method that derives PDFs from empirical models as a subclass of kernel regression methods, and apply it to the Sloan Digital Sky Survey Data Release 5 sample of >75000 quasi-stellar objects, which is full of ambiguities. Objects with single-peak PDFs show <1 per cent outliers, rms redshift errors <0.05 and vanishing redshift bias. At z > 2.5, these figures are two times better. Outliers result purely from the discrete nature and limited size of the model, and rms errors are dominated by the intrinsic variety of object colours. PDFs classed as ambiguous provide accurate probabilities for alternative solutions and thus weights for using both solutions and avoiding needless outliers. E.g. the PDFs predict 78.0 per cent of the stronger peaks to be correct, which is true for 77.9 per cent of them. Redshift incompleteness is common in faint spectroscopic surveys and turns into a massive undetectable outlier risk above other performance limitations, but we can quantify residual outlier risks stemming from size and completeness of the model. We propose a matched χ2 error scale for noisy data and show that it produces correct error estimates and redshift distributions accurate within Poisson errors. Our method can easily be applied to future large galaxy surveys, which will benefit from the reliability in ambiguity detection and residual risk quantification.

  3. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    PubMed

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  4. Mg II ABSORPTION SYSTEMS WITH W{sub 0} >= 0.1 A FOR A RADIO SELECTED SAMPLE OF 77 QUASI-STELLAR OBJECTS AND THEIR ASSOCIATED MAGNETIC FIELDS AT HIGH REDSHIFT

    SciTech Connect

    Bernet, M. L.; Miniati, F.; Lilly, S. J. E-mail: fm@phys.ethz.c

    2010-03-01

    We present a catalog of Mg II absorption systems obtained from high-resolution Ultraviolet and Visual Echelle Spectrograph/VLT data of 77 quasi-stellar objects in the redshift range 0.6 < z < 2.0, and down to an equivalent width W{sub 0} >= 0.1 A. The statistical properties of our sample are found to be in agreement with those from the previous work in the literature. However, we point out that the previously observed increase with redshift of partial derivN/partial derivz for weak absorbers pertains exclusively to very weak absorbers with W{sub 0} < 0.1 A. Instead, partial derivN/partial derivz for absorbers with W{sub 0} in the range 0.1-0.3 A actually decreases with redshift, similar to the case of strong absorbers. We then use this catalog to extend our earlier analysis of the links between the Faraday rotation measure (RM) of the quasars and the presence of intervening Mg II absorbing systems in their spectra. In contrast to the case with strong Mg II absorption systems (W{sub 0} > 0.3 A), the weaker systems do not contribute significantly to the observed RM of the background quasars. This is possibly due to the higher impact parameters of the weak systems compared to strong ones, suggesting that the high column density magnetized material that is responsible for the Faraday rotation is located within about 50 kpc of the galaxies. Finally, we show that this result also rules out the possibility that some unexpected secondary correlation between the quasar redshift and its intrinsic RM is responsible for the association of high RM and strong intervening Mg II absorption that we have presented elsewhere, since this would have produced an equal effect for the weak absorption line systems, which exhibit a very similar distribution of quasar redshifts.

  5. SCUBA Observations of High Redshift Radio Galaxies

    SciTech Connect

    Reuland, M; Rottgering, H; van Breugel, W

    2003-03-11

    High redshift radio galaxies (HzRGs) are key targets for studies of the formation and evolution of massive galaxies.The role of dust in these processes is uncertain. We have therefore observed the dust continuum emission from a sample of z > 3 radio galaxies with the SCUBA bolometer array. We confirm and strengthen the result found by Archibald et al. (1), that HzRGs are massive starforming systems and that submillimeter detection rate appears to be primarily a strong function of redshift. We also observed HzRG-candidates that have so far eluded spectroscopic redshift determination. Four of these have been detected, and provide evidence that they may be extremely obscured radio galaxies, possibly in an early stage of their evolution.

  6. Spectrophotometric Redshifts in the Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James E.

    2016-06-01

    We have combined HST grism spectroscopy and deep broadband imaging to measure spectro-photometric redshifts (SPZs) of faint galaxies. Using a technique pioneered by Ryan et al. 2007, one can combine spectra and photometry to yield an SPZ that is more accurate than pure photometric redshifts, and can probe more deeply than ground-based spectroscopic redshifts. By taking mid-resolution spectra from the HST Faint Infrared Grism Survey (FIGS), SPZs can be found for measurements potentially down to 27th magnitude (the typical brightness of a dwarf galaxy at redshift ˜1.5). A galaxy’s redshift is vital for understanding its place in the growth and evolution of the universe. The measurement of high-accuracy SPZs for FIGS sources will improve the faint-end and high-redshift portions of the luminosity function, and make possible a robust analysis of the FIGS fields for signs of Large Scale Structure (LSS). The improved redshift and distance measurements allowed for the identification of a structure at z=0.83 in one of the FIGS fields.

  7. Spectrophotometric Redshifts in the Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James E.

    2016-06-01

    We have combined HST grism spectroscopy and deep broadband imaging to measure spectro-photometric redshifts (SPZs) of faint galaxies. Using a technique pioneered by Ryan et al. 2007, one can combine spectra and photometry to yield an SPZ that is more accurate than pure photometric redshifts, and can probe more deeply than ground-based spectroscopic redshifts. By taking mid-resolution spectra from the HST Faint Infrared Grism Survey (FIGS), SPZs can be found for measurements potentially down to 27th magnitude (the typical brightness of a dwarf galaxy at redshift ∼1.5). A galaxy’s redshift is vital for understanding its place in the growth and evolution of the universe. The measurement of high-accuracy SPZs for FIGS sources will improve the faint-end and high-redshift portions of the luminosity function, and make possible a robust analysis of the FIGS fields for signs of Large Scale Structure (LSS). The improved redshift and distance measurements allowed for the identification of a structure at z=0.83 in one of the FIGS fields.

  8. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  9. Tuning target selection algorithms to improve galaxy redshift estimates

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Paech, Kerstin; Rau, Markus Michael; Seitz, Stella; Weller, Jochen

    2016-06-01

    We showcase machine learning (ML) inspired target selection algorithms to determine which of all potential targets should be selected first for spectroscopic follow-up. Efficient target selection can improve the ML redshift uncertainties as calculated on an independent sample, while requiring less targets to be observed. We compare seven different ML targeting algorithms with the Sloan Digital Sky Survey (SDSS) target order, and with a random targeting algorithm. The ML inspired algorithms are constructed iteratively by estimating which of the remaining target galaxies will be most difficult for the ML methods to accurately estimate redshifts using the previously observed data. This is performed by predicting the expected redshift error and redshift offset (or bias) of all of the remaining target galaxies. We find that the predicted values of bias and error are accurate to better than 10-30 per cent of the true values, even with only limited training sample sizes. We construct a hypothetical follow-up survey and find that some of the ML targeting algorithms are able to obtain the same redshift predictive power with 2-3 times less observing time, as compared to that of the SDSS, or random, target selection algorithms. The reduction in the required follow-up resources could allow for a change to the follow-up strategy, for example by obtaining deeper spectroscopy, which could improve ML redshift estimates for deeper test data.

  10. The association of the antenna system to photosystem I in higher plants. Cooperative interactions stabilize the supramolecular complex and enhance red-shifted spectral forms.

    PubMed

    Morosinotto, Tomas; Ballottari, Matteo; Klimmek, Frank; Jansson, Stefan; Bassi, Roberto

    2005-09-01

    We report on the association of the antenna system to the reaction center in Photosystem I. Biochemical analysis of mutants depleted in antenna polypeptides showed that the binding of the antenna moiety is strongly cooperative. The minimal building block for the antenna system was shown to be a dimer. Specific protein-protein interactions play an important role in antenna association, and the gap pigments, bound at the interface between core and antenna, are proposed to mediate these interactions Gap pigments have been characterized by comparing the spectra of the Photosystem I to those of the isolated antenna and core components. CD spectroscopy showed that they are involved in pigment-pigment interactions, supporting their relevance in energy transfer from antenna to the reaction center. Moreover, gap pigments contribute to the red-shifted emission forms of Photosystem I antenna. When compared with Photosystem II, the association of peripheral antenna complexes in PSI appears to be more stable, but far less flexible and functional implications are discussed.

  11. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    SciTech Connect

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan Renbin; Kassin, Susan A.; Konidaris, N. P. E-mail: djm70@pitt.edu E-mail: mdavis@berkeley.edu E-mail: koo@ucolick.org E-mail: phillips@ucolick.org; and others

    2013-09-15

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z {approx} 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M{sub B} = -20 at z {approx} 1 via {approx}90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg{sup 2} divided into four separate fields observed to a limiting apparent magnitude of R{sub AB} = 24.1. Objects with z {approx}< 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted {approx}2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z {approx} 1.45, where the [O II] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm{sup -1} grating used for the survey delivers high spectral resolution (R {approx} 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or

  12. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Wilmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Kirby, Evan N.; Lotz, Jennifer M.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  13. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Connolly, A. J.; Kaiser, N.; Kirby, Evan N.; Lemaux, Brian C.; Lin, Lihwai; Lotz, Jennifer M.; Luppino, G. A.; Marinoni, C.; Matthews, Daniel J.; Metevier, Anne; Schiavon, Ricardo P.

    2013-09-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg2 divided into four separate fields observed to a limiting apparent magnitude of R AB = 24.1. Objects with z <~ 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O II] 3727 Å doublet lies in the infrared. The DEIMOS 1200 line mm-1 grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift

  14. A non-empirical, parameter-free, hybrid functional for accurate calculations of optoelectronic properties of finite systems

    NASA Astrophysics Data System (ADS)

    Brawand, Nicholas; Vörös, Márton; Govoni, Marco; Galli, Giulia

    The accurate prediction of optoelectronic properties of molecules and solids is a persisting challenge for current density functional theory (DFT) based methods. We propose a hybrid functional where the mixing fraction of exact and local exchange is determined by a non-empirical, system dependent function. This functional yields ionization potentials, fundamental and optical gaps of many, diverse systems in excellent agreement with experiments, including organic and inorganic molecules and nanocrystals. We further demonstrate that the newly defined hybrid functional gives the correct alignment between the energy level of the exemplary TTF-TCNQ donor-acceptor system. DOE-BES: DE-FG02-06ER46262.

  15. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  16. Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment.

    PubMed

    Martineau, Charlotte; Fayon, Franck; Legein, Christophe; Buzaré, Jean-Yves; Silly, Gilles; Massiot, Dominique

    2007-07-14

    A new solid-state MAS NMR experiment is proposed to accurately measure heteronuclear (19)F-(207)Pb J-coupling constants, even though these couplings are not visible on high speed (19)F 1D MAS spectra; in particular, we demonstrate that the J-resolved experiment combined with scalar multiple-quantum filtering considerably improves the resolution of J-multiplet patterns for dilute spin systems. PMID:17594032

  17. Accurate description of the optical response of a multilayered spherical system in the long wavelength approximation

    NASA Astrophysics Data System (ADS)

    Chung, H. Y.; Guo, G. Y.; Chiang, H.-P.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical response of a multilayered spherical system of unlimited number of layers (a “matryushka”) in the long wavelength limit can be accounted for from the knowledge of the static multipole polarizability of the system to first-order accuracy. However, for systems of ultrasmall dimensions or systems with sizes not-too-small compared to the wavelength, this ordinary quasistatic long wavelength approximation (LWA) becomes inaccurate. Here we introduce two significant modifications of the LWA for such a nanomatryushka in each of the two limits: the nonlocal optical response for ultrasmall systems (<10nm) , and the “finite-wavelength corrections” for systems ˜100nm . This is accomplished by employing the previous work for a single-layer shell, in combination with a certain effective-medium approach formulated recently in the literature. Numerical calculations for the extinction cross sections for such a system of different dimensions are provided as illustrations for these effects. This formulation thus provides significant improvements on the ordinary LWA, yielding enough accuracy for the description of the optical response of these nanoshell systems over an appreciable range of sizes, without resorting to more involved quantum mechanical or fully electrodynamic calculations.

  18. Automated system for fast and accurate analysis of SF6 injected in the surface ocean.

    PubMed

    Koo, Chul-Min; Lee, Kitack; Kim, Miok; Kim, Dae-Ok

    2005-11-01

    This paper describes an automated sampling and analysis system for the shipboard measurement of dissolved sulfur hexafluoride (SF6) in surface marine environments into which SF6 has been deliberately released. This underway system includes a gas chromatograph associated with an electron capture detector, a fast and highly efficient SF6-extraction device, a global positioning system, and a data acquisition system based on Visual Basic 6.0/C 6.0. This work is distinct from previous studies in that it quantifies the efficiency of the SF6-extraction device and its carryover effect and examines the effect of surfactant on the SF6-extraction efficiency. Measurements can be continuously performed on seawater samples taken from a seawater line installed onboard a research vessel. The system runs on an hourly cycle during which one set of four SF6 standards is measured and SF6 derived from the seawater stream is subsequently analyzed for the rest of each 1 h period. This state-of-art system was successfully used to trace a water mass carrying Cochlodinium polykrikoides, which causes harmful algal blooms (HAB) in the coastal waters of southern Korea. The successful application of this analysis system in tracing the HAB-infected water mass suggests that the SF6 detection method described in this paper will improve the quality of the future study of biogeochemical processes in the marine environment. PMID:16294883

  19. Automated system for fast and accurate analysis of SF6 injected in the surface ocean.

    PubMed

    Koo, Chul-Min; Lee, Kitack; Kim, Miok; Kim, Dae-Ok

    2005-11-01

    This paper describes an automated sampling and analysis system for the shipboard measurement of dissolved sulfur hexafluoride (SF6) in surface marine environments into which SF6 has been deliberately released. This underway system includes a gas chromatograph associated with an electron capture detector, a fast and highly efficient SF6-extraction device, a global positioning system, and a data acquisition system based on Visual Basic 6.0/C 6.0. This work is distinct from previous studies in that it quantifies the efficiency of the SF6-extraction device and its carryover effect and examines the effect of surfactant on the SF6-extraction efficiency. Measurements can be continuously performed on seawater samples taken from a seawater line installed onboard a research vessel. The system runs on an hourly cycle during which one set of four SF6 standards is measured and SF6 derived from the seawater stream is subsequently analyzed for the rest of each 1 h period. This state-of-art system was successfully used to trace a water mass carrying Cochlodinium polykrikoides, which causes harmful algal blooms (HAB) in the coastal waters of southern Korea. The successful application of this analysis system in tracing the HAB-infected water mass suggests that the SF6 detection method described in this paper will improve the quality of the future study of biogeochemical processes in the marine environment.

  20. Hardware and Software Developments for the Accurate Time-Linked Data Acquisition System

    SciTech Connect

    BERG,DALE E.; RUMSEY,MARK A.; ZAYAS,JOSE R.

    1999-11-09

    Wind-energy researchers at Sandia National Laboratories have developed a new, light-weight, modular data acquisition system capable of acquiring long-term, continuous, multi-channel time-series data from operating wind-turbines. New hardware features have been added to this system to make it more flexible and permit programming via telemetry. User-friendly Windows-based software has been developed for programming the hardware and acquiring, storing, analyzing, and archiving the data. This paper briefly reviews the major components of the system, summarizes the recent hardware enhancements and operating experiences, and discusses the features and capabilities of the software programs that have been developed.

  1. A STRONG EMISSION LINE NEAR 24.8 Angstrom-Sign IN THE X-RAY BINARY SYSTEM MAXI J0556-332: GRAVITATIONAL REDSHIFT OR UNUSUAL DONOR?

    SciTech Connect

    Maitra, Dipankar; Miller, Jon M.; Reynolds, Mark T.; Raymond, John C.

    2011-12-10

    We report the discovery of a strong emission line near 24.8 Angstrom-Sign (0.5 keV) in the newly discovered X-ray binary system MAXI J0556-332 with the reflection grating spectrometer (RGS) on board the XMM-Newton observatory. The X-ray light curve morphology during these observations is complex and shows occasional dipping behavior. Here we present time- and rate-selected spectra from the RGS and show that this strong emission line is unambiguously present in all the XMM observations. The measured line center is consistent with the Ly{alpha} transition of N VII in the rest frame. While the spectra contain imprints of absorption lines and edges, there appear to be no other significantly prominent narrow line due to the source itself, thus making the identification of the 24.8 Angstrom-Sign line uncertain. We discuss possible physical scenarios, including a gravitationally redshifted O VIII Ly{alpha} line originating at the surface of a neutron star or an unusual donor with an extremely high N/O abundance (>57) relative to solar that may have produced this comparatively strong emission line.

  2. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  3. Mathematical model accurately predicts protein release from an affinity-based delivery system.

    PubMed

    Vulic, Katarina; Pakulska, Malgosia M; Sonthalia, Rohit; Ramachandran, Arun; Shoichet, Molly S

    2015-01-10

    Affinity-based controlled release modulates the delivery of protein or small molecule therapeutics through transient dissociation/association. To understand which parameters can be used to tune release, we used a mathematical model based on simple binding kinetics. A comprehensive asymptotic analysis revealed three characteristic regimes for therapeutic release from affinity-based systems. These regimes can be controlled by diffusion or unbinding kinetics, and can exhibit release over either a single stage or two stages. This analysis fundamentally changes the way we think of controlling release from affinity-based systems and thereby explains some of the discrepancies in the literature on which parameters influence affinity-based release. The rate of protein release from affinity-based systems is determined by the balance of diffusion of the therapeutic agent through the hydrogel and the dissociation kinetics of the affinity pair. Equations for tuning protein release rate by altering the strength (KD) of the affinity interaction, the concentration of binding ligand in the system, the rate of dissociation (koff) of the complex, and the hydrogel size and geometry, are provided. We validated our model by collapsing the model simulations and the experimental data from a recently described affinity release system, to a single master curve. Importantly, this mathematical analysis can be applied to any single species affinity-based system to determine the parameters required for a desired release profile. PMID:25449806

  4. Redshift-space distortions.

    PubMed

    Percival, Will J; Samushia, Lado; Ross, Ashley J; Shapiro, Charles; Raccanelli, Alvise

    2011-12-28

    Comparing measurements of redshift-space distortions (RSDs) with geometrical observations of the expansion of the Universe offers tremendous potential for testing general relativity on very large scales. The basic linear theory of RSDs in the distant-observer limit has been known for 25 years and the effect has been conclusively observed in numerous galaxy surveys. The next generation of galaxy survey will observe many millions of galaxies over volumes of many tens of Gpc(3). They will provide RSD measurements of such exquisite precision that we will have to carefully analyse and correct for many systematic deviations from this simple picture in order to fully exploit the statistical precision obtained. We review RSD theory and show how ubiquitous RSDs actually are, and then consider a number of potential systematic effects, shamelessly highlighting recent work in which we have been involved. This review ends by looking ahead to the future surveys that will make the next generation of RSD measurements.

  5. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  6. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  7. Accurate and portable weigh-in-motion system for manifesting air cargo

    NASA Astrophysics Data System (ADS)

    Nodine, Robert N.; Scudiere, Matthew B.; Jordan, John K.

    1995-12-01

    An automated and portable weigh-in-motion system has been developed at Oak Ridge National Laboratory for the purpose of manifesting cargo onto aircraft. The system has an accuracy range of plus or minus 3.0% to plus or minus 6.0% measuring gross vehicle weight and locating the center of balance of moving vehicles at speeds of 1 to 5 mph. This paper reviews the control/user interface system and weight determination algorithm developed to acquire, process, and interpret multiple sensor inputs. The development effort resulted in a self- zeroing, user-friendly system capable of weighing a wide range of vehicles in any random order. The control system is based on the STANDARD (STD) bus and incorporates custom- designed data acquisition and sensor fusion hardware controlled by a personal computer (PC) based single-board computer. The user interface is written in the 'C' language to display number of axles, axle weight, axle spacing, gross weight, and center of balance. The weighing algorithm developed functions with any linear weight sensor and a set of four axle switches per sensor.

  8. A polymer visualization system with accurate heating and cooling control and high-speed imaging.

    PubMed

    Wong, Anson; Guo, Yanting; Park, Chul B; Zhou, Nan Q

    2015-04-23

    A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system's capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals' boundaries due to CO₂ exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals.

  9. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  10. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems

    PubMed Central

    Sapsis, Themistoklis P.; Majda, Andrew J.

    2013-01-01

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra. PMID:23918398

  11. Computer subroutine ISUDS accurately solves large system of simultaneous linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Collier, G.

    1967-01-01

    Computer program, an Iterative Scheme Using a Direct Solution, obtains double precision accuracy using a single-precision coefficient matrix. ISUDS solves a system of equations written in matrix form as AX equals B, where A is a square non-singular coefficient matrix, X is a vector, and B is a vector.

  12. Of Needles and Haystacks: Building an Accurate Statewide Dropout Early Warning System in Wisconsin

    ERIC Educational Resources Information Center

    Knowles, Jared E.

    2015-01-01

    The state of Wisconsin has one of the highest four year graduation rates in the nation, but deep disparities among student subgroups remain. To address this the state has created the Wisconsin Dropout Early Warning System (DEWS), a predictive model of student dropout risk for students in grades six through nine. The Wisconsin DEWS is in use…

  13. Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited

    SciTech Connect

    Fogtmann-Schulz, Alexandra; Hinrup, Brian; Van Eylen, Vincent; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Silva Aguirre, Víctor; Tingley, Brandon

    2014-02-01

    Since the discovery of Kepler-10, the system has received considerable interest because it contains a small, rocky planet which orbits the star in less than a day. The system's parameters, announced by the Kepler team and subsequently used in further research, were based on only five months of data. We have reanalyzed this system using the full span of 29 months of Kepler photometric data, and obtained improved information about its star and the planets. A detailed asteroseismic analysis of the extended time series provides a significant improvement on the stellar parameters: not only can we state that Kepler-10 is the oldest known rocky-planet-harboring system at 10.41 ± 1.36 Gyr, but these parameters combined with improved planetary parameters from new transit fits gives us the radius of Kepler-10b to within just 125 km. A new analysis of the full planetary phase curve leads to new estimates on the planetary temperature and albedo, which remain degenerate in the Kepler band. Our modeling suggests that the flux level during the occultation is slightly lower than at the transit wings, which would imply that the nightside of this planet has a non-negligible temperature.

  14. A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging

    PubMed Central

    Wong, Anson; Guo, Yanting; Park, Chul B.; Zhou, Nan Q.

    2015-01-01

    A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system’s capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals’ boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals. PMID:25915031

  15. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  16. PROPERTIES OF QSO METAL-LINE ABSORPTION SYSTEMS AT HIGH REDSHIFTS: NATURE AND EVOLUTION OF THE ABSORBERS AND NEW EVIDENCE ON ESCAPE OF IONIZING RADIATION FROM GALAXIES

    SciTech Connect

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-15

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 ≲ z ≲ 4.4. With associated Si IV, C II, Si II  and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II  and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s{sup –1} out to 50,000 km s{sup –1}. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z ≲ 4.4.

  17. EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS

    SciTech Connect

    Matthews, Daniel J.; Newman, Jeffrey A.; Coil, Alison L.; Cooper, Michael C.; Gwyn, Stephen D. J. E-mail: janewman@pitt.edu E-mail: m.cooper@uci.edu

    2013-02-15

    This paper describes a new catalog that supplements the existing DEEP2 Galaxy Redshift Survey photometric and spectroscopic catalogs with ugriz photometry from two other surveys: the Canada-France-Hawaii Legacy Survey (CFHTLS) and the Sloan Digital Sky Survey (SDSS). Each catalog is cross-matched by position on the sky in order to assign ugriz photometry to objects in the DEEP2 catalogs. We have recalibrated the CFHTLS photometry where it overlaps DEEP2 in order to provide a more uniform data set. We have also used this improved photometry to predict DEEP2 BRI photometry in regions where only poorer measurements were available previously. In addition, we have included improved astrometry tied to SDSS rather than USNO-A2.0 for all DEEP2 objects. In total this catalog contains {approx}27, 000 objects with full ugriz photometry as well as robust spectroscopic redshift measurements, 64% of which have r > 23. By combining the secure and accurate redshifts of the DEEP2 Galaxy Redshift Survey with ugriz photometry, we have created a catalog that can be used as an excellent testbed for future photo-z studies, including tests of algorithms for surveys such as LSST and DES.

  18. A new sensor system for accurate and precise determination of sediment dynamics and position.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios; Hoey, Trevor; Sventek, Joseph; Hodge, Rebecca

    2014-05-01

    Sediment transport processes control many significant geomorphological changes. Consequently, sediment transport dynamics are studied across a wide range of scales leading to application of a variety of conceptually different mathematical descriptions (models) and data acquisition techniques (sensing). For river sediment transport processes both Eulerian and Lagrangian formulations are used. Data are gathered using a very wide range of sensing techniques that are not always compatible with the conceptual formulation applied. We are concerned with small to medium sediment grain-scale motion in gravel-bed rivers, and other coarse-grained environments, and: a) are developing a customised environmental sensor capable of providing coherent data that reliably record the motion; and, b) provide a mathematical framework in which these data can be analysed and interpreted, this being compatible with current stochastic approaches to sediment transport theory. Here we present results from three different aspects of the above developmental process. Firstly, we present a requirement analysis for the sensor based on the state of the art of the existing technologies. We focus on the factors that enhance data coherence and representativeness, extending the common practice for optimization which is based exclusively on electronics/computing related criteria. This analysis leads to formalization of a method that permits accurate control on the physical properties of the sensor using contemporary rapid prototyping techniques [Maniatis et al. 2013]. Secondly the first results are presented from a series of entrainment experiments in a 5 x 0.8 m flume in which a prototype sensor was deployed to monitor entrainment dynamics under increasing flow conditions (0.037 m3.s-1). The sensor was enclosed in an idealized spherical case (111 mm diameter) and placed on a constructed bed of hemispheres of the same diameter. We measured 3-axial inertial acceleration (as a measure of flow stress

  19. Accurate DOSY measure for out-of-equilibrium systems using permutated DOSY (p-DOSY).

    PubMed

    Oikonomou, Maria; Asencio-Hernández, Julia; Velders, Aldrik H; Delsuc, Marc-André

    2015-09-01

    NMR spectroscopy is a excellent tool for monitoring in-situ chemical reactions. In particular, DOSY measurement is well suited to characterize transient species by the determination of their sizes. However, here we bring to light a difficulty in the DOSY experiments performed in out-of-equilibrium systems. On such a system, the evolution of the concentration of species interferes with the measurement process, and creates a bias on the diffusion coefficient determination that may lead to erroneous interpretations. We show that a random permutation of the series of gradient strengths used during the DOSY experiment allows to average out this bias. This approach, that we name p-DOSY does not require changes in the pulse sequences nor in the processing software, and restores completely the full accuracy of the measure. This technique is demonstrated on the monitoring of the anomerization reaction of α- to β-glucose.

  20. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  1. Evaluation of a low-cost and accurate ocean temperature logger on subsurface mooring systems

    SciTech Connect

    Tian, Chuan; Deng, Zhiqun; Lu, Jun; Xu, Xiaoyang; Zhao, Wei; Xu, Ming

    2014-06-23

    Monitoring seawater temperature is important to understanding evolving ocean processes. To monitor internal waves or ocean mixing, a large number of temperature loggers are typically mounted on subsurface mooring systems to obtain high-resolution temperature data at different water depths. In this study, we redesigned and evaluated a compact, low-cost, self-contained, high-resolution and high-accuracy ocean temperature logger, TC-1121. The newly designed TC-1121 loggers are smaller, more robust, and their sampling intervals can be automatically changed by indicated events. They have been widely used in many mooring systems to study internal wave and ocean mixing. The logger’s fundamental design, noise analysis, calibration, drift test, and a long-term sea trial are discussed in this paper.

  2. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Hanson, Bradley D.; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin

    2015-01-01

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images. PMID:26225982

  3. When do perturbative approaches accurately capture the dynamics of complex quantum systems?

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.

    2016-06-01

    Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model.

  4. When do perturbative approaches accurately capture the dynamics of complex quantum systems?

    PubMed Central

    Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.

    2016-01-01

    Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176

  5. NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems

    PubMed Central

    Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R.; Samatova, Nagiza F.

    2012-01-01

    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to

  6. RiboTALE: A modular, inducible system for accurate gene expression control

    PubMed Central

    Rai, Navneet; Ferreiro, Aura; Neckelmann, Alexander; Soon, Amy; Yao, Andrew; Siegel, Justin; Facciotti, Marc T.; Tagkopoulos, Ilias

    2015-01-01

    A limiting factor in synthetic gene circuit design is the number of independent control elements that can be combined together in a single system. Here, we present RiboTALEs, a new class of inducible repressors that combine the specificity of TALEs with the ability of riboswitches to recognize exogenous signals and differentially control protein abundance. We demonstrate the capacity of RiboTALEs, constructed through different combinations of TALE proteins and riboswitches, to rapidly and reproducibly control the expression of downstream targets with a dynamic range of 243.7 ± 17.6-fold, which is adequate for many biotechnological applications. PMID:26023068

  7. A simple and accurate grading system for orthoiodohippurate renal scans in the assessment of post-transplant renal function

    SciTech Connect

    Zaki, S.K.; Bretan, P.N.; Go, R.T.; Rehm, P.K.; Streem, S.B.; Novick, A.C. )

    1990-06-01

    Orthoiodohippurate renal scanning has proved to be a reliable, noninvasive method for the evaluation and followup of renal allograft function. However, a standardized system for grading renal function with this test is not available. We propose a simple grading system to distinguish the different functional phases of hippurate scanning in renal transplant recipients. This grading system was studied in 138 patients who were evaluated 1 week after renal transplantation. There was a significant correlation between the isotope renographic functional grade and clinical correlates of allograft function such as the serum creatinine level (p = 0.0001), blood urea nitrogen level (p = 0.0001), urine output (p = 0.005) and need for hemodialysis (p = 0.007). We recommend this grading system as a simple and accurate method to interpret orthoiodohippurate renal scans in the evaluation and followup of renal allograft recipients.

  8. Accurate distortion estimation and optimal bandwidth allocation for scalable H.264 video transmission over MIMO systems.

    PubMed

    Jubran, Mohammad K; Bansal, Manu; Kondi, Lisimachos P; Grover, Rohan

    2009-01-01

    In this paper, we propose an optimal strategy for the transmission of scalable video over packet-based multiple-input multiple-output (MIMO) systems. The scalable extension of H.264/AVC that provides a combined temporal, quality and spatial scalability is used. For given channel conditions, we develop a method for the estimation of the distortion of the received video and propose different error concealment schemes. We show the accuracy of our distortion estimation algorithm in comparison with simulated wireless video transmission with packet errors. In the proposed MIMO system, we employ orthogonal space-time block codes (O-STBC) that guarantee independent transmission of different symbols within the block code. In the proposed constrained bandwidth allocation framework, we use the estimated end-to-end decoder distortion to optimally select the application layer parameters, i.e., quantization parameter (QP) and group of pictures (GOP) size, and physical layer parameters, i.e., rate-compatible turbo (RCPT) code rate and symbol constellation. Results show the substantial performance gain by using different symbol constellations across the scalable layers as compared to a fixed constellation.

  9. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    NASA Astrophysics Data System (ADS)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  10. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    SciTech Connect

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  11. Evaluation of the EURO-CORDEX RCMs to accurately simulate the Etesian wind system

    NASA Astrophysics Data System (ADS)

    Dafka, Stella; Xoplaki, Elena; Toreti, Andrea; Zanis, Prodromos; Tyrlis, Evangelos; Luterbacher, Jürg

    2016-04-01

    The Etesians are among the most persistent regional scale wind systems in the lower troposphere that blow over the Aegean Sea during the extended summer season. ΑAn evaluation of the high spatial resolution, EURO-CORDEX Regional Climate Models (RCMs) is here presented. The study documents the performance of the individual models in representing the basic spatiotemporal pattern of the Etesian wind system for the period 1989-2004. The analysis is mainly focused on evaluating the abilities of the RCMs in simulating the surface wind over the Aegean Sea and the associated large scale atmospheric circulation. Mean Sea Level Pressure (SLP), wind speed and geopotential height at 500 hPa are used. The simulated results are validated against reanalysis datasets (20CR-v2c and ERA20-C) and daily observational measurements (12:00 UTC) from the mainland Greece and Aegean Sea. The analysis highlights the general ability of the RCMs to capture the basic features of the Etesians, but also indicates considerable deficiencies for selected metrics, regions and subperiods. Some of these deficiencies include the significant underestimation (overestimation) of the mean SLP in the northeastern part of the analysis domain in all subperiods (for May and June) when compared to 20CR-v2c (ERA20-C), the significant overestimation of the anomalous ridge over the Balkans and central Europe and the underestimation of the wind speed over the Aegean Sea. Future work will include an assessment of the Etesians for the next decades using EURO-CORDEX projections under different RCP scenarios and estimate the future potential for wind energy production.

  12. A Study of the Contribution of the Damped Lyman α Systems and Lyman Break Galaxies to the Metal Content of the High-Redshift Universe

    NASA Astrophysics Data System (ADS)

    Lanfranchi, Gustavo; Friaça, Amancio C. S.

    We investigate the evolutionary history of the Universe's metal content through chemical abundances, taken from the literature, and predictions from chemical evolution models. The estimated abundances of several elements (C, N, O, S, Si, Fe, Cr, Zn) were taken from observations of QSOs absorption line systems over a wide range of redshift ( z ˜ 0.5 - 4.5). First, the observational data is analysed with robust statistical methods, which reveals important features: the metallicity of the QSOs absorption line systems increases with N(HI) until it reaches a peak at log(N(HI)) ˜ 20 - 20.5, and then declines suggesting a selection effect; there is an underabundance of Fe and Cr with respect to Zn in Damped Lyman α Systems (DLAS); the [α/Fe] ratio in DLAs is suprasolar; there is a trend of decreasing abundance with increasing N(HI) for Fe, Cr, Zn, Si and S in DLAs. After the statistical analysis, the observational data is compared with predictions of chemical evolution models. We apply different models to these systems due to the uncertainties about the nature of the QSOs absorption line systems. The DLAs are investigated with one zone models describing: a) dwarf galaxies with galactic winds and b) disk galaxies with infall. A chemodynamical model for spheroids is used to study the Lyman Break Galaxies (LBGs). In order to compare the observational data with the models, we use the ratios [N/α] and [α/Fe]. These ratios in DLAs are only partially reproduced by the disk and dwarf galaxy models suggesting that the DLAs come from a variety of morphological types of galaxies and not only one (Lanfranchi & Friaça, in preparation). They also imply a typically long timescale for the star formation in these systems. In contrast, the observational constraints for the LBGs are met by models for spheroid formation with typically short timescales for star formation ( ≈ 10 Gyr^{-1}), giving support to a scenario for galaxy formation in which there is a dichotomy between the

  13. Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine A.; Stancescu, Maria; Marriott, Robert A.; White, Mary Anne

    2007-02-01

    A commercial instrument for determination of heat capacities of solids from ca. 400 K to 0.4 K, the physical property measurement system from Quantum Design, has been used to determine the heat capacities of a standard samples (sapphire [single crystal] and copper). We extend previous tests of the PPMS in three important ways: to temperatures as low as 0.4 K; to samples with poor thermal conductivity; to compare uncertainty with accuracy. We find that the accuracy of heat capacity determinations can be within 1% for 5 K < T < 300 K and 5% for 0.7 K < T < 5 K. Careful attention should be paid to the relative uncertainty for each data point, as determined from multiple measurements. While we have found that it is possible in some circumstances to obtain excellent results by measurement of samples that contribute more than ca. 1/3 to the total heat capacity, there is no "ideal" sample mass and sample geometry also is an important consideration. In fact, our studies of pressed pellets of zirconium tungstate, a poor thermal conductor, show that several samples of different masses should be determined for the highest degree of certainty.

  14. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  15. Is TIRADS a practical and accurate system for use in daily clinical practice?

    PubMed Central

    Chandramohan, Anuradha; Khurana, Abhishek; Pushpa, B T; Manipadam, Marie Therese; Naik, Dukhabandhu; Thomas, Nihal; Abraham, Deepak; Paul, Mazhuvanchary Jacob

    2016-01-01

    Aim: To assess the positive predictive value (PPV) and inter-observer agreement of Thyroid Imaging Reporting and Data System (TIRADS) as described by Kwak et al. Materials and Methods: This was a prospective study wherein ultrasound was performed by two radiologists on patients with thyroid nodules >1 cm. The third radiologist interpreted archived images. Ultrasound features and TIRADS category were compared with cytology and surgical histopathology. PPV was calculated for all readers’ combined assessment. Inter-observer agreement was calculated using linear weighted kappa. Results: A total of 238 patients with 272 nodules of mean size 2.9 ± 1.7 cm were included. PPV for malignancy was 6.6%, 32%, 36%, 64%, 59%, and 91% for TIRADS 2, 3, 4a, 4b, 4c, and 5 categories, respectively. Inter-observer agreement was substantial [kappa (k) = 0.61-0.80] for assessment of nodule echogenicity, margins, calcification, and shape and good (k = 0.570, P < 0.001) for assessment of composition of the thyroid nodules. Overall agreement between observers was substantial for assigning TIRADS category [multi-rater weighted kappa coefficient (wt k) = 0.721, P < 0.001]. Conclusions: TIRADS is a simple and practical method of assessing thyroid nodules with high PPV and good inter-observer agreement. PMID:27081240

  16. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  17. Application of a cell microarray chip system for accurate, highly sensitive, and rapid diagnosis for malaria in Uganda.

    PubMed

    Yatsushiro, Shouki; Yamamoto, Takeki; Yamamura, Shohei; Abe, Kaori; Obana, Eriko; Nogami, Takahiro; Hayashi, Takuya; Sesei, Takashi; Oka, Hiroaki; Okello-Onen, Joseph; Odongo-Aginya, Emmanuel I; Alai, Mary Auma; Olia, Alex; Anywar, Dennis; Sakurai, Miki; Palacpac, Nirianne Mq; Mita, Toshihiro; Horii, Toshihiro; Baba, Yoshinobu; Kataoka, Masatoshi

    2016-01-01

    Accurate, sensitive, rapid, and easy operative diagnosis is necessary to prevent the spread of malaria. A cell microarray chip system including a push column for the recovery of erythrocytes and a fluorescence detector was employed for malaria diagnosis in Uganda. The chip with 20,944 microchambers (105 μm width and 50 μm depth) was made of polystyrene. For the analysis, 6 μl of whole blood was employed, and leukocytes were practically removed by filtration through SiO2-nano-fibers in a column. Regular formation of an erythrocyte monolayer in each microchamber was observed following dispersion of an erythrocyte suspension in a nuclear staining dye, SYTO 21, onto the chip surface and washing. About 500,000 erythrocytes were analyzed in a total of 4675 microchambers, and malaria parasite-infected erythrocytes could be detected in 5 min by using the fluorescence detector. The percentage of infected erythrocytes in each of 41 patients was determined. Accurate and quantitative detection of the parasites could be performed. A good correlation between examinations via optical microscopy and by our chip system was demonstrated over the parasitemia range of 0.0039-2.3438% by linear regression analysis (R(2) = 0.9945). Thus, we showed the potential of this chip system for the diagnosis of malaria. PMID:27445125

  18. Application of a cell microarray chip system for accurate, highly sensitive, and rapid diagnosis for malaria in Uganda

    PubMed Central

    Yatsushiro, Shouki; Yamamoto, Takeki; Yamamura, Shohei; Abe, Kaori; Obana, Eriko; Nogami, Takahiro; Hayashi, Takuya; Sesei, Takashi; Oka, Hiroaki; Okello-Onen, Joseph; Odongo-Aginya, Emmanuel I.; Alai, Mary Auma; Olia, Alex; Anywar, Dennis; Sakurai, Miki; Palacpac, Nirianne MQ; Mita, Toshihiro; Horii, Toshihiro; Baba, Yoshinobu; Kataoka, Masatoshi

    2016-01-01

    Accurate, sensitive, rapid, and easy operative diagnosis is necessary to prevent the spread of malaria. A cell microarray chip system including a push column for the recovery of erythrocytes and a fluorescence detector was employed for malaria diagnosis in Uganda. The chip with 20,944 microchambers (105 μm width and 50 μm depth) was made of polystyrene. For the analysis, 6 μl of whole blood was employed, and leukocytes were practically removed by filtration through SiO2-nano-fibers in a column. Regular formation of an erythrocyte monolayer in each microchamber was observed following dispersion of an erythrocyte suspension in a nuclear staining dye, SYTO 21, onto the chip surface and washing. About 500,000 erythrocytes were analyzed in a total of 4675 microchambers, and malaria parasite-infected erythrocytes could be detected in 5 min by using the fluorescence detector. The percentage of infected erythrocytes in each of 41 patients was determined. Accurate and quantitative detection of the parasites could be performed. A good correlation between examinations via optical microscopy and by our chip system was demonstrated over the parasitemia range of 0.0039–2.3438% by linear regression analysis (R2 = 0.9945). Thus, we showed the potential of this chip system for the diagnosis of malaria. PMID:27445125

  19. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  20. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'.

    PubMed

    Gordon, Brett Ashley; Bruce, Lyndell; Benson, Amanda Clare

    2016-08-01

    Monitoring physical activity is important to better individualise health and fitness benefits. This study assessed the concurrent validity of a smartphone global positioning system (GPS) 'app' and a sport-specific GPS device with a similar sampling rate, to measure physical activity components of speed and distance, compared to a higher sampling sport-specific GPS device. Thirty-eight (21 female, 17 male) participants, mean age of 24.68, s = 6.46 years, completed two 2.400 km trials around an all-weather athletics track wearing GPSports Pro™ (PRO), GPSports WiSpi™ (WISPI) and an iPhone™ with a Motion X GPS™ 'app' (MOTIONX). Statistical agreement, assessed using t-tests and Bland-Altman plots, indicated an (mean; 95% LOA) underestimation of 2% for average speed (0.126 km·h(-1); -0.389 to 0.642; p < .001), 1.7% for maximal speed (0.442 km·h(-1); -2.676 to 3.561; p = .018) and 1.9% for distance (0.045 km; -0.140 to 0.232; p < .001) by MOTIONX compared to that measured by PRO. In contrast, compared to PRO, WISPI overestimated average speed (0.232 km·h(-1); -0.376 to 0.088; p < .001) and distance (0.083 km; -0.129 to -0.038; p < .001) by 3.5% whilst underestimating maximal speed by 2.5% (0.474 km·h(-1); -1.152 to 2.099; p < .001). Despite the statistically significant difference, the MOTIONX measures intensity of physical activity, with a similar error as WISPI, to an acceptable level for population-based monitoring in unimpeded open-air environments. This presents a low-cost, minimal burden opportunity to remotely monitor physical activity participation to improve the prescription of exercise as medicine.

  1. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'.

    PubMed

    Gordon, Brett Ashley; Bruce, Lyndell; Benson, Amanda Clare

    2016-08-01

    Monitoring physical activity is important to better individualise health and fitness benefits. This study assessed the concurrent validity of a smartphone global positioning system (GPS) 'app' and a sport-specific GPS device with a similar sampling rate, to measure physical activity components of speed and distance, compared to a higher sampling sport-specific GPS device. Thirty-eight (21 female, 17 male) participants, mean age of 24.68, s = 6.46 years, completed two 2.400 km trials around an all-weather athletics track wearing GPSports Pro™ (PRO), GPSports WiSpi™ (WISPI) and an iPhone™ with a Motion X GPS™ 'app' (MOTIONX). Statistical agreement, assessed using t-tests and Bland-Altman plots, indicated an (mean; 95% LOA) underestimation of 2% for average speed (0.126 km·h(-1); -0.389 to 0.642; p < .001), 1.7% for maximal speed (0.442 km·h(-1); -2.676 to 3.561; p = .018) and 1.9% for distance (0.045 km; -0.140 to 0.232; p < .001) by MOTIONX compared to that measured by PRO. In contrast, compared to PRO, WISPI overestimated average speed (0.232 km·h(-1); -0.376 to 0.088; p < .001) and distance (0.083 km; -0.129 to -0.038; p < .001) by 3.5% whilst underestimating maximal speed by 2.5% (0.474 km·h(-1); -1.152 to 2.099; p < .001). Despite the statistically significant difference, the MOTIONX measures intensity of physical activity, with a similar error as WISPI, to an acceptable level for population-based monitoring in unimpeded open-air environments. This presents a low-cost, minimal burden opportunity to remotely monitor physical activity participation to improve the prescription of exercise as medicine. PMID:26505223

  2. Patient safety measures in burn care: do National reporting systems accurately reflect quality of burn care?

    PubMed

    Mandell, Samuel P; Robinson, Ellen F; Cooper, Claudette L; Klein, Matthew B; Gibran, Nicole S

    2010-01-01

    Recently, much attention has been placed on quality of care metrics and patient safety. Groups such as the University Health-System Consortium (UHC) collect and review patient safety data, monitor healthcare facilities, and often report data using mortality and complication rates as outcomes. The purpose of this study was to analyze the UHC database to determine if it differentiates quality of care across burn centers. We reviewed UHC clinical database (CDB) fields and available data from 2006 to 2008 for the burn product line. Based on the September 2008 American Burn Association (ABA) list of verified burn centers, we categorized centers as American Burn Association-verified burn centers, self-identified burn centers, and other centers that are not burn units but admit some burn patients. We compared total burn admissions, risk pool, complication rates, and mortality rates. Overall mortality was compared between the UHC and National Burn Repository. The UHC CDB provides fields for number of admissions, % intensive care unit admission, risk pool, length of stay, complication profiles, and mortality index. The overall numbers of burn patients in the database for the study period included 17,740 patients admitted to verified burn centers (mean 631 admissions/burn center/yr or per 2 years), 10,834 for self-identified burn centers (mean 437 admissions/burn center/yr or per 2 years), and 1,487 for other centers (mean 11.5 admissions/burn center/yr or per 2 years). Reported complication rates for verified burn centers (21.6%), self-identified burn centers (21.3%), and others (20%) were similar. Mortality rates were highest for self-identified burn centers (3.06%), less for verified centers (2.88%), and lowest for other centers (0.74%). However, these outcomes data may be misleading, because the risk pool criteria do not include burn-specific risk factors, and the inability to adjust for injury severity prevents rigorous comparison across centers. Databases such as the

  3. SU-E-T-475: An Accurate Linear Model of Tomotherapy MLC-Detector System for Patient Specific Delivery QA

    SciTech Connect

    Chen, Y; Mo, X; Chen, M; Olivera, G; Parnell, D; Key, S; Lu, W; Reeher, M; Galmarini, D

    2014-06-01

    Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms.

  4. Accurate treatments of electrostatics for computer simulations of biological systems: A brief survey of developments and existing problems

    NASA Astrophysics Data System (ADS)

    Yi, Sha-Sha; Pan, Cong; Hu, Zhong-Han

    2015-12-01

    Modern computer simulations of biological systems often involve an explicit treatment of the complex interactions among a large number of molecules. While it is straightforward to compute the short-ranged Van der Waals interaction in classical molecular dynamics simulations, it has been a long-lasting issue to develop accurate methods for the longranged Coulomb interaction. In this short review, we discuss three types of methodologies for the accurate treatment of electrostatics in simulations of explicit molecules: truncation-type methods, Ewald-type methods, and mean-field-type methods. Throughout the discussion, we brief the formulations and developments of these methods, emphasize the intrinsic connections among the three types of methods, and focus on the existing problems which are often associated with the boundary conditions of electrostatics. This brief survey is summarized with a short perspective on future trends along the method developments and applications in the field of biological simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 91127015 and 21522304) and the Open Project from the State Key Laboratory of Theoretical Physics, and the Innovation Project from the State Key Laboratory of Supramolecular Structure and Materials.

  5. Bayesian redshift-space distortions correction from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Ata, Metin; Angulo, Raul E.; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Monteagudo, Carlos Hernández; Prada, Francisco; Yepes, Gustavo

    2016-03-01

    We present a Bayesian reconstruction method which maps a galaxy distribution from redshift- to real-space inferring the distances of the individual galaxies. The method is based on sampling density fields assuming a lognormal prior with a likelihood modelling non-linear stochastic bias. Coherent redshift-space distortions are corrected in a Gibbs-sampling procedure by moving the galaxies from redshift- to real-space according to the peculiar motions derived from the recovered density field using linear theory. The virialized distortions are corrected by sampling candidate real-space positions along the line of sight, which are compatible with the bulk flow corrected redshift-space position adding a random dispersion term in high-density collapsed regions (defined by the eigenvalues of the Hessian). This approach presents an alternative method to estimate the distances to galaxies using the three-dimensional spatial information, and assuming isotropy. Hence the number of applications is very broad. In this work, we show the potential of this method to constrain the growth rate up to k ˜ 0.3 h Mpc-1. Furthermore it could be useful to correct for photometric redshift errors, and to obtain improved baryon acoustic oscillations (BAO) reconstructions.

  6. Gravitational redshift experiment on RadioAstron

    NASA Astrophysics Data System (ADS)

    Litvinov, Dmitry; Bietenholz, Michael; Rudenko, Valentin; Biriukov, Alexander; Kauts, Vladimir; Kulagin, Victor; Bartel, Norbert; Gwinn, Carl; Cannon, Wayne

    The RadioAstron space radio telescope offers a possibility for testing the gravitational redshift effect with an accuracy of better than 10(-5) , thus, improving the result of the Gravity Probe A mission by at least an order of magnitude. However, RadioAstron’s communications and frequency transfer system doesn’t allow for a direct application of the nonrelativistic Doppler and tropospheric compensation scheme used in the Gravity Probe A experiment. This results in a degradation of the redshift test accuracy to approximately 1%. We discuss two approaches to overcome this difficulty and present preliminary results based on data obtained during special observing sessions scheduled for testing the new techniques.

  7. The kinematic origin of the cosmological redshift

    NASA Astrophysics Data System (ADS)

    Bunn, Emory F.; Hogg, David W.

    2009-08-01

    A common belief about big-bang cosmology is that the cosmological redshift cannot be properly viewed as a Doppler shift (that is, as evidence for a recession velocity) but must be viewed in terms of the stretching of space. We argue that, contrary to this view, the most natural interpretation of the redshift is as a Doppler shift, or rather as the accumulation of many infinitesimal Doppler shifts. The stretching-of-space interpretation obscures a central idea of relativity, namely that it is always valid to choose a coordinate system that is locally Minkowskian. We show that an observed frequency shift in any spacetime can be interpreted either as a kinematic (Doppler) shift or a gravitational shift by imagining a suitable family of observers along the photon's path. In the context of the expanding universe, the kinematic interpretation corresponds to a family of comoving observers and hence is more natural.

  8. Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems.

    PubMed

    Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G

    2013-08-12

    We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.

  9. A precision measurement of the gravitational redshift by the interference of matter waves.

    PubMed

    Müller, Holger; Peters, Achim; Chu, Steven

    2010-02-18

    One of the central predictions of metric theories of gravity, such as general relativity, is that a clock in a gravitational potential U will run more slowly by a factor of 1 + U/c(2), where c is the velocity of light, as compared to a similar clock outside the potential. This effect, known as gravitational redshift, is important to the operation of the global positioning system, timekeeping and future experiments with ultra-precise, space-based clocks (such as searches for variations in fundamental constants). The gravitational redshift has been measured using clocks on a tower, an aircraft and a rocket, currently reaching an accuracy of 7 x 10(-5). Here we show that laboratory experiments based on quantum interference of atoms enable a much more precise measurement, yielding an accuracy of 7 x 10(-9). Our result supports the view that gravity is a manifestation of space-time curvature, an underlying principle of general relativity that has come under scrutiny in connection with the search for a theory of quantum gravity. Improving the redshift measurement is particularly important because this test has been the least accurate among the experiments that are required to support curved space-time theories.

  10. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  11. Precision photometric redshift calibration for galaxy-galaxy weak lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, R.; Seljak, U.; Hirata, C. M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Carollo, M.; Contini, T.; Cunha, C. E.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kneib, J.-P.; Knobel, C.; Koo, D. C.; Lamareille, F.; Le Fèvre, O.; Le Borgne, J.-F.; Lilly, S. J.; Maier, C.; Mainieri, V.; Mignoli, M.; Newman, J. A.; Oesch, P. A.; Perez-Montero, E.; Ricciardelli, E.; Scodeggio, M.; Silverman, J.; Tasca, L.

    2008-05-01

    Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy-galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy-galaxy lensing calibration error well below current SDSS statistical errors. Based in part on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Programme 175.A-0839. E-mail: rmandelb@ias.edu (RM); seljak@itp.uzh.ch (US) ‡ Hubble Fellow.

  12. A sparse Gaussian process framework for photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-01-01

    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.

  13. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    SciTech Connect

    Carrasco Kind, Matias

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are crucial

  14. Precision Cosmology with a New Probabilistic Photometric Redshifts Approach

    NASA Astrophysics Data System (ADS)

    Carrasco Kind, Matias; Brunner, R. J.

    2013-06-01

    A complete understanding of both dark energy and dark matter remains one of most important challenges in astrophysics today. Recent theoretical and numerical computations have made important progress in quantifying the role of these dark components on the formation and evolution of galaxies through cosmic time, but observational verification of these predictions and the development of new, more stringent constraints has not kept pace. It is in this context that, photometric redshifts have become more important with the growth of large imaging surveys, such as DES and LSST, that have been designed to address this issue. But their basic implementation has not changed significantly from their original development, as most techniques provide a single photometric redshift estimate and an associated error for the an extragalactic source. In this work, we present a unique and powerful solution that leverages the full information contained in the photometric data to address this cosmological challenge with a new approach that provides accurate photometric redshift probability density functions (PDF) for galaxies. This new approach, which scales efficiently to massive data, efficiently combines standard template fitting techniques with powerful machine learning methods. Included in this framework is our recently developed technique entitled Trees for PhotoZ (TPZ); a new, robust, parallel photometric redshift code that uses prediction trees and random forests to generate photo-z PDFs in a reliable and fast manner. In addition, our approach also provides ancillary information about the internal structure of the data, including the relative importance of variables used during the redshift estimation, an identification of areas in the training sample that provide poor predictions, and an accurate outlier rejection method. We will also present current results of this approach on a variety of datasets and discuss, by using specific examples, how the full photo-z PDF can be

  15. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    NASA Astrophysics Data System (ADS)

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-01

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  16. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  17. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    SciTech Connect

    Nazareth, D; Malhotra, H; French, S; Hoffmann, K; Merrow, C

    2014-06-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could possibly be

  18. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  19. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    SciTech Connect

    Luo, Xiongbiao

    2014-06-15

    electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.

  20. The Galileo solar redshift experiment

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.; Morabito, David D.; Anderson, John D.

    1993-01-01

    From the October 1989 launch to the first December 1990 earth gravity assist, we regularly obtained frequency measurements of the spacecraft clock - an ultrastable crystal oscillator (USO) supplied by Frequency Electronics, Inc. The solar gravitational redshift in frequency was readily detectable, and because of the unique variations in heliocentric distance we could separate the general relativistic effects from the USO's intrinsic frequency variations. We have verified the total frequency shift predicted by general relativity to 0.5 percent accuracy, and the solar gravitational redshift to 1 percent accuracy.

  1. Photometric redshifts and quasar probabilities from a single, data-driven generative model

    SciTech Connect

    Bovy, Jo; Myers, Adam D.; Hennawi, Joseph F.; Hogg, David W.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-03-20

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  2. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    SciTech Connect

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Myers, Adam D.; Hennawi, Joseph F.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.

    2012-04-10

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques-which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data-and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  3. Edgeworth streaming model for redshift space distortions

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Kopp, Michael; Haugg, Thomas

    2015-09-01

    We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N -body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc /h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc /h . To predict the scale-dependent functions entering the streaming model we employ convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian radius, we extend CLPT to the coarse-grained dust model and consider two different smoothing approaches operating in Eulerian and Lagrangian space, respectively. The coarse graining in Eulerian space features modified fluid dynamics different from dust while the coarse graining in Lagrangian space is performed in the initial conditions with subsequent single-streaming dust dynamics, implemented by smoothing the initial power spectrum in the spirit of the truncated Zel'dovich approximation. Finally, we compare the predictions of the different coarse-grained models for the streaming model ingredients to N -body measurements and comment on the proper choice of both the tracer distribution function and the smoothing scale. Since the perturbative methods we considered are not yet accurate enough on small scales, the GSM is sufficient when applied to perturbation theory.

  4. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  5. Development and Validation of a Fast, Accurate and Cost-Effective Aeroservoelastic Method on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Goodwin, Sabine A.; Raj, P.

    1999-01-01

    Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.

  6. The Redshift-Distance Relation

    NASA Astrophysics Data System (ADS)

    Segal, I. E.

    1993-06-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F \\varpropto (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan^2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 ± 40 Mpc (1 parsec = 3.09 x 1016 m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered.

  7. The redshift-distance relation.

    PubMed Central

    Segal, I E

    1993-01-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F [symbol, see text] (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 +/- 40 Mpc (1 parsec = 3.09 x 10(16) m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered. PMID:11607390

  8. The Weyl Definition of Redshifts

    ERIC Educational Resources Information Center

    Harvey, Alex

    2012-01-01

    In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…

  9. The redshift-distance relation.

    PubMed

    Segal, I E

    1993-06-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F [symbol, see text] (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 +/- 40 Mpc (1 parsec = 3.09 x 10(16) m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered.

  10. Obscured AGN at High Redshift

    NASA Technical Reports Server (NTRS)

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  11. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  12. Stable and accurate hybrid finite volume methods based on pure convexity arguments for hyperbolic systems of conservation law

    NASA Astrophysics Data System (ADS)

    De Vuyst, Florian

    2004-01-01

    This exploratory work tries to present first results of a novel approach for the numerical approximation of solutions of hyperbolic systems of conservation laws. The objective is to define stable and "reasonably" accurate numerical schemes while being free from any upwind process and from any computation of derivatives or mean Jacobian matrices. That means that we only want to perform flux evaluations. This would be useful for "complicated" systems like those of two-phase models where solutions of Riemann problems are hard, see impossible to compute. For Riemann or Roe-like solvers, each fluid model needs the particular computation of the Jacobian matrix of the flux and the hyperbolicity property which can be conditional for some of these models makes the matrices be not R-diagonalizable everywhere in the admissible state space. In this paper, we rather propose some numerical schemes where the stability is obtained using convexity considerations. A certain rate of accuracy is also expected. For that, we propose to build numerical hybrid fluxes that are convex combinations of the second-order Lax-Wendroff scheme flux and the first-order modified Lax-Friedrichs scheme flux with an "optimal" combination rate that ensures both minimal numerical dissipation and good accuracy. The resulting scheme is a central scheme-like method. We will also need and propose a definition of local dissipation by convexity for hyperbolic or elliptic-hyperbolic systems. This convexity argument allows us to overcome the difficulty of nonexistence of classical entropy-flux pairs for certain systems. We emphasize the systematic feature of the method which can be fastly implemented or adapted to any kind of systems, with general analytical or data-tabulated equations of state. The numerical results presented in the paper are not superior to many existing state-of-the-art numerical methods for conservation laws such as ENO, MUSCL or central scheme of Tadmor and coworkers. The interest is rather

  13. Accurate spin-orbit and spin-other-orbit contributions to the g-tensor for transition metal containing systems.

    PubMed

    Van Yperen-De Deyne, A; Pauwels, E; Van Speybroeck, V; Waroquier, M

    2012-08-14

    In this paper an overview is presented of several approximations within Density Functional Theory (DFT) to calculate g-tensors in transition metal containing systems and a new accurate description of the spin-other-orbit contribution for high spin systems is suggested. Various implementations in a broad variety of software packages (ORCA, ADF, Gaussian, CP2K, GIPAW and BAND) are critically assessed on various aspects including (i) non-relativistic versus relativistic Hamiltonians, (ii) spin-orbit coupling contributions and (iii) the gauge. Particular attention is given to the level of accuracy that can be achieved for codes that allow g-tensor calculations under periodic boundary conditions, as these are ideally suited to efficiently describe extended condensed-phase systems containing transition metals. In periodic codes like CP2K and GIPAW, the g-tensor calculation schemes currently suffer from an incorrect treatment of the exchange spin-orbit interaction and a deficient description of the spin-other-orbit term. In this paper a protocol is proposed, making the predictions of the exchange part to the g-tensor shift more plausible. Focus is also put on the influence of the spin-other-orbit interaction which becomes of higher importance for high-spin systems. In a revisited derivation of the various terms arising from the two-electron spin-orbit and spin-other-orbit interaction (SOO), new insight has been obtained revealing amongst other issues new terms for the SOO contribution. The periodic CP2K code has been adapted in view of this new development. One of the objectives of this study is indeed a serious enhancement of the performance of periodic codes in predicting g-tensors in transition metal containing systems at the same level of accuracy as the most advanced but time consuming spin-orbit mean-field approach. The methods are first applied on rhodium carbide but afterwards extended to a broad test set of molecules containing transition metals from the fourth

  14. Evolution of the galaxy correlation function at redshifts 0.2 < z < 3

    NASA Astrophysics Data System (ADS)

    Sołtan, Andrzej M.

    2016-10-01

    We determine the auto-correlation function (ACF) of galaxies using massive deep galaxy surveys for which distances to individual objects are assessed using photometric redshifts. The method is applied to the 2deg COSMOS survey of ~ 300000 galaxies with i + < 25 and z ph <~ 3. The distance estimates based on photometric redshifts are not sufficiently accurate to be directly used to determine the ACF. Nevertheless, the photometric redshifts carry statistical information on the data distribution on (very) large scales. The investigation of the surface distribution of galaxies in several redshift (=distance) bins allows us to determine the spatial (3D) ACF over the redshift range of 0.2 - 3.2 or look back time of 2.4 - 11.5 Gy.

  15. Near real time, accurate, and sensitive microbiological safety monitoring using an all-fibre spectroscopic fluorescence system

    NASA Astrophysics Data System (ADS)

    Vanholsbeeck, F.; Swift, S.; Cheng, M.; Bogomolny, E.

    2013-11-01

    Enumeration of microorganisms is an essential microbiological task for many industrial sectors and research fields. Various tests for detection and counting of microorganisms are used today. However most of the current methods to enumerate bacteria require either long incubation time for limited accuracy, or use complicated protocols along with bulky equipment. We have developed an accurate, all-fibre spectroscopic system to measure fluorescence signal in-situ. In this paper, we examine the potential of this setup for near real time bacteria enumeration in aquatic environment. The concept is based on a well-known phenomenon that the fluorescence quantum yields of some nucleic acid stains significantly increase upon binding with nucleic acids of microorganisms. In addition we have used GFP labeled organisms. The fluorescence signal increase can be correlated to the amount of nucleic acid present in the sample. In addition we have used GFP labeled organisms. Our results show that we are able to detect a wide range of bacteria concentrations without dilution or filtration (1-108 CFU/ml) using different optical probes we designed. This high sensitivity is due to efficient light delivery with an appropriate collection volume and in situ fluorescence detection as well as the use of a sensitive CCD spectrometer. By monitoring the laser power, we can account for laser fluctuations while measuring the fluorescence signal which improves as well the system accuracy. A synchronized laser shutter allows us to achieve a high SNR with minimal integration time, thereby reducing the photobleaching effect. In summary, we conclude that our optical setup may offer a robust method for near real time bacterial detection in aquatic environment.

  16. Cosmology with photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Bridle, Sarah

    2005-11-01

    We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform the following two complementary types of analysis. (i) We quantify the statistical confidence and the accuracy with which such surveys will be able to detect and measure characteristic features in the clustering power spectrum such as the acoustic oscillations and the turnover, in a `model-independent' fashion. We show for example that a 10000-deg2 imaging survey with depth r= 22.5 and photometric redshift accuracy δz/(1 +z) = 0.03 will detect the acoustic oscillations with 99.9 per cent confidence, measuring the associated preferred cosmological scale with 2 per cent precision. Such a survey will also detect the turnover with 95 per cent confidence, determining the corresponding scale with 20 per cent accuracy. (ii) By assuming a Λ cold dark matter (ΛCDM) model power spectrum we calculate the confidence with which a non-zero baryon fraction can be deduced from such future galaxy surveys. We quantify `wiggle detection' by calculating the number of standard deviations by which the baryon fraction is measured, after marginalizing over the shape parameter. This is typically a factor of 4 more significant (in terms of number of standard deviations) than the above `model-independent' result. For both analyses, we quantify the variation of the results with magnitude depth and photometric redshift precision, and discuss the prospects for obtaining the required performance with realistic future surveys. We conclude that the precision with which the clustering pattern may be inferred from future photometric redshift surveys will be competitive with contemporaneous spectroscopic redshift surveys, assuming that systematic effects can be controlled. We find that for equivalent wiggle detection power, a photometric redshift survey requires an area approximately 12[δz/(1 +z

  17. An Improved Technique for Increasing the Accuracy of Photometrically Determined Redshifts for ___Blended___ Galaxies

    SciTech Connect

    Parker, Ashley Marie; /Marietta Coll. /SLAC

    2012-08-24

    The redshift of a galaxy can be determined by one of two methods; photometric or spectroscopic. Photometric is a term for any redshift determination made using the magnitudes of light in different filters. Spectroscopic redshifts are determined by measuring the absorption spectra of the object then determining the difference in wavelength between the 'standard' absorption lines and the measured ones, making it the most accurate of the two methods. The data for this research was collected from SDSS DR8 and then separated into blended and non-blended galaxy sets; the definition of 'blended' is discussed in the Introduction section. The current SDSS photometric redshift determination method does not discriminate between blended and non-blended data when it determines the photometric redshift of a given galaxy. The focus of this research was to utilize machine learning techniques to determine if a considerably more accurate photometric redshift determination method could be found, for the case of the blended and non-blended data being treated separately. The results show a reduction of 0.00496 in the RMS error of photometric redshift determinations for blended galaxies and a more significant reduction of 0.00827 for non-blended galaxies, illustrated in Table 2.

  18. Modifying gravity at low redshift

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas E-mail: c.vandebruck@sheffield.ac.uk E-mail: d.shaw@qmul.ac.uk

    2010-04-01

    We consider the growth of cosmological perturbations in modified gravity models where a scalar field mediates a non-universal Yukawa force between different matter species. The growth of the density contrast is altered for scales below the Compton wave-length of the scalar field. As the universe expands, the Compton wave-length varies in time in such a way that scales which were outside the range of the scalar field force may feel it at a lower redshift. In this case, both the exponent γ measuring the growth of Cold Dark Matter perturbations and the slip function representing the ratio of the two Newtonian potentials ψ and φ may differ from their values in General Relativity at low redshift.

  19. Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Berger, E.; Kulkarni, S. R.; Fox, D. B.; Soderberg, A. M.; Harrison, F. A.; Nakar, E.; Kelson, D. D.; Gladders, M. D.; Mulchaey, J. S.; Oemler, A.; Dressler, A.; Cenko, S. B.; Price, P. A.; Schmidt, B. P.; Frail, D. A.; Morrell, N.; Gonzalez, S.; Krzeminski, W.; Sari, R.; Gal-Yam, A.; Moon, D.-S.; Penprase, B. E.; Jayawardhana, R.; Scholz, A.; Rich, J.; Peterson, B. A.; Anderson, G.; McNaught, R.; Minezaki, T.; Yoshii, Y.; Cowie, L. L.; Pimbblet, K.

    2005-11-01

    We present optical, near-IR, and radio follow-up of 16 Swift bursts, including our discovery of nine afterglows and a redshift determination for three. These observations, supplemented by data from the literature, provide an afterglow recovery rate of 52% in the optical/near-IR, much higher than in previous missions (BeppoSAX, HETE-2, INTEGRAL, and IPN). The optical/near-IR afterglows of Swift events are on average 1.8 mag fainter at t=12 hr than those of previous missions. The X-ray afterglows are similarly fainter than those of pre-Swift bursts. In the radio the limiting factor is the VLA threshold, and the detection rate for Swift bursts is similar to that for past missions. The redshift distribution of pre-Swift bursts peaked at z~1, whereas the six Swift bursts with measured redshifts are distributed evenly between 0.7 and 3.2. From these results we conclude that (1) the pre-Swift distributions were biased in favor of bright events and low-redshift events, (2) the higher sensitivity and accurate positions of Swift result in a better representation of the true burst redshift and brightness distributions (which are higher and dimmer, respectively), and (3) ~10% of the bursts are optically dark, as a result of a high redshift and/or dust extinction. We remark that the apparent lack of low-redshift, low-luminosity Swift bursts and the lower event rate than prelaunch estimates (90 vs. 150 per year) are the result of a threshold that is similar to that of BATSE. In view of these inferences, afterglow observers may find it advisable to make significant changes in follow-up strategies of Swift events. The faintness of the afterglows means that large telescopes should be employed as soon as the burst is localized. Sensitive observations in RIz and near-IR bands will be needed to discriminate between a typical z~2 burst with modest extinction and a high-redshift event. Radio observations will be profitable for a small fraction (~10%) of events. Finally, we suggest that

  20. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  1. Equivalence Principle and Gravitational Redshift

    SciTech Connect

    Hohensee, Michael A.; Chu, Steven; Mueller, Holger; Peters, Achim

    2011-04-15

    We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter-wave, microwave, optical, and Moessbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the 10{sup -6} level.

  2. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

    SciTech Connect

    Gerdes, David W.; Sypniewski, Adam J.; McKay, Timothy A.; Hao, Jiangang; Weis, Matthew R.; Wechsler, Risa H.; Busha, Michael T.

    2010-06-01

    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single 'best estimate' and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.

  3. Development of an unmanned aerial vehicle-based spray system for highly accurate site-specific application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of crop production and protection materials is a crucial component in the high productivity of American agriculture. Agricultural chemical application is frequently needed at a specific time and location for accurate site-specific management of crop pests. Piloted aircrafts that carry ...

  4. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    SciTech Connect

    Matthews, Daniel J.; Newman, Jeffrey A. E-mail: janewman@pitt.ed

    2010-09-20

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to {approx}0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alone Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys that

  5. THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    SciTech Connect

    Contreras, Carlos; Phillips, M. M.; Folatelli, Gaston; Stritzinger, Maximilian; Boldt, Luis; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Roth, Miguel; Salgado, Francisco; Hamuy, Mario; Maureira, MarIa Jose; Suntzeff, Nicholas B.; Persson, S. E.; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F.; Murphy, David; Wyatt, Pamela

    2010-02-15

    The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of {approx}100 low-redshift Type Ia supernovae (SNe Ia) in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 SNe Ia, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (Y JHK{sub s} ) data points in the natural system of the Swope telescope. Twenty-eight SNe have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate data sets of low-redshift SNe Ia published to date. When completed, the CSP data set will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of SNe Ia.

  6. High Redshift Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  7. A Model-independent Photometric Redshift Estimator for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2007-01-01

    The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).

  8. Nonlinear biasing and redshift-space distortions in Lagrangian resummation theory and N-body simulations

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Matsubara, Takahiko

    2011-08-01

    Understanding a behavior of galaxy biasing is crucial for future galaxy redshift surveys. One aim is to measure the baryon acoustic oscillations (BAOs) within the precision of a few percent level. Using 30 large cosmological N-body simulations for a standard ΛCDM cosmology, we study the halo biasing over a wide redshift range. We compare the simulation results with theoretical predictions proposed by Matsubara [T. Matsubara, Phys. Rev. DPRVDAQ1550-7998 78, 083519 (2008).10.1103/PhysRevD.78.083519] which naturally incorporate the halo bias and redshift-space distortions into their formalism of perturbation theory with a resummation technique via the Lagrangian picture. The power spectrum and correlation function of halos obtained from Lagrangian resummation theory (LRT) well agree with N-body simulation results on scales of BAOs. Especially nonlinear effects on the baryon acoustic peak of the halo correlation function are accurately explained both in real and redshift space. We find that nonlinearity and scale dependence of bias are fairly well reproduced by 1-loop LRT up to k=0.35hMpc-1 (z=2 and 3) within a few percent level in real space and up to k=0.1hMpc-1 (z=2) and 0.15hMpc-1 (z=3) in redshift space. Thus, the LRT is very powerful for accurately extracting cosmological information in upcoming high redshift BAO surveys.

  9. Filling in the 2MASX Redshift Zone of Avoidance

    NASA Astrophysics Data System (ADS)

    Kraan-Korteweg, Renee; Staveley-Smith, Lister; Jarrett, Thomas; Schroeder, Anja; Henning, Trish; van Driel, Wim; Said, Khaled

    2014-04-01

    Despite nearly 20 years of concerted effort, the dynamics of the local Universe remain poorly understood. This in part is due to the lack of data in the Zone of Avoidance (ZOA). The current most homogeneous "all-sky'' redshift survey is the 2MASX Redshift Survey (2MRS). However, 2MASX galaxies in the ZOA were excluded from the Redshift follow-up Survey. To fill in the 2MASX redshift gap and map the hidden large-scale structures we started a systematic HI redshift follow-up programme of the brightest 2MASX galaxies, i.e. complement the 2MRS and the 2MASX Tully-Fisher survey (2MTF). A thousand galaxies without previous redshift measurement and Dec > -38 deg have been observed with the Nancay Radio Telescope (NRT). For the remaining southern ZOA we started using the Parkes Radio Telescope. 121 hours of observing time were allocated in the previous semesters (2012OCTS and 2013OCTS/P831). The TAC rating for our previous semester 2013OCT/P831 was 4.1 and they suggest to resubmit for the remainder of the remaining time in 2014APR, with the expectation those observations will be scheduled at the beginning of April. To complete the survey, a further 94 hours with the Parkes MultiBeam System are needed. With the here proposed observations, the ZoA will have systematic coverage from the northern to southern end, providing a unique TF data set to map the important flow fields that cross the ZOA, including the Great Attractor (GA), Perseus-Pisces(PP), Puppis, and the Local Void (LV).

  10. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication.

    PubMed

    Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng

    2014-01-15

    Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.

  11. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  12. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    SciTech Connect

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R.; Erben, T.; Hildebrandt, H.; Ilbert, O.; Boissier, S.; Boselli, A.; Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J.; Chen, Y.-T.; Cuillandre, J.-C.; Duc, P. A.; Guhathakurta, P.; and others

    2014-12-20

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg{sup 2} centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i {sub AB} = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z {sub phot} ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ{sub outl.rej.}, and an individual error on z {sub phot} that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z {sub phot} ≲ 0.8 range (–0.05 < Δz < –0.02, σ{sub outl.rej} ∼ 0.06, 10%-15% outliers, and z {sub phot.err.} ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  13. A Detailed Study of Two Optically-Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2002-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z=0.76 and CL1604+4304 at z=0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifics of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  14. A Detailed Study of Two Optically Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2000-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z = 0.76 and CL,1604+4304 at z = 0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifies of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  15. Real-time cosmography with redshift derivatives

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Martinelli, M.; Calabrese, E.; Ramos, M. P. L. P.

    2016-08-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the Λ CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is j =1 for flat Λ CDM , while generically j ≠1 for other models. We emphasize that such a measurement is well within the reach of the ELT-HIRES and SKA Phase 2 array surveys.

  16. Chaotic versus nonchaotic stochastic dynamics in Monte Carlo simulations: a route for accurate energy differences in N-body systems.

    PubMed

    Assaraf, Roland; Caffarel, Michel; Kollias, A C

    2011-04-15

    We present a method to efficiently evaluate small energy differences of two close N-body systems by employing stochastic processes having a stability versus chaos property. By using the same random noise, energy differences are computed from close trajectories without reweighting procedures. The approach is presented for quantum systems but can be applied to classical N-body systems as well. It is exemplified with diffusion Monte Carlo simulations for long chains of hydrogen atoms and molecules for which it is shown that the long-standing problem of computing energy derivatives is solved. PMID:21568537

  17. Gap between technically accurate information and socially appropriate information for structural health monitoring system installed into tall buildings

    NASA Astrophysics Data System (ADS)

    Mita, Akira

    2016-04-01

    The importance of the structural health monitoring system for tall buildings is now widely recognized by at least structural engineers and managers at large real estate companies to ensure the structural safety immediately after a large earthquake and appeal the quantitative safety of buildings to potential tenants. Some leading real estate companies decided to install the system into all tall buildings. Considering this tendency, a pilot project for the west area of Shinjuku Station supported by the Japan Science and Technology Agency was started by the author team to explore a possibility of using the system to provide safe spaces for commuters and residents. The system was installed into six tall buildings. From our experience, it turned out that viewing only from technological aspects was not sufficient for the system to be accepted and to be really useful. Safe spaces require not only the structural safety but also the soundness of key functions of the building. We need help from social scientists, medical doctors, city planners etc. to further improve the integrity of the system.

  18. Measuring the redshift factor in binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Lewis, Adam; Pfeiffer, Harald

    2016-03-01

    The redshift factor z is an invariant quantity of fundamental interest in Post-Newtonian and self-force descriptions of circular binaries. It allows for interconnections between each theory, and plays a central role in the Laws of Binary Black Hole Mechanics, which link local quantities to asymptotic measures of energy and angular momentum in these systems. Through these laws, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We have implemented a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasicircular binary inspirals. Our results confirm the conjectured relationship between z and the surface gravity of the holes. This redshift factor allows us to test PN and self-force predictions for z in spacetimes where the binary is only approximately circular, and allows for an array of new comparisons between analytic approximations and numerical simulations. I will present our new method, our initial results in using z to verify the Laws of Binary Black Holes Mechanics, and discuss future directions for this work.

  19. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  20. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

    PubMed Central

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  1. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-05-07

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path.

  2. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Chen, Hsiao-Wen; Mulchaey, John

    2002-08-01

    A comparison of the baryonic mass density inferred from BBN with a census of visible baryonic components (i.e. galaxies, HI gas) at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations into these missing bayons suggest the majority lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers, therefore, may have great impact on our understanding of the distribution of baryons in the universe. The principal goal of this proposal is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web' which connects collapsed objects, or a different region of the universe altogether. We are currently pursuing a program to search for galaxies associated with O VI absorbers at low redshift (z < 0.5). To accomplish this project, we will obtain deep UBVRI images of the galaxies in four fields surrounding quasars surveyed for O VI absorption. This dataset will provide accurate photometric redshifts of the z< 0.5 galaxies with L > L^*/10 and will reveal their physical characteristics. Ultimately, we will utilize the photometric redshifts to efficiently pre-select galaxies for follow-up spectroscopy on multi- slit spectrographs. By correlating the photometric and spectroscopy galaxy redshifts against the O VI absorption lines and comparing directly with detailed cosmological simulations, we will establish the origin of the O VI gas.

  3. Introduction of a Photogrammetric Camera System for Rpas with Highly Accurate Gnss/imu Information for Standardized Workflows

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Geßner, M.; Meißner, H.; Przybilla, H. J.; Gerke, M.

    2016-03-01

    In this paper we present the evaluation of DLR's modular airborne camera system MACS-Micro for remotely piloted aircraft system (RPAS) with a maximum takeoff weight (MTOW) less than 5kg. The main focus is on standardized calibration and test procedures as well as on standardized photogrammetric workflows as a proof of feasibility for this aerial camera concept. The prototype consists of an industrial grade frame imaging camera and a compact GNSS/IMU solution which are operated by an embedded PC. The camera has been calibrated pre- and post- flight using a three dimensional test field. The validation of the latest prototype is done by a traditional photogrammetric evaluation of an aerial survey using 39 ground control points. The results, concerning geometric and radiometric features of the present system concept as well as the quality of the aero triangulation, fulfill many of the aimed keyspecifications.

  4. Superluminous Supernovae as Standardizable Candles and High-redshift Distance Probes

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Smartt, S. J.

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = -21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM 20 decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  5. Superluminous supernovae as standardizable candles and high-redshift distance probes

    SciTech Connect

    Inserra, C.; Smartt, S. J.

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = –21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM {sub 20} decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  6. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    NASA Astrophysics Data System (ADS)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  7. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  8. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class. PMID:23902112

  9. Fast and accurate calibration of an X-ray imager to an electromagnetic tracking system for interventional cardiac procedures.

    PubMed

    Lang, Andrew; Stanton, Douglas; Parthasarathy, Vijay; Jain, Ameet

    2010-01-01

    Cardiovascular disease affects millions of Americans each year. Interventional guidance systems are being developed as treatment options for some of the more delicate procedures, including targeted stem cell therapy. As advanced systems for such types of interventional guidance are being developed, electromagnetic (EM) tracking is coming in demand to perform navigation. To use this EM tracking technology, a calibration is necessary to register the tracker to the imaging system. In this paper we investigate the calibration of an X-ray imaging system to EM tracking. Two specially designed calibration phantoms have been designed for this purpose, each having a rigidly attached EM sensor. From a clinical usability point-of-view, we propose to divide this calibration problem into two steps: i) in initial calibration of the EM sensor to the phantom design using an EM tracked needle to trace out grooves in the phantom surface and ii) segmentation from X-ray images and 3D reconstruction of beads embedded in the phantom in a known geometric pattern. Combining these two steps yields and X-ray-to-EM calibration accuracy of less than 1 mm when overlaying an EM tracked needle on X-ray images.

  10. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He i absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg ii, Fe ii, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He i* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  11. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  12. Constraining Source Redshift Distributions with Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Wittman, D.; Dawson, W. A.

    2012-09-01

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that ~40 massive (σ v = 1200 km s-1) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to ~11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N_lens^{-{1\\over 2}}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.

  13. Thermodynamics Insights for the Redshift Drift

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2015-01-01

    The secular redshift drift is a potential measurement to directly probe the cosmic expansion. Previous study on the redshift drift mainly focused on the model-dependent simulation. Apparently, the physical insights on the redshift drift are very necessary. So in this paper, it is investigated using thermodynamics on the apparent, Hubble and event horizons. Thermodynamics could analytically present the model-independent upper bounds of redshift drift. For specific assumption on the cosmological parameters, we find that the thermodynamics bounds are nearly one order of magnitude larger than the expectation in standard ΛCDM model. We then examine ten observed redshift drift from Green Bank Telescope at redshift 0.09 < z < 0.69, and find that these observational results are inconsistent with the thermodynamics. The size of the errorbars on these measurements is about three orders of magnitude larger than the effect of thermodynamical bounds for the redshift drift. Obviously, we have not yet hit any instrumental systematics at the shift level of 1m s-1 yr-1.

  14. Giving cosmic redshift drift a whirl

    NASA Astrophysics Data System (ADS)

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  15. Proposal of a 2-tier histologic grading system for canine cutaneous mast cell tumors to more accurately predict biological behavior.

    PubMed

    Kiupel, M; Webster, J D; Bailey, K L; Best, S; DeLay, J; Detrisac, C J; Fitzgerald, S D; Gamble, D; Ginn, P E; Goldschmidt, M H; Hendrick, M J; Howerth, E W; Janovitz, E B; Langohr, I; Lenz, S D; Lipscomb, T P; Miller, M A; Misdorp, W; Moroff, S; Mullaney, T P; Neyens, I; O'Toole, D; Ramos-Vara, J; Scase, T J; Schulman, F Y; Sledge, D; Smedley, R C; Smith, K; W Snyder, P; Southorn, E; Stedman, N L; Steficek, B A; Stromberg, P C; Valli, V E; Weisbrode, S E; Yager, J; Heller, J; Miller, R

    2011-01-01

    Currently, prognostic and therapeutic determinations for canine cutaneous mast cell tumors (MCTs) are primarily based on histologic grade. However, the use of different grading systems by veterinary pathologists and institutional modifications make the prognostic value of histologic grading highly questionable. To evaluate the consistency of microscopic grading among veterinary pathologists and the prognostic significance of the Patnaik grading system, 95 cutaneous MCTs from 95 dogs were graded in a blinded study by 28 veterinary pathologists from 16 institutions. Concordance among veterinary pathologists was 75% for the diagnosis of grade 3 MCTs and less than 64% for the diagnosis of grade 1 and 2 MCTs. To improve concordance among pathologists and to provide better prognostic significance, a 2-tier histologic grading system was devised. The diagnosis of high-grade MCTs is based on the presence of any one of the following criteria: at least 7 mitotic figures in 10 high-power fields (hpf); at least 3 multinucleated (3 or more nuclei) cells in 10 hpf; at least 3 bizarre nuclei in 10 hpf; karyomegaly (ie, nuclear diameters of at least 10% of neoplastic cells vary by at least two-fold). Fields with the highest mitotic activity or with the highest degree of anisokaryosis were selected to assess the different parameters. According to the novel grading system, high-grade MCTs were significantly associated with shorter time to metastasis or new tumor development, and with shorter survival time. The median survival time was less than 4 months for high-grade MCTs but more than 2 years for low-grade MCTs.

  16. A Tumor-specific MicroRNA Recognition System Facilitates the Accurate Targeting to Tumor Cells by Magnetic Nanoparticles

    PubMed Central

    Yu, Yingting; Yao, Yi; Yan, Hao; Wang, Rui; Zhang, Zhenming; Sun, Xiaodan; Zhao, Lingyun; Ao, Xiang; Xie, Zhen; Wu, Qiong

    2016-01-01

    Targeted therapy for cancer is a research area of great interest, and magnetic nanoparticles (MNPs) show great potential as targeted carriers for therapeutics. One important class of cancer biomarkers is microRNAs (miRNAs), which play a significant role in tumor initiation and progression. In this study, a cascade recognition system containing multiple plasmids, including a Tet activator, a lacI repressor gene driven by the TetOn promoter, and a reporter gene repressed by the lacI repressor and influenced by multiple endogenous miRNAs, was used to recognize cells that display miRNA signals that are characteristic of cancer. For this purpose, three types of signal miRNAs with high proliferation and metastasis abilities were chosen (miR-21, miR-145, and miR-9). The response of this system to the human breast cancer MCF-7 cell line was 3.2-fold higher than that to the human breast epithelial HBL100 cell line and almost 7.5-fold higher than that to human embryonic kidney HEK293T cells. In combination with polyethyleneimine-modified MNPs, this recognition system targeted the tumor location in situ in an animal model, and an ~42% repression of tumor growth was achieved. Our study provides a new combination of magnetic nanocarrier and gene therapy based on miRNAs that are active in vivo, which has potential for use in future cancer therapies. PMID:27138178

  17. CFHTLenS and RCSLenS: Testing Photometric Redshift Distributions Using Angular Cross-Correlations with Spectroscopic Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-09-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  18. Principles of equivalence, Eotvos experiments, and gravitational red-shift experiments - The free fall of electromagnetic systems to post-post-Coulombian order

    NASA Technical Reports Server (NTRS)

    Haugan, M. P.; Will, C. M.

    1977-01-01

    Free fall in an external static gravitational field of a composite test body consisting of electromagnetically interacting charged particles is analyzed using the TH-epsilon-mu formalism developed by Lightman and Lee (1973). The Lightman and Lee calculation that was carried out to 'post-Coulombian' order is extended to 'post-post-Coulombian' order, and violations of the weak equivalence principle are found which result from the magnetostatic self-energy of the test body. The current generation of Eotvos experiments is shown to test the cited formalism at first order in the external gravitational potential to an accuracy of 4 by 10 to the -10th power for electrostatic energies and 6 by 10 to the -6th power for magnetostatic energies. It is concluded that although the formalism can be tested to an accuracy of 0.04 for electrostatic energies at second order in the gravitational potential, a significant second-order test for magnetostatic energies would require Eotvos experiments accurate to better than one part in 10 to the 15th power.

  19. REAL OR INTERLOPER? THE REDSHIFT LIKELIHOODS OF z > 8 GALAXIES IN THE HUDF12

    SciTech Connect

    Pirzkal, Nor; Ryan, Russell; Coe, Dan; Noeske, Kai; Rothberg, Barry; Malhotra, Sangeeta; Rhoads, James

    2013-09-20

    In the absence of spectra, the technique of fitting model galaxy template spectra to observed photometric fluxes has become the workhorse method for determining the redshifts and other properties for high-z galaxy candidates. In this paper, we present an analysis of the most recent and possibly most distant galaxies (z {approx} 8-12) discovered in the Hubble Ultra Deep Field (HUDF) using a more robust method of redshift estimation based on Markov Chain Monte Carlo (MCMC) fitting, in contrast to the ''best fit'' models obtained using simpler {chi}{sup 2} minimization techniques. The advantage of MCMC fitting is the ability to accurately estimate the probability density function of the redshift for each object as well as any input model parameters. This makes it possible to derive accurate, credible intervals by properly marginalizing over all other input model parameters. We apply our method to 13 recently identified sources in the HUDF and show that, despite claims based on {chi}{sup 2} minimization, none of these sources can be securely ruled out as low redshift interlopers (z < 4) due to the low signal-to-noise of currently available observations. There is an average probability of 21% that these sources are low redshift interlopers.

  20. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  1. An efficient and accurate approximation to time-dependent density functional theory for systems of weakly coupled monomers

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Herbert, John M.

    2015-07-01

    A novel formulation of time-dependent density functional theory (TDDFT) is derived, based on non-orthogonal, absolutely-localized molecular orbitals (ALMOs). We call this approach TDDFT(MI), in reference to ALMO-based methods for describing molecular interactions (MI) that have been developed for ground-state applications. TDDFT(MI) is intended for efficient excited-state calculations in systems composed of multiple, weakly interacting chromophores. The efficiency is based upon (1) a local excitation approximation; (2) monomer-based, singly-excited basis states; (3) an efficient localization procedure; and (4) a one-step Davidson method to solve the TDDFT(MI) working equation. We apply this methodology to study molecular dimers, water clusters, solvated chromophores, and aggregates of naphthalene diimide that form the building blocks of self-assembling organic nanotubes. Absolute errors of 0.1-0.3 eV with respect to supersystem methods are achievable for these systems, especially for cases involving an excited chromophore that is weakly coupled to several explicit solvent molecules. Excited-state calculations in an aggregate of nine naphthalene diimide monomers are ˜40 times faster than traditional TDDFT calculations.

  2. NGC 1428: from the Discordant Redshift Caused by a Star, to the Determination of the Morphological Type

    NASA Astrophysics Data System (ADS)

    Merluzzi, P.; Busarello, G.; Terranegra, L.; Colless, M. M.; Graham, A. W.

    We summarise the main results of our study of NGC 1428, an early-type galaxy belonging to the Fornax cluster. By means of long-slit spectroscopic data we study it's kinematics and also solve the problems connected to a star superimposed on its nucleus - which have led to wrong measurements of its redshift in the past. The present analysis allows us to determine the morphological type of NGC 1428 as well as an accurate value of its redshift.

  3. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  4. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  5. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  6. Methods of use and presentation of the accurate astrometric data based on the modern terrestrial and celestial reference systems

    NASA Astrophysics Data System (ADS)

    Sekowski, M.; Krynski, J.

    2012-12-01

    The increasing precision of the modern astrometric data as well as changes from the introduction of a new paradigm for the relations of terrestrial and celestial systems, forces the changes in methods of the usage and presentation of the data. The paper presents the efforts undertaken to satisfy these needs in the 'Rocznik Astronomiczny'. Among the issues under consideration are: 1) identification and analysis of the sources of problems with interpolation of the high accuracy data; 2) reviewing the used interpolation methods; 3) development of the new methods of presenting of the high accuracy data, allowing their proper interpolation; 4) research on the need and the possibility to redefine the Besselian Numbers algorithm in calculations of the apparent places, to the form in which it could be used in the new paradigm (CIP/CIO).

  7. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    SciTech Connect

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  8. Immunoglobulin G responses to a panel of Candida albicans antigens as accurate and early markers for the presence of systemic candidiasis.

    PubMed

    Clancy, Cornelius J; Nguyen, Minh-Ly; Cheng, Shaoji; Huang, Hong; Fan, Guixiang; Jaber, Reia A; Wingard, John R; Cline, Christina; Nguyen, M Hong

    2008-05-01

    Despite shortcomings, cultures of blood and sterile sites remain the "gold standard" for diagnosing systemic candidiasis. Alternative diagnostic markers, including antibody detection, have been developed, but none are widely accepted. In this study, we used an enzyme-linked immunosorbent assay to measure serum antibody responses against 15 recombinant Candida albicans antigens among 60 patients with systemic candidiasis due to various Candida spp. and 24 uninfected controls. Mean immunoglobulin G (IgG) responses against all 15 antigens were significantly higher among patients with systemic candidiasis than among controls, whereas IgM responses were higher against only seven antigens. Using discriminant analysis that included IgG responses against the 15 antigens, we derived a mathematical prediction model that identified patients with systemic candidiasis with an error rate of 3.7%, a sensitivity of 96.6%, and a specificity of 95.6%. Furthermore, a prediction model using a subset of four antigens (SET1, ENO1, PGK1-2, and MUC1-2) identified through backward elimination and canonical correlation analyses performed as accurately as the full panel. Using the simplified model, we predicted systemic candidiasis in a separate test sample of 32 patients and controls with 100% sensitivity and 87.5% specificity. We also demonstrated that IgG titers against each of the four antigens included in the prediction model were significantly higher in convalescent-phase sera than in paired acute-phase sera. Taken together, our findings suggest that IgG responses against a panel of candidal antigens might represent an accurate and early marker of systemic candidiasis, a hypothesis that should be tested in future trials.

  9. Astronomical redshifts of highly ionized regions

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2014-07-01

    Astronomical or cosmological redshifts are an observable property of extragalactic objects and have historically been wholly attributed to the recessional velocity of that object. The question of other, or intrinsic, components of the redshift has been highly controversial since it was first proposed. This paper investigates one theoretical source of intrinsic redshift that has been identified. The highly ionized regions of Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSO) are, by definition, plasmas. All plasmas have electromagnetic scattering characteristics that could contribute to the observed redshift. To investigate this possibility, one region of a generalized AGN was selected, the so called Broad Line Region (BLR). Even though unresolvable with current instrumentation, physical estimates of this region have been published for years in the astronomical literature. These data, selected and then averaged, are used to construct an overall model that is consistent with the published data to within an order of magnitude. The model is then subjected to a theoretical scattering investigation. The results suggest that intrinsic redshifts, derivable from the characteristics of the ambient plasma, may indeed contribute to the overall observed redshift of these objects.

  10. Simulation of High-Redshift Galactic Images

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Scannapieco, E.; Windhorst, R. A.; Thacker, R.

    2009-12-01

    We construct an observational model of galaxies at high redshifts (z 3 - 13) from numerical N-body and SPH simulations of galaxy formation using the computing cluster "Saguaro” at Arizona State University. The model uses a concordance Lambda-CDM model including baryonic components with gas heating and cooling and star formation using Gadget-2 simulations. Snapshots at various redshifts yield star "particles” (populations) with a modeled metallicity and age of formation. The Bruzual-Charlot '03 stellar population models are used to compute a red-shifted flux for various filters for each simulated star population. The flux and spatial coordinates are then used to create a pixel image in a fits file format. The different redshift "slices” are shifted randomly in the simulation periodic box, and resized according to the comoving distance to correct for the angular pixel mapping. The various redshift corrected fits images are then combined into a single image for each filter to produce simulated observational images. This is to enable the use of observational imaging tools to detect galaxies and to aid observational proposals at high redshifts including the new WFC3 camera to be installed on the HST. This method also permits estimates of the luminosity function at z >6 directly from the simulated stellar populations rather than just the size of the Dark Matter haloes. With runs of higher resolution, this will permit exploration of the faint end of the luminosity function. The computing time was supplied by the ASU Fulton HPC center.

  11. Spatial Homogeneity and Redshift--Distance Laws

    NASA Astrophysics Data System (ADS)

    Nicoll, J. F.; Segal, I. E.

    1982-06-01

    Spatial homogeneity in the radial direction of low-redshift galaxies is subjected to Kafka-Schmidt V/Vm tests using well-documented samples. Homogeneity is consistent with the assumption of the Lundmark (quadratic redshift-distance) law, but large deviations from homogeneity are implied by the assumption of the Hubble (linear redshift-distance) law. These deviations are similar to what would be expected on the basis of the Lundmark law. Luminosity functions are obtained for each law by a nonparametric statistically optimal method that removes the observational cutoff bias in complete samples. Although the Hubble law correlation of absolute magnitude with redshift is reduced considerably by elimination of the bias, computer simulations show that its bias-free value is nevertheless at a satistically quite significant level, indicating the self-inconsistency of the law. The corresponding Lundmark law correlations are quite satisfactory satistically. The regression of redshift on magnitude also involves radial spatial homogeneity and, according to R. Soneira, has slope determining the redshift-magnitude exponent independently of the luminosity function. We have, however, rigorously proved the material dependence of the regression on this function and here exemplify our treatment by using the bias-free functions indicated, with results consistent with the foregoing argument.

  12. Astronomical redshifts and the expansion of space

    NASA Astrophysics Data System (ADS)

    Kaiser, Nick

    2014-03-01

    In homogeneous cosmological models, the wavelength λ of a photon exchanged between two fundamental observers changes in proportion to expansion of the space D between them, so Δ log (λ/D) = 0. This is exactly the same as for a pair of observers receding from each other in flat space-time where the effect is purely kinematic. The interpretation of this has been the subject of considerable debate, and it has been suggested that all redshifts are a relative velocity effect, raising the question of whether the wavelength always stretches in proportion to the emitter-receiver separation. Here, we show that, for low redshift at least, Δ log (λ/D) vanishes for a photon exchanged between any two freely falling observers in a spatially constant tidal field, because such a field stretches wavelengths and the space between the observers identically. But in general there is a non-kinematic, and essentially gravitational, component of the redshift that is given by a weighted average of the gradient of the tidal field along the photon path. While the redshift can always be formally expressed using the Doppler formula, in situations where the gravitational redshift dominates, the `relative velocity' is typically quite different from the rate of change of D and it is misleading to think of the redshift as being a velocity or `kinematic' effect.

  13. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Way, M. J.

    2011-06-10

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error for luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS ({approx}350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.

  14. On the formation redshift of Low-Mass Star-Forming Galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Gallego, Jesus; Rodriguez-Muñoz, Lucía; Pacifici, Camilla; Tresse, Laurence; Charlot, Stéphane; Gil de Paz, Armando; Barro, Guillermo; Gomez-Guijarro, Carlos; Villar, Víctor

    2015-08-01

    Dwarf galaxies play a key role in galaxy formation and evolution: (1) hierarchical models predict that low-mass systems merged to form massive galaxies (building block paradigm; Dekel & Silk 1986); (2) dwarf systems might have been responsible for the reionization of the Universe (Wyithe & Loeb 2006); (3) theoretical models are particularly sensitive to the density of low-mass systems at diferent redshifts (Mamon et al. 2011), being one of the key science cases for the future E-ELT (Evans et al. 2013). While the history of low-mass dark matter halos is relatively well understood, the formation history of dwarf galaxies is still poorly reproduced by the models due to the distinct evolution of baryonic and dark matter.We present constraints on the star formation histories (SFHs) of a sample of low-mass Star-Forming Galaxies (LMSFGs; 7.3 < log M∗/Mo < 8.0, at 0.3 < zspec < 0.9) selected by photometric stellar mass and apparent magnitude. The SFHs were obtained through the analysis of their spectral energy distributions using a novel approach (Pacifici et al. 2012) that (1) consistently combines photometric (HST and ground-based multi-broadband) and spectroscopic (equivalent widths of emission lines from VLT and GTC spectroscopy) data, and (2) uses physically motivated SFHs with non-uniform variations of the star formation rate (SFR) as a function of time.The median SFH of our LMSFGs appears to form 90% of the median stellar mass inferred for the sample in the ˜0.5-1.8 Gyr immediately preceding the observation. These results suggest a recent stellar mass assembly for dwarf SFGs, consistent with the cosmological downsizing trends. We find similar median SFH timescales for a slightly more massive secondary sample 8.0 < log M∗/Mo < 9.1).This is a pilot study for future surveys on dwarf galaxies at high redshift.

  15. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  16. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  17. SPECTROSCOPIC REDSHIFTS OF GALAXIES WITHIN THE FRONTIER FIELDS

    SciTech Connect

    Ebeling, Harald; Ma, Cheng-Jiun; Barrett, Elizabeth

    2014-04-01

    We present a catalog of 1921 spectroscopic redshifts measured in the fields of the massive galaxy clusters MACSJ0416.1–2403 (z = 0.397), MACSJ0717.5+3745 (z = 0.546), and MACSJ1149.5+2223 (z = 0.544), i.e., three of the four clusters selected by Space Telescope Science Institute as the targets of the Frontier Fields (FFs) initiative for studies of the distant Universe via gravitational lensing. Compiled in the course of the Massive Cluster Survey project (MACS) that detected the FF clusters, this catalog is provided to the community for three purposes: (1) to allow the identification of cluster members for studies of the galaxy population of these extreme systems, (2) to facilitate the removal of unlensed galaxies and thus reduce shear dilution in weak-lensing analyses, and (3) to improve the calibration of photometric redshifts based on both ground- and spacebased observations of the FF clusters.

  18. Spectroscopic Redshifts of Galaxies within the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; Ma, Cheng-Jiun; Barrett, Elizabeth

    2014-04-01

    We present a catalog of 1921 spectroscopic redshifts measured in the fields of the massive galaxy clusters MACSJ0416.1-2403 (z = 0.397), MACSJ0717.5+3745 (z = 0.546), and MACSJ1149.5+2223 (z = 0.544), i.e., three of the four clusters selected by Space Telescope Science Institute as the targets of the Frontier Fields (FFs) initiative for studies of the distant Universe via gravitational lensing. Compiled in the course of the Massive Cluster Survey project (MACS) that detected the FF clusters, this catalog is provided to the community for three purposes: (1) to allow the identification of cluster members for studies of the galaxy population of these extreme systems, (2) to facilitate the removal of unlensed galaxies and thus reduce shear dilution in weak-lensing analyses, and (3) to improve the calibration of photometric redshifts based on both ground- and spacebased observations of the FF clusters.

  19. Hybrid orbital deformation (HOD) effect and spectral red-shift property of nonplanar porphyrin.

    PubMed

    Zhou, Zaichun; Cao, Chenzhong; Liu, Qiuhua; Jiang, Rongqing

    2010-04-16

    A series of 5,15-meso,meso-strapped nonplanar porphyrins with different degrees of ruffling distortion, as a model system, have been synthesized and characterized. The spectral red-shift of the nonplanar porphyrins was experimentally demonstrated to mainly originate from the hybrid orbital deformation (HOD) effect due to the distortion in the tetrapyrrole macrocycle, which confirmed previous explanations to the red-shift phenomenon.

  20. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  1. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  2. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  3. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  4. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  5. Probing the accelerating Universe with redshift-space distortions in VIPERS

    NASA Astrophysics Data System (ADS)

    de la Torre, Sylvain

    2016-10-01

    We present the first measurement of the growth rate of structure at z=0.8. It has been obtained from the redshift-space distortions observed in the galaxy clustering pattern in the VIMOS Public Redshift survey (VIPERS) first data release. VIPERS is a large galaxy redshift survey probing the large-scale structure at 0.5 < z < 1.2 with an unprecedented accuracy. This measurement represents a new reference in the distant Universe, which has been poorly explored until now. We obtain σ8 = 0.47 +/- 0.08 at z = 0.8 that is consistent with the predictions of standard cosmological models based on Einstein gravity. This measurement alone is however not accurate enough to allow the detection of possible deviations from standard gravity.

  6. New Method for Accurate Calibration of Micro-Channel Plate based Detection Systems and its use in the Fast Plasma Investigation of NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.

    2013-12-01

    The Fast Plasma Investigation (FPI) of the NASA Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30ms for electrons; 150ms for ions) and spatially differentiated measurements of full the 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity and reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated by setting a fixed detection threshold and, subsequently, measuring a detection system count rate plateau curve to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection amplifier threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully and individually characterize each of the fundamental parameters of the detection system. We present a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. The fundamental

  7. Spectra of High-Redshift Type Ia Supernovae and a Comparison withtheir Low-Redshift Counterparts

    SciTech Connect

    Hook, I.M.; Howell, D.A.; Aldering, G.; Amanullah, R.; Burns,M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Lidman, C.; Nobili, S.; Nugent, P.E.; Pain, R.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente,P.; Sainton, G.; Schaefer, B.E.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-20

    We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type Ia by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover the spectral time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We also show that the expansion velocities measured from blueshifted Ca H&K are consistent with those measured for low-redshift Type Ia supernovae. From these first-level quantitative comparisons we find no evidence for evolution in SNIa properties between these low- and high-redshift samples. Thus even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.

  8. The Heat Output of the Waimangu, Waiotapu-Waikite and Reporoa Geothermal Systems (NZ): Do Chloride Fluxes Provide an Accurate Measure?

    SciTech Connect

    Bibby, H.M.; Glover, R.B.; Whiteford, P.C.

    1995-01-01

    Geothermal waters from the Waimangu, Waiotapu-Waikite and Reporoa geothermal systems find their way into three separate watersheds. The heat flow data from each of these drainage areas have been assessed making it possible to compare the heat outputs from two independent methods: direct heat measurements and the chloride flux method. For both the Waiotapu/Reporoa Valley drainage and the Waikite drainage a discrepancy exists between the two assessments, with the heat output observed at the surface (Waiotapu-540 {+-} 110 MW; Waikite-80 MW) nearly double of that calculated from the chloride flux (300 MW; 36 MW respectively). It appears that much of the throughput of chloride does not reach the surface within the area which was monitored and the basic assumption on which the method is based has been violated. For Waimangu the direct heat output is assessed as 510 {+-} 60 MW. However the ratio of enthalpy to chloride concentration of the source fluid is not well determined. Depending on the ratio chosen the heat output could lie between 360 and 800 MW. Although the chloride flux is accurately known, the heat output cannot be measured accurately without well determined data on the source fluid at depth.

  9. Redshifted Molecular Absorption Systems toward PKS 1830-211 and B0218+357: Submillimeter CO, C I, and H2O Data

    NASA Astrophysics Data System (ADS)

    Gerin, Maryvonne; Phillips, Thomas G.; Benford, Dominic J.; Young, Ken H.; Menten, Karl M.; Frye, Brenda

    1997-10-01

    We have detected the J=4<--3 rotational transition of 12CO in absorption at z = 0.89 toward the quasar PKS 1830-211, but not the 12CO (5<--4) or the 3P1<--3P0 fine-structure line of neutral carbon. The intervening molecular medium thus has a total 12CO column density of 1018 cm-2<=N(CO)<=5×1018 cm-2 with a most likely value of N(CO)~=2×1018 cm-2, which corresponds to the large column density of molecular hydrogen of N(H2)=2.5×1022 cm-2 and a reddening of Av = 25 mag. The 12CO excitation temperature is low, below 15 K. Comparison with existing molecular absorption results shows that the absorbing material has molecular abundances similar to Galactic dark clouds. We find an upper limit for atomic carbon of N(C I)<=1018 cm-2, which again would be the case for most Galactic dark clouds. We also report new observations of the absorbing system toward B0218+357 at z = 0.68. We have tentatively detected the 13CO (4<--3) line, but for H2O, although a feature is seen at the correct velocity, because of the inadequate signal-to-noise ratio we report only an upper limit for the fundamental line of ortho-water vapor. The tentative detection of the 13CO J=4<--3 line implies that the 13CO excitation temperature is lower than 20 K and the column density is fairly large, 4×1016 cm-2<=N(CO13)<=2.2×1017 cm-2, with a likely value of N(CO13)~=1017 cm-2, giving rise to saturated absorption in the J=2<--1 transition. The total column density of molecular gas is again large in this source, N(H2)>=2×1022 cm-2, which corresponds to a reddening larger than 20 mag.

  10. PHOTOMETRY AND PHOTOMETRIC REDSHIFT CATALOGS FOR THE LOCKMAN HOLE DEEP FIELD

    SciTech Connect

    Fotopoulou, S.; Salvato, M.; Hasinger, G.; Rovilos, E.; Brusa, M.; Lutz, D.; Burwitz, V.; Egami, E.; Henry, J. P.; Huang, J. H.; Rigopoulou, D.; Vaccari, M.

    2012-01-01

    We present broadband photometry and photometric redshifts for 187,611 sources located in {approx}0.5 deg{sup 2} in the Lockman Hole area. The catalog includes 388 X-ray-detected sources identified with the very deep XMM-Newton observations available for an area of 0.2 deg{sup 2}. The source detection was performed on the R{sub c}-, z'-, and B-band images and the available photometry is spanning from the far-ultraviolet to the mid-infrared, reaching in the best-case scenario 21 bands. Astrometry corrections and photometric cross-calibrations over the entire data set allowed the computation of accurate photometric redshifts. Special treatment is undertaken for the X-ray sources, the majority of which are active galactic nuclei (AGNs). For normal galaxies, comparing the photometric redshifts to the 253 available spectroscopic redshifts, we achieve an accuracy of {sigma}{sub {Delta}z/(1+z)} = 0.036, with 12.6% outliers. For the X-ray-detected sources, compared to 115 spectroscopic redshifts, the accuracy is {sigma}{sub {Delta}z/(1+z)} = 0.069, with 18.3% outliers, where the outliers are defined as sources with |z{sub phot} - z{sub spec}| > 0.15 Multiplication-Sign (1 + z{sub spec}). These results are a significant improvement over the previously available photometric redshifts for normal galaxies in the Lockman Hole, while it is the first time that photometric redshifts are computed and made public for AGNs for this field.

  11. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    SciTech Connect

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Mainieri, V.; Capak, P.; Caputi, K.; and others

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  12. Photometric Selection of High-Redshift Type Ia Supernova Candidates

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Howell, D. A.; Perrett, K.; Nugent, P. E.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop, R. A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only two to three epochs of multiband real-time photometry, is able to discriminate between SNe Ia and core-collapse SNe. Furthermore, for SNe Ia the method accurately predicts the redshift, phase, and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period 2004 May to 2005 January in the SNLS, 440 SN candidates were discovered, of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test data set, the selection technique correctly identifies 100% of the identified SNe II as non-SNe Ia with only a 1%-2% false rejection rate. The predicted parameterization of the SNe Ia has a precision of Δz/(1+zspec)<0.09 in redshift and +/-2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and ΩM) and find any effect to be negligible.

  13. [A novel method to determine the redshifts of active galaxies based on wavelet transform].

    PubMed

    Tu, Liang-Ping; Luo, A-Li; Jiang, Bin; Wei, Peng; Zhao, Yong-Heng; Liu, Rong

    2012-10-01

    Automatically determining redshifts of galaxies is very important for astronomical research on large samples, such as large-scale structure of cosmological significance. Galaxies are generally divided into normal galaxies and active galaxies, and the spectra of active galaxies mostly have more obvious emission lines. In the present paper, the authors present a novel method to determine spectral redshifts of active galaxies rapidly based on wavelet transformation mainly, and it does not need to extract line information accurately. This method includes the following steps: Firstly, we denoised a spectrum to be processed; Secondly, the low-frequency spectrum was extracted based on wavelet transform, and then we could get the residual spectrum through the denoised spectrum subtracting the low-frequency spectrum; Thirdly, the authors calculated the standard deviation of the residual spectrum and determined a threshold value T, then retained the wavelength set whose corresponding flux was greater than T; Fourthly, according to the wavelength form of all the standard lines, we calculated all the candidate redshifts; Finally, utilizing the density estimation method based on Parzen window, we determined the redshift point with maximum density, and the average value of its neighborhood would be the final redshift of this spectrum. The experiments on simulated data and real data from SDSS-DR7 show that this method is robust and its correct rate is encouraging. And it can be expected to be applied in the project of LAMOST.

  14. A peculiar galaxy appears at redshift 11: properties of a moderate-redshift interloper

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew; Laporte, Nicolas; Pelló, Roser; Schaerer, Daniel; Le Borgne, Jean-François

    2012-09-01

    In 2011 Laporte et al. reported a very high redshift galaxy candidate: a lensed J-band dropout (A2667-J1). J1 has a photometric redshift of z= 9.6-12, the probability density function for which permits no low- or intermediate-z solution. We here report new spectroscopic observations of this galaxy with Very Large Telescope/X-Shooter, which show clear [O III] λ5007 Å, Lyα, Hα and Hβ emission and place the galaxy firmly at z= 2.082. The oxygen lines contribute only ˜25 per cent to the H-band flux and do not significantly affect the dropout selection of J1. After correcting the broad-band fluxes for line emission, we identify two roughly equally plausible natures for A2667-J1: it is either a young heavily reddened starburst or a maximally old system with a very pronounced 4000-Å break, upon which a minor secondary burst of star formation is superimposed. Fits show that to make a 3σ detection of this object in the B band (V band), imaging of depth AB = 30.2 (29.5) would be required - despite the relatively bright near-infrared (NIR) magnitude, we would need optical data of equivalent depth to the Hubble Ultra Deep Field to rule out the mid-z solution on purely photometric grounds. Assuming that this stellar population can be scaled to the NIR magnitudes of recent Hubble Space Telescope/Wide Field Camera 3 (WFC3) IR-selected galaxies, we conclude that unfeasibly deep optical data (reaching AB ˜ 32) would be required for the same level of security. There is a population of galaxies at z≈ 2 with continuum colours alone that mimic those of our z= 7-12 candidates. Vacuum wavelengths are quoted.

  15. Latest MAGIC discoveries pushing redshift boundaries in VHE Astrophysics

    NASA Astrophysics Data System (ADS)

    Manganaro, M.; Becerra, J.; Nievas, M.; Sitarek, J.; Tavecchio, F.; Buson, S.; Dominis, D.; Domínguez, A.; Lindfors, E.; Mazin, D.; Moralejo, A.; Stamerra, A.; Vovk, Ie; ">MAGIC, redshifts, not only because of lower flux due to the distance of the source, but also due to the consequent absorption of γ-rays by the extragalactic background light (EBL). Before the MAGIC discoveries reported in this work, the farthest source ever detected in the VHE domain was the blazar PKS 1424+240, at z > 0.6. MAGIC, a system of two 17 m of diameter IACTs located in the Canary island of La Palma, has been able to go beyond that limit and push the boundaries for VHE detection to redshifts z ~ 1. The two sources detected and analyzed, the blazar QSO B0218+357 and the FSRQ PKS 1441+25 are located at redshift z = 0.944 and z = 0.939 respectively. QSO B0218+357 is also the first gravitational lensed blazar ever detected in VHE. The activity, triggered by Fermi-LAT in high energy γ-rays, was followed up by other instruments, such as the KVA telescope in the optical band and the Swift-XRT in X-rays. In the present work we show results on MAGIC analysis on QSO B0218+357 and PKS 1441+25 together with multiwavelength lightcurves. The collected dataset allowed us to test for the first time the present generation of EBL models at such distances.

  16. Dusty Galaxies at the Highest Redshifts

    NASA Astrophysics Data System (ADS)

    Clements, David L.

    2015-08-01

    Galaxies with very high star formation rates are usually shrouded in substantial amounts of dust obscuration, making their discovery impossible through optical and/or near-IR observations. Observations in the far-IR/submm in contrast can identify such objects from their colours, allowing these rare objects to be followup up in detail. Herschel surveys have found a significant population of such objects at 4redshift record holder lying at z=6.34. Such objects are a challenge for all current models of galaxy formation and evolution. We here present the latest results from the HerMES consortium's ongoing work on this population, including new imaging and spectroscopic redshifts from ALMA, analysis of lensing for bright z>5 sources, and progress in the search for dusty star forming galaxies at still higher redshifts.

  17. Properties of High Redshift Galaxies in the ELTs Era

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Gullieuszik, Marco; Falomo, Renato; Fantinel, Daniela; Uslenghi, Michela

    2015-08-01

    The extraordinary sensitivity and spatial resolution of the future Extremely Large Telescopes will allow us to characterize the photometric and structural properties of high redshift galaxies, in spite of their small size. In this contribution we present a quantitative analysis of these capabilities thorugh the generation of a large set of simulated images, and their subsequent analysis with GALFIT. In particular, we assess the accuracy with which it will be possible to measure the basic galaxy parameters: Sersic index, half light radius and total magnitude. The simulations adopt the expected performances of the near-IR imagers MICADO at the E-ELT for galaxies at z ~ 2 and z ~ 3, spanning a mass range from 10^9 to 10^11 solar masses, and whose sizes, magnitudes and colors are obtained from presently available scaling relations for high redshift objects. It turns out that with such future facility it will be possible to derive both accurate photometry and detailed morphology for very distant galaxies, that are mandatory to probe fundamental problems on the processes of galaxy formation and evolution. These results are also compared with the expected capabilities of NIRcam at JWST.

  18. The overlooked potential of Generalized Linear Models in astronomy-II: Gamma regression and photometric redshifts

    NASA Astrophysics Data System (ADS)

    Elliott, J.; de Souza, R. S.; Krone-Martins, A.; Cameron, E.; Ishida, E. E. O.; Hilbe, J.

    2015-04-01

    Machine learning techniques offer a precious tool box for use within astronomy to solve problems involving so-called big data. They provide a means to make accurate predictions about a particular system without prior knowledge of the underlying physical processes of the data. In this article, and the companion papers of this series, we present the set of Generalized Linear Models (GLMs) as a fast alternative method for tackling general astronomical problems, including the ones related to the machine learning paradigm. To demonstrate the applicability of GLMs to inherently positive and continuous physical observables, we explore their use in estimating the photometric redshifts of galaxies from their multi-wavelength photometry. Using the gamma family with a log link function we predict redshifts from the PHoto-z Accuracy Testing simulated catalogue and a subset of the Sloan Digital Sky Survey from Data Release 10. We obtain fits that result in catastrophic outlier rates as low as ∼1% for simulated and ∼2% for real data. Moreover, we can easily obtain such levels of precision within a matter of seconds on a normal desktop computer and with training sets that contain merely thousands of galaxies. Our software is made publicly available as a user-friendly package developed in Python, R and via an interactive web application. This software allows users to apply a set of GLMs to their own photometric catalogues and generates publication quality plots with minimum effort. By facilitating their ease of use to the astronomical community, this paper series aims to make GLMs widely known and to encourage their implementation in future large-scale projects, such as the Large Synoptic Survey Telescope.

  19. Understanding cosmic acceleration with galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Guzzo, L.

    Our increased efficiency in performing massive redshift surveys of galaxies well beyond the local Universe (i.e. z≫ 0.1) is opening up new possibilities to understanding the observed acceleration of cosmic expansion, the greatest mystery in modern cosmology. Redshift surveys can measure both the expansion history H(z) and the evolution of the growth rate of structure f(z). Coupling these two measurements one can distinguish wether cosmic acceleration is due to a new form of ``dark energy'' in the cosmic budget, or rather requires a modification of General Relativity. These two radically alternative scenarios are degenerate when considering H(z) alone, as yielded, e.g., by the Hubble diagram of Type Ia supernovae. While redshift surveys have the ability to measure H(z) through Baryonic Acoustic Oscillations in the galaxy power spectrum, they can at the same time probe f(z) using the redshift-space distortions introduced in the observed clustering pattern by galaxy peculiar motions. In this short review paper I will mostly concentrate on the latter measurement, whose potential importance in this context has been recently highlighted \\citep{guz08}. Current estimates are consistent with the simplest cosmological-constant scenario, but error bars are still too large to rule out alternative models. Extensive simulations show that with the next-generation deep surveys with N>100,000 redshifts over large (>20 deg2) areas, redshift distortions can be one of the key tools for understanding the physical origin of cosmic acceleration.

  20. On the determination of the crystal-vapor surface free energy, and why a Gaussian expression can be accurate for a system far from Gaussian

    NASA Astrophysics Data System (ADS)

    Modak, Viraj P.; Wyslouzil, Barbara E.; Singer, Sherwin J.

    2016-08-01

    The crystal-vapor surface free energy γ is an important physical parameter governing physical processes, such as wetting and adhesion. We explore exact and approximate routes to calculate γ based on cleaving an intact crystal into non-interacting sub-systems with crystal-vapor interfaces. We do this by turning off the interactions, ΔV, between the sub-systems. Using the soft-core scheme for turning off ΔV, we find that the free energy varies smoothly with the coupling parameter λ, and a single thermodynamic integration yields the exact γ. We generate another exact method, and a cumulant expansion for γ by expressing the surface free energy in terms of an average of e-βΔV in the intact crystal. The second cumulant, or Gaussian approximation for γ is surprisingly accurate in most situations, even though we find that the underlying probability distribution for ΔV is clearly not Gaussian. We account for this fact by developing a non-Gaussian theory for γ and find that the difference between the non-Gaussian and Gaussian expressions for γ consist of terms that are negligible in many situations. Exact and approximate methods are applied to the (111) surface of a Lennard-Jones crystal and are also tested for more complex molecular solids, the surface of octane and nonadecane. Alkane surfaces were chosen for study because their crystal-vapor surface free energy has been of particular interest for understanding surface freezing in these systems.

  1. On the determination of the crystal-vapor surface free energy, and why a Gaussian expression can be accurate for a system far from Gaussian.

    PubMed

    Modak, Viraj P; Wyslouzil, Barbara E; Singer, Sherwin J

    2016-08-01

    The crystal-vapor surface free energy γ is an important physical parameter governing physical processes, such as wetting and adhesion. We explore exact and approximate routes to calculate γ based on cleaving an intact crystal into non-interacting sub-systems with crystal-vapor interfaces. We do this by turning off the interactions, ΔV, between the sub-systems. Using the soft-core scheme for turning off ΔV, we find that the free energy varies smoothly with the coupling parameter λ, and a single thermodynamic integration yields the exact γ. We generate another exact method, and a cumulant expansion for γ by expressing the surface free energy in terms of an average of e(-βΔV) in the intact crystal. The second cumulant, or Gaussian approximation for γ is surprisingly accurate in most situations, even though we find that the underlying probability distribution for ΔV is clearly not Gaussian. We account for this fact by developing a non-Gaussian theory for γ and find that the difference between the non-Gaussian and Gaussian expressions for γ consist of terms that are negligible in many situations. Exact and approximate methods are applied to the (111) surface of a Lennard-Jones crystal and are also tested for more complex molecular solids, the surface of octane and nonadecane. Alkane surfaces were chosen for study because their crystal-vapor surface free energy has been of particular interest for understanding surface freezing in these systems.

  2. VizieR Online Data Catalog: Redshift of 97 spirals (Guthrie+, 1996)

    NASA Astrophysics Data System (ADS)

    Guthrie, B. N. G.; Napier, W. M.

    1996-02-01

    Persistent claims have been made over the last ~15yr that extragalactic redshifts, when corrected for the Sun's motion around the Galactic centre, occur in multiples of ~24 or ~36km/s. A recent investigation by us of 40 spiral galaxies out to 1000km/s, with accurately measured redshifts, gave evidence of a periodicity ~37.2-37.7km/s. Here we extend our enquiry out to the edge of the Local Super cluster (~2600km/s), applying a simple and robust procedure to a total of 97 accurately determined redshifts. We find that, when corrected for related vectors close to recent estimates of the Sun's galactocentric motion, the redshifts of spirals are strongly periodic (P~37.6km/s). The formal confidence level of the result is extremely high, and the signal is seen independently with different radio telescopes. We also examine a further sample of 117 spirals observed with the 300-foot Green Bank telescope alone. The periodicity phenomenon appears strongest for the galaxies linked by group membership, but phase coherence probably holds over large regions of the Local Supercluster. (2 data files).

  3. Coherent peculiar velocities and periodic redshifts

    SciTech Connect

    Hill, C.T.; Steinhardt, P.J.; Turner, M.S. Pennsylvania Univ., Philadelphia NASA/Fermilab Astrophysics Center, Batavia Chicago Univ., IL )

    1991-01-01

    A coherent, sinusoidal peculiar velocity field of 0.003 amplitude and wavelength of 128/h Mpc could explain the apparent redshift periodicity seen in the recent pencil-beam survey of Broadhurst et al. (1990). Such a peculiar velocity field could arise if the power spectrum of density perturbations has a strong feature at about this wavelength. This explanation has additional predictions: the phase, period, and strength of the periodicity should vary in different directions; the strength of the periodicity should decrease at higher redshifts; and there should be more thin structures perpendicular to the line of sight than parallel to it. 28 refs.

  4. Stars and gas in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pettini, Max

    Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z=3, when the universe was still in its "teen years". In keeping with the theme of this conference, I show how our knowledge of local star-forming regions can be applied directly to these distant galaxies to deduce their ages, metallicities, initial mass function, and masses. I also discuss areas where current limitations in stellar astrophysics have a direct bearing on the interpretation of the data being gathered, at an ever increasing rate, on the high redshift universe.

  5. Analytic model for the bispectrum of galaxies in redshift space

    SciTech Connect

    Smith, Robert E.; Sheth, Ravi K.; Scoccimarro, Roman

    2008-07-15

    We develop an analytic theory for the redshift space bispectrum of dark matter, haloes, and galaxies. This is done within the context of the halo model of structure formation, as this allows for the self-consistent inclusion of linear and nonlinear redshift-space distortions and also for the nonlinearity of the halo bias. The model is applicable over a wide range of scales: on the largest scales the predictions reduce to those of the standard perturbation theory (PT); on smaller scales they are determined primarily by the nonlinear virial velocities of galaxies within haloes, and this gives rise to the U-shaped anisotropy in the reduced bispectrum--a finger print of the Finger-Of-God distortions. We then confront the predictions with measurements of the redshift-space bispectrum of dark matter from an ensemble of numerical simulations. On very large scales, k=0.05h Mpc{sup -1}, we find reasonably good agreement between our halo model, PT and the data, to within the errors. On smaller scales, k=0.1h Mpc{sup -1}, the measured bispectra differ from the PT at the level of {approx}10%-20%, especially for colinear triangle configurations. The halo model predictions improve over PT, but are accurate to no better than 10%. On smaller scales k=0.5-1.0h Mpc{sup -1}, our model provides a significant improvement over PT, which breaks down. This implies that studies which use the lowest order PT to extract galaxy bias information are not robust on scales k > or approx. 0.1h Mpc{sup -1}. The analytic and simulation results also indicate that there is no observable scale for which the configuration dependence of the reduced bispectrum is constant--hierarchical models for the higher-order correlation functions in redshift space are unlikely to be useful. It is hoped that our model will facilitate extraction of information from large-scale structure surveys of the Universe, because different galaxy populations are naturally included into our description.

  6. Shorter sampling periods and accurate estimates of milk volume and components are possible for pasture based dairy herds milked with automated milking systems.

    PubMed

    Kamphuis, Claudia; Burke, Jennie K; Taukiri, Sarah; Petch, Susan-Fay; Turner, Sally-Anne

    2016-08-01

    Dairy cows grazing pasture and milked using automated milking systems (AMS) have lower milking frequencies than indoor fed cows milked using AMS. Therefore, milk recording intervals used for herd testing indoor fed cows may not be suitable for cows on pasture based farms. We hypothesised that accurate standardised 24 h estimates could be determined for AMS herds with milk recording intervals of less than the Gold Standard (48 hs), but that the optimum milk recording interval would depend on the herd average for milking frequency. The Gold Standard protocol was applied on five commercial dairy farms with AMS, between December 2011 and February 2013. From 12 milk recording test periods, involving 2211 cow-test days and 8049 cow milkings, standardised 24 h estimates for milk volume and milk composition were calculated for the Gold Standard protocol and compared with those collected during nine alternative sampling scenarios, including six shorter sampling periods and three in which a fixed number of milk samples per cow were collected. Results infer a 48 h milk recording protocol is unnecessarily long for collecting accurate estimates during milk recording on pasture based AMS farms. Collection of two milk samples only per cow was optimal in terms of high concordance correlation coefficients for milk volume and components and a low proportion of missed cow-test days. Further research is required to determine the effects of diurnal variations in milk composition on standardised 24 h estimates for milk volume and components, before a protocol based on a fixed number of samples could be considered. Based on the results of this study New Zealand have adopted a split protocol for herd testing based on the average milking frequency for the herd (NZ Herd Test Standard 8100:2015). PMID:27600967

  7. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in

  8. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    SciTech Connect

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  9. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    SciTech Connect

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter; Weiss, Axel; Bertoldi, Frank; Carilli, Chris; Daddi, Emanuele; Sargent, Mark; Maiolino, Roberto; Riechers, Dominik; Smail, Ian

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  10. BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z {approx} 3-4

    SciTech Connect

    Hennawi, Joseph F.; Myers, Adam D.; Shen, Yue; Strauss, Michael A.; Djorgovski, S. G.; Glikman, Eilat; Mahabal, Ashish; Fan Xiaohui; Martin, Crystal L.; Richards, Gordon T.; Schneider, Donald P.; Shankar, Francesco

    2010-08-20

    The clustering of quasars on small scales yields fundamental constraints on models of quasar evolution and the buildup of supermassive black holes. This paper describes the first systematic survey to discover high-redshift binary quasars. Using color-selection and photometric redshift techniques, we searched 8142 deg{sup 2} of Sloan Digital Sky Survey imaging data for binary quasar candidates, and confirmed them with follow-up spectroscopy. Our sample of 27 high-redshift binaries (24 of them new discoveries) at redshifts 2.9 < z < 4.3 with proper transverse separations 10 kpc < R{sub perpendicular} < 650 kpc increases the number of such objects known by an order of magnitude. Eight members of this sample are very close pairs with R{sub perpendicular} < 100 kpc, and of these close systems four are at z>3.5. The completeness and efficiency of our well-defined selection algorithm are quantified using simulated photometry and we find that our sample is {approx}50% complete. Our companion paper uses this knowledge to make the first measurement of the small-scale clustering (R < 1 h {sup -1} Mpc comoving) of high-redshift quasars. High-redshift binaries constitute exponentially rare coincidences of two extreme (M {approx}> 10{sup 9} M {sub sun}) supermassive black holes. At z {approx} 4, there is about one close binary per 10 Gpc{sup 3}, thus these could be the highest sigma peaks, the analogs of superclusters, in the early universe.

  11. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING

    SciTech Connect

    Cool, Richard J.; Moustakas, John; Blanton, Michael R.; Hogg, David W.; Burles, Scott M.; Coil, Alison L.; Aird, James; Mendez, Alexander J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun; Bernstein, Rebecca A.

    2013-04-20

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1 + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.

  12. ON THE SHAPES AND STRUCTURES OF HIGH-REDSHIFT COMPACT GALAXIES

    SciTech Connect

    Chevance, Melanie; Damjanov, Ivana; Abraham, Roberto G.; Weijmans, Anne-Marie; Simard, Luc; Van den Bergh, Sidney; Caris, Evelyn; Glazebrook, Karl

    2012-08-01

    Recent deep Hubble Space Telescope WFC3 imaging suggests that a majority of compact quiescent massive galaxies at z {approx} 2 may contain disks. To investigate this claim, we have compared the ellipticity distribution of 31 carefully selected high-redshift massive quiescent compact galaxies to a set of mass-selected ellipticity and Sersic index distributions obtained from two-dimensional structural fits to {approx}40, 000 nearby galaxies from the Sloan Digital Sky Survey. A Kolmogorov-Smirnov test shows that the distribution of ellipticities for the high-redshift galaxies is consistent with the ellipticity distribution of a similarly chosen sample of massive early-type galaxies. However, the distribution of Sersic indices for the high-redshift sample is inconsistent with that of local early-type galaxies, and instead resembles that of local disk-dominated populations. The mismatch between the properties of high-redshift compact galaxies and those of both local early-type and disk-dominated systems leads us to conclude that the basic structures of high-redshift compact galaxies probably do not closely resemble those of any single local galaxy population. Any galaxy population analog to the high-redshift compact galaxies that exists at the current epoch is either a mix of different types of galaxies, or possibly a unique class of objects on their own.

  13. Local gravitational redshifts can bias cosmological measurements

    SciTech Connect

    Wojtak, Radosław; Davis, Tamara M.; Wiis, Jophiel E-mail: tamarad@physics.uq.edu.au

    2015-07-01

    Measurements of cosmological parameters via the distance-redshift relation usually rely on models that assume a homogenous universe. It is commonly presumed that the large-scale structure evident in our Universe has a negligible impact on the measurement if distances probed in observations are sufficiently large (compared to the scale of inhomogeneities) and are averaged over different directions on the sky. This presumption does not hold when considering the effect of the gravitational redshift caused by our local gravitational potential, which alters light coming from all distances and directions in the same way. Despite its small magnitude, this local gravitational redshift gives rise to noticeable effects in cosmological inference using SN Ia data. Assuming conservative prior knowledge of the local potential given by sampling a range of gravitational potentials at locations of Milky-Way-like galaxies identified in cosmological simulations, we show that ignoring the gravitational redshift effect in a standard data analysis leads to an additional systematic error of ∼1% in the determination of density parameters and the dark energy equation of state. We conclude that our local gravitational field affects our cosmological inference at a level that is important in future observations aiming to achieve percent-level accuracy.

  14. MARZ: Manual and automatic redshifting software

    NASA Astrophysics Data System (ADS)

    Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.

    2016-04-01

    The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.

  15. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  16. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  17. Redshift distortions of galaxy correlation functions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-01-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the

  18. The Muenster Redshift Project - Automated redshift measurements from low-dispersion objective prism Schmidt plates

    NASA Astrophysics Data System (ADS)

    Schuecker, Peter

    A three-dimensional galaxy survey at faint magnitudes and over large volumes of space was carried out as part of the Muenster Redshift Project. Three different methods were used to enhance the reliability of the redshifts measured from objective prison plates: the correlation method, the least-squares method, and the break method where continuous breaks are identified directly. The redshift errors of the individual methods turn out to be 0.007 (correlation), 0.011 (direct identification), and 0.016 (least squares). Using the method described in the paper, it is possible to obtain about 6000 galaxy redshifts from one objective prism plate at high galactic latitudes for objects with m(J) less than 20.

  19. The 2dF Galaxy Redshift Survey: spectra and redshifts

    NASA Astrophysics Data System (ADS)

    Colless, Matthew; Dalton, Gavin; Maddox, Steve; Sutherland, Will; Norberg, Peder; Cole, Shaun; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Collins, Chris; Couch, Warrick; Cross, Nicholas; Deeley, Kathryn; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Madgwick, Darren; Peacock, John A.; Peterson, Bruce A.; Price, Ian; Seaborne, Mark; Taylor, Keith

    2001-12-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is designed to measure redshifts for approximately 250000 galaxies. This paper describes the survey design, the spectroscopic observations, the redshift measurements and the survey data base. The 2dFGRS uses the 2dF multifibre spectrograph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultaneously over a 2° diameter field. The source catalogue for the survey is a revised and extended version of the APM galaxy catalogue, and the targets are galaxies with extinction-corrected magnitudes brighter than bJ=19.45. The main survey regions are two declination strips, one in the southern Galactic hemisphere spanning 80°×15° around the SGP, and the other in the northern Galactic hemisphere spanning 75°×10° along the celestial equator; in addition, there are 99 fields spread over the southern Galactic cap. The survey covers 2000deg2 and has a median depth of z=0.11. Adaptive tiling is used to give a highly uniform sampling rate of 93 per cent over the whole survey region. Redshifts are measured from spectra covering 3600-8000Å at a two-pixel resolution of 9.0Å and a median S/N of 13pixel-1. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5 Q>=3 redshifts are 98.4 per cent reliable and have an rms uncertainty of 85kms-1. The overall redshift completeness for Q>=3 redshifts is 91.8 per cent, but this varies with magnitude from 99 per cent for the brightest galaxies to 90 per cent for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS.

  20. Five New High-Redshift Quasar Lenses from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Morokuma, Tomoki; Schneider, Donald P.; Becker, Robert H.; Bahcall, Neta A.; York, Donald G.

    2008-09-08

    We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z > 2.2) SDSS quasars. We confirmed their lensing nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z{sub s} = 2.237, lens redshift z{sub l} = 0.294, and image separation {theta} = 4.04 inch), SDSS J1254+2235 (z{sub s} = 3.626, {theta} = 1.56 inch), SDSS J1258+1657 (z{sub s} = 2.702, {theta} = 1.28 inch), SDSS J1339+1310 (z{sub s} = 2.243, {theta} = 1.69 cin), and SDSS J1400+3134 (z{sub s} = 3.317, {theta} = 1.74 inch). We estimate the lens redshifts of the latter four systems to be z{sub l} = 0.4-0.6 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z{sub s} < 2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.

  1. The VIMOS Public Extragalactic Redshift Survey. Reconstruction of the redshift-space galaxy density field&

    NASA Astrophysics Data System (ADS)

    Granett, B. R.; Branchini, E.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moutard, T.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Zamorani, G.

    2015-11-01

    Aims: Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the keyparameters that describe the galaxy density field and its spatial correlations in redshift space. Methods: We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results: We present joint constraints on the anisotropic power spectrum, and the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although they are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate fσ8 = 0.38 with 18% uncertainty at redshift 0.7. Appendices are available in electronic form at http://www.aanda.org

  2. Imaging of Three Possible Low-redshift Analogs to High-redshift Compact Red Galaxies

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2011-05-01

    As part of a larger program to identify and characterize possible low-redshift analogs to massive compact red galaxies found at high redshift, we have examined the morphologies of three low-redshift compact galaxies drawn from the sample of Trujillo et al. Using deeper and higher resolution images, we have found faint and relatively extensive outer structures in addition to the compact cores identified in the earlier measurements. One object appears to have a small companion that may be involved in an ongoing minor merger of the sort that could be responsible for building up the outer parts of these galaxies. The ages of the dominant stellar populations in these objects are found to be around 2-4 Gyr, in good agreement with the previous estimates. The presence of diffuse outer structures in these galaxies indicates that truly compact and massive red galaxies are exceedingly rare at low redshift. The relatively young stellar populations suggest that the accretion of the extensive outer material must occur essentially universally on relatively short timescales of a few billion years or less. These results confirm and extend previous suggestions that the driving mechanism behind the size evolution of high-redshift compact galaxies cannot be highly stochastic processes such as major mergers, which would inevitably leave a non-negligible fraction of survivors at low redshift.

  3. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Alexander, David M.; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi; Hwang, Ho Seong; Ivison, Rob; Scott, Douglas; Altieri, Bruno; Coia, Daniela; Buat, Veronique; Dannerbauer, Helmut; and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  4. SU-E-J-08: A Hybrid Three Dimensional Registration Framework for Image-Guided Accurate Radiotherapy System ARTS-IGRT

    SciTech Connect

    Wu, Q; Pei, X; Cao, R; Hu, L; Wu, Y

    2014-06-01

    Purpose: The purpose of this work was to develop a registration framework and method based on the software platform of ARTS-IGRT and implement in C++ based on ITK libraries to register CT images and CBCT images. ARTS-IGRT was a part of our self-developed accurate radiation planning system ARTS. Methods: Mutual information (MI) registration treated each voxel equally. Actually, different voxels even having same intensity should be treated differently in the registration procedure. According to their importance values calculated from self-information, a similarity measure was proposed which combined the spatial importance of a voxel with MI (S-MI). For lung registration, Firstly, a global alignment method was adopted to minimize the margin error and achieve the alignment of these two images on the whole. The result obtained at the low resolution level was then interpolated to become the initial conditions for the higher resolution computation. Secondly, a new similarity measurement S-MI was established to quantify how close the two input image volumes were to each other. Finally, Demons model was applied to compute the deformable map. Results: Registration tools were tested for head-neck and lung images and the average region was 128*128*49. The rigid registration took approximately 2 min and converged 10% faster than traditional MI algorithm, the accuracy reached 1mm for head-neck images. For lung images, the improved symmetric Demons registration process was completed in an average of 5 min using a 2.4GHz dual core CPU. Conclusion: A registration framework was developed to correct patient's setup according to register the planning CT volume data and the daily reconstructed 3D CBCT data. The experiments showed that the spatial MI algorithm can be adopted for head-neck images. The improved Demons deformable registration was more suitable to lung images, and rigid alignment should be applied before deformable registration to get more accurate result. Supported by

  5. REDSHIFT CATALOG FOR SWIFT LONG GAMMA-RAY BURSTS

    SciTech Connect

    Xiao Limin; Schaefer, Bradley E.

    2011-04-20

    We present a catalog of the redshifts for most long-duration gamma-ray bursts (GRBs) by Swift from 2004 December 20 to 2008 July 23 (258 bursts in total). All available information is collected, including spectroscopic redshifts, photometric redshift limits, and redshifts calculated from various luminosity relations. Error bars for the redshifts derived from the luminosity relations are asymmetric, with tails extended to the high-redshift end, and this effect is evaluated by looking at the 30% of Swift bursts with spectroscopic redshifts. A simulation is performed to eliminate this asymmetric effect, and the resultant redshift distribution is deconvolved. We test and confirm this simulation on the sample of bursts with known spectroscopic redshifts and then apply it to the 70% of Swift bursts that do not have spectroscopic measures. A final intrinsic redshift distribution is then made for almost all Swift bursts, and the efficiency of the spectroscopic detections is evaluated. The efficiency of spectroscopic redshifts varies from near unity at low redshift to 0.5 at z = 1, to near 0.3 at z = 4, and to 0.1 at z = 6. We also find that the fraction of GRBs with z>5 is {approx}10%, and this fraction is compared with simulations from a cosmological model.

  6. GPZ: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts

    NASA Astrophysics Data System (ADS)

    Almosallam, Ibrahim A.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-10-01

    The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent, commonly known in statistics as heteroscedastic noise. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform data density and in most cases require manual tuning of many parameters. In this paper, we present a Bayesian machine learning approach that jointly optimizes the model with respect to both the predictive mean and variance we refer to as Gaussian processes for photometric redshifts (GPZ). The predictive variance of the model takes into account both the variance due to data density and photometric noise. Using the Sloan Digital Sky Survey (SDSS) DR12 data, we show that our approach substantially outperforms other machine learning methods for photo-z estimation and their associated variance, such as TPZ and ANNZ2. We provide a MATLAB and PYTHON implementations that are available to download at https://github.com/OxfordML/GPz.

  7. Exploring the SDSS photometric galaxies with clustering redshifts

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-07-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  8. Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences.

    PubMed

    Messenger, C; Read, J

    2012-03-01

    Detection of gravitational waves from the inspiral phase of binary neutron star coalescence will allow us to measure the effects of the tidal coupling in such systems. Tidal effects provide additional contributions to the phase evolution of the gravitational wave signal that break a degeneracy between the system's mass parameters and redshift and thereby allow the simultaneous measurement of both the effective distance and the redshift for individual sources. Using the population of O(10(3)-10(7)) detectable binary neutron star systems predicted for 3rd generation gravitational wave detectors, the luminosity distance-redshift relation can be probed independently of the cosmological distance ladder and independently of electromagnetic observations. We conclude that for a range of representative neutron star equations of state the redshift of such systems can be determined to an accuracy of 8%-40% for z<1 and 9%-65% for 1

  9. Star formation and mass assembly in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods: We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions

  10. Morphologies at High Redshift from Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  11. Can the Dupuit-Thiem equation accurately describe the flow pattern induced by injection in a laboratory scale aquifer-well system?

    NASA Astrophysics Data System (ADS)

    Bonilla, Jose; Kalwa, Fritz; Händel, Falk; Binder, Martin; Stefan, Catalin

    2016-04-01

    The Dupuit-Thiem equation is normally used to assess flow towards a pumping well in unconfined aquifers under steady-state conditions. For the formulation of the equation it is assumed that flow is laminar, radial and horizontal towards the well. It is well known that these assumptions are not met in the vicinity of the well; some authors restrict the application of the equation only to a radius larger than 1.5-fold the aquifer thickness. In this study, the equation accuracy to predict the pressure head is evaluated as a simple and quick analytical method to describe the flow pattern for different injection rates in the LSAW. A laboratory scale aquifer-well system (LSAW) was implemented to study the aquifer recharge through wells. The LSAW consists of a 1.0 m-diameter tank with a height of 1.1 meters, filled with sand and a screened well in the center with a diameter of 0.025 m. A regulated outflow system establishes a controlled water level at the tank wall to simulate various aquifer thicknesses. The pressure head at the bottom of the tank along one axis can be measured to assess the flow profile every 0.1 m between the well and the tank wall. In order to evaluate the accuracy of the Dupuit-Thiem equation, a combination of different injection rates and aquifer thicknesses were simulated in the LSAW. Contrary to what was expected (significant differences between the measured and calculated pressure heads in the well), the absolute difference between the calculated and measured pressure head is less than 10%. Beside this, the highest differences are not observed in the well itself, but in the near proximity of it, at a radius of 0.1 m. The results further show that the difference between the calculated and measured pressure heads tends to decrease with higher flow rates. Despite its limitations (assumption of laminar and horizontal flow throughout the whole aquifer), the Dupuit-Thiem equation is considered to accurately represent the flow system in the LSAW.

  12. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  13. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  14. Luminosity calibration of low redshift quasars

    NASA Technical Reports Server (NTRS)

    Wampler, E. J.

    1983-01-01

    European (SERC) were combined with U.S. shifts on the IUE in order to obtain the long integration times required to record spectra of faint quasars. LWR spectra of the nearby giant radio galaxy Centarus A(NGC 5548) was attempted in an effort to determine the chemical composition and stellar populations in this unusual galaxy. The IUE results from the low redshift quasar study, combined with the data from an extensive ground based survey, are described.

  15. Estimating Photometric Redshifts with Artificial Neural Networks and Multi-Parameters

    NASA Astrophysics Data System (ADS)

    Li, Li-Li; Zhang, Yan-Xia; Zhao, Yong-Heng; Yang, Da-Wei

    2007-06-01

    We calculate photometric redshifts from the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Galaxy Sample using artificial neural networks (ANNs). Different input sets based on various parameters (e.g. magnitude, color index, flux information) are explored. Mainly, parameters from broadband photometry are utilized and their performances in redshift prediction are compared. While any parameter may be easily incorporated in the input, our results indicate that using the dereddened magnitudes often produces more accurate photometric redshifts than using the Petrosian magnitudes or model magnitudes as input, but the model magnitudes are superior to the Petrosian magnitudes. Also, better performance results when more effective parameters are used in the training set. The method is tested on a sample of 79 346 galaxies from the SDSS DR2. When using 19 parameters based on the dereddened magnitudes, the rms error in redshift estimation is σz = 0.020184. The ANN is highly competitive tool compared to the traditional template-fitting methods when a large and representative training set is available.

  16. A catalogue of photometric redshifts for the SDSS-DR9 galaxies

    NASA Astrophysics Data System (ADS)

    Brescia, M.; Cavuoti, S.; Longo, G.; De Stefano, V.

    2014-08-01

    Context. Accurate photometric redshifts for large samples of galaxies are among the main products of modern multiband digital surveys. Over the last decade, the Sloan Digital Sky Survey (SDSS) has become a sort of benchmark against which to test the various methods. Aims: We present an application of a new method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced. Methods: The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE), is an interpolative method derived from machine learning models. Results: The obtained redshifts have an overall uncertainty of σ = 0.023 with a very small average bias of ~3 × 10-5, and a fraction of catastrophic outliers (|Δz| > 2σ) of ~5%. This result is slightly better than what was already available in the literature in terms of the smaller fraction of catastrophic outliers as well. The produced catalogue, composed by 58 tables is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A126

  17. TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS: A SUBARU FIELD

    SciTech Connect

    Kurtz, Michael J.; Geller, Margaret J.; Fabricant, Daniel G.; Utsumi, Yousuke; Miyazaki, Satoshi; Dell'Antonio, Ian P. E-mail: mgeller@cfa.harvard.edu E-mail: yousuke.utsumi@nao.ac.jp E-mail: ian@het.brown.edu

    2012-05-10

    We use a dense redshift survey in the foreground of the Subaru GTO2deg{sup 2} weak-lensing field (centered at {alpha}{sub 2000} = 16{sup h}04{sup m}44{sup s}; {delta}{sub 2000} = 43 Degree-Sign 11'24'') to assess the completeness and comment on the purity of massive halo identification in the weak-lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak-lensing peaks with a signal-to-noise greater than 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. test of the Deep Lens Survey (DLS) field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. for removing some contaminated peaks from the weak-lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.

  18. A cosmological redshift-distance square law

    NASA Technical Reports Server (NTRS)

    Soneira, R. M.

    1979-01-01

    This paper directly examines the claims of Segal (1976) that the (m,z) Hubble diagram is fitted best by a square law z = Kr-squared rather than by the traditional Hubble law z = Hr in the low-redshift range, z no more than about 0.01, corresponding to galaxies brighter than 14th mag. Segal attempts to fit a distance relation to the (m,z) scatter diagram in which each individual galaxy is plotted. The exact relation between the mean redshift for all galaxies in a small magnitude interval and the apparent magnitude is calculated. This relation is independent of luminosity function and peculiar velocity distribution about the general expansion, and is not affected by sample incompleteness as a function of apparent magnitude or the clustering of galaxies in the sample. Segal's method is affected by all of these and requires a highly sophisticated statistical analysis to deal with the non-Gaussian pointwise scatter. The present analysis favors the Hubble law and conclusively rules out the square law for the small redshift region.

  19. Remapping simulated halo catalogues in redshift space

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.

    2014-12-01

    We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the initial and target cosmological parameters, and it contains no tuned parameters. It is shown here that the rescaling method also works well in redshift space, and that the rescaled simulations can reproduce the growth rate of cosmological density fluctuations appropriate for the target cosmology. Even when rescaling a grossly non-standard model with Λ = 0 and zero baryons, the redshift-space power spectrum of standard Λ cold dark matter can be reproduced to about 5 per cent error for k < 0.2 h Mpc-1. The ratio of quadrupole-to-monopole power spectra remains correct to the same tolerance up to k = 1 h Mpc-1, provided that the input halo catalogue contains measured internal velocity dispersions.

  20. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  1. Dust Emission from High-Redshift QSOs.

    PubMed

    Carilli; Bertoldi; Menten; Rupen; Kreysa; Fan; Strauss; Schneider; Bertarini; Yun; Zylka

    2000-04-10

    We present detections of emission at 250 GHz (1.2 mm) from two high-redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30 m telescope. The sources are SDSSp 015048.83+004126.2 at z=3.7 and SDSSp J033829.31+002156.3 at z=5.0; the latter is the third highest redshift QSO known and the highest redshift millimeter-emitting source yet identified. We also present deep radio continuum imaging of these two sources at 1.4 GHz using the Very Large Array. The combination of centimeter and millimeter observations indicate that the 250 GHz emission is most likely thermal dust emission, with implied dust masses approximately 108 M middle dot in circle. We consider possible dust heating mechanisms, including UV emission from the active galactic nucleus (AGN) and a massive starburst concurrent with the AGN, with implied star formation rates greater than 103 M middle dot in circle yr-1. PMID:10727380

  2. Searches for high redshift radio galaxies

    SciTech Connect

    De Breuck, C.; Van Breugel, W.; Rottgering, H.; Miley, G.

    1997-05-05

    We have started a search for High Redshift Radio Galaxies (HZRGS) in an area covering 7 sr by selecting a sample of Ultra Steep Spectrum (USS) sources with a low flux density cut-off S1400 > 10 mJy and a steep spectral index cut-off of a < -1.3 (S of about nu-alpha) from the WENSS, NVSS and TEXAS surveys. Our first results for 27 sources show that we are almost twice as effective in finding HZRGs than than surveys of relatively bright radio sources with a spectral index cut-off of a < - 1.0. The redshift distribution is consistent with an extension of the z - a relation to a < -1.3, but a large fraction of our sample (40%) consists of objects which are too faint to observe with 3-4 m class telescopes. Our search is aimed at increasing the number of very high redshift radio galaxies for further detailed studies of the formation and evolution of massive galaxies and their environment.

  3. Clustering-based redshift estimation: application to VIPERS/CFHTLS

    NASA Astrophysics Data System (ADS)

    Scottez, V.; Mellier, Y.; Granett, B. R.; Moutard, T.; Kilbinger, M.; Scodeggio, M.; Garilli, B.; Bolzonella, M.; de la Torre, S.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.

    2016-10-01

    We explore the accuracy of the clustering-based redshift estimation proposed by Ménard et al. when applied to VIMOS Public Extragalactic Redshift Survey (VIPERS) and Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) real data. This method enables us to reconstruct redshift distributions from measurement of the angular clustering of objects using a set of secure spectroscopic redshifts. We use state-of-the-art spectroscopic measurements with iAB < 22.5 from the VIPERS as reference population to infer the redshift distribution of galaxies from the CFHTLS T0007 release. VIPERS provides a nearly representative sample to a flux limit of iAB < 22.5 at a redshift of >0.5 which allows us to test the accuracy of the clustering-based redshift distributions. We show that this method enables us to reproduce the true mean colour-redshift relation when both populations have the same magnitude limit. We also show that this technique allows the inference of redshift distributions for a population fainter than the reference and we give an estimate of the colour-redshift mapping in this case. This last point is of great interest for future large-redshift surveys which require a complete faint spectroscopic sample.

  4. Soft X-Ray Absorption by High-Redshift Intergalactic Helium.

    PubMed

    Miralda-Escudé

    2000-01-01

    The Lyalpha absorption from intergalactic, once-ionized helium (He ii) has been measured with the Hubble Space Telescope in four quasars over the last few years in the redshift range 2.4redshifts is, however, model-dependent and difficult to determine from these observations, since the intergalactic medium (IGM) can be completely optically thick to Lyalpha photons when only a small fraction of the helium remains as He ii. In addition, finding quasars in which the He ii Lyalpha absorption can be observed becomes increasingly difficult at higher redshift owing to the large abundance of hydrogen Lyman limit systems. It is pointed out here that He ii in the IGM should also cause detectable continuum absorption in the soft X-rays. The spectrum of a high-redshift source seen behind the IGM when most of the helium was He ii should recover from the He ii Lyman continuum absorption at an observed energy of approximately 0.1 keV. Galactic absorption will generally be stronger, but not by a large factor; the intergalactic He ii absorption can be detected as an excess over the expected Galactic absorption from the 21 cm H i column density. In principle, this method allows a direct determination of the fraction of helium that was singly ionized as a function of redshift if the measurement is done on a large sample of high-redshift sources over a range of redshifts. PMID:10587481

  5. Gravitational-wave detection using redshifted 21-cm observations

    SciTech Connect

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-06-15

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different {mu} dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  6. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Xu Hao; Norman, Michael L.; Wise, John H. E-mail: mlnorman@ucsd.edu

    2013-08-20

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10{sup 9} M{sub Sun} dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M{sub vir} {approx} 10{sup 7} M{sub Sun} because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H{sub 2} formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of {approx}10{sup -4} M{sub Sun} yr{sup -1} Mpc{sup -3} at redshift 15. The most massive starless halo has a mass of 7 Multiplication-Sign 10{sup 7} M{sub Sun }, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10{sup 8} M{sub Sun }, culminating in 50 remnants located in 10{sup 9} M{sub Sun} halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  7. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    SciTech Connect

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter; Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher; McGreer, Ian; Fan, Xiaohui; Greiner, Jochen; Price, Paul

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  8. An empirical SFR estimator for high redshift galaxies:

    NASA Astrophysics Data System (ADS)

    Arnouts, Stephane

    2015-08-01

    At high redshift, most of the SFR indicators are limited to the most massive galaxies (Far-IR, radio) and out of reach of optical spectroscopy (Halpha). The UV continuum is the only one available at all redshifts and for galaxies within a large range of mass. The main question is then to properly account for dust absorption. The SED fitting are always limited in the choice of popular attenuation laws (if not only one, starburst) which relies on the slope of the UV continuum. The alternative is to measure the net budget between the absorbed vs un-absorbed UV light i.e. the infrared excess (IRX= Lir/Luv).By using the deep 24 micron in the COSMOS field, we have observed a remarkable behaviour of IRX stripes within the (NUV-r)o vs (r-K)o color diagram which can be used to derive robust SFR estimates just with the Luv, Lr and Lk luminosities (Arnouts et al, 2013). We have shown that we can explain the correlation if we consider a two component models for the birth clouds and the ISM and also a complete model for galaxy inclination to explain the extrem IRX values. We are now extended the method with Herschel data at higher redshift (z~2) and lower masses (M~10^8Mo) by using stacking techniques and find that the IRX-NUVrK correlation persists (Le Floc’h , in prep). This method allows us to derive an accurate SFR for each individual galaxy based on its location in the NUVrK diagram and with no assumption on dust attenuation law, a main caveat for SED fitting technique.We investigated the behavior of the scatter of the SFR-Mass in GOODS and COSMOS fields and find that both SFR (Lir+Luv) or SFR(NUVrK) estimatesare consistent (Ilbert et al., 2015). Finally will investigate the dust-free UV luminosity functions in between 0

  9. Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys

    NASA Astrophysics Data System (ADS)

    Masters, Daniel; Capak, Peter; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Coupon, Jean; Steinhardt, Charles; Speagle, Josh; Faisst, Andreas; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-11-01

    Calibrating the photometric redshifts of ≳109 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  10. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    SciTech Connect

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas; Capak, Peter; Stern, Daniel; Rhodes, Jason; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Paltani, Stephane; Coupon, Jean; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Speagle, Josh; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  11. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  12. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  13. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  14. Individual QSOs, Groups, & Clusters of High Redshift QSOs Associated with Low Redshift Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Burbidge, Geoffrey; Napier, W.

    2009-01-01

    Starting more than forty years ago it was found by Arp and others that many high redshift QSOs lie very close to comparatively nearby spiral galaxies. As time has gone on the implication of these results have been ignored. Implicitly they have been assumed to be accidental configurations. By now there are so many data, sometimes involving clusters of high z QSOs, that the data requires re-examination. We have done this using conservative statistical methods. We have concluded that the physical associations are real and thus it appears that QSOs are being ejected from spiral galaxies which often show other aspects of activity. Some examples of these phenomena will be described. Thus despite the fact that most investigators continue to use QSOs for cosmological investigations, the results are doomed to failure. Even more important the nature of the high redshifts of QSOs (but not the redshifts of normal galaxies) remains a puzzle yet to be solved.

  15. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  16. Impacts of satellite galaxies on the redshift-space distortions

    SciTech Connect

    Hikage, Chiaki; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2013-08-01

    We study the impacts of the satellite galaxies on the redshift-space distortions. In our multipole power spectrum analysis of the luminous red galaxies (LRGs) samples of the Sloan digital sky survey (SDSS), we have clearly detected the non-zero signature of the hexadecapole and tetrahexadecapole spectrum, which almost disappears in the power spectrum with the sample of the brightest LRGs only. We thus demonstrate that the satellite LRGs in multiple systems make a significant contribution to the multipole power spectrum though its fraction is small. The behavior can be understood by a simple halo model, in which the one-halo term, describing the Finger of God (FoG) effect from the satellite galaxies, makes the dominant contribution to the higher multipole spectra. We demonstrate that the small-scale information of higher multipole spectrum is useful for calibrating the satellite FoG effect and improves the measurement of the cosmic growth rate dramatically. We further demonstrate that the fiber collision in the galaxy survey influences the one-halo term and the higher multipole spectra, because the number of satellite galaxies in the halo occupation distribution (HOD) is changed. We also discuss about the impact of satellite galaxies on future high-redshift surveys targeting the H-alpha emitters.

  17. Cluster Lensing Profiles Derived from a Redshift Enhancement of Magnified BOSS-survey Galaxies

    NASA Astrophysics Data System (ADS)

    Coupon, Jean; Broadhurst, Tom; Umetsu, Keiichi

    2013-07-01

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M 200 ~ 1.4-1.8 × 1014 M ⊙ for the optically detected cluster samples, and M 200 ~ 5.0 × 1014 M ⊙ for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.

  18. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Marinoni, Christian; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; Faber, S.M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  19. CLUSTER LENSING PROFILES DERIVED FROM A REDSHIFT ENHANCEMENT OF MAGNIFIED BOSS-SURVEY GALAXIES

    SciTech Connect

    Coupon, Jean; Umetsu, Keiichi; Broadhurst, Tom

    2013-07-20

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M{sub 200} {approx} 1.4-1.8 Multiplication-Sign 10{sup 14} M{sub Sun} for the optically detected cluster samples, and M{sub 200} {approx} 5.0 Multiplication-Sign 10{sup 14} M{sub Sun} for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.

  20. Redshift and luminosity evolution of the intrinsic alignments of galaxies in Horizon-AGN

    NASA Astrophysics Data System (ADS)

    Chisari, N.; Laigle, C.; Codis, S.; Dubois, Y.; Devriendt, J.; Miller, L.; Benabed, K.; Slyz, A.; Gavazzi, R.; Pichon, C.

    2016-09-01

    Intrinsic galaxy shape and angular momentum alignments can arise in cosmological large-scale structure due to tidal interactions or galaxy formation processes. Cosmological hydrodynamical simulations have recently come of age as a tool to study these alignments and their contamination to weak gravitational lensing. We probe the redshift and luminosity evolution of intrinsic alignments in Horizon-AGN between z = 0 and 3 for galaxies with an r-band absolute magnitude of Mr ≤ -20. Alignments transition from being radial at low redshifts and high luminosities, dominated by the contribution of ellipticals, to being tangential at high redshift and low luminosities, where discs dominate the signal. This cannot be explained by the evolution of the fraction of ellipticals and discs alone: intrinsic evolution in the amplitude of alignments is necessary. The alignment amplitude of elliptical galaxies alone is smaller in amplitude by a factor of ≃2, but has similar luminosity and redshift evolution as in current observations and in the non-linear tidal alignment model at projected separations of ≳1 Mpc. Alignments of discs are null in projection and consistent with current low-redshift observations. The combination of the two populations yields an overall amplitude a factor of ≃4 lower than observed alignments of luminous red galaxies with a steeper luminosity dependence. The restriction on accurate galaxy shapes implies that the galaxy population in the simulation is complete only to Mr ≤ -20. Higher resolution simulations will be necessary to avoid extrapolation of the intrinsic alignment predictions to the range of luminosities probed by future surveys.

  1. Exploring The Gas Cycle In High-redshift Galaxies: A Joint Effort Of Theory And Observations

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele

    2012-01-01

    The evolution of high-redshift galaxies is regulated by the balance between the inflow of fresh fuel for star formation and the outflow of metal-polluted material from star forming regions. Hydrodynamic cosmological simulations indicate that galaxies at high redshifts are fed by extended streams of cold gas in a smooth component and in merging satellites, but direct evidence of this mode of accretion is lacking. To investigate the signatures of these "cold streams" in observations, we have studied the Lyman-α emission and hydrogen absorption properties in galaxies simulated at high-resolution, using state-of-the-art radiative transfer codes. I will present these model predictions and I will compare and contrast results of simulations with observations of high-redshift Lyman break galaxies. I will also discuss the prospects of mapping the circumgalactic medium with absorption line systems and present preliminary results from ongoing observations.

  2. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Shipman, Harry L.; Thorstensen, John R.; Thejll, Peter

    1991-01-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or - 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or - 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star.

  3. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  4. NONLINEAR BEHAVIOR OF BARYON ACOUSTIC OSCILLATIONS IN REDSHIFT SPACE FROM THE ZEL'DOVICH APPROXIMATION

    SciTech Connect

    McCullagh, Nuala; Szalay, Alexander S.

    2015-01-10

    Baryon acoustic oscillations (BAO) are a powerful probe of the expansion history of the universe, which can tell us about the nature of dark energy. In order to accurately characterize the dark energy equation of state using BAO, we must understand the effects of both nonlinearities and redshift space distortions on the location and shape of the acoustic peak. In a previous paper, we introduced a novel approach to second order perturbation theory in configuration space using the Zel'dovich approximation, and presented a simple result for the first nonlinear term of the correlation function. In this paper, we extend this approach to redshift space. We show how to perform the computation and present the analytic result for the first nonlinear term in the correlation function. Finally, we validate our result through comparison with numerical simulations.

  5. Compact Nuclei in Galaxies at Moderate Redshift

    NASA Astrophysics Data System (ADS)

    Sarajedini, Vicki Lynn

    The purpose of this study is to understand the space density and properties of active galaxies to z ≃ 0.8. We have investigated the frequency and nature of unresolved nuclei in galaxies at moderate redshift as indicators of nuclear activity such as Active Galactic Nuclei (AGN) or starbursts. Candidates are selected by fitting imaged galaxies with multi-component models using maximum likelihood estimate techniques to determine the best model fit. We select those galaxies requiring an unresolved, point source component in the galaxy nucleus, in addition to a disk and/or bulge component, to adequately model the galaxy light. We have searched 70 WFPC2 images primarily from the Medium Deep Survey for galaxies containing compact nuclei. In our survey of 1033 galaxies, the fraction containing an unresolved nuclear component ≥3% of the total galaxy light is 16±3% corrected for incompleteness and 9±1% for nuclei ≥5% of the galaxy light. Most of the nuclei are ~<20% of the total galaxy light. The majority of the host galaxies are spirals with little or no bulge component. The V-I colors of the nuclei are compared with synthetic colors for Seyferts and starburst nuclei to help differentiate between AGNs and starbursts in our sample. Spectroscopic redshifts have been obtained for 35 of our AGN/starburst candidates and photometric redshifts are estimated to an accuracy of σz≃0.1 for the remaining sample. We present the upper limit luminosity function (LF) for low-luminosity AGN (LLAGN) in two redshift bins to z = 0.8. We detect mild number density evolution of the form φ∝ (1+z)1.9 for nuclei at -18 ~

  6. Geometric derivation of the chronometric redshift.

    PubMed Central

    Segal, I E

    1993-01-01

    The chronometric redshift-distance relation z = tan 2(1/2rho), where rho is the distance in radians in the Einstein metric, is derived by an elementary geometric analysis comparable to that in traditional analysis of the expanding universe model. The differential dTt of Einstein time evolution Tt through time t, as applied to the local Minkowski coordinates x, takes the form sec2(1/2t). At the point of observation t = rho, implying that for a sufficiently localized source, observed wave lengths are a factor of sec2(1/2rho) greater than the corresponding emitted wave lengths. PMID:11607440

  7. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Collister, Adrian A.; Lahav, Ofer

    2004-04-01

    We introduce ANNz, a freely available software package for photometric redshift estimation using artificial neural networks. ANNz learns the relation between photometry and redshift from an appropriate training set of galaxies for which the redshift is already known. Where a large and representative training set is available, ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the rms redshift error in the range 0<~z<~0.7 is σrms=0.023. Nonideal conditions (spectroscopic sets that are small or brighter than the photometric set for which redshifts are required) are simulated, and the impact on the photometric redshift accuracy is assessed.2

  8. Method for improving line flux and redshift measurements with narrowband filters

    NASA Astrophysics Data System (ADS)

    Zabl, J.; Freudling, W.; Møller, P.; Milvang-Jensen, B.; Nilsson, K. K.; Fynbo, J. P. U.; Le Fèvre, O.; Tasca, L. A. M.

    2016-05-01

    Context. High redshift star-forming galaxies are discovered routinely because of a flux excess in narrowband filters caused by an emission line. In most cases, the width of such filters is broader than typical line widths, and the throughput of the filters varies substantially within the bandpass. This leads to substantial uncertainties in redshifts and fluxes that are derived from the observations with one specific narrowband filter. Aims: The uncertainty in measured line parameters can be sharply reduced by using repeated observations of the same target field with filters that have overlapping passbands but differ slightly in central wavelength or wavelength dependence of the effective filter curve. Such data are routinely collected with some large field imaging cameras that use multiple detectors and a separate filter for each of the detectors. An example is the European Southern Observatory's VISTA InfraRed CAMera (VIRCAM). Methods: We developed a method of determining more accurate redshift and line flux estimates from the ratio of apparent fluxes measured from observations in different narrowband filters and several matching broadband filters. A parameterized model of the line and continuum flux is used to predict the flux ratios as a function of redshift based on the known filter curves. These model predictions are then used to determine the most likely redshift and line flux. Results: We tested the obtainable quality of parameter estimation for the example of Hα in the VIRCAM NB118 filters both on simulated and actual observations where the latter were based on the UltraVISTA DR2 data set. We combined the narrowband data with deep broadband data in Y, J, and H. We find that with this method, the errors in the measured lines fluxes can be reduced up to almost an order of magnitude. Conclusions: We conclude that existing narrowband data can be used to derive accurate line fluxes if the observations include images taken with sufficiently different filter

  9. MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063. I. Data products and redshift identifications

    NASA Astrophysics Data System (ADS)

    Karman, W.; Caputi, K. I.; Grillo, C.; Balestra, I.; Rosati, P.; Vanzella, E.; Coe, D.; Christensen, L.; Koekemoer, A. M.; Krühler, T.; Lombardi, M.; Mercurio, A.; Nonino, M.; van der Wel, A.

    2015-02-01

    We present the first observations of the Frontier Fields cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin2), MUSE is ideal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the science verification phase on this cluster and measured redshifts for 53 galaxies. We confirm the redshift of five cluster galaxies, and determine the redshift of 29 other cluster members. Behind the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-α emitters at z> 3, and five multiply-lensed galaxies. We report the detection of a new z = 4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier Fields. We detect C iii], C iv, and He ii emission in a multiply lensed galaxy at z = 3.116, suggesting the likely presence of an active galactic nucleus. We also created narrow-band images from the MUSE datacube to automatically search for additional line emitters corresponding to high-redshift candidates, but we could not identify any significant detections other than those found by visual inspection. With the new redshifts, it will become possible to obtain an accurate mass reconstruction in the core of Abell S1063 through refined strong lensing modelling. Overall, our results illustrate the breadth of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies.

  10. Highly ionised absorbers at high redshift

    NASA Astrophysics Data System (ADS)

    Bergeron, Jacqueline; Herbert-Fort, Stéphane

    2005-03-01

    We build a sample of O VI absorption systems in the redshift range 2.0 ≲ z ≲ 2.6 using high spectral resolution data of ten quasars from the VLT-UVES large programme. We investigate the existence of a metal-rich O VI population and define observational criteria for this class of absorbers under the assumption of photoionisation. The low temperatures of nearly half of all O VI absorbers, implied by their line widths, are too low for collisional ionisation to be a dominant process. We estimate the oxygen abundance under the assumption of photoionisation; a striking result is the bimodal distribution of [o/h] with median values close to 0.01 and 0.5 solar for the metal-poor and metal-rich populations, respectively. Using the line widths to fix the temperature or assuming a constant, low gas density does not drastically change the metallicities of the metal-rich population. We present the first estimate of the O VI column density distribution. Assuming a single power-law distribution, f(n) ∝ n-α, yields α ˜ 1.7 and a normalisation of f(n) =2.3× 10-13 at log n(O VI) ˜ 13.5, both with a ˜30% uncertainty. The value of α is similar to that found for C IV surveys, whereas the normalisation factor is about ten times higher. We use f(n) to derive the number density per unit z and cosmic density ωb(O VI), selecting a limited column density range not strongly affected by incompleteness or sample variance. Comparing our results with those obtained at z˜0.1 for a similar range of column densities implies some decline of dn/dz with z. The cosmic O VI density derived from f(n), ωb(O VI)≈ (3.5± 3.20.9) × 10-7, is 2.3 times higher than the value estimated using the observed O VI sample (of which the metal-rich population contributes ˜35%), easing the problem of missing metals at high z (˜ 1/4 of the produced metals) but not solving it. We find that the majori ty of the metal-rich absorbers are located within ˜ 450 km s-1 of strong Ly-α lines and show that

  11. New York City Board of Education Division of School Safety: Incident Reporting System Needs To Be Strengthened To Ensure Accurate Reporting of School Safety Incidents, No. A-7-95.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany.

    The New York State Board of Education's Division of School Safety is responsible for maintaining a safe and secure environment to ensure that schools are free from disruption. This report presents findings of an audit that investigated whether the division's incident reporting system database accurately captured all school safety incidents that…

  12. Redshift drift constraints on f( T) gravity

    NASA Astrophysics Data System (ADS)

    Geng, Jia-Jia; Guo, Rui-Yun; He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin

    2015-10-01

    We explore the impact of the Sandage-Loeb (SL) test on the precision of cosmological constraints for f( T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the "redshift desert" of 2 ≤ z ≤ 5. To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f( T) gravity theories. Two typical f( T) models are considered, the power-law model f( T) PL and the exponential-form model f( T) EXP . The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ω m and the Hubble constant H 0 in other cosmological observations. For the considered f( T) models, a 30-year observation of the SL test can improve the constraint precision of Ω m and H 0 enormously but cannot effectively improve the constraint precision of the model parameters.

  13. The Intergalactic Medium at High Redshifts

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.

    The intergalactic medium (IGM) contains >95% of the mass in the Universe at high redshifts, and its properties control the earliest phases of structure formation and the reionization process. Although its evolution may seem straightforward, a number of feedback mechanisms can dramatically affect it. Radiative feedback, through a Lyman-Werner background, an X-ray background, and photoionization, affect halo collapse and the clumping of the IGM. We describe how the redshifted 21 cm background can be used to study these effects. Chemical feedback, primarily through supernova winds, changes the modes of star formation and halo cooling; it can be studied through metal absorption lines with the JWST, as well as metal lines in the cosmic microwave background, direct observations of cooling radiation, and fossil evidence in the nearby Universe. Finally, we describe how uncertainties in our modeling of the IGM structure affect reionization models and observations. Detailed studies of helium reionization, which occurs at the much more accessible z˜3, will significantly improve these models over the next few years.

  14. Local Counterparts to High-Redshift Turbulent Galaxies: What are the Stellar Kinematics?

    NASA Astrophysics Data System (ADS)

    Bassett, Robert; Glazebrook, Karl; Fisher, David; Abraham, Roberto; Damjanov, Ivana

    2014-02-01

    We aim to measure the stellar kinematics of 4 low redshift turbulent, clumpy disks with the GMOS IFU. Recent observations of high redshift galaxies show that gaseous disks in high redshift (z 2) galaxies are turbulent. The source of this turbulence remains an open question. A possible scenario is that turbulent disks are fed by streams of cold gas, flowing along cosmic filaments, which drive the large H-alpha velocity dispersions and clumpy star formation observed (for example by the SINS survey). However, the recent discovery of low redshift disk galaxies with clumpy-high velocity dispersion disks shows that galaxies with similar properties to high-z clumpy disks can exists in absence of cold flows, therefore an alternate driver for turbulence seems likely to explain, at least these nearby galaxies. A contrasting scenario is that the turbulence is driven by feedback from extreme star formation originating from a thin stellar disk. These nearby star forming disks are very rare, yet they provide an oppurtunity to study clumpy disks with techniques which are impossible at high redshift (due to both resolution and surface brightness dimming). Here we propose one such study, to measure the stellar kinematics from Balmer absorption lines. If the stars and gas have similar velocity dispersion, this would favor externally driven turbulence by gas accretion (a rare thing in the low redshift Universe); conversely if the gas and stars have different dynamics then this would suggest that internally driven turbelence from feedback is a plausible scenario. We currently have GMOS IFU observations of two disk systems, and we propose here to extend our sample. To identify galaxies as disks we use lower resolution IFU emission line kinematics from AAO, surface photometry from UKIDSS and SDSS, and Halpha maps from Hubble Space Telescope.

  15. THE REDSHIFT DISTRIBUTION OF INTERVENING WEAK Mg II QUASAR ABSORBERS AND A CURIOUS DEPENDENCE ON QUASAR LUMINOSITY

    SciTech Connect

    Evans, Jessica L.; Churchill, Christopher W.; Nielsen, Nikole M.; Klimek, Elizabeth S.; Murphy, Michael T.

    2013-05-01

    We have identified 469 Mg II {lambda}{lambda}2796, 2803 doublet systems having W{sub r} {>=} 0.02 A in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 A {<=}W{sub r} < 0.3 A), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z {approx} 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z {approx_equal} 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 10{sup 6}-10{sup 9} Mpc{sup -3} for spherical geometries and 10{sup 2}-10{sup 5} Mpc{sup -3} for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (W{sub r} {>=} 1.0 A) absorbers. For weak absorption, dN/dz toward bright quasars is {approx}25% higher than toward faint quasars (10{sigma} at low redshift, 0.4 {<=} z {<=} 1.4, and 4{sigma} at high redshift, 1.4 < z {<=} 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being {approx}20% higher than toward bright quasars (also 10{sigma} at low redshift and 4{sigma} at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  16. The Redshift Distribution of Intervening Weak Mg II Quasar Absorbers and a Curious Dependence on Quasar Luminosity

    NASA Astrophysics Data System (ADS)

    Evans, Jessica L.; Churchill, Christopher W.; Murphy, Michael T.; Nielsen, Nikole M.; Klimek, Elizabeth S.

    2013-05-01

    We have identified 469 Mg II λλ2796, 2803 doublet systems having Wr >= 0.02 Å in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 Å <=Wr < 0.3 Å), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z ~ 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z ~= 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 106-109 Mpc-3 for spherical geometries and 102-105 Mpc-3 for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (Wr >= 1.0 Å) absorbers. For weak absorption, dN/dz toward bright quasars is ~25% higher than toward faint quasars (10σ at low redshift, 0.4 <= z <= 1.4, and 4σ at high redshift, 1.4 < z <= 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being ~20% higher than toward bright quasars (also 10σ at low redshift and 4σ at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  17. THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

    SciTech Connect

    Zhu Guangtun; Menard, Brice

    2013-06-20

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of {approx}10{sup 5} quasar spectra from the Sloan Digital Sky Survey and compile a sample of {approx}40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z {approx} 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  18. The redshift-space neighborhoods of 36 loose groups. 2: Analysis

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We explore the kinematics of 36 rich RGH89 groups identified from the first two complete slices of the CfA redshift survey. These groups have more than five members identified by a friends-of-friends algorithm at a number density contrast delta rho/rho greater than or equal to 80. To examine the stability of the determination of the velocity dispersion for these systems, we compare results for the original 232 members with results for a larger redshift sample, including 334 fainter members in the redshift neighborhoods. On average, we double the number of group members in each system. The observed distribution of velocity dispersions is stable. In fact, the velocity dispersion based on the original members identified in the CfA redshift survey is a reliable predictor of the value for the enlarged sample in an individual group. The velocity dispersion is thus a stable physical parameter for discrimination among systems galaxies. A larger sample of groups, particularly one selected from a distance limited catalog, should provide an interesting constraint on models for the formation of large-scale structure. We take H(sub 0) = km/s/Mpc.

  19. Pan-STARRS1 variability of XMM-COSMOS AGN. I. Impact on photometric redshifts

    NASA Astrophysics Data System (ADS)

    Simm, T.; Saglia, R.; Salvato, M.; Bender, R.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2015-12-01

    Aims: Upcoming large area sky surveys like Euclid and eROSITA, which are dedicated to studying the role of dark energy in the expansion history of the Universe and the three-dimensional mass distribution of matter, crucially depend on accurate photometric redshifts. The identification of variable sources, such as active galactic nuclei (AGNs), and the achievable redshift accuracy for varying objects are important in view of the science goals of the Euclid and eROSITA missions. Methods: We probe AGN optical variability for a large sample of X-ray-selected AGNs in the XMM-COSMOS field, using the multi-epoch light curves provided by the Pan-STARRS1 (PS1) 3π and Medium Deep Field surveys. To quantify variability we employed a simple statistic to estimate the probability of variability and the normalized excess variance to measure the variability amplitude. Utilizing these two variability parameters, we defined a sample of varying AGNs for every PS1 band. We investigated the influence of variability on the calculation of photometric redshifts by applying three different input photometry sets for our fitting procedure. For each of the five PS1 bands gP1, rP1, iP1, zP1, and yP1, we chose either the epochs minimizing the interval in observing time, the median magnitude values, or randomly drawn light curve points to compute the redshift. In addition, we derived photometric redshifts using PS1 photometry extended by GALEX/IRAC bands. Results: We find that the photometry produced by the 3π survey is sufficient to reliably detect variable sources provided that the fractional variability amplitude is at least ~3%. Considering the photometric redshifts of variable AGNs, we observe that minimizing the time spacing of the chosen points yields superior photometric redshifts in terms of the percentage of outliers (33%) and accuracy (0.07), outperforming the other two approaches. Drawing random points from the light curve gives rise to typically 57% of outliers and an accuracy of

  20. Distribution function approach to redshift space distortions

    SciTech Connect

    Seljak, Uroš; McDonald, Patrick E-mail: pvmcdonald@lbl.gov

    2011-11-01

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter

  1. High-redshift clumpy discs and bulges in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Dekel, Avishai; Bournaud, Frederic

    2010-06-01

    We analyse the first cosmological simulations that recover the fragmentation of high-redshift galactic discs driven by cold streams. The fragmentation is recovered owing to an AMR resolution better than 70pc with cooling below 104K. We study three typical star-forming galaxies in haloes of ~5 × 1011Msolar at z ~= 2.3 when they were not undergoing a major merger. The steady gas supply by cold streams leads to gravitationally unstable, turbulent discs, which fragment into giant clumps and transient features on a dynamical time-scale. The disc clumps are not associated with dark-matter haloes. The clumpy discs are self-regulated by gravity in a marginally unstable state. Clump migration and angular-momentum transfer on an orbital time-scale help the growth of a central bulge with a mass comparable to the disc. The continuous gas input keeps the system of clumpy disc and bulge in a near steady state for several Gyr. The average star formation rate, much of which occurs in the clumps, follows the gas accretion rate of ~45Msolaryr-1. The simulated galaxies resemble in many ways the observed star-forming galaxies at high redshift. Their properties are consistent with the simple theoretical framework presented in Dekel, Sari & Ceverino. In particular, a two-component analysis reveals that the simulated discs are indeed marginally unstable, and the time evolution confirms the robustness of the clumpy configuration in a cosmological steady state. By z ~ 1, the simulated systems are stabilized by a dominant stellar spheroid, demonstrating the process of `morphological quenching' of star formation. We demonstrate that the disc fragmentation is not a numerical artefact once the Jeans length is kept larger than nearly seven resolution elements, i.e. beyond the standard Truelove criterion.

  2. Studying the high redshift Universe with Athena

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.

    2016-04-01

    Athena is the second large mission selected in the ESA Cosmic Vision plan. With its large collecting area, high spectral-energy resolution (X-IFU instrument) and impressive grasp (WFI instrument), Athena will truly revolutionise X-ray astronomy. The most prodigious sources of high-energy photons are often transitory in nature. Athena will provide the sensitivity and spectral resolution coupled with rapid response to enable the study of the dynamic sky. Potential sources include: distant Gamma-Ray Bursts to probe the reionisation epoch and find ‘missing’ baryons in the cosmic web; tidal disruption events to reveal dormant supermassive and intermediate-mass black holes; and supernova explosions to understand progenitors and their environments.Using detailed simulations, we illustrate Athena’s extraordinary capabilities for transients out to the highest redshifts and show how it will be able to constrain the nature of explosive transients including gas metallicity and dynamics, constraining environments and progenitors.

  3. Was the Universe Reionized at Redshift 10?

    NASA Astrophysics Data System (ADS)

    Loeb, Abraham; Barkana, Rennan; Hernquist, Lars

    2005-02-01

    Recently, Pello and coworkers claimed to have discovered a galaxy at a redshift z=10 and identified a feature in its spectrum with a hydrogen Lyα emission line. If this identification is correct, we show that the intergalactic medium (IGM) around the galaxy must be significantly ionized; otherwise, the damping wing of Lyα absorption by the neutral IGM would have greatly suppressed the emission line. We find that either the large-scale region surrounding this galaxy must have been largely reionized by z=10 (with a neutral fraction <~0.4) or the stars within the galaxy must be massive (>~100 Msolar) and hence capable of producing a sufficiently large H II region around it. We generalize these conclusions and derive the maximum Lyα line flux for a given UV continuum flux of galaxies prior to the epoch of reionization.

  4. THE GEOMETRY EFFECTS OF AN EXPANDING UNIVERSE ON THE DETECTION OF COOL NEUTRAL GAS AT HIGH REDSHIFT

    SciTech Connect

    Curran, S. J.

    2012-03-20

    Recent high-redshift surveys for 21 cm absorption in damped Ly{alpha} absorption systems (DLAs) take the number of published searches at z{sub abs} > 2 to 25, the same number as at z{sub abs} < 2, although the detection rate at high redshift remains significantly lower (20% compared to 60%). Using the known properties of the DLAs to estimate the unknown profile widths of the 21 cm non-detections and including the limits via a survival analysis, we show that the mean spin temperature/covering factor degeneracy at high redshift is, on average, double that of the low-redshift sample. This value is significantly lower than the previous factor of eight for the spin temperatures and is about the same factor as in the angular diameter distance ratios between the low- and high-redshift samples. That is, without the need for the several pivotal assumptions, which lead to an evolution in the spin temperature, we show that the observed distribution of 21 cm detections in DLAs can be accounted for by the geometry effects of an expanding universe. That is, as yet there is no evidence of the spin temperature of gas-rich galaxies evolving with redshift.

  5. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ∼ 0.4 and z ∼ 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  6. High redshift quasars and high metallicities

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  7. Note on Redshift Distortion in Fourier Space

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Pan, Jun

    2007-02-01

    We explore features of redshift distortion in Fourier analysis of N-body simulations. The phases of the Fourier modes of dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has a probability distribution function (PDF) that is symmetric about the peak at zero shift and whose exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles triangles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation. We confirm the results of Scoccimarro that difference of power spectrum is at the level of 10%, and, in the reduced bispectrum, the difference is as small as a few percent. However, on the plane perpendicular to the line of sight of kz = 0, the difference in power spectrum between the radial and plane-parallel approximation can be more than ~10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for configurations of tilted triangles. Non-Gaussian signals under the radial distortion on small scales are systematically biased downside than are in the plane-parallel approximation, with amplitudes depending on the opening angle of the sample point to the observer. This observation gives warning to the practice of using the power spectrum and bispectrum measured on the kz = 0 plane as estimates of the real space statistics.

  8. Broadband Observations of High Redshift Blazars

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2-3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2-3303, none of the sources were known as γ-ray emitters, and our analysis of ˜7.5 yr of LAT data reveals the first time detection of statistically significant γ-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical-UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity-jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  9. Exploring the stellar populations of nearby and high redshift galaxies with ELTs

    NASA Astrophysics Data System (ADS)

    Gullieuszik, M.; Falomo, R.; Greggio, L.; Uslenghi, M.; Fantinel, D.

    The high sensitivity and spatial resolution of future ELTs facilities will offer the unique opportunity to probe directly the stellar populations of the very inner regions of galaxies in the local Universe and to derive morphological and photometric information for high redshift galaxies. We present our project aimed at assessing the expected capabilities of ELTs in the study of nearby and high-redshift stellar populations. To this end, we simulated imaging observations of different stellar populations in the local Universe and in high-redhshift galaxies with the MICADO camera at the E-ELT. Detailed photometric analyses of these images were used to probe the feasibility of science cases dealing with photometry of resolved stars in crowded fields, and with surface photometry of distant galaxies. We find that the future facilities will allow us to greatly improve our knowledge of the stellar populations in galaxies, especially in the innermost and most crowded regions. Accurate photometry of turn-off stars in nuclear star clusters of intermediate age will be possible up to distances of ˜ 3 Mpc. The exquisite spacial resolution will also drive great progress in unresolved stellar populations studies, enabling the detailed measurement of structural parameters, colour profiles, and the detection of signature of star formation sub-structures in galaxies at redshifts up to z=3.

  10. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  11. The Nature of Weak-Line Quasars at Low Redshift

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.

    2010-09-01

    The SDSS has uncovered a remarkable class of radio-quiet quasars with no or extremely weak optical/UV emission lines. These have now been studied fairly well at high redshift (z = 2-6), but not at low redshift. We propose exploratory Chandra observations of 11 optically bright weak-line quasars (WLQs) at low redshift (z = 0.40-2.02) that will clarify the nature of this population. Specifically, we will determine if these low-redshift WLQs have "anemic" BLRs, or if instead they have relativistically boosted optical/UV/X-ray continua. The anemic-BLR explanation is favored for high-redshift WLQs, and we will determine if our targets represent the z < 2 extension of this population. We will also assess if WLQs show X-ray evidence for high Eddington-normalized accretion rates.

  12. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    SciTech Connect

    Spilker, J. S.; Marrone, D. P.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brodwin, M.; Carlstrom, J. E.; Crawford, T. M.; Chapman, S. C.; De Breuck, C.; Gullberg, B.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Holzapfel, W. L.; and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  13. The Rest-frame Submillimeter Spectrum of High-redshift, Dusty, Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Bothwell, M. S.; Brodwin, M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Holzapfel, W. L.; Husband, K.; Ma, J.; Malkan, M.; Murphy, E. J.; Reichardt, C. L.; Rotermund, K. M.; Stalder, B.; Stark, A. A.; Strandet, M.; Vieira, J. D.; Weiß, A.; Welikala, N.

    2014-04-01

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of 12CO, [C I], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T kin ~ 55 K and n_{H_2} \\gtrsim 10^{5.5} cm-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  14. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    SciTech Connect

    Okumura, Teppei; Hand, Nick; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-19

    galaxies modeled after the “CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃ 0.4 h Mpc–1 within 1% if the halo power spectrum is measured using N-body simulations and within 3% if it is modeled using perturbation theory.

  15. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    DOE PAGES

    Okumura, Teppei; Hand, Nick; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-19

    CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃ 0.4 h Mpc–1 within 1% if the halo power spectrum is measured using N-body simulations and within 3% if it is modeled using perturbation theory.« less

  16. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-01

    BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃0.4 h Mpc-1 within 1% if the halo power spectrum is measured using N -body simulations and within 3% if it is modeled using perturbation theory.

  17. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra

  18. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  19. High Redshift Dust Obscured Galaxies, A Morphology-SED Connection Revealed by Keck Adaptive Optics Imaging

    NASA Astrophysics Data System (ADS)

    Melbourne, Jason

    2009-01-01

    Keck Adaptive Optics (AO) K'-band images reveal the morphologies of 15 high redshift (z 2) dust obscured galaxies (DOGs). DOGs are defined by an optical to mid-IR color of fν(24) / fν(R) > 1000, redder than Arp 220 at any redshift. With ultra-luminous infrared luminosities, DOGs are thought to be powered by a combination of AGN and star formation. We use high spatial resolution (0.5 - 1 kpc at these redshifts) AO images to help disentangle the dominant energy source in each DOG and to look for triggers, such as evidence of ongoing mergers. We find evidence for ongoing merging in 10-20% of the sample. We also find a statistically significant correlation between galaxy compactness and 24 micron flux (luminosity), with the brightest DOGs exhibiting more compact morphologies than fainter DOGs. The most diffuse systems tend to show a 1.6 micron stellar bump in their spectral energy distributions redshifted to the Spitzer IRAC bands (4.5 - 8.0 microns). The imaging results lend further support to the idea that the highest luminosity DOGs are AGN dominated (resulting in compact morphology), while the lower luminosity, diffuse, DOGs tend to be star formation dominated.

  20. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang. PMID:23598341

  1. A Quasiclassical Study of the F((2)P) + CHD3 (ν1 = 0,1) Reactive System on an Accurate Potential Energy Surface.

    PubMed

    Palma, Juliana; Manthe, Uwe

    2015-12-17

    Quasiclassical trajectories (QCT) have been employed to elucidate the effect of exciting the C-H bond in F + CHD3 collisions. The calculations were performed on a new potential energy surface that accurately describes the van der Waals complexes in the entrance channel of the reaction. It was found that exciting the C-H bond significantly enhances the yield of HF + CD3, whereas it has a minor effect on the production of DF + CHD2. Therefore, the net effect is that the total reactivity increases upon excitation. This result strongly contradicts recent experimental findings. Significant differences in regard to the yield of each product channel were also found between QCT results calculated with the new surface and those obtained with the surface previously developed by Czakó et al. This shows that relatively small variations in the topography of the entrance channel can result in huge discrepancies in the predicted DF/HF branching ratio. However, in regard to other attributes of the reaction, the agreement between QCT results computed with different surfaces, and between them and experimental results, is good. For the F + CHD3 → HF + CD3 reaction, at a collisional energy of 9.0 kcal/mol, experiments and QCT calculations agree, indicating that the extra energy deposited in the C-H bond is channelled into the HF product. In addition, the angular distribution of CD3 is backward oriented and is not sensitive to the excitation of the C-H bond. PMID:26270126

  2. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc‑1, considering the resolution of future experiments.

  3. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.

  4. ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

    SciTech Connect

    Weiss, A.; De Breuck, C.; Aravena, M.; Biggs, A. D.; Marrone, D. P.; Bothwell, M.; Vieira, J. D.; Bock, J. J.; Aguirre, J. E.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Bethermin, M.; Brodwin, M.; Chapman, S. C.; and others

    2013-04-10

    Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S{sub 1.4{sub mm}} > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S{sub 843{sub MHz}} < 6 mJy) or far-infrared counterparts (S{sub 100{sub {mu}m}} < 1 Jy, S{sub 60{sub {mu}m}} < 200 mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of {sup 12}CO, {sup 13}CO, C I, H{sub 2}O, and H{sub 2}O{sup +}. We find one or more spectral features in 23 sources yielding a {approx}90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for {approx}70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7 < z < 2.0. The resulting mean redshift of our sample is z-bar = 3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of z-bar = 2.3 and for which only 10%-15% of the population is expected to be at z > 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  5. Cholesky-decomposed density MP2 with density fitting: Accurate MP2 and double-hybrid DFT energies for large systems

    SciTech Connect

    Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian

    2014-06-14

    Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets for interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.

  6. Cost reduction and minimization of land based on an accurate determination of fault current distribution in shield wires and grounding systems

    SciTech Connect

    Daily, W.K. ); Dawalibi, F. )

    1993-01-01

    Careful analysis of Fault Current Distribution in neutral metallic paths, Power System Protection requirements and Ground Potential Rise (GPR) evaluations were carried out at FPL's Lauderdale Power Plant and associated switchyard. These studies resulted in substantial cost savings and land utilization minimization for the power system expansions at Lauderdale Plant by confirming that the in-situ expansion and reconfiguration aimed at constructing two electrically independent substations sharing the same site and grounding system is a sound economical alternative to the construction of a new substation and associated significant site preparation and construction costs. This paper describes the methodology used to conduct this study.

  7. Intergalactic stellar populations in intermediate redshift clusters

    NASA Astrophysics Data System (ADS)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  8. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGES

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore » the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  9. Photometric redshifts of 5000 Xray selected Stripe 82 sources

    NASA Astrophysics Data System (ADS)

    Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; Stripe 82X Collaboration

    2016-01-01

    We present preliminary spectroscopic and photometric redshifts of 5000 X-ray-selected AGN sources from our Stripe 82X survey, which is designed to study rare high-redshift and/or high-luminosity AGN like the luminous quasars identified in the Sloan Digital Sky Survey but also including heavily reddened AGN not identified as such in SDSS. The sample covers a total of 31.3 deg2 in Stripe 82, a combination of 15.6 deg2 XMM AO13 data, 10.6 deg2 XMM AO10 and archival data, and 7.4 deg2 archival Chandra data. About 80% of the newly discovered X-ray sources have an optical counterpart in the co-added SDSS data; of these, roughly half have spectroscopic redshifts. We derived estimates of the photometric redshifts for the rest, using multiwavelength photometry from GALEX, SDSS, UKIDSS, VISTA, 2MASS, Spitzer, and WISE. The photometric redshifts will be used to determine the fraction of obscured black hole growth at high redshift and/or high luminosity, as well as to derive the evolving X-ray luminosity function and to measure AGN clustering in several redshift slices — information vital to understanding the co-evolution of galaxies and their central black holes.

  10. The magnitude-redshift relation for 561 Abell clusters

    NASA Technical Reports Server (NTRS)

    Postman, M.; Huchra, J. P.; Geller, M. J.; Henry, J. P.

    1985-01-01

    The Hubble diagram for the 561 Abell clusters with measured redshifts has been examined using Abell's (1958) corrected photo-red magnitudes for the tenth-ranked cluster member (m10). After correction for the Scott effect and K dimming, the data are in good agreement with a linear magnitude-redshift relation with a slope of 0.2 out to z = 0.1. New redshift data are also presented for 20 Abell clusters. Abell's m10 is suitable for redshift estimation for clusters with m10 of no more than 16.5. At fainter m10, the number of foreground galaxies expected within an Abell radius is large enough to make identification of the tenth-ranked galaxy difficult. Interlopers bias the estimated redshift toward low values at high redshift. Leir and van den Bergh's (1977) redshift estimates suffer from this same bias but to a smaller degree because of the use of multiple cluster parameters. Constraints on deviations of cluster velocities from the mean cosmological flow require greater photometric accuracy than is provided by Abell's m10 magnitudes.

  11. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    PubMed

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species.

  12. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    PubMed

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species. PMID:27296834

  13. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  14. Test of the gravitational redshift effect at Saturn

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.; Anderson, John D.; Campbell, James K.

    1990-01-01

    The results of a test of the gravitational redshift effect at Saturn are reported. Measurements of the redshift were obtained with the Voyager 1 spacecraft during its encounter with Saturn in 1980. Because the spacecraft was equipped with an ultrastable crystal oscillator (USO), it is possible to test the redshift effect at an interesting level of accuracy. Assuming that radiation in the Saturn magnetosphere has had a negligible effect on the USO, the prediction of general relativity to an accuracy of 1 percent is verified. This limit could be of interest for constraining possible alternative theories of gravity.

  15. Radio source orientation and the angular diameter-redshift relation

    SciTech Connect

    Onuora, L.I. )

    1991-08-01

    The effect of a nonrandom source orientation on the angular diameter-redshift relation was considered for the 3CR sample of Laing et al., based on the 'unified' scheme of Barthel. For an inhomogeneous sample of objects displaying milliarcsecond scale structure, it was found that there was no evidence for a systematic variation for orientation angle with redshift. However, if it was assumed that quasars are closer to the line of sight than powerful extended radio galaxies, then the observed angular size-redshift relation could be interpreted in terms of source orientation, rather than linear size evolution. 14 refs.

  16. The nature of the redshift and directly observed quasar statistics.

    PubMed

    Segal, I E; Nicoll, J F; Wu, P; Zhou, Z

    1991-07-01

    The nature of the cosmic redshift is one of the most fundamental questions in modern science. Hubble's discovery of the apparent Expansion of the Universe is derived from observations on a small number of galaxies at very low redshifts. Today, quasar redshifts have a range more than 1000 times greater than those in Hubble's sample, and represent more than 100 times as many objects. A recent comprehensive compilation of published measurements provides the basis for a study indicating that quasar observations are not in good agreement with the original predictions of the Expanding Universe theory, but are well fit by the predictions of an alternative theory having fewer adjustable parameters.

  17. Galactic Synchrotron Emission and the Far-infrared-Radio Correlation at High Redshift

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2016-08-01

    Theoretical scenarios, including the turbulent small-scale dynamo, predict that strong magnetic fields already exist in young galaxies. Based on the assumption of energy equipartition between magnetic fields and turbulence, we determine the galactic synchrotron flux as a function of redshift z. Galaxies in the early universe are different from local galaxies, in particular, the former have more intense star formation. To cover a large range of conditions, we consider two different systems: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady-state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. The turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infrared (FIR) luminosity L FIR and the radio luminosity L radio. Our model reproduces this correlation well at z = 0. We extrapolate the FIR-radio correlation to higher redshifts and predict a time evolution with a significant deviation from its present-day appearance already at z≈ 2 for a gas density that increases strongly with z. In particular, we predict a decrease of the radio luminosity with redshift which is caused by the increase of cosmic ray energy losses at high z. The result is an increase of the ratio between L FIR and L radio. Simultaneously, we predict that the slope of the FIR-radio correlation becomes shallower with redshift. This behavior of the correlation could be observed in the near future with ultra-deep radio surveys.

  18. Galactic Synchrotron Emission and the Far-infrared–Radio Correlation at High Redshift

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2016-08-01

    Theoretical scenarios, including the turbulent small-scale dynamo, predict that strong magnetic fields already exist in young galaxies. Based on the assumption of energy equipartition between magnetic fields and turbulence, we determine the galactic synchrotron flux as a function of redshift z. Galaxies in the early universe are different from local galaxies, in particular, the former have more intense star formation. To cover a large range of conditions, we consider two different systems: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady-state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. The turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infrared (FIR) luminosity L FIR and the radio luminosity L radio. Our model reproduces this correlation well at z = 0. We extrapolate the FIR–radio correlation to higher redshifts and predict a time evolution with a significant deviation from its present-day appearance already at z≈ 2 for a gas density that increases strongly with z. In particular, we predict a decrease of the radio luminosity with redshift which is caused by the increase of cosmic ray energy losses at high z. The result is an increase of the ratio between L FIR and L radio. Simultaneously, we predict that the slope of the FIR–radio correlation becomes shallower with redshift. This behavior of the correlation could be observed in the near future with ultra-deep radio surveys.

  19. Evaluation of lexicon size variations on a verification and rejection system based on SVM, for accurate and robust recognition of handwritten words

    NASA Astrophysics Data System (ADS)

    Ricquebourg, Yann; Coüasnon, Bertrand; Guichard, Laurent

    2013-01-01

    The transcription of handwritten words remains a still challenging and difficult task. When processing full pages, approaches are limited by the trade-off between automatic recognition errors and the tedious aspect of human user verification. In this article, we present our investigations to improve the capabilities of an automatic recognizer, so as to be able to reject unknown words (not to take wrong decisions) while correctly rejecting (i.e. to recognize as much as possible from the lexicon of known words). This is the active research topic of developing a verification system that optimize the trade-off between performance and reliability. To minimize the recognition errors, a verification system is usually used to accept or reject the hypotheses produced by an existing recognition system. Thus, we re-use our novel verification architecture1 here: the recognition hypotheses are re-scored by a set of support vector machines, and validated by a verification mechanism based on multiple rejection thresholds. In order to tune these (class-dependent) rejection thresholds, an algorithm based on dynamic programming has been proposed which focus on maximizing the recognition rate for a given error rate. Experiments have been carried out on the RIMES database in three steps. The first two showed that this approach results in a performance superior or equal to other state-of-the-art rejection methods. We focus here on the third one showing that this verification system also greatly improves results of keywords extraction in a set of handwritten words, with a strong robustness to lexicon size variations (21 lexicons have been tested from 167 entries up to 5,600 entries) which is particularly relevant to our application context cooperating with humans, and only made possible thanks to the rejection ability of this proposed system. The proposed verification system, compared to a HMM with simple rejection, improves on average the recognition rate by 57% (resp. 33% and 21%) for

  20. Constraining inflation with future galaxy redshift surveys

    SciTech Connect

    Huang, Zhiqi; Vernizzi, Filippo; Verde, Licia E-mail: liciaverde@icc.ub.edu

    2012-04-01

    With future galaxy surveys, a huge number of Fourier modes of the distribution of the large scale structures in the Universe will become available. These modes are complementary to those of the CMB and can be used to set constraints on models of the early universe, such as inflation. Using a MCMC analysis, we compare the power of the CMB with that of the combination of CMB and galaxy survey data, to constrain the power spectrum of primordial fluctuations generated during inflation. We base our analysis on the Planck satellite and a spectroscopic redshift survey with configuration parameters close to those of the Euclid mission as examples. We first consider models of slow-roll inflation, and show that the inclusion of large scale structure data improves the constraints by nearly halving the error bars on the scalar spectral index and its running. If we attempt to reconstruct the inflationary single-field potential, a similar conclusion can be reached on the parameters characterizing the potential. We then study models with features in the power spectrum. In particular, we consider ringing features produced by a break in the potential and oscillations such as in axion monodromy. Adding large scale structures improves the constraints on features by more than a factor of two. In axion monodromy we show that there are oscillations with small amplitude and frequency in momentum space that are undetected by CMB alone but can be measured by including galaxy surveys in the analysis.

  1. The Environment of Galaxies at Low Redshift

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Ivezić, Željko

    2008-02-01

    We compare environmental effects in two analogous samples of galaxies, one from the Sloan Digital Sky Survey (SDSS) and the other from a semianalytic model (SAM) based on the Millennium Simulation (MS), to test to what extent current SAMs of galaxy formation are reproducing environmental effects. We estimate the large-scale environment of each galaxy using a Bayesian density estimator based on distances to all 10 nearest neighbors, and we compare broadband photometric properties of the two samples as a function of environment. The feedbacks implemented in the semianalytic model produce a qualitatively correct galaxy population with similar environmental dependence as that seen in SDSS galaxies. In detail, however, the colors of MS galaxies exhibit an exaggerated dependence on environment: the field contains too many blue galaxies, whereas clusters contain too many red galaxies, compared to the SDSS sample. We also find that the MS contains a population of highly clustered, relatively faint red galaxies with velocity dispersions comparable to their Hubble flow. Such high-density galaxies, if they exist, would be overlooked in any low-redshift survey, since their membership to a cluster cannot be determined because of the "fingers-of-God" effect.

  2. Peculiar velocity decomposition, redshift space distortion, and velocity reconstruction in redshift surveys: The methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Pan, Jun; Zheng, Yi

    2013-03-01

    Massive spectroscopic surveys will measure the redshift space distortion (RSD) induced by galaxy peculiar velocity to unprecedented accuracy and open a new era of precision RSD cosmology. We develop a new method to improve the RSD modeling and to carry out robust reconstruction of the 3D large scale peculiar velocity through galaxy redshift surveys, in light of RSD. (1) We propose a mathematically unique and physically motivated decomposition of peculiar velocity into three eigencomponents: an irrotational component completely correlated with the underlying density field (vδ), an irrotational component uncorrelated with the density field (vS), and a rotational (curl) component (vB). The three components have different origins, different scale dependences, and different impacts on RSD. (2) This decomposition has the potential to simplify and improve the RSD modeling. (i) vB damps the redshift space clustering. (ii) vS causes both damping and enhancement to the redshift space power spectrum Ps(k,u). Nevertheless, the leading order contribution to the enhancement has a u4 directional dependence, distinctively different from the Kaiser formula. Here, u≡kz/k, k is the amplitude of the wave vector, and kz is the component along the line of sight. (iii) vδ is of the greatest importance for the RSD cosmology. We find that the induced redshift clustering shows a number of important deviations from the usual Kaiser formula. Even in the limit of vS→0 and vB→0, the leading order contribution ∝(1+fW˜(k)u2)2. It differs from the Kaiser formula by a window function W˜(k). Nonlinear evolution generically drives W˜(k)≤1. We hence identify a significant systematical error causing underestimation of the structure growth parameter f by as much as O(10%) even at a relatively large scale k=0.1h/Mpc. (iv) The velocity decomposition reveals the three origins of the “finger-of-God” (FOG) effect and suggests how to simplify and improve the modeling of FOG by treating the

  3. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors.

    PubMed

    Zhao, Lin; Guan, Dongxue; Landry, René; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR's attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability.

  4. Student Information Systems Demystified: The Increasing Demand for Accurate, Timely Data Means Schools and Districts Are Relying Heavily on SIS Technologies

    ERIC Educational Resources Information Center

    McIntire, Todd

    2004-01-01

    Student information systems, one of the first applications of computer technology in education, are undergoing a significant transition yet again. The first major shift in SIS technologies occurred about 15 years ago when they evolved from mainframe programs to client-server solutions. Now, vendors across the board are offering centralized…

  5. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  6. Accurate identification of the frequency response functions for the rotor-bearing-foundation system using the modified pseudo mode shape method

    NASA Astrophysics Data System (ADS)

    Chen, Yeong-Shu; Cheng, Ye-Dar; Yang, Tachung; Koai, Kwang-Lu

    2010-03-01

    In this paper, an identification technique in the dynamic analyses of rotor-bearing-foundation systems called the pseudo mode shape method (PMSM) was improved in order to enhance the accuracy of the identified dynamic characteristic matrices of its foundation models. Two procedures, namely, phase modification and numerical optimisation, were proposed in the algorithm of PMSM to effectively improve its accuracy. Generally, it is always necessary to build the whole foundation model in studying the dynamics of a rotor system through the finite element analysis method. This is either unfeasible or impractical when the foundation is too complicated. Instead, the PMSM uses the frequency response function (FRF) data of joint positions between the rotor and the foundation to establish the equivalent mass, damping, and stiffness matrices of the foundation without having to build the physical model. However, the accuracy of the obtained system's FRF is still unsatisfactory, especially at those higher modes. In order to demonstrate the effectiveness of the presented methods, a solid foundation was solved for its FRF by using both the original and modified PMSM, as well as the finite element (ANSYS) model for comparisons. The results showed that the accuracy of the obtained FRF was improved remarkably with the modified PMSM based on the results of the ANSYS. In addition, an induction motor resembling a rotor-bearing-foundation system, with its housing treated as the foundation, was taken as an example to verify the algorithm experimentally. The FRF curves at the bearing supports of the rotor (armature) were obtained through modal testing to estimate the above-mentioned equivalent matrices of the housing. The FRF of the housing, which was calculated from the equivalent matrices with the modified PMSM, showed satisfactory consistency with that from the modal testing.

  7. Optical identifications of radio sources with accurate positions using the United Kingdom Schmidt Telescope (UKST) IIIa-J plates

    NASA Technical Reports Server (NTRS)

    Savage, A.

    1986-01-01

    Several programs are making use of UKST Sky Survey plates to identify southern radio sources. The fine-grain modern plates and accurate radio positions give a much improved identification rate. It seems that it will very soon be possible to determine whether or not there is a quasar redshift cut-off at z of about 4. There is an urgent need for more accurate fundamental reference star positions in the South.

  8. Using quasars as standard clocks for measuring cosmological redshift.

    PubMed

    Dai, De-Chang; Starkman, Glenn D; Stojkovic, Branislav; Stojkovic, Dejan; Weltman, Amanda

    2012-06-01

    We report hitherto unnoticed patterns in quasar light curves. We characterize segments of the quasar's light curves with the slopes of the straight lines fit through them. These slopes appear to be directly related to the quasars' redshifts. Alternatively, using only global shifts in time and flux, we are able to find significant overlaps between the light curves of different pairs of quasars by fitting the ratio of their redshifts. We are then able to reliably determine the redshift of one quasar from another. This implies that one can use quasars as standard clocks, as we explicitly demonstrate by constructing two independent methods of finding the redshift of a quasar from its light curve.

  9. THE EVOLUTION OF LOW-REDSHIFT GALAXY STRUCTURES

    SciTech Connect

    Biernacka, Monika; Flin, Piotr; Panko, Elena E-mail: sfflin@cyf-kr.edu.pl

    2009-05-10

    Ellipticities for 6188 low-redshift (z < 0.18) poor and rich galaxy structures have been examined along with their evolution using an optical observational base that is statistically complete. The shape of each structure projected on the celestial sphere was determined using the covariance ellipse method. Analysis of the data indicates that structure ellipticity changes with redshift, being smaller for nearby objects and greater for those located further away. Such a change is also described better by quadratic or exponential relations than by a simple linear scheme. It is concluded that between redshifts of z = 0.18 and z = 0 we observe the dynamical evolution of galaxy clusters. Such a change in ellipticity with redshift is expected in {lambda}CDM models.

  10. The Doppler Effect: A Consideration of Quasar Redshifts.

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  11. Photometric Redshift Techniques in Big-data Era

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Xia; Zhao, Yong-Heng

    Photometric data increase with large survey projects running. The huge volume of data influences the means and methods to deal with them. As such, the techniques of photometric redshift estimation based on photometric data must be developed and improved.

  12. Measuring photometric redshifts using galaxy images and Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Hoyle, B.

    2016-07-01

    We propose a new method to estimate the photometric redshift of galaxies by using the full galaxy image in each measured band. This method draws from the latest techniques and advances in machine learning, in particular Deep Neural Networks. We pass the entire multi-band galaxy image into the machine learning architecture to obtain a redshift estimate that is competitive, in terms of the measured point prediction metrics, with the best existing standard machine learning techniques. The standard techniques estimate redshifts using post-processed features, such as magnitudes and colours, which are extracted from the galaxy images and are deemed to be salient by the user. This new method removes the user from the photometric redshift estimation pipeline. However we do note that Deep Neural Networks require many orders of magnitude more computing resources than standard machine learning architectures, and as such are only tractable for making predictions on datasets of size ≤50k before implementing parallelisation techniques.

  13. Infrared/optical energy distributions of high redshifted quasars

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.

    1982-01-01

    Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.

  14. The relation between mass and concentration in X-ray galaxy clusters at high redshift

    NASA Astrophysics Data System (ADS)

    Amodeo, S.; Ettori, S.; Capasso, R.; Sereno, M.

    2016-05-01

    Context. Galaxy clusters are the most recent, gravitationally bound products of the hierarchical mass accretion over cosmological scales. How the mass is concentrated is predicted to correlate with the total mass in the halo of the cluster, wherein systems at higher mass are less concentrated at given redshift and, for any given mass, systems with lower concentration are found at higher redshifts. Aims: Through a spatial and spectral X-ray analysis, we reconstruct the total mass profile of 47 galaxy clusters observed with Chandra in the redshift range 0.4 redshift. This sample is the largest investigated so far at z> 0.4, and is well suited to providing the first constraint on the concentration-mass relation at z> 0.7 from X-ray analysis. Methods: Under the assumption that the distribution of the X-ray emitting gas is spherically symmetric and in the hydrostatic equilibrium with the underlined gravitational potential, we combine the deprojected gas density and spectral temperature profiles through the hydrostatic equilibrium equation to recover the parameters that describe a Navarro-Frenk-White total mass distribution. The comparison with results from weak-lensing analysis reveals a very good agreement both for masses and concentrations. The uncertainties are however too large to make any robust conclusion about the hydrostatic bias of these systems. Results: The distribution of concentrations is well approximated by a log-normal function in all the mass and redshift ranges investigated. The relation is well described by the form c ∝ MB(1 + z)C with B = -0.50 ± 0.20, C = 0.12 ± 0.61 (at 68.3% confidence). This relation is slightly steeper than that predicted by numerical simulations (B ~ -0.1) and does not show any evident redshift evolution. We obtain the first constraints on the properties of

  15. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell'Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass-metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010-1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%-38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  16. Testing the mapping between redshift and cosmic scale factor

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Prada, Francisco

    2016-05-01

    The canonical redshift-scale factor relation, 1/a = 1 + z, is a key element in the standard Λ cold dark matter (ΛCDM) model of the big bang cosmology. Despite its fundamental role, this relation has not yet undergone any observational tests since Lemaître and Hubble established the expansion of the Universe. It is strictly based on the assumption of the Friedmann-Lemaître-Robertson-Walker metric describing a locally homogeneous and isotropic universe and that photons move on null geodesics of the metric. Thus any violation of this assumption, within general relativity or modified gravity, can yield a different mapping between the model redshift z = 1/a - 1 and the actually observed redshift zobs, i.e. zobs ≠ z. Here, we perform a simple test of consistency for the standard redshift-scale factor relation by determining simultaneous observational constraints on the concordance ΛCDM cosmological parameters and a generalized redshift mapping z = f(zobs). Using current baryon acoustic oscillations (BAO) and Type Ia supernova (SN) data we demonstrate that the generalized redshift mapping is strongly degenerated with dark energy. Marginalization over a class of monotonic functions f(zobs) changes substantially degeneracy between matter and dark energy density: the density parameters become anticorrelated with nearly vertical axis of degeneracy. Furthermore, we show that current SN and BAO data, analysed in a framework with the generalized redshift mapping, do not constrain dark energy unless the BAO data include the measurements from the Ly α forest of high-redshift quasars.

  17. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  18. Accurate and efficient halo-based galaxy clustering modelling with simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Guo, Hong

    2016-06-01

    Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.

  19. Does an atom interferometer test the gravitational redshift at the Compton frequency?

    NASA Astrophysics Data System (ADS)

    Wolf, Peter; Blanchet, Luc; Bordé, Christian J.; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2011-07-01

    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, Müller et al (2010 Nature 463 926-9) argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In this paper, we analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of 'Compton phases' between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been

  20. A high-redshift quasar absorber without C IV. A galactic outflow caught in the act?

    NASA Astrophysics Data System (ADS)

    Fox, Anne; Richter, Philipp

    2016-04-01

    We present a detailed analysis of a very unusual sub-damped Lyman α (sub-DLA) system at redshift z = 2.304 towards the quasar Q 0453-423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(H i) = 19.23 and a metallicity of -1.61 as indicated by [O i/H i] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any C iv absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from C iv and O vi in another metal absorber at a velocity more than 220 km s-1 redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and more metal-rich. The absorber pair towards Q 0453-423 mimics the expected features of a galactic outflow with highly ionised material that moves away with high radial velocities from a (proto)galactic gas disk in which star-formation takes place. We discuss our findings in the context of C iv absorption line statistics at high redshift and compare our results to recent galactic-wind and outflow models.

  1. Improving photometric redshifts with Lyα tomography

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; White, Martin

    2016-11-01

    Forming a 3D view of the Universe is a long-standing goal of astronomical observations, and one that becomes increasingly difficult at high redshift. In this paper, we discuss how tomography of the intergalactic medium (IGM) at z ≃ 2.5 can be used to estimate the redshifts of massive galaxies in a large volume of the Universe based on spectra of galaxies in their background. Our method is based on the fact that hierarchical structure formation leads to a strong dependence of the halo density on large-scale environment. A map of the latter can thus be used to refine our knowledge of the redshifts of haloes and the galaxies and active galactic nuclei which they host. We show that tomographic maps of the IGM at a resolution of 2.5 h-1 Mpc can determine the redshifts of more than 90 per cent of massive galaxies with redshift uncertainty Δz/(1 + z) = 0.01. Higher resolution maps allow such redshift estimation for lower mass galaxies and haloes.

  2. Improving photometric redshifts with Lyα tomography

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; White, Martin

    2016-08-01

    Forming a three dimensional view of the Universe is a long-standing goal of astronomical observations, and one that becomes increasingly difficult at high redshift. In this paper we discuss how tomography of the intergalactic medium (IGM) at z ≃ 2.5 can be used to estimate the redshifts of massive galaxies in a large volume of the Universe based on spectra of galaxies in their background. Our method is based on the fact that hierarchical structure formation leads to a strong dependence of the halo density on large-scale environment. A map of the latter can thus be used to refine our knowledge of the redshifts of halos and the galaxies and AGN which they host. We show that tomographic maps of the IGM at a resolution of 2.5 h-1Mpc can determine the redshifts of more than 90 per cent of massive galaxies with redshift uncertainty Δz/(1 + z) = 0.01. Higher resolution maps allow such redshift estimation for lower mass galaxies and halos.

  3. Early Star Formation and High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Dietrich, Matthias; Peterson, B. M.

    2007-12-01

    We are investigating for a sample of about 30 high-redshift quasars, with redshifts up to z=6, the gas chemical metallicity based on emission line ratios and employing the FeII UV/MgII line ratio, we probe the differential metal enrichment timescale between iron and alpha-elements at these early epochs. The quasars show enhanced solar metallicities ( 5 times solar) in their broad emission-line region and no indication of a metallicity evolution up to redshifts z=6. The measured FeII UV/MgII ratios range from 3 to 5, typical for high redshift quasars, with a weighted mean of about 4. However, there is a weak tendency for a lower mean ratio at z>4.7. For the first time, we will compare the gas metallicity and the FeII UV/MgII ratio for high redshift quasars. In concert, the gas metallicity, the FeII UV/MgII ratio, and model-based estimated time scales for enriching the gas and building up the super-massive black holes suggest that a violent episode of star formation and the main growth of the black hole occur roughly contemporaneously beginning at redshifts z = 8 to 13. Support for this work was provided by NASA through grant HST-GO-10792 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. The Canada-France Deep Fields Photometric Redshift Survey

    NASA Astrophysics Data System (ADS)

    Brodwin, M.; Lilly, S. J.; McCracken, H. J.; Foucaud, S.; Le Fèvre, O.; Crampton, D.

    2002-12-01

    The Canada-France Deep Fields is a UBVRIZ imaging survey covering 1 deg2 to I ~ 25. A template-fitting photometric redshift algorithm has been developed and rigorously tested, producing redshifts with a dispersion of Δ z/(1+z) ~ 0.08 for galaxies at 0redshift likelihood function for each galaxy. Previous results from the CFDF include measurements of the angular correlation function of galaxies to I ~ 25 (McCracken et al. 2001, A&A, 376, 756) and of colour-selected Lyman Break Galaxies (Foucaud et al. 2002, submitted). The CFDF photometric redshift survey, calibrated with CFRS spectroscopy, was designed to study galaxy evolution since z ~ 1.3. With the full 3-D spatial information, real-space clustering and luminosity density evolution will be quantified over this redshift range. In this talk I will present the first results from the photometric redshift component of the survey.

  5. Definitive test of theRh = ctuniverse using redshift drift

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2016-11-01

    The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first and second order redshift derivatives appears to be well within the reach of upcoming surveys using ELT-HIRES and the SKA Phase 2 array. Here we show that an unambiguous prediction of the R_h=ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multi-year monitoring of sources at redshift z=5 with the ELT-HIRES is expected to show a velocity shift Delta v = -15 cm/s/yr due to the redshift drift in Planck LCDM, while Delta v=0 cm/s/yr in R_h=ct. With an anticipated ELT-HIRES measurement error of +/-5 cm/s/yr after 5 years, these upcoming redshift drift measurements might therefore be able to differentiate between R_h=ct and Planck LCDM at ~3 sigma, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the R_h=ct cosmology. With a 20-year baseline, these observations could favor one of these models over the other at better than 5 sigma.

  6. Photometric redshifts for the SDSS Data Release 12

    NASA Astrophysics Data System (ADS)

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2016-08-01

    We present the methodology and data behind the photometric redshift data base of the Sloan Digital Sky Survey (SDSS) Data Release 12. We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalogue was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of 1976 978 galaxies, and extends up to redshift z ≈ 0.8, with a useful coverage of up to z ≈ 0.6. We provide photometric redshifts and realistic error estimates for the 208 474 076 galaxies of the SDSS primary photometric catalogue. We achieve an average bias of overline{Δ z_{norm}} = {5.84 × 10^{-5}}, a standard deviation of σ(Δznorm) = 0.0205, and a 3σ outlier rate of Po = 4.11 per cent when cross-validating on our training set. The published redshift error estimates and photometric error classes enable the selection of galaxies with high-quality photometric redshifts. We also provide a supplementary error map that allows additional, sophisticated filtering of the data.

  7. A new look at NASA datasets with clustering redshifts

    NASA Astrophysics Data System (ADS)

    Mernard, Brice

    Observations of the extragalactic sky are inherently flux measurements as a function of 2D angular coordinates. Astrophysical exploration, however, requires the knowledge of distances or cosmological redshifts. Over the past few years, the new technique of 'clustering redshifts' has emerged. It allows one to obtain redshift information without any knowledge of the objects' spectral energy distribution. The PI has led the development of the first algorithms to successfully apply this to real data. While a number of interesting results have come out, in a number of cases the inference is not possible due to low signal-to-noise, for example for populations with low number density on the sky and/or by sampling considerations when observations in several photometric bands are available. The proposed work shows how to alleviate these limitations with new numerical techniques that can substantially increase the statistical power and cleverly sample a high-dimensional photometric space. This will lead to a new tool which will allow us to estimate clustering redshifts for a substantial fraction of sources detected in NASA datasets: WISE, GALEX, ROSAT, Fermi, etc. The corresponding redshift catalogs will be released to the community and will enable a broad range of scientific explorations. The development of the clustering redshift technique will also benefit the preparation of future missions such as Euclid and WFIRST.

  8. Flaring γ-Ray Emission from High Redshift Blazars

    NASA Astrophysics Data System (ADS)

    Orienti, Monica; D'Ammando, Filippo; Giroletti, Marcello; Finke, Justin; Dallacasa, Daniele

    2016-09-01

    High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in gamma-rays. High redshift (z>2) objects represent <10 per cent of the AGN population observed by Fermi so far, and gamma-ray flaring activity from these sources is even more uncommon. The characterization of the radio-to-gamma-ray properties of high redshift blazars represent a powerful tool for the study of both the energetics of such extreme objects and the Extragalactic Background Light. We present results of a multi-band campaign on TXS 0536+145, which is the highest redshift flaring gamma-ray blazar detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6x10^49 erg/s, which is comparable with the luminosity observed from the most powerful blazars. The physical properties derived from the multi-wavelength observations are then compared with those shown by the high redshift population. In addition preliminary results from the high redshift flaring blazar PKS 2149-306 will be discussed.

  9. A system for accurate and automated injection of hyperpolarized substrate with minimal dead time and scalable volumes over a large range☆

    PubMed Central

    Reynolds, Steven; Bucur, Adriana; Port, Michael; Alizadeh, Tooba; Kazan, Samira M.; Tozer, Gillian M.; Paley, Martyn N.J.

    2014-01-01

    Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4 ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100 μl to 10.000 ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7 μl for 100 μl and 20 μl for 10.000 ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96 mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3–4 s post-injection trigger signal and at 9–12 s in tumor tissue. The pH of the injected pyruvate was 7.1 ± 0.3 (mean ± S.D., n = 10). For small injection volumes, e.g. less than 100 μl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump. PMID:24355621

  10. A system for accurate and automated injection of hyperpolarized substrate with minimal dead time and scalable volumes over a large range

    NASA Astrophysics Data System (ADS)

    Reynolds, Steven; Bucur, Adriana; Port, Michael; Alizadeh, Tooba; Kazan, Samira M.; Tozer, Gillian M.; Paley, Martyn N. J.

    2014-02-01

    Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4 ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100 μl to 10.000 ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7 μl for 100 μl and 20 μl for 10.000 ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96 mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3-4 s post-injection trigger signal and at 9-12 s in tumor tissue. The pH of the injected pyruvate was 7.1 ± 0.3 (mean ± S.D., n = 10). For small injection volumes, e.g. less than 100 μl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump.

  11. Serendipitous Discovery of an Extended X-Ray Jet without a Radio Counterpart in a High-redshift Quasar

    NASA Astrophysics Data System (ADS)

    Simionescu, A.; Stawarz, Ł.; Ichinohe, Y.; Cheung, C. C.; Jamrozy, M.; Siemiginowska, A.; Hagino, K.; Gandhi, P.; Werner, N.

    2016-01-01

    A recent Chandra observation of the nearby galaxy cluster Abell 585 has led to the discovery of an extended X-ray jet associated with the high-redshift background quasar B3 0727+409, a luminous radio source at redshift z = 2.5. This is one of only few examples of high-redshift X-ray jets known to date. It has a clear extension of about 12″, corresponding to a projected length of ∼100 kpc, with a possible hot spot located 35″ from the quasar. The archival high resolution Very Large Array maps surprisingly reveal no extended jet emission, except for one knot about 1.″4 from the quasar. The high X-ray to radio luminosity ratio for this source appears consistent with the \\propto {(1+z)}4 amplification expected from the inverse Compton radiative model. This serendipitous discovery may signal the existence of an entire population of similar systems with bright X-ray and faint radio jets at high redshift, a selection bias that must be accounted for when drawing any conclusions about the redshift evolution of jet properties and indeed about the cosmological evolution of supermassive black holes and active galactic nuclei in general.

  12. The C IV Mass Density of the Universe at Redshift 5(exp 1)

    NASA Technical Reports Server (NTRS)

    Pettini, Max; Madau, Piero; Bolte, Michael; Prochaska, Jason X.; Ellison, Sara L.; Fan, Xiao-Hui

    2003-01-01

    In order to search for metals in the Ly alpha forest at redshifts z(sub abs) > 4, we have obtained spectra of high signal-to-noise ratio and moderately high resolution of three QSOs at z(sub em) > 5.4 discovered by the Sloan Digital Sky Survey. These data allow us to probe to metal enrichment of the intergalactic medium at early times with higher sensitivity than previous studies. We find 16 C IV absorption systems with column densities logN(C IV) = 12.50-13.98 over a total redshift path Delta X = 3.29. In the redshift interval z = 4.5-5.0, where our statistics are most reliable, we deduce a comoving mass density of C(3+) ions Omega(sub C IV) = (4.3 +/- 2.5) x 10(exp -8) (90% confidence limits) for absorption systems with log N(C IV) > or = 13.0 (for an Einstein-de Sitter cosmology with h = 0.65). This value of Omega(sub C IV) is entirely consistent with those measured at z < 4; we confirm the earlier finding by Songaila that neither the column density distribution of C IV absorbers nor its integral show significant redshift evolution over a period of time that stretches from approx. 1.25 to approx. 4.5 Gyr after the big bang. This somewhat surprising conclusion may be an indication that the intergalactic medium was enriched in metals at z >> 5, perhaps by the sources responsible for its reionization. Alternatively, the C IV systems we see may be associated with outflows from massive star-forming galaxies at later times, while the truly intergalactic metals may reside in regions of the Ly alpha forest of lower density than those probed up to now.

  13. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    SciTech Connect

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).

  14. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  15. Damped Ly alpha absorbers at high redshift: Large disks or galactic building blocks?

    NASA Technical Reports Server (NTRS)

    Haehnelt, Martin G.; Steinmetz, Matthias; Rauch, Michael

    1997-01-01

    The nature of the physical structures giving rise to damped Lyman alpha absorption systems (DLAS) at high redshifts is investigated. The proposal that rapidly rotating large disks are the only viable explanation for the observed asymmetric profiles of low ionization absorption lines is examined. Using hydrodynamic simulations of galaxy formation, it is demonstated that irregular protogalactic clumps can reproduce the observed velocity width distribution and asymmetries of the absorption profiles equally well. The velocity broadening in the simulated clumps is due to a mixture of rotation, random motions, infall and merging. The observed velocity width correlates with the virial velocity for the dark matter halo of the forming protogalactic clump. The typical virial velocity of the halos required to lead to the DLAS population is approximately 100 km/s. It is concluded that the evidence that DLAS at high redshift are related to large, rapidly rotating disks, is not compelling.

  16. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    SciTech Connect

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.

  17. Dynamical Properties of Clusters Identified in Large Surveys Using the HectoMap Redshift Survey

    NASA Astrophysics Data System (ADS)

    Reiman, David Mark; Rines, Kenneth J.; Geller, Margaret J.; Diaferio, Antonaldo; Hwang, Ho Seong

    2015-01-01

    Large surveys of clusters can yield tight constraints on cosmological parameters if systematic effects are well understood. Here, we use the dense redshift survey HectoMap to measure the dynamical properties of clusters and groups associated with either ROSAT X-ray sources or red-sequence selected clusters from SDSS imaging. HectoMap covers 50 square degrees with a median redshift of z=0.34 and samples dense systems better than other surveys at this depth (e.g., 10x denser than BOSS). We use the entire HectoMap survey to quantify the significance of redshift peaks associated with the entries in cluster catalogs such as redmapper and AMF. We show that some of the optically selected clusters are superpositions of multiple systems. For many of the clusters, we are able to extract estimates of velocity dispersions. By stacking clusters by estimated richness, we show that the dynamics can be probed by more sophisticated methods such as the caustic technique. Our results will provide an independent assessment of systematic effects present in large cluster surveys such as redMapper and help build to stronger cosmological constraints from clusters. In addition, our results can be applied to large cluster surveys to improve our understanding of the evolution of galaxies and intracluster gas within clusters.

  18. EVIDENCE FOR RAPID REDSHIFT EVOLUTION OF STRONG CLUSTER COOLING FLOWS

    SciTech Connect

    Samuele, R.; McNamara, B. R.; Vikhlinin, A.; Mullis, C. R.

    2011-04-10

    We present equivalent widths of the [O II]{lambda}3727 and H{alpha} nebular emission lines for 77 brightest cluster galaxies (BCGs) selected from the 160 Square Degree ROSAT X-ray survey. We find no [O II]{lambda}3727 or H{alpha} emission stronger than -15 A or -5 A, respectively, in any BCG. The corresponding emission-line luminosities lie below L {approx} 6 x 10{sup 40} erg s{sup -1}, which is a factor of 30 below that of NGC 1275 in the Perseus Cluster. A comparison to the detection frequency of nebular emission in BCGs at z {approx}< 0.35 drawn from the Brightest Cluster Survey indicates that we should have detected roughly one dozen emission-line galaxies, assuming that the two surveys are selecting similar clusters in the X-ray luminosity range 10{sup 42} erg s{sup -1} to 5 x 10{sup 44} erg s{sup -1}. The absence of luminous nebular emission (i.e., Perseus-like systems) in our sample is consistent with an increase in the number density of strong cooling flow (cooling core) clusters between z = 0.5 and today. The decline in their numbers at higher redshift could be due to cluster mergers and heating by active galactic nuclei.

  19. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J.-P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J.-F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy \\sigma _{\\Delta z/(1+z_{spec})}\\sim 0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band. Based on observations by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under

  20. Statistical and systematic errors in redshift-space distortion measurements from large surveys

    NASA Astrophysics Data System (ADS)

    Bianchi, D.; Guzzo, L.; Branchini, E.; Majerotto, E.; de la Torre, S.; Marulli, F.; Moscardini, L.; Angulo, R. E.

    2012-12-01

    We investigate the impact of statistical and systematic errors on measurements of linear redshift-space distortions (RSD) in future cosmological surveys by analysing large catalogues of dark matter haloes from the baryonic acoustic oscillation simulations at the Institute for Computational Cosmology. These allow us to estimate the dependence of errors on typical survey properties, as volume, galaxy density and mass (i.e. bias factor) of the adopted tracer. We find that measures of the specific growth rate β = f/b using the Hamilton/Kaiser harmonic expansion of the redshift-space correlation function ξ(rp, π) on scales larger than 3 h-1 Mpc are typically underestimated by up to 10 per cent for galaxy-sized haloes. This is significantly larger than the corresponding statistical errors, which amount to a few per cent, indicating the importance of non-linear improvements to the Kaiser model, to obtain accurate measurements of the growth rate. The systematic error shows a diminishing trend with increasing bias value (i.e. mass) of the haloes considered. We compare the amplitude and trends of statistical errors as a function of survey parameters to predictions obtained with the Fisher information matrix technique. This is what is usually adopted to produce RSD forecasts, based on the Feldman-Kaiser-Peacock prescription for the errors on the power spectrum. We show that this produces parameter errors fairly similar to the standard deviations from the halo catalogues, provided it is applied to strictly linear scales in Fourier space (k<0.2 h Mpc-1). Finally, we combine our measurements to define and calibrate an accurate scaling formula for the relative error on β as a function of the same parameters, which closely matches the simulation results in all explored regimes. This provides a handy and plausibly more realistic alternative to the Fisher matrix approach, to quickly and accurately predict statistical errors on RSD expected from future surveys.

  1. Improved Detection System Description and New Method for Accurate Calibration of Micro-Channel Plate Based Instruments and Its Use in the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gliese, U.; Avanov, L. A.; Barrie, A. C.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Gershman, D. J.; Dorelli, J. C.; Zeuch, M. A.; Pollock, C. J.; Jacques, A. D.

    2015-01-01

    system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. More precise calibration is highly desirable as the instruments will produce higher quality raw data that will require less post-acquisition data correction using results from in-flight pitch angle distribution measurements and ground calibration measurements. The detection system description and the fundamental concepts of this new calibration method, named threshold scan, will be presented. It will be shown how to derive all the individual detection system parameters and how to choose the optimum detection system operating point. This new method has been successfully applied to achieve a highly accurate calibration of the DESs and DISs of the MMS mission. The practical application of the method will be presented together with the achieved calibration results and their significance. Finally, it will be shown that, with further detailed modeling, this method can be extended for use in flight to achieve and maintain a highly accurate detection system calibration across a large number of instruments during the mission.

  2. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  3. The EFT of Large Scale Structures at all redshifts: analytical predictions for lensing

    NASA Astrophysics Data System (ADS)

    Foreman, Simon; Senatore, Leonardo

    2016-04-01

    We study the prediction of the Effective Field Theory of Large Scale Structures (EFTofLSS) for the matter power spectrum at different redshifts. In previous work, we found that the two-loop prediction can match the nonlinear power spectrum measured from N-body simulations at redshift zero within approximately 2% up to k~ 0.6 h Mpc-1 after fixing a single free parameter, the so-called "speed of sound". We determine the time evolution of this parameter by matching the EFTofLSS prediction to simulation output at different redshifts, and find that it is well-described by a fitting function that only includes one additional parameter. After the two free parameters are fixed, the prediction agrees with nonlinear data within approximately 2% up to at least k~ 1 h Mpc-1 at z>= 1, and also within approximately 5% up to k~ 1.2 h Mpc-1 at z=1 and k~ 2.3 h Mpc-1 at z=3, a major improvement with respect to other perturbative techniques. We also develop an accurate way to estimate where the EFTofLSS predictions at different loop orders should fail, based on the sizes of the next-order terms that are neglected, and find agreement with the actual comparisons to data. Finally, we use our matter power spectrum results to perform analytical calculations of lensing potential power spectra corresponding to both CMB and galaxy lensing. This opens the door to future direct applications of the EFTofLSS to observations of gravitational clustering on cosmic scales.

  4. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  5. Morphology classification and photometric redshift measurement of galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxia; Li, Lili; Zhao, Yongheng

    2009-01-01

    Based on the Sloan Digital Sky Survey Data Release 5 Galaxy Sample, we explore photometric morphology classification and redshift estimation of galaxies using photometric data and known spectroscopic redshifts. An unsupervised method, k-means algorithm, is used to separate the whole galaxy sample into early- and late-type galaxies. Then, we investigate the photometric redshift measurement with different input patterns by means of artificial neural networks (ANNs) for the total sample and two subsamples. The experimental result indicates that ANNs show better performance when more parameters are applied in the training set, and the mixed accuracy of photometric redshift estimation for the two subsets is superior to σz for the overall sample alone. For the optimal result, the rms deviation of photometric redshifts for the mixed sample amounts to 0.0192, that for the overall sample is 0.0196, meanwhile, that for early- and late-type galaxies adds up to 0.0164 and 0.0217, respectively.

  6. COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran; Diaferio, Antonaldo; Rines, Kenneth J. E-mail: mgeller@cfa.harvard.edu E-mail: diaferio@ph.unito.it

    2014-12-20

    We use dense redshift surveys of nine galaxy clusters at z ∼ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.

  7. Is redshift-dependent evolution of galaxies a theoretical artifact?

    PubMed Central

    Segal, I. E.

    1999-01-01

    The physical validity of the hypothesis of (redshift-dependent) luminosity evolution in galaxies is tested by statistical analysis of an intensively studied complete high-redshift sample of normal galaxies. The necessity of the evolution hypothesis in the frame of big-bang cosmology is confirmed at a high level of statistical significance; however, this evolution is quantitatively just as predicted by chronometric cosmology, in which there is no such evolution. Since there is no direct observational means to establish the evolution postulated in big-bang studies of higher-redshift galaxies, and the chronometric predictions involve no adjustable parameters (in contrast to the two in big-bang cosmology), the hypothesized evolution appears from the standpoint of conservative scientific methodology as a possible theoretical artifact. PMID:10570121

  8. Redshift determination through weighted phase correlation: a linearithmic implementation

    NASA Astrophysics Data System (ADS)

    Delchambre, L.

    2016-08-01

    We present a new algorithm having a time complexity of O(N log N) and designed to retrieve the phase at which an input signal and a set of not necessarily orthogonal templates match best in a weighted chi-squared sense. The proposed implementation is based on an orthogonalization algorithm and thus also benefits from high numerical stability. We apply this method successfully to the redshift determination of quasars from the twelfth Sloan Digital Sky Survey (SDSS) quasar catalogue and derive the proper spectral reduction and redshift selection methods. Derivations of the redshift uncertainty and the associated confidence are also provided. The results of this application are comparable to the performance of the SDSS pipeline, while not having a quadratic time dependence.

  9. Gravitational microlensing of high-redshift supernovae by compact objects

    NASA Technical Reports Server (NTRS)

    Rauch, Kevin P.

    1991-01-01

    An analysis of the effect of microlensing by a cosmologically dominant density of compact objects is performed, using high-redshift Type Ia supernovae (SN Ia's) as probes. The compact objects are modeled as a three-dimensional distribution of point masses, and Monte Carlo simulations are done to calculate the resulting amplification probability distributions for several column densities and cosmologies. By combining these distributions with the intrinsic SN Ia luminosity function and comparing with the results for a perfectly smooth universe, estimates are made of the number of supernovae that would need to be observed to confirm or rule out this lensing scenario. It is found that about 1000 SN Ia's with redshifts of z = 1 would be needed to perform this test, which is beyond what current searches can hope to accomplish. Observations of many fewer high-redshift supernovae, used merely as standard candles, appears a promising way of distinguishing between different cosmological models.

  10. The Dark Halo - Spheroid Conspiracy Reloaded: Evolution with Redshift

    NASA Astrophysics Data System (ADS)

    Remus, Rhea-Silvia; Dolag, Klaus; Burkert, Andreas

    2015-04-01

    The total density profiles of elliptical galaxies can be fit by a single power law, i.e., ρtot ~ r γ with γ ~ -2. While strong lensing observations show a tendency for the slopes to become flatter with increasing redshift, simulations indicate an opposite trend. To understand this discrepancy, we study a set of simulated spheroids formed within the cosmological framework. From our simulations we find that the steepness of the total density slope correlates with the compactness of the stellar component within the half-mass radius, and that spheroidal galaxies tend to be more compact at high redshifts than their present-day counterparts. While both these results are in agreement with observations, the observed trend of the total density slope with redshift remains in contradiction to the results from simulations.

  11. Imaging redshift estimates for Fermi BL Lac objects

    SciTech Connect

    Stadnik, Matt; Romani, Roger W. E-mail: rwr@astro.stanford.edu

    2014-04-01

    We have obtained WIYN and SOAR i' images of BL Lacertae objects and used these to detect or constrain the flux of the host galaxy. Under common standard candle assumptions, these data provide estimates of, or lower bounds on, the redshift. Our targets are a set of flat-spectrum radio counterparts of high flux Fermi Large Area Telescope sources, with sensitive spectral observations showing them to be continuum-dominated BL Lac objects. In this sample, 5 of 11 BL Lac objects yielded significant host detections, with standard candle redshifts z = 0.13-0.58. Our estimates and lower bounds are generally in agreement with other redshifts estimates, although our z = 0.374 estimate for J0543–5532 implies a significantly sub-luminous host.

  12. The Host Galaxies of Type Ia Supernovae at High Redshift

    NASA Astrophysics Data System (ADS)

    Quimby, R.; Aldering, G.; Nugent, P.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M.; Kim, A.; Knop, R. A.; Lidman, C.; McMahon, R.; Mendez, J.; Nobili, S.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Schaefer, B.; Schahmaneche, K.; Spadafora, A. L.; Walton, N.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.; Supernova Cosmology Project Collaboration

    2002-12-01

    We use the luminosities and B-V colors from the host galaxies of 74 high-redshift (0.17 < z < 0.86) Type Ia supernovae (SNe Ia) discovered by the Supernova Cosmology Project (SCP) to search for environmental effects on supernovae peak luminosities. Using the galaxy luminosity-metallicity relation and the radial metallicity gradient of galaxies as indicators of the progenitor metallicity, we find no significant correlation between peak SNe Ia luminosity and host galaxy metallicity. The projected radial distribution of supernovae tracks the galaxy light and shows no deficit of SNe Ia near the galaxy cores (Shaw effect). The host galaxy luminosity function is calculated, and shown to be consistent with the subset of the Caltech Faint Galaxy Redshift Survey (Cohen et al. 2000) in the same redshift range, as well as the luminosity function of nearby galaxies measured by the Sloan Digital Sky Survey (Blanton et al. 2001).

  13. Detectability of Gravitational Waves from High-Redshift Binaries

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-01

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  14. Detectability of Gravitational Waves from High-Redshift Binaries.

    PubMed

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms. PMID:27015470

  15. Gravitational-wave standard siren without redshift identification

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi; Yagi, Kent; Taruya, Atsushi; Tanaka, Takahiro

    2012-06-01

    Proposed space-based gravitational-wave (GW) detectors such as DECIGO and BBO will detect ~ 106 neutron-star (NS) binaries and determine the luminosity distances to the binaries with high precision. Combining the luminosity distances with cosmologically-induced phase corrections on the GWs, cosmological expansion out to high redshift can be measured without the redshift determinations of host galaxies by electromagnetic observation and can be a unique probe for dark energy. This article is based on the results obtained in [1] where we investigated constraining power of the GW standard siren without redshift information on the equation of state of dark energy with future space-based GW detectors. We also compare the results with those obtained with other instruments and methods.

  16. Radio-loud high-redshift protogalaxy canidates in Bootes

    SciTech Connect

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  17. The infrared database of extragalactic observables from Spitzer - I. The redshift catalogue

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Spoon, Henrik W. W.; Lebouteiller, Vianney; Rupke, David S. N.; Barry, Donald P.

    2016-01-01

    This is the first of a series of papers on the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). In this work, we describe the identification of optical counterparts of the infrared sources detected in Spitzer Infrared Spectrograph (IRS) observations, and the acquisition and validation of redshifts. The IDEOS sample includes all the spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS) of galaxies beyond the Local Group. Optical counterparts were identified from correlation of the extraction coordinates with the NASA Extragalactic Database (NED). To confirm the optical association and validate NED redshifts, we measure redshifts with unprecedented accuracy on the IRS spectra (σ(Δz/(1+z)) ˜ 0.0011) by using an improved version of the maximum combined pseudo-likelihood method (MCPL). We perform a multistage verification of redshifts that considers alternate NED redshifts, the MCPL redshift, and visual inspection of the IRS spectrum. The statistics is as follows: the IDEOS sample contains 3361 galaxies at redshift 0 < z < 6.42 (mean: 0.48, median: 0.14). We confirm the default NED redshift for 2429 sources and identify 124 with incorrect NED redshifts. We obtain IRS-based redshifts for 568 IDEOS sources without optical spectroscopic redshifts, including 228 with no previous redshift measurements. We provide the entire IDEOS redshift catalogue in machine-readable formats. The catalogue condenses our compilation and verification effort, and includes our final evaluation on the most likely redshift for each source, its origin, and reliability estimates.

  18. Bulgeless galaxies at intermediate redshift: Sample selection, color properties, and the existence of powerful active galactic nuclei

    SciTech Connect

    Bizzocchi, Luca; Leonardo, Elvira; Grossi, Marco; Afonso, José; Fernandes, Cristina; Retrê, João; Filho, Mercedes E.; Lobo, Catarina; Griffith, Roger L.; Anton, Sonia; Bell, Eric F.; Brinchmann, Jarle; Henriques, Bruno; Messias, Hugo

    2014-02-10

    We present a catalog of bulgeless galaxies, which includes 19,225 objects selected in four of the deepest, largest multi-wavelength data sets available—COSMOS, AEGIS, GEMS, and GOODS—at intermediate redshift (0.4 ≤ z ≤ 1.0). The morphological classification was provided by the Advanced Camera for Surveys General Catalog (ACS-GC), which used publicly available data obtained with the ACS instrument on the Hubble Space Telescope. Rest-frame photometric quantities were derived using kcorrect. We analyze the properties of the sample and the evolution of pure-disk systems with redshift. Very massive [log (M {sub *}/M {sub ☉}) > 10.5] bulgeless galaxies contribute to ∼30% of the total galaxy population number density at z ≥ 0.7, but their number density drops substantially with decreasing redshift. We show that only a negligible fraction of pure disks appear to be quiescent systems, and red sequence bulgeless galaxies show indications of dust-obscured star formation. X-ray catalogs were used to search for X-ray emission within our sample. After visual inspection and detailed parametric morphological fitting we identify 30 active galactic nuclei (AGNs) that reside in galaxies without a classical bulge. The finding of such peculiar objects at intermediate redshift shows that while AGN growth in merger-free systems is a rare event (0.2% AGN hosts in this sample of bulgeless galaxies), it can indeed happen relatively early in the history of the universe.

  19. SPECTRAL CONFUSION FOR COSMOLOGICAL SURVEYS OF REDSHIFTED C II EMISSION

    SciTech Connect

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-06-20

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencil-beam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150–1300 μm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 μm [C ii] line and other lines. Although the [C ii] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C ii] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20″ and 10′, sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  20. The local hole revealed by galaxy counts and redshifts

    NASA Astrophysics Data System (ADS)

    Whitbourn, J. R.; Shanks, T.

    2014-01-01

    The redshifts of ≈250 000 galaxies are used to study the local hole and its associated peculiar velocities. The sample, compiled from the 6dF Galaxy Redshift Survey and Sloan Digital Sky Survey, provides wide sky coverage to a depth of ≈300 h-1 Mpc. We have therefore examined K- and r-limited galaxy redshift distributions and number counts to map the local density field. Comparing observed galaxy n(z) distributions to homogeneous models in three large regions of the high-latitude sky, we find evidence for underdensities ranging from ≈4-40 per cent in these regions to depths of ≈150 h-1 Mpc with the deepest underdensity being over the southern Galactic cap. Using the Galaxy and Mass Assembly survey, we then establish the normalization of galaxy counts at fainter magnitudes and thus confirm that the underdensity over all three fields at K < 12.5 is ≈15 ± 3 per cent. Finally, we further use redshift catalogues to map sky-averaged peculiar velocities over the same areas using the average redshift-magnitude, overline{z}(m), technique of Soneira. After accounting for the direct effect of the large-scale structure on overline{z}(m), we can then search for peculiar velocities. Taking all three regions into consideration, the data reject at the ≈4σ level the idea that we have recovered the cosmic microwave background rest frame in the volume probed. We therefore conclude that there is some consistent evidence from both counts and Hubble diagrams for a `local hole' with an ≈150 h-1 Mpc underdensity that deeper counts and redshifts in the northern Galactic cap suggest may extend to ≈300 h-1 Mpc.

  1. Extremely metal-poor gas at a redshift of 7.

    PubMed

    Simcoe, Robert A; Sullivan, Peter W; Cooksey, Kathy L; Kao, Melodie M; Matejek, Michael S; Burgasser, Adam J

    2012-12-01

    In typical astrophysical environments, the abundance of heavy elements ranges from 0.001 to 2 times the solar value. Lower abundances have been seen in selected stars in the Milky Way's halo and in two quasar absorption systems at redshift z = 3 (ref. 4). These are widely interpreted as relics from the early Universe, when all gas possessed a primordial chemistry. Before now there have been no direct abundance measurements from the first billion years after the Big Bang, when the earliest stars began synthesizing elements. Here we report observations of hydrogen and heavy-element absorption in a spectrum of a quasar at z =  7.04, when the Universe was just 772 million years old (5.6 per cent of its present age). We detect a large column of neutral hydrogen but no corresponding metals (defined as elements heavier than helium), limiting the chemical abundance to less than 1/10,000 times the solar level if the gas is in a gravitationally bound proto-galaxy, or to less than 1/1,000 times the solar value if it is diffuse and unbound. If the absorption is truly intergalactic, it would imply that the Universe was neither ionized by starlight nor chemically enriched in this neighbourhood at z ≈ 7. If it is gravitationally bound, the inferred abundance is too low to promote efficient cooling, and the system would be a viable site to form the predicted but as yet unobserved massive population III stars. PMID:23222611

  2. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  3. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  4. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  5. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosit