Science.gov

Sample records for accurate theoretical calculations

  1. Accurate, precise, and efficient theoretical methods to calculate anion-π interaction energies in model structures.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei

    2015-01-13

    A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta

  2. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  3. Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.

    PubMed

    Ganyecz, Ádám; Kállay, Mihály; Csontos, József

    2017-02-09

    An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

  4. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  5. Strategy Guideline. Accurate Heating and Cooling Load Calculations

    SciTech Connect

    Burdick, Arlan

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  6. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect

    Burdick, A.

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  7. Theoretical calculation of polarizability isotope effects.

    PubMed

    Moncada, Félix; Flores-Moreno, Roberto; Reyes, Andrés

    2017-03-01

    We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.

  8. Calculation of Accurate Hexagonal Discontinuity Factors for PARCS

    SciTech Connect

    Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

    2007-11-01

    In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

  9. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  10. Accurate and efficient linear scaling DFT calculations with universal applicability.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Genovese, Luigi; Caliste, Damien; Boulanger, Paul; Goedecker, Stefan; Deutsch, Thierry

    2015-12-21

    Density functional theory calculations are computationally extremely expensive for systems containing many atoms due to their intrinsic cubic scaling. This fact has led to the development of so-called linear scaling algorithms during the last few decades. In this way it becomes possible to perform ab initio calculations for several tens of thousands of atoms within reasonable walltimes. However, even though the use of linear scaling algorithms is physically well justified, their implementation often introduces some small errors. Consequently most implementations offering such a linear complexity either yield only a limited accuracy or, if one wants to go beyond this restriction, require a tedious fine tuning of many parameters. In our linear scaling approach within the BigDFT package, we were able to overcome this restriction. Using an ansatz based on localized support functions expressed in an underlying Daubechies wavelet basis - which offers ideal properties for accurate linear scaling calculations - we obtain an amazingly high accuracy and a universal applicability while still keeping the possibility of simulating large system with linear scaling walltimes requiring only a moderate demand of computing resources. We prove the effectiveness of our method on a wide variety of systems with different boundary conditions, for single-point calculations as well as for geometry optimizations and molecular dynamics.

  11. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  12. Accurate calculations of bound rovibrational states for argon trimer

    NASA Astrophysics Data System (ADS)

    Brandon, Drew; Poirier, Bill

    2014-07-01

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10-3 cm-1 or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature—and only for the lowest-lying rotational excitations.

  13. Efficient determination of accurate atomic polarizabilities for polarizeable embedding calculations

    PubMed Central

    Schröder, Heiner

    2016-01-01

    We evaluate embedding potentials, obtained via various methods, used for polarizable embedding computations of excitation energies of para‐nitroaniline in water and organic solvents as well as of the green fluorescent protein. We found that isotropic polarizabilities derived from DFTD3 dispersion coefficients correlate well with those obtained via the LoProp method. We show that these polarizabilities in conjunction with appropriately derived point charges are in good agreement with calculations employing static multipole moments up to quadrupoles and anisotropic polarizabilities for both computed systems. The (partial) use of these easily‐accessible parameters drastically reduces the computational effort to obtain accurate embedding potentials especially for proteins. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27317509

  14. Highly Accurate Calculations of the Phase Diagram of Cold Lithium

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew

    The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  16. Accurate calculated optical properties of substituted quaterphenylene nanofibers.

    PubMed

    Finnerty, Justin J; Koch, Rainer

    2010-01-14

    The accurate prediction of both excitation and emission energies of substituted p-quaterphenylenes using a variety of established and newly developed density functional methods is evaluated and compared against experimental data, both from single molecules and from nanofibers. For calculation of the UV-vis excitation the MPW1K functional is the best performing method (with the employed TZVP basis set). After a linear scaling factor is applied, mPW2-PLYP, CIS and the very fast INDO/S also reproduce the experimental data correctly. For the fluorescence relaxation energies MPW1K, mPW2-PLYP, and INDO/S give good results, even without scaling. However, mPW2-PLYP involves second-order perturbation to introduce nonlocal electron correlation and therefore requires significantly more resources, so the recommended level of theory for a single methodology to investigate the optical properties of substituted phenylenes and related systems is MPW1K/6-311+G(2d,p), followed by INDO/S as a low-cost alternative. As an extension of a previous work on predicting first hyperpolarisabilities, we can now demonstrate that the chosen approach (HF/6-31G(d)//B3LYP/6-31G(d)) produces data that correlate well with the susceptibilities derived from measurements on nanofibers.

  17. Accurate Theoretical Prediction of the Properties of Energetic Materials

    DTIC Science & Technology

    2007-11-02

    calculations (e.g. Cheetah ). 8. Sensitivity. The structure prediction and lattice potential work will serve as a platform to examine impact/shock...nitromethane molecules. (In an extension of the present work, we will freeze the internal coordinates of the molecules and assess the extent to which the

  18. Experimental and theoretical oscillator strengths of Mg i for accurate abundance analysis

    NASA Astrophysics Data System (ADS)

    Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.

    2017-02-01

    Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg i lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg i optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg i optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.

  19. Theoretical Calculations of Equations of State

    NASA Astrophysics Data System (ADS)

    Prakash, Madappa

    2016-07-01

    The modeling of core-collapse supernovae, neutron stars from their birth to old age, and binary mergers of compact stars requires a detailed knowledge of the equation of state (EOS) of matter at finite temperature. Thermodynamic state variables such as the free energy, energy per baryon, pressure, entropy per baryon, specific heats, chemical potentials of the various species and their derivatives with respect to number densities, thermal and adiabatic indices, etc., all play distinct roles in large-scale computer simulations involving compact objects. In this talk, recent developments in the calculation of the thermal properties of dense matter will be reviewed. Recent results from beyond relativistic mean field theory will be discussed. Highlights will include the role of non-nucleonic degrees of freedom at finite temperature, and possible avenues for future investigations.

  20. Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO)

    NASA Astrophysics Data System (ADS)

    McKemmish, Laura K.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-11-01

    Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity of electronic transitions. We test finite-field off-diagonal dipole moments, but found that (1) the accuracy of the excitation energies were not sufficient to allow accurate dipole moments to be evaluated and (2) computer time requirements for perpendicular transitions were prohibitive. The best off-diagonal dipole moments are calculated using wavefunctions with different CASSCF orbitals.

  1. Time-accurate Navier-Stokes calculations with multigrid acceleration

    NASA Technical Reports Server (NTRS)

    Melson, N. D.; Sanetrik, Mark D.; Atkins, Harold L.

    1993-01-01

    An efficient method for calculating unsteady flows is presented, with emphasis on a modified version of the thin-layer Navier-Stokes equations. Fourier stability analysis is used to illustrate the effect of treating the source term implicitly instead of explicity, as well as to illustrate other algorithmic choices. A 2D circular cylinder (with a Reynolds number of 1200 and a Mach number of 0.3) is calculated. The present scheme requires only about 10 percent of the computer time required by global minimum time stepping.

  2. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

    PubMed Central

    2015-01-01

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules. PMID:26146493

  3. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  4. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  5. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.

    PubMed

    Dral, Pavlo O; von Lilienfeld, O Anatole; Thiel, Walter

    2015-05-12

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  6. Perspective: Accurate ro-vibrational calculations on small molecules

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan

    2016-09-01

    In what has been described as the fourth age of quantum chemistry, variational nuclear motion programs are now routinely being used to obtain the vibration-rotation levels and corresponding wavefunctions of small molecules to the sort of high accuracy demanded by comparison with spectroscopy. In this perspective, I will discuss the current state-of-the-art which, for example, shows that these calculations are increasingly competitive with measurements or, indeed, replacing them and thus becoming the primary source of data on key processes. To achieve this accuracy ab initio requires consideration of small effects, routinely ignored in standard calculations, such as those due to quantum electrodynamics. Variational calculations are being used to generate huge lists of transitions which provide the input for models of radiative transport through hot atmospheres and to fill in or even replace measured transition intensities. Future prospects such as the study of molecular states near dissociation, which can provide a link with low-energy chemical reactions, are discussed.

  7. Theoretical calculation of Joule-Thomson coefficient by using third virial coefficient

    NASA Astrophysics Data System (ADS)

    Mamedov, Bahtiyar Akber; Somuncu, Elif; Askerov, Iskender M.

    2017-02-01

    The Joule-Thomson coefficient has been theoretical investigated by using third virial coefficient. Established expressions enable us accurate and rapid calculations of Joule-Thomson coefficient. As seen from numerical results the analytical expressions for third virial coefficients are a very useful, giving a very fast method to calculate other thermodynamics properties of gasses. As an example, the calculation results have been successfully tested by using various literature data.

  8. The Calculation of Accurate Metal-Ligand Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Partridge, Harry, III; Ricca, Alessandra; Arnold, James O. (Technical Monitor)

    1997-01-01

    The optimization of the geometry and calculation of zero-point energies are carried out at the B3LYP level of theory. The bond energies are determined at this level, as well as at the CCSD(T) level using very large basis sets. The successive OH bond energies to the first row transition metal cations are reported. For most systems there has been an experimental determination of the first OH. In general, the CCSD(T) values are in good agreement with experiment. The bonding changes from mostly covalent for the early metals to mostly electrostatic for the late transition metal systems.

  9. Improved Ecosystem Predictions of the California Current System via Accurate Light Calculations

    DTIC Science & Technology

    2011-09-30

    System via Accurate Light Calculations Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425...incorporate extremely fast but accurate light calculations into coupled physical-biological-optical ocean ecosystem models as used for operational three...dimensional ecosystem predictions. Improvements in light calculations lead to improvements in predictions of chlorophyll concentrations and other

  10. Accurate calculation and Matlab based fast realization of merit function's Hesse matrix for the design of multilayer optical coating

    NASA Astrophysics Data System (ADS)

    Wu, Su-Yong; Long, Xing-Wu; Yang, Kai-Yong

    2009-09-01

    To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function’s gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit function. It has outstanding performance in multilayer optical coating design with a large layer number.

  11. Accurate MRCI calculations of the low-lying electronic states of the NCl molecule

    NASA Astrophysics Data System (ADS)

    Song, Ziyue; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2017-03-01

    Characterization of 22 electronic states of NCl correlating to the two lowest dissociation channels are carried out using high level CASSCF/MRCI calculations with a sextuple-ζ basis set including Davidson modification, core-valence correlation correction and scalar relativistic effects. As far as we know, this radical has never been the preference of theoretical researchers and experimental investigations only concern the ground state and the two low-lying metastable states. Accurate potential energy curves, dissociation energies as well as the equilibrium constants are determined and avoided crossings between the Π symmetry are studied. Moreover, spin-orbit splitting of several states and transition probabilities and radiative lifetimes for some allowed or forbidden transitions are presented.

  12. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude

  13. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  14. Theoretical calculation of heat capacity by using third virial coefficient

    NASA Astrophysics Data System (ADS)

    Mamedov, Bahtiyar Akber; Somuncu, Elif

    2017-02-01

    We have presented a new formula to determine the heat capacity for real gaseous. This formula is a simple and more accurate analytical approximation for heat capacity using third virial coefficient over Lennard-Jones (12-6) potential. The calculation results of heat capacity show a good agreement with the data in the literature. The consistency of results demonstrates that the proposed formula is applicable to real gaseous.

  15. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  16. Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.

    2008-01-01

    The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.

  17. SMARTIES: User-friendly codes for fast and accurate calculations of light scattering by spheroids

    NASA Astrophysics Data System (ADS)

    Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.

    2016-05-01

    We provide a detailed user guide for SMARTIES, a suite of MATLAB codes for the calculation of the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. SMARTIES is a MATLAB implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. The theory behind the improvements in numerical accuracy and convergence is briefly summarized, with reference to the original publications. Instructions of use, and a detailed description of the code structure, its range of applicability, as well as guidelines for further developments by advanced users are discussed in separate sections of this user guide. The code may be useful to researchers seeking a fast, accurate and reliable tool to simulate the near-field and far-field optical properties of elongated particles, but will also appeal to other developers of light-scattering software seeking a reliable benchmark for non-spherical particles with a challenging aspect ratio and/or refractive index contrast.

  18. Accurate calculation of multispar cantilever and semicantilever wings with parallel webs under direct and indirect loading

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1932-01-01

    In the present report the computation is actually carried through for the case of parallel spars of equal resistance in bending without direct loading, including plotting of the influence lines; for other cases the method of calculation is explained. The development of large size airplanes can be speeded up by accurate methods of calculation such as this.

  19. Fast and accurate calculation of dilute quantum gas using Uehling-Uhlenbeck model equation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2017-02-01

    The Uehling-Uhlenbeck (U-U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U-U model equation. DSMC analysis based on the U-U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U-U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green-Kubo expression and the shock layer of a dilute Bose gas around a cylinder.

  20. Calculation of Theoretical Isotropic Compton Profile for Many Particle Systems

    NASA Astrophysics Data System (ADS)

    Alzubadi, Ali A.; Albayati, Khalil H.

    Theoretical isotropic (spherically symmetric) Compton profiles (ICP) have been calculated for many particle systems' He, Li, Be and B atoms in their ground states. Our calculations were performed using Roothan-Hartree-Fock (RHF) wave function, HF wave function of Thakkar and re-optimized HF wave function of Clementi-Roetti, taking into account the impulse approximation. The theoretical analysis included a decomposition of the various intra and inter shells and their contributions in the total ICP. A high momentum region of up to 4 a.u. was investigated and a non-negligible tail was observed in all ICP curves. The existence of a high momentum tail was mainly due to the electron-electron interaction. The ICP for the He atom has been compared with the available experimental data and it is found that the ICP values agree very well with them. A few low order radial momentum expectation values and the total energy for these atomic systems have also been calculated and compared with their counterparts' wave functions.

  1. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE PAGES

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  2. Interior Ballistic Calculations Using an Accurate Equation of State for the Propellant Gases

    DTIC Science & Technology

    1993-04-01

    equation of state for propellant gases in interior ballistic calculations is very important for two reasons. The burning rate...subtracted from the heat of formation of the propellant consumed before the equilibrium calculation is performed. The accurate equation of state proposed...inside the gun is monitored as a function of time. Ballistic performance using this approach is compared to the more conventional IBHVG2 calculation.... Interior ballistics, Equation of state , MCVECE Thermochemical

  3. Potential theoretic methods for far field sound radiation calculations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.

    1995-01-01

    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  4. Preliminary theoretical acoustic and rf sounding calculations for MILL RACE

    SciTech Connect

    Warshaw, S.I.; Dubois, P.F.

    1981-11-02

    As participant in DOE/ISA's Ionospheric Monitoring Program, LLNL has the responsibility of providing theoretical understanding and calculational support for experimental activities carried out by Los Alamos National Laboratory in using ionospheric sounders to remotely detect violent atmospheric phenomena. We have developed a system of interconnected computer codes which simulate the entire range of atmospheric and ionospheric processes involved in this remote detection procedure. We are able to model the acoustic pulse shape from an atmospheric explosion, the subsequent nonlinear transport of this energy to all parts of the immediate atmosphere including the ionosphere, and the propagation of high-frequency ratio waves through the acoustically perturbed ionosphere. Los Alamos' coverage of DNA's MILL RACE event provided an excellent opportunity to assess the credibility of the calculational system to correctly predict how ionospheric sounders would respond to a surface-based chemical explosion. In this experiment, 600 tons of high explosive were detonated at White Sands Missile Range at 12:35:40 local time on 16 September 1981. Vertical incidence rf phase sounders and bistatic oblique incidence rf sounders fielded by Los Alamos and SRI International throughout New Mexico and southern Colorado detected the ionospheric perturbation that ensued. A brief account of preliminary calculations of the acoustic disturbance and the predicted ionospheric sounder signatures for MILL RACE is presented. (WHK)

  5. The theoretical shape of sucrose crystals from energy calculations

    NASA Astrophysics Data System (ADS)

    Saska, Michael; Myerson, Allan S.

    1983-05-01

    The surface energies of individual crystallographic faces of crystalline sucrose were calculated using two forms of the 6-exp (Buckingham) potential. Hydrogen bond energies were calculated as a sum of O-H, O…H and O…O interactions where the Lippincott-Schroeder short-range potential was used for O-H and O…H pairs and the 6-exp potential for the non-bonded O…O interactions. Assuming that the surface energy equals half of the cohesive energy of the crystal, the attachment and surface energies of most of the faces found on as sucrose crystal were calculated. A computer program was written to draw the theoretical shape of crystals given the positions (central distances) of its faces. The resulting sucrose shapes are elongated along the c-axis. It is argued that the c-axis elongated habit is an intrinsic shape for vapor grown sucrose crystals (if realizable) and it is suggested that the usual shapes of solution grown sucrose crystals can be explained in terms of solvent (water) adsorption.

  6. An accurate theoretical description for electronic transport properties of single molecular junctions

    NASA Astrophysics Data System (ADS)

    Luo, Yi

    2002-03-01

    We have developed a new theoretical approach to characterize the electron transport process in molecular devices based on the elastic-scattering Green's function theory in connection with the hybrid density functional theory without using any fitting parameters. Two molecular devices with benzene-1,4-dithiol and octanedithiol molecules embedded between two gold electrodes have been studied. The calculated current-voltage characteristics are in very good agreement with existing experimental results reported by Reed et. al for benzene-1,4-dithiol [Science, 278(1997) 252] and by Cui et al. for octanedithiol [Science, 294(2001) 571]. Our approach is very straightforward and can apply to quite large systems. Most importantly, it provides a reliable way to design and optimize molecular devices theoretically, thereby avoiding extremely difficult, time consuming laboratory tests.

  7. The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1984-01-01

    Models and spectra of sunspots were studied, because they are important to energy balance and variability discussions. Sunspot observations in the ultraviolet region 140 to 168 nn was obtained by the NRL High Resolution Telescope and Spectrograph. Extensive photometric observations of sunspot umbrae and prenumbrae in 10 chanels covering the wavelength region 387 to 3800 nm were made. Cool star opacities and model atmospheres were computed. The Sun is the first testcase, both to check the opacity calculations against the observed solar spectrum, and to check the purely theoretical model calculation against the observed solar energy distribution. Line lists were finally completed for all the molecules that are important in computing statistical opacities for energy balance and for radiative rate calculations in the Sun (except perhaps for sunspots). Because many of these bands are incompletely analyzed in the laboratory, the energy levels are not well enough known to predict wavelengths accurately for spectrum synthesis and for detailed comparison with the observations.

  8. Possible calcium centers for hydrogen storage applications: An accurate many-body study by AFQMC calculations with large basis sets

    NASA Astrophysics Data System (ADS)

    Purwanto, Wirawan; Krakauer, Henry; Zhang, Shiwei; Virgus, Yudistira

    2011-03-01

    Weak H2 physisorption energies present a significant challenge to first-principle theoretical modeling and prediction of materials for H storage. There has been controversy regarding the accuracy of DFT on systems involving Ca cations. We use the auxiliary-field quantum Monte Carlo (AFQMC) method to accurately predict the binding energy of Ca + , - 4{H}2 . AFQMC scales as Nbasis3and has demonstrated accuracy similar to or better than the gold-standard coupled cluster CCSD(T) method. We apply a modified Cholesky decomposition to achieve efficient Hubbard-Stratonovich transformation in AFQMC at large basis sizes. We employ the largest correlation consistent basis sets available, up to Ca/cc-pCV5Z, to extrapolate to the complete basis limit. The calculated potential energy curve exhibits binding with a double-well structure. Supported by DOE and NSF. Calculations were performed at OLCF Jaguar and CPD.

  9. Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Lutnæs, Ola B.; Teale, Andrew M.; Helgaker, Trygve; Tozer, David J.; Ruud, Kenneth; Gauss, Jürgen

    2009-10-01

    An accurate set of benchmark rotational g tensors and magnetizabilities are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster single-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the results obtained is established for the rotational g tensors by careful comparison with experimental data, taking into account zero-point vibrational corrections. After an analysis of the basis sets employed, extrapolation techniques are used to provide estimates of the basis-set-limit quantities, thereby establishing an accurate benchmark data set. The utility of the data set is demonstrated by examining a wide variety of density functionals for the calculation of these properties. None of the density-functional methods are competitive with the CCSD or CCSD(T) methods. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of density-functional calculations constrained to give the same electronic density. The importance of current dependence in exchange-correlation functionals is discussed in light of this comparison.

  10. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  11. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile.

    PubMed

    Namazian, Mansoor; Coote, Michelle L

    2007-08-02

    Standard ab initio molecular orbital theory and density functional theory calculations have been used to calculate absolute one-electron reduction potentials of several para-quinones in acetonitrile. The high-level composite method of G3(MP2)-RAD is used for the gas-phase calculations and a continuum model of solvation, CPCM, has been employed to calculate solvation energies. To compare the theoretical reduction potentials with experiment, the reduction potentials relative to a standard calomel electrode (SCE) have also been calculated and compared to experimental values. The average error of the calculated reduction potentials using the proposed method is 0.07 V without any additional approximation. An ONIOM method in which the core is studied at G3(MP2)-RAD and the substituent effect of the rest of the molecule is studied at R(O)MP2/6-311+G(3df,2p) provides an accurate low-cost alternative to G3(MP2)-RAD for larger molecules.

  12. Time-accurate unsteady aerodynamic and aeroelastic calculations for wings using Euler equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1988-01-01

    A time-accurate approach to simultaneously solve the Euler flow equations and modal structural equations of motion is presented for computing aeroelastic responses of wings. The Euler flow eauations are solved by a time-accurate finite difference scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear acceleration method. The aeroelastic configuration adaptive dynamic grids are time accurately generated using the aeroelastically deformed shape of the wing. The unsteady flow calculations are validated wih experiment, both for a semi-infinite wing and a wall-mounted cantilever rectangular wings. Aeroelastic responses are computed for a rectangular wing using the modal data generated by the finite-element method. The robustness of the present approach in computing unsteady flows and aeroelastic responses that are beyond the capability of earlier approaches using the potential equations are demonstrated.

  13. Infrared and theoretical calculations in 2-halocycloheptanones conformational analysis.

    PubMed

    Rozada, Thiago C; Gauze, Gisele F; Favaro, Denize C; Rittner, Roberto; Basso, Ernani A

    2012-08-01

    2-Halocycloheptanones (Halo=F, Cl, Br and I) were synthesized and their conformational analysis was performed through infrared spectroscopy data. The corresponding conformers geometries and energies were obtained by theoretical calculations at B3LYP/aug-cc-pVDZ level of theory in the isolated state and in solution. It was observed, by both approaches, that the conformational preferences were very sensitive to the solvent polarity, since its increase led to an increase in the population of the more polar conformer. An analysis of these conformational equilibria showed they suffer also the influence of stereoelectronic effects, like hyperconjugation and steric effects. These results were interpreted using natural bond orbital (NBO) analysis, which indicated that the electronic delocalization to the orbital π*(C=O) is directly involved in the stability increase of conformers I and II. The relative effect of the period of the halogen can also be noted, with changes in the conformational preferences and in the energies involved in the interactions of NBO.

  14. Theoretical calculations on electronic transitions for H/sub 3/, including Rydberg and transition state spectra

    SciTech Connect

    Petsalakis, I.D.; Theodorakopoulos, G.; Wright, J.S.

    1988-12-01

    MRD-CI calculations have been carried out on the ground and excited electronic states of H/sub 3/ for D/sub 3//sub h/, D/sub infinity//sub h/, C/sub infinity//sub v/, and C/sub 2//sub v/ geometries. Dipole transition moments between the various electronic states have been also obtained at the different geometries calculated. The present work provides accurate theoretical information relevant to the transition state spectroscopy of H+H/sub 2/ along a collinear path and also along a perpendicular path. In addition, the present work is the first all-electron configuration interaction treatment of the Rydberg states of H/sub 3/, and the results are in excellent agreement with the observed spectra.

  15. Dynamics of the C(1D)+D2 reaction: a comparison of crossed molecular-beam experiments with quasiclassical trajectory and accurate statistical calculations.

    PubMed

    Balucani, Nadia; Capozza, Giovanni; Segoloni, Enrico; Russo, Andrea; Bobbenkamp, Rolf; Casavecchia, Piergiorgio; Gonzalez-Lezana, Tomas; Rackham, Edward J; Bañares, Luis; Aoiz, F Javier

    2005-06-15

    In this paper we report a combined experimental and theoretical study on the dynamics of the insertion reaction C((1)D)+D(2) at 15.5 kJ mol(-1) collision energy. Product angular and velocity distributions have been obtained in crossed beam experiments and quasiclassical trajectory (QCT) and rigorous statistical calculations have been performed on the recent and accurate ab initio potential energy surface of Bussery-Honvault, Honvault, and Launay at the energy of the experiment. The molecular-beam results have been simulated using the theoretical calculations. Good agreement between experiment and both QCT and statistical predictions is found.

  16. Accurate Cross-section Calculations for Low-Energy Electron-Atom Collisions

    SciTech Connect

    Zatsarinny, Oleg; Bartschat, Klaus

    2011-05-11

    We describe a recently developed fully relativistic B-spline R-matrix method for atomic structure as well as calculations for electron and photon collision with atoms and ions. The method is based on the solution of the many-electron Fock-Dirac equation and allows to employ non-orthogonal sets of atomic orbitals. A B-spline basis is used to generate both the target description and the R-matrix basis functions in the inner region. Employing B-splines of different orders for the large and small components prevents the appearance of spurious states in the spectrum of the Dirac equation. Using term-dependent and thus nonorthogonal sets of one-electron functions enables us to generate accurate and flexible representations of the target states and the scattering function. Our method is based upon the Dirac-Coulomb Hamiltonian and thus may be employed for any complex atom or ion, without the use of phenomenological core potentials. Example results from recent applications of the method for accurate calculations of low-energy electron scattering from noble gases are presented. In most cases we obtained a substantial improvement over results obtained in previous Breit-Pauli R-matrix calculations.

  17. The Block recursion library: accurate calculation of resolvent submatrices using the block recursion method

    NASA Astrophysics Data System (ADS)

    Godin, T. J.; Haydock, Roger

    1991-04-01

    The Block Recursion Library, a collection of FORTRAN subroutines, calculates submatrices of the resolvent of a linear operator. The resolvent, in matrix theory, is a powerful tool for extracting information about solutions of linear systems. The routines use the block recursion method and achieve high accuracy for very large systems of coupled equations. This technique is a generalization of the scalar recursion method, an accurate technique for finding the local density of states. A sample program uses these routines to find the quantum mechanical transmittance of a randomly disordered two-dimensional cluster of atoms.

  18. Accurate calculation of the intensity dependence of the refractive index using polarized basis sets.

    PubMed

    Baranowska-Łączkowska, Angelika; Łączkowski, Krzysztof Z; Fernández, Berta

    2012-01-14

    Using the single and double excitation coupled cluster level of theory (CCSD) and the density functional theory/Becke 3-parameter Lee-Yang and Parr (DFT/B3LYP) methods, we test the performance of the Pol, ZPol, and LPol-n (n = ds, dl, fs, fl) basis sets in the accurate description of the intensity dependence of the refractive index in the Ne atom, and the N(2) and the CO molecules. Additionally, we test the aug-pc-n (n = 1, 2) basis sets of Jensen, and the SVPD, TZVPD, and QZVPD bases by Rappoport and Furche. Tests involve calculations of dynamic polarizabilities and frequency dependent second hyperpolarizabilities. The results are interpreted in terms of the medium constants entering the expressions for optically induced birefringences. In all achiral systems, the performance of the LPol-n sets is very good. Also the aug-pc-2 set yields promising results. Accurate CCSD results available in the literature allow us to select the best basis sets in order to carry out DFT/B3LYP calculations of medium constants in larger molecules. As applications, we show results for (R)-fluoro-oxirane and (R)-methyloxirane.

  19. Thermochemistry and Charge Delocalization in Cyclization Reactions Using Accurate Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Saritas, Kayahan; Grossman, Jeffrey C.

    2015-03-01

    Molecules that undergo pericyclic isomerization reactions find interesting optical and energy storage applications, because of their usually high quantum yields, large spectral shifts and small structural changes upon light absorption. These reactions induce a drastic change in the conjugated structure such that substituents that become a part of the conjugated system upon isomerization can play an important role in determining properties such as enthalpy of isomerization and HOMO-LUMO gap. Therefore, theoretical investigations dealing with such systems should be capable of accurately capturing the interplay between electron correlation and exchange effects. In this work, we examine the dihydroazulene isomerization as an example conjugated system. We employ the highly accurate quantum Monte Carlo (QMC) method to predict thermochemical properties and to benchmark results from density functional theory (DFT) methods. Although DFT provides sufficient accuracy for similar systems, in this particular system, DFT predictions of ground state and reaction paths are inconsistent and non-systematic errors arise. We present a comparison between QMC and DFT results for enthalpy of isomerization, HOMO-LUMO gap and charge densities with a range of DFT functionals.

  20. Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations

    NASA Astrophysics Data System (ADS)

    Rey, Michaël; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2014-07-01

    Accurate variational high-resolution spectra calculations in the range 0-8000 cm-1 are reported for the first time for the monodeutered methane (12CH3D). Global calculations were performed by using recent ab initio surfaces for line positions and line intensities derived from the main isotopologue 12CH4. Calculation of excited vibrational levels and high-J rovibrational states is described by using the normal mode Eckart-Watson Hamiltonian combined with irreducible tensor formalism and appropriate numerical procedures for solving the quantum nuclear motion problem. The isotopic H→D substitution is studied in details by means of symmetry and nonlinear normal mode coordinate transformations. Theoretical spectra predictions are given up to J = 25 and compared with the HITRAN 2012 database representing a compilation of line lists derived from analyses of experimental spectra. The results are in very good agreement with available empirical data suggesting that a large number of yet unassigned lines in observed spectra could be identified and modeled using the present approach.

  1. Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations.

    PubMed

    Rey, Michaël; Nikitin, Andrei V; Tyuterev, Vladimir G

    2014-07-28

    Accurate variational high-resolution spectra calculations in the range 0-8000 cm(-1) are reported for the first time for the monodeutered methane ((12)CH3D). Global calculations were performed by using recent ab initio surfaces for line positions and line intensities derived from the main isotopologue (12)CH4. Calculation of excited vibrational levels and high-J rovibrational states is described by using the normal mode Eckart-Watson Hamiltonian combined with irreducible tensor formalism and appropriate numerical procedures for solving the quantum nuclear motion problem. The isotopic H→D substitution is studied in details by means of symmetry and nonlinear normal mode coordinate transformations. Theoretical spectra predictions are given up to J = 25 and compared with the HITRAN 2012 database representing a compilation of line lists derived from analyses of experimental spectra. The results are in very good agreement with available empirical data suggesting that a large number of yet unassigned lines in observed spectra could be identified and modeled using the present approach.

  2. Accurate first-principles calculations for {sup 12}CH{sub 3}D infrared spectra from isotopic and symmetry transformations

    SciTech Connect

    Rey, Michaël Tyuterev, Vladimir G.; Nikitin, Andrei V.

    2014-07-28

    Accurate variational high-resolution spectra calculations in the range 0-8000 cm{sup −1} are reported for the first time for the monodeutered methane ({sup 12}CH{sub 3}D). Global calculations were performed by using recent ab initio surfaces for line positions and line intensities derived from the main isotopologue {sup 12}CH{sub 4}. Calculation of excited vibrational levels and high-J rovibrational states is described by using the normal mode Eckart-Watson Hamiltonian combined with irreducible tensor formalism and appropriate numerical procedures for solving the quantum nuclear motion problem. The isotopic H→D substitution is studied in details by means of symmetry and nonlinear normal mode coordinate transformations. Theoretical spectra predictions are given up to J = 25 and compared with the HITRAN 2012 database representing a compilation of line lists derived from analyses of experimental spectra. The results are in very good agreement with available empirical data suggesting that a large number of yet unassigned lines in observed spectra could be identified and modeled using the present approach.

  3. Efficient yet accurate approximations for ab initio calculations of alcohol cluster thermochemistry.

    PubMed

    Umer, Muhammad; Kopp, Wassja A; Leonhard, Kai

    2015-12-07

    We have calculated the binding enthalpies and entropies of gas phase alcohol clusters from ethanol to 1-decanol. In addition to the monomers, we have investigated dimers, tetramers, and pentamers. Geometries have been obtained at the B3LYP/TZVP level and single point energy calculations have been performed with the Resolution of the Identity-MP2 (RIMP2) method and basis set limit extrapolation using aug-cc-pVTZ and aug-cc-pVQZ basis sets. Thermochemistry is calculated with decoupled hindered rotor treatment for large amplitude motions. The results show three points: First, it is more accurate to transfer the rigid-rotor harmonic oscillator entropies from propanol to longer alcohols than to compute them with an ultra-fine grid and tight geometry convergence criteria. Second, the computational effort can be reduced considerably by using dimerization energies of longer alcohols at density functional theory (B3LYP) level plus a RIMP2 correction obtained from 1-propanol. This approximation yields results almost with the same accuracy as RIMP2 - both methods differ for 1-decanol only 0.4 kJ/mol. Third, the entropy of dimerization including the hindered rotation contribution is converged at 1-propanol with respect to chain length. This allows for a transfer of hindered rotation contributions from smaller alcohols to longer ones which reduces the required computational and man power considerably.

  4. Efficient yet accurate approximations for ab initio calculations of alcohol cluster thermochemistry

    NASA Astrophysics Data System (ADS)

    Umer, Muhammad; Kopp, Wassja A.; Leonhard, Kai

    2015-12-01

    We have calculated the binding enthalpies and entropies of gas phase alcohol clusters from ethanol to 1-decanol. In addition to the monomers, we have investigated dimers, tetramers, and pentamers. Geometries have been obtained at the B3LYP/TZVP level and single point energy calculations have been performed with the Resolution of the Identity-MP2 (RIMP2) method and basis set limit extrapolation using aug-cc-pVTZ and aug-cc-pVQZ basis sets. Thermochemistry is calculated with decoupled hindered rotor treatment for large amplitude motions. The results show three points: First, it is more accurate to transfer the rigid-rotor harmonic oscillator entropies from propanol to longer alcohols than to compute them with an ultra-fine grid and tight geometry convergence criteria. Second, the computational effort can be reduced considerably by using dimerization energies of longer alcohols at density functional theory (B3LYP) level plus a RIMP2 correction obtained from 1-propanol. This approximation yields results almost with the same accuracy as RIMP2 — both methods differ for 1-decanol only 0.4 kJ/mol. Third, the entropy of dimerization including the hindered rotation contribution is converged at 1-propanol with respect to chain length. This allows for a transfer of hindered rotation contributions from smaller alcohols to longer ones which reduces the required computational and man power considerably.

  5. Comment on ``Laboratory measurements and theoretical calculations of O2 A-band electric quadrupole transitions''

    NASA Astrophysics Data System (ADS)

    Balasubramanian, T. K.; Mishra, A. P.

    2011-11-01

    D. A. Long [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.042513 80, 042513 (2009)] recently reported accurate measurements on the ultraweak electric quadrupole (E2) transitions in the O2 A band. They also presented elegant theoretical calculation of the line intensities based on Hund's case (b) formulation. However, their theoretical elucidation fails to relate to a highly relevant previous work by Balasubramanian and Narayanan [Acta Phys. Hung 74, 341 (1994)] in which closed-form expressions for the E2 branch line strengths for the eight possible rotational branches of the b1Σg+-X3Σg- transition, in intermediate coupling, are derived. The complete equivalence of the two methods is proven through direct calculation. A second point of concern is that the magnetic dipole (M1) transition moment M1 = 0.0687 μB deduced by Long from the previously measured transition intensities is ˜2.7 times the ab initio value of 0.0255 μB computed by Minaev [Chem. Phys.CMPHC20301-010410.1016/0301-0104(96)00126-7 208, 299 (1996)]. Since the latter reproduces closely the measured Einstein's spontaneous emission coefficient of the A band, this large discrepancy is intriguing.

  6. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    PubMed

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure.

  7. Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of pearson's correlation coefficient.

    PubMed

    Barlow, Andrew L; Macleod, Alasdair; Noppen, Samuel; Sanderson, Jeremy; Guérin, Christopher J

    2010-12-01

    One of the most routine uses of fluorescence microscopy is colocalization, i.e., the demonstration of a relationship between pairs of biological molecules. Frequently this is presented simplistically by the use of overlays of red and green images, with areas of yellow indicating colocalization of the molecules. Colocalization data are rarely quantified and can be misleading. Our results from both synthetic and biological datasets demonstrate that the generation of Pearson's correlation coefficient between pairs of images can overestimate positive correlation and fail to demonstrate negative correlation. We have demonstrated that the calculation of a thresholded Pearson's correlation coefficient using only intensity values over a determined threshold in both channels produces numerical values that more accurately describe both synthetic datasets and biological examples. Its use will bring clarity and accuracy to colocalization studies using fluorescent microscopy.

  8. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  9. Using Interpolation for Fast and Accurate Calculation of Ion–Ion Interactions

    PubMed Central

    2015-01-01

    We perform extensive molecular dynamics (MD) simulations between pairs of ions of various diameters (2–5.5 Å in increments of 0.5 Å) and charge (+1 or −1) interacting in explicit water (TIP3P) under ambient conditions. We extract their potentials of mean force (PMFs). We develop an interpolation scheme, called i-PMF, that is capable of capturing the full set of PMFs for arbitrary combinations of ion sizes ranging from 2 to 5.5 Å. The advantage of the interpolation process is computational cost. Whereas it can take 100 h to simulate each PMF by MD, we can compute an equivalently accurate i-PMF in seconds. This process may be useful for rapid and accurate calculation of the strengths of salt bridges and the effects of bridging waters in biomolecular simulations. We also find that our data is consistent with Collins’ “law of matching affinities” of ion solubilities: small–small or large–large ion pairs are poorly soluble in water, whereas small–large are highly soluble. PMID:24625086

  10. Rapid and Accurate Calculation of a Speed Dependent Spectral Line Shape

    NASA Astrophysics Data System (ADS)

    Beverstock, D. Reed; Weaver, Kendra Letchworth; Benner, D. Chris

    2014-06-01

    Use of the Voigt profile with the Lorentz width allowed to vary with the speed of collision has been hampered by the lack of fast accurate algorithms. Such an algorithm has been written assuming a quadratic dependence of the Lorentz width upon the speed of collision that is accurate to one part in 10 000 and is generally only a factor of four or so slower than the equivalent Voigt calculation with the Letchworth and Benner algorithm. The only exception to the accuracy is far from line center near the Doppler limit when the speed dependent parameter is quite large. At this point the spectral line has fallen by at least 17 orders of magnitude from the line center and is generally insignificant. Gauss-Hermite quadrature of third to seventeenth order, Taylor series expansion about precomputed points and spline interpolation are used in the computation of both the real and imaginary parts for various regions. Kendra L. Letchworth and D. Chris Benner, JQSRT 107 (2007) 173-192. This work was funded by the Jet Propulsion Laboratory and National Science Foundation.

  11. Theoretical calculations of EPR parameters of gas phase hydracrylonitrile radical

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ebru Karakaş; Dereli, Ömer

    2017-02-01

    As a result of detailed conformational search of the hydracrylonitrile, four different conformers of molecule have been obtained. For these conformations, eleven possible radicals were modelled by using density functional theory (DFT) computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were calculated by B3LYP method using 6-311++G(d,p) basis sets in gas phase.

  12. Anharmonic zero point vibrational energies: Tipping the scales in accurate thermochemistry calculations?

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Florian; Rauhut, Guntram; Feller, David; Peterson, Kirk A.

    2013-01-01

    Anharmonic zero point vibrational energies (ZPVEs) calculated using both conventional CCSD(T) and MP2 in combination with vibrational second-order perturbation theory (VPT2) are compared to explicitly correlated CCSD(T)-F12 and MP2-F12 results that utilize vibrational configuration interaction (VCI) theory for 26 molecules of varying size. Sequences of correlation consistent basis sets are used throughout. It is found that the explicitly correlated methods yield results close to the basis set limit even with double-zeta quality basis sets. In particular, the anharmonic contributions to the ZPVE are accurately recovered at just the MP2 (or MP2-F12) level of theory. Somewhat surprisingly, the best vibrational CI results agreed with the VPT2 values with a mean unsigned deviation of just 0.09 kJ/mol and a standard deviation of just 0.11 kJ/mol. The largest difference was observed for C4H4O (0.34 kJ/mol). A simplified version of the vibrational CI procedure that limited the modal expansion to at most 2-mode coupling yielded anharmonic corrections generally within about 0.1 kJ/mol of the full 3- or 4-mode results, except in the cases of C3H8 and C4H4O where the contributions were underestimated by 1.3 and 0.8 kJ/mol, respectively (34% and 40%, respectively). For the molecules considered in this work, accurate anharmonic ZPVEs are most economically obtained by combining CCSD(T)-F12a/cc-pVDZ-F12 harmonic frequencies with either MP2/aug-cc-pVTZ/VPT2 or MP2-F12/cc-pVDZ-F12/VCI anharmonic corrections.

  13. Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations.

    PubMed

    Morales, Giovanni; Martínez, Ramiro

    2009-07-30

    This research's main goals were to analyze ketene dimers' relative stability and expand group additivity value (GAV) methodology for estimating the thermochemical properties of high-weight ketene polymers (up to tetramers). The CBS-Q multilevel procedure and statistical thermodynamics were used for calculating the thermochemical properties of 20 cyclic structures, such as diketenes, cyclobutane-1,3-diones, cyclobut-2-enones and pyran-4-ones, as well as 57 acyclic base compounds organized into five groups. According to theoretical heat of formation predictions, diketene was found to be thermodynamically favored over cyclobutane-1,3-dione and its enol-tautomeric form (3-hydroxycyclobut-2-enone). This result did not agree with old combustion experiments. 3-Hydroxycyclobut-2-enone was found to be the least stable dimer and its reported experimental detection in solution may have been due to solvent effects. Substituted diketenes had lower stability than substituted cyclobutane-1,3-diones with an increased number of methyl substituents, suggesting that cyclobutane-1,3-dione type dimers are the major products because of thermodynamic control of alkylketene dimerization. Missing GAVs for the ketene dimers and related structures were calculated through linear regression on the 57 acyclic base compounds. Corrections for non next neighbor interactions (such as gauche, eclipses, and internal hydrogen bond) were needed for obtaining a highly accurate and precise regression model. To the best of our knowledge, the hydrogen bond correction for GAV methodology is the first reported in the literature; this correction was correlated to MP2/6-31Gdagger and HF/6-31Gdagger derived geometries to facilitate its application. GAVs assessed by the linear regression model were able to reproduce acyclic compounds' theoretical thermochemical properties and experimental heat of formation for acetylacetone. Ring formation and substituent position corrections were calculated by consecutively

  14. Theoretical calculation of spectra of dibutyl phthalate and dioctyl phthalate

    NASA Astrophysics Data System (ADS)

    Du, Jian-Bin; Tang, Yan-Lin; Long, Zheng-Wen; Hu, Shuang-Hui; Li, Tao

    2014-05-01

    Dibutyl phthalate DBP and dioctyl phthalate DOP are the main components of the plasticizers. In order to investigate their molecular structure, chemical bond and spectrum, the geometrical parameters of the ground state and infrared (IR) spectrum are calculated using the density functional theory B3LYP method at the level of 6-311++G( d, p). On this basis, the first twenty-six excited states and the UV-Vis absorption spectra of DBP and DOP are studied using the time-dependent density functional theory (TDDFT) in the same fundamental group and compared with the ultraviolet absorption peak of the molecules measured with UNICO UV-Vis spectrophotometer. The two kinds of molecular spectra are then classified and compared with that in reference. The results show that the strong absorption of IR spectra of DOP and DBP are produced by C-H bending in-plane vibration and C=O telescopic vibration producing. The most absorption of UV-Vis absorption spectra appears in the end absorption belt from n to σ* transition, and the stronger absorption in the E belt of benzene electronic transition from π to π*. There are blue shift for DOP end absorption belt from n to σ* transition and red shift for DOP E absorption belt from π to π* transition relative to that of DBP. This calculation results are better in accord with the spectral data measured by UNICO ultraviolet and visible spectrophotometer.

  15. Calorimetric determinations and theoretical calculations of polymorphs of thalidomide

    NASA Astrophysics Data System (ADS)

    Lara-Ochoa, F.; Pérez, G. Espinosa; Mijangos-Santiago, F.

    2007-09-01

    The analysis of the thermograms of thalidomide obtained for the two reported polymorphs α and β by differential scanning calorimetry (DSC) shows some inconsistencies that are discussed in the present work. The conception of a new polymorph form, named β ∗, allowed us to explain the observed thermal behavior more satisfactorily. This new polymorph shows enantiotropy with both α and β polymorphs, reflected in the unique endotherm obtained in the DSC-thermograms, when a heating rate of 10 °C/min is applied. Several additional experiments, such as re-melting of both polymorph forms, showed that there is indeed a new polymorph with an endotherm located between the endotherms of α and β. IR, Raman, and powder X-ray permit us to characterize the isolated compound, resulting from the re-melting of both polymorph forms. Mechanical calculations were performed to elucidate the conformations of each polymorph, and ab initio quantum chemical calculations were performed to determine the energy of the more stable conformers and the spatial cell energy for both polymorphs α and β. These results suggested a possible conformation for the newly discovered polymorph β ∗.

  16. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  17. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?

    PubMed

    Gutten, Ondrej; Beššeová, Ivana; Rulíšek, Lubomír

    2011-10-20

    To address fundamental questions in bioinorganic chemistry, such as metal ion selectivity, accurate computational protocols for both the gas-phase association of metal-ligand complexes and solvation/desolvation energies of the species involved are needed. In this work, we attempt to critically evaluate the performance of the ab initio and DFT electronic structure methods available and recent solvation models in calculations of the energetics associated with metal ion complexation. On the example of five model complexes ([M(II)(CH(3)S)(H(2)O)](+), [M(II)(H(2)O)(2)(H(2)S)(NH(3))](2+), [M(II)(CH(3)S)(NH(3))(H(2)O)(CH(3)COO)], [M(II)(H(2)O)(3)(SH)(CH(3)COO)(Im)], [M(II)(H(2)S)(H(2)O)(CH(3)COO)(PhOH)(Im)](+) in typical coordination geometries) and four metal ions (Fe(2+), Cu(2+), Zn(2+), and Cd(2+); representing open- and closed-shell and the first- and second-row transition metal elements), we provide reference values for the gas-phase complexation energies, as presumably obtained using the CCSD(T)/aug-cc-pVTZ method, and compare them with cheaper methods, such as DFT and RI-MP2, that can be used for large-scale calculations. We also discuss two possible definitions of interaction energies underlying the theoretically predicted metal-ion selectivity and the effect of geometry optimization on these values. Finally, popular solvation models, such as COSMO-RS and SMD, are used to demonstrate whether quantum chemical calculations can provide the overall free enthalpy (ΔG) changes in the range of the expected experimental values for the model complexes or match the experimental stability constants in the case of three complexes for which the experimental data exist. The data presented highlight several intricacies in the theoretical predictions of the experimental stability constants: the covalent character of some metal-ligand bonds (e.g., Cu(II)-thiolate) causing larger errors in the gas-phase complexation energies, inaccuracies in the treatment of solvation of the

  18. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for (Exo-)Planetary Retrieval Models

    NASA Astrophysics Data System (ADS)

    Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.

    2015-12-01

    Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work

  19. Is the Separable Propagator Perturbation Approach Accurate in Calculating Angle Resolved Photoelectron Diffraction Spectra?

    NASA Astrophysics Data System (ADS)

    Ng, C. N.; Chu, T. P.; Wu, Huasheng; Tong, S. Y.; Huang, Hong

    1997-03-01

    We compare multiple scattering results of angle-resolved photoelectron diffraction spectra between the exact slab method and the separable propagator perturbation method. In the slab method,footnote C.H. Li, A.R. Lubinsky and S.Y. Tong, Phys. Rev. B17, 3128 (1978). the source wave and multiple scattering within the strong scattering atomic layers are expanded in spherical waves while interlayer scattering is expressed in plane waves. The transformation between spherical waves and plane waves is done exactly. The plane waves are then matched across the solid-vacuum interface to a single outgoing plane wave in the detector's direction. The separable propagator perturbation approach uses two approximations: (i) A separable representation of the Green's function propagator and (ii) A perturbation expansion of multiple scattering terms. Results of c(2x2) S-Ni(001) show that this approximate method fails to converge due to the very slow convergence of the separable representation for scattering angles less than 90^circ. However, this method is accurate in the backscattering regime and may be applied to XAFS calculations.(J.J. Rehr and R.C. Albers, Phys. Rev. B41, 8139 (1990).) The use of this method for angle-resolved photoelectron diffraction spectra is substantially less reliable.

  20. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  1. Accurate calculation of the transverse anisotropy of a magnetic domain wall in perpendicularly magnetized multilayers

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Krüger, Benjamin; Eisebitt, Stefan; Kläui, Mathias

    2015-08-01

    Bloch domain walls are the most common type of transition between two out-of-plane magnetized domains (one magnetized upwards, one downwards) in films with perpendicular magnetic anisotropy. The rotation of the spins of such domain walls in the plane of the film requires energy, which is described by an effective anisotropy, the so-called transverse or hard axis anisotropy K⊥. This anisotropy and the related Döring mass density of the domain wall are key parameters of the one-dimensional model to describe the motion of magnetic domain walls. In particular, the critical field strength or current density where oscillatory domain wall motion sets in (Walker breakdown) is directly proportional to K⊥. So far, no general framework is available to determine K⊥ from static characterizations such as magnetometry measurements. Here, we derive a universal analytical expression to calculate the transverse anisotropy constant for the important class of perpendicular magnetic multilayers. All the required input parameters of the model, such as the number of repeats, the thickness of a single magnetic layer, and the layer periodicity, as well as the effective perpendicular anisotropy, the saturation magnetization, and the static domain wall width are accessible by static sample characterizations. We apply our model to a widely used multilayer system and find that the effective transverse anisotropy constant is a factor of seven different from that when using the conventional approximations, showing the importance of using our analysis scheme. Our model is also applicable to domain walls in materials with Dzyaloshinskii-Moriya interaction (DMI). The accurate knowledge of K⊥ is needed to determine other unknown parameters from measurements, such as the DMI strength or the spin polarization of the spin current in current-induced domain wall motion experiments.

  2. Anomalous Dispersion in Gases Derived from the Optical Depth. Theoretical Treatment: Line by Line Calculations

    DTIC Science & Technology

    1991-06-28

    AD-A238 853 ANOMALOUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH. THEORETICAL TREATMENT; LINE BY LINE CALCULATIONS BY EGIL BINGEN . BJ0RNAR...06054 917 1 04 ANOMALOUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH. THEORETICAL TREATMENT; LINE BY LINE CALCULATIONS by - EGII, BINGEN . BJORNAR... BINGEN Egil, YSTAD Bjornar 61 DISTRIBUTION STATEMENT Approved for pub’ic release. Distribution unlimited (Offentlig tilgjengelig) 7) INDEXING TERMS IN

  3. Accurate and efficient calculation of discrete correlation functions and power spectra

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Liu, J. M.; Zhu, W. D.

    2015-07-01

    Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate

  4. Accurate calculation of second virial coefficient of the Exp-6 potential and its application

    NASA Astrophysics Data System (ADS)

    Mamedov, B. A.; Somuncu, E.

    2015-02-01

    In this study, a new approach to calculate the second virial coefficient of the Exp-6 potential is proposed. Over a wide temperature range, the calculated results of the second virial coefficient determined from Exp-6 potential are comparable with the calculations of second virial coefficient over Lennard-Jones (12-6) potential. As an example of application, the formulas obtained for second virial coefficient are calculated for molecules Kr,Xe,N2,Hg,CH4 and C2H6. The obtained results are in good agreement with the data available in the literature.

  5. Recent advances in the practical and accurate calculation of core and valence XPS spectra of polymers: From interpretation to simulation?

    NASA Astrophysics Data System (ADS)

    Bureau, Christophe; Chong, Delano P.; Endo, Kazunaka; Delhalle, Joseph; Lecayon, Gérard; Le Moël, Alain

    1997-08-01

    Core and valence X-ray Photoelectron Spectroscopies (XPS) are routinely used to obtain information on the chemical composition, bonding and homogeneity of polymer surfaces. In spite of their apparent conceptual simplicity, Core and Valence Electron Binding Energies (CEBEs and VEBEs) a few electron-volts (eV) or fractions of an eV apart are difficult to interpret. We present some results obtained with various recent theoretical approaches. An emphasis is made on a procedure based on the Density Functional Theory (DFT) that enables the calculation of CEBEs and VEBEs which are in remarkable agreement with experiment. The method has been tested on numerous small (3-6 atoms) to fairly large (15-25 atoms) molecules, and shows an average absolute deviation with experiment of only 0.20 eV for CEBEs and 0.30 eV for VEBEs, i.e. compatible with the resolution of the best XPS experiments carried out at the moment. Besides the quality of its predictions, the procedure takes advantage of the speed and CPU time scaling of DFT as a function of system size: it is computationally tractable, even for surprisingly large systems such as polymers, and may be an interesting accurate alternative to interpret and simulate XPS-probing on real systems. We illustrate the usefullness and pitfalls of this approach in fundamental as well as applied fields such as in the study of Polyacrylonitrile (PAN), Polytetrafluoroethylene (PTFE), Polyvinyldifluoride (PVdF) and γ-Aminopropyltriethoxysilane (γ-APS, an adhesion promoter).

  6. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  7. JCZS: An Intermolecular Potential Database for Performing Accurate Detonation and Expansion Calculations

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; McGee, B.C.

    1998-11-03

    Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.

  8. Accurate calculation of Green functions on the d-dimensional hypercubic lattice

    NASA Astrophysics Data System (ADS)

    Loh, Yen Lee

    2011-07-01

    We write the Green function of the d-dimensional hypercubic lattice in a piecewise form covering the entire real frequency axis. Each piece is a single integral involving modified Bessel functions of the first and second kinds. The smoothness of the integrand allows both real and imaginary parts of the Green function to be computed quickly and accurately for any dimension d and any real frequency, and the computational time scales only linearly with d.

  9. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    SciTech Connect

    Myint, P. C.; Hao, Y.; Firoozabadi, A.

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  10. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    SciTech Connect

    Wills, John M; Mattsson, Ann E

    2012-06-06

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  11. Accurate transition probabilities from large-scale multiconfiguration calculations - A tribute to Charlotte Froese Fischer

    NASA Astrophysics Data System (ADS)

    Jönsson, Per; Godefroid, Michel; Gaigalas, Gediminas; Bieroń, Jacek; Brage, Tomas

    2013-07-01

    The development of multiconfiguration computer packages for atomic structure calculations is reviewed with special attention to the work of Charlotte Froese Fischer. The underlying theory is described along with methodologies to choose basis expansions of configuration state functions. Calculations of energies and transitions rates are presented and the accuracy of the results is assessed. Limitations of multiconfiguration methods are discussed and it is shown how these limitations can be circumvented by a division of the original large-scale computational problem into a number of smaller problems.

  12. First principle calculation of accurate native defect levels in CaF2

    NASA Astrophysics Data System (ADS)

    Ibraheem, Abdelaziz M.; Khalafalla, Mohammed A. H.; Eisa, Mohamed H.

    2017-03-01

    We report on the first principle density functional calculation of the charge transition levels of native defects (vacancies and interstitials) in CaF2 structure. The transition level was defined as the Fermi level where two charge states of given defect have the same formation energy. The common error in the band gap inherited to semiclocal density functional has been accounted for by incorporating the hybrid density functional method, leading to correct placement of the transition levels within the band gap. The band gap size from hybrid calculation has been validated using the full potential, Linearized Augmented Planewave method with the Modified-Becke-Johnson exchange potential. Prior to level calculations, we ensured that an agreement between the formation energies from small (95-97 atoms) and large (323-325 atoms) supercells was achieved after applying the Makov-Payne correction method. Our calculated transition level for the anion vacancy was 2.97 eV below the conduction band, agreeing with the experimental optical absorption band at 3.3 eV associated with the electron transition from the ground state F-center to the conduction band in CaF2.

  13. Calculation of accurate channel spacing of an AWG optical demultiplexer applying proportional method

    NASA Astrophysics Data System (ADS)

    Seyringer, D.; Hodzic, E.

    2015-06-01

    We present the proportional method to correct the channel spacing between the transmitted output channels of an AWG. The developed proportional method was applied to 64-channel, 50 GHz AWG and the achieved results confirm very good correlation between designed channel spacing (50 GHz) and the channel spacing calculated from simulated AWG transmission characteristics.

  14. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  15. The Calculation of Accurate Harmonic Frequencies of Large Molecules: The Polycyclic Aromatic Hydrocarbons, a Case Study

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1996-01-01

    The vibrational frequencies and infrared intensities of naphthalene neutral and cation are studied at the self-consistent-field (SCF), second-order Moller-Plesset (MP2), and density functional theory (DFT) levels using a variety of one-particle basis sets. Very accurate frequencies can be obtained at the DFT level in conjunction with large basis sets if they are scaled with two factors, one for the C-H stretches and a second for all other modes. We also find remarkably good agreement at the B3LYP/4-31G level using only one scale factor. Unlike the neutral PAHs where all methods do reasonably well for the intensities, only the DFT results are accurate for the PAH cations. The failure of the SCF and MP2 methods is caused by symmetry breaking and an inability to describe charge delocalization. We present several interesting cases of symmetry breaking in this study. An assessment is made as to whether an ensemble of PAH neutrals or cations could account for the unidentified infrared bands observed in many astronomical sources.

  16. Do Bond Functions Help for the Calculation of Accurate Bond Energies?

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    1998-01-01

    The bond energies of 8 chemically bound diatomics are computed using several basis sets with and without bond functions (BF). The bond energies obtained using the aug-pVnZ+BF basis sets (with a correction for basis set superposition error, BSSE) tend to be slightly smaller that the results obtained using the aug-pV(n+I)Z basis sets, but slightly larger than the BSSE corrected aug-pV(n+I)Z results. The aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield reasonable estimates of bond energies, but, in most cases, these results cannot be considered highly accurate. Extrapolation of the results obtained with basis sets including bond functions appears to be inferior to the results obtained by extrapolation using atom-centered basis sets. Therefore bond functions do not appear to offer a path for obtaining highly accurate results for chemically bound systems at a lower computational cost than atom centered basis sets.

  17. Accurate and efficient calculation of light propagation in one-dimensional inhomogeneous anisotropic media through extrapolation

    NASA Astrophysics Data System (ADS)

    Lu, Zhao

    2007-01-01

    Berreman's 4×4 matrix approach has been generally applied to calculating light propagation in one-dimensional (1-D) inhomogeneous anisotropic media. In numerical calculations the propagator (propagation matrix) of whole 1-D inhomogeneous media is approximated by a stack of N homogeneous slab propagators. We analyze the error of the slab propagator in this slab approximation and show it is correct through the order 1/N2. By using the extrapolation approach, we eliminate the leading error terms of the product (total propagator) of N homogeneous slab propagators successively. Numerical tests for a cholesteric liquid crystal show that the total propagator constructed through extrapolation is of higher accuracy and efficiency than Berreman's and Abdulhalim's or faster 4×4 total propagators.

  18. Accurate alkynyl radical structures from density functional calculations without Hartree-Fock exchange

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.; Proynov, Emil

    2017-02-01

    Density functional approximations (DFAs) often suffer from self-repulsion and delocalization errors which are reduced by exact (Hartree-Fock-like) exchange admixture. Oyeyemi and co-workers recently showed that several DFAs with little exact exchange incorrectly predict bent alkynyl radical geometries, giving errors in ab initio composite methods using density functional theory geometries [V. B. Oyeyemi et al., J. Phys. Chem. Lett. 3, 289 (2012)]. We show that the simple Hartree-Fock-Slater and Xα DFAs, which have substantial delocalization error, predict linear alkynyl radical geometries without incorporating exact exchange. Our Rung 3.5 DFAs, and rescaled generalized gradient approximations, can give either linear σ, bent σ -π , or nearly linear π radicals, all without incorporating exact exchange. This highlights the complexity of delocalization error, the utility of accurate empirical DFA geometries for ab initio composite methods, and the insights to be gained from Rung 3.5 DFAs.

  19. A new equation for the accurate calculation of sound speed in all oceans.

    PubMed

    Leroy, Claude C; Robinson, Stephen P; Goldsmith, Mike J

    2008-11-01

    A new equation is proposed for the calculation of sound speed in seawater as a function of temperature, salinity, depth, and latitude in all oceans and open seas, including the Baltic and the Black Sea. The proposed equation agrees to better than +/-0.2 m/s with two reference complex equations, each fitting the best available data corresponding to existing waters of different salinities. The only exceptions are isolated hot brine spots that may be found at the bottom of some seas. The equation is of polynomial form, with 14 terms and coefficients of between one and three significant figures. This is a substantial reduction in complexity compared to the more complex equations using pressure that need to be calculated according to depth and location. The equation uses the 1990 universal temperature scale (an elementary transformation is given for data based on the 1968 temperature scale). It is hoped that the equation will be useful to those who need to calculate sound speed in applications of marine acoustics.

  20. Spectral Quadrature method for accurate O(N) electronic structure calculations of metals and insulators

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-02

    We present the Clenshaw–Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw–Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order tomore » exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N3) planewave results. In conclusion, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.« less

  1. Spectral Quadrature method for accurate O(N) electronic structure calculations of metals and insulators

    NASA Astrophysics Data System (ADS)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2016-03-01

    We present the Clenshaw-Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw-Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order to exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N3) planewave results. Finally, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.

  2. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    NASA Astrophysics Data System (ADS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-02-01

    A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by Dpb. Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the Dpb of base pairs in DNA along C-H and N-H bonds are obtained for the first time. All results show that C7-H of A-T and C8-H of G-C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate Dpb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules.

  3. Calculating biologically accurate mitigation credits: insights from the California tiger salamander.

    PubMed

    Searcy, Christopher A; Shaffer, H Bradley

    2008-08-01

    Current conservation mitigation plans often fail to ensure full in-kind habitat replacement for endangered species, which suggests the need for improved methods for calculating mitigation credits. A simple, yet biologically meaningful method for calculating mitigation credits would be to let the number of mitigation credits assigned to a parcel of land scale with the reproductive value of the individuals occupying that parcel. This can be accomplished by dividing the population into 2 or more subdivisions with different reproductive values, calculating the densities of these subdivisions as a function of one or more habitat parameters, and then forming a weighted sum of these densities such that each density distribution is weighted by the reproductive value of its respective subdivision of the population. This weighted sum is the density distribution of reproductive value, and by integrating it over a particular parcel, one can determine the mitigation value of that parcel. We carried out this procedure for a population of California tiger salamanders (Ambystoma californiense), with distance from breeding site as our habitat parameter and the 3 visually identifiable age classes (adults, juveniles, and metamorphs) as our population subdivisions. This led to a density distribution of reproductive value that decreased exponentially with increasing distance from a breeding site. Mitigation strategies derived from this function will be more likely to ensure the persistence of California tiger salamander populations than current approaches, which assign all land within 1.6 km of a breeding site the same mitigation value. Use of the density distribution of reproductive value as a basis for mitigation plans is a procedure that can be applied to all endangered species, and it should improve the quality of mitigation decisions.

  4. Effective approach for accurately calculating individual energy of polar heterojunction interfaces

    NASA Astrophysics Data System (ADS)

    Akiyama, Toru; Nakane, Harunobu; Nakamura, Kohji; Ito, Tomonori

    2016-09-01

    We propose a direct approach for calculating individual energy of polar semiconductor interfaces using density functional theory calculations. This approach is applied to polar interfaces between group-III nitrides (AlN and GaN) and SiC and clarifies the interplay of chemical bonding and charge neutrality at the interface, which is crucial for the stability and polarity of group-III nitrides on SiC substrates. The ideal interface is stabilized among various atomic arrangements over the wide range of the chemical potential on Si-face SiC, whereas those with intermixing are favorable on C-face SiC. The stabilization of the ideal interfaces resulting in Ga-polar GaN and Al-polar AlN films on Si-face SiC is consistent with experiments, suggesting that our approach is versatile to evaluate various polar heterojunction interfaces as well as group-III nitrides on semiconductor substrates.

  5. Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Komsa, Hannu-Pekka; Berseneva, Natalia; Krasheninnikov, Arkady V.; Nieminen, Risto M.

    2014-07-01

    Impurities and defects frequently govern materials properties, with the most prominent example being the doping of bulk semiconductors where a minute amount of foreign atoms can be responsible for the operation of the electronic devices. Several computational schemes based on a supercell approach have been developed to get insights into types and equilibrium concentrations of point defects, which successfully work in bulk materials. Here, we show that many of these schemes cannot directly be applied to two-dimensional (2D) systems, as formation energies of charged point defects are dominated by large spurious electrostatic interactions between defects in inhomogeneous environments. We suggest two approaches that solve this problem and give accurate formation energies of charged defects in 2D systems in the dilute limit. Our methods, which are applicable to all kinds of charged defects in any 2D system, are benchmarked for impurities in technologically important h-BN and MoS2 2D materials, and they are found to perform equally well for substitutional and adatom impurities.

  6. Theoretical Calculation of Electronic Circular Dichroism of a Hexahydroxydiphenoyl-Containing Flavanone Glycoside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time-dependent density functional theory (TDDFT) was employed for theoretical calculation of electronic circular dichroism (ECD) of a hexahydroxydiphenoyl (HHDP)-containing flavanone glycoside, mattucinol-7-O-[4'',6''-O-(aS)-hexahydroxydiphenoyl]-ß-d-glucopyranoside (2). It identified the roles of t...

  7. Efficiency and power loss in d. c. chopper circuits. [Theoretical calculation

    SciTech Connect

    Beck, M.O.

    1981-01-01

    The object of this paper was to investigate the efficiency and source of power losses of various classes of dc chopper circuits. The study involved a theoretical calculation of the power losses, supported by a considerable amount of practical work on full power-rated traction motor test bed. 3 refs.

  8. Photophysical study and theoretical calculations of an ionic liquid crystal bearing oxadiazole

    NASA Astrophysics Data System (ADS)

    Pedro, Jorge A.; Mora, José R.; Westphal, Eduard; Gallardo, Hugo; Fiedler, Haidi D.; Nome, Faruk

    2012-05-01

    We report a detailed photophysical study of 1-dodecyl-4-[5-(4-dodecyloxyphenyl)-1,3,4-oxadiazole-2-yl]pyridinium bromide (454Do), a cationic amphiphile that behaves as a fluorescent liquid crystal. Excitation and emission spectra of the probe in different environments result in significant changes in quantum yields which are correlated with changes in lifetimes and theoretical calculations.

  9. Structure and properties of electronic and hole centers in CsBr from theoretical calculations

    SciTech Connect

    Halliday, Matthew T.; Hess, Wayne P.; Shluger, Alexander L.

    2015-06-24

    The electronic structure, geometry, diffusion barriers and optical properties of fundamental defects of CsBr are calculated using hybrid functional DFT and TD- DFT methods. The B3LYP functional with a modified exchange contribution has been used in an embedded cluster scheme to model the structure and spectroscopic properties of self-trapped triplet exciton, interstitial Br atoms and ions, self-trapped holes and Br vacancies. The calculated migration barriers and positions of maxima of optical absorption bands are in good agreement with experiment, justifying the obtained defect geometries. The o*-center triplet exciton luminescence energy is also accurately calculated.

  10. Accurate spectroscopic calculations of 21 electronic states of ClO radical including transition properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-08-01

    The potential energy curves were calculated for the 21 states (X2Π, A2Π, 32Π, 42Π, 52Π, 12Σ+, 22Σ+, 32Σ+, 12Σ-, 22Σ-, 32Σ-, 12Δ, 22Δ, 32Δ, 12Φ, 14Σ+, a4Σ-, 24Σ-, 14Π, 24Π and 14Δ), which originated from the two lowest dissociation channels of ClO radical. The calculations were done for internuclear separations approximately from 0.08 to 1.10 nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV5Z basis set. Of these 21 states, the 14Π, 24Π, 32Δ, 42Π, 52Π, 12Φ, 32Σ+, 14Δ and 24Σ- states are repulsive. The 12Δ, 12Σ-, 14Σ+, 22Σ-, 12Σ+, 22Σ+, 22Δ and 32Σ- states are very weakly bound. Only the A2Π state has one barrier. The avoided crossing exists between the A2Π and the 32Π state. However, the avoided crossing does not generate any double wells. Core- valence correlation correction was accounted for at the level of an aug-cc-pCVQZ basis set. Scalar relativistic correction was included by the third-order Douglas-Kroll Hamiltonian approximation at the level of an aug-cc-pVQZ basis set. All the potential energy curves were extrapolated to the complete basis set limit. The spectroscopic parameters were determined. The 12Σ-, 22Σ-, 32Σ- and 14Σ+ states may be very difficult to be detected in an experiment, since each of these Λ-S states has only one or two vibrational states. The Franck-Condon factors and radiative lifetimes were calculated for several low vibrational levels of the A2Π - X2Π, 32Π - a4Σ-, 22Δ - a4Σ- and 32Σ- - 12Σ- transitions. The spin-orbit coupling effect on the spectroscopic parameters of the X2Π, A2Π, 32Π, a4Σ- and 22Σ+ states were discussed. The spectroscopic properties reported here can be expected to be reliably predicted ones.

  11. Accurate calculation and assignment of highly excited vibrational levels of floppy triatomic molecules in a basis of adiabatic vibrational eigenstates

    NASA Astrophysics Data System (ADS)

    Bačić, Z.

    1991-09-01

    We show that the triatomic adiabatic vibrational eigenstates (AVES) provide a convenient basis for accurate discrete variable representation (DVR) calculation and automatic assignment of highly excited, large amplitude motion vibrational states of floppy triatomic molecules. The DVR-AVES states are eigenvectors of the diagonal (in the stretch states) blocks of the adiabatically rearranged triatomic DVR-ray eigenvector (DVR-REV) Hamiltonian [J. C. Light and Z. Bačić, J. Chem. Phys. 87, 4008 (1987)]. The transformation of the full triatomic vibrational Hamiltonian from the DVR-REV basis to the new DVR-AVES basis is simple, and does not involve calculation of any new matrix elements. No dynamical approximation is made in the energy level calculation by the DVR-AVES approach; its accuracy and efficiency are identical to those of the DVR-REV method. The DVR-AVES states, as the adiabatic approximation to the vibrational states of a triatomic molecule, are labeled by three vibrational quantum numbers. Consequently, accurate large amplitude motion vibrational levels obtained by diagonalizing the full vibrational Hamiltonian transformed to the DVR-AVES basis, can be assigned automatically by the code, with the three quantum numbers of the dominant DVR-AVES state associated with the largest (by modulus) eigenvector element in the DVR-AVES basis. The DVR-AVES approach is used to calculate accurate highly excited localized and delocalized vibrational levels of HCN/HNC and LiCN/LiNC. A significant fraction of localized states of both systems, below and above the isomerization barrier, is assigned automatically, without inspection of wave function plots or separate approximate calculations.

  12. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations.

    PubMed

    Caro, Miguel A; Laurila, Tomi; Lopez-Acevedo, Olga

    2016-12-28

    We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.

  13. Accurate ab initio calculations which demonstrate a 3 Pi u ground state for Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.; Taylor, Peter R.; Walch, Stephen P.

    1986-01-01

    The spectroscopic parameters and separations between the three low-lying X 3 Pi u, A 3 Sigma g -, and a 1 Sigma g + states of Al2 are studied as a function of both the one-particle and n-particle basis set. Approximate correlation treatments are calibrated against full Cl calculations correlating the six valence electrons in a double-zeta plus two d-function basis set. Since the CASSCF/MRCI 3 Pi u to 3 Sigma g - separation is in excellent agreement wtih the FCI value, the MRCI calculations were carried out in an extended (20s13p6d4f)/(6s5p3d2f) gaussian basis. Including a small correction for relativistic effects, the best estimate is that 3 Sigma g - state lies 174/cm above the 3 Pi u ground state. The 1 Sigma g + state lies at least 2000/cm higher in energy. At the CPF level, inclusion of 2s and 2p correlation has little effect on D sub e, reduces T sub e by only 26/cm, and shortens the bond lengths by about 0.02 a sub o. Further strong support for a 3 Pi u ground state comes from the experimental absorption spectra, since both observed transitions can be convincingly assigned as 3 Pi u yields 3 Pi g. The (2) 3 Pi g state is observed to be sensitive to the level of correlation treatment, and to have its minimum shifted to shorter rho values, such that the strongest experimental absorption peak probably corresponds to the 0 yields 2 transition.

  14. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations.

    PubMed

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-09-04

    Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels.

  15. Accurate Gaussian basis sets for atomic and molecular calculations obtained from the generator coordinate method with polynomial discretization.

    PubMed

    Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F

    2015-10-01

    Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.

  16. Accurate quantum calculation of the bound and resonant rovibrational states of Li-(H2)

    NASA Astrophysics Data System (ADS)

    Xiao, Yingsheng; Poirier, Bill

    2005-03-01

    In a recent paper [B. Poirier, Chem. Phys. 308, 305 (2005)] a full-dimensional quantum method for computing the rovibrational dynamics of triatomic systems was presented, incorporating three key features: (1) exact analytical treatment of Coriolis coupling, (2) three-body "effective potential," and (3) a single bend angle basis for all rotational states. In this paper, these ideas are applied to the Li-(H2) electrostatic complex, to compute all of the rovibrational bound state energies, and a number of resonance energies and widths, to very high accuracy (thousandths of a wave number). This application is very challenging, owing to the long-range nature of the interaction and to narrow level spacings near dissociation. Nevertheless, by combining the present method with a G4 symmetry-adapted phase-space-optimized representation, only modest basis sizes are required for which the matrices are amenable to direct diagonalization. Several new bound levels are reported, as compared with a previous calculation [D. T. Chang, G. Surratt, G. Ristroff, and G. I. Gellene, J. Chem. Phys. 116, 9188 (2002)]. The resonances exhibit a clear-cut separation into shape and Feshbach varieties, with the latter characterized by extremely long lifetimes (microseconds or longer).

  17. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in zero-point energy.

    PubMed

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2005-08-22

    An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.

  18. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  19. Modifying scoping codes to accurately calculate TMI-cores with lifetimes greater than 500 effective full-power days

    SciTech Connect

    Bai, D.; Levine, S.L. ); Luoma, J.; Mahgerefteh, M. )

    1992-01-01

    The Three Mile Island unit 1 core reloads have been designed using fast but accurate scoping codes, PSUI-LEOPARD and ADMARC. PSUI-LEOPARD has been normalized to EPRI-CPM2 results and used to calculate the two-group constants, whereas ADMARC is a modern two-dimensional, two-group diffusion theory nodal code. Problems in accuracy were encountered for cycles 8 and higher as the core lifetime was increased beyond 500 effective full-power days. This is because the heavier loaded cores in both {sup 235}U and {sup 10}B have harder neutron spectra, which produces a change in the transport effect in the baffle reflector region, and the burnable poison (BP) simulations were not accurate enough for the cores containing the increased amount of {sup 10}B required in the BP rods. In the authors study, a technique has been developed to take into account the change in the transport effect in the baffle region by modifying the fast neutron diffusion coefficient as a function of cycle length and core exposure or burnup. A more accurate BP simulation method is also developed, using integral transport theory and CPM2 data, to calculate the BP contribution to the equivalent fuel assembly (supercell) two-group constants. The net result is that the accuracy of the scoping codes is as good as that produced by CASMO/SIMULATE or CPM2/SIMULATE when comparing with measured data.

  20. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations.

    PubMed

    Teale, Andrew M; Lutnæs, Ola B; Helgaker, Trygve; Tozer, David J; Gauss, Jürgen

    2013-01-14

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  1. Interpretation and application of reaction class transition state theory for accurate calculation of thermokinetic parameters using isodesmic reaction method.

    PubMed

    Wang, Bi-Yao; Li, Ze-Rong; Tan, Ning-Xin; Yao, Qian; Li, Xiang-Yuan

    2013-04-25

    We present a further interpretation of reaction class transition state theory (RC-TST) proposed by Truong et al. for the accurate calculation of rate coefficients for reactions in a class. It is found that the RC-TST can be interpreted through the isodesmic reaction method, which is usually used to calculate reaction enthalpy or enthalpy of formation for a species, and the theory can also be used for the calculation of the reaction barriers and reaction enthalpies for reactions in a class. A correction scheme based on this theory is proposed for the calculation of the reaction barriers and reaction enthalpies for reactions in a class. To validate the scheme, 16 combinations of various ab initio levels with various basis sets are used as the approximate methods and CCSD(T)/CBS method is used as the benchmarking method in this study to calculate the reaction energies and energy barriers for a representative set of five reactions from the reaction class: R(c)CH(R(b))CR(a)CH2 + OH(•) → R(c)C(•)(R(b))CR(a)CH2 + H2O (R(a), R(b), and R(c) in the reaction formula represent the alkyl or hydrogen). Then the results of the approximate methods are corrected by the theory. The maximum values of the average deviations of the energy barrier and the reaction enthalpy are 99.97 kJ/mol and 70.35 kJ/mol, respectively, before correction and are reduced to 4.02 kJ/mol and 8.19 kJ/mol, respectively, after correction, indicating that after correction the results are not sensitive to the level of the ab initio method and the size of the basis set, as they are in the case before correction. Therefore, reaction energies and energy barriers for reactions in a class can be calculated accurately at a relatively low level of ab initio method using our scheme. It is also shown that the rate coefficients for the five representative reactions calculated at the BHandHLYP/6-31G(d,p) level of theory via our scheme are very close to the values calculated at CCSD(T)/CBS level. Finally, reaction

  2. Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas

    NASA Technical Reports Server (NTRS)

    Gamache, Robert R.; Pollack, James B.

    1995-01-01

    Halfwidths were calculated for H2O with H2 as a broadening gas and were estimated for He as the broadening species. The calculations used the model of Robert and Bonamy with parabolic trajectories and all relevant terms in the interaction potential. The calculations investigated the dependence of the halfwidth on the order of the atom-atom expansion, the rotational states, and the temperature in the range 200 to 400K. Finally, calculations were performed for many transitions of interest in the 5 micrometer window region of the spectrum. The resulting data will be supplied to Dr. R. Freedman for extracting accurate water mixing ratios from the analysis of the thermal channels for the Net Flux experiment on the Galileo probe.

  3. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.

    PubMed

    van Wyk, Marnus J; Bingle, Marianne; Meyer, Frans J C

    2005-09-01

    International bodies such as International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineering (IEEE) make provision for human exposure assessment based on SAR calculations (or measurements) and basic restrictions. In the case of base station exposure this is mostly applicable to occupational exposure scenarios in the very near field of these antennas where the conservative reference level criteria could be unnecessarily restrictive. This study presents a variety of critical aspects that need to be considered when calculating SAR in a human body close to a mobile phone base station antenna. A hybrid FEM/MoM technique is proposed as a suitable numerical method to obtain accurate results. The verification of the FEM/MoM implementation has been presented in a previous publication; the focus of this study is an investigation into the detail that must be included in a numerical model of the antenna, to accurately represent the real-world scenario. This is accomplished by comparing numerical results to measurements for a generic GSM base station antenna and appropriate, representative canonical and human phantoms. The results show that it is critical to take the disturbance effect of the human phantom (a large conductive body) on the base station antenna into account when the antenna-phantom spacing is less than 300 mm. For these small spacings, the antenna structure must be modeled in detail. The conclusion is that it is feasible to calculate, using the proposed techniques and methodology, accurate occupational compliance zones around base station antennas based on a SAR profile and basic restriction guidelines.

  4. Mass spectrometry and theoretical calculations about the loss of methyl radical from methoxilated coumarins

    NASA Astrophysics Data System (ADS)

    Borkowski, Eduardo J.; Cecati, Francisco M.; Suvire, Fernando D.; Ruiz, Diego M.; Ardanaz, Carlos E.; Romanelli, Gustavo P.; Enriz, Ricardo D.

    2015-08-01

    In this study we have performed CID mass spectrometry measurements and theoretical calculations in a selected series of coumarins. Our theoretical and experimental results indicate that there is room for reasonable doubts about the fragmentation way previously proposed by Shapiro and Djerassi (1965). A complementary explanation about the fragmentation way of the methyl loss from methoxy coumarins has been reported in this work. Our results demonstrated that different theoretical models are very useful to explain the fragmentation occurred in MS, supporting the usual rules of fragmentation. Although the QTAIM analysis gives a good correlation in order to explain the formation of p-quinoid resonance forms; however, the best correlation has been obtained using the NBO approximation as well as from the Wiberg indexes.

  5. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  6. Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions

    SciTech Connect

    Merino, C.; Novikov, I. S.; Shabelski, Yu.

    2009-12-15

    The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.

  7. Accurate dose assessment system for an exposed person utilising radiation transport calculation codes in emergency response to a radiological accident.

    PubMed

    Takahashi, F; Shigemori, Y; Seki, A

    2009-01-01

    A system has been developed to assess radiation dose distribution inside the body of exposed persons in a radiological accident by utilising radiation transport calculation codes-MCNP and MCNPX. The system consists mainly of two parts, pre-processor and post-processor of the radiation transport calculation. Programs for the pre-processor are used to set up a 'problem-dependent' input file, which defines the accident condition and dosimetric quantities to be estimated. The program developed for the post-processor part can effectively indicate dose information based upon the output file of the code. All of the programs in the dosimetry system can be executed with a generally used personal computer and accurately give the dose profile to an exposed person in a radiological accident without complicated procedures. An experiment using a physical phantom was carried out to verify the availability of the dosimetry system with the developed programs in a gamma ray irradiation field.

  8. Highly accurate relativistic universal Gaussian basis set: Dirac-Fock-Coulomb calculations for atomic systems up to nobelium

    NASA Astrophysics Data System (ADS)

    Malli, G. L.; Da Silva, A. B. F.; Ishikawa, Yasuyuki

    1994-10-01

    A universal Gaussian basis set is developed that leads to relativistic Dirac-Fock SCF energies of comparable accuracy as that obtained by the accurate numerical finite-difference method (GRASP2 package) [J. Phys. B 25, 1 (1992)]. The Gaussian-type functions of our universal basis set satisfy the relativistic boundary conditions associated with the finite nuclear model for a finite speed of light and conform to the so-called kinetic balance at the nonrelativistic limit. We attribute the exceptionally high accuracy obtained in our calculations to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite-difference method. Results of the Dirac-Fock-Coulomb energies for a number of atoms up to No (Z=102) and some negative ions are presented and compared with the recent results obtained with the numerical finite-difference method and geometrical Gaussian basis sets by Parpia, Mohanty, and Clementi [J. Phys. B 25, 1 (1992)]. The accuracy of our calculations is estimated to be within a few parts in 109 for all the atomic systems studied.

  9. Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests

    PubMed Central

    Tian, Lian; Henningsen, Joseph; Salick, Max R.; Crone, Wendy C.; Gunderson, McLean; Dailey, Seth H.; Chesler, Naomi C.

    2015-01-01

    The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test. PMID:25881308

  10. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH2(+).

    PubMed

    Li, Y Q; Zhang, P Y; Han, K L

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.

  11. Theoretical calculation of positron affinities of solute clusters in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2016-01-01

    We have performed theoretical calculations of positron states for solute clusters in aluminum alloys to estimate the positron affinity of solute clusters. Positron states of solute clusters in aluminum alloys were calculated under the electronic structures obtained by first- principles molecular orbital calculations using Al158-X13 clusters. We defined the positron affinity of the solute clusters by the difference in the lowest potential sensed by positrons between the solute clusters and Al bulk. With increasing atomic number of 3d metals, the annihilation fraction of the solute clusters rapidly increases at Mn and shows a maximum at Ni. A similar trend is observed for 4d metals. The localization of positron at the solute clusters mainly arises from charge transfer from Al matrix to solute clusters. The positron affinity defined in this work well represents the localization of positron at the solute clusters in aluminum alloys.

  12. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  13. Theoretical calculation of mid-infrared spectra from hypersonic non-ablative sphere

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Yu, Xilong; Zhu, Xijuan; Ma, Jing; Mao, Hongxia

    2016-10-01

    Hypersonic body moving in the atmosphere will suffer high temperature reacting flows which will emit complex radiation. Theoretical calculation was taken in this paper for a hypersonic non-ablative sphere. Hypersonic flow around the sphere was simulated using 9 species chemical kinetic and two temperature thermal non-equilibrium model. Based on this simulated flow field, the LOS method is used to solve radiative transfer and line-by-line model is used to calculate the spectrum from molecular and atoms in mid-infrared. The spectra from different components have been analyzed one by one. The calculation founds out that atom N and O diatomic molecule NO and bremsstrahlung will be important radiation source in this pure air hypersonic flow field. The radiation from hypersonic flow field has been analyzed in both high pressure environment and low pressure environment.

  14. Theoretical calculation and experimental study of acousto-optically Q-switched CO2 laser.

    PubMed

    Xie, Jijang; Guo, Ruhai; Li, Dianjun; Zhang, Chuansheng; Yang, Guilong; Geng, Yumin

    2010-06-07

    Using resonator inserted with acousto-optically modulator, the experiments of the compacted CO(2) laser were performed with Q-switch. According to various factors that influenced the output of laser, the theoretical calculation of its main parameters was conducted by Q-switched pulsed laser rate equations. Based on the results, the technical route and approach were presented for optimization design of this laser. The measured peak power of this laser device was more than 4000W and pulsed width was 180ns which agreed well with the theoretical calculation. The range of repetition frequency could adjust from 1 Hz to 100 kHz. The theoretical analyzes and experimental results showed that the acoustic traveling time of ultrasonic field could not influence the pulse width of laser so that it did not require inserting optical lens in the cavity to reduce the diameter of beam. The acoustic traveling time only extended the establishingtime of laser pulse. The optimum working frequency of laser is about 1 kHz, which it matched with the radiation life time (1 ms) of CO(2) molecular upper energy level. When the frequency is above 1 kHz, the pulse width of laser increased with the frequency. The full band of wavelength tuning between 9.2 microm and 10.8 microm was obtained by grating selection one by one which the measured spectrum lines were over 30 in the condition of Q-switch.

  15. Calculation of stress intensity factors in an isotropic multicracked plate. Part 1: Theoretical development

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Arnold, S. M.; Tan, H. Q.

    1992-01-01

    An essential part of describing the damage state and predicting the damage growth in a multicracked plate is the accurate calculation of stress intensity factors (SIF's). Here, a methodology and rigorous solution formulation for SIF's of a multicracked plate, with fully interacting cracks, subjected to a far-field arbitrary stress state is presented. The fundamental perturbation problem is derived, and the steps needed to formulate the system of singular integral equations whose solution gives rise to the evaluation of the SIF's are identified. This analytical derivation and numerical solution are obtained by using intelligent application of symbolic computations and automatic FORTRAN generation capabilities (described in the second part of this paper). As a result, a symbolic/FORTRAN package, named SYMFRAC, that is capable of providing accurate SIF's at each crack tip was developed and validated.

  16. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach.

    PubMed

    Esque, Jeremy; Cecchini, Marco

    2015-04-23

    The calculation of the free energy of conformation is key to understanding the function of biomolecules and has attracted significant interest in recent years. Here, we present an improvement of the confinement method that was designed for use in the context of explicit solvent MD simulations. The development involves an additional step in which the solvation free energy of the harmonically restrained conformers is accurately determined by multistage free energy perturbation simulations. As a test-case application, the newly introduced confinement/solvation free energy (CSF) approach was used to compute differences in free energy between conformers of the alanine dipeptide in explicit water. The results are in excellent agreement with reference calculations based on both converged molecular dynamics and umbrella sampling. To illustrate the general applicability of the method, conformational equilibria of met-enkephalin (5 aa) and deca-alanine (10 aa) in solution were also analyzed. In both cases, smoothly converged free-energy results were obtained in agreement with equilibrium sampling or literature calculations. These results demonstrate that the CSF method may provide conformational free-energy differences of biomolecules with small statistical errors (below 0.5 kcal/mol) and at a moderate computational cost even with a full representation of the solvent.

  17. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.

    PubMed

    Sun, Y Y; Kim, Yong-Hyun; Lee, Kyuho; Zhang, S B

    2008-10-21

    Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.

  18. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    DOE PAGES

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; ...

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(β), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which themore » melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.« less

  19. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    SciTech Connect

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; Song, Xueyu

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(β), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.

  20. Regioselective enzymatic acylations of polyhydroxylated eudesmanes: semisynthesis, theoretical calculations, and biotransformation of cyclic sulfites.

    PubMed

    García-Granados, A; Melguizo, E; Parra, A; Simeó, Y; Viseras, B; Dobado, J A; Molina, J; Arias, J M

    2000-12-01

    Different lipase enzymes have been tested in order to perform regioselective acetylations on the eudesmane tetrol from vulgarin. High yields (95%) of 1,12-diacetoxy derivative (4) were achieved in 1 h with Candida antarctica lipase (CAL). However, only the 12-acetyl derivative (6) was obtained in similar yield with Mucor miehei (MML) or Candida cylindracea (CCL) lipases. The enzymatic protection at C-1 and C-12 has been used to form eudesmane cyclic-sulfites between C-6 and C-4 atoms. The R/S-sulfur configuration has been assigned by means of the experimental and theoretical (13)C and (1)H NMR chemical shifts. The theoretical shifts were calculated using the GIAO method, with a MM+ geometry optimization followed by a single-point calculation at the B3LYP/6-31G(*) level (B3LYP/6-31G(*)//MM+). Moreover, B3LYP/6-31G(*) geometry optimizations were carried out to test the B3LYP/6-31G(*)//MM+ results, for the deacetylated sulfites (12 and 15). In addition to the delta(C) and delta(H) shifts, the (3)J(HH) coupling constants were also calculated and compared with the experimental values when available. Finally, different reactivities have been checked in both sulfites by biotransformation with Rhizopus nigricans. While the R-sulfite gave 2 alpha- and 11 beta-hydroxylated metabolites, the S-sulfite yielded only regioselective deacetylations. Furthermore, both sulfites showed different reactivities in redox processes.

  1. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.

    2015-02-01

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  2. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W

    2015-02-21

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient's 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  3. Accurate Time-Dependent Wave Packet Calculations for the O(+) + H2 → OH(+) + H Ion-Molecule Reaction.

    PubMed

    Bulut, N; Castillo, J F; Jambrina, P G; Kłos, J; Roncero, O; Aoiz, F J; Bañares, L

    2015-12-17

    Accurate quantum reactive scattering time-dependent wave packet close-coupling calculations have been carried out to determine total reaction probabilities and integral cross sections for the O(+) + H2 → OH(+) + H reaction in a range of collision energies from 10(-3) eV up to 1.0 eV for the H2 rovibrational states (v = 0; j = 0, 1, 2) and (v = 1; j = 0) using the potential energy surface (PES) by Martı́nez et al. As expected for a barrierless reaction, the reaction cross section decays rapidly with collision energy, Ec, following a behavior that nearly corresponds to that predicted by the Langevin model. Rotational excitation of H2 into j = 1, 2 has a very moderate effect on reactivity, similarly to what happens with vibrational excitation below Ec ≈ 0.3 eV. However, at higher collision energies the cross section increases notably when H2 is promoted to v = 1. This effect is explained by resorting to the effective potentials in the entrance channel. The integral cross sections have been used to calculate rate constants in the temperature range 200-1000 K. A good overall agreement has been found with the available experimental data on integral cross sections and rate constants. In addition, time-independent quantum mechanical and quasi-classical trajectory (QCT) calculations have been performed on the same PES aimed to compare the various methodologies and to discern the detailed mechanism of the title reaction. In particular, the analysis of individual trajectories has made it possible to explain, in terms of the coupling between reagent relative velocity and the topography of the PES, the presence of a series of alternating maxima and minima in the collision energy dependence of the QCT reaction probabilities for the reactions with H2(v=0,1,j=0), which are absent in the quantum mechanical calculations.

  4. Accurate reporting of adherence to inhaled therapies in adults with cystic fibrosis: methods to calculate “normative adherence”

    PubMed Central

    Hoo, Zhe Hui; Curley, Rachael; Campbell, Michael J; Walters, Stephen J; Hind, Daniel; Wildman, Martin J

    2016-01-01

    Background Preventative inhaled treatments in cystic fibrosis will only be effective in maintaining lung health if used appropriately. An accurate adherence index should therefore reflect treatment effectiveness, but the standard method of reporting adherence, that is, as a percentage of the agreed regimen between clinicians and people with cystic fibrosis, does not account for the appropriateness of the treatment regimen. We describe two different indices of inhaled therapy adherence for adults with cystic fibrosis which take into account effectiveness, that is, “simple” and “sophisticated” normative adherence. Methods to calculate normative adherence Denominator adjustment involves fixing a minimum appropriate value based on the recommended therapy given a person’s characteristics. For simple normative adherence, the denominator is determined by the person’s Pseudomonas status. For sophisticated normative adherence, the denominator is determined by the person’s Pseudomonas status and history of pulmonary exacerbations over the previous year. Numerator adjustment involves capping the daily maximum inhaled therapy use at 100% so that medication overuse does not artificially inflate the adherence level. Three illustrative cases Case A is an example of inhaled therapy under prescription based on Pseudomonas status resulting in lower simple normative adherence compared to unadjusted adherence. Case B is an example of inhaled therapy under-prescription based on previous exacerbation history resulting in lower sophisticated normative adherence compared to unadjusted adherence and simple normative adherence. Case C is an example of nebulizer overuse exaggerating the magnitude of unadjusted adherence. Conclusion Different methods of reporting adherence can result in different magnitudes of adherence. We have proposed two methods of standardizing the calculation of adherence which should better reflect treatment effectiveness. The value of these indices can

  5. Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment.

    PubMed

    Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki

    2010-09-29

    Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca(2+) in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.

  6. Extending the molecular size in accurate quantum-chemical calculations: the equilibrium structure and spectroscopic properties of uracil.

    PubMed

    Puzzarini, Cristina; Barone, Vincenzo

    2011-04-21

    The equilibrium structure of uracil has been investigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level in conjunction with a triple-zeta basis set have been carried out. Extrapolation to the basis set limit, performed employing the second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections have also been considered. Based on the available rotational constants for various isotopic species together with corresponding computed vibrational corrections, the semi-experimental equilibrium structure of uracil has been determined for the first time. Theoretical and semi-experimental structures have been found in remarkably good agreement, thus pointing out the limitations of previous experimental determinations. Molecular and spectroscopic properties of uracil have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the revision of the dipole moment. On the whole, it has been proved that the computational procedure presented is able to provide parameters with the proper accuracy to support experimental investigations of large molecules of biological interest.

  7. Average cross section measurement for 162Er (γ, n) reaction compared with theoretical calculations using TALYS

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Stoulos, S.

    2017-01-01

    Bremsstrahlung photon beam delivered by a linear electron accelerator has been used to experimentally determine the near threshold photonuclear cross section data of nuclides. For the first time, (γ, n) cross section data was obtained for the astrophysical important nucleus 162Er. Moreover, theoretical calculations have been applied using the TALYS 1.6 code. The effect of the gamma ray strength function on the cross section calculations has been studied. A satisfactorily reproduction of the available experimental data of photonuclear cross section at the energy region below 20 MeV could be achieved. The photon flux was monitored by measuring the photons yield from seven well known (γ, n) reactions from the threshold energy of each reaction up to the end-point energy of the photon beam used. An integrated cross-section 87 ± 14 mb is calculated for the photonuclear reaction 162Er (γ, n) at the energy 9.2-14 MeV. The effective cross section estimated using the TALYS code range between 89 and 96 mb depending on the γ-strength function used. To validate the method for the estimation of the average cross-section data of 162Er (γ, n) reaction, the same procedure has been performed to calculate the average cross-section data of 197Au (γ, n) and 55Mn (γ, n) reactions. In this case, the photons yield from the rest well known (γ, n) reactions was used in order to monitoring the photon flux. The results for 162Er (γ, n), 197Au (γ, n) and 55Mn (γ, n) are found to be in good agreement with the theoretical values obtained by TALYS 1.6. So, the present indirect process could be a valuable tool to estimate the effective cross section of (γ, n) reaction for various isotopes using bremsstrahlung beams.

  8. MRI-aided tissues interface characterization: An accurate signal propagation time calculation method for UWB breast tumor imaging

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Xiao, Xia; Kikkawa, Takamaro

    2016-12-01

    Radar-based ultrawideband (UWB) microwave imaging is expected to be a safe, low-cost tool for breast cancer detection. However, since radar wave travels at different speeds in different tissues, propagation time is hard to be estimated in heterogeneous breast. Wrongly estimated propagation time leads to error of tumor location in resulting image, aka imaging error. In this paper, we develop a magnetic resonance imaging-aided (MRI-aided) propagation time calculation technique which is independent from radar imaging system but can help decrease the imaging error. The technique can eliminate the influence of the rough interface between fat layer and gland layer in breast and get relative accurate thicknesses of two layers. The propagation time in each layer is calculated and summed. The summed propagation time is used in Confocal imaging algorithm to increase the accuracy of resulting image. 25 patients' breast models with glands of varying size are classified into four categories for imaging simulation tests. Imaging accuracy in terms of tumor location along x-direction has been improved for 21 among 25 cases, as a result, overall around 50% improvement compared to conventional UWB imaging.

  9. Unbiased QM/MM approach using accurate multipoles from a linear scaling DFT calculation with a systematic basis set

    NASA Astrophysics Data System (ADS)

    Mohr, Stephan; Genovese, Luigi; Ratcliff, Laura; Masella, Michel

    The quantum mechanics/molecular mechanis (QM/MM) method is a popular approach that allows to perform atomistic simulations using different levels of accuracy. Since only the essential part of the simulation domain is treated using a highly precise (but also expensive) QM method, whereas the remaining parts are handled using a less accurate level of theory, this approach allows to considerably extend the total system size that can be simulated without a notable loss of accuracy. In order to couple the QM and MM regions we use an approximation of the electrostatic potential based on a multipole expansion. The multipoles of the QM region are determined based on the results of a linear scaling Density Functional Theory (DFT) calculation using a set of adaptive, localized basis functions, as implemented within the BigDFT software package. As this determination comes at virtually no extra cost compared to the QM calculation, the coupling between QM and MM region can be done very efficiently. In this presentation I will demonstrate the accuracy of both the linear scaling DFT approach itself as well as of the approximation of the electrostatic potential based on the multipole expansion, and show some first QM/MM applications using the aforementioned approach.

  10. Accurate multireference configuration interaction calculations of the 24 Λ-S states and 60 Ω states of the BO+ cation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-11-01

    The potential energy curves were calculated for the 24 Λ-S states correlating with the lowest four dissociation channels of the BO+ cation. The potential energy curves were also computed for the 60 Ω states generated from the 24 Λ-S states. Calculations were made for internuclear separations from 0.08 to 1.05 nm using the CASSCF method, which was followed by the icMRCI approach with the correlation-consistent basis sets. Core-valence correlation, scalar relativistic and basis extrapolation were accounted for. Of the 24 Λ-S states, only three states (25Π, 15Σ-, and 25Σ-) were found to be repulsive; only the 15Δ state was found to be a very weakly-bound state; and the E1Π, 23Π, and 15Π states were found to be very strong bound. In addition, the B1Σ+ and 31Σ+ states have double wells by the avoided crossing between the two states. The a3Π, 13Σ-, and 23Σ- states are inverted with the spin-orbit coupling effect included. The spectroscopic parameters were determined and the vibrational properties of several Λ-S states were predicted. Comparison with available experimental data shows that the methodology employed is highly accurate for this system.

  11. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    SciTech Connect

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  12. Uncertainties Associated with Theoretically Calculated N2-Broadened Half-Widths of H2O Lines

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Gamache, R. R.

    2010-01-01

    With different choices of the cut-offs used in theoretical calculations, we have carried out extensive numerical calculations of the N2-broadend Lorentzian half-widths of the H2O lines using the modified Robert-Bonamy formalism. Based on these results, we are able to thoroughly check for convergence. We find that, with the low-order cut-offs commonly used in the literature, one is able to obtain converged values only for lines with large half-widths. Conversely, for lines with small half-widths, much higher cut-offs are necessary to guarantee convergence. We also analyse the uncertainties associated with calculated half-widths, and these are correlated as above. In general, the smaller the half-widths, the poorer the convergence and the larger the uncertainty associated with them. For convenience, one can divide all H2O lines into three categories, large, intermediate, and small, according to their half-width values. One can use this division to judge whether the calculated half-widths are converged or not, based on the cut-offs used, and also to estimate how large their uncertainties are. We conclude that with the current Robert- Bonamy formalism, for lines in category lone can achieve the accuracy requirement set by HITRAN, whereas for lines in category 3, it 'is impossible to meet this goal.

  13. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R

    NASA Astrophysics Data System (ADS)

    Xie, Yunfei; Li, Yan; Sun, Yingying; Wang, Heya; Qian, He; Yao, Weirong

    2012-10-01

    Ponceau 4R is used as a coloring agent in many different products, such as food, drinks, medicines, cosmetics and tobacco. However, ponceau 4R also shows carcinogenic, teratogenic and mutagenic behavior in high doses. In this work, standard Raman, theoretical Raman and surface-enhanced Raman scattering (SERS) spectra have been used to investigate ponceau 4R. More specifically, density functional theory (DFT) calculations have been used to calculate the optimized Raman spectrum of ponceau 4R at the B3LYP/6-31G(d) level. This has provided a better understanding of the optimized geometry and vibrational frequencies of this dye. In addition, the experimental spectrum of ponceau 4R has been compared with the theoretical spectrum; good agreement was obtained. Finally, it has shown that using SERS the detection limit of the ponceau 4R solution can be as low as 5 μg/mL. This has been achieved by SERS measurements of ponceau 4R on a substrate of gold nanoparticles. The SERS peaks at 1030, 1236, 1356 and 1502 cm-1 were chosen as index for semi-quantitative analysis, showing that the SERS technique provided a useful ultrasensitive method for the detection of ponceau 4R.

  14. Accurate and efficient calculation of excitation energies with the active-space particle-particle random phase approximation

    DOE PAGES

    Zhang, Du; Yang, Weitao

    2016-10-13

    An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less

  15. Accurate and efficient calculation of excitation energies with the active-space particle-particle random phase approximation

    SciTech Connect

    Zhang, Du; Yang, Weitao

    2016-10-13

    An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and double excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.

  16. Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations.

    PubMed

    Den, Takuya S; Frey, Hans-Martin; Leutwyler, Samuel

    2014-11-21

    The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants Bv of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their Bv constants differ from B0 by between -1.02 MHz and +2.23 MHz. Combining the B0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths re(C-C) = 1.3866(3) Å and re(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ re bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths rg(C-C)=1.3907(3) Å and rg(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction rg bond lengths measured in the 1960s.

  17. Accurate and efficient calculation of excitation energies with the active-space particle-particle random phase approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Du; Yang, Weitao

    2016-10-01

    An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and double excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K4), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.

  18. Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2015-09-01

    The nitrogen stable isotope ratio (15N/14N) of nitrogen oxides (NOx = NO + NO2) and its oxidation products (NOy = NOx + PAN (peroxyacetyl nitrate = C2H3NO5) + HNO3 + NO3 + HONO + N2O5 + ⋯ + particulate nitrates) has been suggested as a tool for partitioning NOx sources; however, the impact of nitrogen (N) equilibrium isotopic fractionation on 15N/14N ratios during the conversion of NOx to NOy must also be considered, but few fractionation factors for these processes have been determined. To address this limitation, computational quantum chemistry calculations of harmonic frequencies, reduced partition function ratios (15β), and N equilibrium isotope exchange fractionation factors (αA/B) were performed for various gaseous and aqueous NOy molecules in the rigid rotor and harmonic oscillator approximations using the B3LYP and EDF2 density functional methods for the mono-substitution of 15N. The calculated harmonic frequencies, 15β, and αA/B are in good agreement with available experimental measurements, suggesting the potential to use computational methods to calculate αA/B values for N isotope exchange processes that are difficult to measure experimentally. Additionally, the effects of solvation (water) on 15β and αA/B were evaluated using the IEF-PCM model, and resulted in lower 15β and αA/B values likely due to the stabilization of the NOy molecules from dispersion interactions with water. Overall, our calculated 15β and αA/B values are accurate in the rigid rotor and harmonic oscillator approximations and will allow for the estimation of αA/B involving various NOy molecules. These calculated αA/B values may help to explain the trends observed in the N stable isotope ratio of NOy molecules in the atmosphere.

  19. Theoretical calculations and vibrational potential energy surface of 4-silaspiro(3,3)heptane

    SciTech Connect

    Ocola, Esther J.; Medders, Cross; Laane, Jaan; Meinander, Niklas

    2014-04-28

    Theoretical computations have been carried out on 4-silaspiro(3,3)heptane (SSH) in order to calculate its molecular structure and conformational energies. The molecule has two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. Energy calculations were carried out for different conformations of SSH. These results allowed the generation of a two-dimensional ring-puckering potential energy surface (PES) of the form V = a(x{sub 1}{sup 4} + x{sub 2}{sup 4}) – b(x{sub 1}{sup 2} + x{sub 2}{sup 2}) + cx{sub 1}{sup 2}x{sub 2}{sup 2}, where x{sub 1} and x{sub 2} are the ring-puckering coordinates for the two rings. The presence of sufficiently high potential energy barriers prevents the molecule from undergoing pseudorotation. The quantum states, wave functions, and predicted spectra resulting from the PESs were calculated.

  20. Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations.

    PubMed

    Wickham, Jason R; Halye, Jeffrey L; Kashtanov, Stepan; Khandogin, Jana; Rice, Charles V

    2009-02-19

    Teichoic acids are essential components of the Gram-positive bacterial cell wall. One of their many functions is metal binding, a vital process for bacterial growth. With the combination of phosphorus-31 solid-state NMR spectroscopy and theoretical calculations using density functional theory (DFT), we have determined that the binding mode between teichoic acids and magnesium involves bidentate coordination by the phosphate groups of teichoic acid. Measurement of chemical shift anisotropy tensors gave a reduced anisotropy (delta) of 49.25 ppm and an asymmetry (eta) of 0.7. DFT calculations with diglycerol phosphate and triglycerol diphosphate model compounds were completed with Mg(2+) in anhydrous as well as partially hydrated bidentate and fully hydrated monodentate, bidentate, and bridging binding modes. (31)P CSA tensors were calculated from the energy-minimized model compounds using the combined DFT and GIAO methods, resulting in dramatically different tensor values for each binding mode. The anhydrous bidentate chelation mode was found to be a good approximation of the experimental data, an observation that alters the current monodentate paradigm for metal chelation by teichoic acids.

  1. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  2. Accurate double many-body expansion potential energy surface by extrapolation to the complete basis set limit and dynamics calculations for ground state of NH2.

    PubMed

    Li, Yongqing; Yuan, Jiuchuang; Chen, Maodu; Ma, Fengcai; Sun, Mengtao

    2013-07-15

    An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system. A switching function formalism has been used to warrant the correct behavior at the H2(X1Σg+)+N(2D) and NH (X3Σ-)+H(2S) dissociation channels involving nitrogen in the ground N(4S) and first excited N(2D) states. The topographical features of the novel global potential energy surface are examined in detail, and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel surface can be using to treat well the Renner-Teller degeneracy of the 12A″ and 12A' states of NH 2. Such a work can both be recommended for dynamics studies of the N(2D)+H2 reaction and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen-containing systems. In turn, a test theoretical study of the reaction N(2D)+H2(X1Σg+)(ν=0,j=0)→NH (X3Σ-)+H(2S) has been carried out with the method of quantum wave packet on the new potential energy surface. Reaction probabilities, integral cross sections, and differential cross sections have been calculated. Threshold exists because of the energy barrier (68.5 meV) along the minimum energy path. On the curve of reaction probability for total angular momentum J = 0, there are two sharp peaks just above threshold. The value of integral cross section increases quickly from zero to maximum with the increase of collision energy, and then stays stable with small oscillations. The differential cross section result shows that the reaction is a typical forward and backward scatter in agreement with experimental measurement result.

  3. Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package

    NASA Astrophysics Data System (ADS)

    Deguchi, Daiki; Sato, Kazunori; Kino, Hiori; Kotani, Takao

    2016-05-01

    We have recently implemented a new version of the quasiparticle self-consistent GW (QSGW) method in the ecalj package released at http://github.com/tkotani/ecalj. Since the new version of the ecalj package is numerically stable and more accurate than the previous versions, we can perform calculations easily without being bothered with tuning input parameters. Here we examine its ability to describe energy band properties, e.g., band-gap energy, eigenvalues at special points, and effective mass, for a variety of semiconductors and insulators. We treat C, Si, Ge, Sn, SiC (in 2H, 3C, and 4H structures), (Al, Ga, In) × (N, P, As, Sb), (Zn, Cd, Mg) × (O, S, Se, Te), SiO2, HfO2, ZrO2, SrTiO3, PbS, PbTe, MnO, NiO, and HgO. We propose that a hybrid QSGW method, where we mix 80% of QSGW and 20% of LDA, gives universally good agreement with experiments for these materials.

  4. Benchmark studies of the Bending Corrected Rotating Linear Model (BCRLM) reactive scattering code: Implications for accurate quantum calculations

    SciTech Connect

    Hayes, E.F.; Darakjian, Z. . Dept. of Chemistry); Walker, R.B. )

    1990-01-01

    The Bending Corrected Rotating Linear Model (BCRLM), developed by Hayes and Walker, is a simple approximation to the true multidimensional scattering problem for reaction of the type: A + BC {yields} AB + C. While the BCRLM method is simpler than methods designed to obtain accurate three dimensional quantum scattering results, this turns out to be a major advantage in terms of our benchmarking studies. The computer code used to obtain BCRLM scattering results is written for the most part in standard FORTRAN and has been reported to several scalar, vector, and parallel architecture computers including the IBM 3090-600J, the Cray XMP and YMP, the Ardent Titan, IBM RISC System/6000, Convex C-1 and the MIPS 2000. Benchmark results will be reported for each of these machines with an emphasis on comparing the scalar, vector, and parallel performance for the standard code with minimum modifications. Detailed analysis of the mapping of the BCRLM approach onto both shared and distributed memory parallel architecture machines indicates the importance of introducing several key changes in the basic strategy and algorithums used to calculate scattering results. This analysis of the BCRLM approach provides some insights into optimal strategies for mapping three dimensional quantum scattering methods, such as the Parker-Pack method, onto shared or distributed memory parallel computers.

  5. Theoretical calculations of a compound formed by Fe(+3) and tris(catechol).

    PubMed

    Kara, İzzet; Kara, Yeşim; Öztürk Kiraz, Aslı; Mammadov, Ramazan

    2015-01-01

    Phenolic compounds generally have special smell, easily soluble in water, organic solvents (alcohols, esters, chloroform, ethyl acetate), in aqueous solutions of bases, colorless or colorful, crystalline and amorphous materials. Phenols form colorful complexes when they form compounds with heavy metals. In this study, the structural properties of a compound formed by catechol and Fe(+3) are investigated theoretically. The electronic and thermodynamic properties of the complex were also investigated in gas phase and organic solvents at B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) basis set. The formation of Fe-tris(catechol) complex compound is exothermic, and it is difficult to obtain the complex as the temperature increases. The observed and calculated FT-IR and geometric parameters spectra are in good agreement with empirical.

  6. Theoretical study and rate constant calculation of the CH2O+CH3 reaction

    NASA Astrophysics Data System (ADS)

    Liu, Jing-yao; Li, Ze-sheng; Wu, Jia-yan; Wei, Zhi-gang; Zhang, Gang; Sun, Chia-chung

    2003-10-01

    The potential energy surface of the CH2O+CH3 reaction is explored at the MP2/6-311++G(d,p), MP4SDQ/6-311G(d,p), and QCISD(T)/6-311+G(3df,2p) (single point) levels of theory. Theoretical calculations suggest that the major product channel (R1) is the hydrogen abstraction leading to the product P1 CHO+CH4 (R1), while the addition process leading to P2H+CH3CHO (R2) appears to be negligibly small. The calculated enthalpies and dissociation activation energies for CH3CH2O and CH3OCH2 radicals involved in the reaction are in line with the experimental values. Dual-level dynamics calculation is carried out for the direct hydrogen abstraction channel. The energy profile of (R1) is refined with the interpolated single-point energies (ISPE) method at the QCISD(T)//MP2 level. The rate constants, which are evaluated by canonical variational transition-state theory (CVT) including small-curvature tunneling (SCT) correction, are in good agreement with the available experimental data. It is shown that tunneling effect plays a significant role in the rate constant calculation; and as a result, the CVT/SCT rate constants exhibit typical non-Arrhenius behavior over a wide temperature range 300-2000 K. The three parameter expression is k=6.35×10-26 T4.4 exp(-2450/T) cm3 molecule-1 s-1.

  7. Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations

    SciTech Connect

    Den, Takuya S.; Frey, Hans-Martin; Leutwyler, Samuel

    2014-11-21

    The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B{sub 0} = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B{sub 0} value, RR-RCS measurements in a room temperature gas cell give the rotational constants B{sub v} of the five lowest-lying thermally populated vibrationally excited states ν{sub 7/8}, ν{sub 9}, ν{sub 11/12}, ν{sub 13}, and ν{sub 14/15}. Their B{sub v} constants differ from B{sub 0} by between −1.02 MHz and +2.23 MHz. Combining the B{sub 0} with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r{sub e}(C-C) = 1.3866(3) Å and r{sub e}(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r{sub e} bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r{sub g}(C-C)=1.3907(3) Å and r{sub g}(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r{sub g} bond lengths measured in the 1960s.

  8. Evaluation of the electrical properties of dust storms by multi-parameter observations and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Bo, Tian-Li; Zheng, Xiaojing

    2017-03-01

    Dusty phenomena, such as wind-blown sand, dust devils, and dust storms, play key roles in Earth's climate and geological processes. Dust electrification considerably affects the lifting and transport of dust particles. However, the electrical properties of dust storms remain poorly understood. Here, we conducted multi-parameter measurements and theoretical calculations to investigate the electrical properties of dust storms and their application to dust storm prediction. The results show that the vertical electric field (E-field) decreases first, then increases, and finally decreases with the height above the ground, reversing its direction at two heights, ∼ 8- 12 and ∼ 24 m. This suggests that the charge polarity of dust particles changes from negative to positive and back to negative again as the height increases. By carefully analyzing the E-field and dust concentration data, we further found that there is a significant positive linear relationship between the measured E-field intensity and dust concentration at the given ambient conditions. In addition, measurements and calculations demonstrate that a substantial enhancement in the vertical E-field can be observed several hours before the arrival of the external-source dust storms, indicating that the E-field can be used to provide an early warning of external-source dust storms.

  9. Accuracy of Theoretical Calculations for Electron-Impact Ionization of atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Madison, Don

    2015-09-01

    In the last two decades, there have been several close-coupling approaches developed which can accurately calculate the triply differential cross sections for electron impact ionization of effective one and two electron atoms. The agreement between experiment and theory is not particularly good for more complicated atoms and molecules. Very recently, a B-spline R-matrix with pseudostates (BSRPS) approach was used to investigate low energy electron impact ionization of neon and very good agreement with experiment was found. The perturbative 3-body distorted wave (3DW) approach which includes the exact final state electron-electron interaction (post collision interaction - PCI) gave comparably good agreement with experiment. For ionization of molecules, there have been numerous studies of high-energy electron impact. These studies are called EMS (Electron Momentum Spectroscopy) and they were very valuable in determining the accuracy of molecular wavefunctions since the measured cross sections were proportional to the momentum space molecular wavefunction. More recently, lower energy collisions have started to be measured and these cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. So far, the only close coupling calculation reported for ionization of molecules is the time-dependent close-coupling calculation (TDCC) which has been developed for ionization of H2 and it yields relative good agreement with experiment. Again the molecular 3-body distorted wave (M3DW) gave equally good agreement with experiment. For polyatomic molecules, the only theory available is the M3DW. In this talk, I will show the current status of agreement between experiment and theory for low and intermediate energy single ionization of atoms and molecules. Work supported by the NSF and XSEDE.

  10. Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications

    SciTech Connect

    Duan, Yuhua

    2012-11-02

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method

  11. Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Holladay, Christopher; Heung, Henry; Bouanich, Jean-Pierre; Mellau, Georg Ch.; Keller, Reimund; Hurtmans, Daniel R.

    2008-09-01

    We report measurements for N 2-broadening, pressure-shift and line mixing coefficients for 55 oxygen transitions in the A-band retrieved using a multispectrum fitting technique. Nineteen laboratory absorption spectra were recorded at 0.02 cm -1 resolution using a multi-pass absorption cell with path length of 1636.9 cm and the IFS 120 Fourier transform spectrometer located at Justus-Liebig-University in Giessen, Germany. The total sample pressures ranged from 8.8 to 3004.5 Torr with oxygen volume mixing ratios in nitrogen ranging between 0.057 and 0.62. An Exponential Power Gap (EPG) scaling law was used to calculate the N 2-broadening and N 2-line mixing coefficients. The line broadening and shift coefficients for the A-band of oxygen self-perturbed and perturbed by N 2 are modeled using semiclassical calculations based on the Robert-Bonamy formalism and two intermolecular potentials. These potentials involve electrostatic contributions including the hexadecapole moment of the molecules and (a) a simple dispersion contribution with one adjustable parameter to fit the broadening coefficients or (b) the atom-atom Lennard-Jones model without such adjustable parameters. The first potential leads to very weak broadening coefficients for high J transitions whereas the second potential gives much more improved results at medium and large J values, in reasonable agreement with the experimental data. For the line shifts which mainly arise in our calculation from the electronic state dependence of the isotropic potential, their general trends with increasing J values can be well predicted, especially from the first potential. From the theoretical results, we have derived air-broadening and air-induced shift coefficients with an agreement comparable to that obtained for O 2-O 2 and O 2-N 2.

  12. A theoretical prediction of hydrogen molecule dissociation-recombination rates including an accurate treatment of internal state nonequilibrium effects

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1990-01-01

    The dissociation and recombination of H2 over the temperature range 1000-5000 K are calculated in a nonempirical manner. The computation procedure involves the calculation of the state-to-state energy transfer rate coefficients, the solution of the 349 coupled equations which form the master equation, and the determination of the phenomenological rate coefficients. The nonempirical results presented here are in good agreement with experimental data at 1000 and 3000 K.

  13. Accurate and efficient quantum chemistry calculations for noncovalent interactions in many-body systems: the XSAPT family of methods.

    PubMed

    Lao, Ka Un; Herbert, John M

    2015-01-15

    We present an overview of "XSAPT", a family of quantum chemistry methods for noncovalent interactions. These methods combine an efficient, iterative, monomer-based approach to computing many-body polarization interactions with a two-body version of symmetry-adapted perturbation theory (SAPT). The result is an efficient method for computing accurate intermolecular interaction energies in large noncovalent assemblies such as molecular and ionic clusters, molecular crystals, clathrates, or protein-ligand complexes. As in traditional SAPT, the XSAPT energy is decomposable into physically meaningful components. Dispersion interactions are problematic in traditional low-order SAPT, and two new approaches are introduced here in an attempt to improve this situation: (1) third-generation empirical atom-atom dispersion potentials, and (2) an empirically scaled version of second-order SAPT dispersion. Comparison to high-level ab initio benchmarks for dimers, water clusters, halide-water clusters, a methane clathrate hydrate, and a DNA intercalation complex illustrate both the accuracy of XSAPT-based methods as well as their limitations. The computational cost of XSAPT scales as O(N(3))-O(N(5)) with respect to monomer size, N, depending upon the particular version that is employed, but the accuracy is typically superior to alternative ab initio methods with similar scaling. Moreover, the monomer-based nature of XSAPT calculations makes them trivially parallelizable, such that wall times scale linearly with respect to the number of monomer units. XSAPT-based methods thus open the door to both qualitative and quantitative studies of noncovalent interactions in clusters, biomolecules, and condensed-phase systems.

  14. Theoretical cross section calculation of the 112Sn(α,γ)116Te reaction for the astrophysical P process

    NASA Astrophysics Data System (ADS)

    Yalçin, C.

    2017-02-01

    The theoretical cross section calculations for the astrophysical p process are very crucial due to the most of the related reactions are technically very difficult to measure at the laboratory. On the other hand, the theoretical cross sections are not in agreement with the experimental results, especially for the (α,γ) reactions. One of the main reason of the difference between theoretical and experimental cross section is description of the α+nucleus optical model potential. In order to understand current situation and improvement of the theoretical calculations, the 112Sn(α,γ)116Te reaction were investigated for different global optical model potentials at the astrophysically interested energies. Astrophysical S factors were also calculated and compared with experimental data available at EXFOR database.

  15. Computational methods to calculate accurate activation and reaction energies of 1,3-dipolar cycloadditions of 24 1,3-dipoles.

    PubMed

    Lan, Yu; Zou, Lufeng; Cao, Yang; Houk, K N

    2011-12-01

    Theoretical calculations were performed on the 1,3-dipolar cycloaddition reactions of 24 1,3-dipoles with ethylene and acetylene. The 24 1,3-dipoles are of the formula X≡Y(+)-Z(-) (where X is HC or N, Y is N, and Z is CH(2), NH, or O) or X═Y(+)-Z(-) (where X and Z are CH(2), NH, or O and Y is NH, O, or S). The high-accuracy G3B3 method was employed as the reference. CBS-QB3, CCSD(T)//B3LYP, SCS-MP2//B3LYP, B3LYP, M06-2X, and B97-D methods were benchmarked to assess their accuracies and to determine an accurate method that is practical for large systems. Several basis sets were also evaluated. Compared to the G3B3 method, CBS-QB3 and CCSD(T)/maug-cc-pV(T+d)Z//B3LYP methods give similar results for both activation and reaction enthalpies (mean average deviation, MAD, < 1.5 kcal/mol). SCS-MP2//B3LYP and M06-2X give small errors for the activation enthalpies (MAD < 1.5 kcal/mol), while B3LYP has MAD = 2.3 kcal/mol. SCS-MP2//B3LYP and B3LYP give the reasonable reaction enthalpies (MAD < 5.0 kcal/mol). The B3LYP functional also gives good results for most 1,3-dipoles (MAD = 1.9 kcal/mol for 17 common 1,3-dipoles), but the activation and reaction enthalpies for ozone and sulfur dioxide are difficult to calculate by any of the density functional methods.

  16. Accuracy of theoretical calculations of the main parameters of the F2-layer of the daytime ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.; Sitnov, Iu. S.

    1985-10-01

    Pavlov's (1984) method is used to determine the relative errors (due to errors in measuring the input parameters of the model) in theoretical calculations of the main parameters of the daytime F2-layer under quiet conditions. The parameters calculated are the height of the F2-layer maximum and the electron density.

  17. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Landry, E. S.; McGaughey, A. J. H.

    2009-10-01

    The accuracies of two theoretical expressions for thermal boundary resistance are assessed by comparing their predictions to independent predictions from molecular dynamics (MD) simulations. In one expression (RE) , the phonon distributions are assumed to follow the equilibrium, Bose-Einstein distribution, while in the other expression (RNE) , the phonons are assumed to have nonequilibrium, but bulk-like distributions. The phonon properties are obtained using lattice dynamics-based methods, which assume that the phonon interface scattering is specular and elastic. We consider (i) a symmetrically strained Si/Ge interface, and (ii) a series of interfaces between Si and “heavy-Si,” which differs from Si only in mass. All of the interfaces are perfect, justifying the assumption of specular scattering. The MD-predicted Si/Ge thermal boundary resistance is temperature independent and equal to 3.1×10-9m2-K/W below a temperature of ˜500K , indicating that the phonon scattering is elastic, as required for the validity of the theoretical calculations. At higher-temperatures, the MD-predicted Si/Ge thermal boundary resistance decreases with increasing temperature, a trend we attribute to inelastic scattering. For the Si/Ge interface and the Si/heavy-Si interfaces with mass ratios greater than two, RE is in good agreement with the corresponding MD-predicted values at temperatures where the interface scattering is elastic. When applied to a system containing no interface, RE is erroneously nonzero due to the assumption of equilibrium phonon distributions on either side of the interface. While RNE is zero for a system containing no interface, it is 40%-60% less than the corresponding MD-predicted values for the Si/Ge interface and the Si/heavy-Si interfaces at temperatures where the interface scattering is elastic. This inaccuracy is attributed to the assumption of bulk-like phonon distributions on either side of the interface.

  18. Feeding biomechanics and theoretical calculations of bite force in bull sharks (Carcharhinus leucas) during ontogeny.

    PubMed

    Habegger, Maria L; Motta, Philip J; Huber, Daniel R; Dean, Mason N

    2012-12-01

    Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73-285cm total length). Theoretical bite force ranged from 36 to 2128N at the most anterior bite point, and 170 to 5914N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible

  19. Theoretical Calculation of the Particle Spectrum Following Absorption of Stopped Negative Pion by Helium -3.

    NASA Astrophysics Data System (ADS)

    Roginsky, Jacob

    1987-09-01

    In 1982 Gotta et al^1, experimentally observed the branching ratios for n + D, n + D^', where D ^' represents the virtual S _{0} np state, and the probability density for three-body (n + n + p) events following absorption of stopped (pi) ^{-} in ^3He. The purpose of the thesis was to calculate theoretically the particle spectrum following the absorption, using the two-nucleon model of pion absorption ^2 and to compare it to the results obtained in the Gotta experiment. The ^3 He pionic atom is unique in that it is the simplest nucleus which provides an opportunity for the verification of the two-nucleon absorption model. For this calculation the effective two-nucleon Hamiltonian^{3,4,5} was chosen as the T-matrix for low energy pion scattering from one nucleon followed by absorption on the second nucleon. The constants g_{0} and g _1 are obtained from the corresponding two-nucleon interaction processes resulting in the pion production with the first one corresponding to the spin triplet and the second to the spin singlet nucleon interactions. The initial bound-state momentum-space wave function was chosen ^6 to be consistent with the charge radius of the ^3He nucleus and to have the correct singularities generated by the asymptotic two- and three-body channels. The final-state wave functions are characterized by non-interacting n + D, non-interacting n + D^', and a non-interacting n + n + p states (when the energy is roughly equally shared between the nucleons). The results of the calculation turned out to be in a fairly good agreement with those obtained in ^1. The branching ratio of singlet deuteron rate of transition to the corresponding rate into deuteron differed from the result in the former by less than one percent. As a check some of the results obtained in ^6 were reproduced, giving a very good agreement with it as well. The calculation indicates that the two-nucleon absorption model gives a good result when used for a simple system like ^3He. Those

  20. Theoretical study of ignition reactions of linear symmetrical monoethers as potential diesel fuel additives: DFT calculations

    NASA Astrophysics Data System (ADS)

    Marrouni, Karim El; Abou-Rachid, Hakima; Kaliaguine, Serge

    This work investigates the chemical reactivity of four linear symmetrical monoethers with molecular oxygen. Such oxygenated compounds may be considered as potential diesel fuel additives in order to reduce the ignition delay in diesel fuel engines. For this purpose, a kinetic study is proposed to clarify the relation between the molecular structure of the fuel molecule and its ignition properties. To this end, DFT calculations were performed for these reactions using B3LYP/6-311G(d,p) and BH&HLYP/6-311G(d,p) to determine structures, energies, and vibrational frequencies of stationary points as well as activated complexes involved in each gas-phase combustion initiation reaction of the monoethers CH3OCH3, C2H5OC2H5, C3H7OC3H7, or C4H9OC4H9 with molecular oxygen. This theoretical kinetic study was carried out using electronic structure results and the transition state theory, to assess the rate constants for all studied combustion reactions. As it has been shown in our previous work [Abou-Rachid et al., J Mol Struct (Theochem) 2003, 621, 293], the cetane number (CN) of a pure organic molecule depends on the initiation rate of its homogeneous gas-phase reaction with molecular oxygen. Indeed, the calculated initiation rate constants of the H-abstraction process of linear monoethers with O2 show a very good correlation with experimental CN data of these pure compounds at T D 1,000 K. This temperature is representative of the operating conditions of a diesel fuel engine.0

  1. A critical analysis of dipole-moment calculations as obtained from experimental and theoretical structure factors.

    PubMed

    Poulain-Paul, Agnieszka; Nassour, Ayoub; Jelsch, Christian; Guillot, Benoit; Kubicki, Maciej; Lecomte, Claude

    2012-11-01

    Three models of charge-density distribution - Hansen-Coppens multipolar, virtual atom and kappa - of different complexities, different numbers of refined parameters, and with variable levels of restraints, were tested against theoretical and high-resolution X-ray diffraction structure factors for 2-methyl-4-nitro-1-phenyl-1H-imidazole-5-carbonitrile. The influence of the model, refinement strategy, multipole level and treatment of the H atoms on the dipole moment was investigated. The dipole moment turned out to be very sensitive to the refinement strategy. Also, small changes in H-atom treatment can greatly influence the calculated magnitude and orientation of the dipole moment. The best results were obtained when H atoms were kept in positions determined by neutron diffraction and anisotropic displacement parameters (obtained by SHADE, in this case) were used. Also, constraints on kappa values of H atoms were found to be superior to the free refinement of these parameters. It is also shown that the over-parametrization of the multipolar model, although possibly leading to better residuals, in general gives worse dipole moments.

  2. Degenerate two-photon absorption in all-trans retinal: nonlinear spectrum and theoretical calculations.

    PubMed

    Vivas, M G; Silva, D L; Misoguti, L; Zaleśny, R; Bartkowiak, W; Mendonca, C R

    2010-03-18

    In this work we investigate the degenerate two-photon absorption spectrum of all-trans retinal in ethanol employing the Z-scan technique with femtosecond pulses. The two-photon absorption (2PA) spectrum presents a monotonous increase as the excitation wavelength approaches the one-photon absorption band and a peak at 790 nm. We attribute the 2PA band to the mixing of states (1)B(u)(+)-like and |S(1)>, which are strongly allowed by one- and two-photon, respectively. We modeled the 2PA spectrum by using the sum-over-states approach and obtained spectroscopic parameters of the electronic transitions to |S(1)>, |S(2)> ("(1)B(u)(+)"), |S(3)>, and |S(4)> singlet-excited states. The results were compared with theoretical predictions of one- and two-photon transition calculations using the response functions formalism within the density functional theory framework with the aid of the CAM-B3LYP functional.

  3. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment.

    PubMed

    Wu, Yanlin; Shi, Jin; Chen, Hongche; Zhao, Jianfu; Dong, Wenbo

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC-MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO) was also studied and H2O2 was added to produce HO. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16h irradiation.

  4. Epoxides, cyclic sulfites, and sulfate from natural pentacyclic triterpenoids: theoretical calculations and chemical transformations.

    PubMed

    García-Granados, Andrés; López, Pilar E; Melguizo, Enrique; Moliz, Juan N; Parra, Andrés; Simeó, Yolanda; Dobado, José A

    2003-06-13

    Several triterpenic derivatives, with the A-ring functionalized, were semisynthesized from oleanolic and maslinic acids. The reactivities of sulfites, sulfate, and epoxides in these triterpene compounds were investigated under different reaction conditions. Moreover, contracted A-ring triterpenes (five-membered rings) were obtained, by different treatments of the sulfate 7. From the epoxide 8, deoxygenated and halohydrin derivatives were semisynthesized with several nucleophiles. Ozonolysis and Beckmann reactions were used to yield 4-aza compounds, from five-membered ring olanediene triterpenes. The X-ray structure of sulfate 7 is given and compared with density functional theory geometries. Theoretical (13)C and (1)H chemical shifts (gauge-invariant atomic orbital method at the B3LYP/6-31G*//B3LYP/6-31G* level) and (3)J(H,H) coupling constants were calculated for compounds 5-9 and 34-36, identifying the (R)- or (S)-sulfur and alpha- or beta-epoxide configurations together with 4-aza or 3-aza structures.

  5. Theoretical study of atomic oxygen on gold surface by Hückel theory and DFT calculations.

    PubMed

    Sun, Keju; Kohyama, Masanori; Tanaka, Shingo; Takeda, Seiji

    2012-09-27

    It is fundamental to understand the behavior of atomic oxygen on gold surfaces so as to elucidate the mechanism of nano gold catalysts for low-temperature CO oxidation reactions since the atomic oxygen on gold system is an important intermediate involved in both the processes of O(2) dissociation and CO oxidation. We performed theoretical analysis of atomic oxygen adsorption on gold by using Hückel theory. It is found that formation of linear O-Au-O structure on Au surfaces greatly stabilizes the atomic oxygen adsorption due to stronger bond energy and bond order, which is confirmed subsequently by density functional theory (DFT) calculations. The linear O-Au-O structure may explain the surprising first order kinetics behavior of O(2) desorption from gold surfaces. This view of the linear O-Au-O structure as the natural adsorption status is quite different from the conventional view, which may lead to new understanding toward the reaction mechanism of low-temperature CO oxidation reaction on nano gold catalysts.

  6. Postseismic viscoelastic surface deformation and stress. Part 1: Theoretical considerations, displacement and strain calculations

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1979-01-01

    A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.

  7. Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations.

    PubMed

    Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2016-08-09

    Proper use of the adaptive biasing force (ABF) algorithm in free-energy calculations needs certain prerequisites to be met, namely, that the Jacobian for the metric transformation and its first derivative be available and the coarse variables be independent and fully decoupled from any holonomic constraint or geometric restraint, thereby limiting singularly the field of application of the approach. The extended ABF (eABF) algorithm circumvents these intrinsic limitations by applying the time-dependent bias onto a fictitious particle coupled to the coarse variable of interest by means of a stiff spring. However, with the current implementation of eABF in the popular molecular dynamics engine NAMD, a trajectory-based post-treatment is necessary to derive the underlying free-energy change. Usually, such a posthoc analysis leads to a decrease in the reliability of the free-energy estimates due to the inevitable loss of information, as well as to a drop in efficiency, which stems from substantial read-write accesses to file systems. We have developed a user-friendly, on-the-fly code for performing eABF simulations within NAMD. In the present contribution, this code is probed in eight illustrative examples. The performance of the algorithm is compared with traditional ABF, on the one hand, and the original eABF implementation combined with a posthoc analysis, on the other hand. Our results indicate that the on-the-fly eABF algorithm (i) supplies the correct free-energy landscape in those critical cases where the coarse variables at play are coupled to either each other or to geometric restraints or holonomic constraints, (ii) greatly improves the reliability of the free-energy change, compared to the outcome of a posthoc analysis, and (iii) represents a negligible additional computational effort compared to regular ABF. Moreover, in the proposed implementation, guidelines for choosing two parameters of the eABF algorithm, namely the stiffness of the spring and the mass

  8. Accurate spectroscopic calculations of the 14 Λ-S and 30 Ω states of BF+ cation including the spin-orbit coupling effect

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjie; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2017-01-01

    This paper studied the potential energy curves of 30 Ω states yielded from the 14 Λ-S states (X2Σ+, 12Π, 22Π, 32Π, 12Σ-, 22Σ+, 32Σ+, 12Δ, 14Σ-, 14Σ+, 24Σ+, 14Π, 24Π, and 14Δ) of the BF+ cation. The potential energy curves were calculated for internuclear separations from approximately 0.08 to 1.1 nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV6Z basis set. Of these 14 Λ-S states, the 24Σ+ and 24Π states were repulsive. The 22Π and 32Π states had double wells. The avoided crossings were found between the 12Π and the 22Π state, and between the 32Π and the 42Π state. The 12Π, 22Π, 32Π, and 14Π states were inverted with the spin-orbit coupling effect taken into account. The 14Π state and the second wells of 22Π and 32Π states were weakly bound. Each of the 12Π, 22Π, and 32Π states had one barrier. The potential energy curves of all the Λ-S and Ω states were extrapolated to the complete basis set limit. Core-valence correlation and scalar relativistic corrections were included at the level of an aug-cc-pV5Z basis set. The spin-orbit coupling effect was included by the state interaction approach with the Breit-Pauli Hamiltonian and the all-electron cc-pCV5Z set. The spectroscopic parameters were determined and compared with available experimental and other theoretical ones. The spin-orbit coupling effect on the spectroscopic parameters was evaluated in detail. Comparison with available experimental data show that the methodology used in this paper is highly accurate for this system.

  9. An accurate density functional theory calculation for electronic excitation energies: the least-squares support vector machine.

    PubMed

    Gao, Ting; Sun, Shi-Ling; Shi, Li-Li; Li, Hui; Li, Hong-Zhi; Su, Zhong-Min; Lu, Ying-Hua

    2009-05-14

    Support vector machines (SVMs), as a novel type of learning machine, has been very successful in pattern recognition and function estimation problems. In this paper we introduce least-squares (LS) SVMs to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation with LS-SVM correction approach has been applied to evaluate the electronic excitation energies of 160 organic molecules. The newly introduced LS-SVM approach reduces the root-mean-square deviation of the calculated electronic excitation energies of 160 organic molecules from 0.32 to 0.11 eV for the B3LYP/6-31G(d) calculation. Thus, the LS-SVM correction on top of B3LYP/6-31G(d) is a better method to correct electronic excitation energies and can be used as the approximation of experimental results which are impossible to obtain experimentally.

  10. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules

    NASA Astrophysics Data System (ADS)

    Umari, P.; Fabris, S.

    2012-05-01

    The quasi-particle energy levels of the Zn-Phthalocyanine (ZnPc) molecule calculated with the GW approximation are shown to depend sensitively on the explicit description of the metal-center semicore states. We find that the calculated GW energy levels are in good agreement with the measured experimental photoemission spectra only when explicitly including the Zn 3s and 3p semicore states in the valence. The main origin of this effect is traced back to the exchange term in the self-energy GW approximation. Based on this finding, we propose a simplified approach for correcting GW calculations of metal phthalocyanine molecules that avoids the time-consuming explicit treatment of the metal semicore states. Our method allows for speeding up the calculations without compromising the accuracy of the computed spectra.

  11. Molecular structure of cotinine studied by gas electron diffraction combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2007-09-01

    The molecular structure of cotinine (( S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone), the major metabolite of nicotine, has been determined at about 182 °C by gas electron diffraction combined with MP2 and DFT calculations. The diffraction data are consistent with the existence of the (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers, where ax and eq indicate the configuration of the pyrrolidinone ring by means of the position (axial and equatorial) of the pyridine ring, and sc, sp and ap distinguish the isomers arising from the internal rotation around the bond connecting the two rings. The (CH 3)NCCC(N) dihedral angles, ϕ, of the (ax, sc) and (eq, sp) conformers were determined independently to be 158(12)° and 129(13)°, respectively, where the numbers in parentheses are three times the standard errors, 3 σ. According to the MP2 calculations, the corresponding dihedral angles for the (ax, ap) and (eq, ap) conformers were assumed to differ by 180° from their syn counterparts. The ratios x(ax, sc)/ x(ax, ap) and x(eq, sp)/ x(eq, ap) were taken from the theoretically estimated free energy differences, Δ G, where x is the abundance of the conformer. The resultant abundances of (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers are 34(6)%, 21% (d.p.), 28% (d.p.), and 17% (d.p.), respectively, where d.p. represents dependent parameters. The determined structural parameters ( rg (Å) and ∠ α (°)) of the most abundant conformer, (ax, sc), are as follows: r(N sbnd C) pyrrol = 1.463(5); r(N sbnd C methyl) = 1.457(←); r(N sbnd C( dbnd O)) = 1.384(12); r(C dbnd O) = 1.219(5); < r(C sbnd C) pyrrol> = 1.541(3); r(C pyrrolsbnd C pyrid) = 1.521(←); < r(C sbnd C) pyrid> = 1.396(2); < r(C sbnd N) pyrid> = 1.343(←); ∠(CNC) pyrrol = 113.9(11); ∠CCC pyrrol(-C pyrid) = 103.6(←); ∠NCO = 124.1(13); ∠NC pyrrolC pyrid = 113.1(12); ∠C pyrrolC pyrrolC pyrid = 113.3(←); ∠(CNC) pyrid = 117.1(2); <∠(NCC) pyrid> = 124.4(←); ∠C methylNC( dbnd O) =

  12. Accurate Ab Initio Calculation of the Isotopic Exchange Equilibrium 10B(OH)3 + 11B(OH)4- = 11B(OH)3 + 10B(OH)4- In Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2005-12-01

    For more than a decade the B isotopic compositions of marine carbonates have been used as paleo-pH proxies for seawater and to reconstruct paleo-[CO2] concentrations in the atmosphere. A necessary step is this process is the accurate determination of the equilibrium constant, K, for the reaction shown in the title above. This equilibrium constant has been recently calculated using ab initio quantum chemical methods applied to nanoclusters containing the solutes B(OH)3 and B(OH)4- coordinated by large numbers of explicit solvent molecules, a computationally difficult procedure. To obtain the most accurate possible value for K the calculated vibrational frequencies were scaled to best fit the limited experimental data available. The value of K obtained (@ 25°C) was 1.027 (significantly larger than the long used value of 1.0194). Even more recently a purely experimental value of K= 1.0265 ± 0.0015 has been obtained through an accurate spectrophotometric determination of the difference of pKa's of commercially available bulk samples of >99% enriched 10B(OH)3(s) and 11B(OH)3 (s). Since we now know the correct experimental value and have a calculation, admittedly a difficult and slightly parameterized one, which matches the experimental result (which was obtained after the calculation), it is worthwhile to analyze the steps in the theoretical calculation of K in more detail. We need to establish a general procedure which can yield accurate K values for other similar aqueous species even if we have no accurate experimental value for K and no vibrational spectral data. To this end we will examine the dependence of the calculated values of vibrational frequencies, isotopomer frequency differences and K values on a number of factors, including (a) the quantum mechanical level (basis set and treatment of electron correlation) used for the free solutes, (b) the incorporation of aqueous medium effects, (c) the effects of vibrational anharmonicity, (d) incorporation of the

  13. Theoretical calculation of transport properties of the noble gases He and Ne and their binary mixtures at low density

    SciTech Connect

    Li Xiufeng; Li Xi

    1996-08-01

    Using the Tang-Toennies potential model and a set of expressions given by J. Kestin et al., we calculate the transport properties of the two noble gases He and Ne and of their binary mixtures, based upon the calculation of the interaction potential. Our calculated results for the transport properties are restricted to low densities but cover the full temperature interval extending from 50 K to the onset of ionization; the mole fraction of the binary mixtures is x{sub 1}:x{sub 2} = 0.25:0.75. Our results are comparable to the best theoretical results given by J. Kestin et al.

  14. Fast and accurate approximate quasiparticle band structure calculations of ZnO, CdO, and MgO polymorphs

    NASA Astrophysics Data System (ADS)

    Ataide, C. A.; Pelá, R. R.; Marques, M.; Teles, L. K.; Furthmüller, J.; Bechstedt, F.

    2017-01-01

    We investigate ZnO, CdO, and MgO oxides crystallizing in rocksalt, wurtzite, and zincblende structures. Whereas in MgO calculations, the conventional LDA-1/2 method is employed through a self-energy potential (VS), the shallow d bands in ZnO and CdO are treated through an increased amplitude (A ) of VS to modulate the self-energy of the d states to place them in the quasiparticle position. The LDA+A -1/2 scheme is applied to calculate band structures and electronic density of states of ZnO and CdO. We compare the results with those of more sophisticated quasiparticle calculations and experiments. We demonstrate that this new LDA+A -1/2 method reaches accuracy comparable to state-of-the-art methods, opening a door to study more complex systems containing shallow core electrons to the prize of LDA studies.

  15. Toward Accurate Modelling of Enzymatic Reactions: All Electron Quantum Chemical Analysis combined with QM/MM Calculation of Chorismate Mutase

    NASA Astrophysics Data System (ADS)

    Ishida, Toyokazu

    2008-09-01

    To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.

  16. Toward Accurate Modelling of Enzymatic Reactions: All Electron Quantum Chemical Analysis combined with QM/MM Calculation of Chorismate Mutase

    SciTech Connect

    Ishida, Toyokazu

    2008-09-17

    To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.

  17. Theoretical Fraunhofer light diffraction patterns calculated from three-dimensional sarcomere arrays imaged from isolated cardiac cells at rest.

    PubMed

    Roos, K P; Leung, A F

    1987-08-01

    Sarcomere striation positions have been obtained throughout the volumes of calcium-tolerant resting heart cells by direct computer interfaced high-resolution optical imaging. Each sarcomere position is stored in a three-dimensional (3-D) matrix array from which Fraunhofer light diffraction patterns have been calculated using numerical methods based on Fourier transforms. Diffraction patterns have been calculated from heart cell data arrays oriented normal to a theoretical laser beam. Twelve characteristic features have been identified and described from these diffraction patterns that correlate to diffraction phenomena observed from both cardiac and skeletal muscle. This numerical approach provides the means to directly assess diffraction pattern formulation, the precision of layer line angular separation, layer-line intensity and angular asymmetries, line widths and fine structures in terms of the known diffracting source structures. These results confirm that theoretical calculations can predict real muscle diffraction patterns and their asymmetries.

  18. AN ACCURATE NEW METHOD OF CALCULATING ABSOLUTE MAGNITUDES AND K-CORRECTIONS APPLIED TO THE SLOAN FILTER SET

    SciTech Connect

    Beare, Richard; Brown, Michael J. I.; Pimbblet, Kevin

    2014-12-20

    We describe an accurate new method for determining absolute magnitudes, and hence also K-corrections, that is simpler than most previous methods, being based on a quadratic function of just one suitably chosen observed color. The method relies on the extensive and accurate new set of 129 empirical galaxy template spectral energy distributions from Brown et al. A key advantage of our method is that we can reliably estimate random errors in computed absolute magnitudes due to galaxy diversity, photometric error and redshift error. We derive K-corrections for the five Sloan Digital Sky Survey filters and provide parameter tables for use by the astronomical community. Using the New York Value-Added Galaxy Catalog, we compare our K-corrections with those from kcorrect. Our K-corrections produce absolute magnitudes that are generally in good agreement with kcorrect. Absolute griz magnitudes differ by less than 0.02 mag and those in the u band by ∼0.04 mag. The evolution of rest-frame colors as a function of redshift is better behaved using our method, with relatively few galaxies being assigned anomalously red colors and a tight red sequence being observed across the whole 0.0 < z < 0.5 redshift range.

  19. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method.

    PubMed

    Xu, Zhongnan; Joshi, Yogesh V; Raman, Sumathy; Kitchin, John R

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  20. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  1. Accurate pKa calculation of the conjugate acids of alkanolamines, alkaloids and nucleotide bases by quantum chemical methods.

    PubMed

    Gangarapu, Satesh; Marcelis, Antonius T M; Zuilhof, Han

    2013-04-02

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS-MP2 and M11-L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen-containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low-cost SM8/M11-L density functional approach.

  2. Theoretical Calculations on Sediment Transport on Titan, and the Possible Production of Streamlined Forms

    NASA Technical Reports Server (NTRS)

    Burr, D. M.; Emery, J. P.; Lorenz, R. D.

    2005-01-01

    The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.

  3. Tonicity balance, and not electrolyte-free water calculations, more accurately guides therapy for acute changes in natremia.

    PubMed

    Carlotti, A P; Bohn, D; Mallie, J P; Halperin, M L

    2001-05-01

    The usual way to decide why hyponatremia or hypernatremia has developed and to plan goals for its therapy is to analyze events in electrolyte-free water (EFW) terms. We shall demonstrate that an EFW balance does not supply this information. Rather, one must calculate mass balances for water and sodium plus potassium separately (a tonicity balance) to understand the basis for the change in natremia and the proper goals for its therapy. These points are illustrated with a clinical example.

  4. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  5. Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarin, p-hydroxybenzoic acid, and cinnamic acid

    NASA Astrophysics Data System (ADS)

    Hsieh, Tiane-Jye; Su, Chia-Ching; Chen, Chung-Yi; Liou, Chyong-Huey; Lu, Li-Hwa

    2005-05-01

    Three natural products, Coumarin ( 1), p-hydroxybenzoic acid ( 2), trans-cinnamic acid ( 3) were isolated from the natural plant of indigenous cinnamon and the structures including relative stereochemistry were elucidated on the basis of spectroscopic data and theoretical calculations. Their sterochemical structures were determined by NMR spectroscopy, mass spectroscopy, and X-ray crystallography. The p-hydroxybenzoic acid complex with water is reported to show the existence of two hydrogen bonds. The two hydrogen bonds are formed in the water molecule of two hydrogen-accepting oxygen of carbonyl group of the p-hydroxybenzoic acid. The intermolecular interaction two hydrogen bond of the model system of the water- p-hydroxybenzoic acid was investigated. An experimental study and a theoretical analysis using the B3LYP/6-31G* method in the GAUSSIAN-03 package program were conducted on the three natural products. The theoretical results are supplemented by experimental data. Optimal geometric structures of three compounds were also determined. The calculated molecular mechanics compared quite well with those obtained from the experimental data. The ionization potentials, highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, energy gaps, heat of formation, atomization energies, and vibration frequencies of the compounds were also calculated. The results of the calculations show that three natural products are stable molecules with high reactive and various other physical properties. The study also provided an explicit understanding of the sterochemical structure and thermodynamic properties of the three natural products.

  6. Accurate quantum wave packet calculations for the F + HCl → Cl + HF reaction on the ground 1(2)A' potential energy surface.

    PubMed

    Bulut, Niyazi; Kłos, Jacek; Alexander, Millard H

    2012-03-14

    We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.

  7. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  8. State-to-state rotational phase coherence effect on the vibration-rotation band shape - An accurate quantum calculation for CO-He

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1989-01-01

    Accurate coupled state calculations of line coupling are performed for infrared lines of carbon monoxide perturbed by helium. Such calculations lead to both real and imaginary line couplings. For the first time, the effect of this imaginary line couplings, connected with state-to-state rotational phase coherences, on infrared band shape, is analyzed. An extension of detailed balance principle to the complex plane is suggested from the present computed off-diagonal cross sections. This allows us to understand the physical mechanism underlying the weak effect of phase coherences on CO-He infrared band shape.

  9. Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models.

    PubMed

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-04-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized high-quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved, allowing for the creation of tetrahedral volume head meshes that can finally be used in the numerical calculations. The pipeline integrates and extends established (and mainly free) software for neuroimaging, computer graphics, and FEM calculations into one easy-to-use solution. We demonstrate the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh elements. The latter is crucial to guarantee the numerical robustness of the FEM calculations. The pipeline will be released as open-source, allowing for the first time to perform realistic field calculations at an acceptable methodological complexity and moderate costs.

  10. Assessment of theoretical procedures for calculating barrier heights for a diverse set of water-catalyzed proton-transfer reactions.

    PubMed

    Karton, Amir; O'Reilly, Robert J; Radom, Leo

    2012-04-26

    Accurate electronic barrier heights are obtained for a set of nine proton-transfer tautomerization reactions, which are either (i) uncatalyzed, (ii) catalyzed by one water molecule, or (iii) catalyzed by two water molecules. The barrier heights for reactions (i) and (ii) are obtained by means of the high-level ab initio W2.2 thermochemical protocol, while those for reaction (iii) are obtained using the W1 protocol. These three sets of benchmark barrier heights allow an assessment of the performance of more approximate theoretical procedures for the calculation of barrier heights of uncatalyzed and water-catalyzed reactions. We evaluate initially the performance of the composite G4 procedure and variants thereof (e.g., G4(MP2) and G4(MP2)-6X), as well as that of standard ab initio procedures (e.g., MP2, SCS-MP2, and MP4). We find that the performance of the G4(MP2)-type thermochemical procedures deteriorates with the number of water molecules involved in the catalysis. This behavior is linked to deficiencies in the MP2-based basis-set-correction term in the G4(MP2)-type procedures. This is remedied in the MP4-based G4 procedure, which shows good performance for both the uncatalyzed and the water-catalyzed reactions, with mean absolute deviations (MADs) from the benchmark values lying below the threshold of "chemical accuracy" (arbitrarily defined as 1 kcal mol(-1) ≈ 4.2 kJ mol(-1)). We also examine the performance of a large number of density functional theory (DFT) and double-hybrid DFT (DHDFT) procedures. We find that, with few exceptions (most notably PW6-B95 and B97-2), the performance of the DFT procedures that give good results for the uncatalyzed reactions deteriorates with the number of water molecules involved in the catalysis. The DHDFT procedures, on the other hand, show excellent performance for both the uncatalyzed and catalyzed reactions. Specifically, almost all of them afford MADs below the "chemical accuracy" threshold, with ROB2-PLYP and B2K

  11. Comparative theoretical study of the UV/Vis absorption spectra of styrylpyridine compounds using TD-DFT calculations.

    PubMed

    Castro, Maria Eugenia; Percino, M Judith; Chapela, Victor M; Soriano-Moro, Guillermo; Ceron, Margarita; Melendez, Francisco J

    2013-05-01

    This study examined absorption properties of 2-styrylpyridine, trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)]pyridine, and trans-4-(m-cyanostyryl)pyridine compounds based on theoretical UV/Vis spectra, with comparisons between time-dependent density functional theory (TD-DFT) using B3LYP, PBE0, and LC-ωPBE functionals. Basis sets 6-31G(d), 6-31G(d,p), 6-31+G(d,p), and 6-311+G(d,p) were tested to compare molecular orbital energy values, gap energies, and maxima absorption wavelengths. UV/Vis spectra were calculated from fully optimized geometry in B3LYP/6-311+G(d,p) in gas phase and using the IEFPCM model. B3LYP/6-311+G(d,p) provided the most stable form, a planar structure with parameters close to 2-styrylpyridine X-ray data. Isomeric structures were evaluated by full geometry optimization using the same theory level. Similar energetic values were found: ~4.5 kJ mol(-1) for 2-styrylpyridine and ~1 kJ mol(-1) for derivative compound isomers. The 2-styrylpyridine isomeric structure differed at the pyridine group N-atom position; structures considered for the other compounds had the cyano group attached to the phenyl ring m-position equivalent. The energy difference was almost negligible between m-cyano-substituted molecules, but high energy barriers existed for cyano-substituted phenyl ring torsion. TD-DFT appeared to be robust and accurate approach. The B3LYP functional with the 6-31G(d) basis set produced the most reliable λmax values, with mean errors of 0.5 and 12 nm respect to experimental values, in gas and solution, respectively. The present data describes effects on the λmax changes in the UV/Vis absorption spectra of the electron acceptor cyano substituent on the phenyl ring, the electron donor methyl substituent, and the N-atom position on the electron acceptor pyridine ring, causing slight changes respect to the 2-styrylpyridine title compound.

  12. Theoretical cross section calculations of medical 13N and 18F radioisotope using alpha induced reaction

    NASA Astrophysics Data System (ADS)

    Kılınç, F.; Karpuz, N.; ćetin, B.

    2017-02-01

    In medical physics, radionuclides are needed to diagnose functional disorders of organs and to diagnose and treat many diseases. Nuclear reactions are significant for the productions of radionuclides. It is important to analyze the cross sections for much different energy. In this study, reactional cross sections calculations on 13N, 18F radioisotopes are with TALYS 1.6 nuclear reaction simulation code. Cross sections calculated and experimental data taken from EXFOR library were compared

  13. Theoretical calculations of emission of wolframite and scheelite-type tungstate crystals

    SciTech Connect

    Nikolaenko, T.; Hizhnyi, Y.; Nedilko, S.

    2009-01-21

    Tungstate crystals AWO{sub 4} (A = Zn,Cd,Pb) are well-known scintillation materials for various applications in science and technology. In recent years the optical properties of these crystals were intensively studied experimentally and theoretically. However, the origin of luminescence in lead, cadmium and zinc tungstates is still the subject of discussion. According to generally accepted view, the centers of luminescence in AWO{sub 4} crystals are in some or other way related to the tungstate anionic groups. We developed a cluster approach in theoretical investigation of the electronic structure of AWO{sub 4} tungstate crystals based on the configuration interaction (CI) computation in which the lattice vibrations were taken into account.

  14. Ocean color spectrum calculations. [theoretical models relating oceanographic parameters to upwelling radiances

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    The development is considered of procedures for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. It is proposed that the first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model is shown to be described by a modified single scattering approach based upon a simple treatment of multiple scattering. The resulting quasi-single scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurments made at the edge of the Sargasso Sea off Cape Hatteras.

  15. The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; François, Jean-Pierre

    1995-08-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the 12C isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals are reproduced to better than 10 cm-1, except for three cases where the error is 11 cm-1. Our calculated harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: Both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the ν8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper via the World-Wide Web.

  16. The Calculation of Theoretical Chromospheric Models and the Interpretation of the Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.

    1998-01-01

    Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Rurucz on the detailed synthesis of the solar spectrum based on opacity data or over 58 million atomic and molecular lines. our goals are: to determine models of the various features observed on the Sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for non-radiative heating, and for solar activity in general.

  17. The calculation of theoretical chromospheric models and the interpretation of the solar spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.

    1994-01-01

    Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed synthesis of the solar spectrum based on opacity data for over 58 million atomic and molecular lines. Our goals are to determine models of the various features observed on the sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for nonradiative heating, and for solar activity in general.

  18. Automated Routines for Calculating Whole-Stream Metabolism: Theoretical Background and User's Guide

    USGS Publications Warehouse

    Bales, Jerad D.; Nardi, Mark R.

    2007-01-01

    In order to standardize methods and facilitate rapid calculation and archival of stream-metabolism variables, the Stream Metabolism Program was developed to calculate gross primary production, net ecosystem production, respiration, and selected other variables from continuous measurements of dissolved-oxygen concentration, water temperature, and other user-supplied information. Methods for calculating metabolism from continuous measurements of dissolved-oxygen concentration and water temperature are fairly well known, but a standard set of procedures and computation software for all aspects of the calculations were not available previously. The Stream Metabolism Program addresses this deficiency with a stand-alone executable computer program written in Visual Basic.NET?, which runs in the Microsoft Windows? environment. All equations and assumptions used in the development of the software are documented in this report. Detailed guidance on application of the software is presented, along with a summary of the data required to use the software. Data from either a single station or paired (upstream, downstream) stations can be used with the software to calculate metabolism variables.

  19. Weighting Strategies for Single-Step Genomic BLUP: An Iterative Approach for Accurate Calculation of GEBV and GWAS.

    PubMed

    Zhang, Xinyue; Lourenco, Daniela; Aguilar, Ignacio; Legarra, Andres; Misztal, Ignacy

    2016-01-01

    former. Manhattan plots had higher resolution with 5 and 100 QTL. Using a common weight for a window of 20 SNP that sums or averages the SNP variance enhances accuracy of predicting GEBV and provides accurate estimation of marker effects.

  20. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    SciTech Connect

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; Parks, Jerry M.

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for CoIII, CoII, and CoI species, respectively, and the second model features saturation of each vacant axial coordination site on CoII and CoI species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of

  1. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    DOE PAGES

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; ...

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalaminmore » in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for CoIII, CoII, and CoI species, respectively, and the second model features saturation of each vacant axial coordination site on CoII and CoI species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co axial ligand binding, leading to substantial errors in predicted

  2. Weighting Strategies for Single-Step Genomic BLUP: An Iterative Approach for Accurate Calculation of GEBV and GWAS

    PubMed Central

    Zhang, Xinyue; Lourenco, Daniela; Aguilar, Ignacio; Legarra, Andres; Misztal, Ignacy

    2016-01-01

    . Manhattan plots had higher resolution with 5 and 100 QTL. Using a common weight for a window of 20 SNP that sums or averages the SNP variance enhances accuracy of predicting GEBV and provides accurate estimation of marker effects. PMID:27594861

  3. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin.

    PubMed

    Johnston, Ryne C; Zhou, Jing; Smith, Jeremy C; Parks, Jerry M

    2016-08-04

    Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and

  4. Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT

    NASA Astrophysics Data System (ADS)

    Liheng, Zhu; Xingbi, Chen

    2014-06-01

    A physically based equation for predicting required p-emitter length of a snapback-free reverse-conducting insulated gate bipolar transistor (RC-IGBT) with field-stop structure is proposed. The n-buffer resistances above the p-emitter region with anode geometries of linear strip, circular and annular type are calculated, and based on this, the minimum p-emitter lengths of those three geometries are given and verified by simulation. It is found that good agreement was achieved between the numerical calculation and simulation results. Moreover, the calculation results show that the annular case needs the shortest p-emitter length for RC-IGBT to be snapback-free.

  5. Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy

    NASA Astrophysics Data System (ADS)

    Chen, Xi H.; Zhang, John Z. H.

    2004-06-01

    In this paper, we further develop the molecular fractionation with conjugate caps (MFCC) scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water, and a Watson-Crick paired DNA segment, dCGT/dGCA. Using the basic MFCC approach, the nucleotide chains are cut at each phosphate group and a pair of conjugate caps (concaps) are inserted. Five cap molecules have been tested among which the dimethyl phosphate anion is proposed to be the standard concap for application. For each system, one-dimensional interaction potential curves are computed using the MFCC method and the calculated interaction energies are found to be in excellent agreement with corresponding results obtained from the full system ab initio calculations. The current study extends the application of the MFCC method to ab initio calculations for DNA- or RNA-ligand interaction energies.

  6. Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA and XENON experiments

    NASA Astrophysics Data System (ADS)

    Roberts, Benjamin; Dzuba, Vladimir; Flambaum, Victor; Gribakin, Gleb; Pospelov, Maxim; Stadnik, Yevgeny

    2017-01-01

    Atoms can become ionised during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic WIMP dark matter is a potential explanation for the anomalous 9 sigma annual modulation in the DAMA direct detection experiment. We show that due to non-analytic, cusp-like behavior of Coulomb functions close to the nucleus leads to an effective atomic structure enhancement. Crucially, we also show that electron relativistic effects are important. With this in mind, we perform high-accuracy relativistic calculations of atomic ionisation. We scan the parameter space: the DM mass, the mediator mass, and the effective coupling strength, to determine if there is any region that could potentially explain the DAMA signal. While we find that the modulation fraction of all events with energy deposition above 2 keV in NaI can be quite significant, reaching 50%, the relevant parts of the parameter space are excluded by the XENON10 and XENON100 experiments.

  7. An Empirical Approach to Obtaining Accurate Molecular Rotational Constants for Isotopically-Substituted Species from AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Carroll, P. Brandon; Blake, Geoffrey A.

    2013-06-01

    Recent advances in microwave spectroscopy, namely the development of broadband, chirped-pulse Fourier-transform microwave spectrometers, allow the acquisition of rotational spectra of isotopically-substituted species in natural abundance. The characterization and assignment of these spectra is of particular interest as it applies to astrochemical observations of such species in the interstellar medium. Here, we demonstrate an empirical method for determining rotational constants to aid in the initial assignment of such spectra using a combination of laboratory data and ab initio calculations. The result is an increase in the accuracy of these constants by as much as two orders of magnitude versus those resulting from simple structure optimizations. We have applied this method to a variety of species including diatomic molecules (e.g. HCl), large molecules with internal motion (e.g. CH_3COOH), ions (e.g. HCO^+), clusters (e.g. H_2O\\cdotH_2O), and long carbon chain molecules (e.g. HC_7N). We present the results of these analyses and comment on the applicability of this method to other systems.

  8. Testing the assumption in ergonomics software that overall shoulder strength can be accurately calculated by treating orthopedic axes as independent.

    PubMed

    Hodder, Joanne N; La Delfa, Nicholas J; Potvin, Jim R

    2016-08-01

    To predict shoulder strength, most current ergonomics software assume independence of the strengths about each of the orthopedic axes. Using this independent axis approach (IAA), the shoulder can be predicted to have strengths as high as the resultant of the maximum moment about any two or three axes. We propose that shoulder strength is not independent between axes, and propose an approach that calculates the weighted average (WAA) between the strengths of the axes involved in the demand. Fifteen female participants performed maximum isometric shoulder exertions with their right arm placed in a rigid adjustable brace affixed to a tri-axial load cell. Maximum exertions were performed in 24 directions, including four primary directions, horizontal flexion-extension, abduction-adduction, and at 15° increments in between those axes. Moments were computed and comparisons made between the experimentally collected strengths and those predicted by the IAA and WAA methods. The IAA over-predicted strength in 14 of 20 non-primary exertions directions, while the WAA underpredicted strength in only 2 of these directions. Therefore, it is not valid to assume that shoulder axes are independent when predicting shoulder strengths between two orthopedic axes, and the WAA is an improvement over current methods for the posture tested.

  9. Theoretical Calculation for the Ionization of Molecules by Short Strong Laser Pulses

    SciTech Connect

    Nagy, L.; Borbely, S.

    2011-10-03

    We have developed several calculation methods for the ionization of atoms and molecules by strong and ultrashort laser pulses, based on the numerical solution of the time dependent Schroedinger equation (TDSE) in the momentum space. We have performed calculations within the strong field approximation (Volkov) and using iterative and direct methods for solving the TDSE. The investigated molecules are H{sub 2}{sup +} and H{sub 2}O. In case of the ionization of diatomic molecules the interference effects in the ejected electron spectra due to the coherent addition of the waves associated to the electrons ejected from the vicinity of different nuclei were also analysed.

  10. Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Massidda, S.

    1990-07-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.

  11. Theoretical calculation of low-lying states of NaAr and NaXe

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.

    1981-01-01

    Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.

  12. Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of absolute configuration (AC) is one of the most challenging features in the structure elucidation of chiral natural products, especially those with complex structures. With revolutionary advancements in the area of quantum chemical calculations of chiroptical spectroscopy over the pa...

  13. Calculation of theoretical lubrication regimes in two-piece first metatarsophalangeal prostheses.

    PubMed

    Joyce, T J

    2008-01-01

    The key joint of the forefoot during gait is the first metatarsophalangeal joint. It plays an important role in propelling the human form but can be subject to a number of diseases which can lead to its replacement with an artificial joint. Some of these designs of prosthesis employ a two-piece ball and socket arrangement and are available with a range of biomaterial couples including ceramic-on-ceramic, metal-on-metal and metal-on-polymer. Calculation of predicted lubrication regimes applicable to these implant designs was undertaken. Modelling the ball and socket implant as an equivalent ball-on-plane model and employing elastohydrodynamic theory allowed the minimum film thickness to be calculated and in turn the lambda ratio to indicate the lubrication regime. The calculations were undertaken for a 50 to 1500 N range of loading values, a 0 to 30 mm/s range of entraining velocities, and a 3 to 15 mm radius range of sizes. Calculations showed that the ceramic-on-ceramic and metal-on-metal implants could operate under fluid film lubrication, whereas the metal-on-polymer combination operated in the boundary lubrication regime. It was also recognized that manufacturing capabilities are critical to the radial clearances and values of surface roughness that can be achieved, and thus the predicted lubrication regime.

  14. Comparison between Theoretical Calculation and Experimental Results of Excitation Functions for Production of Relevant Biomedical Radionuclides

    SciTech Connect

    Menapace, E.; Birattari, C.; Bonardi, M.L.; Groppi, F.; Morzenti, S.; Zona, C.

    2005-05-24

    The radionuclide production for biomedical applications has been brought up in the years, as a special nuclear application, at INFN LASA Laboratory, particularly in co-operation with the JRC-Ispra of EC. Mainly scientific aspects concerning radiation detection and the relevant instruments, the measurements of excitation functions of the involved nuclear reactions, the requested radiochemistry studies and further applications have been investigated. On the side of the nuclear data evaluations, based on nuclear model calculations and critically selected experimental data, the appropriate competence has been developed at ENEA Division for Advanced Physics Technologies. A series of high specific activity accelerator-produced radionuclides in no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET radiodiagnostics, are investigated. In this work, last revised measurements and model calculations are reviewed for excitation functions of natZn(d,X)64Cu, 66Ga reactions, referring to irradiation experiments at K=38 variable energy Cyclotron of JRC-Ispra. Concerning the reaction data for producing 186gRe and 211At/211gPo (including significant emission spectra) and 210At, most recent and critically selected experimental results are considered and discussed in comparison with model calculations paying special care to pre-equilibrium effects estimate and to the appropriate overall parameterization. Model calculations are presented for 226Ra(p,2n)225Ac reaction, according to the working program of the ongoing IAEA CRP on the matter.

  15. Theoretical comparison of advanced methods for calculating nitrous oxide fluxes using non-steady state chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...

  16. About some of the theoretical approaches used in double-beta decay calculations

    SciTech Connect

    Civitarese, O.

    2007-10-12

    The calculations of nuclear matrix elements, corresponding to nuclear double beta decay transitions, rely upon several approximations. The impact of these approximations upon final estimations of the nuclear matrix elements is illustrated. We pay attention to mean field (symmetry violations) and to approximate diagonalizations (pn-QRPA, renormalized pn-QRPA and fully renormalized pn-QRPA)

  17. About some of the theoretical approaches used in double-beta decay calculations

    NASA Astrophysics Data System (ADS)

    Civitarese, O.

    2007-10-01

    The calculations of nuclear matrix elements, corresponding to nuclear double beta decay transitions, rely upon several approximations. The impact of these approximations upon final estimations of the nuclear matrix elements is illustrated. We pay attention to mean field (symmetry violations) and to approximate diagonalizations (pn-QRPA, renormalized pn-QRPA and fully renormalized pn-QRPA).

  18. The Anharmonic Force Field of Ethylene, C2H4, by Means of Accurate Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; Francois, Jean-Pierre; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the C-12 isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals could be reproduced to better than 10 per centimeter, except for three cases of severe Fermi type 1 resonance. The problem with these three bands is identified as a systematic overestimate of the Kiij Fermi resonance constants by a factor of two or more; if this is corrected for, the predicted fundamentals come into excellent agreement with experiment. No such systematic overestimate is seen for Fermi type 2 resonances. Our computed harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the v8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper.

  19. Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals

    NASA Astrophysics Data System (ADS)

    Bokotey, O. V.

    2016-05-01

    This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.

  20. A theoretical model for calculation of molecular stopping power. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.

    1984-01-01

    A modified local plasma model is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H2 and He gas was calculated for incident proton energy ranging from 100 keV to 2.5 MeV. The stopping power of O2, N2, and water vapor was also calculated for incident proton energy ranging from 40 keV. to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to department from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed.

  1. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations

    SciTech Connect

    Xie, Jiafeng; Si, M. S. Yang, D. Z.; Zhang, Z. Y.; Xue, D. S.

    2014-08-21

    Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.

  2. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    PubMed

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  3. Theoretical calculation of electronic stopping power of water vapor by proton impact

    SciTech Connect

    Olivera, G.H.; Martinez, A.E.; Rivarola, R.D.

    1995-11-01

    The energy loss of proton beams in water vapor is analyzed with a full quantum-mechanical treatment, the distorted-wave model. This model takes into account distortion effects due to the long-range Coulomb potential. Projectile energies from 10 keV up to 1 MeV are considered. Mean stopping power and equilibrium charge-state fractions are calculated and compared with experimental data. The validity of Bragg`s additivity rule is investigated. 35 refs., 5 figs.

  4. Theoretical Calculation of Prompt Neutron Spectra from Fission of Curium Isotopes

    NASA Astrophysics Data System (ADS)

    Ohsawa, Takaaki; Tani, Kazuhiro; Kishimoto, Yasufumi

    2003-06-01

    Prompt neutron spectra for Cm-isotopes (242Cm, 243Cm, 244Cm, 245Cm, 246Cm, 248Cm) were calculated on the basis of a modified version of the Madland-Nix model combined with a multimodal fission model. The predicted spectra were found to be in fair agreement with recent data. A slight enhancement of the low-energy component of the spectrum was interpreted in terms of neutron emission during fragment acceleration.

  5. Theoretical calculations on the adhesion, stability, electronic structure and bonding of SiC/W interface

    NASA Astrophysics Data System (ADS)

    Jin, Na; Yang, Yanqing; Luo, Xian; Li, Jian; Huang, Bin; Liu, Shuai; Xiao, Zhiyuan

    2014-09-01

    The β-SiC(1 1 1)/α-W(1 1 0) interfaces were studied by first-principles calculations based on density functional theory (DFT). The ideal work of adhesion (Wad) and interface energy (γint) were calculated for six different interfacial structures, taking into account both Si- and C-terminations of β-SiC(1 1 1) surfaces, and three different stacking sequences. The interfacial electronic structures including charge density distribution and difference, and density of states (DOS) were simulated to determine the nature of SiC/W bonding. The results show that the Si-terminated top-site interface is the most stable interface, yielding the highest Wad and the lowest γint. During the optimization, the Si-terminated top-site interface will transform into the center-site structure, resulting in the interaction among the interfacial W and Si atoms, and subinterfacial C atoms. In addition, the calculated interface energies show that an interdiffusion layer will form on the SiC/W interface. The experimental results also have verified the existence of an interdiffusion layer on the SiC/W interface in a CVD-SiC fiber.

  6. Correlation of theoretical calculations and experimental measurements of damage around a shaft in salt

    SciTech Connect

    Munson, D.E.; Holcomb, D.J.; DeVries, K.L.; Brodsky, N.S.

    1994-12-31

    Cross-hole ultrasonic measurements were made in the immediate wall of the Air Intake Shaft of the Waste Isolation Pilot Plant facility. These measurements show that compressional wave speed markedly decreases at the shaft wall and then increases with radial distance from the shaft to eventually become that of solid or undamaged salt. This behavior is indicative of deformation damage or microfractures in the salt. These in situ data are compared to both laboratory measurements of wave speed as a function of volume dilatancy and to calculations based on the Multimechanism Deformation Coupled Fracture model, with reasonable agreement.

  7. Reaction cross-section calculations using new experimental and theoretical level structure data for deformed nuclei

    SciTech Connect

    Hoff, R.W.; Gardner, D.G.; Gardner, M.A.

    1985-05-01

    A technique for modeling level structures of odd-odd nuclei has been used to construct sets of discrete states with energies in the range 0 to 1.5 MeV for several nuclei in the rare-earth and actinide regions. The accuracy of the modeling technique was determined by comparison with experimental data. Examination was made of what effect the use of these new, more complete sets of discrete states has on the calculation of level densities, total reaction cross sections, and isomer ratios. 9 refs.

  8. Synthesis, spectral, optical properties and theoretical calculations on schiff bases ligands containing o-tolidine

    NASA Astrophysics Data System (ADS)

    Arroudj, S.; Bouchouit, M.; Bouchouit, K.; Bouraiou, A.; Messaadia, L.; Kulyk, B.; Figa, V.; Bouacida, S.; Sofiani, Z.; Taboukhat, S.

    2016-06-01

    This paper explores the synthesis, structure characterization and optical properties of two new schiff bases. These compounds were obtained by condensation of o-tolidine with salicylaldehyde and cinnamaldehyde. The obtained ligands were characterized by UV, 1H and NMR. Their third-order NLO properties were measured using the third harmonic generation technique on thin films at 1064 nm. The electric dipole moment (μ), the polarizability (α) and the first hyperpolarizability (β) were calculated using the density functional B3LYP method with the lanl2dz basis set. For the results, the title compound shows nonzero β value revealing second order NLO behaviour.

  9. Proton transfer in acetaldehyde and acetaldehyde-water clusters: Vacuum ultraviolet photoionization experiment and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Troy, Tyler P.; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2015-03-01

    Acetaldehyde, a probable human carcinogen and of environmental importance, upon solvation provides a test bed for understanding proton transfer pathways and catalytic mechanisms. In this study, we report on single photon vacuum ultraviolet photoionization of small acetaldehyde and acetaldehyde-water clusters. Appearance energies of protonated clusters are extracted from the experimental photoionization efficiency curves and compared to electronic structure calculations. The comparison of experimental data to computational results provides mechanistic insight into the fragmentation mechanisms of the observed mass spectra. Using deuterated water for isotopic tagging, we observe that proton transfer is mediated via acetaldehyde and not water in protonated acetaldehyde-water clusters.

  10. The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1985-01-01

    Solar chromospheric models are described. The models included are based on the observed spectrum, and on the assumption of hydrostatic equilibrium. The calculations depend on realistic solutions of the radiative transfer and statistical equilibrium equations for optically thick lines and continua, and on including the effects of large numbers of lines throughout the spectrum. Although spectroheliograms show that the structure of the chromosphere is highly complex, one-dimensional models of particular features are reasonably successful in matching observed spectra. Such models were applied to the interpretation of chromospheric observations.

  11. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    PubMed Central

    Rafiee, Marjan; Javaheri, Masoumeh

    2015-01-01

    Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect. PMID:27844007

  12. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    NASA Astrophysics Data System (ADS)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  13. Optical Properties Of Ice And Snow In The Polar Oceans. II: Theoretical Calculations

    NASA Astrophysics Data System (ADS)

    Grenfell, Thomas C.; Perovich, Donald K.

    1986-08-01

    Radiative transfer models of sea ice applied to date range from a simple Bouguer-Lambert representation for net downwelling irradiance through 16 stream models which takes into account detailed variations in ice microstructure. Both sea ice and snow are strongly multiple scattering media with single scattering albedos well above 0.9 through the visible and into the near infrared. Parameter studies indicate that the optical properties of sea ice are controlled by the density of brine and vapor inclusions which in general undergo substantial seasonal changes. Melting and brine drainage are the principal causes of these variations. For ice below -5°C, temperature effects are relatively weak unless the Tice drops below the eutectic point. The optical properties of snow depend primarily on grain size, the bulk density, and the presence of impurities such as carbon soot. The theoretical models appear to be able to reproduce observations quite well and have revealed that soot or dust contamination of snow appears to be prevalent even in the Arctic.

  14. Practical method for highly accurate large-scale surface calculations. [of linearized muffin-tin orbital technique for chemisorption and magnetism

    NASA Technical Reports Server (NTRS)

    Fernando, G. W.; Cooper, B. R.; Ramana, M. V.; Krakauer, H.; Ma, C. Q.

    1986-01-01

    An accurate and efficient film linearized muffin-tin orbital (FLMTO) technique for surface electronic-structure calculations is presented which uses only 60-70 basis functions, as opposed to the 300 functions used in the linear augmented plane-wave method. Calculations for three different (3d and 4d) transition-metal films resulted in high quality results for five-layer slabs of Cu(001), Fe(001), and Ru(001), in addition to good results for the work functions and projected density of states. By retaining the LMTO small basis size, computer time and memory are reduced, making practical the study of systems with a larger number of atoms in the two-dimensional unit cell.

  15. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations.

    PubMed

    Ida, Masato; Taniguchi, Nobuyuki

    2003-09-01

    This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.

  16. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives.

    PubMed

    Jin, R Y; Sun, X H; Liu, Y F; Long, W; Chen, B; Shen, S Q; Ma, H X

    2016-01-05

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, (1)H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z=4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.

  17. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives

    NASA Astrophysics Data System (ADS)

    Jin, R. Y.; Sun, X. H.; Liu, Y. F.; Long, W.; Chen, B.; Shen, S. Q.; Ma, H. X.

    2016-01-01

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, 1H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z = 4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.

  18. Theoretical calculations of Electron Paramagnetic Resonance parameters of liquid phase Orotic acid radical

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ebru Karakaş; Dereli, Ömer

    2017-02-01

    To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.

  19. New Look on 3-Hydroxyiminoflavanone and Its Palladium(II) Complex: Crystallographic and Spectroscopic Studies, Theoretical Calculations and Cytotoxic Activity.

    PubMed

    Kasprzak, Maria; Fabijańska, Małgorzata; Chęcińska, Lilianna; Szmigiero, Leszek; Ochocki, Justyn

    2016-04-13

    This work presents the synthesis, spectroscopic properties and single-crystal X-ray examination of the structure of 3-hydroxyiminoflavanone and its palladium complex. It presents the results of NMR (Nuclear Magnetic Resonance) spectroscopy, electron-density studies based on X-ray wavefunction refinement and theoretical calculations combined with QTAIM (Quantum Theory of Atoms in Molecules) and ELI-D (Electron Localizability Indicator) analyses. These offer an interesting new insight into the structures and behavior of flavanone and its complex, in solid state and in solution. The study also examines the cytotoxicity of the ligand and its complex against three human ovarian and lung cancer cell lines.

  20. Comparison of theoretical and experimental dielectric functions: Electron energy-loss spectroscopy and density-functional calculations on skutterudites

    NASA Astrophysics Data System (ADS)

    Prytz, Ø.; Løvvik, O. M.; Taftø, J.

    2006-12-01

    We explore the possibility of combining density functional theory (DFT) and electron energy loss spectroscopy (EELS) to determine the dielectric function of materials. As model systems we use the skutterudites CoP3 , CoAs3 , and CoSb3 which are prototypes for thermoelectric materials. We achieve qualitative agreement between the theoretically and experimentally obtained low energy-loss spectra and dielectric function. Some of the remaining discrepancies may be caused by the challenge of refining the experimental spectra before Kramers-Kronig analysis. However, contrary to what is the case for some crystals with less complicated electronic structure, the DFT calculated plasmon energies deviate significantly from the experimental values. The great accuracy with which the plasmon energy can be determined by EELS, suggests that this technique may provide valuable inputs in further efforts to improve DFT calculations. The use of EELS as the experimental technique may become particularly powerful in studies of small volumes of materials.

  1. Calibrating the High Density Magnetic Port within Tissue Expanders to Achieve more Accurate Dose Calculations for Postmastectomy Patients with Immediate Breast Reconstruction

    NASA Astrophysics Data System (ADS)

    Jones, Jasmine; Zhang, Rui; Heins, David; Castle, Katherine

    In postmastectomy radiotherapy, an increasing number of patients have tissue expanders inserted subpectorally when receiving immediate breast reconstruction. These tissue expanders are composed of silicone and are inflated with saline through an internal metallic port; this serves the purpose of stretching the muscle and skin tissue over time, in order to house a permanent implant. The issue with administering radiation therapy in the presence of a tissue expander is that the port's magnetic core can potentially perturb the dose delivered to the Planning Target Volume, causing significant artifacts in CT images. Several studies have explored this problem, and suggest that density corrections must be accounted for in treatment planning. However, very few studies accurately calibrated commercial TP systems for the high density material used in the port, and no studies employed fusion imaging to yield a more accurate contour of the port in treatment planning. We compared depth dose values in the water phantom between measurement and TPS calculations, and we were able to overcome some of the inhomogeneities presented by the image artifact by fusing the KVCT and MVCT images of the tissue expander together, resulting in a more precise comparison of dose calculations at discrete locations. We expect this method to be pivotal in the quantification of dose distribution in the PTV. Research funded by the LS-AMP Award.

  2. Theoretical calculations of phase transitions and optical properties of solid iodine under high pressures

    NASA Astrophysics Data System (ADS)

    San, Xiaojiao; Wang, Liancheng; Ma, Yanming; Liu, Zhiming; Cui, Tian; Liu, Bingbing; Zou, Guangtian

    2008-04-01

    The structural stability and optical properties of solid iodine under pressure have been studied using the ab initio pseudopotential plane-wave method. The dependence of lattice parameters on pressure indicates that the first structural phase transition from phase I to phase V occurs at about 20 GPa. From the pressure dependence of our elastic constants for solid iodine in phase I, it is found that the first structural transformation from molecular phase I to the intermediate phase V occurs at about 20 GPa due to the softening of the elastic constant C44, which is very close to the transition pressure of 20 GPa obtained by geometry optimizations and 23.2 GPa obtained by experimental measurements. The optimized structure for phase V is a face-centered orthorhombic (fco) phase with equal interatomic distances d1 = d2 = d3, but this fco structure is mechanically unstable, with shear elastic stiffness coefficient C44<0. To understand the modulated phase V, we use a periodic crystal structure to mimic the incommensurate phase V and obtain some quantitative information. In our calculation, the modulated phase is thermodynamically and mechanically stable. It is believed that phase V is not a monatomic phase but an intermediate state between a molecular and a monatomic state.

  3. Theoretical neutron damage calculations in industrial robotic manipulators used for non-destructive imaging applications

    DOE PAGES

    Hashem, Joseph; Schneider, Erich; Pryor, Mitch; ...

    2017-01-01

    Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less

  4. Theoretical neutron damage calculations in industrial robotic manipulators used for non-destructive imaging applications

    SciTech Connect

    Hashem, Joseph; Schneider, Erich; Pryor, Mitch; Landsberger, Sheldon

    2017-01-01

    Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiation damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.

  5. Experimental Determination and Theoretical Calculation of the Eutectic Composition of Cefuroxime Axetil Diastereomers.

    PubMed

    Dalal, Namita; Buckner, Ira S; Wildfong, Peter L D

    2017-02-22

    Cefuroxime axetil (CFA), an ester prodrug of cefuroxime exists as a pair of diastereoemers, namely isomer A and isomer B. To enable phase diagram construction, crystallization of the diastereomers of CFA from the commercially available amorphous drug substance was carried out. Isomer A was separated with a purity approaching 100% whereas the maximum purity of isomer B was 85% as confirmed by solution state proton NMR spectroscopy. The crystalline forms of isomer A and isomer B were confirmed as forms AI and BI, respectively, based on differential scanning calorimetry (DSC) analysis and powder X-ray diffraction. DSC analysis was used to observe the melting behavior of different diastereomer mixture compositions. The binary solid-liquid phase diagram for mixture compositions ranging from 0 to 85% w/w isomer B indicated the formation of a eutectic mixture having a melting temperature of 124.7 ± 0.4°C and a composition of 75% w/w (+/-5% wt.) isomer B. The eutectic composition was calculated using an index based on the van't Hoff equation for melting point depression and was found to be 75% isomer B and 25% isomer A. As CFA is present in commercial preparations as a mixture of diastereomers, the formation of a eutectic mixture between the diastereomers may impact the solubility and stability of the commercial product. Eutectic formation can be explained on the basis of the chemical similarity of diastereomers that favor miscibility in the liquid state.

  6. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations.

    PubMed

    Wang, Xinye; Huang, Yaji; Pan, Zhigang; Wang, Yongxing; Liu, Changqi

    2015-09-15

    Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl2 molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl2. Considering the energy barriers, it is easy for PbO and PbCl2 to adsorb on Al surfaces but difficult to escape. The high energy barriers of de-HCl process cause the difficulties of PbCl2 to form PbO·Al2O3·2SiO2 with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  7. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH{sub 2}{sup +}

    SciTech Connect

    Li, Y. Q.; Zhang, P. Y.; Han, K. L.

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}Σ{sup +})+H({sup 2}S)→C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}Σ{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.

  8. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    SciTech Connect

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoretical uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 02+ band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.

  9. ELECTRON-ION RECOMBINATION OF Fe XII FORMING Fe XI: LABORATORY MEASUREMENTS AND THEORETICAL CALCULATIONS

    SciTech Connect

    Novotny, O.; Hahn, M.; Lestinsky, M.; Savin, D. W.; Badnell, N. R.; Bernhardt, D.; Mueller, A.; Schippers, S.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.

    2012-07-01

    We have measured electron-ion recombination for Fe XII forming Fe XI using a merged-beam configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. The measured merged-beam recombination rate coefficient (MBRRC) for collision energies from 0 to 1500 eV is presented. This work uses a new method for determining the absolute MBRRC based on a comparison of the ion beam decay rate with and without the electron beam on. For energies below 75 eV, the spectrum is dominated by dielectronic recombination (DR) resonances associated with 3s {yields} 3p and 3p {yields} 3d core excitations. At higher energies, we observe contributions from 3 {yields} N' and 2 {yields} N' core excitation DR. We compare our experimental results to state-of-the-art multi-configuration Breit-Pauli (MCBP) calculations and find significant differences, both in resonance energies and strengths. We have extracted the DR contributions from the measured MBRRC data and transformed them into a plasma recombination rate coefficient (PRRC) for temperatures in the range of 10{sup 3}-10{sup 7} K. We show that the previously recommended DR data for Fe XII significantly underestimate the PRRC at temperatures relevant for both photoionized plasmas (PPs) and collisionally ionized plasmas (CPs). This is contrasted with our MCBP PRRC results, which agree with the experiment to within 30% at PP temperatures and even better at CP temperatures. We find this agreement despite the disagreement shown by the detailed comparison between our MCBP and experimental MBRRC results. Last, we present a simple parameterized form of the experimentally derived PRRC for easy use in astrophysical modeling codes.

  10. Studies on the interaction between 9-fluorenylmethyl chloroformate and Fe3+ and Cu2+ ions: spectroscopic and theoretical calculation approach.

    PubMed

    Gu, Zhenyan; Lei, Wu; Shi, Wenyan; Hao, Qingli; Si, Weimeng; Xia, Xifeng; Wang, Fengxiang

    2014-11-11

    The interaction between 9-fluorenylmethyl chloroformate (FMOC-Cl) and Fe3+ and Cu2+ ions was investigated using fluorescence, UV/Vis absorption spectroscopies and theoretical calculation. The optical property of FMOC-Cl was studied in detail in absence and presence of various transition metal ions with particular affinity to Fe3+ and Cu2+ ions. With the fluorescence characteristic band centered at 307 and 315 nm for FMOC-Cl, the introduction of Fe3+ or Cu2+ ions leads to the fluorescence quenching of FMOC-Cl with different shift and intensities of two fluorescent bands. It allows us to differentiate between FMOC-Cl and Fe3+ and Cu2+ ions interaction behavior. The study on fluorescent kinetics confirms that the fluorescence quenching of FMOC-Cl with Fe3+ and Cu2+ ions is based on the formation of non-fluorescent material, that is, static quenching. Further analyses of bond lengths, Mulliken atomic charges and the frontier orbital compositions for FMOC-Cl and its complexes with Fe3+ and Cu2+ ions were carried out. The theoretical calculations prove the fluorescence quenching originates from the formation of coordination bonds between the oxygen atom of the carbonyl group of FMOC-Cl and Fe3+ and Cu2+ ions. The commercially available FMOC-Cl can be used as excellent fluorescent probe toward Fe3+ and Cu2+ ions with high sensitivity.

  11. Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency.

    PubMed

    Jiang, He; Chen, Changshui

    2015-04-23

    Most material properties can be traced to electronic structures. Black silicon produced from SF6 or sulfur powder via irradiation with femtosecond laser pulses displays decreased infrared absorption after annealing, with almost no corresponding change in visible light absorption. The high-intensity laser pulses destroy the original crystal structure, and the doping element changes the material performance. In this work, the structural and electronic properties of several sulfur-doped silicon systems are investigated using first principle calculations. Depending on the sulfur concentration (level of doping) and the behavior of the sulfur atoms in the silicon lattice, different states or an absence of states are exhibited, compared with the undoped system. Moreover, the visible-infrared light absorption intensities are structure specific. The results of our theoretical calculations show that the conversion efficiency of sulfur-doped silicon solar cells depends on the sulfur concentrations. Additionally, two types of defect configurations exhibit light absorption characteristics that differ from the other configurations. These two structures produce a rapid increase in the theoretical photoelectric conversion efficiency in the range of the specific chemical potential studied. By controlling the positions of the atomic sulfur and the sulfur concentration in the preparation process, an efficient photovoltaic (PV) material may be obtainable.

  12. Studies on the interaction between 9-fluorenylmethyl chloroformate and Fe3+ and Cu2+ ions: Spectroscopic and theoretical calculation approach

    NASA Astrophysics Data System (ADS)

    Gu, Zhenyan; Lei, Wu; Shi, Wenyan; Hao, Qingli; Si, Weimeng; Xia, Xifeng; Wang, Fengxiang

    2014-11-01

    The interaction between 9-fluorenylmethyl chloroformate (FMOC-Cl) and Fe3+ and Cu2+ ions was investigated using fluorescence, UV/Vis absorption spectroscopies and theoretical calculation. The optical property of FMOC-Cl was studied in detail in absence and presence of various transition metal ions with particular affinity to Fe3+ and Cu2+ ions. With the fluorescence characteristic band centered at 307 and 315 nm for FMOC-Cl, the introduction of Fe3+ or Cu2+ ions leads to the fluorescence quenching of FMOC-Cl with different shift and intensities of two fluorescent bands. It allows us to differentiate between FMOC-Cl and Fe3+ and Cu2+ ions interaction behavior. The study on fluorescent kinetics confirms that the fluorescence quenching of FMOC-Cl with Fe3+ and Cu2+ ions is based on the formation of non-fluorescent material, that is, static quenching. Further analyses of bond lengths, Mulliken atomic charges and the frontier orbital compositions for FMOC-Cl and its complexes with Fe3+ and Cu2+ ions were carried out. The theoretical calculations prove the fluorescence quenching originates from the formation of coordination bonds between the oxygen atom of the carbonyl group of FMOC-Cl and Fe3+ and Cu2+ ions. The commercially available FMOC-Cl can be used as excellent fluorescent probe toward Fe3+ and Cu2+ ions with high sensitivity.

  13. NR2 and P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical Ionization Energies of Closed-Shell Molecules.

    PubMed

    Corzo, H H; Galano, Annia; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2015-08-20

    Two accurate and computationally efficient electron-propagator (EP) methods for calculating the valence, vertical ionization energies (VIEs) of closed-shell molecules have been identified through comparisons with related approximations. VIEs of a representative set of closed-shell molecules were calculated with EP methods using 10 basis sets. The most easily executed method, the diagonal, second-order (D2) EP approximation, produces results that steadily rise as basis sets are improved toward values based on extrapolated coupled-cluster singles and doubles plus perturbative triples calculations, but its mean errors remain unacceptably large. The outer valence Green function, partial third-order and renormalized partial third-order methods (P3+), which employ the diagonal self-energy approximation, produce markedly better results but have a greater tendency to overestimate VIEs with larger basis sets. The best combination of accuracy and efficiency with a diagonal self-energy matrix is the P3+ approximation, which exhibits the best trends with respect to basis-set saturation. Several renormalized methods with more flexible nondiagonal self-energies also have been examined: the two-particle, one-hole Tamm-Dancoff approximation (2ph-TDA), the third-order algebraic diagrammatic construction or ADC(3), the renormalized third-order (3+) method, and the nondiagonal second-order renormalized (NR2) approximation. Like D2, 2ph-TDA produces steady improvements with basis set augmentation, but its average errors are too large. Errors obtained with 3+ and ADC(3) are smaller on average than those of 2ph-TDA. These methods also have a greater tendency to overestimate VIEs with larger basis sets. The smallest average errors occur for the NR2 approximation; these errors decrease steadily with basis augmentations. As basis sets approach saturation, NR2 becomes the most accurate and efficient method with a nondiagonal self-energy.

  14. A Theoretical Study of Bulk and Surface Diffusion Processes for Semiconductor Materials Using First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Roehl, Jason L.

    Diffusion of point defects on crystalline surfaces and in their bulk is an important and ubiquitous phenomenon affecting film quality, electronic properties and device functionality. A complete understanding of these diffusion processes enables one to predict and then control those processes. Such understanding includes knowledge of the structural, energetic and electronic properties of these native and non-native point defect diffusion processes. Direct experimental observation of the phenomenon is difficult and microscopic theories of diffusion mechanisms and pathways abound. Thus, knowing the nature of diffusion processes, of specific point defects in given materials, has been a challenging task for analytical theory as well as experiment. The recent advances in computing technology have been a catalyst for the rise of a third mode of investigation. The advent of tremendous computing power, breakthroughs in algorithmic development in computational applications of electronic density functional theory now enables direct computation of the diffusion process. This thesis demonstrates such a method applied to several different examples of point defect diffusion on the (001) surface of gallium arsenide (GaAs) and the bulk of cadmium telluride (CdTe) and cadmium sulfide (CdS). All results presented in this work are ab initio, total-energy pseudopotential calculations within the local density approximation to density-functional theory. Single particle wavefunctions were expanded in a plane-wave basis and reciprocal space k-point sampling was achieved by Monkhorst-Pack generated k-point grids. Both surface and bulk computations employed a supercell approach using periodic boundary conditions. Ga adatom adsorption and diffusion processes were studied on two reconstructions of the GaAs(001) surface including the c(4x4) and c(4x4)-heterodimer surface reconstructions. On the GaAs(001)- c(4x4) surface reconstruction, two distinct sets of minima and transition sites were

  15. Magnetic coupling constants of self-assembled Cu(II) [3×3] grids: alternative spin model from theoretical calculations.

    PubMed

    Calzado, Carmen J; Ben Amor, Nadia; Maynau, Daniel

    2014-07-14

    This paper reports a theoretical analysis of the electronic structure and magnetic properties of a ferromagnetic Cu(II) [3×3] grid. A two-step strategy, combining calculations on the whole grid and on binuclear fragments, has been employed to evaluate all the magnetic interactions in the grid. The calculations confirm an S = 7/2 ground state, which is in accordance with the magnetisation versus field curve and the thermal dependence of the magnetic moment data. Only the first-neighbour coupling terms present non-negligible amplitudes, all of them in agreement with the structure and arrangement of the Cu 3d magnetic orbitals. The results indicate that the dominant interaction in the system is the antiferromagnetic coupling between the ring and the central Cu sites (J3 = J4 ≈ -31 cm(-1)). In the ring two different interactions can be distinguished, J1 = 4.6 cm(-1) and J2 = -0.1 cm(-1), in contrast to the single J model employed in the magnetic data fit. The calculated J values have been used to determine the energy level distribution of the Heisenberg magnetic states. The effective magnetic moment versus temperature plot resulting from this ab initio energy profile is in good agreement with the experimental curve and the fitting obtained with the simplified spin model, despite the differences between these two spin models. This study underlines the role that the theoretical evaluations of the coupling constants can play on the rationalisation of the magnetic properties of these complex polynuclear systems.

  16. An accurate symplectic calculation of the inboard magnetic footprint from statistical topological noise and field errors in the DIII-D

    SciTech Connect

    Punjabi, Alkesh; Ali, Halima

    2011-02-15

    Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint on the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the

  17. Theoretical calculations for structural, elastic, and thermodynamic properties of RuN{sub 2} under high pressure

    SciTech Connect

    Dong, Bing; Zhou, Xiao-Lin E-mail: lkworld@126.com; Chang, Jing; Liu, Ke E-mail: lkworld@126.com

    2014-08-07

    The structural and elastic properties of RuN{sub 2} were investigated through the first-principles calculation using generalized gradient approximation (GGA) and local density approximation (LDA) within the plane-wave pseudopotential density functional theory. The obtained equilibrium structure and mechanical properties are in excellent agreement with other theoretical results. Then we compared the elastic modulus of RuN{sub 2} with several other isomorphic noble metal nitrides. Results show that RuN{sub 2} can nearly rival with OsN{sub 2} and IrN{sub 2}, which indicate RuN{sub 2} is a potentially ultra-incompressible and hard material. By the elastic stability criteria, it is predicted that RuN{sub 2} is stable in our calculations (0–100 GPa). The calculated B/G ratios indicate that RuN{sub 2} possesses brittle nature at 0 GPa and when the pressure increases to 13.4 GPa (for LDA) or 20.8 GPa (for GGA), it begins to prone to ductility. Through the quasi-harmonic Debye model, we also investigated the thermodynamic properties of RuN{sub 2}.

  18. A New Coarse-Grained Model for E. coli Cytoplasm: Accurate Calculation of the Diffusion Coefficient of Proteins and Observation of Anomalous Diffusion

    PubMed Central

    Hasnain, Sabeeha; McClendon, Christopher L.; Hsu, Monica T.; Jacobson, Matthew P.; Bandyopadhyay, Pradipta

    2014-01-01

    A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion analysis, and found to be present in this model. By running a series of control simulations in which various forces were removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous diffusion, with a secondary contribution from HI. PMID:25180859

  19. Accurately Modelling the Absorption of a Mixture of Gases at Low- to Medium-resolution in Exoplanetary and Brown Dwarf Atmospheric Radiative Transfer Calculations

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick Gerard Joseph

    2016-10-01

    Exoplanetary and brown dwarf atmospheres are extremely diverse environments ranging over many different temperatures, pressures, and compositions. In order to model the spectra produced by the these objects, a commonplace approach in exoplanetary science is to use cross-sections of individual gases to quickly calculate the atmospheric opacities. However, when combining multiple gases with non-monochromatic absorption coefficients, the multiplication property of transmission does not hold. The resulting spectra are hence unreliable. Extensive work was carried out on Solar System radiative transfer models to find an efficient alternative to line-by-line calculations of opacity which was more accurate than combining cross-sections, resulting in many band models and the correlated-k method. Here we illustrate the effect of using cross-sections to model typical brown dwarf and exoplanetary atmospheres (e.g. HD189733b), and compare them to the spectra calculated using the correlated-k method. We verify our correlated-k method using a line-by-line model. For the same objects, we also present the effects of pressure broadening on the resulting spectra. Considering both the method of calculation (i.e. cross-section or correlated-k) and the treatment of pressure broadening, we show that the differences in the spectra are immediately obvious and hugely significant. Entire spectral features can appear or disappear, changing the morphology of the spectra. For the inspected brown dwarfs, these spectral features can vary by up to three orders of magnitude in luminosity. For our exoplanets, the transit depth can vary by up to 1%. We conclude that each effect would change the retrieved system parameters (i.e. temperature and abundances) considerably.

  20. Theoretical Auger electron and X-ray emission spectra of CO and H 2O by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Otsuka, Takao; Chong, Delano P.; Maki, Jun; Kawabe, Hiroyuki; Endo, Kazunaka

    2002-02-01

    We propose a new method for analysis of X-ray emission and Auger electron spectra (XES and AES) of molecules involving the valence spectra using density functional theory (DFT) calculations. To obtain the more accurate transition energies and the relative intensities, we use the total-energy difference procedure ( ΔE-KS) for all transition energies, and transform the coefficients in the LCGTO-MO scheme in the DFT to those for the linear combination of the LCGTO-AO scheme. The method is applied to the analysis of valence spectra, XES and AES for CO and H 2O molecules. The simulated spectra are in a good agreement with the experimental results.

  1. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    DOE PAGES

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 02+ band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less

  2. Actinometric measurements and theoretical calculations of j/O3/, the rate of photolysis of ozone to O/1D/

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.; Chameides, W. L.; Crutzen, P. J.; Fishman, J.

    1979-01-01

    The paper presents an experimental technique which measures j/O3-O(1-D)/, the rate of solar photolysis of ozone to singlet oxygen atoms. It is shown that a flow actinometer carries dilute O3 in N2O into direct sunlight where the O(1D) formed reacts with N2O to form NO which chemiluminescence detects, with a time resolution of about one minute. Measurements indicate a photolysis rate of 1.2 (+ or - .2) x 10 to the -5/s for a cloudless sky, 45 deg zenith angle, 0.345 cm ozone column and zero albedo. Finally, ground level results compare with theoretical calculations based on the UV actinic flux as a function of ozone column and solar zenith angle.

  3. Electron-ion recombination of Fe{sup 12+} forming Fe{sup 11+}: Laboratory measurements and theoretical calculations

    SciTech Connect

    Hahn, M.; Novotný, O.; Savin, D. W.; Badnell, N. R.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Lestinsky, M.; Müller, A.; Schippers, S.

    2014-06-10

    We have measured dielectronic recombination (DR) for Fe{sup 12+} forming Fe{sup 11+} using the heavy ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. Using our results, we have calculated a plasma rate coefficient from these data that can be used for modeling astrophysical and laboratory plasmas. For the low temperatures characteristic of photoionized plasmas, the experimentally derived rate coefficient is orders of magnitude larger than the previously recommended atomic data. The existing atomic data were also about 40% smaller than our measurements at temperatures relevant for collisionally ionized plasmas. Recent state-of-the-art theory has difficulty reproducing the detailed energy dependence of the DR spectrum. However, for the Maxwellian plasma rate coefficient, recent theoretical results agree with our measurements to within about 30% for both photoionized and collisionally ionized plasmas.

  4. A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment

    NASA Astrophysics Data System (ADS)

    Loued, W.; Wéry, J.; Dorlando, A.; Alimi, K.

    2015-02-01

    In this paper, the significance of annealing, in two different atmospheres (air and vacuum), on the surface characteristics of poly (lactic acid) (PLA) films was investigated. X-ray diffraction (XRD) measurements correlated to atomic force microscopy (AFM) observations of the cast PLA films show that thermal treatment under air atmosphere is responsible for a significant increase of crystallinity with the increase of temperature. However, band gap energy of the title compound is slightly affected by annealing at different temperatures. As for the untreated PLA, the molecular geometry was optimized using density functional theory (DFT/B3LYP) method with 6-31g (d) basis set in ground state. From the optimized geometry, HOMO and LUMO energies and quantum chemical parameters were performed at B3LYP/6-31g (d). The theoretical results, applied to simulated optical spectra of the compound, were compared to the observed ones. On the basis of theoretical vibrational analyses, the thermodynamic properties were calculated at different temperatures, revealing the correlation between internal energy (U), enthalpy (H), entropy (S), Free energy (G) and temperatures.

  5. Structural determination of carvone, a component of spearmint, by means of gas electron diffraction augmented by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Egawa, Toru; Kachi, Yukari; Takeshima, Tsuguhide; Takeuchi, Hiroshi; Konaka, Shigehiro

    2003-10-01

    The molecular structure and conformation of carvone, a compound with a minty odor, were investigated by means of gas electron diffraction supported by theoretical calculations. Electron diffraction patterns were recorded by heating the nozzle up to 128 °C to obtain enough scattering intensity. The infrared spectrum was also measured by using an absorption cell with a path length of 10 m. The obtained molecular scattering intensities were analyzed with the aid of theoretical calculations and infrared spectroscopy. It was revealed that the experimental data are well reproduced by assuming that carvone consists of a mixture of three conformers that have the isopropenyl group in the equatorial position and mutually differ in the torsional angle around the single bond connecting the ring and the isopropenyl group. It was also found that the puckering amplitude of the ring of carvone is close to those of menthol and isomenthol, a minty compound and its nonminty isomer. The determined structural parameters ( rg and ∠ α) of the most abundant conformer of carvone are as follows: < r(C-C)>=1.520(3) Å; < r(CC)>=1.360(5) Å; r(CO)=1.225(5) Å; < r(C-H)>=1.104(4)Å; <∠CC-C>=121.1(5)°; <∠C-C-C>=110.4(5)°; ∠C-CO-C=117.1(14)°; <∠C-C-H>=111.1(13)°. Angle brackets denote average values and parenthesized values are the estimated limits of error (3 σ) referring to the last significant digit.

  6. Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations

    NASA Astrophysics Data System (ADS)

    Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.

    2016-05-01

    In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.

  7. Complex Roles of Solution Chemistry on Graphene Oxide Coagulation onto Titanium Dioxide: Batch Experiments, Spectroscopy Analysis and Theoretical Calculation

    NASA Astrophysics Data System (ADS)

    Yu, Shujun; Wang, Xiangxue; Zhang, Rui; Yang, Tongtong; Ai, Yuejie; Wen, Tao; Huang, Wei; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Xiangke

    2017-01-01

    Although graphene oxide (GO) has been used in multidisciplinary areas due to its excellent physicochemical properties, its environmental behavior and fate are still largely unclear. In this study, batch experiments, spectroscopy analysis and theoretical calculations were addressed to promote a more comprehensive understanding toward the coagulation behavior of GO onto TiO2 under various environmental conditions (pH, co-existing ions, temperature, etc.). The results indicated that neutral pH was beneficial to the removal of GO due to the electrostatic interaction. The presence of cations accelerated GO coagulation significantly owing to the influence of electrical double layer compression. On the contrary, the presence of anions improved the stability of GO primarily because of electrostatic repulsion and steric hindrance. Results of XRD, FTIR and XPS analysis indicated that the coagulation of GO on TiO2 was mainly dominated by electrostatic interactions and hydrogen bonds, which were further evidenced by DFT calculations. The high binding energy further indicated the stability of GO + TiO2 system, suggesting that TiO2 can be used as an effective coagulant for the efficient elimination and coagulation of GO from aqueous solutions. These findings might likely lead to a better understanding of the migration and transformation of carbon nanomaterials in the natural environment.

  8. Complex Roles of Solution Chemistry on Graphene Oxide Coagulation onto Titanium Dioxide: Batch Experiments, Spectroscopy Analysis and Theoretical Calculation.

    PubMed

    Yu, Shujun; Wang, Xiangxue; Zhang, Rui; Yang, Tongtong; Ai, Yuejie; Wen, Tao; Huang, Wei; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Xiangke

    2017-01-03

    Although graphene oxide (GO) has been used in multidisciplinary areas due to its excellent physicochemical properties, its environmental behavior and fate are still largely unclear. In this study, batch experiments, spectroscopy analysis and theoretical calculations were addressed to promote a more comprehensive understanding toward the coagulation behavior of GO onto TiO2 under various environmental conditions (pH, co-existing ions, temperature, etc.). The results indicated that neutral pH was beneficial to the removal of GO due to the electrostatic interaction. The presence of cations accelerated GO coagulation significantly owing to the influence of electrical double layer compression. On the contrary, the presence of anions improved the stability of GO primarily because of electrostatic repulsion and steric hindrance. Results of XRD, FTIR and XPS analysis indicated that the coagulation of GO on TiO2 was mainly dominated by electrostatic interactions and hydrogen bonds, which were further evidenced by DFT calculations. The high binding energy further indicated the stability of GO + TiO2 system, suggesting that TiO2 can be used as an effective coagulant for the efficient elimination and coagulation of GO from aqueous solutions. These findings might likely lead to a better understanding of the migration and transformation of carbon nanomaterials in the natural environment.

  9. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    PubMed Central

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  10. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    PubMed

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources.

  11. Complex Roles of Solution Chemistry on Graphene Oxide Coagulation onto Titanium Dioxide: Batch Experiments, Spectroscopy Analysis and Theoretical Calculation

    PubMed Central

    Yu, Shujun; Wang, Xiangxue; Zhang, Rui; Yang, Tongtong; Ai, Yuejie; Wen, Tao; Huang, Wei; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Xiangke

    2017-01-01

    Although graphene oxide (GO) has been used in multidisciplinary areas due to its excellent physicochemical properties, its environmental behavior and fate are still largely unclear. In this study, batch experiments, spectroscopy analysis and theoretical calculations were addressed to promote a more comprehensive understanding toward the coagulation behavior of GO onto TiO2 under various environmental conditions (pH, co-existing ions, temperature, etc.). The results indicated that neutral pH was beneficial to the removal of GO due to the electrostatic interaction. The presence of cations accelerated GO coagulation significantly owing to the influence of electrical double layer compression. On the contrary, the presence of anions improved the stability of GO primarily because of electrostatic repulsion and steric hindrance. Results of XRD, FTIR and XPS analysis indicated that the coagulation of GO on TiO2 was mainly dominated by electrostatic interactions and hydrogen bonds, which were further evidenced by DFT calculations. The high binding energy further indicated the stability of GO + TiO2 system, suggesting that TiO2 can be used as an effective coagulant for the efficient elimination and coagulation of GO from aqueous solutions. These findings might likely lead to a better understanding of the migration and transformation of carbon nanomaterials in the natural environment. PMID:28045053

  12. A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations

    NASA Astrophysics Data System (ADS)

    Ilyas, Bahaa M.; Elias, Badal H.

    2017-04-01

    The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl3 and CsCdCl3 unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl3 and CsPbCl3 is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl3 is Γ-R indirect band gap insulator, while CsPbCl3 is an insulator with a direct band gap Γ-Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl3, and Cd-p states and Cs-p states for the CsCdCl3 in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0-20 GPa and 0-40 GPa for the CsCdCl3 and CsPbCl3 respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame's constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl3 (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For the optical properties, both the static refractive index and dielectric

  13. Carbonyl-functionalized quaterthiophenes: a study of the vibrational Raman and electronic absorption/emission properties guided by theoretical calculations.

    PubMed

    Aragó, Juan; Ponce Ortiz, Rocío; Nieto-Ortega, Belén; Hernández, Víctor; Casado, Juan; Facchetti, Antonio; Marks, Tobin J; Viruela, Pedro M; Ortí, Enrique; López Navarrete, Juan T

    2012-01-16

    This work investigates the evolution of the molecular, vibrational, and optical properties within a family of carbonyl-functionalized quaterthiophenes: 5,5'''-diheptanoyl-2,2':5',2'':5'',2'''-quaterthiophene (1), 5,5'''-diperfluorohexylcarbonyl-2,2':5',2'':5'',2'''-quaterthiophene (2), and 2,7-[bis(5-perfluorohexylcarbonylthien-2-yl)]-4H-cyclopenta[2,1-b:3,4-b']-dithiophene-4-one (3). The analysis is performed by Raman and UV/Vis absorption/excitation/fluorescence spectroscopy in combination with density functional calculations. Theoretical calculations show that substitution with carbonyl groups and perfluorohexyl chains induces progressive quinoidization of the π-conjugated backbone in comparison to the carbonyl-free compound 5,5'''-dimethyl-2,2':5',2'':5'',2'''-quaterthiophene (DM-4T) used as reference. Raman spectra are dominated by a strong Raman line which mainly corresponds to a combination of C-C/C=C stretching vibrations spreading over the whole thiophene core. This band undergoes a remarkable downshift as a consequence of the structural changes induced by the electron-withdrawing groups on the π-conjugated backbone. The band splitting on incorporation of a central carbonyl bridge evidences the formation of two structural domains in the molecule. The excitation and fluorescence spectra recorded at low temperature show well-resolved vibronic structures associated with the most intense collective C-C/C=C stretching mode. Optical absorption and fluorescence bands exhibit remarkable bathochromic dispersion on carbonyl functionalization, indicative of extension of π conjugation. TDDFT calculations enable a detailed description of the trends observed in the absorption spectra. Resonance Raman spectra reflect the structural changes predicted for the S(0)→S(1) electronic transition and evidence the cross-conjugated character that the central carbonyl group confers on 3.

  14. Peak clustering in two-dimensional gas chromatography with mass spectrometric detection based on theoretical calculation of two-dimensional peak shapes: the 2DAid approach.

    PubMed

    van Stee, Leo L P; Brinkman, Udo A Th

    2011-10-28

    A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size.

  15. Accurate calculations of spectroscopic parameters, transition properties of 17 Λ-S states and 32 Ω states of SiB+ cation

    NASA Astrophysics Data System (ADS)

    Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2017-02-01

    This work computed the potential energy curves of 17 Λ-S states, which came from the first three dissociation limits, Si+(2Pu) + B(2Pu), Si(3Pg) + B+(1Sg), and Si(1Dg) + B+(1Sg), of the SiB+ cation. The potential energy curves were also calculated for the 32 Ω states generated from these Λ-S states. The calculations were done using the CASSCF method, which was followed by internally contracted MRCI approach with Davidson correction. To obtain the reliable and accurate spectroscopic parameters and vibrational properties, core-valence correlation and scalar relativistic corrections were included. Of these 17 Λ-S states, the C3Σ+, E3Π, 33Π, 23Σ+, 21Π, and 31Σ+ states had double wells. The 31Π state had three wells. The D3Σ-, E3Π, 33Π, and B3Δ states were inverted with the spin-orbit coupling effect accounted for. The 21Δ state, the first well of 31Σ+ state, the second wells of 33Π, 23Σ+, and 21Π states and the second and third wells of 31Π state were weakly bound, which well depths were within several hundreds cm-1. The second well of 31Π state had no vibrational states. The first wells of E3Π and 31Σ+ states had only one vibrational state. The spectroscopic parameters were evaluated. The vibrational properties of some weaklybound states were predicted. Franck-Condon factors of some transitions between different two Λ-S states were determined. The spin-orbit coupling effect on the spectroscopic parameters and vibrational properties was discussed. These results reported here can be expected to be reliably predicted ones.

  16. Accurate density-functional calculation of core-electron binding energies with a scaled polarized triple-zeta basis set. (III). Extension to open-shell molecules

    NASA Astrophysics Data System (ADS)

    Hu, Ching-Han; Chong, Delano P.

    1997-03-01

    Density functional theory and the unrestricted generalized transition state (uGTS) model were applied to study the core-electron binding energies (CEBEs) of open-shell molecules. Basis set scaling based on Clementi and Raimondi's rules for atomic screening was used along with the cc-pVTZ basis set. The scaled pVTZ basis set is almost as good as the cc-pV5Z and complete basis set limit in predicting CEBEs. For small molecules (O 2, NO, NF 2 and NO 2) the average absolute deviation (aad) of our prediction (scaled pVTZ) is only 0.29 eV. For the larger molecule (CF 3) 2NO the aad is 0.56 eV, compared with experimental uncertainty of 0.5 eV. Theoretical predicted multiplet splittings for the small molecules agree quite well with experiment: the average deviation is -0.33 eV. For (CF 3) 2NO the calculated multiplet splittings are much smaller than the experimental ones. We also predict the CEBEs of PO, SN and SO, which have not been observed experimentally.

  17. Theoretical Design and Calculation of a Crown Ether Phase-Transfer-Catalyst Scaffold for Nucleophilic Fluorination Merging Two Catalytic Concepts.

    PubMed

    Carvalho, Nathália F; Pliego, Josefredo R

    2016-09-16

    Fluorinated organic molecules are playing an increased role in the area of pharmaceuticals and agrochemicals. This fact demands the development of efficient catalytic fluorination processes. In this paper, we have designed a new crown ether with four hydroxyl groups strategically positioned. The catalytic activity of this basic scaffold was investigated with high levels of electronic structure theory, such as the ONIOM approach combining MP4 and MP2 methods. On the basis of the calculations, this new structure is able to solubilize potassium fluoride in toluene solution much more efficiently than 18-crown-6 (18C6). In addition, the strong interaction of the new catalyst with the SN2 transition state leads to a very important catalytic effect, with a predicted free energy barrier of 23.3 kcal mol(-1) for potassium fluoride plus ethyl bromide reaction model. Compared with experimental data and previous theoretical studies, this new catalyst is 10(4) times more efficient than 18C6 for nucleophilic fluorination of alkyl halides. The catalysis is predicted to be selective, leading to 97% of fluorination and only 3% of elimination. Catalytic fluorination of the aromatic ring has also been investigated, and although the catalyst is less efficient in this case, our analysis has indicated further development of this strategy can lead to more efficient catalysis.

  18. Bis(alpha-diimine)iron complexes: electronic structure determination by spectroscopy and broken symmetry density functional theoretical calculations.

    PubMed

    Muresan, Nicoleta; Lu, Connie C; Ghosh, Meenakshi; Peters, Jonas C; Abe, Megumi; Henling, Lawrence M; Weyhermöller, Thomas; Bill, Eckhard; Wieghardt, Karl

    2008-06-02

    The electronic structure of a family comprising tetrahedral (alpha-diimine)iron dichloride, and tetrahedral bis(alpha-diimine)iron compounds has been investigated by Mossbauer spectroscopy, magnetic susceptibility measurements, and X-ray crystallography. In addition, broken-symmetry density functional theoretical (B3LYP) calculations have been performed. A detailed understanding of the electronic structure of these complexes has been obtained. A paramagnetic (St=2), tetrahedral complex [FeII(4L)2], where (4L)1- represents the diamagnetic monoanion N-tert-butylquinolinylamide, has been synthesized and characterized to serve as a benchmark for a Werner-type complex containing a tetrahedral FeIIN4 geometry and a single high-spin ferrous ion. In contrast to the most commonly used description of the electronic structure of bis(alpha-diimine)iron(0) complexes as low-valent iron(0) species with two neutral alpha-diimine ligands, it is established here that they are, in fact, complexes containing two (alpha-diiminato)1-* pi radical monoanions and a high-spin ferrous ion (in tetrahedral N4 geometry) (SFe=2). Intramolecular antiferromagnetic coupling between the pi radical ligands (Srad=1/2) and the ferrous ion (SFe=2) yields the observed St=1 ground state. The study confirms that alpha-diimines are redox noninnocent ligands with an energetically low-lying antibonding pi* lowest unoccupied molecular orbital which can accept one or two electrons from a transition metal ion. The (alpha-diimine)FeCl2 complexes (St=2) are shown to contain a neutral alpha-diimine ligand, a high spin ferrous ion, and two chloride ligands.

  19. Direct measurement and theoretical calculation of the rate coefficient for Cl + CH3 from T = 202 - 298 K.

    SciTech Connect

    Payne, Walter A.; Harding, Lawrence B.; Stief, Louis J.; Parker, James F. , 1925-; Klippenstein, Stephen J.; Nesbitt, Fred L.; Cody, Regina J.

    2004-10-01

    The rate coefficient has been measured under pseudo-first-order conditions for the Cl + CH{sub 3} association reaction at T = 202, 250, and 298 K and P = 0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH{sub 3} were generated rapidly and simultaneously by reaction of F with HCl and CH{sub 4}, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F{sub 2} in He. The decay of CH{sub 3} was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH{sub 3} concentration ([Cl]{sub 0}/[CH{sub 3}]{sub 0} = 9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T = 202 K, the rate coefficient increases from 8.4 x 10{sup -12} at P = 0.30 Torr He to 1.8 x 10{sup -11} at P = 2.00 Torr He, both in units of cm{sup 3} molecule{sup -1} s{sup -1}. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k{sub 2} = 6.0 x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1}, independent of temperature in the range from 200 to 300 K.

  20. New Photometry and Spectra of AB Doradus C: An Accurate Mass Determination of a Young Low-Mass Object with Theoretical Evolutionary Tracks

    NASA Astrophysics Data System (ADS)

    Close, Laird M.; Thatte, Niranjan; Nielsen, Eric L.; Abuter, Roberto; Clarke, Fraser; Tecza, Matthias

    2007-08-01

    We present new photometric and spectroscopic measurements for the unique, young, low-mass evolutionary track calibrator AB Dor C. While the new Ks photometry is similar to that we have previously published, the spectral type is found to be much earlier. Based on new H and K IFS spectra of AB Dor C from Thatte et al. (Paper I), we adopt a spectral type of M5.5+/-1.0 for AB Dor C. This is considerably earlier than the M8+/-1 previously estimated by Close et al. and Nielsen et al. yet is consistent with the M6+/-1 independently derived by Luhman & Potter. However, the spectrum presented in Paper I and analyzed here is a significant improvement over any previous spectrum of AB Dor C. We also present new astrometry for the system, which further supports a 0.090+/-0.005 Msolar mass for the system. Once armed with an accurate spectrum and Ks flux, we find L=0.0021+/-0.0005 Lsolar and Teff=2925+170-145 K for AB Dor C. These values are consistent with a ~75 Myr, 0.090+/-0.005 Msolar object like AB Dor C according to the DUSTY evolutionary tracks. Hence, masses can be estimated from the H-R diagram with the DUSTY tracks for young low-mass objects such as AB Dor C. However, we cautiously note that underestimates of the mass from the tracks can occur if one lacks a proper (continuum-preserved) spectrum or is relying on near-infrared fluxes alone. Based on observations made with ESO telescopes at the Paranal Observatories under program 276.C-5013.

  1. Theoretical calculations of structural, electronic, and elastic properties of CdSe1-x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1-x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  2. Theoretical calculation of self-broadening coefficients for the ν5 band of methyl chloride at various temperatures

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2014-02-01

    Self-broadening coefficients of transitions belonging to the ν5 band of methyl chloride have been calculated using a semi-classical model based on the Anderson-Tsao-Curnutte (ATC) theory, including some improvements proposed by Robert and Bonamy. The calculations show the predominance of the dipole-dipole interaction. To better match the experimental measurements performed at room temperature in our previous work, a cut-off of the intermolecular distance has been used. The rotational J and K dependencies of the calculated self-broadening coefficients have been clearly observed and are consistent with our previous measurements.

  3. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    PubMed

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  4. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    SciTech Connect

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  5. Experimental verification of theoretically calculated parameters of Te15(Se100-xBix)85(x = 0,2,4at.%) amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kumar, Kameshwar; Thakur, Nagesh

    2013-06-01

    The Se-Te-Bi amorphous semiconductors have been prepared by melt quenching technique. In the present study, we have theoretically calculated the optical energy band gap, glass transition temperature and density of Se-Te-Bi amorphous semiconductors. Experimentally the optical energy band gap has been found from transmission spectra of thin films using Tauc's method, glass transition temperature from Differential Thermal Analysis data and density using Archimedes method.

  6. Resonance-theoretic calculation of the ground state spin density of the pπ-system of edge atoms on graphene nanodots and nanoribbons

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray

    2008-12-01

    By the resonance-theoretic method zigzag graphene nanoribbons are predicted to have an antiferromagnetic ground state with a Mulliken spin density of 0.33 on the edge atoms and the armchair graphene nanoribbons are predicted to have a nonmagnetic ground state. Similar calculations predict that sawtooth graphene nanoribbons have a weakly antiferromagnetic ground state with edge atoms having a Mulliken spin density of 0.16 on the edge atoms.

  7. Theoretical Calculation of the Power Spectra of the Rolling and Yawing Moments on a Wing in Random Turbulence

    NASA Technical Reports Server (NTRS)

    Eggleston, John M; Diederich, Franklin W

    1957-01-01

    The correlation functions and power spectra of the rolling and yawing moments on an airplane wing due to the three components of continuous random turbulence are calculated. The rolling moments to the longitudinal (horizontal) and normal (vertical) components depend on the spanwise distributions of instantaneous gust intensity, which are taken into account by using the inherent properties of symmetry of isotropic turbulence. The results consist of expressions for correlation functions or spectra of the rolling moment in terms of the point correlation functions of the two components of turbulence. Specific numerical calculations are made for a pair of correlation functions given by simple analytic expressions which fit available experimental data quite well. Calculations are made for four lift distributions. Comparison is made with the results of previous analyses which assumed random turbulence along the flight path and linear variations of gust velocity across the span.

  8. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pKa Calculations.

    PubMed

    Dobrev, Plamen; Donnini, Serena; Groenhof, Gerrit; Grubmüller, Helmut

    2017-01-10

    Correct protonation of titratable groups in biomolecules is crucial for their accurate description by molecular dynamics simulations. In the context of constant pH simulations, an additional protonation degree of freedom is introduced for each titratable site, allowing the protonation state to change dynamically with changing structure or electrostatics. Here, we extend previous approaches for an accurate description of chemically coupled titrating sites. A second reaction coordinate is used to switch between two tautomeric states of an amino acid with chemically coupled titratable sites, such as aspartate (Asp), glutamate (Glu), and histidine (His). To this aim, we test a scheme involving three protonation states. To facilitate charge neutrality as required for periodic boundary conditions and Particle Mesh Ewald (PME) electrostatics, titration of each respective amino acid is coupled to a "water" molecule that is charged in the opposite direction. Additionally, a force field modification for Amber99sb is introduced and tested for the description of carboxyl group protonation. Our three states model is tested by titration simulations of Asp, Glu, and His, yielding a good agreement, reproducing the correct geometry of the groups in their different protonation forms. We further show that the ion concentration change due to the neutralizing "water" molecules does not significantly affect the protonation free energies of the titratable groups, suggesting that the three states model provides a good description of biomolecular dynamics at constant pH.

  9. A theoretical study of high-pressure-induced phases of LiAlH4 using calculated NQCC parameters

    NASA Astrophysics Data System (ADS)

    Rafiee, Marjan A.

    2016-12-01

    Quadrupolar parameters of nuclei can be used as a tool to understand the electronic structure of compounds. Lithium alanate (LiAlH4) is a potential hydrogen storage material because of its high capacity of 10.5 wt % H2. However, the drawbacks of its dehydrogenation process are the relatively high temperatures and the slow dehydrogenation kinetics; furthermore, its reversibility is rather poor. Understanding the bonding nature of Al and H is essential for improving its dehydrogenation performance. In this work the charge density distribution in LiAlH4 is studied. Thus using calculated nuclear quadrupole coupling constants of hydrogens (2H-NQCCs), the electronic structure of α-LiAlH4 with high pressure forms of LiAlH4, (β- and γ-LiAlH4) were compared. The results show that easier condition for dehydrogenation is expected in β-LiAlH4. Comparison of calculated dehydrogenation enthalpies of LiAlH4 phases verifies this prediction. The electric field gradient (EFG) of quadrupolar nuclei were calculated to obtain NQCC parameters. All calculations performed using Gaussian 03 at B3LYP/6-31G* level of theory.

  10. Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface.

    PubMed

    de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M

    2014-12-26

    We report reaction cross sections, energy disposal, and rate constants for the OH + HBr → Br + H2O and OH + DBr → Br + HDO reactions from quasiclassical trajectory calculations using an ab initio potential energy surface [ de Oliveira-Filho , A. G. S. ; Ornellas , F. R. ; Bowman , J. M. J. Phys. Chem. Lett. 2014 , 5 , 706 - 712 ]. Comparison with available experiments are made and generally show good agreement.

  11. Explicitly correlated benchmark calculations on C8H8 isomer energy separations: how accurate are DFT, double-hybrid, and composite ab initio procedures?

    NASA Astrophysics Data System (ADS)

    Karton, Amir; Martin, Jan M. L.

    2012-10-01

    Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3 kcal mol-1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal mol-1. Isomers involving highly-strained fused rings or long cumulenic chains provide a 'torture test' for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1 kcal mol-1.

  12. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    SciTech Connect

    Li, Y.; Krieger, J.B. ); Norman, M.R. ); Iafrate, G.J. )

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.

  13. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study

    NASA Astrophysics Data System (ADS)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-12-01

    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  14. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    PubMed

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2016-07-21

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation.

  15. X-ray structures of the anticoagulants coumatetralyl and chlorophacinone. Theoretical calculations and SAR investigations on thirteen anticoagulant rodenticides

    NASA Astrophysics Data System (ADS)

    Dolmella, A.; Gatto, S.; Girardi, E.; Bandoli, G.

    1999-12-01

    Coumatetralyl and chlorophacinone, two substances related to 4-hydroxycoumarin (HC) and to 1,3-indandione (ID), respectively, show activity as anticoagulant rodenticides. In the present study we have investigated the solid-state structures of coumatetralyl and chlorophacinone by means of X-ray single-crystal and powder diffraction, along with thermal analysis. The crystal structures of the two compounds have been used as input geometries for a series of computational chemistry efforts, involving other anticoagulant derivatives as well. Thus, ab initio, semiempirical molecular orbital, molecular mechanics and molecular dynamics/simulated annealing calculations have been performed on thirteen anticoagulant rodenticides. In particular, the annealing calculations have been made to assess the conformational freedom of the compounds under scrutiny. All the generated conformers have been classified into families. The classification has first been made empirically, and then validated by means of a cluster analysis. A number of structural and physico-chemical parameters derived from the calculations has been used in turn for structure-activity relationships (SARs) investigations. In the latter, we have assessed how the selected parameters affect toxicity. The results seem to be consistent with a three-dimensional biophore model, in which higher toxicity is predicted for the more voluminous rodenticides. We suggest that these compounds better fit the active site of the target enzyme vitamin K 2,3-epoxide reductase (KO-reductase).

  16. Benzenium ion chemistry on solid metal halide superacids: in situ {sup 13}C NMR experiments and theoretical calculations

    SciTech Connect

    Xu, T.; Barich, D.H.; Torres, P.D.; Haw, J.F.

    1997-01-15

    The benzenium, toluenium, and ethylbenzenium ions were synthesized on aluminium bromide by coadsorption of the precursors with either HBr or alkyl bromide. Principal components of the {sup 13}C chemical shift tensors for the ring carbons of these species were measured from magic angle spinning spectra. The benzenium ion was static at 77 K but underwent both proton scrambling and anisotropic rotation at 298 K as well as oligomerization at higher loadings. The para form of the toluenium ion was the dominant isomer at 77 K, but a temperature-dependent equilibrium between the para and ortho isomers was observed at 273 K. The energy calculations at MP4(fc,sdq)/ 6-311+G{sup *}//MP2/6-311+G{sup *} with thermal corrections resulted in good agreement between calculated and measured proton affinities for benzene, toluene, and ethylbenzene. For toluenium ion, the energies of the ortho and meta isomers were 1.2 and 5.4 kcal/mol, respectively, above the para isomer, consistent with the temperature-dependent {sup 13}C NMR spectra in the solid state. {sup 13}C chemical shift tensors calculated at the GIAO-MP2/tzp/dz//MP2/ 6-311+G{sup *} and GIAO-MP2/tzp/dz//B3LYP/6-311+G{sup *} levels of theory were in very close agreement with each other and generally in satisfactory agreement with experimental principal components. 64 refs., 8 figs., 4 tabs.

  17. Accurate calculations on 9 Λ-S and 28 Ω states of NSe radical in the gas phase: Potential energy curves, spectroscopic parameters and spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Li, Peiling; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of 28 Ω states generated from 9 Λ-S states (X2Π, 14Π, 16Π, 12Σ+, 14Σ+, 16Σ+, 14Σ-, 24Π and 14Δ) are studied for the first time using an ab initio quantum chemical method. All the 9 Λ-S states correlate to the first two dissociation limits, N(4Su) + Se(3Pg) and N(4Su) + Se(3Dg), of NSe radical. Of these Λ-S states, the 16Σ+, 14Σ+, 16Π, 24Π and 14Δ are found to be rather weakly bound states. The 12Σ+ is found to be unstable and has double wells. And the 16Σ+, 14Σ+, 14Π and 16Π are found to be the inverted ones with the SO coupling included. The PEC calculations are made by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification. The spin-orbit coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. The convergence of the present calculations is discussed with respect to the basis set and the level of theory. Core-valence correlation corrections are included with a cc-pCVTZ basis set. Scalar relativistic corrections are calculated by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of spin-orbit coupling constants is discussed in brief for some Λ-S states with one shallow well on each PEC. The spectroscopic parameters of 9 Λ-S and 28 Ω states are determined by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation with Numerov's method. The splitting energy in the X2Π Λ-S state is determined to be about 864.92 cm-1, which agrees favorably with the measurements of 891.80 cm-1. Moreover, other spectroscopic parameters of Λ-S and Ω states involved here are also in fair agreement with available measurements. It

  18. Full-dimensional quantum calculations of vibrational levels of NH4+ and isotopomers on an accurate ab initio potential energy surface

    DOE PAGES

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.

  19. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    PubMed

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol.

  20. Azo dicarboxylates are not conjugated: X-ray crystal structure and theoretical calculations on di-t-butylazodicarboxylate

    NASA Astrophysics Data System (ADS)

    Goh, Mean See; Rintoul, Llew; Pfrunder, Michael C.; McMurtrie, John C.; Arnold, Dennis P.

    2015-10-01

    The X-ray crystal structure of trans-di-t-butyl azodicarboxylate (DTBAD, 2) was determined and this revealed that the torsion angle between the Ndbnd N and Cdbnd O double bonds is 84.0(2)°, and that between the anti-disposed Cdbnd O vectors is 180°. This is the first report of the solid state structure of an azodicarboxylate ester. The molecule was subjected to Density Functional Theory geometry optimization at the B3LYP/6-31G(d) level in cyclohexane medium, and the global minimum structure agreed in principle with that determined in the solid state by crystallography. The N-C(O) torsion angle in the optimized structure is 107.7°, and the Cdbnd O vectors lie in an anti relationship. Similar calculations on the unknown cis-Ndbnd N isomer revealed an optimum geometry whose energy is predicted to lie only 11.9 kJ/mol higher than that of the trans isomer. M062X/6-311+G(d) model chemistry was used to determine relative electronic energies and to conduct Natural Bond Orbital (NBO) calculations. Exploration of the energetics of rotations about the N-C(O) bonds revealed a clear preference for near-orthogonality in azodicarboxylates, and suggests almost complete absence of classical conjugation between the neighbouring π bonds. Electronic transitions were simulated using the time-dependent DFT (TD-DFT) approach at the B3LYP/6-311+G(d) level, and the weak band in the near-UV for 2 in cyclohexane was reproduced in the calculations. The electronic isolation of the Ndbnd N bond may be important in the numerous applications of azodicarboxylates in organic synthesis, and the small energy difference between the trans and cis isomers implies the likely involvement of the latter in the successful photochemical diaza-Diels-Alder reaction of diethyl azodicarboxylate with 1,3-cyclohexadiene.

  1. A Initio Calculations Performed on Carbon Monoxide Adsorption on the IRON(100) Surface and Complementing Theoretical Techniques

    NASA Astrophysics Data System (ADS)

    Meehan, Timothy Erickson

    1992-01-01

    Unrestricted Hartree-Fock calculations were performed on Fe_{x}CO clusters to model the CO(alpha_1), CO(alpha_2), and CO( alpha_3) adsorptions on the Fe(100) surface. Clusters of FeCO(C_{4v}) and a multiplicity of 5, Fe_2 CO(C_{2v}) and a multiplicity of 7, and Fe_2CO(C _{s}) and a multiplicity of 7, were constructed to model, respectively, the adsorption for the on top site, bridging site, and tilted CO structure at the 4-fold site. The CO position was optimized with respect to the Fe bulk distances using gradient techniques and the partial geometry optimization. CO stretching frequencies were calculated for each optimized geometry, and we find no evidence supporting CO adsorption in the bridging site. Using a full basis set the calculated CO stretching frequencies for the FeCO(C_{4v}), Fe_2CO(C_ {2v}), and the Fe_2 CO(C_{s}) clusters are 1992, 1767, and 771 cm^{ -1}, respectively. The CSOV analysis was executed to analyze the major orbital interactions between the CO and Fe_{x} clusters. For both Fe_2CO clusters, the CO pi^* perpendicular to the Fe _2 axis had a more significant contribution involving the pi backdonation from the Fe_2 clusters. Furthermore, the spin minority d electrons are mainly responsible for the pi backdonation. Due to problems with SCF convergence incurred during the Fe_{x}CO studies, we were forced to investigate a number of different techniques to achieve SCF convergence. Therefore, techniques that generate starting guesses of the eigenvectors for the SCF procedure and techniques used to accelerate SCF convergence are reviewed. The standard guesses of H _{core} and charge build -up are examined, and we introduce a new incremental cluster method for generating starting guesses for large clusters. The standard techniques of extrapolation, DIIS, damping, level shifting, restrict, and symmetry blocking are examined, and we also developed the hacker method and partial geometry optimization as new techniques to achieve SCF convergence. Results

  2. Theoretical calculations of rotationally inelastic collisions of He with NaK(A {sup 1}Σ{sup +}): Transfer of population, orientation, and alignment

    SciTech Connect

    Malenda, R. F.; Price, T. J.; Stevens, J.; Uppalapati, S. L.; Fragale, A.; Weiser, P. M.; Kuczala, A.; Hickman, A. P.; Talbi, D.

    2015-06-14

    We have performed extensive calculations to investigate thermal energy, rotationally inelastic collisions of NaK (A{sup 1}Σ{sup +}) with He. We determined a potential energy surface using a multi-reference configuration interaction wave function as implemented by the GAMESS electronic structure code, and we have performed coupled channel scattering calculations using the Arthurs and Dalgarno formalism. We also calculate the Grawert coefficients B{sub λ}(j, j′) for each j → j′ transition. These coefficients are used to determine the probability that orientation and alignment are preserved in collisions taking place in a cell environment. The calculations include all rotational levels with j or j′ between 0 and 50, and total (translational and rotational) energies in the range 0.0002–0.0025 a.u. (∼44–550 cm{sup −1}). The calculated cross sections for transitions with even values of Δj tend to be larger than those for transitions with odd Δj, in agreement with the recent experiments of Wolfe et al. (J. Chem. Phys. 134, 174301 (2011)). The calculations of the energy dependence of the cross sections and the calculations of the fraction of orientation and alignment preserved in collisions also exhibit distinctly different behaviors for odd and even values of Δj. The calculations also indicate that the average fraction of orientation or alignment preserved in a transition becomes larger as j increases. We interpret this behavior using the semiclassical model of Derouard, which also leads to a simple way of visualizing the distribution of the angles between the initial and final angular momentum vectors j and j′. Finally, we compare the exact quantum results for j → j′ transitions with results based on the simpler, energy sudden approximation. That approximation is shown to be quite accurate.

  3. Calculation of calorific values of coals from ultimate analyses: theoretical basis and geochemical implications. Final report. Part 8

    SciTech Connect

    Given, P.H.; Weldon, D.; Zoeller, J.H.

    1984-03-01

    The various formulae for calculating calorific values for coals from ultimate analyses depend essentially on a propositon due to Dulong, that the heat of combustion of an organic compound is nearly equal to the heats of combustion of the elements in it, multiplied by their percentage content in the compound in question. This proposition assumes that the enthalpy of decomposition is negligible compared with the heat of combustion. The various published formulae, such as that due to Mott and Spooner, include empirical adjustments to allow for the fact that the enthalpy of formation or decomposition of no organic compound is zero (except rarely by chance). A new equation is proposed, which excludes empirical correction terms but includes a term explicitly related to the enthalpy of decomposition. As expected from the behavior of known compounds, this enthalpy varies with rank, but it also varies at the same level of rank with the geological history of the sample: rank is not the only source of variance in coal properties. The new equation is at least as effective in predicting calorific values for a set of 992 coals as equivalent equations derived for 6 subsets of the coals. On the whole, the distributions of differences between observed and calculated calorific values are skewed to only a small extent. About 86% of the differences lie between -300 and +300 Btu/lb (+- 700 kJ/kg). 10 references, 7 figures, 4 tables.

  4. Molecular structure of actein: 13C CPMAS NMR, IR, X-ray diffraction studies and theoretical DFT-GIAO calculations

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona

    2009-09-01

    Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.

  5. Novel Method for Calculating a Nonsubjective Informative Prior for a Bayesian Model in Toxicology Screening: A Theoretical Framework.

    PubMed

    Woldegebriel, Michael

    2015-11-17

    In toxicology screening (forensic, food-safety), due to several analytical errors (e.g., retention time shift, lack of repeatability in m/z scans, etc.), the ability to confidently identify/confirm a compound remains a challenge. Due to these uncertainties, a probabilistic approach is currently preferred. However, if a probabilistic approach is followed, the only statistical method that is capable of estimating the probability of whether the compound of interest (COI) is present/absent in a given sample is Bayesian statistics. Bayes' theorem can combine prior information (prior probability) with data (likelihood) to give an optimal probability (posterior probability) reflecting the presence/absence of the COI. In this work, a novel method for calculating an informative prior probability for a Bayesian model in targeted toxicology screening is introduced. In contrast to earlier proposals making use of literature citation rates and the prior knowledge of the analyst, this method presents a thorough and nonsubjective approach. The formulation approaches the probability calculation as a clustering and random draw problem that incorporates few analytical method parameters meticulously estimated to reflect sensitivity and specificity of the system. The practicality of the method has been demonstrated and validated using real data and simulated analytical techniques.

  6. Theoretical study of the reaction of hydrogen with nitric acid: ab initio MO and TST/RRKM calculations

    NASA Astrophysics Data System (ADS)

    Boughton, J. W.; Kristyan, Sandor; Lin, M. C.

    1997-01-01

    The kinetics and mechanism of the H + HNO 3 reaction have been elucidated with ab initio molecular orbital and statistical theory calculations. Our room temperature reaction rate results accord well with available experimental data. The reaction is dominated by an indirect metathetical process taking place via vibrationally excited dihydroxyl nitroxide, ON(OH) 2, producing OH + cis-HONO. The excited ON(OH) 2 also undergoes molecular elimination, yielding H 2O + NO 2 as a minor competing reaction. The direct H abstraction reaction forming H 2 + NO 3 was found to be the least important one. At atmospheric pressure, we recommend the following expressions for the three rate constants, in units of cm 3/molecule s, from the 300-3000 K temperature range for H + HNO 3 collision yielding the products H 2 + NO 3 by direct mechanism ka = (9.24 × 10 -16) T1.53e -8253/ T based on CTST calculations, OH + cis-HONO by indirect mechanism kb = (6.35 × 10 -19) T2.30e -1.53/ T), and H 2O + NO 2 by indirect mechanism kc = (1.01 × 10 -22) T3.29e -3126/ T, the latter two are based on Arrhenius fits to the solution of the master equation which includes RRKM microscopic rate constants and tunneling corrections.

  7. Intramolecular hydrogen bonds involving organic fluorine in the derivatives of hydrazides: an NMR investigation substantiated by DFT based theoretical calculations.

    PubMed

    Mishra, Sandeep Kumar; Suryaprakash, N

    2015-06-21

    The rare examples of intramolecular hydrogen bonds (HB) of the type the N-H∙∙∙F-C, detected in a low polarity solvent in the derivatives of hydrazides, by utilizing one and two-dimensional solution state multinuclear NMR techniques, are reported. The observation of through-space couplings, such as, (1h)JFH, and (1h)JFN, provides direct evidence for the existence of intra-molecular HB. Solvent induced perturbations and the variable temperature NMR experiments unambiguously establish the presence of intramolecular HB. The existence of multiple conformers in some of the investigated molecules is also revealed by two dimensional HOESY and (15)N-(1)H HSQC experiments. The (1)H DOSY experimental results discard any possibility of self or cross dimerization of the molecules. The derived NMR experimental results are further substantiated by Density Function Theory (DFT) based Non Covalent Interaction (NCI), and Quantum Theory of Atom in Molecule (QTAIM) calculations. The NCI calculations served as a very sensitive tool for detection of non-covalent interactions and also confirm the presence of bifurcated HBs.

  8. Theoretical and numerical approaches to the forward problem and sensitivity calculation of a novel contactless inductive flow tomography (CIFT)

    NASA Astrophysics Data System (ADS)

    Yin, W.; Peyton, A. J.; Stefani, F.; Gerbeth, G.

    2009-10-01

    A completely contactless flow measurement technique based on the principle of EM induction measurements—contactless inductive flow tomography (CIFT)—has been previously reported by a team based at Forschungszentrum Dresden-Rossendorf (FZD). This technique is suited to the measurement of velocity fields in high conductivity liquids, and the possible applications range from monitoring metal casting and silicon crystal growth in industry to gaining insights into the working of the geodynamo. The forward problem, i.e. calculating the induced magnetic field from a known velocity profile, can be described as a linear relationship when the magnetic Reynolds number is small. Previously, an integral equation method was used to formulate the forward problem; however, although the sensitivity matrices were calculated, they were not explicitly expressed and computation involved the solution of an ill-conditioned system of equations using a so-called deflation method. In this paper, we present the derivation of the sensitivity matrix directly from electromagnetic field theory and the results are expressed very concisely as the cross product of two field vectors. A numerical method based on a finite difference method has also been developed to verify the formulation. It is believed that this approach provides a simple yet fast route to the forward solution of CIFT. Furthermore, a method for sensor design selection based on eigenvalue analysis is presented.

  9. Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.

    2016-01-01

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni7Zr2 alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni7Zr2 has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni7Zr2 alloy fitted by Vogel-Fulcher-Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni7Zr2 compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s-1 at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s-1.

  10. Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Jiang, Teng; Wang, Long; Zhang, Sui; Sun, Ping-Chuan; Ding, Chuan-Fan; Chu, Yan-Qiu; Zhou, Ping

    2011-10-01

    Curcumin has been recognized as a potential natural drug to treat the Alzheimer's disease (AD) by chelating baleful metal ions, scavenging radicals and preventing the amyloid β (Aβ) peptides from the aggregation. In this paper, Al(III)-curcumin complexes with Al(III) were synthesized and characterized by liquid-state 1H, 13C and 27Al nuclear magnetic resonance (NMR), mass spectroscopy (MS), ultraviolet spectroscopy (UV) and generalized 2D UV-UV correlation spectroscopy. In addition, the density functional theory (DFT)-based UV and chemical shift calculations were also performed to view insight into the structures and properties of curcumin and its complexes. It was revealed that curcumin could interact strongly with Al(III) ion, and form three types of complexes under different molar ratios of [Al(III)]/[curcumin], which would restrain the interaction of Al(III) with the Aβ peptide, reducing the toxicity effect of Al(III) on the peptide.

  11. Theoretical calculations of interactions between urban breezes and mountain slope winds in the presence of basic-state wind

    NASA Astrophysics Data System (ADS)

    Seo, Jaemyeong Mango; Ganbat, Gantuya; Han, Ji-Young; Baik, Jong-Jin

    2017-02-01

    Many big cities around the world are located near mountains. In city-mountain regions, thermally and topographically forced local winds are produced and they affect the transport of pollutants emitted into the urban atmosphere. A better understanding of the dynamics of thermally and topographically forced local winds is necessary to improve the prediction of local winds and to cope with environmental problems. In this study, we theoretically examine the interactions of urban breezes with mountain slope winds in the presence of basic-state wind within the context of the response of a stably stratified atmosphere to prescribed thermal and mechanical forcing. The interactions between urban breezes and mountain slope winds are viewed through the linear superposition of individual analytical solutions for urban thermal forcing, mountain thermal forcing, and mountain mechanical forcing. A setting is considered in which a city is located downwind of a mountain. In the nighttime, in the mountain-side urban area, surface/near-surface horizontal flows induced by mountain cooling and mountain mechanical forcing cooperatively interact with urban breezes, resulting in strengthened winds. In the daytime, in the urban area, surface/near-surface horizontal flows induced by mountain heating are opposed to urban breezes, giving rise to weakened winds. It is shown that the degree of interactions between urban breezes and mountain slope winds is sensitive to mountain height and basic-state wind speed. Particularly, a change in basic-state wind speed affects not only the strength of thermally and mechanically induced flows (internal gravity waves) but also their vertical wavelength and decaying rate. The examination of a case in a setting in which a city is located upwind of a mountain reveals that basic-state wind direction is an important factor that significantly affects the interactions of urban breezes with mountain slope winds.

  12. Synthesis, molecular structure, theoretical calculation, DNA/protein interaction and cytotoxic activity of manganese(III) complex with 8-hydroxyquinoline.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Siva, A

    2015-01-01

    Manganese(III) complex (1) [Mn(8-hq)3] (where 8-hq=8-hydroxyquinoline) has been synthesized and characterized by elemental, spectral (UV-vis, FT-IR) and thermal analysis. The structure of complex (1) has been determined by single crystal X-ray diffraction studies and the configuration around manganese(III) ion was elongated octahedral coordination geometry. Density functional theory calculations were performed for ligand and its complex. Binding studies of ligand and complex 1 with calf thymus DNA (CT-DNA) was investigated by absorption, fluorescence, circular dichroic (CD) spectroscopy and viscosity measurements. Absorption spectral studies revealed that ligand and complex 1 binds to DNA groove and its intrinsic binding strength has been found to be 2.57×10(4) and 2.91×10(4)M(-1). A molecular docking study confirm that the complex 1 is a minor groove binder and was stabilized through hydrogen bonding interactions. Complex 1 exhibits a good binding propensity to bovine serum albumin (BSA) protein. The in vitro cytotoxicity study of complex 1 on breast cancer cell line (MCF-7) indicate that it has the potential to act as effective anticancer drug, with IC50 values of 3.25μM. The ligand and its complex have been screened for antimicrobial activities and the complex showed better antimicrobial activity than the free ligand.

  13. Feature Article: Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems

    NASA Astrophysics Data System (ADS)

    Fähnle, Manfred; Drautz, Ralf; Lechermann, Frank; Singer, Reinhard; Diaz-Ortiz, Alejandro; Dosch, Helmut

    2005-05-01

    The cover picture from the Feature Article [1] depicts the calculated landscape of lowest formation energies for the ternary compound system Ni-Fe-Al. The figure shows for each composition the difference in the formation energy (in meV/atom) for the respective homogeneous configuration with lowest energy on the bcc and the fcc parent lattice. The phases on the fcc lattice dominate the Ni- and Al-rich regions of the Gibbs triangle.The first author Manfred Fähnle is Professor at the University of Stuttgart and member of the theory group of the department of Prof. Schütz at the Max-Planck-Institut für Metallforschung in Stuttgart. In 1980 he was awarded with the Otto-Hahn medal of the Max-Planck Society and in 1985 he received the Academy Award for Physics of the University of Göttingen. His present research interests are the static and dynamic properties of bulk and nanostructured magnetic systems, as well as the ab-initio statistical mechanics of alloys.

  14. Theoretical calculations and experimental verification for the pumping effect caused by the dynamic micro-tapered angle

    NASA Astrophysics Data System (ADS)

    Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng

    2016-05-01

    The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.

  15. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  16. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine--its vibrational spectra and theoretical calculations.

    PubMed

    Marchewka, M K; Drozd, M; Janczak, J

    2011-08-15

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2(1)/c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H···O hydrogen bonds with O···O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H···O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double CC bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  17. Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations.

    PubMed

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery; Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro

    2017-02-08

    The interaction of formaldehyde (H2CO) onto Fe-doped graphene (FeG) was studied in detail from density functional theory calculations and electronic structure analyses. Our aim was to obtain insights into the adsorption, desorption and sensing properties of FeG towards H2CO, a hazardous organic compound. The adsorption of H2CO was shown to be energetically stable onto FeG, with adsorption energies of up to 1.45 eV and favored in different conformations. This interaction was determined to be mostly electrostatic in nature, where the oxygen plays an important role in this contribution; besides, our quantum molecular dynamics results showed the high stability of the FeG-H2CO interaction at ambient temperature (300 K). All the interactions were determined to be accompanied by an increase in the HOMO-LUMO energy gap with respect to the isolated adsorbent, indicating that FeG is highly sensitive to H2CO with respect to pristine graphene. Finally, it was found that external electric fields of 0.04-0.05 a.u. were able to induce the pollutant desorption from the adsorbent, allowing the adsorbent reactivation for repetitive applications. These results indicate that FeG could be a promising candidate for adsorption/sensing platforms of H2CO.

  18. Theoretical studies on FGFR isoform selectivity of FGFR1/FGFR4 inhibitors by molecular dynamics simulations and free energy calculations.

    PubMed

    Fu, Weitao; Chen, Lingfeng; Wang, Zhe; Kang, Yanting; Wu, Chao; Xia, Qinqin; Liu, Zhiguo; Zhou, Jianmin; Liang, Guang; Cai, Yuepiao

    2017-02-01

    The activation and overexpression of fibroblast growth factor receptors (FGFRs) are highly correlated with a variety of cancers. Most small molecule inhibitors of FGFRs selectively target FGFR1-3, but not FGFR4. Hence, designing highly selective inhibitors towards FGFR4 remains a great challenge because FGFR4 and FGFR1 have a high sequence identity. Recently, two small molecule inhibitors of FGFRs, ponatinib and AZD4547, have attracted huge attention. Ponatinib, a type II inhibitor, has high affinity towards FGFR1/4 isoforms, but AZD4547, a type I inhibitor of FGFR1, displays much reduced inhibition toward FGFR4. In this study, conventional molecular dynamics (MD) simulations, molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculations and umbrella sampling (US) simulations were carried out to reveal the principle of the binding preference of ponatinib and AZD4547 towards FGFR4/FGFR1. The results provided by MM/GBSA illustrate that ponatinib has similar binding affinities to FGFR4 and FGFR1, while AZD4547 has much stronger binding affinity to FGFR1 than to FGFR4. A comparison of the individual energy terms suggests that the selectivity of AZD4547 towards FGFR1 versus FGFR4 is primarily controlled by the variation of the van der Waals interactions. The US simulations reveal that the PMF profile of FGFR1/AZD4547 has more peaks and valleys compared with that of FGFR4/AZD4547, suggesting that the dissociation process of AZD4547 from FGFR1 are easily trapped into local minima. Moreover, it is observed that FGFR1/AZD4547 has much higher PMF depth than FGFR4/AZD4547, implying that it is more difficult for AZD4547 to escape from FGFR1 than from FGFR4. The physical principles provided by this study extend our understanding of the binding mechanisms and provide valuable guidance for the rational design of FGFR isoform selective inhibitors.

  19. Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts.

    PubMed

    Zhang, Xueli; Gong, Xuedong

    2014-08-04

    Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively.

  20. Theoretical hardness calculated from crystallo-chemical data for MoS2 and WS2 crystals and nanostructures.

    PubMed

    Petrescu, M I

    2012-10-01

    The calculation of the hardness of Mo and W disulfides using a crystallo-chemical model provides a unique opportunity to obtain separate quantitative information on the maximum hardness H(max) governed by strong intra-layer covalent bonds acting within the (0001) plane versus the minimum hardness H(min) governed by weak inter-layer van der Waals bonds acting along the c-axis of the hexagonal lattice. The penetration hardness derived from fundamental crystallo-chemical data (confirmed by experimental determinations) proved to be far lower in MS(2) (M = Mo, W) than in graphite and hexagonal BN, both for H(max) (H(graph)/H(MoS2) = 3.85; H(graph)/H(WS2) = 3.60; H(hBN)/H(MoS2) = 2.54; H(hBN)/H(WS2) = 2.37) as well as for H(min) (H(graph)/H(MoS2) = 6.22; H(graph)/H(WS2) = 5.87; H(hBN)/H(MoS2) = 4.72; H(hBN)/H(WS2) = 4.46). However, the gap between H(max) and H(min) is considerably larger in MS(2) (M = Mo,W), as indicated by H(max)/H(min) being 279 in 2H-MoS(2), 282 in 2H-WS(2), 173 in graphite and 150 in hBN. The gap was found to be even larger in MS(2) (M = Mo, W) nanostructures. These findings help to explain the excellent properties of MS(2) (M = Mo, W) as solid lubricants in high tech fields, either as bulk 2H crystals (inter-layer shear and peeling off lubricating mechanisms), or especially as onion-like fullerene nanoparticles (rolling/sliding mechanisms).

  1. Theoretical Calculations and Simulations of Interaction of X-Rays with High-Z Nanomoities for Use in Cancer Radiotherapy

    NASA Astrophysics Data System (ADS)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.

    2013-06-01

    When used with X-ray radiotherapy, heavy elements (high atomic number Z or HZ) such as gold(Au) and platinum(Pt) have the potential to greatly sensitize and enhance the damage to tumor tissues. While HZ radiosensitization has been shown to be higly effective in reducing tumor sizes, much work still needs to be done to determine the ideal X-ray energy/energy spectrum. The likelihood of photoelectric absorption of X-rays that result in the production of cell-killing Auger electrons relative to the photon scatter in an HZ sensitized tumor has to be determined for treatments using X-rays from various sources and energies to assess their efficacy. In this report, we present computations that outline the dependence of photoelectric absorption on X-ray energy. The relative X-ray absorption by a radiosensitized tumor was calculated to contrast the efficacy of different X-ray sources in Auger electron production at different tumor depths. Enhanced photoabsorption of low-energy X-rays from broadband sources in the keV range is shown to be much higher than from those in the MeV range. In addition, with the use of the Monte Carlo code package Geant4, we present the total X-ray energy deposited into a radiosensitized tumor located at different depths in a phantom. The enhancement in radiation dose deposition will also be analysed at the microscopic cellular level to determine the HZ radiosensitizer concentration required. Potential use of monochromatic X-rays for more precise HZ radiosensitization will also be described.

  2. Torsional energy levels of CH₃OH⁺/CH₃OD⁺/CD₃OD⁺ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations.

    PubMed

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.

  3. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation.

    PubMed

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard

    2016-02-18

    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy(3+) and Y(3+)on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke's model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.

  4. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation

    PubMed Central

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard

    2016-01-01

    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases. PMID:26888438

  5. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation

    NASA Astrophysics Data System (ADS)

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard

    2016-02-01

    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.

  6. Systematic estimation of theoretical uncertainties in the calculation of the pion-photon transition form factor using light-cone sum rules

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. V.; Pimikov, A. V.; Stefanis, N. G.

    2016-06-01

    We consider the calculation of the pion-photon transition form factor Fγ*γπ0(Q2) within light-cone sum rules focusing attention to the low-mid region of momenta. The central aim is to estimate the theoretical uncertainties which originate from a wide variety of sources related to (i) the relevance of next-to-next-to-leading order radiative corrections (ii) the influence of the twist-four and the twist-six term (iii) the sensitivity of the results on auxiliary parameters, like the Borel scale M2, (iv) the role of the phenomenological description of resonances, and (v) the significance of a small but finite virtuality of the quasireal photon. Predictions for Fγ*γπ0(Q2) are presented which include all these uncertainties and found to comply within the margin of experimental error with the existing data in the Q2 range between 1 and 5 GeV2 , thus justifying the reliability of the applied calculational scheme. This provides a solid basis for confronting theoretical predictions with forthcoming data bearing small statistical errors.

  7. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-05

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  8. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented.

  9. Calculation of Temperature Rise in Calorimetry.

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Witt, Jerry

    1988-01-01

    Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)

  10. Can free energy calculations be fast and accurate at the same time? Binding of low-affinity, non-peptide inhibitors to the SH2 domain of the src protein

    NASA Astrophysics Data System (ADS)

    Chipot, Christophe; Rozanska, Xavier; Dixit, Surjit B.

    2005-11-01

    The usefulness of free-energy calculations in non-academic environments, in general, and in the pharmaceutical industry, in particular, is a long-time debated issue, often considered from the angle of cost/performance criteria. In the context of the rational drug design of low-affinity, non-peptide inhibitors to the SH2 domain of the pp60src tyrosine kinase, the continuing difficulties encountered in an attempt to obtain accurate free-energy estimates are addressed. free-energy calculations can provide a convincing answer, assuming that two key-requirements are fulfilled: (i) thorough sampling of the configurational space is necessary to minimize the statistical error, hence raising the question: to which extent can we sacrifice the computational effort, yet without jeopardizing the precision of the free-energy calculation? (ii) the sensitivity of binding free-energies to the parameters utilized imposes an appropriate parametrization of the potential energy function, especially for non-peptide molecules that are usually poorly described by multipurpose macromolecular force fields. Employing the free-energy perturbation method, accurate ranking, within ±0.7 kcal/mol, is obtained in the case of four non-peptide mimes of a sequence recognized by the pp60src SH2 domain.

  11. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  12. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    SciTech Connect

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  13. Theoretical oxidation state analysis of Ru-(bpy){sub 3}: Influence of water solvation and Hubbard correction in first-principles calculations

    SciTech Connect

    Reeves, Kyle G.; Kanai, Yosuke

    2014-07-14

    Oxidation state is a powerful concept that is widely used in chemistry and materials physics, although the concept itself is arguably ill-defined quantum mechanically. In this work, we present impartial comparison of four, well-recognized theoretical approaches based on Lowdin atomic orbital projection, Bader decomposition, maximally localized Wannier function, and occupation matrix diagonalization, for assessing how well transition metal oxidation states can be characterized. Here, we study a representative molecular complex, tris(bipyridine)ruthenium. We also consider the influence of water solvation through first-principles molecular dynamics as well as the improved electronic structure description for strongly correlated d-electrons by including Hubbard correction in density functional theory calculations.

  14. Improving analysis of infrared spectrum of van der Waals complex with theoretical calculation: Applied to Xe-N2O complex

    NASA Astrophysics Data System (ADS)

    Shi, Lipeng; Zhao, Aiqing; Wang, Hongli; Yang, Dapeng; Zheng, Rui

    2017-03-01

    A section of infrared spectrum for Xe-N2O has been recorded in the N2O monomer ν1 region, but just 5 rotational resolved lines cannot make an effective rovibrational analysis. To improve the analysis of our observed spectrum for Xe-N2O, a new method is developed based on the bound state calculations with three ab initio potential energy surfaces (PESs). The accuracy of this method is validated by the excellent agreement between theoretical and experimental results for 152 rovibrational transition frequencies with a root mean square deviation of 0.00075 cm-1 and spectroscopic parameters with the deviation less than 0.6 MHz in the N2O monomer ν3 region. The rotational constants for the excited state are derived with the values of A = 12716.1, B = 1075.2, C = 987.9 MHz in the ν1 region of N2O monomer. The band origin of the spectrum is determined to be 1284.8760 cm-1 with a red shift of 0.0273 cm-1 compared with that of N2O monomer in the ν1 region. The excellent agreement between experimental and theoretical results confirms that this new method is extremely helpful to make a rovibrational analysis for the infrared spectrum of van der Waals complex.

  15. Solvent-dependent dynamics of hydrogen bonding structure 5-(methylthio)-1, 3, 4-thiadiazole-2(3H)-thione as determined by Raman spectroscopy and theoretical calculation

    NASA Astrophysics Data System (ADS)

    Pang, Sumei; Zhao, Yanying; Xin, Liu; Xue, Jiadan; Zheng, Xuming

    2017-01-01

    The vibration spectra of 5-(methylthio)-1,3,4-thiadiazole-2(3H)-thione (MTTN) in acetonitrile (CH3CN), methanol (CH3OH) and water (H2O) solvents were collected and evaluated via deuterium isotopic substitution Raman spectroscopic experiments. These experiments were combined with the quantum chemical theoretical calculations using the PCM solvent model and normal mode analysis. The results confirmed that the MTTN in CH3CN, CH3OH and H2O have hydrogen bonding (H-bonding) MTTN(solvent)n clusters that produce significantly different Raman intensity patterns in different solvents. Combined with the normal Raman assignment, most resonance Raman spectra were assigned to the vibration modes of the H-bonding MTTN(CH3CN), MTTN(CH3OH)3 and MTTN(H2O)3 clusters in CH3CN, CH3OH and H2O. The theoretically-predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands. The intermolecular > NH ⋯ O and > NH ⋯ N H-bonding interactions are key constituents of stable thione structures in MTTN. This underlines the significant structural differences of MTTN in CH3CN, CH3OH and H2O. H-bonding perturbation of MTTN reveal important insights about the intermolecular excited state proton transfer (ESPT) reaction mechanisms in the Franck-Condon region structural dynamics of the thione → thiol tautomer in CH3OH and H2O.

  16. Vibrational spectroscopic study, structural analysis, photophysical properties and theoretical calculations of cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline

    NASA Astrophysics Data System (ADS)

    Baldenebro-López, Jesús; Báez-Castro, Alberto; Glossman-Mitnik, Daniel; Höpfl, Herbert; Cruz-Enríquez, Adriana; Miranda-Soto, Valentín; Parra-Hake, Miguel; Campos-Gaxiola, José J.

    2017-02-01

    cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline has been fully characterized by FT-IR, FT-Raman, UV-Vis and fluorescence spectroscopy, one- and two-dimensional NMR spectroscopy (1H, 1H-1H gCOSY, 1H-1H gNOESY,13C{1H} ATP, 1H-13C and 1H-15N gHSQC and 1H-13C gHMBC), high-resolution mass spectrometry (HR-FAB+), TG-DSC analysis and low-temperature single-crystal X-ray diffraction analysis. Additionally, the molecular geometry and the vibrational infrared and Raman frequencies were calculated by density functional theory using the M06/6-31G(d) level of theory, showing good agreement with the experimental results. The title compound showed interesting photophysical properties, which were studied experimentally in solution and in the solid state by UV-Vis and fluorescence spectroscopy and compared to the theoretically obtained parameters using TD-DFT calculations. Natural and Mulliken atomic charges and the molecular electrostatic potential (MEP) have been mapped.

  17. Theoretical calculations of infrared absorption, vibrational circular dichroism, and two-dimensional vibrational spectra of acetylproline in liquids water and chloroform.

    PubMed

    Hahn, Seungsoo; Lee, Hochan; Cho, Minhaeng

    2004-07-22

    Infrared absorption, vibrational circular dichroism, and two-dimensional infrared pump-probe and photon echo spectra of acetylproline solutions are theoretically calculated and directly compared with experiments. In order to quantitatively determine interpeptide interaction-induced amide I mode frequency shifts, high-level quantum chemistry calculations were performed. The solvatochromic amide I mode frequency shift and fluctuation were taken into account by carrying out molecular dynamics simulations of acetylproline dissolved in liquids water and chloroform and by using the extrapolation method developed recently. We first studied correlation time scales of the two amide I vibrational frequency fluctuations, cross correlation between the two fluctuating local mode frequencies, ensemble averaged conformations of the acetylproline molecule in liquids water and chloroform. The corresponding conformations of the acetylproline in liquids water and chloroform are close to the ideal 3(10) helix and the C(7) structure, respectively. A few methods proposed to determine the angle between the two transition dipoles associated with the amide I vibrations were tested and their limitations are discussed.

  18. PREFACE: Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008) Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki

    2009-03-01

    Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more

  19. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations.

    PubMed

    Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B

    2015-06-15

    Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.

  20. Benchmark calculations with correlated molecular wave functions. V. The determination of accurate [ital ab] [ital initio] intermolecular potentials for He[sub 2], Ne[sub 2], and Ar[sub 2

    SciTech Connect

    Woon, D.E. )

    1994-02-15

    Dimer interactions of helium, neon, and argon have been studied using the augmented correlation consistent basis sets of Dunning and co-workers. Two correlation methods have been employed throughout; Moller--Plesset perturbation theory through fourth-order (MP4) and single and double excitation coupled-cluster theory with perturbative treatment of triple excitations [CCSD(T)]. Full configuration interaction (FCI) calculations were performed on He[sub 2] for some basis sets. In general, only valence electrons were correlated, although some calculations which also correlated the [ital n]=2 shell of Ar[sub 2] were performed. Dimer potential energy curves were determined using the supermolecule method with and without the counterpoise correction. A series of additional basis sets beyond the augmented correlation consistent sets were explored in which the diffuse region of the radial function space has been systematically saturated. In combination with the systematic expansion across angular function space which is inherent to the correlation consistent prescription, this approach guarantees very accurate atomic polarizabilities and hyperpolarizabilities and should lead to an accurate description of dispersion forces. The best counterpoise-corrected MP4 values for the well depths of the three dimers are (in microhartrees, empirical values in parentheses) He[sub 2], 31.9 (34.6); Ne[sub 2], 123 (134); and Ar[sub 2], 430 (454). The corresponding CCSD(T) values are He[sub 2], 33.1; Ne[sub 2], 128; and Ar[sub 2], 417. Although these values are very good, the nearly exponential convergence of well depth as a function of basis quality afforded by using the various series of correlation consistent basis sets allows estimation of complete basis set (CBS) limiting values. The MP4 estimated CBS limits are He[sub 2], 32.2; Ne[sub 2], 126; and Ar[sub 2], 447.

  1. Cadmium(II) and Copper(II) coordination polymers based on 5-(Pyrazinyl) tetrazolate ligand: Structure, photoluminescence, theoretical calculations and magnetism

    SciTech Connect

    Chen, Hui-Fen; Yang, Wen-Bin; Lin, Lang; Guo, Xiang-Guang; Dui, Xue-jing; Wu, Xiao-Yuan; Lu, Can-Zhong; Zhang, Cui-Juan

    2013-05-01

    Two μ₂-tetrazolyl bridged metal complexes, ([CdI(PTZ)(H₂O)]·H₂O)ₙ1 and ([Cu(PTZ)₂]·H₂O)ₙ2 (HPTZ=5-(pyrazinyl) tetrazolate), were hydrothermally synthesized and fully characterized by X-ray crystallography, elemental analyses and spectrum techniques. In 1, cadmium ions are bridged by tridentate μ₂-κ²N2,N5:κ¹N1 chelating PTZ⁻ ligand and halide linkers into an infinite 1D chain, while in 2 copper ions are connected by tridentate μ₂-κ²N7,N12:κ¹N8 and bidentate μ₂-κ¹N1:κ¹N2 chelating-bridging PTZ⁻ ligands to form a 1D castellated chain structure. Compound 1 displays phosphorescence with a lifetime of ~7.74 ms in the visible region, and the origin of the luminescent emission is primary assigned to the combination of ligand-centered emission, metal-to-ligand charge transfer and ligand-to-ligand charge transfer, which has been probed by the density of states (DOS) calculations. Magnetic measurement reveals that compound 2 displays an anti-ferromagnetic ordering. - Graphical abstract: Two new complexes based on 5-(pyrazinyl) tertrazolate, namely ([CdI(PTZ)(H2O)]·H2O)n and ([Cu(PTZ)2]·H2O)n have been synthesized and characterized. Compound 1 exhibits interesting green luminescence. Compound 2 displays an anti-ferromagnetic ordering. Highlights: • We report two novel 1D μ₂-tetrazolyl bridged Cd(II) and Cu(II) compounds. • The cadmium(II) compound exhibits a green luminescence. • Theoretical calculations were conducted to elucidate the green luminescence. • The Cu(II) compound exhibits an anti-ferromagnetic ordering.

  2. Vibrations and reorientations of NH3 molecules in [Mn(NH3)6](ClO4)2 studied by infrared spectroscopy and theoretical (DFT) calculations.

    PubMed

    Hetmańczyk, Joanna; Hetmańczyk, Łukasz; Migdał-Mikuli, Anna; Mikuli, Edward

    2015-02-05

    The vibrational and reorientational motions of NH3 ligands and ClO4(-) anions were investigated by Fourier transform middle-infrared spectroscopy (FT-IR) in the high- and low-temperature phases of [Mn(NH3)6](ClO4)2. The temperature dependencies of full width at half maximum (FWHM) of the infrared bands at: 591 and 3385cm(-1), associated with: ρr(NH3) and νas(N-H) modes, respectively, indicate that there exist fast (correlation times τR≈10(-12)-10(-13)s) reorientational motions of NH3 ligands, with a mean values of activation energies: 7.8 and 4.5kJmol(-1), in the phase I and II, respectively. These reorientational motions of NH3 ligands are only slightly disturbed in the phase transition region and do not significantly contribute to the phase transition mechanism. Fourier transform far-infrared and middle-infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC(c)=137.6K (on cooling), which suggested lowering of the crystal structure symmetry. Infrared spectra of [Mn(NH3)6](ClO4)2 were recorded and interpreted by comparison with respective theoretical spectra calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on H, N, Cl, O atoms) for the isolated equilibrium two models (Model 1 - separate isolated [Mn(NH3)6](2+) cation and ClO4(-) anion and Model 2 - [Mn(NH3)6(ClO4)2] complex system). Calculated optical spectra show a good agreement with the experimental infrared spectra (FT-FIR and FT-MIR) for the both models.

  3. Stontium-90 contamination in vegetation from radioactive waste seepage areas at ORNL, and theoretical calculations of /sup 90/Sr accumulation by deer

    SciTech Connect

    Garten, C.T. Jr.; Lomax, R.D.

    1987-06-01

    This report describes data obtained during a preliminary characterization of /sup 90/Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate /sup 90/Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of /sup 90/Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi /sup 90/Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi /sup 90/Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with <5 pCi/g DW results in calculated steady-state (maximum) /sup 90/Sr bone concentrations of <30 pCi/g in a 45-kg buck.

  4. Calculation of broadband time histories of ground motion, Part II: Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 northridge earthquake

    USGS Publications Warehouse

    Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.

    2005-01-01

    In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.

  5. Theoretical modelling of biomolecular systems I. Large-scale QM/MM calculations of hydrogen-bonding networks of the oxygen evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Yamanaka, Shusuke; Umena, Yasufumi; Kawakami, Keisuke; Kamiya, Nobuo; Shen, Jian-Ren; Nakajima, Takahito; Yamaguchi, Kizashi

    2015-02-01

    Quantum mechanical (QM)/molecular mechanics (MM) calculations by the use of a large-scale QM model (QM Model V) have been performed to elucidate hydrogen-bonding networks and proton wires for proton release pathways (PRP) of water oxidation reaction in the oxygen evolving complex (OEC) of photosystem II (PSII). Full geometry optimisations of PRP by the QM/MM model have been carried out starting from the geometry of heavy atoms determined by the recent high-resolution X-ray diffraction (XRD) experiment of PSII refined to 1.9 Å resolution. Computational results by the QM/MM calculations have elucidated the hydrogen-bonding O...O(N) and O...H distances and O(N)-H...O angles in PRP, together with the Cl-O(N) and Cl...H distances and O(N)-H...Cl angles for chloride anions. The optimised hydrogen-bonding networks are well consistent with the XRD results and available experiments such as extended X-ray absorption fine structure, showing the reliability of channel structures of OEC of PSII revealed by the XRD experiment. The QM/MM computations have elucidated possible roles of chloride anions in the OEC of PSII. The QM/MM computational results have provided useful information for understanding and explanation of accumulated mutation experiments of key amino acid residues in the OEC of PSII. Implications of the present results are discussed in relation to three steps for theoretical modelling of water oxidation in the OEC of PSII and bio-inspired working hypotheses for developments of artificial water oxidation systems by use of 3d transition-metal complexes.

  6. FROM THE HISTORY OF PHYSICS: How Gamow calculated the temperature of the background radiation or a few words about the fine art of theoretical physics

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    1994-08-01

    In a paper published in 1953, i.e., more than a decade before the observational discovery of the cosmic microwave background radiation, George Gamow predicted theoretically the temperature of this radiation. He estimated it to be 7 K, which is very close to the subsequently measured value of about 3 K. Gamow found the present temperature of the background radiation on the basis of general formulas of cosmological dynamics. This prediction was in no way related to primordial nucleosynthesis.This circumstance has and is still causing misunderstanding in those cases in which the authors have raised doubts about Gamow's results, although an actual error has never been demonstrated. A detailed analysis makes it possible to understand how Gamow's calculation is possible. The problem lies in the fact that Gamow makes a certain additional implicit assumption which allows him to dispense with information on nucleosynthesis. This assumption is discussed in the context of the state of cosmology in the period from the fifties to the seventies, and of the current status of this branch of science.

  7. How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations.

    PubMed

    Xie, Yujun; Ge, Yuwei; Peng, Qian; Li, Conggang; Li, Qianqian; Li, Zhen

    2017-02-21

    Long-lived phosphorescence at room temperature (RTP) from pure organic molecules is rare. Recent research reveals various crystalline organic molecules can realize RTP with lifetimes extending to the magnitude of second. There is little research on how molecular packing affecting RTP. Three compounds are designed with similar optical properties in solution, but tremendously different solid emission characteristics. By investigating the molecular packing arrangement in single crystals, it is found that the packing style of the compact face to face favors of long phosphorescence lifetime and high photoluminescence efficiency, with the lifetime up to 748 ms observed in the crystal of CPM ((9H-carbazol-9-yl)(phenyl)methanone). Theoretical calculation analysis also reveals this kind of packing style can remarkably reduce the singlet excited energy level and prompt electron communication between dimers. Surprisingly, CPM has two very similar single crystals, labeled as CPM and CPM-A, with almost identical crystal data, and the only difference is that molecules in CPM-A crystal take a little looser packing arrangement. X-ray diffraction and cross-polarization under magic spinning (13) C NMR spectra double confirm that they are different crystals. Interestingly, CPM-A crystal shows negligible RTP compared to the CPM crystal, once again proving that the packing style is critical to the RTP property.

  8. Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties.

    PubMed

    Chioua, Mourad; Sucunza, David; Soriano, Elena; Hadjipavlou-Litina, Dimitra; Alcázar, Alberto; Ayuso, Irene; Oset-Gasque, María Jesús; González, María Pilar; Monjas, Leticia; Rodríguez-Franco, María Isabel; Marco-Contelles, José; Samadi, Abdelouahid

    2012-01-12

    We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment.

  9. Hydrogen-bonding effect on spin-center transfer of tetrathiafulvalene-linked 6-oxophenalenoxyl evaluated using temperature-dependent cyclic voltammetry and theoretical calculations.

    PubMed

    Nishida, Shinsuke; Fukui, Kozo; Morita, Yasushi

    2014-02-01

    The stable tetrathiafulvalene (TTF)-linked 6-oxophenalenoxyl neutral radical exhibits a spin-center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2-trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin-center transfer. Temperature-dependent cyclic voltammetry of the neutral radical using a novel low-temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin-center transfer are lowered by the hydrogen-bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen-bonding effect is a key factor for the occurrence of the spin-center transfer of TTF-linked 6-oxophenalenoxyl.

  10. Theoretical and experimental study of a praziquantel and beta-cyclodextrin inclusion complex using molecular mechanic calculations and H1-nuclear magnetic resonance.

    PubMed

    de Jesus, Marcelo Bispo; de Matos Alves Pinto, Luciana; Fraceto, Leonardo Fernandes; Takahata, Yuji; Lino, Antonio C S; Jaime, Carlos; de Paula, Eneida

    2006-06-16

    Praziquantel (PZQ) is a broadly effective anthelminthic drug available for human and veterinary use, being the drug of choice for the treatment of all forms of schistosomiasis. Nevertheless, large doses are required in order to achieve adequate concentrations at the target site due to the poor solubility of PZQ and its significant first pass metabolism. To improve it, avoiding efficiency loss, we have designed a controlled-release system, in which PZQ was encapsulated in beta-cyclodextrin (beta-CD). The inclusion complexes between PZQ/beta-CD were studied at two different stoichiometries 1:1 and 1:2, through experimental and theoretical analysis. Molecular modeling calculations were used to foresee the better stoichiometry of the complex formed as well as the possible orientations of PZQ inside the beta-CD cavity. The complexes prepared were analyzed through H1 two-dimensional nuclear magnetic resonance (H1 2D-NMR) experiments, which provide (evidences) for the 1:1 complexation of PZQ/beta-CD. H1 2D-NMR also revealed details of PZQ/beta-CD molecular interaction, in which the isoquinoline ring of praziquantel is located inside the beta-CD cavity. Finally, phase-solubility diagrams revealed a five-fold increase in praziquantel water solubility upon addition of increasing beta-CD concentrations up to 16 mM, corresponding to the solubility of beta-CD itself. The solubilization profile is consistent with 1:1 stoichiometry of the PZQ/beta-CD complex while the solubilization effect will certainly increase the pharmacological activity of praziquantel.

  11. Direct measurement and theoretical calculation of the rate coefficient for Cl+CH3 in the range from T=202-298 K.

    PubMed

    Parker, James K; Payne, Walter A; Cody, Regina J; Nesbitt, Fred L; Stief, Louis J; Klippenstein, Stephen J; Harding, Lawrence B

    2007-02-15

    The rate coefficient has been measured under pseudo-first-order conditions for the Cl+CH3 association reaction at T=202, 250, and 298 K and P=0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH3 were generated rapidly and simultaneously by reaction of F with HCl and CH4, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F2 in He. The decay of CH3 was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH3 concentration ([Cl]0/[CH3]0=9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T=202 K, the rate coefficient increases from 8.4x10(-12) at P=0.30 Torr He to 1.8x10(-11) at P=2.00 Torr He, both in units of cm3 molecule-1 s-1. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k2=6.0x10(-11) cm3 molecule-1 s-1, independent of temperature in the range from 200 to 300 K.

  12. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.

    PubMed

    Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier

    2013-02-19

    Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of

  13. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  14. Theoretical Issues

    SciTech Connect

    Marc Vanderhaeghen

    2007-04-01

    The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.

  15. Measurements and Theoretical Calculations of N2-broadening and N2-shift Coefficients in the v2 band of CH3D

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, A.; Hambrook, Kyle; Brawley-Tremblay, Marco; Bouanich, J. P.; Smith, Mary Ann H.

    2006-01-01

    In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the v2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure- broadening coefficients of 368 v2 transitions with quantum numbers as high as J"= 20 and K = 16, where K" = K' equivalent to K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about 0.0003 to 0.0094 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J", and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J", and J" + 1 in the (sup Q)P-, (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressureshift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the (sup Q)Q-branch of self-induced shifts of CH3D, are also in

  16. Theoretical Calculation of System Performance of Fiber Optic Network with Chromatic Dispersion, Polarization Mode Dispersion, Polarization Dependent Loss, and Amplifier Spontaneous Emission Noise

    NASA Astrophysics Data System (ADS)

    Abuzariba, Suad Mohamed

    This thesis includes a theoretical study of the performance of an optical network system with linear impairments: chromatic dispersion (CD), polarization mode dispersion (PMD), polarization dependent loss (PDL), and amplified spontaneous emission (ASE) noise. Both the a-factor and bit error rate (BER) were used as performance parameters in this study. First, an analytical optical eye diagram evaluation for a system of highly mode coupled PMD/PDL fiber and lumped sections (up to fifteen sections) have been presented in this study. Based on this evaluation we found that with PDL considered as well as PMD, the a-factor of the output becomes higher than that of a Maxwellian fiber having the same total root mean-squared PMD and PDL values, when the mean-square PDL element of the lumped sections makes up the major portion of the total mean-square of the whole system. Whereas without considering PDL, the a-factor becomes higher as the mean-square PMD element of the Maxwellian fiber takes the major portion of the total mean-square PMD element of the whole system. Also the worst case for the a-factor occurred when the lumped sections were in the middle between two equivalent Maxwellian fibers, rether than if the lumped sections were followed by Maxwellian fiber or the Maxwellian fiber is followed by the lumped sections. We also note that two equivalent Maxwellian fibers connected in series will not give the same a-factor as a Maxwellian fiber equivalent calculated by concatenation rules unless they have the same values of PMD, PDL, and polarization direction correlation elements. Second, considering ASE-noise besides CD, PMD, and PDL, improved values of bit error rate (BER) were gotten using the moment generation function for the optical system in cases of ON-OFF modulation format and DPSK modulation format. We found that, even when considering the noise only without the signal, the probability density function of the output current was dependent on the output state of

  17. Synthesis, characterization and theoretical calculations of (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride complexes: in vitro cytotoxic evaluations against human cancer cell lines.

    PubMed

    Al-Jaroudi, Said S; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Kawde, Abdel-Nasser; Altuwaijri, Saleh; Ahmad, Saeed; Isab, Anvarhusein A

    2015-10-01

    The gold(III) complexes of the type (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride, [(DACH)Au(pn)]Cl3, [where DACH = cis-, trans-1,2- and S,S-1,2-diaminocyclohexane and pn = 1,3-diaminopropane] have been synthesized and characterized using various spectroscopic and analytical techniques including elemental analysis, UV-Vis and FTIR spectroscopy; solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and 1,3-diaminopropane (pn) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was checked by UV-Vis spectroscopy and NMR measurements. The molecular structure of compound 1 (containing cis-1,2-DACH) was determined by X-ray diffraction analysis. The structure of 1 consists of [(cis-DACH)Au(pn)](3+) complex ion and chloride counter ions. Each gold atom in the complex ion adopts a distorted square-planar geometry. The structural details and relative stabilities of the four possible isomers of the complexes were also estimated at the B3LYP/LANL2DZ level of theoretical calculations. The computational study demonstrates that trans- conformations are slightly more stable than the cis- conformations. The antiproliferative effects and cytotoxic properties of the mixed ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 3 (containing 1S,2S-(+)-1,2-(DACH)) is the most effective antiproliferative agent. The IC50 data reveal that the in vitro cytotoxicity of complex 3 against SGC7901 cancer cells manifested similar and very pronounced cytotoxic effects with respect to cisplatin. Moreover, the electrochemical behavior, and the interaction of complex 3 with two well-known model proteins, namely, hen egg white lysozyme and bovine serum albumin is also reported.

  18. Theoretical calculations of spin-Hamiltonian parameters for the square planer CuCl4 2 - cluster in Cs2ZrCl6 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Mei, Yang; Zhang, Xin-Xin; Zheng, Wen-Chen

    2015-05-01

    The high-order perturbation formulas based on a two-mechanism model (where in addition to the contributions from the crystal-field (CF) mechanism in the usually-applied CF theory, those from the generally-neglected charge-transfer (CT) mechanism are also contained) are employed to calculate the spin-Hamiltonian parameters (g factors g//, g⊥ and the hyperfine structure constants A//, A⊥) of the square planar CuCl4 2 - clusters in Cs2ZrCl6 crystal. The needed CF energy levels in the calculations are obtained from the observed optical spectra. The calculated results show reasonable agreement with the experimented values. The negative sign of A// and positive sign of A⊥ are proposed from the calculations. The calculations also suggest that one should take account of the contributions due to both the CF and CT mechanisms for the exact and rational calculations of spin-Hamiltonian parameters of Cu2+-Cl- combination in crystals.

  19. Synthesis, molecular structure and spectroscopic characterization of (E)-1-((2-hydroxynaphthalen-1-yl) methyleneamino)-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl) pyrimidine-2(1H)-one with experimental techniques and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Ceylan, Ümit; Hacıyusufoğlu, Mehmet Emin; Yalçınc, Şerife Pınar; Sönmez, Mehmet; Aygün, Muhittin

    2016-04-01

    A new Schiff base compound, (E)-1-((2-hydroxynaphthalen-1-yl) methyleneamino)-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl) pyrimidine-2(1H)-one, formula sum is given by C30H23N3O5, was synthesized and characterized by experimentally and theoretically. Optimized molecular structure was obtained using X-ray diffraction in the ground state. FT-IR, NMR and UV-Vis frequencies have been measured and compared with theoretically obtained data by using by DFT/B3LYP method with 6-31G(d) and 6-311++G(d,p) basis set. In addition, molecular electrostatic potential (MEP), dipole moments, NBO analysis, atomic charges, HOMO-LUMO and molecular electrostatic potential were computed. The calculated results show that the optimized geometry can well reproduce the crystal structure parameters, and the theoretical vibrational frequencies, 1H and 13C NMR chemical shifts show good agreement with experimental values.

  20. Theoretical dissociation energies for ionic molecules

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.

  1. Theoretical calculations of the pressure-induced shift of a photoacoustic phase signal in alexandrite (BeAl 2O 4:Cr 3+)

    NASA Astrophysics Data System (ADS)

    Jovanic, B. R.; Zekovic, Lj. D.; Radenkovic, B.

    1993-12-01

    The effect of pressure on the phase (δ) of the photoacoustic signal in alexandrite was considered theoretically. It is shown that increase of pressure induces a non-linear increase of δ. The possibility of using the normalized phase difference shift of the photoacoustic signal in alexandrite upon pressure as a new method for high-pressure measurement in the diamond anvil cell is discussed.

  2. Synthesis, spectroscopic and structural characterization of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine with theoretical calculations using density functional theory

    NASA Astrophysics Data System (ADS)

    İnkaya, Ersin; Dinçer, Muharrem; Şahan, Emine; Yıldırım, İsmail

    2013-10-01

    In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, 1H NMR, 13C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z = 2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.

  3. Synthesis, spectroscopic and structural characterization of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine with theoretical calculations using density functional theory.

    PubMed

    Inkaya, Ersin; Dinçer, Muharrem; Sahan, Emine; Yıldırım, Ismail

    2013-10-01

    In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, (1)H NMR, (13)C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z=2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.

  4. Thermosolvatochromism of betaine dyes revisited: theoretical calculations of the concentrations of alcohol-water hydrogen-bonded species and application to solvation in aqueous alcohols.

    PubMed

    Bastos, Erick L; Silva, Priscilla L; El Seoud, Omar A

    2006-08-31

    Solvatochromic data of 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (RB) in aqueous methanol, 1-propanol, 2-propanol, and 2-methyl-2-propanol at 25 degrees C were recalculated by employing a recently introduced model that explicitly considers the presence of 1:1 alcohol-water hydrogen-bonded species, ROH-W, in bulk solution and their exchange equilibria with water and alcohol in the probe solvation microsphere. The thermosolvatochromic behavior of RB in aqueous ethanol was measured in the temperature range from 10 to 60 degrees C; the results thus obtained were treated according to the same model. All calculations require reliable values of Kdissoc, the dissociation constant of the ROH-W species. This was previously calculated from the dependence of the density of the binary solvent mixture on its composition. Through the use of iteration, the volume of the hydrogen-bonded species, VROH-W, and Kdissoc are obtained simultaneously from the same set of experimental data. This approach may be potentially problematic because Kdissoc and VROH-W are highly correlated. Therefore, we introduced the following approach: (i) VROH-W was obtained from ab initio calculations, (ii) these volumes were corrected for the nonideal behavior of the binary solvent mixtures at different temperatures, (iii) corrected VROH-W values were employed as a constant in the equation used to calculate Kdissoc (from density vs binary solvent mixture composition). VROH-W calculated by the COSMO-RS solvation model fitted the density data better than those calculated by the IEFPCM model. In all aqueous alcohols, solvation by ROH-W is favored over that by the two precursor solvents. In aqueous ethanol, a temperature increase resulted in a gradual desolvation of RB, due to a decrease in the hydrogen-bonding of both components of the mixture. The microscopic polarities of ROH-W are much closer to those of the precursor alcohols.

  5. Intramolecular CH⋯π and CH⋯O interactions in the conformational stability of benzyl methyl ether studied by matrix-isolation infrared spectroscopy and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Shin-ya, Kei; Takahashi, Osamu; Katsumoto, Yukiteru; Ohno, Keiichi

    2007-02-01

    Contributions of the intramolecular CH⋯π and CH⋯O interactions to the molecular conformation of benzyl methyl ether (BME) have been investigated by matrix-isolation infrared (IR) spectroscopy combined with quantum chemical calculations. Comparative investigations have been carried out for propylbenzene. Quantum chemical calculations predict that there are two conformers for BME; for the ET conformer the methyl ether and the phenyl groups lie in the plane of the benzene ring, while for the AG conformer they are out of the plane. Comparison between the observed and calculated spectra for BME reveals that the ET and AG conformers coexist in an Ar matrix. By measuring matrix-isolation IR spectra of BME deposited at different gas temperatures, the enthalpy difference (Δ H (AG - ET)) between ET and AG conformers was determined to be -1.03 ± 0.06 kJ mol -1. The experimental and calculation results indicate that the AG conformer of BME is stabilized by the intramolecular CH⋯π and CH⋯O interactions.

  6. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  7. Broadening, shifting, and line asymmetries in the 2<--0 band of CO and CO-N2: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Bouanich, J. P.; Benner, D. Chris; May, A. D.; Drummond, J. R.

    2000-07-01

    We have measured the room temperature, widths, pressure shifts, and line asymmetry coefficients for many transitions of the first overtone band of CO and CO perturbed by N2. The broadening coefficients were obtained with an accuracy of about 1%. The pure CO profiles have been fitted by a Voigt profile while the CO-N2 spectral profiles have been fitted with a Lorentz and an empirical line shape model (HCv) that blends together a hard collision model and a speed-dependent Lorentz profile. In addition to the Voigt, Lorentz, and HCv models, we have added a dispersion profile to account for weak line mixing. The line broadening and shift coefficients are compared to semiclassical calculations employing a variety of intermolecular interactions. The line asymmetry results are compared to line mixing calculations based on the energy corrected sudden (ECS) model. The results indicate that effects other than line mixing also contribute to the measured line asymmetry.

  8. A theoretical investigation of the atmospherically important reaction between chlorine atoms and formic acid: determination of the reaction mechanism and calculation of the rate coefficient at different temperatures

    NASA Astrophysics Data System (ADS)

    Ng, Maggie; Mok, Daniel K. W.; Lee, Edmond P. F.; Dyke, John M.

    2015-07-01

    The Cl + HCOOH reaction is important in the atmosphere, as the chlorine (Cl) atom is an important oxidant, especially in the marine boundary layer, and formic acid (HCOOH) is one of the most abundant organic acids in the troposphere. The reaction surfaces of the two H abstraction channels were computed by second-order unrestricted Møller-Plesset perturbation theory (UMP2) and density functional theory (DFT) calculations. Relative electronic energies were improved to the RCCSD(T)/CBS and UCCSD(T)-F12/CBS levels. The barrier of the C-H hydrogen abstraction channel was found to be lower by about 10 kcal mol-1. Rate coefficients (k) of this channel were calculated at different temperatures at various variational transition state theory (VTST) levels including tunnelling. For single-level direct dynamics VTST calculations, the computed k (2.5 × 10-13 cm3 molecule-1 s-1) using the BMK (Boese and Martin meta hybrid) functional at the highest level (ICVT/SCT) agrees the best with experimental values at 298 K (1.8 and 2.0 × 10-13 cm3 molecule-1 s-1). For dual-level direct dynamics calculations (RCCSD(T)/CBS//MP2 MEP), an adjusted barrier height of 3.1 kcal mol-1 is required to match the ICVT/SCT k with the experimental values. The computed rate coefficients of the Cl + HCOOH reaction is reported for the first time with a temperature range of 200-1500 K. The implications of the results obtained to atmospheric chemistry are discussed.

  9. Novel polycarboxylated EDTA-type cyclodextrins as ligands for lanthanide binding: study of their luminescence, relaxivity properties of Gd(iii) complexes, and PM3 theoretical calculations.

    PubMed

    Maffeo, Davide; Lampropoulou, Maria; Fardis, Michael; Lazarou, Yannis G; Mavridis, Irene M; Mavridou, Despoina A I; Urso, Elena; Pratsinis, Harris; Kletsas, Dimitris; Yannakopoulou, Konstantina

    2010-04-21

    Novel -type cyclodextrin (CD) derivatives, , and , bearing 6, 7 and 8 bis(carboxymethyl)amino (iminodiacetic acid) groups, respectively, were prepared, and their complexation with Eu(iii), Tb(iii) and Gd(iii) ions was studied. Luminescence titrations and mass spectrometry showed formation of multimetal complexes ( 2 to 3, mainly 3 and exactly 4 metal ions), whereas luminescence lifetime measurements revealed the presence of exchangeable water molecules. Semiempirical quantum mechanical calculations, performed by the PM3 method and assessed by DFT calculations on model ligands, indicated efficient multi-metal complexation, in agreement with the experiment. The structures showed coordination of the metal ions in the outer primary side of the CDs via 4 carboxylate O atoms, 2 N atoms and a glucopyranose O atom per metal ion. Coordination of water molecules was also predicted, in accordance with experimental results. Calculated bond lengths and angles were in agreement with literature experimental values of lanthanide complexes. Calculated energies showed that complex stability decreases in the order > > . (1)H NMR molecular relaxivity measurements for the Gd(iii) complexes of , or in water afforded values 4 to 10 times higher than the relaxivity of a commercial contrast agent at 12 MHz, and 6 to 20 times higher at 100 MHz. Solutions of and Gd(iii) complexes in human blood plasma displayed relaxivity values at 100 MHz 7 and 12 times, respectively, higher than the commercial agent. MTT tests of the Gd(iii) complexes using human skin fibroblasts did not show toxicity. Attempts to supramolecularly sensitize the luminescence of the lanthanide complexes using various aromatic CD guests were ineffective, evidently due to large guest-metal distances and inefficient inclusion. The described lanthanide complexes, could be useful as contrast agents in MRI.

  10. Theoretical characterization of the potential energy surface for H + N2 yields HN2. III - Calculations for the excited state surfaces

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1991-01-01

    Additional calculations which characterize potential energy sources (PESs) for the excited 3A-double-prime state, for a bound 2(2A-prime) state, for HN2(+), and for the Rydberg states associated with HN2(+). It is anticipated that these excited state PESs will be important in interpreting and designing experiments to characterize the ground state HN2 species via neutralized ion beam techniques.

  11. Theoretical calculation of jet fuel thermochemistry. 1. Tetrahydrodicylopentadiene (JP10) thermochemistry using the CBS-QB3 and G3(MP2)//B3LYP methods.

    PubMed

    Zehe, Michael J; Jaffe, Richard L

    2010-07-02

    High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian G(x) and G(x)(MP(x)) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta(f)H degrees (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C(10)H(16) + 14CH(4) --> 12C(2)H(6) yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta(f)H degrees (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta(f)H degrees (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.

  12. Theoretical Calculation of Jet Fuel Thermochemistry. 1; Tetrahydrodicylopentadiene (JP10) Thermochemistry Using the CBS-QB3 and G3(MP2)//B3LYP Methods

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Jaffe, Richard L.

    2010-01-01

    High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.

  13. Infrared, Raman, and ultraviolet absorption spectra and theoretical calculations and structure of 2,6-difluoropyridine in its ground and excited electronic states.

    PubMed

    Sheu, Hong-Li; Kim, Sunghwan; Laane, Jaan

    2013-12-19

    The infrared and Raman spectra of 2,6-difluoropyridine (26DFPy) along with ab initio and DFT computations have been used to assign the vibrations of the molecule in its S0 electronic ground state and to calculate its structure. The ultraviolet absorption spectrum showed the electronic transition to the S1(π,π*) state to be at 37,820.2 cm(-1). With the aid of ab initio computations the vibrational frequencies for this excited state were also determined. TD-B3LYP and CASSCF computations for the excited states were carried out to calculate the structures for the S1(π,π*) and S2(n,π*) excited states. The CASSCF results predict that the S1(π,π*) state is planar and that the S2(n,π*) state has a barrier to planarity of 256 cm(-1). The TD-B3LYP computations predict a barrier of 124 cm(-1) for the S1(π,π*) state, but the experimental results support the planar structure. Hypothetical models for the ring-puckering potential energy function were calculated for both electronic excited states to show the predicted quantum states. The changes in the vibrational frequencies in the two excited states reflect the weaker π bonding within the pyridine ring.

  14. Theoretical calculations of spin-Hamiltonian parameters for the (MoOX5)2- (X=Cl, Br) metallic complexes in solution or frozen-glass

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Zheng, Wen-Chen; Zhang, Lin; Chen, Bo-Wei

    2014-11-01

    The spin-Hamiltonian parameters (g factors g//, g⊥ and hyperfine structure constants A//, A⊥) of the (MoOX5)2- (X=Cl, Br) metallic complexes in solution or frozen-glass are calculated from the high-order perturbation formulas based on the two-mechanism model. In these formulas, the contributions to spin-Hamiltonian parameters due to both the widely-applied crystal-field (CF) mechanism and the charge-transfer (CT) mechanism (which is neglected in CF theory) are taken into account, and the needed CF and CT energy levels are obtained from the optical spectra. The calculated results with two adjustable parameters are in reasonable agreement with the experimental values. The calculations show that (i) the relative importance of CT mechanism in (MoOBr5)2- metallic complexes is larger than that in (MoOCl5)2- ones because of the stronger covalence of Mo5+-Br- combination, and (ii) in both (MoOCl5)2- and (MoOBr5)2- metallic complexes, the contributions to spin-Hamiltonian parameters due to CT mechanism should also be taken into account because of the high valence state of Mo5+ ion.

  15. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  16. Efficient and accurate calculations on the electronic structure of B-type poly(dG)•poly(dC) DNA by elongation method: First step toward the understanding of the biological properties of aperiodic DNA

    NASA Astrophysics Data System (ADS)

    Orimoto, Yuuichi; Gu, Feng Long; Imamura, Akira; Aoki, Yuriko

    2007-06-01

    Elongation method was applied to determine the electronic structures of B-type poly(dG)•poly(dC) DNA at the ab initio molecular orbital level as a first step toward the calculation of aperiodic DNA. The discrepancy in total energy between the elongation method and a conventional calculation was negligibly small in the order of 10-8hartree/at. for 14 G-C base pair model. The local density of states for 10 G-C base pair model estimated by the elongation method well reproduced the results by the conventional calculation. It was found that the band gap of the whole system is mainly due to the energy difference between the valence band of guanine and the conduction band of cytosine. Moreover, the electron transfer path through stacking G-C base pairs rather than sugar-phosphate backbones has been confirmed by the authors' calculations.

  17. Accurate thermoelastic tensor and acoustic velocities of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Shukla, Gaurav; da Silveira, Pedro; Wentzcovitch, Renata M.

    2015-12-01

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  18. Accurate thermoelastic tensor and acoustic velocities of NaCl

    SciTech Connect

    Marcondes, Michel L.; Shukla, Gaurav; Silveira, Pedro da; Wentzcovitch, Renata M.

    2015-12-15

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  19. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, radOH, and H2O and its implications for isotope variations in atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-10-01

    The oxygen stable isotope composition (δ18O) of nitrogen oxides [NOx = nitric oxide (NO) + nitrogen dioxide (NO2)] and their oxidation products (NOy = NOx + nitric acid (HNO3) + particulate nitrate (p-NO3-) + nitrate radical (NO3) + dinitrogen pentoxide (N2O5) + nitrous acid (HONO) + …) have been shown to be a useful tool for inferring the proportion of NOx that is oxidized by ozone (O3). However, isotopic fractionation processes may have an influence on δ18O of various NOy molecules and other atmospheric O-bearing molecules pertinent to NOx oxidation chemistry. Here we have evaluated the impacts of O isotopic exchange involving NOy molecules, the hydroxyl radical (radOH), and water (H2O) using reduced partition function ratios (xβ) calculated by hybrid density functional theory. Assuming atmospheric isotopic equilibrium is achieved between NO and NO2 during the daytime, and NO2, NO3, and N2O5 during the nighttime, δ18O-δ15N compositions were predicted for the major atmospheric nitrate formation pathways using our calculated exchange fractionation factors and isotopic mass-balance. Our equilibrium model predicts that various atmospheric nitrate formation pathways, including NO2 + radOH → HNO3, N2O5 + H2O + surface → 2HNO3, and NO3 + R → HNO3 + Rrad will yield distinctive δ18O-δ15N compositions. Our calculated δ18O-δ15N compositions match well with previous atmospheric nitrate measurements, and will potentially help better understand the role oxidation chemistry plays on the N and O isotopic composition of atmospheric nitrate.

  20. Effects of guanidinium ions on the conformational structure of glucose oxidase studied by electrochemistry, spectroscopy, and theoretical calculations: towards developing a chemical-induced protein conformation assay.

    PubMed

    Xu, Xiaoqing; Wu, Ping; Xu, Wang; Shao, Qian; An, Li; Zhang, Hui; Cai, Chenxin; Zhao, Bo

    2012-04-28

    Understanding conformation transitions of proteins in the presence of a chemical denaturant is a topic of great interest because the rich information contained in chemical unfolding is of fundamental importance for proteomic and pharmaceutical research. In this work, the conformational structure changes of glucose oxidase (GOx) induced by guanidinium ions (Gdm(+)) were studied in detail by a combination of electrochemical methods, various spectroscopic techniques including ultraviolet-visible (UV-vis) absorption, fluorescence, Fourier transform infrared (FTIR), and circular dichroism (CD) spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations with the purpose of revealing the mechanism of chemical unfolding of proteins. The results indicated that GOx underwent substantial conformational changes both at the secondary and tertiary structure levels after interacting with Gdm(+) ions. The interaction of GOx with the chemical denaturant resulted in a disturbance of the structure of the flavin prosthetic group (FAD moiety) that induced the moiety to become less exposed to solvent than that in the native protein molecule. The calculation from quantitative second-derivative infrared and CD spectra showed that Gdm(+) ions induced the conversion of α-helix to β-sheet structures. MD simulations and DFT calculations revealed that Gdm(+) ions could enter the active pocket of the GOx molecule and interact with the FAD group, leading to a significant alteration in the structural characteristics and hydrogen bond networks formed between FAD and the surrounding amino acid residues. These alterations in the conformational structure of GOx resulted in a significant decrease in the catalytic activity of the enzyme to glucose oxidation. The study essentially provides an effective way for investigating the mechanism of chemical denaturant-induced protein unfolding, and this approach can be used for assessing the effect of drug molecules on

  1. Two Theoretical Studies in Particle Physics: I. Calculability in Quark Flavor Mixing. I. Forward Proton Proton and Proton Antiproton Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Hadjitheodoridis, Stilianos

    I. We consider the origin of the flavor mixings and calculability of mixing parameters in the quark sector of the standard model. The Fritzsch type quark mass matrices are analysed and the results are tested against experiments, predicting the mass of the t-quark as large as 80.8 GeV. II. In connection with the recent UA4 experiment on p| p scattering we reexamine the existence of the odderon and we speculate on the opening of a new threshold.

  2. Theoretical calculations on 12 Λ-S and 23 Ω states of CBr+ cation in the gas phase: Potential energy curves, spectroscopic parameters and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Shi, Deheng; Niu, Xianghong; Sun, Jinfeng; Zhu, Zunlue

    2014-01-01

    The potential energy curves (PECs) of X1Σ+, a3Π, 13Σ+, 13Δ, 11Δ, 11Σ-, 13Σ-, 11Π, 21Σ+, 23Π, 21Π and 23Σ+ Λ-S states of CBr+ cation and corresponding 23 Ω states are calculated for the first time using the CASSCF method, which is followed by the internally contracted MRCI approach with the aug-cc-pVQZ basis set. All the Λ-S states involved are found to be bound and dissociate into the first dissociation limit of CBr+ cation. Of these Λ-S states, only the 13Σ+ and 13Σ- are inverted ones. The spin-orbit (SO) coupling is accounted for by the state interaction approach with the Breit-Pauli Hamiltonian. Core-valence correlation is included by a cc-pCVTZ basis set. Relativistic correction is calculated with the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVQZ basis set. To obtain more reliable results, the PECs obtained by the MRCI calculations are corrected for size-extensivity errors by means of the Davidson modification. The PEC crossings of different Λ-S states are studied. With these PECs, the spectroscopic parameters of all the Λ-S and Ω states involved are obtained by fitting the first ten vibrational levels whenever available, which are calculated by solving the rovibrational Schrödinger equation using the Numerov's method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and available measurements. In particular, the energy separation of 352.26 cm-1 between the a3Π0+ and the a3Π1 Ω states agrees well with the measurements of 369±8 cm-1, and the ωe results of 907.45 and 907.08 cm-1 for the a3Π0+ and a3Π1 Ω states are in excellent agreement with the measurements of 906±2 and 903±6 cm-1, respectively. These show that the spectroscopic parameters obtained in the present paper can be expected to be reliable predicted ones.

  3. Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Sohier, Thibault; Calandra, Matteo; Mauri, Francesco

    2016-08-01

    We perform ab initio calculations of the coupling between electrons and small-momentum polar-optical phonons in monolayer transition-metal dichalcogenides of the 2 H type: MoS2,MoSe2,MoTe2,WS2 , and WSe2. The polar-optical coupling with longitudinal optical phonons, or Fröhlich interaction, is fundamentally affected by the dimensionality of the system. In a plane-wave framework with periodic boundary conditions, the Fröhlich interaction is affected by the spurious interaction between the two-dimensional (2D) material and its periodic images. To overcome this difficulty, we perform density functional perturbation theory calculations with a truncated Coulomb interaction in the direction perpendicular to the plane of the 2D material. We show that the two-dimensional Fröhlich interaction is much stronger than assumed in previous ab initio studies. We provide analytical models depending on the effective charges and dielectric properties of the materials to interpret our ab initio calculations. Screening is shown to play a fundamental role in the phonon-momentum dependency of the polar-optical coupling, with a crossover between two regimes depending on the dielectric properties of the material relative to its environment. The Fröhlich interaction is screened by the dielectric environment in the limit of small phonon momenta and sharply decreases due to stronger screening by the monolayer at finite momenta. The small-momentum regime of the ab initio Fröhlich interaction is reproduced by a simple analytical model, for which we provide the necessary parameters. At larger momenta, however, direct ab initio calculations of electron-phonon interactions are necessary to capture band-specific effects. We compute and compare the carrier relaxation times associated with the scattering by both LO and A1 phonon modes. While both modes are capable of relaxing carriers on time scales under the picosecond at room temperature, their absolute importance and relative importance vary

  4. Photoinduced reactions of both 2-formyl-2H-azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations

    SciTech Connect

    Cao, Jun

    2015-06-28

    In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.

  5. Photoinduced reactions of both 2-formyl-2H-azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cao, Jun

    2015-06-01

    In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π* transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π* excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S1(1ππ*) and S2(1nNπ*) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.

  6. Theoretical investigations of half-metallic ferromagnetism in new Half-Heusler YCrSb and YMnSb alloys using first-principle calculations

    NASA Astrophysics Data System (ADS)

    Atif Sattar, M.; Rashid, Muhammad; Hashmi, M. Raza; Ahmad, S. A.; Imran, Muhammad; Hussain, Fayyaz

    2016-10-01

    Structural, electronic, and magnetic properties of new predicted half-Heusler YCrSb and YMnSb compounds within the ordered MgAgAs C1b-type structure are investigated by employing first-principal calculations based on density functional theory. Through the calculated total energies of three possible atomic placements, we find the most stable structures regarding YCrSb and YMnSb materials, where Y, Cr(Mn), and Sb atoms occupy the (0.5, 0.5, 0.5), (0.25, 0.25, 0.25), and (0, 0, 0) positions, respectively. Furthermore, structural properties are explored for the non-magnetic and ferromagnetic and anti-ferromagnetic states and it is found that both materials prefer ferromagnetic states. The electronic band structure shows that YCrSb has a direct band gap of 0.78 eV while YMnSb has an indirect band gap of 0.40 eV in the majority spin channel. Our findings show that YCrSb and YMnSb materials exhibit half-metallic characteristics at their optimized lattice constants of 6.67 Å and 6.56 Å, respectively. The half-metallicities associated with YCrSb and YMnSb are found to be robust under large in-plane strains which make them potential contenders for spintronic applications.

  7. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    SciTech Connect

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-06-10

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman- region) in the interstellar medium.

  8. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    SciTech Connect

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-03-02

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.

  9. Full configuration-interaction benchmark calculations for AlH

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1988-08-01

    Full CI and CASSCF/SOCI theoretical computations are presented for the X 1Sigma(+), A 1Pi, and C 1Sigma(+) states of AlH. The aim is to establish benchmark data to calibrate methods which describe valence-Rydberg transitions in other molecules. The results are presented in extensive tables and graphs and compared with published theoretical and experimental values, and the conditions under which CASSCF/SOCI calculations accurately reproduce the FCI results are defined.

  10. Thermodynamic properties and solidification kinetics of intermetallic Ni{sub 7}Zr{sub 2} alloy investigated by electrostatic levitation technique and theoretical calculations

    SciTech Connect

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.

    2016-01-21

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.

  11. Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models.

    PubMed

    Chen, Wenwen; Cao, Fengjing; Zheng, Wenshu; Tian, Yue; Xianyu, Yunlei; Xu, Peng; Zhang, Wei; Wang, Zhuo; Deng, Ke; Jiang, Xingyu

    2015-02-07

    We report a method for rapid, effective detection of both Cr(iii) and Cr(vi) (in the form of Cr(3+) and Cr2O7(2-), the main species of chromium in the natural environment) by making use of meso-2,3-dimercaptosuccinic acid (DMSA)-functionalized gold nanoparticles (Au NPs). The limit of detection (LOD) is 10 nM with the naked eye and the assay can be applied in detecting chromium in polluted soil from Yun-Nan Province in Southwest China. We use density functional theory to calculate the change of the Gibbs free energy (ΔG) of the interactions between the DMSA-Au NP system and various metal ions, which shows that DMSA-Au NPs have high specificity for both Cr(3+) and Cr2O7(2-).

  12. Synthesis, spectroscopic characterization and theoretical calculations of ClF2CC(O)NPCl3 ([chloro(difluor)acetyl]phosphorimidic trichloride).

    PubMed

    Iriarte, Ana G; Cutin, Edgardo H; Argüello, Gustavo A

    2014-01-01

    The synthesis of [chloro(difluor)acetyl]phosphorimidic trichloride (ClF2CC(O)NPCl3), together with a tentative assignment of the vibrational, NMR and mass spectra, are reported. Quantum chemical calculations (MP2 and B3LYP methods with 6-311+G(d) and 6-311+G(2df,p) basis sets) predict three stable conformers in the gas phase (syn, gauche and anti, defined according to the rotation around both the ClCCN and the CCNP dihedral angles). However, only a single C1 symmetry conformer is observed in the liquid phase, possessing the CO double bond in synperiplanar orientation with respect to the PN double bond, and the ClC bond distorted from the plane defined by the CC(O)NP entity. A Natural Bond Orbital (NBO) analysis was carried out for the title compound and related molecules in order to provide an explanation about the electronic properties.

  13. Theoretical investigations of the γ- gauche effect on the 13C chemical shifts produced by oxygen atoms at the γ position by quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji; Horii, Fumitaka; Kurosu, Hiromichi

    2009-02-01

    The γ- gauche effect on 13C chemical shifts that is produced by the O atoms located at the γ positions has been evaluated by quantum chemistry calculations based on the GAIO-CHF procedure. The γ- gauche effects produced by the O and Cl atoms in n-propanol and n-propyl chloride are found to be, respectively, +1.4 and -0.7 ppm, whereas that due to the C atom in n-butane is -3.0 ppm in good agreement of the values previously calculated. The apparent cause of such a difference in the γ- gauche effect is mainly relatively higher shielding of the CH 3 carbon in the trans conformation for the n-propanol and n-propyl chloride. Extending the n-propanol chain at both ends causes no significant change in the γ- gauche effect produced by the O atom. In 2-butanol and 2-methyl-2-butanol as examples of secondarily and tertiarily substituted compounds, the γ- gauche effects produced by the γ-OH groups are estimated to be -7 to -9 ppm. In addition, the γ- gauche effect due to the C atom is found to increase in n-butane, secondary, and tertiary butanols in this order. The γ- gauche effect produced by the O atom in hydroxyethylcyclohexane is as negligibly small as -0.7 ppm, whereas that produced by the C atom in ethylcyclohexane is about -5 ppm. These results suggest that the γ- gauche effect, including downfield shift, produced by the O atom in a compound greatly depends on its chemical structure, whereas upfield shifts of -3 to -7 ppm are induced in all examined compounds as the γ- gauche effect due to the C atom.

  14. Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models

    NASA Astrophysics Data System (ADS)

    Chen, Wenwen; Cao, Fengjing; Zheng, Wenshu; Tian, Yue; Xianyu, Yunlei; Xu, Peng; Zhang, Wei; Wang, Zhuo; Deng, Ke; Jiang, Xingyu

    2015-01-01

    We report a method for rapid, effective detection of both Cr(iii) and Cr(vi) (in the form of Cr3+ and Cr2O72-, the main species of chromium in the natural environment) by making use of meso-2,3-dimercaptosuccinic acid (DMSA)-functionalized gold nanoparticles (Au NPs). The limit of detection (LOD) is 10 nM with the naked eye and the assay can be applied in detecting chromium in polluted soil from Yun-Nan Province in Southwest China. We use density functional theory to calculate the change of the Gibbs free energy (ΔG) of the interactions between the DMSA-Au NP system and various metal ions, which shows that DMSA-Au NPs have high specificity for both Cr3+ and Cr2O72-.We report a method for rapid, effective detection of both Cr(iii) and Cr(vi) (in the form of Cr3+ and Cr2O72-, the main species of chromium in the natural environment) by making use of meso-2,3-dimercaptosuccinic acid (DMSA)-functionalized gold nanoparticles (Au NPs). The limit of detection (LOD) is 10 nM with the naked eye and the assay can be applied in detecting chromium in polluted soil from Yun-Nan Province in Southwest China. We use density functional theory to calculate the change of the Gibbs free energy (ΔG) of the interactions between the DMSA-Au NP system and various metal ions, which shows that DMSA-Au NPs have high specificity for both Cr3+ and Cr2O72-. Electronic supplementary information (ESI) available: ΔG of the interactions between the DMSA-AuNPs and various metal ions, models of the metal ions (Mn+) and six water molecules, DLS results for DMSA-Au NPs before and after adding Cr3+, Cr2O72-, Cr3+ and Cr2O72- mixtures, comparison of the performance of different sensors. See DOI: 10.1039/c4nr06726f

  15. The interaction of CCl4 with Ng (Ng = He, Ne, Ar), O2, D2O and ND3: rovibrational energies, spectroscopic constants and theoretical calculations.

    PubMed

    de Oliveira, Rhuiago M; Roncaratti, Luiz F; de Macedo, Luiz Guilherme M; Gargano, Ricardo

    2017-03-01

    This investigation generated rovibrational energies and spectroscopic constants for systems of CCl4 with Ng (Ng = He, Ne, Ar), O2, D2O and ND3 from scattering experimental data, and the results presented are of interest for microwave spectroscopy studies of small halogenated molecules. The rovibrational spectra were obtained through two different approaches (Dunham and DVR) within the improved Lennard Jones (ILJ) model. Spectra were also generated within ordinary Lennard Jones and deviations suggest that the ILJ model should be preferred due to interactions beyond dispersion forces presented in these systems. Data from the literature and additional high level quantum mechanical calculations presented in this work show that these systems should not be considered as van der Waals complexes due to halogen bonding (HB) interactions, and this is especially true for the CCl4-D2O and CCl4-ND3 complexes. The charge displacement from the latter systems are one order of magnitude higher than the values from literature for CCl4 and He, Ne, Ar and O2 systems, and show significant deviations between DFT and Hartree-Fock values not previously reported in the literature.

  16. Theoretical and experimental tests of a chromosomal fingerprint for densely ionizing radiation based on F ratios calculated from stable and unstable chromosome aberrations

    NASA Technical Reports Server (NTRS)

    Lucas, J. N.; Deng, W.; Oram, S. W.; Hill, F. S.; Durante, M.; George, K.; Wu, H.; Owens, C. L.; Yang, T.

    1999-01-01

    In the present study, F ratios for both stable chromosome aberrations, i.e. ratios of translocations to pericentric inversions, and unstable aberrations, i.e. dicentrics and centric rings, were measured using fluorescence in situ hybridization. F ratios for stable aberrations measured after exposure to low (2.89 Gy 60Co gamma rays) and high-LET (0.25 Gy 56Fe ions; 1.25 Gy 56Fe ions; 3.0 Gy 12C ions) radiation were 6.5 +/- 1.5, 4.7 +/- 1.6, 9.3 +/- 2.5 and 10.4 +/- 3.0, respectively. F ratios for unstable aberrations measured after low (2.89 Gy 60Co gamma rays) and high-LET (0.25 Gy 56Fe ions; 3.0 Gy 12C ions) radiations were 6.5 +/- 1.6, 6.3 +/- 2.3 and 11.1 +/- 3.7, respectively. No significant difference between the F ratios for low- and high-LET radiation was found. Further tests on the models for calculation of the F ratio proposed by Brenner and Sachs (Radiat. Res. 140, 134-142, 1994) showed that the F ratio may not be straightforward as a practical fingerprint for densely ionizing radiation.

  17. Synthesis, crystal structure, theoretical calculations and antimicrobial properties of [Pt(tetramethylthiourea)4] [Pt(CN)4]·4H2O

    NASA Astrophysics Data System (ADS)

    Sadaf, Haseeba; Isab, Anvarhusein A.; Ahmad, Saeed; Espinosa, Arturo; Mas-Montoya, Míriam; Khan, Islam Ullah; Ejaz; Rehman, Seerat-ur; Ali, Muhammad Akhtar Javed; Saleem, Muhammad; Ruiz, José; Janiak, Christoph

    2015-04-01

    A new platinum(II) complex, [Pt(Tmtu)4][Pt(CN)4]·4H2O (1) was synthesized by reaction of K2[PtCl4], KCN and tetramethylthiourea (Tmtu). Its structure was determined by X-ray crystallography. The [Pt(CN)4]2- anion shows regular square planar geometry at platinum, while in the [Pt(Tmtu)4]2+ cation the geometry at platinum is somewhat distorted. Hydrogen bonding between water molecules and the cyanide nitrogen of [Pt(CN)4]2- ions stabilizes the structure and leads to a supramolecular 2D network. DFT calculations support the experimentally found dinuclear (homocoordinated) ion-pair structure 1 as the most stable in comparison to noncovalent dimer [Pt(CN)2(Tmtu)2]222 that could, in turn, be involved in the formation sequence of 1. Antimicrobial activities of the complex were evaluated by minimum inhibitory concentration and the results showed that the complex exhibited moderate activities against gram-negative bacteria (Escherichiacoli, Pseudomonas aeruginosa) and molds (Aspergillus niger,Penicilliumcitrinum).

  18. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  19. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    SciTech Connect

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non

  20. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    PubMed Central

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-01-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  1. Different Interaction Mechanisms of Eu(III) and (243)Am(III) with Carbon Nanotubes Studied by Batch, Spectroscopy Technique and Theoretical Calculation.

    PubMed

    Wang, Xiangxue; Yang, Shubin; Shi, Weiqun; Li, Jiaxing; Hayat, Tasawar; Wang, Xiangke

    2015-10-06

    Herein the sorption of Eu(III) and (243)Am(III) on multiwalled carbon nanotubes (CNTs) are studied, and the results show that Eu(III) and (243)Am(III) could form strong inner-sphere surface complexes on CNT surfaces. However, the sorption of Eu(III) on CNTs is stronger than that of (243)Am(III) on CNTs, suggesting the difference in the interaction mechanisms or properties of Eu(III) and (243)Am(III) with CNTs, which is quite different from the results of Eu(III) and (243)Am(III) interaction on natural clay minerals and oxides. On the basis of the results of density functional theory calculations, the binding energies of Eu(III) on CNTs are much higher than those of (243)Am(III) on CNTs, indicating that Eu(III) could form stronger complexes with the oxygen-containing functional groups of CNTs than (243)Am(III), which is in good agreement with the experimental results of higher sorption capacity of CNTs for Eu(III). The oxygen-containing functional groups contribute significantly to the uptake of Eu(III) and (243)Am(III), and the binding affinity increases in the order of ≡S-OH < ≡S-COOH < ≡S-COO(-). This paper highlights the interaction mechanism of Eu(III) and (243)Am(III) with different oxygen-containing functional groups of CNTs, which plays an important role for the potential application of CNTs in the preconcentration, removal, and separation of trivalent lanthanides and actinides in environmental pollution cleanup.

  2. 2,2,6,6-Tetramethyl-1-oxopiperidinetribromide and two forms of 1-hydroxy-2,2,6,6-tetramethylpiperidinium bromide salt: Syntheses, crystal structures and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Judith Percino, M.; Cerón, Margarita; Soriano-Moro, Guillermo; Pacheco, José A.; Eugenia Castro, M.; Chapela, Víctor M.; Bonilla-Cruz, José; Saldivar-Guerra, Enrique

    2016-01-01

    The reaction of the nitroxy radical 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) with Br2 has been investigated with CCl4 and hexane to obtain TEMPO-Br salts: 2,2,6,6-tetramethylpiperidine-1-oxopiperidine tribromide [TEMPO] [Br3- ] (I), and the 1-hydroxy-2,2,6,6-tetramethylpiperidinium bromide salts [TEMPH+OHBr-] (II and III). The salt I was isolated in crystalline form directly from the synthesis and II and III by only changing the solvent. The crystals of I belong to the orthorhombic crystal systems with space group Cmc21, a = 10.5596(4) Å, b = 14.0464(4) Å, c = 9.4202(5), and with asymmetric unit of Z = 4. Crystals II belong to Pnna a = 11.9860(3) Å, b = 23.6720(9) Å, c = 7.7051(3) Å while III belongs to Cmc21 with a = 10.2686(3) Å, b = 10.7661(3) Å, c = 10.0274(2) Å; the asymmetric unit of II and III was Z = 8 and Z = 4, respectively. The crystal structure of I shows the Br3- ion as [Br-Br-Br]- for each molecule of TEMPO. The crystal structure of II shows a weak intermolecular hydrogen bond between -N-H⋯Br(1) and O(1)H⋯Br(2) due to the presence of the -N+HOH- moiety. In contrast, crystal III shows intermolecular hydrogen bonding between O(1)H⋯Br(1)⋯HN(1) due to the -N+HOH- moiety. The resulting compounds were characterized by FT-IR and UV-vis spectroscopy. The structural parameters have been compared with the related hydroxylaminotrichlorosilane known from the literature and with results of DFT calculations.

  3. Reinvestigation of microwave spectrum, molecular structure, dipole moment, and theoretical calculation of s- trans ( E)- and s- trans ( Z)-acrylaldehyde oxime

    NASA Astrophysics Data System (ADS)

    Murakami, Arata; Hirose, Minako; Terashima, Mariko; Kuze, Nobuhiko; Sakaizumi, Takeshi; Ohashi, Osamu

    2004-03-01

    The spectroscopic constants of s- trans ( E)-acrylaldehyde oxime of normal, CH 2CHCHNOH, and deuterated, CH 2CHCHNOD, species were refined by adding a-type R-branch transitions observed in the frequency range of 34-40 GHz in the ground vibrational state. For s- trans ( Z) form, the spectroscopic constants of normal species were refined by refitting the reported frequencies with four b-type Q-branch transitions and those of deuterated species were determined by the least-squares fitting of the observed a-type R-branch transitions in the ground vibrational state. The spectroscopic constants of two isomers of normal species were also determined in the vibrationally excited states. The inertial defects (Δ I= Ic- Ia- Ib) of normal and deuterated species were determined to be -0.042(24) and -0.064(17) u Å 2 for s- trans ( E)-1 form, and -0.0536(8) and -0.063(11) u Å 2 for s- trans ( Z)-1 form, respectively. From the rs coordinates of the hydroxyl hydrogen atom determined for s- trans ( Z)-1 form, its OH bond was concluded to be at the trans position with respect to the CN double bond. The dipole moments of deuterated species of s- trans ( E)-1 form and those of normal and deuterated species of s- trans ( Z)-1 form were determined. The structural parameters of r(C 2C 3), ∠C 1C 2C 3, ∠C 2C 3N, and ∠C 3NO for s- trans ( E)-1 and s- trans ( Z)-1 forms were adjusted separately using to their rotational constants observed. It was found that the bond angle of ∠C 2C 3N in s- trans ( Z)-1 form are much wider than that in s- trans ( E)-1 form by about 10°. The difference between the observed and calculated (using MP2/6-311++G (d,p) level) rotational constants of s- trans ( Z)-1 form was larger than that of s- trans ( E)-1 form.

  4. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    SciTech Connect

    Park, J; Lee, J; Kim, H; Kim, I; Ye, S

    2015-06-15

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.

  5. Accurate Theoretical Predictions of the Properties of Energetic Materials

    DTIC Science & Technology

    2008-09-18

    collisionally induce a decomposition reaction at a liquid surface. (Given the paucity of full reactive potential functions that describe dissociation to...the correct structurally relaxed products, we believe that the diatomic model system at least provides a test of whether dissociation might be...and that the probability that the surface species will undergo a collision that leads to direct excitation of the diatomic above its bond dissociation

  6. Full-dimensional quantum calculations of vibrational levels of NH4+ and isotopomers on an accurate ab initio potential energy surface

    SciTech Connect

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.

  7. Molecular structure and conformational composition of 1,3-dihydroxyacetone studied by combined analysis of gas-phase electron diffraction data, rotational constants, and results of theoretical calculations. Ideal gas thermodynamic properties of 1,3-dihydroxyacetone.

    PubMed

    Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V

    2007-07-19

    The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.

  8. A Theoretical Trombone

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2014-01-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that…

  9. A novel lattice energy calculation technique for simple inorganic crystals

    NASA Astrophysics Data System (ADS)

    Kaya, Cemal; Kaya, Savaş; Banerjee, Priyabrata

    2017-01-01

    In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.

  10. Accurate density-functional calculation of core-electron binding energies with a scaled polarized triple-zeta basis set. Twelve test cases and application to three C 2H 4O 2 isomers

    NASA Astrophysics Data System (ADS)

    Chong, Delano P.; Hu, Ching-Han; Duffy, Patrick

    1996-02-01

    A scaling procedure based on Clementi and Raimondi's rules for atomic screening was proposed for atomic orbital basis sets in the unrestricted generalized transition state (uGTS) model of density functional calculation of core-electron binding energies (CEBEs). The exchange-correlation potential is based on a combined functional of Becke's exchange (B88) and Perdew's correlation (P86). This proposal was tested on CEBEs of twelve small molecules, including F 2, N 2 and H 2O, and applied to the computation of CEBEs of three isomers of C 2H 4O 2: acetic acid (CH 3COOH), methyl formate (HCOOCH 3), and glycolic aldehyde (CH 2OHCHO). In all cases, the new scaled pVTZ basis performs almost as well as the much larger cc-pV5Z and the average absolute difference between the results from the scaled pVTZ and estimated complete basis set limits is 0.04 eV.

  11. Accurate Cross Sections for Microanalysis

    PubMed Central

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747

  12. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  13. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  14. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  15. An accurate temperature correction model for thermocouple hygrometers.

    PubMed

    Savage, M J; Cass, A; de Jager, J M

    1982-02-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature.

  16. Inelastic and elastic neutron scattering studies of the vibrational and reorientational dynamics, crystal structure and solid-solid phase transition in [Mn(OS(CH3)2)6](ClO4)2 supported by theoretical (DFT) calculations

    NASA Astrophysics Data System (ADS)

    Szostak, Elżbieta; Hetmańczyk, Joanna; Migdał-Mikuli, Anna

    2015-06-01

    The vibrational and reorientational dynamics of CH3 groups from (CH3)2SO ligands in the high- and low-temperature phases of [Mn(OS(CH3)2)6](ClO4)2 were investigated by quasielastic and inelastic incoherent neutron scattering (QENS and IINS) methods. The results show that above the phase transition temperature (detected earlier by differential scanning calorimetry (DSC) at TC5c = 222.9 K on cooling and at TC5h = 225.4 K on heating) the CH3 groups perform fast (τR ≈ 10-12-10-13 s) reorientational motions. These motions start to slow down below TC5c Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS and IINS, indicated that this phase transition is associated with a change of the crystal structure, too. Theoretical infrared absorption, Raman and inelastic incoherent neutron scattering spectra were calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on C, H, S, O atoms) for the isolated equilibrium model (isolated [Mn(DMSO)6]2+ cation and ClO4- anion). Calculated spectra show a good agreement with the experimental spectra (FT-IR, RS and IINS). The comparison of the results obtained by these complementary methods was made.

  17. SMARTIES: Spheroids Modelled Accurately with a Robust T-matrix Implementation for Electromagnetic Scattering

    NASA Astrophysics Data System (ADS)

    Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.

    2016-03-01

    SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.

  18. Kinetics of the reaction of the heaviest hydrogen atom with H2, the 4Heμ + H2 → 4HeμH + H reaction: experiments, accurate quantal calculations, and variational transition state theory, including kinetic isotope effects for a factor of 36.1 in isotopic mass.

    PubMed

    Fleming, Donald G; Arseneau, Donald J; Sukhorukov, Oleksandr; Brewer, Jess H; Mielke, Steven L; Truhlar, Donald G; Schatz, George C; Garrett, Bruce C; Peterson, Kirk A

    2011-11-14

    The neutral muonic helium atom (4)Heμ, in which one of the electrons of He is replaced by a negative muon, may be effectively regarded as the heaviest isotope of the hydrogen atom, with a mass of 4.115 amu. We report details of the first muon spin rotation (μSR) measurements of the chemical reaction rate constant of (4)Heμ with molecular hydrogen, (4)Heμ + H(2) → (4)HeμH + H, at temperatures of 295.5, 405, and 500 K, as well as a μSR measurement of the hyperfine coupling constant of muonic He at high pressures. The experimental rate constants, k(Heμ), are compared with the predictions of accurate quantum mechanical (QM) dynamics calculations carried out on a well converged Born-Huang (BH) potential energy surface, based on complete configuration interaction calculations and including a Born-Oppenheimer diagonal correction. At the two highest measured temperatures the agreement between the quantum theory and experiment is good to excellent, well within experimental uncertainties that include an estimate of possible systematic error, but at 295.5 K the quantum calculations for k(Heμ) are below the experimental value by 2.1 times the experimental uncertainty estimates. Possible reasons for this discrepancy are discussed. Variational transition state theory calculations with multidimensional tunneling have also been carried out for k(Heμ) on the BH surface, and they agree with the accurate QM rate constants to within 30% over a wider temperature range of 200-1000 K. Comparisons between theory and experiment are also presented for the rate constants for both the D + H(2) and Mu + H(2) reactions in a novel study of kinetic isotope effects for the H + H(2) reactions over a factor of 36.1 in isotopic mass of the atomic reactant.

  19. An effective method for accurate prediction of the first hyperpolarizability of alkalides.

    PubMed

    Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min

    2012-01-15

    The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.

  20. Accurate calculation and instability of supersonic wake flows

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrius T.

    1990-01-01

    This study is concerned with the computation and linear stability of a class of laminar compressible wake flows. The emphasis is on correct basic flow profiles that satisfy the steady equations of motion, and to this end the unperturbed state is obtained through numerical integration of the compressible boundary-layer equations. The linear stability of the flow is examined via the Rayleigh equation that describes evolution of inviscid disturbances. Analytical results are given for short- and long-wavelength disturbances and some numerical results of the general eigenvalue problem are also reported.

  1. Using BRDFs for accurate albedo calculations and adjacency effect corrections

    SciTech Connect

    Borel, C.C.; Gerstl, S.A.W.

    1996-09-01

    In this paper the authors discuss two uses of BRDFs in remote sensing: (1) in determining the clear sky top of the atmosphere (TOA) albedo, (2) in quantifying the effect of the BRDF on the adjacency point-spread function and on atmospheric corrections. The TOA spectral albedo is an important parameter retrieved by the Multi-angle Imaging Spectro-Radiometer (MISR). Its accuracy depends mainly on how well one can model the surface BRDF for many different situations. The authors present results from an algorithm which matches several semi-empirical functions to the nine MISR measured BRFs that are then numerically integrated to yield the clear sky TOA spectral albedo in four spectral channels. They show that absolute accuracies in the albedo of better than 1% are possible for the visible and better than 2% in the near infrared channels. Using a simplified extensive radiosity model, the authors show that the shape of the adjacency point-spread function (PSF) depends on the underlying surface BRDFs. The adjacency point-spread function at a given offset (x,y) from the center pixel is given by the integral of transmission-weighted products of BRDF and scattering phase function along the line of sight.

  2. A theoretical trombone

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2014-09-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that compare well to both the desired frequencies of the musical pitches and those actually played on a real trombone.

  3. Self-assembling of cytosine nucleoside into triply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidine nucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoretical calculations.

    PubMed

    Armentano, Donatella; De Munno, Giovanni; Di Donna, Leonardo; Sindona, Giovanni; Giorgi, Gianluca; Salvini, Laura; Napoli, Anna

    2004-02-01

    Electrospray tandem mass spectrometry (ESI-MS/MS) is used to evaluate the assembling of cytosine and thymine nucleosides in the gas phase, through the formation of hydrogen bonded supermolecules. Mixtures of cytidine analogues and homologues deliver in the gas phase proton-bound heterodimers stabilized by multiple interactions, as proven by the kinetics of their dissociation into the corresponding protonated monomers. Theoretical calculations, performed on initial structures of methylcytosine homodimers available in the literature, converged to a minimized structure whereby the two pyrimidine rings interact through the formation of three hydrogen bonds of similar energy. The crystallographic data here reported show the equivalency of the two interacting pyrimidines which is attributable to the presence of an inversion center. Thymine and uracil pyrimidyl nucleosides form, by ESI, gaseous proton-bound dimers. The kinetic of their dissociation into the related protonated monomers shows that the nucleobases are weekly interacting through a single hydrogen bond. The minimized structure of the protonated heterodimer formed by thymine and N-1-methylthymine confirmed the existence of mainly one hydrogen bond which links the two nucleobases through the O4 oxygens. No crystallographic data exists on thymine proton-bound species, nor have we been able to obtain these aggregates in the solid phase. The gaseous phase, under high vacuum conditions, seems therefore a suitable environment where vanishing structures produced by ESI can be studied with a good degree of approximation.

  4. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO{sub 2} powders by means of experimental characterizations and theoretical calculations

    SciTech Connect

    Li Di . E-mail: li.di@nims.go.jp; Ohashi, Naoki; Hishita, Shunichi; Kolodiazhnyi, Taras; Haneda, Hajime

    2005-11-15

    An overall comparative study was carried out on N-doped, F-doped, and N-F-codoped TiO{sub 2} powders (NTO, FTO, NFTO) synthesized by spray pyrolysis in order to elucidate the origin of their visible-light-driven photocatalysis. The comparisons in their experimentally obtained characteristics were based on the analysis of XPS, UV-Vis, PL, NH{sub 3}-TPD and ESR spectra. The comparisons in their theoretically predicted properties were based on the analysis of the calculated electronic structures. As the results, N-doping into TiO{sub 2} resulted in not only the improvement in visible-light absorption but also the creation of surface oxygen vacancies. F-doping produced several beneficial effects including the creation of surface oxygen vacancies, the enhancement of surface acidity and the increase of Ti{sup 3+} ions. Doped N atoms formed a localized energy state above the valence band of TiO{sub 2}, whereas doped F atoms themselves had no influence on the band structure. The photocatalytic tests indicated that the NFTO demonstrated the highest visible-light activity for decompositions of both acetaldehyde and trichloroethylene. This high activity was ascribed to a synergetic consequence of several beneficial effects induced by the N-F-codoping.

  5. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  6. Accurate Evaluation of Microwave-Leakage-Induced Frequency Shifts in Fountain Clocks

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Liu, Kun; Chen, Wei-Liang; Liu, Nian-Feng; Suo, Rui; Li, Tian-Chun

    2014-10-01

    We report theoretical calculations of the transition probability errors introduced by microwave leakage in Cs fountain clocks, which will shift the clock frequency. The results show that the transition probability errors are affected by the Ramsey pulse amplitude, the relative phase between the Ramsey field and the leakage field, and the asymmetry of the leakage fields for the upward and downward passages. This effect is quite different for the leakage fields presenting below the Ramsey cavity and above the Ramsey cavity. The leakage-field-induced frequency shifts of the NIM5 fountain clock in different cases are measured. The results are consistent with the theoretical calculations, and give an accurate evaluation of the leakage-field-induced frequency shifts, as distinguished from other microwave-power-related effects for the first time.

  7. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  8. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  9. Exact calculations of nuclear-recoil energies from prompt gamma decays resulting from neutron capture

    SciTech Connect

    Kinney, J.H.

    1981-07-20

    The results of an accurate determination of the recoil spectrum from (n, ..gamma..) reactions in molybdenum are presented. The recoil spectrum has been calculated from nuclear level structure data and measured branching ratios. Angular correlations between successive gammas have been accounted for using the standard theoretical techniques of Racah algebra and the density matrix formalism.

  10. Theoretical and experimental study of valence photoelectron spectrum of D,L-alanine amino acid.

    PubMed

    Farrokhpour, H; Fathi, F; De Brito, A Naves

    2012-07-05

    In this work, the He-I (21.218 eV) photoelectron spectrum of D,L-alanine in the gas phase is revisited experimentally and theoretically. To support the experiment, the high level ab initio calculations were used to calculate and assign the photoelectron spectra of the four most stable conformers of gaseous alanine, carefully. The symmetry adapted cluster/configuration interaction (SAC-CI) method based on single and double excitation operators (SD-R) and its more accurate version, termed general-R, was used to separately calculate the energies and intensities of the ionization bands of the L- and D-alanine conformers. The intensities of ionization bands were calculated based on the monopole approximation. Also, natural bonding orbital (NBO) calculations were employed for better spectral band assignment. The relative electronic energy, Gibbs free energy, and Boltzmann population ratio of the conformers were calculated at the experimental temperature (403 K) using several theoretical methods. The theoretical photoelectron spectrum of alanine was calculated by summing over the spectra of individual D and L conformers weighted by different population ratios. Finally, the population ratio of the four most stable conformers of alanine was estimated from the experimental photoelectron spectrum using theoretical calculations for the first time.

  11. ELECTRON-ION RECOMBINATION OF Mg{sup 6+} FORMING Mg{sup 5+} AND OF Mg{sup 7+} FORMING Mg{sup 6+}: LABORATORY MEASUREMENTS AND THEORETICAL CALCULATIONS

    SciTech Connect

    Lestinsky, M.; Hahn, M.; Novotny, O.; Savin, D. W.; Badnell, N. R.; Bernhardt, D.; Mueller, A.; Schippers, S.; Bing, D.; Grieser, M.; Hoffmann, J.; Jordon-Thaden, B.; Krantz, C.; Orlov, D. A.; Repnow, R.; Shornikov, A.; Wolf, A.

    2012-10-10

    We have measured electron-ion recombination for C-like Mg{sup 6+} forming Mg{sup 5+}, and for B-like Mg{sup 7+} forming Mg{sup 6+}. These studies were performed using a merged electron-ion beam arrangement at the TSR heavy ion storage ring located in Heidelberg, Germany. Both primary ions have metastable levels with significant lifetimes. Using a simple cascade model we estimate the population fractions in these metastable levels. For the Mg{sup 6+} results, we find that the majority of the stored ions are in a metastable level, while for Mg{sup 7+} the metastable fraction is insignificant. We present the Mg{sup 6+} merged beams recombination rate coefficient for DR via N = 2 {yields} N' = 2 core electron excitations ({Delta}N = 0 DR) and for Mg{sup 7+} via 2 {yields} 2 and 2 {yields} 3 core excitations. Taking the estimated metastable populations into account, we compare our results to state-of-the-art multiconfiguration Breit-Pauli theoretical calculations. Significant differences are found at low energies where theory is known to be unreliable. Moreover, for both ions we observe a discrepancy between experiment and theory for {Delta}N = 0 DR involving capture into high-n Rydberg levels and where the stabilization is primarily due to a radiative transition of the excited core electron. This is consistent with previous DR experiments on M-shell iron ions which were performed at TSR. The large metastable content of the Mg{sup 6+} ion beam precludes generating a plasma recombination rate coefficient (PRRC). However, this is not an issue for Mg{sup 7+} and we present an experimentally derived Mg{sup 7+} PRRC for plasma temperatures from 400 K to 10{sup 7} K with an estimated uncertainty of less than 27% at a 90% confidence level. We also provide a fit to our experimentally derived PRRC for use in plasma modeling codes.

  12. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  13. Quantum Monte Carlo: Faster, More Reliable, And More Accurate

    NASA Astrophysics Data System (ADS)

    Anderson, Amos Gerald

    2010-06-01

    The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our

  14. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.

    PubMed

    Wang, Lingle; Deng, Yuqing; Wu, Yujie; Kim, Byungchan; LeBard, David N; Wandschneider, Dan; Beachy, Mike; Friesner, Richard A; Abel, Robert

    2017-01-10

    The accurate prediction of protein-ligand binding free energies remains a significant challenge of central importance in computational biophysics and structure-based drug design. Multiple recent advances including the development of greatly improved protein and ligand molecular mechanics force fields, more efficient enhanced sampling methods, and low-cost powerful GPU computing clusters have enabled accurate and reliable predictions of relative protein-ligand binding free energies through the free energy perturbation (FEP) methods. However, the existing FEP methods can only be used to calculate the relative binding free energies for R-group modifications or single-atom modifications and cannot be used to efficiently evaluate scaffold hopping modifications to a lead molecule. Scaffold hopping or core hopping, a very common design strategy in drug discovery projects, is critical not only in the early stages of a discovery campaign where novel active matter must be identified but also in lead optimization where the resolution of a variety of ADME/Tox problems may require identification of a novel core structure. In this paper, we introduce a method that enables theoretically rigorous, yet computationally tractable, relative protein-ligand binding free energy calculations to be pursued for scaffold hopping modifications. We apply the method to six pharmaceutically interesting cases where diverse types of scaffold hopping modifications were required to identify the drug molecules ultimately sent into the clinic. For these six diverse cases, the predicted binding affinities were in close agreement with experiment, demonstrating the wide applicability and the significant impact Core Hopping FEP may provide in drug discovery projects.

  15. Theoretical Delay Time Distributions

    NASA Astrophysics Data System (ADS)

    Nelemans, Gijs; Toonen, Silvia; Bours, Madelon

    2013-01-01

    We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of Type Ia supernova progenitors. We also compare the results of different research groups and conclude that, although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this alone cannot explain all the differences.

  16. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  17. Theoretical predictions

    NASA Technical Reports Server (NTRS)

    Brasseur, G.; Boville, B. A.; Bruhl, C.; Caldwell, M.; Connell, Peter S.; Derudder, A.; Douglas, A.; Dyominov, I.; Fisher, D.; Frederick, J. F.

    1990-01-01

    In order to understand the impact of man made chemicals on the atmospheric ozone layer, it is essential to develop models that can perform long term predictions of future ozone changes. An advantage of using two dimensional models is that they can be used to predict latitudinal and seasonal changes in ozone. The formulation and recent improvements are described in 2-D models, which are used herein, along with the three dimensional models that are currently being developed to better simulate transport of chemically active trace gases, especially in polar regions. The range in 2-D model calculations is described. Selected fields calculated by these models are compared with observations. A number of scenarios have been defined, which encompass possible emission rates of different halocarbons. Because of the large uncertainties in the rates for heterogeneous processes, the calculated responses of the models include only the effects of homogeneous chemistry. One important distinction among the models is their ability to account for temperature feedbacks on the calculated ozone changes.

  18. Intensity calculations of HCN molecules

    NASA Astrophysics Data System (ADS)

    Yasmin, Kausar

    2006-10-01

    Accurate spectroscopic data of HCN are required for many astronomical calculations and modeling. HCN molecules are present in the atmosphere of carbon stars and in galactic centers. Ro-vibrational energy levels and intensity calculations were carried out using the full coupled cluster model and radau coordinates. Accurate ab initio calculated potential energy surface^1 and dipole moment surface^2 were used for computation. The computed values were compared with Hitran^99.^

  19. Theoretical Mathematics

    NASA Astrophysics Data System (ADS)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  20. High-accuracy theoretical thermochemistry of fluoroethanes.

    PubMed

    Nagy, Balázs; Csontos, Botond; Csontos, József; Szakács, Péter; Kállay, Mihály

    2014-07-03

    A highly accurate coupled-cluster-based ab initio model chemistry has been applied to calculate the thermodynamic functions including enthalpies of formation and standard entropies for fluorinated ethane derivatives, C2HxF6-x (x = 0-5), as well as ethane, C2H6. The invoked composite protocol includes contributions up to quadruple excitations in coupled-cluster (CC) theory as well as corrections beyond the nonrelativistic and Born-Oppenheimer approximations. For species CH2F-CH2F, CH2F-CHF2, and CHF2-CHF2, where anti/gauche isomerism occurs due to the hindered rotation around the C-C bond, conformationally averaged enthalpies and entropies at 298.15 K are also calculated. The results obtained here are in reasonable agreement with previous experimental and theoretical findings, and for all fluorinated ethanes except CH2FCH3 and C2F6 this study delivers the best available theoretical enthalpy and entropy estimates.

  1. Theoretical study of the dipole moment function of the X2Sigma(+) state of CN. [in comets

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1989-01-01

    The X2Sigma(+) state dipole moment function of CN is determined from accurate ab initio calculations. The calculated Einstein coefficient of 13.0 /s for the fundamental 1-0 vibrational band is in excellent agreement with the value measured by Treffers (1975) using a King furnace. The theoretical vibrational band strengths should be valuable in interpreting the fluorescence spectrum of CN in comets.

  2. Theoretical approximations and experimental extinction coefficients of biopharmaceuticals.

    PubMed

    Miranda-Hernández, Mariana P; Valle-González, Elba R; Ferreira-Gómez, David; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2016-02-01

    UV spectrophotometric measurement is a widely accepted and standardized routine analysis for quantitation of highly purified proteins; however, the reliability of the results strictly depends on the accuracy of the employed extinction coefficients. In this work, an experimental estimation of the differential refractive index (dn/dc), based on dry weight measurements, was performed in order to determine accurate extinction coefficients for four biotherapeutic proteins and one synthetic copolymer after separation in a size-exclusion ultra-performance liquid chromatograph coupled to an ultraviolet, multiangle light scattering and refractive index (SE-UPLC-UV-MALS-RI) multidetection system. The results showed small deviations with respect to theoretical values, calculated from the specific amino acid sequences, for all the studied immunoglobulins. Nevertheless, for proteins like etanercept and glatiramer acetate, several considerations, such as glycan content, partial specific volume, polarizability, and higher order structure, should be considered to properly calculate theoretical extinction coefficient values. Herein, these values were assessed with simple approximations. The precision of the experimentally obtained extinction coefficients, and its convergence towards the theoretical values, makes them useful for characterization and comparability exercises. Also, these values provide insight into the absorbance and scattering properties of the evaluated proteins. Overall, this methodology is capable of providing accurate extinction coefficients useful for development studies.

  3. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  4. Accurate microfour-point probe sheet resistance measurements on small samples.

    PubMed

    Thorsteinsson, Sune; Wang, Fei; Petersen, Dirch H; Hansen, Torben Mikael; Kjaer, Daniel; Lin, Rong; Kim, Jang-Yong; Nielsen, Peter F; Hansen, Ole

    2009-05-01

    We show that accurate sheet resistance measurements on small samples may be performed using microfour-point probes without applying correction factors. Using dual configuration measurements, the sheet resistance may be extracted with high accuracy when the microfour-point probes are in proximity of a mirror plane on small samples with dimensions of a few times the probe pitch. We calculate theoretically the size of the "sweet spot," where sufficiently accurate sheet resistances result and show that even for very small samples it is feasible to do correction free extraction of the sheet resistance with sufficient accuracy. As an example, the sheet resistance of a 40 microm (50 microm) square sample may be characterized with an accuracy of 0.3% (0.1%) using a 10 microm pitch microfour-point probe and assuming a probe alignment accuracy of +/-2.5 microm.

  5. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  6. Theoretical Polymers.

    DTIC Science & Technology

    1976-10-07

    for the correlation length of 3/4, while 0.72 is observed. Then followed several talks on the expansion coefficient a, the virial coefficients and...calculation of the virial coefficient and c~2. These quantities can be considered merely a testing ground for the use of this method to polymer...the second viria]. coefficient , A2, to be zero and the intrinsic viscosity dependent on~VW for polystyrene mole-cular weights between 33,000 and one

  7. Quantum Chemical Calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The current methods of quantum chemical calculations will be reviewed. The accent will be on the accuracy that can be achieved with these methods. The basis set requirements and computer resources for the various methods will be discussed. The utility of the methods will be illustrated with some examples, which include the calculation of accurate bond energies for SiF$_n$ and SiF$_n^+$ and the modeling of chemical data storage.

  8. Nonlinear elastic response of strong solids: First-principles calculations of the third-order elastic constants of diamond

    SciTech Connect

    Hmiel, A.; Winey, J. M.; Gupta, Y. M.; Desjarlais, M. P.

    2016-05-23

    Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g. diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently, the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Lastly, our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.

  9. Nonlinear elastic response of strong solids: First-principles calculations of the third-order elastic constants of diamond

    SciTech Connect

    Hmiel, A.; Winey, J. M.; Gupta, Y. M.; Desjarlais, M. P.

    2016-05-23

    Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Lastly, our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.

  10. Methods for Melting Temperature Calculation

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  11. Theoretical geodesy

    NASA Astrophysics Data System (ADS)

    Borkowski, Andrzej; Kosek, Wiesław

    2015-12-01

    The paper presents a summary of research activities concerning theoretical geodesy performed in Poland in the period of 2011-2014. It contains the results of research on new methods of the parameter estimation, a study on robustness properties of the M-estimation, control network and deformation analysis, and geodetic time series analysis. The main achievements in the geodetic parameter estimation involve a new model of the M-estimation with probabilistic models of geodetic observations, a new Shift-Msplit estimation, which allows to estimate a vector of parameter differences and the Shift-Msplit(+) that is a generalisation of Shift-Msplit estimation if the design matrix A of a functional model has not a full column rank. The new algorithms of the coordinates conversion between the Cartesian and geodetic coordinates, both on the rotational and triaxial ellipsoid can be mentioned as a highlights of the research of the last four years. New parameter estimation models developed have been adopted and successfully applied to the control network and deformation analysis. New algorithms based on the wavelet, Fourier and Hilbert transforms were applied to find time-frequency characteristics of geodetic and geophysical time series as well as time-frequency relations between them. Statistical properties of these time series are also presented using different statistical tests as well as 2nd, 3rd and 4th moments about the mean. The new forecasts methods are presented which enable prediction of the considered time series in different frequency bands.

  12. Accurate relations between pore size and the pressure of capillary condensation and the evaporation of nitrogen in cylindrical pores.

    PubMed

    Morishige, Kunimitsu; Tateishi, Masayoshi

    2006-04-25

    To examine the theoretical and semiempirical relations between pore size and the pressure of capillary condensation or evaporation proposed so far, we constructed an accurate relation between the pore radius and the capillary condensation and evaporation pressure of nitrogen at 77 K for the cylindrical pores of the ordered mesoporous MCM-41 and SBA-15 silicas. Here, the pore size was determined from a comparison between the experimental and calculated X-ray diffraction patterns due to X-ray structural modeling recently developed. Among the many theoretical relations that differ from each other in the degree of theoretical improvements, a macroscopic thermodynamic approach based on Broekhoff-de Boer equations was found to be in fair agreement with the experimental relation obtained in the present study.

  13. Accurate Evaluation of the Dispersion Energy in the Simulation of Gas Adsorption into Porous Zeolites.

    PubMed

    Fraccarollo, Alberto; Canti, Lorenzo; Marchese, Leonardo; Cossi, Maurizio

    2017-03-07

    The force fields used to simulate the gas adsorption in porous materials are strongly dominated by the van der Waals (vdW) terms. Here we discuss the delicate problem to estimate these terms accurately, analyzing the effect of different models. To this end, we simulated the physisorption of CH4, CO2, and Ar into various Al-free microporous zeolites (ITQ-29, SSZ-13, and silicalite-1), comparing the theoretical results with accurate experimental isotherms. The vdW terms in the force fields were parametrized against the free gas densities and high-level quantum mechanical (QM) calculations, comparing different methods to evaluate the dispersion energies. In particular, MP2 and DFT with semiempirical corrections, with suitable basis sets, were chosen to approximate the best QM calculations; either Lennard-Jones or Morse expressions were used to include the vdW terms in the force fields. The comparison of the simulated and experimental isotherms revealed that a strong interplay exists between the definition of the dispersion energies and the functional form used in the force field; these results are fairly general and reproducible, at least for the systems considered here. On this basis, the reliability of different models can be discussed, and a recipe can be provided to obtain accurate simulated adsorption isotherms.

  14. Robust air refractometer for accurate compensation of the refractive index of air in everyday use.

    PubMed

    Kruger, O; Chetty, N

    2016-11-10

    The definition of the meter is based on the speed of light in a vacuum; however, most dimensional measurements, when performed using laser interferometry, are performed in air. A velocity of light compensation needs to be applied to the velocity of the laser light for accurate measurements of the speed of light to be approximated in a vacuum. Most practices use a weather-station method, whereby the ambient conditions are measured. Thereafter, the modified Edlén's equation is used, and corrections are calculated for the wavelength of the laser. The theoretical calculation is, however, only accurate to 3*10-8 without taking into account the accuracy of the sensors. Thus, this work focuses on investigations into the velocity of light compensations, both to improve upon the accuracy of the Edlén equation method in everyday use, and to verify the accuracy of the current weather-station systems in use through comparison with the refractometer. A refractometer that allows for velocity of light compensation measurements was developed, tested, and verified. The system was designed to be simple and cost-effective for use in everyday dimensional measurements, but with high accuracy. Achieved results show that although simple in design, the refractometer is accurate to at least 1*10-8, which meets our initial condition for design.

  15. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  16. Bolus calculators.

    PubMed

    Schmidt, Signe; Nørgaard, Kirsten

    2014-09-01

    Matching meal insulin to carbohydrate intake, blood glucose, and activity level is recommended in type 1 diabetes management. Calculating an appropriate insulin bolus size several times per day is, however, challenging and resource demanding. Accordingly, there is a need for bolus calculators to support patients in insulin treatment decisions. Currently, bolus calculators are available integrated in insulin pumps, as stand-alone devices and in the form of software applications that can be downloaded to, for example, smartphones. Functionality and complexity of bolus calculators vary greatly, and the few handfuls of published bolus calculator studies are heterogeneous with regard to study design, intervention, duration, and outcome measures. Furthermore, many factors unrelated to the specific device affect outcomes from bolus calculator use and therefore bolus calculator study comparisons should be conducted cautiously. Despite these reservations, there seems to be increasing evidence that bolus calculators may improve glycemic control and treatment satisfaction in patients who use the devices actively and as intended.

  17. Accurate spectral modeling for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Gupta, S. K.

    1977-01-01

    Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.

  18. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect

    Kawano, Toshihiko; Moller, Peter; Wilson, William B

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  19. Precise Calculations of Astrophysically Important Allowed and Forbidden Transitions of Xe VIII

    NASA Astrophysics Data System (ADS)

    Bhowmik, Anal; Nath Dutta, Narendra; Roy, Sourav

    2017-02-01

    The present work reports transition line parameters for Xe viii, which are potentially important for astrophysics in view of recent observations of multiply ionized xenon in hot white dwarfs. The relativistic coupled-cluster method is employed here to calculate the E1, E2, and M1 transition line parameters with high accuracy. The E1 oscillator strengths and probabilities of E2 and M1 transitions are determined using theoretical amplitudes and experimental energy values. The calculated branching ratios and the lifetimes are supplemented to the transition parameters. The accurate presentation of these calculated data is crucial for density estimation in several stellar and interstellar media.

  20. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  1. Synthesis, crystal structures and theoretical calculations of new 1-[2-(5-chloro-2-benzoxazolinone-3-yl)acetyl]-3,5-diphenyl-4,5-dihydro-(1H)-pyrazoles

    NASA Astrophysics Data System (ADS)

    Gökşen, Umut Salgın; Alpaslan, Yelda Bingöl; Kelekçi, Nesrin Gökhan; Işık, Şamil; Ekizoğlu, Melike

    2013-05-01

    1-[2-(5-Chloro-2-benzoxazolinone-3-yl)acetyl]-3-phenyl-5-(3-methoxyphenyl)-4,5-dihydro-(1H)-pyrazole (5a), 1-[2-(5-chloro-2-benzoxazolinone-3-yl)acetyl]-3-phenyl-5-(3,4-dimethoxyphenyl)-4,5-dihydro-(1H)-pyrazole (5b) and 1-[2-(5-chloro-2-benzoxazolinone-3-yl)acetyl]-3-(4-methylphenyl)-5-(2,3-dimethoxyphenyl)-4,5-dihydro-(1H)-pyrazole (5c) were synthesized. The crystal and molecular structures of the compounds 5a, 5b and 5c were determined by elemental analyses, IR, 1H NMR, ESI-MS and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set was used to calculate the optimized geometrical parameters, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values were compared with experimental IR and 1H NMR values. The results represented that there was a good agreement between experimental and calculated values of the compounds 5a-5c. In addition, DFT calculations of the compounds, molecular electrostatic potentials (MEPs) and frontier molecular orbitals were performed at B3LYP/6-31G(d,p) level of theory. Furthermore, compounds were tested against three Gram-positive bacteria: Staphylococcus aureus ATCC 29213 (American Type Culture Collection), methicillin resistant S. aureus (MRSA) ATCC 43300 and Enterococcus faecalis ATCC 29212; two Gram negative bacteria: Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853; and three fungi: Candida albicans ATCC 90028, Candida krusei ATCC 6258 and Candida parapsilosis ATCC 90018. In general, all of the compounds were found to be slightly active against tested microorganisms.

  2. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  3. Theoretical study of hole initiated impact ionization in bulk silicon and GaAs using a wave-vector-dependent numerical transition rate formulation within an ensemble Monte Carlo calculation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    In this paper, calculations of the hole initiated interband impact ionization rate in bulk silicon and GaAs are presented based on an ensemble Monte Carlo simulation with the inclusion of a wave-vector-dependent numerical transition rate formulation. The ionization transition rate is determined for each of the three valence bands, heavy, light, and split-off, using Fermi's golden rule with a two-body, screened Coulomb interaction. The dielectric function used within the calculation is assumed to be wave-vector-dependent. Calculations of the field-dependent impact ionization rate as well as the quantum yield are presented. It is found from both the quantum yield results and examination of the hole distribution function that the effective threshold energy for hole initiated impact ionization is relatively soft, similar to that predicted for the corresponding electron initiated ionization events occur more frequently than either heavy or split-offf initiated ionization events in bulk silicon over the applied electric field strengths examined here, 250-500 kV/cm. Conversely,in GaAs, the vast majority of hole initated ionization events originate from holes within the split-off band.

  4. Theoretical development and first-principles analysis of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Liu, Chen

    A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method to address the challenges. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated an alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy of ferromagnetic materials. In addition, another theoretical tool, dynamical mean-field theory on top of the density functional theory, has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.

  5. Assessment of density functional methods for calculating thermochemistries of Si-H-Cl compounds

    SciTech Connect

    Hay, P.J.

    1996-01-04

    The performance of the gradient-corrected BLYP density functional and the hybrid B3LYP functional has been studied in calculations of bond energies of Si-H-Cl containing molecules involved in thermal chemical vapor deposition processes of silicon. Calculated atomization energies using the BLYP and B3LYP functionals are in better agreement with experiment (typically within 10 kcal/mol) compared to more computationally demanding methods such as MP4. Comparisons are also made with more accurate theoretical methods including corrected MP4 approaches. While predictions of thermochemical properties for second-row compounds from BLYP approaches are slightly less accurate than for first-row compounds, these techniques still represent a promising approach of obtaining theoretical estimates for thermochemical properties. 37 refs., 6 tabs.

  6. Alpha particle induced reactions on natCr up to 39 MeV: Experimental cross-sections, comparison with theoretical calculations and thick target yields for medically relevant 52gFe production

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Adam Rebeles, R.; Tárkányi, F.; Takács, S.

    2015-08-01

    Thin natCr targets were obtained by electroplating, using 23.75 μm Cu foils as backings. In five stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross sections for production of 52gFe, 49,51cumCr, 52cum,54,56cumMn and 48cumV in Cr and 61Cu,68Ga in Cu were measured up to 39 MeV incident α-particle energy. Reduced uncertainty is obtained by simultaneous remeasurement of the natCu(α,x)67,66Ga monitor reactions over the whole energy range. Comparisons with the scarce literature values and results from the TENDL-2013 on-line library, based on the theoretical code family TALYS-1.6, were made. A discussion of the production routes for 52gFe with achievable yields and contamination rates was made.

  7. Space Service Market (Theoretical Aspect)

    NASA Astrophysics Data System (ADS)

    Prisniakov, V. F.; Prisniakova, L. M.

    The authors propose a mathematical model of the demand and supply in the market economics and in the market of space services, in particular. A theoretical demand formula and a real curve demand are compared. The market equilibrium price is defined. The space market dynamics is studied. The calculations are carried out for the parameters which are close to the market of space services.

  8. Calculation of astrophysical S factor at low energy levels

    NASA Astrophysics Data System (ADS)

    Andic, Halil Ibrahim; Ozer, Okan

    2017-02-01

    Nuclear reactions are very important for the structure, evolution, nucleosynthesis and various observational manifestations of main-sequence stars, white dwarfs and neutron stars. For astrophysical applications, one needs to know value of S-factor for many reactions at low energies. The experimental measurements of cross-sections at such low energies are essentially not easily available since the Coulomb barrier. Theoretical calculations are model dependent, so that nuclear physics uncertainties of calculated S-factor can be substantial. Using the supersymmetric quantum mechanics one can obtain the supersymmetric partner potential that can vary by several orders of magnitude in the energy range of a given reaction in the calculation of S factor. Since the determination of reaction rates requires accurate values of cross sections at very low energies, then in order to eliminate the main part of the energy dependence of these cross sections one makes use of the astrophysical S-factor in Taylor Expansion series about zero-energy.

  9. Theoretical molecular studies of astrophysical interest

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1991-01-01

    When work under this grant began in 1974 there was a great need for state-to-state collisional excitation rates for interstellar molecules observed by radio astronomers. These were required to interpret observed line intensities in terms of local temperatures and densities, but, owing to lack of experimental or theoretical values, estimates then being used for this purpose ranged over several orders of magnitude. A problem of particular interest was collisional excitation of formaldehyde; Townes and Cheung had suggested that the relative size of different state-to-state rates (propensity rules) was responsible for the anomalous absorption observed for this species. We believed that numerical molecular scattering techniques (in particular the close coupling or coupled channel method) could be used to obtain accurate results, and that these would be computationally feasible since only a few molecular rotational levels are populated at the low temperatures thought to prevail in the observed regions. Such calculations also require detailed knowledge of the intermolecular forces, but we thought that those could also be obtained with sufficient accuracy by theoretical (quantum chemical) techniques. Others, notably Roy Gordon at Harvard, had made progress in solving the molecular scattering equations, generally using semi-empirical intermolecular potentials. Work done under this grant generalized Gordon's scattering code, and introduced the use of theoretical interaction potentials obtained by solving the molecular Schroedinger equation. Earlier work had considered only the excitation of a diatomic molecule by collisions with an atom, and we extended the formalism to include excitation of more general molecular rotors (e.g., H2CO, NH2, and H2O) and also collisions of two rotors (e.g., H2-H2).

  10. No further gain can be achieved by calculating Disease Activity Score in 28 joints with high-sensitivity assay of C-reactive protein because of high intraindividual variability of C-reactive protein: A cross-sectional study and theoretical consideration.

    PubMed

    Hansen, Inger M J; Emamifar, Amir; Andreasen, Rikke A; Antonsen, Steen

    2017-01-01

    Disease Activity Score in 28 joints (DAS28) is commonly used to evaluate disease activity of rheumatoid arthritis (RA) and is a guide to treatment decision.The aim of this study was to evaluate the impact of lower reporting limit for C-reactive protein (CRP), with respect to intraindividual biological variability, on the calculation of DAS28 and subsequent patient classification.This study consists of 2 sections: a theoretical consideration discussing the performance of CRP in calculating DAS28 taking intraindividual biological variation and lower reporting limit for CRP into account and a cross-sectional study of RA patients applying our theoretical results. Therefore, we calculated DAS28 twice, with the actual CRP values and CRP = 9 mg/L, the latter to elucidate the positive effects of reducing the lower reporting limit of CRP from <10 to <3 mg/L.Lower-reporting limit of <10 mg/L leads to overestimate DAS28. However, reducing lower reporting limit for CRP to <3 mg/L results in optimizing DAS28 calculation. Further lowering of reporting limit for CRP to <3 mg/L does not increase the precision of DAS28 owing to the relatively large intraindividual biological variation.Five hundred twelve patients were included. There was a significant difference between recalculated and patients DAS28 (P < 0.001). One hundred nine patients had DAS28 deviation (compatible to remission to low: 66, low to moderate: 39. and moderate to high: 4).Owing to significant impact of intraindividual biologic variation on DAS28 and patient classification, special attention should be paid to calculate DAS28 when CRP values are within normal range. Furthermore, we conclude that results of different studies evaluating DAS28 and treatment response are not comparable if the reporting limits of CRP are unknown.

  11. A technique for calculating the amplitude distribution of propagated fields by Gaussian sampling.

    PubMed

    Cywiak, Moisés; Morales, Arquímedes; Servín, Manuel; Gómez-Medina, Rafael

    2010-08-30

    We present a technique to solve numerically the Fresnel diffraction integral by representing a given complex function as a finite superposition of complex Gaussians. Once an accurate representation of these functions is attained, it is possible to find analytically its diffraction pattern. There are two useful consequences of this representation: first, the analytical results may be used for further theoretical studies and second, it may be used as a versatile and accurate numerical diffraction technique. The use of the technique is illustrated by calculating the intensity distribution in a vicinity of the focal region of an aberrated converging spherical wave emerging from a circular aperture.

  12. A theoretical study of the mechanism of the atmospherically relevant reaction of chlorine atoms with methyl nitrate, and calculation of the reaction rate coefficients at temperatures relevant to the troposphere.

    PubMed

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2015-03-21

    The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.

  13. Theoretical studies of chemisorption and dimer model systems: Moller-Plesset and configuration interaction calculations on PdH, PdC, PdO, PdF, Pd sub 2 , and PdCO

    SciTech Connect

    Schwerdtfeger, P.; McFeaters, J.S.; Moore, J.J.; McPherson, D.M.; Cooney, R.P.; Bowmaker, G.A. ); Dolg, M.; Andrae, D. )

    1991-01-01

    Ab initio SCF studies have been performed to study the molecular properties of several single-bonded palladium compounds, PdH, PdC, PdO, PdF, Pd{sub 2}, and PdCO, which are important in surface and materials science. Electron correlation effects were evaluated by a second- and third-order Moller-Plesset (MP) perturbation theory and a size-consistency-corrected configuration interaction with single and double substitutions (CISC). Relativistic effects were investigated for PdH and PdF. The ground state of PdC has been calculated at the CISC level to be a {sup 3}{Pi} state which is only 0.26 eV below the {sup 3}{Sigma}{sup {minus}} state (previously assigned ground state) and 0.51 eV below the {sup 1}{Sigma}{sup +} state. PdC is predicted to be stable in the gas phase, and the possibility of preparing this compound is investigated. The bonding in CO chemisorbed on palladium is studied by using the model Pd-CO system. The effect of d{sub {pi}}-{pi}{sup *} back-bonding, discussed at the Hartree-Fock and CI level, is compared with results from multiple-scattering {Chi}{alpha} calculations. The C-O stretching frequency shift for CO on palladium was analyzed at various levels of theory, and the results indicated that the decrease in the CO force constant associated with chemisorption is not solely the result of d{sub {pi}}-{pi}{sup *} back-bonding.

  14. Theoretical study of the unimolecular dissociation HO2 --> H+O2. I. Calculation of the bound states of HO2 up to the dissociation threshold and their statistical analysis

    NASA Astrophysics Data System (ADS)

    Dobbyn, Abigail J.; Stumpf, Michael; Keller, Hans-Martin; Schinke, Reinhard

    1995-12-01

    This is the first of a series of papers in which we investigate the unimolecular dissociation of hydroperoxyl. Using the DMBE IV potential energy surface [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)], in the present study 726 bound states of HO2(X˜) up to the H+O2 dissociation threshold are calculated in an attempt to access the extent of the coupling between the modes of the system. The first approach involves an analysis of the nodal structure of the wave functions. While the wave functions for the lowest states are regular and assignable, the degree of mixing and complexity rapidly increases with energy. The wave functions close to the dissociation threshold are mostly irregular without any clear cut nodal structure and fill the entire coordinate space available. Nevertheless, a small number of regular states, that are associated with large excitation in the O2 stretching coordinate and no or only little excitation in the other modes, are found even at high energies. The second approach used to study the degree of intramolecular coupling is an analysis of the energy spectrum. The nearest neighbor level spacing distribution, which probes the short-range correlation, as well as the Σ2 and Δ3 statistics, which are sensitive to the long-range correlations in the spectrum, are investigated and compared to the distributions predicted for regular and irregular spectra. Both of these approaches indicate that the system is almost totally irregular with a Brody parameter of about 92%. In addition, the sum of states at a particular energy, which is extremely important in all statistical models for unimolecular dissociation, is approximately calculated from the volume of classical phase space and found to be in excellent agreement with the exact quantum mechanical result.

  15. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    PubMed Central

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm−1 accuracy. PMID:27138292

  16. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions.

    PubMed

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-05-03

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe(-) using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm(-1) or 153.236(34) meV. The fine structures of Fe(-) were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm(-1) accuracy.

  17. Accurate Energy Transaction Allocation using Path Integration and Interpolation

    NASA Astrophysics Data System (ADS)

    Bhide, Mandar Mohan

    This thesis investigates many of the popular cost allocation methods which are based on actual usage of the transmission network. The Energy Transaction Allocation (ETA) method originally proposed by A.Fradi, S.Brigonne and B.Wollenberg which gives unique advantage of accurately allocating the transmission network usage is discussed subsequently. Modified calculation of ETA based on simple interpolation technique is then proposed. The proposed methodology not only increase the accuracy of calculation but also decreases number of calculations to less than half of the number of calculations required in original ETAs.

  18. Influence of OH⋯N and NH⋯O inter- and intramolecular hydrogen bonds in the conformational equilibrium of some 1,3-disubstituted cyclohexanes through NMR spectroscopy and theoretical calculations

    NASA Astrophysics Data System (ADS)

    de Oliveira, Paulo R.; Viesser, Renan V.; Guerrero, Palimécio G., Jr.; Rittner, Roberto

    2011-05-01

    The analysis of concentration effects in the 1H NMR data of cis-3-aminocyclohexanol ( ACOL) showed that its diequatorial conformer changes from 60% at 0.01 mol L -1 to 70% at 0.40 mol L -1 in acetone-d 6. A similar increase was also observed for the diequatorial conformer of cis-3-N-methylaminocyclohexanol ( MCOL), from 32% (CDCl 3 0.01 mol L -1) to 55% (CDCl 3 0.40 mol L -1). The increase in solvent basicity leads to a large stabilization effect for the diequatorial conformer of both compounds too. For ACOL, it changes from 47% (Δ Geqeq- axax = 0.06 kcal mol -1) in CCl 4 to 93% (Δ Geqeq- axax = -1.53 kcal mol -1) in DMSO, while for MCOL it goes from 7% (Δ Geqeq- axax = 1.54 kcal mol -1) in CCl 4 to 82% (Δ Geqeq- axax = -0.88 kcal mol -1) in pyridine-d 6. These results indicate that the intr amolecular hydrogen bonds (IAHB) OH⋯N and NH⋯O stabilize the diaxial conformers of these compounds in a non-polar solvent. For cis-3-amino-1-methoxycyclohexane ( ACNE) and cis-3-N-methylamino-1-methoxy-cyclohexane ( MCNE) no changes were observed in equilibrium with the variation of solvent polarity. These results indicate for the first time that the IAHB NH⋯O is not strong enough to stabilize the diaxial conformer of these compounds and that the conformation equilibria of the cis isomers of compounds ACOL and MCOL are influenced only by the IAHB OH⋯N. Moreover, the presence of a secondary amino group (93% of diaxial conformer in CCl 4) leads to an IAHB OH⋯N stronger than in primary and tertiary amino-derivatives (53 and 54% of diaxial conformer, respectively) for 1,3-disubstituted cyclohexanes. Values obtained from the theoretical data through the B3LYP functional are in agreement with the experimental results and indicate that the IAHB strength that influences the conformational equilibrium of these compounds is the IAHB OH⋯N. Thus, the IAHB NH⋯O do not stabilize the diaxial conformer of the cis isomer of compounds ACNE and MCNE

  19. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate.

    PubMed

    Marchewka, M K; Drozd, M

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).

  20. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-07

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.