Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.
Ganyecz, Ádám; Kállay, Mihály; Csontos, József
2017-02-09
An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.
Accurate stress resultants equations for laminated composite deep thick shells
Qatu, M.S.
1995-11-01
This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.
Experimental and theoretical oscillator strengths of Mg i for accurate abundance analysis
NASA Astrophysics Data System (ADS)
Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.
2017-02-01
Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg i lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg i optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg i optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.
Theoretical results for starved elliptical contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
Eighteen cases were used in the theoretical study of the influence of lubricant starvation on film thickness and pressure in elliptical elastohydrodynamic conjunctions. From the results a simple and important critical dimensionless inlet boundary distance at which lubricant starvation becomes significant was specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Furthermore, it was found that the film thickness for a starved condition is written in dimensionless terms as a function of the inlet distance parameter and the film thickness for a fully flooded condition. Contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions.
Theoretical Synthesis of Indirect Detection Results
NASA Astrophysics Data System (ADS)
Profumo, Stefano
2015-04-01
Can we learn about New Physics with astronomical and astro-particle data? Understanding how this is possible is key to unraveling one of the most pressing mysteries at the interface of cosmology and particle physics: the fundamental, particle-physics nature of dark matter. I will discuss some of the recent puzzling findings in astro-particle and astronomical observations that might be related to signals from dark matter. I will first review the status of explanations to the cosmic-ray positron excess, emphasizing how we might be able to discriminate between astrophysical sources and dark matter. I will then discuss the evidence for an X-ray line at 3.5 keV, and present new results on systematic effects and on the role of previously underestimated astrophysical lines. Finally, I will briefly discuss a reported excess of gamma rays from the central regions of the Galaxy.
Theoretical Results in Heavy Flavour Production
NASA Astrophysics Data System (ADS)
Kramer, G.
2011-05-01
We review one-particle inclusive production of heavy-flavoured hadrons in a framework which resums the large collinear logarithms through the evolution of the FFs and PDFs and retains the dependence on the heavy-quark mass. We focus on presenting results for the inclusive cross section for the production of charmed mesons in pp¯ collisions and the comparison with CDF data as well as on inclusive B-meson production and comparison with recent CDF data, for which in both new determined fragmentation functions have been used. We asses the sensitivity of CDF data of D inclusive production to the internal charm parametrization given by Pumplin et al. [J. Pumplin, H. L. Lai and W. K. Tung, Phys. Rev. D75, 054029 (2007)].
NASA Astrophysics Data System (ADS)
Luo, Yi
2002-03-01
We have developed a new theoretical approach to characterize the electron transport process in molecular devices based on the elastic-scattering Green's function theory in connection with the hybrid density functional theory without using any fitting parameters. Two molecular devices with benzene-1,4-dithiol and octanedithiol molecules embedded between two gold electrodes have been studied. The calculated current-voltage characteristics are in very good agreement with existing experimental results reported by Reed et. al for benzene-1,4-dithiol [Science, 278(1997) 252] and by Cui et al. for octanedithiol [Science, 294(2001) 571]. Our approach is very straightforward and can apply to quite large systems. Most importantly, it provides a reliable way to design and optimize molecular devices theoretically, thereby avoiding extremely difficult, time consuming laboratory tests.
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei
2015-01-13
A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta
Recent theoretical results on electron-polyatomic molecule collisions
McCurdy, C.W.
1994-03-01
Until recently, the principal barrier to the accurate theoretical description of electronic collisions with polyatomic molecules was the computational problem of scattering by a nonlocal, arbitrarily asymmetric potential. Effective numerical techniques capable of solving this variety of potential scattering problem for electronic collisions have now matured, and the first applications of methods for treating many-body aspects of collisions of electrons with polyatomic molecules have begun to appear in the literature. The past two years have seen the appearance of a large collection of calculations on electron-polyatomic collisions which compare favorably with experimental determinations. In addition to the dramatic developments in methods which explicitly exploit the methods of quantum chemistry to treat the effects of electron correlation, polarization, etc., parameter-free model potential methods for electronically elastic collisions have also evolved markedly in recent years. Progress in both electronically elastic and inelastic processes is reviewed briefly.
Theoretical modelling and experimental results of electromechanical actuation of an elastomer
NASA Astrophysics Data System (ADS)
Díaz-Calleja, Ricardo; Llovera-Segovia, Pedro; Dominguez, José Jorge; Carsí Rosique, Marta; Quijano Lopez, Alfredo
2013-06-01
Electromechanical actuation is a growing field of research today both for applications or theoretical modelling. The interaction between electric and mechanical constraints has been used for electromechanic actuators or generators based on elastomers. From a theoretical point of view, many recent works have been focused on uniaxial or biaxial stretching of elastomer plates with compliant electrodes. Free stretching or pre-strained samples have been theoretically modelled, mainly by neo-Hookean equations. In this work, we present theoretical and experimental results of electromechanic actuation of an elastomer (the widely used 3M VHB4910, an acrylic foam) in a pre-strained case and a free case. Experimental characterization of the material shows that the Ogden model gives the best accurate fitting of mechanical properties. Thus, a theoretical development based on this model is carried out in order to obtain the curves describing the electromechanical behaviour of the material. The mechanical instability related to wrinkling of the material is theoretically calculated and experimentally verified.
Bolus-tracking arterial spin labelling: theoretical and experimental results
NASA Astrophysics Data System (ADS)
Kelly, M. E.; Blau, C. W.; Kerskens, C. M.
2009-03-01
Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) technique that can be used to provide a quantitative assessment of cerebral perfusion. Despite the development of a number of theoretical models to facilitate quantitative ASL, some key challenges still remain. The purpose of this study is to develop a novel quantitative ASL method based on a macroscopic model that reduces the number of variables required to describe the physiological processes involved. To this end, a novel Fokker-Planck equation consisting of stochastically varying macroscopic variables was derived from a general Langevin equation. ASL data from the rat brain was acquired using a bolus-tracking ASL protocol where a bolus of labelled spins flowing from an inversion plane in the neck into an imaging plane in the brain can be observed. Bolus durations of 1.5 s, 2.0 s and 3.0 s were used and the solution to the Fokker-Planck equation for the boundary conditions of bolus-tracking ASL was fitted to the experimental data using a least-squares fit. The mean transit time (MTT) and capillary transit time (CTT) were calculated from the first and second moments of the resultant curve respectively and the arterial transit time (ATT) was calculated by subtracting the CTT from the MTT. The average MTT, CTT and ATT values were 1.75 ± 0.22 s, 1.43 ± 0.12 s and 0.32 ± 0.04 s respectively. In conclusion, a new ASL protocol has been developed by combining the theoretical model with ASL experiments. The technique has the unique ability to provide solutions for varying bolus volumes and the generality of the new model is demonstrated by the derivation of additional solutions for the continuous and pulsed ASL (CASL and PASL) techniques.
NASA Astrophysics Data System (ADS)
El-Diasty, M.
2014-11-01
An accurate heading solution is required for many applications and it can be achieved by high grade (high cost) gyroscopes (gyros) which may not be suitable for such applications. Micro-Electro Mechanical Systems-based (MEMS) is an emerging technology, which has the potential of providing heading solution using a low cost MEMS-based gyro. However, MEMS-gyro-based heading solution drifts significantly over time. The heading solution can also be estimated using MEMS-based magnetometer by measuring the horizontal components of the Earth magnetic field. The MEMS-magnetometer-based heading solution does not drift over time, but are contaminated by high level of noise and may be disturbed by the presence of magnetic field sources such as metal objects. This paper proposed an accurate heading estimation procedure based on the integration of MEMS-based gyro and magnetometer measurements that correct gyro and magnetometer measurements where gyro angular rates of changes are estimated using magnetometer measurements and then integrated with the measured gyro angular rates of changes with a robust filter to estimate the heading. The proposed integration solution is implemented using two data sets; one was conducted in static mode without magnetic disturbances and the second was conducted in kinematic mode with magnetic disturbances. The results showed that the proposed integrated heading solution provides accurate, smoothed and undisturbed solution when compared with magnetometerbased and gyro-based heading solutions.
Optimization of sample preparation for accurate results in quantitative NMR spectroscopy
NASA Astrophysics Data System (ADS)
Yamazaki, Taichi; Nakamura, Satoe; Saito, Takeshi
2017-04-01
Quantitative nuclear magnetic resonance (qNMR) spectroscopy has received high marks as an excellent measurement tool that does not require the same reference standard as the analyte. Measurement parameters have been discussed in detail and high-resolution balances have been used for sample preparation. However, the high-resolution balances, such as an ultra-microbalance, are not general-purpose analytical tools and many analysts may find those balances difficult to use, thereby hindering accurate sample preparation for qNMR measurement. In this study, we examined the relationship between the resolution of the balance and the amount of sample weighed during sample preparation. We were able to confirm the accuracy of the assay results for samples weighed on a high-resolution balance, such as the ultra-microbalance. Furthermore, when an appropriate tare and amount of sample was weighed on a given balance, accurate assay results were obtained with another high-resolution balance. Although this is a fundamental result, it offers important evidence that would enhance the versatility of the qNMR method.
The Wavy Mechanical Face Seal Theoretical and Experimental Results
1981-01-01
53 2-23 Thermocouple Position ..... ................ .54 2- 24 High Temperature Continuous Test, B = 1.00 ........ 60 ix LIST OF...Figure Page 4-12 Torque and Leakage Versus Time, Test 75 - B - 0.75. .120 4-13 Torque and Leakage Versus Time, Test 24 - B = 1.00. .122 4-14 Torque and...134 4-22 AT as a Function of Temperature - B = 0.75 ...... .135 4-23 Theoretical Leakage at a = 0.5 um ............. 136 4- 24 Geometry of Actual
The min-conflicts heuristic: Experimental and theoretical results
NASA Technical Reports Server (NTRS)
Minton, Steven; Philips, Andrew B.; Johnston, Mark D.; Laird, Philip
1991-01-01
This paper describes a simple heuristic method for solving large-scale constraint satisfaction and scheduling problems. Given an initial assignment for the variables in a problem, the method operates by searching through the space of possible repairs. The search is guided by an ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. We demonstrate empirically that the method performs orders of magnitude better than traditional backtracking techniques on certain standard problems. For example, the one million queens problem can be solved rapidly using our approach. We also describe practical scheduling applications where the method has been successfully applied. A theoretical analysis is presented to explain why the method works so well on certain types of problems and to predict when it is likely to be most effective.
Gradual ordering in mollusk shell nacre: theoretical modeling and experimental results
NASA Astrophysics Data System (ADS)
Coppersmith, Susan N.
2013-03-01
Biominerals have attracted the attention of materials scientists, biologists, and mineralogists as well as physicists because of their remarkable mechanical properties and incompletely elucidated formation mechanisms. Nacre, or mother-of-pearl, is a layered biomineral composite that is widely studied because of its self-assembled, efficient and accurately ordered architecture results in remarkable resistance to fracture. New experimental tools enable us to obtain new information about the organization and structure of the mineral tablets in nacre. Our experimental and theoretical investigations yield strong evidence that orientational ordering of these tablets is the result of dynamical self-organization. This work was supported by NSF award CHE&DMR-0613972, DOE award DE-FG02-07ER15899, UW-Graduate School Vilas Award to P.U.P.A. Gilbert, and NSF awards DMR-0209630 and DMR-0906951 to SNC.
Theoretical results for fully flooded, elliptical hydrodynamic contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1982-01-01
The influence of the ellipticity parameter and the dimensionless speed, load, and materials parameters on minimum film thickness was investigated. The ellipticity parameter was varied from 1 (a ball-on-plate configuration) to 8 (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of praffinic and naphthemic mineral oils were considered in obtaining the exponent in the dimensionless materials parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula H min = 3.63U to the 0.68 power G to the 0.49 power W to the -0.073 power 1-e to the 0.68K power). A simplified expression for the ellipticity parameter was found where k = 1.03 (r(y)/r(x)) to the 0.64 power. Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.
Piezoelectric properties of multiphase fibrous composites: Some theoretical results
NASA Astrophysics Data System (ADS)
Chen, Tungyang
1993-11-01
A NUMBER OF EXACT results are established for overall moduli of a piezoelectric composite medium consisting of many perfectly-bonded transversely isotropic phases of cylindrical shape and arbitrary transverse geometry. It is shown that for three-phase media of this type three universal relationships, which are independent of geometry at given volume fractions, connect six of these effective physical constants. When the phases have equal transverse rigidities in shear, exact values of certain overall moduli can be derived for multiphase systems. The explicit formulae depend solely on the concentrations and phase moduli and are unaffected by the transverse geometry of the inclusions. Specifically, seven out of a total of 10 overall moduli of a transversely isotropic composite can be found. The remaining three constants p, e15 and k11 are shown to obey an exact relation, which also applies to other physical phenomena, such as magnetoelectric and thermoelectric effects. The result is a generalization of the relations found by H ILL[J. Mech. Phys. Solids12, 199 (1964)] for purely elastic media and by Mendelson[J. Appl. Phys.46, 917 (1975)] for the purely dielectric problem.
Theoretical and Experimental Results Regarding LENR/CF
Robert W. Bass; Wm. Stan Gleeson
2000-11-12
We challenge the predominant view that low-energy nuclear reactions (LENRs) are prohibited by standard quantum mechanics (QM). This view, supposedly based on standard nuclear theory, need not apply in condensed-matter environments. These considerations indicate that seemingly novel experimental evidence of rapid aneutronic bulk-process transmutation, at extraordinarily low-energy levels, in a simple electrochemical reactor, can occur. This explains: (a) induced rapid decay of radioactive thorium into stable nuclides, e.g., Cu and (b) resulting, anomalous distribution of Cu isotopes. We reexamine arguments of Peebles cited as evidence that standard QM 'forbids' cold fusion (CF). We note oversimplifications in those and present an alternative, more sophisticated calculation (see Bass, Refs. 3 through 8) demonstrating that conventional wisdom about impenetrability of the 'Coulomb barrier' fails as a result of periodic-order-induced resonance. We also examine empirical evidence. In three independent tests of an LENR electrolysis cell, using different I-V-T (current/voltage/time) protocols, the percentage of radiation reduction (RR) transmutation achieved {eta}=[23{percent}, 50{percent}, 83{percent}] versus expended energy E=[0.6535, 32.5, 74.6] (Watt-hours), obtained by numerical integration of recorded product I{center_dot}V for processing time T, provides near-perfect straight-line correlation: {eta}={alpha}{center_dot}E + {eta}{sub 0}, {alpha}=0.8105, {eta}{sub 0}=22.888, (0.65 < E < 0.75).
Ida, Masato; Taniguchi, Nobuyuki
2003-09-01
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
de Andrade, Ageo Meier; Inacio, Patrícia Loren; Camilo, Alexandre
2015-12-28
The development of new conductive polymers nowadays is one of the most important technological areas in materials design. Computational investigation of desired properties in conductive polymers could save financial resources and time, but it is important to choose the methodology that produces good results comparing to experimental results. To verify the prediction of second hyperpolarizability (γ) in oligomers of Trans-Polyacetylene (TPA) by theoretical calculations, a series of semi-empirical, Hartree-Fock (HF), and Density Functional Theory (DFT) calculations were performed and analysed through linear fitting statistical analysis to investigate the accuracy of such theoretical predictions in comparison to the experimental ones. The results showed that HF and DFT methodologies do not describe γ with good accuracy, but the use of diffuse and polarizability functions in HF methodology provided better results than 3-21G and 6-31G functions. It was concluded that RM1 methodology better agrees with γ experimental results for TPA oligomers, and linear fitting statistical analysis is a useful tool to compare experimental and theoretical results.
NASA Technical Reports Server (NTRS)
Schwenke, David W.
1990-01-01
The dissociation and recombination of H2 over the temperature range 1000-5000 K are calculated in a nonempirical manner. The computation procedure involves the calculation of the state-to-state energy transfer rate coefficients, the solution of the 349 coupled equations which form the master equation, and the determination of the phenomenological rate coefficients. The nonempirical results presented here are in good agreement with experimental data at 1000 and 3000 K.
Breglia, Raffaella; Ruiz-Rodriguez, Manuel Antonio; Vitriolo, Alessandro; Gonzàlez-Laredo, Rubén Francisco; De Gioia, Luca; Greco, Claudio; Bruschi, Maurizio
2017-01-01
[NiFe]-hydrogenases catalyse the relevant H2 → 2H(+) + 2e(-) reaction. Aerobic oxidation or anaerobic oxidation of this enzyme yields two inactive states called Ni-A and Ni-B. These states differ for the reactivation kinetics which are slower for Ni-A than Ni-B. While there is a general consensus on the structure of Ni-B, the nature of Ni-A is still controversial. Indeed, several crystallographic structures assigned to the Ni-A state have been proposed, which, however, differ for the nature of the bridging ligand and for the presence of modified cysteine residues. The spectroscopic characterization of Ni-A has been of little help due to small differences of calculated spectroscopic parameters, which does not allow to discriminate among the various forms proposed for Ni-A. Here, we report a DFT investigation on the nature of the Ni-A state, based on systematic explorations of conformational and configurational space relying on accurate energy calculations, and on comparisons of theoretical geometries with the X-ray structures currently available. The results presented in this work show that, among all plausible isomers featuring various protonation patterns and oxygenic ligands, the one corresponding to the crystallographic structure recently reported by Volbeda et al. (J Biol Inorg Chem 20:11-22, 19)-featuring a bridging hydroxide ligand and the sulphur atom of Cys64 oxidized to bridging sulfenate-is the most stable. However, isomers with cysteine residues oxidized to terminal sulfenate are very close in energy, and modifications in the network of H-bond with neighbouring residues may alter the stability order of such species.
Lee, Paul H.
2014-01-01
Confounders can be identified by one of two main strategies: empirical or theoretical. Although confounder identification strategies that combine empirical and theoretical strategies have been proposed, the need for adjustment remains unclear if the empirical and theoretical criteria yield contradictory results due to random error. We simulated several scenarios to mimic either the presence or the absence of a confounding effect and tested the accuracy of the exposure-outcome association estimates with and without adjustment. Various criteria (significance criterion, Change-in-estimate(CIE) criterion with a 10% cutoff and with a simulated cutoff) were imposed, and a range of sample sizes were trialed. In the presence of a true confounding effect, unbiased estimates were obtained only by using the CIE criterion with a simulated cutoff. In the absence of a confounding effect, all criteria performed well regardless of adjustment. When the confounding factor was affected by both exposure and outcome, all criteria yielded accurate estimates without adjustment, but the adjusted estimates were biased. To conclude, theoretical confounders should be adjusted for regardless of the empirical evidence found. The adjustment for factors that do not have a confounding effect minimally effects. Potential confounders affected by both exposure and outcome should not be adjusted for. PMID:25124526
NASA Technical Reports Server (NTRS)
Hawkins, Larry; Childs, Dara; Hale, Keith
1989-01-01
Experimental measurements are presented for the rotordynamic stiffness and damping coefficients of a teeth-on-rotor labyrinth seal with a honeycomb stator. Inlet circumferential velocity, inlet pressure, rotor speed, and seal clearance are primary variables. Results are compared to data for teeth-on-rotor labyrinth seals with smooth stators and to analytical predictions from a two-control-volume compressible flow model. The experimental results show that the honeycomb-stator configuration is more stable than the smooth-stator configuration at low rator speeds. At high rotor speeds, the stator surface does not affect stability. The theoretical model predicts the cross-coupled stiffness of the honeycomb-stator seal correctly within 25 percent of measured values. The model provides accurate predictions of direct damping for large clearance seals; however, the model predictions and test results diverge with increasing running speed. Overall, the model does not perform as well for low clearance seals as for high clearance seals.
NASA Technical Reports Server (NTRS)
Hawkins, Lawrence Allen
1988-01-01
Experimental results for the rotordynamic stiffness and damping coefficients of a labyrinth -rotor honeycomb-stator seal are presented. The coefficients are compared to the coefficients of a labyrinth-rotor smooth-stator seal having the same geometry. The coefficients are compared to analytical results from a two-control-volume compressible flow model. The experimental results show that the honeycomb stator configuration is more stable than the smooth stator configuration at low rotor speeds. At high rotor speeds and low clearance, the smooth stator seal is more stable. The theoretical model predicts the cross-coupled stiffness of the honeycomb stator seal correctly within 25 percent of measured values. The model provides accurate predictions of direct damping for large clearance seals. Overall, the model does not perform as well for low clearance seals as for high clearance seals.
Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ
NASA Technical Reports Server (NTRS)
Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.
2008-01-01
Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.
NASA Astrophysics Data System (ADS)
Fillon, Michel; Bligoud, Jean-Claude; Frene, Jean
1992-07-01
Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.
NASA Technical Reports Server (NTRS)
Zender, George W
1956-01-01
The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.
At Odds: Reconciling Experimental and Theoretical Results in High School Physics
ERIC Educational Resources Information Center
Gates, Joshua
2009-01-01
For this experiment, students are divided into 2 groups and presented with a static equilibrium force-balance problem to solve. One group works entirely experimentally and the other group theoretically, using Newton's laws. The groups present their seemingly dissimilar results and must reconcile them through discussion. (Contains 3 figures.)
Forest, Valérie; Figarol, Agathe; Boudard, Delphine; Cottier, Michèle; Grosseau, Philippe; Pourchez, Jérémie
2015-03-31
Carbon nanotube (CNT) cytotoxicity is frequently investigated using in vitro classical toxicology assays. However, these cellular tests, usually based on the use of colorimetric or fluorimetric dyes, were designed for chemicals and may not be suitable for nanosized materials. Indeed, because of their unique physicochemical properties CNT can interfere with the assays and bias the results. To get accurate data and draw reliable conclusions, these artifacts should be carefully taken into account. The aim of this study was to evaluate qualitatively and quantitatively the interferences occurring between CNT and the commonly used lactate dehydrogenase (LDH) assay. Experiments under cell-free conditions were performed, and it was clearly demonstrated that artifacts occurred. They were due to the intrinsic absorbance of CNT on one hand and the adsorption of LDH at the CNT surface on the other hand. The adsorption of LDH on CNT was modeled and was found to fit the Langmuir model. The K(ads) and n(eq) constants were defined, allowing the correction of results obtained from cellular experiments to get more accurate data and lead to proper conclusions on the cytotoxicity of CNT.
Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model
NASA Technical Reports Server (NTRS)
Goradia, C.; Vaughn, J.; Baraona, C. R.
1980-01-01
A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; Wyrick, J. R.; Jackson, J. R.
2014-12-01
Long practiced in fisheries, visual substrate mapping of coarse-bedded rivers is eschewed by geomorphologists for inaccuracy and limited sizing data. Geomorphologists perform time-consuming measurements of surficial grains, with the few locations precluding spatially explicit mapping and analysis of sediment facies. Remote sensing works for bare land, but not vegetated or subaqueous sediments. As visual systems apply the log2 Wentworth scale made for sieving, they suffer from human inability to readily discern those classes. We hypothesized that size classes centered on the PDF of the anticipated sediment size distribution would enable field crews to accurately (i) identify presence/absence of each class in a facies patch and (ii) estimate the relative amount of each class to within 10%. We first tested 6 people using 14 measured samples with different mixtures. Next, we carried out facies mapping for ~ 37 km of the lower Yuba River in California. Finally, we tested the resulting data to see if it produced statistically significant hydraulic-sedimentary-geomorphic results. Presence/absence performance error was 0-4% for four people, 13% for one person, and 33% for one person. The last person was excluded from further effort. For the abundance estimation performance error was 1% for one person, 7-12% for three people, and 33% for one person. This last person was further trained and re-tested. We found that the samples easiest to visually quantify were unimodal and bimodal, while those most difficult had nearly equal amounts of each size. This confirms psychological studies showing that humans have a more difficult time quantifying abundances of subgroups when confronted with well-mixed groups. In the Yuba, mean grain size decreased downstream, as is typical for an alluvial river. When averaged by reach, mean grain size and bed slope were correlated with an r2 of 0.95. At the morphological unit (MU) scale, eight in-channel bed MU types had an r2 of 0.90 between mean
Silva, Romesh; Amouzou, Agbessi; Munos, Melinda; Marsh, Andrew; Hazel, Elizabeth; Victora, Cesar; Black, Robert; Bryce, Jennifer
2016-01-01
Introduction Most low-income countries lack complete and accurate vital registration systems. As a result, measures of under-five mortality rates rely mostly on household surveys. In collaboration with partners in Ethiopia, Ghana, Malawi, and Mali, we assessed the completeness and accuracy of reporting of births and deaths by community-based health workers, and the accuracy of annualized under-five mortality rate estimates derived from these data. Here we report on results from Ethiopia, Malawi and Mali. Method In all three countries, community health workers (CHWs) were trained, equipped and supported to report pregnancies, births and deaths within defined geographic areas over a period of at least fifteen months. In-country institutions collected these data every month. At each study site, we administered a full birth history (FBH) or full pregnancy history (FPH), to women of reproductive age via a census of households in Mali and via household surveys in Ethiopia and Malawi. Using these FBHs/FPHs as a validation data source, we assessed the completeness of the counts of births and deaths and the accuracy of under-five, infant, and neonatal mortality rates from the community-based method against the retrospective FBH/FPH for rolling twelve-month periods. For each method we calculated total cost, average annual cost per 1,000 population, and average cost per vital event reported. Results On average, CHWs submitted monthly vital event reports for over 95 percent of catchment areas in Ethiopia and Malawi, and for 100 percent of catchment areas in Mali. The completeness of vital events reporting by CHWs varied: we estimated that 30%-90% of annualized expected births (i.e. the number of births estimated using a FPH) were documented by CHWs and 22%-91% of annualized expected under-five deaths were documented by CHWs. Resulting annualized under-five mortality rates based on the CHW vital events reporting were, on average, under-estimated by 28% in Ethiopia, 32% in
Theoretical investigations on model ternary polypeptides using genetic algorithm—Some new results
NASA Astrophysics Data System (ADS)
Arora, Vinita; Bakhshi, A. K.
2011-04-01
Using genetic algorithm (GA) model ternary polypeptides containing glycine, alanine and serine in β-pleated conformation have been theoretically investigated. In designing, the criterion to attain the optimum solution at the end of GA run is minimum band gap and maximum delocalization in the polypeptide chain. Ab initio results obtained using Clementi's minimal basis set are used as input. Effects of (i) change of basis set from minimal to double zeta, (ii) change in secondary structure from β-pleated to α-helical, (iii) presence of solvation shell and (iv) binding of H + and Li + ions to peptide group on the resulting solution as well as on electronic structure and conduction properties of polypeptides are investigated. A comparison is drawn between results obtained for the two cationic adducts. The protonated adduct is expected to withdraw more negative charge from the polypeptide chain due to smaller size of H + and is found to have high electron affinity compared to Li + adduct.
Swinging Atwood Machine: Experimental and numerical results, and a theoretical study
NASA Astrophysics Data System (ADS)
Pujol, O.; Pérez, J. P.; Ramis, J. P.; Simó, C.; Simon, S.; Weil, J. A.
2010-06-01
A Swinging Atwood Machine ( SAM) is built and some experimental results concerning its dynamic behaviour are presented. Experiments clearly show that pulleys play a role in the motion of the pendulum, since they can rotate and have non-negligible radii and masses. Equations of motion must therefore take into account the moment of inertia of the pulleys, as well as the winding of the rope around them. Their influence is compared to previous studies. A preliminary discussion of the role of dissipation is included. The theoretical behaviour of the system with pulleys is illustrated numerically, and the relevance of different parameters is highlighted. Finally, the integrability of the dynamic system is studied, the main result being that the machine with pulleys is non-integrable. The status of the results on integrability of the pulley-less machine is also recalled.
Theoretical results for chemotactic response and drift of E. coli in a weak attractant gradient.
Reneaux, Melissa; Gopalakrishnan, Manoj
2010-09-07
The bacterium Escherichia coli (E. coli) moves in its natural environment in a series of straight runs, interrupted by tumbles which cause change of direction. It performs chemotaxis towards chemo-attractants by extending the duration of runs in the direction of the source. When there is a spatial gradient in the attractant concentration, this bias produces a drift velocity directed towards its source, whereas in a uniform concentration, E. coli adapts, almost perfectly in case of methyl aspartate. Recently, microfluidic experiments have measured the drift velocity of E. coli in precisely controlled attractant gradients, but no general theoretical expression for the same exists. With this motivation, we study an analytically soluble model here, based on the Barkai-Leibler model, originally introduced to explain the perfect adaptation. Rigorous mathematical expressions are obtained for the chemotactic response function and the drift velocity in the limit of weak gradients and under the assumption of completely random tumbles. The theoretical predictions compare favorably with experimental results, especially at high concentrations. We further show that the signal transduction network weakens the dependence of the drift on concentration, thus enhancing the range of sensitivity.
Avalanching granular flows down curved and twisted channels: Theoretical and experimental results
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.; Wang, Yongqi; Sheng, Li-Tsung; Hsiau, Shu-San; Hutter, Kolumban; Katzenbach, Rolf
2008-07-01
Depth evolution and final deposits play a crucial role in the description of the dynamics of granular avalanches. This paper presents new and important results on the geometric deformation and measurements of avalanche depositions in laboratory granular flows and their comparisons with theoretical predictions through some benchmark problems for flows down curved and twisted channels merging into a horizontal plane. XY-table and analoglaser sensor are applied to measure geometries of deposited masses in the fanlike open transition and runout zones for different granular materials, different channel lengths, and different channel mouths in the runout zone. The model equations proposed by Pudasaini and Hutter ["Rapid shear flows of dry granular masses down curved and twisted channels," J. Fluid Mech. 495, 193 (2003)] are used for theoretical prediction. We show that geometric parameters such as curvature, twist and local details of the channel play a crucial role in the description of avalanching debris and their deposits in the standstill. Asymmetric depositions and surface contours about the central line of the channel could not be produced and predicted by any other classical theories and available experiments in the literature as done in this paper. Such a role played by the geometrical parameters of the channel over physical parameters for the flow of granular materials down a general channel was not investigated before. It is demonstrated that the numerical simulations of the model equations and experimental observations are generally in good agreement.
Lüdecke, Daniel
2014-01-01
Introduction Health care providers seek to improve patient-centred care. Due to fragmentation of services, this can only be achieved by establishing integrated care partnerships. The challenge is both to control costs while enhancing the quality of care and to coordinate this process in a setting with many organisations involved. The problem is to establish control mechanisms, which ensure sufficiently consideration of patient centredness. Theory and methods Seventeen qualitative interviews have been conducted in hospitals of metropolitan areas in northern Germany. The documentary method, embedded into a systems theoretical framework, was used to describe and analyse the data and to provide an insight into the specific perception of organisational behaviour in integrated care. Results The findings suggest that integrated care partnerships rely on networks based on professional autonomy in the context of reliability. The relationships of network partners are heavily based on informality. This correlates with a systems theoretical conception of organisations, which are assumed autonomous in their decision-making. Conclusion and discussion Networks based on formal contracts may restrict professional autonomy and competition. Contractual bindings that suppress the competitive environment have negative consequences for patient-centred care. Drawbacks remain due to missing self-regulation of the network. To conclude, less regimentation of integrated care partnerships is recommended. PMID:25411573
NASA Astrophysics Data System (ADS)
Srivastava, Alok M.
2009-11-01
A brief overview of recent results obtained in scintillator and phosphors are presented. Four topics, that are at the center of considerable research, and which are important from both fundamental and practical point of view, are chosen. The identification and behavior of ligand-to-RE 3+ (RE 3+ = rare earth) charge transfer transition when the ligand ions are halides and N 3- is reviewed. The reasons for the high light yield of the LuI 3:Ce 3+ scintillator is investigated theoretically and a new channel of energy transfer to excitons and directly to the Ce 3+ ion identified. The prospect of increasing the light yield of Ce 3+ based scintillators by the Pr 3+ ion is discussed. Finally, the remarkable luminescence of octahedrally coordinated Eu 2+ ion in Cs 2M 2+P 2O 7 (M 2+ = Ca, Sr) is discussed.
2016-01-01
Background Ultrafine particles (UFP) of biogenic and anthropogenic origin occur in high numbers in the ambient atmosphere. In addition, aerosols containing ultrafine powders are used for the inhalation therapy of various diseases. All these facts make it necessary to obtain comprehensive knowledge regarding the exact behavior of UFP in the respiratory tract. Methods Theoretical simulations of local UFP deposition are based on previously conducted inhalation experiments, where particles with various sizes (0.04, 0.06, 0.08, and 0.10 µm) were administered to the respiratory tract by application of the aerosol bolus technique. By the sequential change of the lung penetration depth of the inspired bolus, different volumetric lung regions could be generated and particle deposition in these regions could be evaluated. The model presented in this contribution adopted all parameters used in the experiments. Besides the obligatory comparison between practical and theoretical data, also advanced modeling predictions including the effect of varying functional residual capacity (FRC) and respiratory flow rate were conducted. Results Validation of the UFP deposition model shows that highest deposition fractions occur in those volumetric lung regions corresponding to the small and partly alveolated airways of the tracheobronchial tree. Particle deposition proximal to the trachea is increased in female probands with respect to male subjects. Decrease of both the FRC and the respiratory flow rate results in an enhancement of UFP deposition. Conclusions The study comes to the conclusion that deposition of UFP taken up via bolus inhalation is influenced by a multitude of factors, among which lung morphometry and breathing conditions play a superior role. PMID:27942511
Navarro-Alarcon, Miguel; Zambrano, Esmeralda; Moreno-Montoro, Miriam; Agil, Ahmad; Olalla, Manuel
2012-08-01
The assessment of daily dietary phosphorus (P) intake is a major concern in human nutrition because of its relationship with Ca and Mg metabolism and osteoporosis. Within this context, we hypothesized that several of the methods available for the assessment of daily dietary intake of P are equally accurate and reliable, although few studies have been conducted to confirm this. The aim of this study then was to evaluate daily dietary P intake, which we did by 3 methods: duplicate portion sampling of 108 hospital meals, combined either with spectrophotometric analysis or the use of food composition tables, and 24-hour dietary recall for 3 consecutive days plus the use of food composition tables. The mean P daily dietary intakes found were 1106 ± 221, 1480 ± 221, and 1515 ± 223 mg/d, respectively. Daily dietary intake of P determined by spectrophotometric analysis was significantly lower (P < .001) and closer to dietary reference intakes for adolescents aged from 14 to 18 years (88.5%) and adult subjects (158.1%) compared with the other 2 methods. Duplicate portion sampling with P analysis takes into account the influence of technological and cooking processes on the P content of foods and meals and therefore afforded the most accurate and reliable P daily dietary intakes. The use of referred food composition tables overestimated daily dietary P intake. No adverse effects in relation to P nutrition (deficiencies or toxic effects) were encountered.
The Supernova Remnant 3C 400.2: Kinematics of its Ionized Gas and Theoretical Results
NASA Astrophysics Data System (ADS)
Ambrocio-Cruz, P.; de La Fuente, E.; Rosado, M.; Velázquez, P. F.
2003-01-01
3C 400.2 is a supernova remnant (SNR) with a complex morphology consisting of two overlapped shells of different diameters: a large shell at the southeast and a small shell at the northwest. High-resolution radio-continuum observations carried out by Dubner et al. (1994) suggested that this complex morphology could be due to the interaction of two SNRs. However, this view has been challenged by recent studies of the H I distribution around this SNR (Giacani et al. 1998) and by the confrontation of theoretical evolutionary models with the morphology at H alpha of this remnant (Velazquez et al. 2001). These recent results suggest that the double shell structure is produced by a single supernova explosion initially expanding into a dense medium encountering a lower density medium and producing a blowout. In this work we present the results of H alpha Fabry-Perot observations obtained with the PUMA equipment at the 2.1 m telescope of the Observatorio Astronómico Nacional at San Pedro Mártir, B. C., México. The kinematic results obtained can allow us to distinguish between those possibilities: two supernova explosions or one supernova explosion undergoing a blowout due to a density gradient.
NASA Astrophysics Data System (ADS)
Sahin, O. K.; Asci, M.
2014-12-01
At this study, determination of theoretical parameters for inversion process of Trabzon-Sürmene-Kutlular ore bed anomalies was examined. Making a decision of which model equation can be used for inversion is the most important step for the beginning. It is thought that will give a chance to get more accurate results. So, sections were evaluated with sphere-cylinder nomogram. After that, same sections were analyzed with cylinder-dike nomogram to determine the theoretical parameters for inversion process for every single model equations. After comparison of results, we saw that only one of them was more close to parameters of nomogram evaluations. But, other inversion result parameters were different from their nomogram parameters.
Low power underwater acoustic DPSK detection: Theoretical prediction and experimental results
NASA Astrophysics Data System (ADS)
Dunne, Andrew
This thesis presents two methods of analyzing the effectiveness of a prototype differential phase-shift keying (DPSK) detection circuit. The first method is to make modifications to the existing hardware to reliably output and record the cross-correlation values of the DPSK detection process. The second method is to write a MATLAB detection algorithm which accurately simulates the detection results of the hardware system without the need of any electronics. These two systems were tested and verified with a bench test using computer generated DPSK signals. The hardware system was tested using real acoustic data from shallow and deep water at-sea tests to determine the effectiveness of the DPSK detection circuit in different ocean environments. The hydrophone signals from the tests were recorded so that the cross-correlation values could be verified using the MATLAB detector. As a result of this study, these two systems provided more insight into how well the DPSK detection prototype works and helped to identify ways of improving the detection reliability and overall performance of the prototype DPSK detection circuit.
Benetazzo, Flavia; Freddi, Alessandro; Monteriù, Andrea; Longhi, Sauro
2014-09-01
Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors.
Freddi, Alessandro; Monteriù, Andrea; Longhi, Sauro
2014-01-01
Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors. PMID:26609383
Perched water during steady infiltration in a gradually layered soil: some theoretical results
NASA Astrophysics Data System (ADS)
Barontini, Stefano; Ranzi, Roberto
2010-05-01
Due to the genetic layering, the hydraulic conductivity at saturation Ks is usually expected to decrease across the upper soil layers. Its effect on the soil hydrological properties is related to a number of landslide triggering mechanisms. Key information in order to evaluate the soil stability are the threshold of the infiltration rate for a saturated layer or a perched water to onset, its depth, the maximum pressure head and the water content profile above the saturated soil. Anyway if Ks is gradually decreasing, as often observed in the uppermost soil layers or in mountain not-mature soils, the position of a perched water can be a priori not known, nor could be the position of the maximum pressure head. These topics were theoretically discussed considering an undeformable soil layer of finite depth, characterised by gradually and monotonically decreasing Ks, in which a steady one-dimensional infiltration takes place at a rate i. At the bottom of the domain a saturation condition was assumed. Two classes of soil constitutive laws were considered in order to represent the unsaturated soil behaviour. They are respectively characterised by a finite and by an infinite slope of the hydraulic conductivity K(φ) (where φ is the matric potential) as approaching the soil saturation. The theoretical results were particularized for a soil with exponentially decreasing Ks and the profiles of the hydrological properties were determined by analytical solutions of the Darcy's law. The analyses suggested the definition of a threshold for the infiltration rate i for the perched water to onset, and allowed to determine the characteristics of the saturated layer, its pressure head profile and the position of the maximum pressure head as a function of the infiltration rate. Moreover, the hydrological properties profiles obtained for the overlaying unsaturated soil stressed the high sensitivity of the solution to the K(φ) model near saturation. The stronger is the reduction of K
Alonso, P J; Martínez, J I
2015-06-01
The magnetic response of a Kramers doublet is analyzed in a general case taking into account only the formal properties derived from time reversal operation. It leads to a definition of a matrix G (gyromagnetic matrix) whose expression depends on the chosen reference frame and on the Kramers conjugate basis used to describe the physical system. It is shown that there exists a reference frame and a suitable Kramers conjugate basis that gives a diagonal form for the G-matrix with all non-null elements having the same sign. A detailed procedure for obtaining this canonical expression of G is presented when the electronic structure of the KD is known regardless the level of the used theory. This procedure provides a univocal way to compare the theoretical predictions with the experimental results obtained from a complete set of magnetic experiments. In this way the problems arising from ambiguities in the g-tensor definition are overcome. This procedure is extended to find a spin-Hamiltonian suitable for describing the magnetic behavior of a pair of weakly coupled Kramers systems in the multispin scheme when the interaction between the two moieties as well as the individual Zeeman interaction are small enough as compared with ligand field splitting. Explicit relations between the physical interaction and the parameters of such a spin-Hamiltonian are also obtained.
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2004-10-01
Accurate measurements of the positions of 1101 First Byurakan Survey (FBS) blue stellar objects (the Second part of the FBS) have been carried out on the DSS1 and DSS2 (red and blue images). To establish the accuracy of the DSS1 and DSS2, measurements have been made for 153 AGN for which absolute VLBI coordinates have been published. The rms errors are: 0.45 arcsec for DSS1, 0.33 arcsec for DSS2 red, and 0.59 arcsec for DSS2 blue in each coordinate, the corresponding total positional errors being 0.64 arcsec, 0.46 arcsec, and 0.83 arcsec, respectively. The highest accuracy (0.42 arcsec) is obtained by weighted averaging of the DSS1 and DSS2 red positions. It is shown that by using all three DSS images accidental errors can be significantly reduced. The comparison of DSS2 and DSS1 images made it possible to reveal positional differences and proper motions for 78 objects (for 62 of these for the first time), including new high-probability candidate white dwarfs, and to find objects showing strong variability, i.e. high-probability candidate cataclysmic variables. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/426/367
NASA Astrophysics Data System (ADS)
Predoi-Cross, Adriana; Holladay, Christopher; Heung, Henry; Bouanich, Jean-Pierre; Mellau, Georg Ch.; Keller, Reimund; Hurtmans, Daniel R.
2008-09-01
We report measurements for N 2-broadening, pressure-shift and line mixing coefficients for 55 oxygen transitions in the A-band retrieved using a multispectrum fitting technique. Nineteen laboratory absorption spectra were recorded at 0.02 cm -1 resolution using a multi-pass absorption cell with path length of 1636.9 cm and the IFS 120 Fourier transform spectrometer located at Justus-Liebig-University in Giessen, Germany. The total sample pressures ranged from 8.8 to 3004.5 Torr with oxygen volume mixing ratios in nitrogen ranging between 0.057 and 0.62. An Exponential Power Gap (EPG) scaling law was used to calculate the N 2-broadening and N 2-line mixing coefficients. The line broadening and shift coefficients for the A-band of oxygen self-perturbed and perturbed by N 2 are modeled using semiclassical calculations based on the Robert-Bonamy formalism and two intermolecular potentials. These potentials involve electrostatic contributions including the hexadecapole moment of the molecules and (a) a simple dispersion contribution with one adjustable parameter to fit the broadening coefficients or (b) the atom-atom Lennard-Jones model without such adjustable parameters. The first potential leads to very weak broadening coefficients for high J transitions whereas the second potential gives much more improved results at medium and large J values, in reasonable agreement with the experimental data. For the line shifts which mainly arise in our calculation from the electronic state dependence of the isotropic potential, their general trends with increasing J values can be well predicted, especially from the first potential. From the theoretical results, we have derived air-broadening and air-induced shift coefficients with an agreement comparable to that obtained for O 2-O 2 and O 2-N 2.
Minetti, A E; Ardigò, L P; Susta, D; Cotelli, F
1998-12-01
The use of muscles as power dissipators is investigated in this study, both from the modellistic and the experimental points of view. Theoretical predictions of the drop landing manoeuvre for a range of initial conditions have been obtained by accounting for the mechanical characteristics of knee extensor muscles, the limb geometry and assuming maximum neural activation. Resulting dynamics have been represented in the phase plane (vertical displacement versus speed) to better classify the damping performance. Predictions of safe landing in sedentary subjects were associated to dropping from a maximum (feet) height of 1.6-2.0 m (about 11 m on the moon). Athletes can extend up to 2.6-3.0 m, while for obese males (m = 100 kg, standard stature) the limit should reduce to 0.9-1.3 m. These results have been calculated by including in the model the estimated stiffness of the 'global elastic elements' acting below the squat position. Experimental landings from a height of 0.4, 0.7, 1.1 m (sedentary males (SM) and male (AM) and female (AF) athletes from the alpine ski national team) showed dynamics similar to the model predictions. While the peak power (for a drop height of about 0.7 m) was similar in SM and AF (AM shows a +40% increase, about 33 W/kg), AF stopped the downward movement after a time interval (0.219 +/- 0.030 s) from touch-down 20% significantly shorter than SM. Landing strategy and the effect of anatomical constraints are discussed in the paper.
Kim, Ellen S; Satter, Martin; Reed, Marilyn; Fadell, Ronald; Kardan, Arash
2016-06-01
Glioblastoma multiforme (GBM) is the most common and lethal malignant glioma in adults. Currently, the modality of choice for diagnosing brain tumor is high-resolution magnetic resonance imaging (MRI) with contrast, which provides anatomic detail and localization. Studies have demonstrated, however, that MRI may have limited utility in delineating the full tumor extent precisely. Studies suggest that MR spectroscopy (MRS) can also be used to distinguish high-grade from low-grade gliomas. However, due to operator dependent variables and the heterogeneous nature of gliomas, the potential for error in diagnostic accuracy with MRS is a concern. Positron emission tomography (PET) imaging with (11)C-methionine (MET) and (18)F-fluorodeoxyglucose (FDG) has been shown to add additional information with respect to tumor grade, extent, and prognosis based on the premise of biochemical changes preceding anatomic changes. Combined PET/MRS is a technique that integrates information from PET in guiding the location for the most accurate metabolic characterization of a lesion via MRS. We describe a case of glioblastoma multiforme in which MRS was initially non-diagnostic for malignancy, but when MRS was repeated with PET guidance, demonstrated elevated choline/N-acetylaspartate (Cho/NAA) ratio in the right parietal mass consistent with a high-grade malignancy. Stereotactic biopsy, followed by PET image-guided resection, confirmed the diagnosis of grade IV GBM. To our knowledge, this is the first reported case of an integrated PET/MRS technique for the voxel placement of MRS. Our findings suggest that integrated PET/MRS may potentially improve diagnostic accuracy in high-grade gliomas.
NASA Astrophysics Data System (ADS)
Aguiar, P.; González-Castaño, D. M.; Gómez, F.; Pardo-Montero, J.
2014-10-01
Liquid-filled ionisation chambers (LICs) are used in radiotherapy for dosimetry and quality assurance. Volume recombination can be quite important in LICs for moderate dose rates, causing non-linearities in the dose rate response of these detectors, and needs to be corrected for. This effect is usually described with Greening and Boag models for continuous and pulsed radiation respectively. Such models assume that the charge is carried by two different species, positive and negative ions, each of those species with a given mobility. However, LICs operating in non-ultrapure mode can contain different types of electronegative impurities with different mobilities, thus increasing the number of different charge carriers. If this is the case, Greening and Boag models can be no longer valid and need to be reformulated. In this work we present a theoretical and numerical study of volume recombination in parallel-plate LICs with multiple charge carrier species, extending Boag and Greening models. Results from a recent publication that reported three different mobilities in an isooctane-filled LIC have been used to study the effect of extra carrier species on recombination. We have found that in pulsed beams the inclusion of extra mobilities does not affect volume recombination much, a behaviour that was expected because Boag formula for charge collection efficiency does not depend on the mobilities of the charge carriers if the Debye relationship between mobilities and recombination constant holds. This is not the case in continuous radiation, where the presence of extra charge carrier species significantly affects the amount of volume recombination.
NASA Astrophysics Data System (ADS)
Janković, I.; Fiori, A.; Dagan, G.
2003-09-01
In parts 1 [, 2003] and 2 [, 2003] a multi-indicator model of heterogeneous formations is devised in order to solve flow and transport in highly heterogeneous formations. The isotropic medium is made up from circular (2-D) or spherical (3-D) inclusions of different conductivities K, submerged in a matrix of effective conductivity. This structure is different from the multi-Gaussian one, even for equal log conductivity distribution and integral scale. A snapshot of a two-dimensional plume in a highly heterogeneous medium of lognormal conductivity distribution shows that the model leads to a complex transport picture. The present study was limited, however, to investigating the statistical moments of ergodic plumes. Two approximate semianalytical solutions, based on a self-consistent model (SC) and on a first-order perturbation in the log conductivity variance (FO), are used in parts 1 and 2 in order to compute the statistical moments of flow and transport variables for a lognormal conductivity pdf. In this paper an efficient and accurate numerical procedure, based on the analytic-element method [, 1989], is used in order to validate the approximate results. The solution satisfies exactly the continuity equation and at high-accuracy the continuity of heads at inclusion boundaries. The dimensionless dependent variables depend on two parameters: the volume fraction n of inclusions in the medium and the log conductivity variance σY2. For inclusions of uniform radius, the largest n was 0.9 (2-D) and 0.7 (3-D), whereas the largest σY2 was equal to 10. The SC approximation underestimates the longitudinal Eulerian velocity variance for increasing n and increasing σY2 in 2-D and, to a lesser extent, in 3-D, as compared to numerical results. The FO approximation overestimates these variances, and these effects are larger in the transverse direction. The longitudinal velocity pdf is highly skewed and negative velocities are present at high σY2, especially in 2-D. The main
Report #15-P-0276, September 4, 2015. Inaccurate reporting of results misrepresents the impacts of pollution prevention activities provided to the public, and misinforms EPA management on the effectiveness of its investment in the program.
Linear regression calibration: theoretical framework and empirical results in EPIC, Germany.
Kynast-Wolf, Gisela; Becker, Nikolaus; Kroke, Anja; Brandstetter, Birgit R; Wahrendorf, Jürgen; Boeing, Heiner
2002-01-01
Large scale dietary assessment instruments are usually based on the food frequency technique and have therefore to be tailored to the involved populations with respect to mode of application and inquired food items. In multicenter studies with different populations, the direct comparability of dietary data is therefore a challenge because each local dietary assessment tool might have its specific measurement error. Thus, for risk analysis the direct use of dietary measurements across centers requires a common reference. For example, in the European prospective cohort study EPIC (European Prospective Investigation into Cancer and Nutrition) a 24-hour recall was chosen to serve as such a reference instrument which was based on a highly standardized computer-assisted interview (EPIC-SOFT). The 24-hour recall was applied to a representative subset of EPIC participants in all centers. The theoretical framework of combining multicenter dietary information was previously published in several papers and is called linear regression calibration. It is based on a linear regression of the food frequency questionnaire to the reference. The regression coefficients describe the absolute and proportional scaling bias of the questionnaire with the 24-hour recall taken as reference. This article describes the statistical basis of the calibration approach and presents first empirical results of its application to fruit, cereals and meat consumption in EPIC Germany represented by the two EPIC centers, Heidelberg and Potsdam. It was found that fruit could be measured well by the questionnaire in both centers (lambdacirc; = 0.98 (males) and lambdacirc; = 0.95 (females) in Heidelberg, and lambdacirc; = 0.86 (males) and lambdacirc; = 0.7 (females) in Potsdam), cereals less (lambdacirc; = 0.53 (males) and lambdacirc; = 0.4 (females) in Heidelberg, and lambdacirc; = 0.53 (males) and lambdacirc; = 0.44 (females) in Potsdam), and that the assessment of meat (lambdacirc; = 0.72 (males) and
NASA Technical Reports Server (NTRS)
Morse, D. R. A.; Sahlberg, J. T.
1977-01-01
The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach.
NASA Astrophysics Data System (ADS)
Close, Laird M.; Thatte, Niranjan; Nielsen, Eric L.; Abuter, Roberto; Clarke, Fraser; Tecza, Matthias
2007-08-01
We present new photometric and spectroscopic measurements for the unique, young, low-mass evolutionary track calibrator AB Dor C. While the new Ks photometry is similar to that we have previously published, the spectral type is found to be much earlier. Based on new H and K IFS spectra of AB Dor C from Thatte et al. (Paper I), we adopt a spectral type of M5.5+/-1.0 for AB Dor C. This is considerably earlier than the M8+/-1 previously estimated by Close et al. and Nielsen et al. yet is consistent with the M6+/-1 independently derived by Luhman & Potter. However, the spectrum presented in Paper I and analyzed here is a significant improvement over any previous spectrum of AB Dor C. We also present new astrometry for the system, which further supports a 0.090+/-0.005 Msolar mass for the system. Once armed with an accurate spectrum and Ks flux, we find L=0.0021+/-0.0005 Lsolar and Teff=2925+170-145 K for AB Dor C. These values are consistent with a ~75 Myr, 0.090+/-0.005 Msolar object like AB Dor C according to the DUSTY evolutionary tracks. Hence, masses can be estimated from the H-R diagram with the DUSTY tracks for young low-mass objects such as AB Dor C. However, we cautiously note that underestimates of the mass from the tracks can occur if one lacks a proper (continuum-preserved) spectrum or is relying on near-infrared fluxes alone. Based on observations made with ESO telescopes at the Paranal Observatories under program 276.C-5013.
González, Lorenzo; Thorne, Leigh; Jeffrey, Martin; Martin, Stuart; Spiropoulos, John; Beck, Katy E; Lockey, Richard W; Vickery, Christopher M; Holder, Thomas; Terry, Linda
2012-11-01
It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (10⁶·⁵ to 10⁶·⁷ LD₅₀ g⁻¹) and five gave 'high titres' (10⁸·¹ to ≥ 10⁸·⁷ LD₅₀ g⁻¹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).
NASA Astrophysics Data System (ADS)
West, J. B.; Ehleringer, J. R.; Cerling, T.
2006-12-01
Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across
The route to MBxNyCz molecular wheels: II. Results using accurate functionals and basis sets
NASA Astrophysics Data System (ADS)
Güthler, A.; Mukhopadhyay, S.; Pandey, R.; Boustani, I.
2014-04-01
Applying ab initio quantum chemical methods, molecular wheels composed of metal and light atoms were investigated. High quality basis sets 6-31G*, TZPV, and cc-pVTZ as well as exchange and non-local correlation functionals B3LYP, BP86 and B3P86 were used. The ground-state energy and structures of cyclic planar and pyramidal clusters TiBn (for n = 3-10) were computed. In addition, the relative stability and electronic structures of molecular wheels TiBxNyCz (for x, y, z = 0-10) and MBnC10-n (for n = 2 to 5 and M = Sc to Zn) were determined. This paper sustains a follow-up study to the previous one of Boustani and Pandey [Solid State Sci. 14 (2012) 1591], in which the calculations were carried out at the HF-SCF/STO3G/6-31G level of theory to determine the initial stability and properties. The results show that there is a competition between the 2D planar and the 3D pyramidal TiBn clusters (for n = 3-8). Different isomers of TiB10 clusters were also studied and a structural transition of 3D-isomer into 2D-wheel is presented. Substitution boron in TiB10 by carbon or/and nitrogen atoms enhances the stability and leads toward the most stable wheel TiB3C7. Furthermore, the computations show that Sc, Ti and V at the center of the molecular wheels are energetically favored over other transition metal atoms of the first row.
Carmical, R.; Nadella, V.; Herbert, Z.; Beckloff, N.; Chittur, S.; Rosato, C.; Perera, A.; Auer, H.; Robinson, M.; Tighe, S.; Holbrook, Jennifer
2013-01-01
It is well recognized that the field of metagenomics is becoming a critical tool for studying previously unobtainable population dynamics at both an identification of species level and a functional or transcriptional level. Because the power to resolve microbial information is so important for identifying the components in an mixed sample, metagenomics can be used to study nearly any possible environment or system including clinical, environmental, and industrial, to name a few. Clinically, it may be used to determine sub-populations colonizing regions of the body or determining a rare infection to assist in treatment strategies. Environmentally it may be used to identify microbial populations within a soil, water or air sample, or within a bioreactor to characterize a population- based functional process. The possibilities are endless. However, the accuracy of a metagenomics dataset relies on three important “gatekeepers” including 1) The ability to effectively extract all DNA or RNA from every cell within a sample, 2) The reliability of the methods used for deep or high-throughput sequencing, and 3) The software used to analyze the data. Since DNA extraction is the first step in the technical process of metagenomics, the Nucleic Acid Research Group (NARG) conducted a study to evaluate extraction methods using a synthetic microbial sample. The synthetic microbial sample was prepared from 10 known bacteria at specific concentrations and ranging in diversity. Samples were extracted in duplicate using various popular kit based methods as well as several homebrew protocols then analyzed by NextGen sequencing on an Illumina HiSeq. Results of the study include determining the percent recovery of those organisms by comparing to the known quantity in the original synthetic mix.
New theoretical results for the Lehmann effect in cholesteric liquid crystals
NASA Technical Reports Server (NTRS)
Brand, Helmut R.; Pleiner, Harald
1988-01-01
The Lehmann effect arising in a cholesteric liquid crystal drop when a temperature gradient is applied parallel to its helical axis is investigated theoretically using a local approach. A pseudoscalar quantity is introduced to allow for cross couplings which are absent in nematic liquid crystals, and the statics and dissipative dynamics are analyzed in detail. It is shown that the Lehmann effect is purely dynamic for the case of an external electric field and purely static for an external density gradient, but includes both dynamic and static coupling contributions for the cases of external temperature or concentration gradients.
NASA Technical Reports Server (NTRS)
Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.
1985-01-01
The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.
NASA Astrophysics Data System (ADS)
Conti, Livia; De Gregorio, Paolo; Bonaldi, Michele; Borrielli, Antonio; Crivellari, Michele; Karapetyan, Gagik; Poli, Charles; Serra, Enrico; Thakur, Ram-Krishna; Rondoni, Lamberto
2012-06-01
We study experimentally, numerically, and theoretically the elastic response of mechanical resonators along which the temperature is not uniform, as a consequence of the onset of steady-state thermal gradients. Two experimental setups and designs are employed, both using low-loss materials. In both cases, we monitor the resonance frequencies of specific modes of vibration, as they vary along with variations of temperatures and of temperature differences. In one case, we consider the first longitudinal mode of vibration of an aluminum alloy resonator; in the other case, we consider the antisymmetric torsion modes of a silicon resonator. By defining the average temperature as the volume-weighted mean of the temperatures of the respective elastic sections, we find out that the elastic response of an object depends solely on it, regardless of whether a thermal gradient exists and, up to 10% imbalance, regardless of its magnitude. The numerical model employs a chain of anharmonic oscillators, with first- and second-neighbor interactions and temperature profiles satisfying Fourier's Law to a good degree. Its analysis confirms, for the most part, the experimental findings and it is explained theoretically from a statistical mechanics perspective with a loose notion of local equilibrium.
Systems theoretic analysis of the central dogma of molecular biology: some recent results.
Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin
2010-03-01
This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.
NASA Technical Reports Server (NTRS)
Childs, Dara W.; Alexander, Chis
1994-01-01
This viewgraph presentation presents the following results: (1) The analytical results overpredict the experimental results for the direct stiffness values and incorrectly predict increasing stiffness with decreasing pressure ratios. (2) Theory correctly predicts increasing cross-coupled stiffness, K(sub YX), with increasing eccentricity and inlet preswirl. (3) Direct damping, C(sub XX), underpredicts the experimental results, but the analytical results do correctly show that damping increases with increasing eccentricity. (4) The whirl frequency values predicted by theory are insensitive to changes in the static eccentricity ratio. Although these values match perfectly with the experimental results at 16,000 rpm, the results at the lower speed do not correspond. (5) Theoretical and experimental mass flow rates match at 5000 rpm, but at 16,000 rpm the theoretical results overpredict the experimental mass flow rates. (6) Theory correctly shows the linear pressure profiles and the associated entrance losses with the specified rotor positions.
NASA Astrophysics Data System (ADS)
Zou, Peng; Kuhnle, Eva D.; Vale, Chris J.; Hu, Hui
2010-12-01
Theoretical predictions for the dynamic structure factor of a harmonically trapped Fermi superfluid near the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer (BEC-BCS) crossover are compared with recent Bragg spectroscopy measurements at large transferred momenta. The calculations are based on a random-phase (or time-dependent Hartree-Fock-Gorkov) approximation generalized to the strongly interacting regime. Excellent agreement with experimental spectra at low temperatures is obtained, with no free parameters. Theoretical predictions for zero-temperature static structure factor are also found to agree well with the experimental results and independent theoretical calculations based on the exact Tan relations. The temperature dependence of the structure factors at unitarity is predicted.
Lee, Wook-Hyun; Rhee, Chang-Kyu; Koo, Junemo; Lee, Jaekeun; Jang, Seok Pil; Choi, Stephen Us; Lee, Ki-Woong; Bae, Hwa-Young; Lee, Gyoung-Ja; Kim, Chang-Kyu; Hong, Sung Wook; Kwon, Younghwan; Kim, Doohyun; Kim, Soo Hyung; Hwang, Kyo Sik; Kim, Hyun Jin; Ha, Hyo Jun; Lee, Seung-Hyun; Choi, Chul Jin; Lee, Ji-Hwan
2011-03-25
Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method. Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device. The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems. This study convincingly demonstrates that the large enhancements in the thermal conductivities of EG-based ZnO nanofluids tested are beyond the lower and upper bounds calculated using the models of the Maxwell and Nan et al. with and without the interfacial thermal resistance.
NASA Astrophysics Data System (ADS)
Lee, Wook-Hyun; Rhee, Chang-Kyu; Koo, Junemo; Lee, Jaekeun; Jang, Seok Pil; Choi, Stephen Us; Lee, Ki-Woong; Bae, Hwa-Young; Lee, Gyoung-Ja; Kim, Chang-Kyu; Hong, Sung Wook; Kwon, Younghwan; Kim, Doohyun; Kim, Soo Hyung; Hwang, Kyo Sik; Kim, Hyun Jin; Ha, Hyo Jun; Lee, Seung-Hyun; Choi, Chul Jin; Lee, Ji-Hwan
2011-12-01
Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method. Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device. The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems. This study convincingly demonstrates that the large enhancements in the thermal conductivities of EG-based ZnO nanofluids tested are beyond the lower and upper bounds calculated using the models of the Maxwell and Nan et al. with and without the interfacial thermal resistance.
A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Scharrer, Joseph Kirk
1987-01-01
The basic equations are derived for a two control volume model for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth order pressure distribution is found by satisfying the leakage equation. The circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to experimental test results.
What Is Self-Specific? Theoretical Investigation and Critical Review of Neuroimaging Results
ERIC Educational Resources Information Center
Legrand, Dorothee; Ruby, Perrine
2009-01-01
The authors propose a paradigm shift in the investigation of the self. Synthesizing neuroimaging results from studies investigating the self, the authors first demonstrate that self-relatedness evaluation involves a wide cerebral network, labeled E-network, comprising the medial prefrontal cortex, precuneus, temporoparietal junction, and temporal…
NASA Astrophysics Data System (ADS)
Liu, Xin; Ben-Zion, Yehuda
2013-09-01
We study analytically and numerically effects of attenuation on cross-correlation functions of ambient noise in a 2-D model with different attenuation constants between and outside a pair of stations. The attenuation is accounted for by quality factor Q(ω) and complex phase velocity. The analytical results are derived for isotropic far-field source distribution assuming the Fresnel approximation and mild attenuation. More general situations including cases with non-isotropic source distributions are examined with numerical simulations. The results show that homogeneous attenuation in the interstation regions produces symmetric amplitude decay of the causal and anticausal parts of the noise cross-correlation function. The attenuation between the receivers and far-field sources generates symmetric exponential amplitude decay and may also cause asymmetric reduction of the causal/anticausal parts that increases with frequency. This frequency dependence can be used to distinguish asymmetric amplitudes due to attenuation from frequency-independent asymmetry in noise correlations generated by non-isotropic source distribution. The attenuations both between and outside station pairs also produce phase shifts that could affect measurements of group and phase velocities. In terms of noise cross-spectra, the interstation attenuation is governed by Struve functions while the attenuation between the far-field sources and receivers is associated with exponential decay and the imaginary part of complex Bessel function. These results are fundamentally different from previous studies of attenuated coherency that append the Bessel function with an exponential decay that depends on the interstation distance.
Gas separation in a membrane unit: Experimental results and theoretical predictions
Tranchino, L.; Santarossa, R.; Carta, F. ); Fabiani, C.; Bimbi, L. )
1989-11-01
A laboratory membrane separation unit was assembled by using composite hollow fibers. It was tested in an automated apparatus for gas separation measurements. The performances of the system were measured for CH{sub 4}/CO{sub 2} mixtures as functions of temperature, pressure, stage cut, feed gas composition, and flow regime. The results were analyzed on the basis of a predictive mathematical model of the process. A good fitting of the data was obtained in most cases except at high pressure, probably as a consequence of structural changes of the active layer of the fibers under pressurization.
Theoretical results on the double-collecting tandem junction solar cell. [radiation damage
NASA Technical Reports Server (NTRS)
Goradia, C.; Vaughn, J.; Baraona, C. R.
1980-01-01
Results of computer calculations using a one dimensional model of the silicon tandem junction solar cell with both front and back current collection are presented. Using realistically achievable geometrical and material parameters, the model predicts that with base widths of 50 micrometers and 100 micrometers and base resistivities between 1 ohm/cm and 20 ohm/cm, beginning of life efficiencies of 14% to 17% and end of life efficiencies of 12% to 14%, after about seven years in synchronous orbit, can be obtained.
NASA Astrophysics Data System (ADS)
Liu, Wenjia; Schmittmann, Beate; Zia, R. K. P.
2012-02-01
Network studies have played a central role for understanding many systems in nature - e.g., physical, biological, and social. So far, much of the focus has been the statistics of networks in isolation. Yet, many networks in the world are coupled to each other. Recently, we considered this issue, in the context of two interacting social networks. In particular, We studied networks with two different preferred degrees, modeling, say, introverts vs. extroverts, with a variety of ``rules for engagement.'' As a first step towards an analytically accessible theory, we restrict our attention to an ``extreme scenario'': The introverts prefer zero contacts while the extroverts like to befriend everyone in the society. In this ``maximally frustrated'' system, the degree distributions, as well as the statistics of cross-links (between the two groups), can depend sensitively on how a node (individual) creates/breaks its connections. The simulation results can be reasonably well understood in terms of an approximate theory.
Surico, N; Grimaldi, G
2001-02-01
In 1995, the Course on Integrated Obstetrical and Gynaecological Techniques was added to the training program of the Obstetrics and Gynaecology Clinic and to the Midwife Diploma School, at the Faculty of Medicine of the A. Avogadro University of East Piemonte. This addition was due to the demand to create a service to train young medical doctors and student midwives on the basis of the requirements of the World Health Organisation, concerning a more natural way of giving birth. In this paper the results obtained after a four years practical application of these clinical techniques are presented. The factors considered were the type of assistance offered in correlation with different outcomes for both mother and child. The study demonstrates a general improvement in the quality of assistance and a decrease of costs for the National Health Service. The data have been compared with those of the neighbour Hospital Division, where deliveries are assisted with traditional techniques.
Colloid filtration in surface dense vegetation: experimental results and theoretical predictions.
Wu, Lei; Muñoz-Carpena, Rafael; Gao, Bin; Yang, Wen; Pachepsky, Yakov A
2014-04-01
Understanding colloid and colloid-facilitated contaminant transport in overland flow through dense vegetation is important to protect water quality in the environment, especially for water bodies receiving agricultural and urban runoff. In previous studies, a single-stem efficiency theory for rigid and clean stem systems was developed to predict colloid filtration by plant stems of vegetation in laminar overland flow. Hence, in order to improve the accuracy of the single-stem efficiency theory to real dense vegetation system, we incorporated the effect of natural organic matter (NOM) on the filtration of colloids by stems. Laboratory dense vegetation flow chamber experiments and model simulations were used to determine the kinetic deposition (filtration) rate of colloids under various conditions. The results show that, in addition to flow hydrodynamics and solution chemistry, steric repulsion afforded by NOM layer on the plants stem surface also plays a significant role in controlling colloid deposition on vegetation in overland flow. For the first time, a refined single-stem efficiency theory with considerations of the NOM effect is developed that describes the experimental data with good accuracy. This theory can be used to not only help construct and refine mathematical models of colloid transport in real vegetation systems in overland flow, but also inform the development of theories of colloid deposition on NOM-coated surfaces in natural, engineered, and biomedical systems.
Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results
NASA Astrophysics Data System (ADS)
Grebenkov, D. S.; Guillot, G.; Sapoval, B.
2007-01-01
A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.
Menapace, E.; Birattari, C.; Bonardi, M.L.; Groppi, F.; Morzenti, S.; Zona, C.
2005-05-24
The radionuclide production for biomedical applications has been brought up in the years, as a special nuclear application, at INFN LASA Laboratory, particularly in co-operation with the JRC-Ispra of EC. Mainly scientific aspects concerning radiation detection and the relevant instruments, the measurements of excitation functions of the involved nuclear reactions, the requested radiochemistry studies and further applications have been investigated. On the side of the nuclear data evaluations, based on nuclear model calculations and critically selected experimental data, the appropriate competence has been developed at ENEA Division for Advanced Physics Technologies. A series of high specific activity accelerator-produced radionuclides in no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET radiodiagnostics, are investigated. In this work, last revised measurements and model calculations are reviewed for excitation functions of natZn(d,X)64Cu, 66Ga reactions, referring to irradiation experiments at K=38 variable energy Cyclotron of JRC-Ispra. Concerning the reaction data for producing 186gRe and 211At/211gPo (including significant emission spectra) and 210At, most recent and critically selected experimental results are considered and discussed in comparison with model calculations paying special care to pre-equilibrium effects estimate and to the appropriate overall parameterization. Model calculations are presented for 226Ra(p,2n)225Ac reaction, according to the working program of the ongoing IAEA CRP on the matter.
NASA Astrophysics Data System (ADS)
El Bakkali, M.; Lhémery, A.; Baronian, V.; Chapuis, B.
2015-01-01
Elastic guided waves (GW) are used to inspect pipeworks in various industries. Modelling tools for simulating GW inspection are necessary to understand complex scattering phenomena occurring at specific features (welds, elbows, junctions...). In pipeworks, straight pipes coexist with elbows. GW propagation in the former cases is well-known, but is less documented in the latter. Their scattering at junction of straight and curved pipes constitutes a complex phenomenon. When a curved part is joined to two straight parts, these phenomena couple and give rise to even more complex wave structures. In a previous work, the SemiAnalytic Finite Element method extended to curvilinear coordinates was used to handle GW propagation in elbows, combined with a mode matching method to predict their scattering at the junction with a straight pipe. Here, a pipework comprising an arbitrary number of elbows of finite length and of different curvature linking straight pipes is considered. A modal scattering matrix is built by cascading local scattering and propagation matrices. The overall formulation only requires meshing the pipe section to compute both the modal solutions and the integrals resulting from the mode-matching method for computing local scattering matrices. Numerical predictions using this approach are studied and compared to experiments.
Convexity of Energy-Like Functions: Theoretical Results and Applications to Power System Operations
Dvijotham, Krishnamurthy; Low, Steven; Chertkov, Michael
2015-01-12
Power systems are undergoing unprecedented transformations with increased adoption of renewables and distributed generation, as well as the adoption of demand response programs. All of these changes, while making the grid more responsive and potentially more efficient, pose significant challenges for power systems operators. Conventional operational paradigms are no longer sufficient as the power system may no longer have big dispatchable generators with sufficient positive and negative reserves. This increases the need for tools and algorithms that can efficiently predict safe regions of operation of the power system. In this paper, we study energy functions as a tool to design algorithms for various operational problems in power systems. These have a long history in power systems and have been primarily applied to transient stability problems. In this paper, we take a new look at power systems, focusing on an aspect that has previously received little attention: Convexity. We characterize the domain of voltage magnitudes and phases within which the energy function is convex in these variables. We show that this corresponds naturally with standard operational constraints imposed in power systems. We show that power of equations can be solved using this approach, as long as the solution lies within the convexity domain. We outline various desirable properties of solutions in the convexity domain and present simple numerical illustrations supporting our results.
2016-01-01
Background Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Methods Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s−1). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Results Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40–70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by
Sextro, R.G.; Lee, D.D.
1988-10-01
Radon adsorption by charcoal is a widely used technique for measuring indoor radon concentration, particularly when short-term results are desired. There are several different devices available, ranging from permeable envelopes filled with charcoal and open-face charcoal-filled canisters to devices incorporating diffusion limiting features to reduce losses of radon due to desorption. However, the integration characteristics of these samplers are not well understood, particularly under conditions of highly varying radon concentrations. A model for predicting the response of various types of charcoal based detectors to time-variant radon concentrations has been developed; the model predictions compare well with results from chamber experiments. Both the experimental and theoretical results have also been compared with integrated continuous-sampling measurements. The implications of these comparisons for use of charcoal for screening measurements is discussed. 5 refs., 4 figs., 2 tabs.
Hou, Chen; Amunugama, Kaushalya
2015-07-01
The relationship between energy expenditure and longevity has been a central theme in aging studies. Empirical studies have yielded controversial results, which cannot be reconciled by existing theories. In this paper, we present a simple theoretical model based on first principles of energy conservation and allometric scaling laws. The model takes into considerations the energy tradeoffs between life history traits and the efficiency of the energy utilization, and offers quantitative and qualitative explanations for a set of seemingly contradictory empirical results. We show that oxidative metabolism can affect cellular damage and longevity in different ways in animals with different life histories and under different experimental conditions. Qualitative data and the linearity between energy expenditure, cellular damage, and lifespan assumed in previous studies are not sufficient to understand the complexity of the relationships. Our model provides a theoretical framework for quantitative analyses and predictions. The model is supported by a variety of empirical studies, including studies on the cellular damage profile during ontogeny; the intra- and inter-specific correlations between body mass, metabolic rate, and lifespan; and the effects on lifespan of (1) diet restriction and genetic modification of growth hormone, (2) the cold and exercise stresses, and (3) manipulations of antioxidant.
Heinrich, Verena; Stange, Jens; Dickhaus, Thorsten; Imkeller, Peter; Krüger, Ulrike; Bauer, Sebastian; Mundlos, Stefan; Robinson, Peter N; Hecht, Jochen; Krawitz, Peter M
2012-03-01
With the availability of next-generation sequencing (NGS) technology, it is expected that sequence variants may be called on a genomic scale. Here, we demonstrate that a deeper understanding of the distribution of the variant call frequencies at heterozygous loci in NGS data sets is a prerequisite for sensitive variant detection. We model the crucial steps in an NGS protocol as a stochastic branching process and derive a mathematical framework for the expected distribution of alleles at heterozygous loci before measurement that is sequencing. We confirm our theoretical results by analyzing technical replicates of human exome data and demonstrate that the variance of allele frequencies at heterozygous loci is higher than expected by a simple binomial distribution. Due to this high variance, mutation callers relying on binomial distributed priors are less sensitive for heterozygous variants that deviate strongly from the expected mean frequency. Our results also indicate that error rates can be reduced to a greater degree by technical replicates than by increasing sequencing depth.
NASA Technical Reports Server (NTRS)
Nicks, C. O.; Childs, D. W.
1984-01-01
The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.
NASA Technical Reports Server (NTRS)
Elrod, D. A.; Childs, D. W.
1986-01-01
A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.
Madsen, Berit L. . E-mail: ronblm@vmmc.org; Hsi, R. Alex; Pham, Huong T.; Fowler, Jack F.; Esagui, Laura C.; Corman, John
2007-03-15
Purpose: To evaluate the feasibility and toxicity of stereotactic hypofractionated accurate radiotherapy (SHARP) for localized prostate cancer. Methods and Materials: A Phase I/II trial of SHARP performed for localized prostate cancer using 33.5 Gy in 5 fractions, calculated to be biologically equivalent to 78 Gy in 2 Gy fractions ({alpha}/{beta} ratio of 1.5 Gy). Noncoplanar conformal fields and daily stereotactic localization of implanted fiducials were used for treatment. Genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated by American Urologic Association (AUA) score and Common Toxicity Criteria (CTC). Prostate-specific antigen (PSA) values and self-reported sexual function were recorded at specified follow-up intervals. Results: The study includes 40 patients. The median follow-up is 41 months (range, 21-60 months). Acute toxicity Grade 1-2 was 48.5% (GU) and 39% (GI); 1 acute Grade 3 GU toxicity. Late Grade 1-2 toxicity was 45% (GU) and 37% (GI). No late Grade 3 or higher toxicity was reported. Twenty-six patients reported potency before therapy; 6 (23%) have developed impotence. Median time to PSA nadir was 18 months with the majority of nadirs less than 1.0 ng/mL. The actuarial 48-month biochemical freedom from relapse is 70% for the American Society for Therapeutic Radiology and Oncology definition and 90% by the alternative nadir + 2 ng/mL failure definition. Conclusions: SHARP for localized prostate cancer is feasible with minimal acute or late toxicity. Dose escalation should be possible.
1988-07-07
OI C FILE COF AD-A 197 086 ). ... ENTA TION PAGE AD A 197 086 b. RESTRICTIVE MARKINGS L~ a. SECURITY CLASSIFICATION AUTH 3. DISTRIBUTION/ AV...and theoretically estimated factors are compared to experiment for a typical metallocene, ferrocene . (’ 20. DISTRIBUItuN/AVAILABILITY OF ABSTRACT 21...is examined, and theoretically estimated factors are ,’or compared to experiment for a typical metallocene, ferrocene . I L) I t *~6% ~ * ’." .-- 4
Hara, T.; Couprie, M.E. ||
1995-12-31
The Super-ACO FEL source in UV is now used for applications like a time-resolved fluorescence in biology and two colors experiments coupling FEL and Synchrotron Radiation, which are naturally synchronized. The stability of the FEL is then a critical issue for the users. Detailed experimental studies conducted on the temporal characteristics of the laser micropulse showed various phenomena, such as a longitudinal micropulse jitter and a deformation of a longitudinal micropulse distribution. A similar analysis has been performed on the laser spectral evolution with a scanning Fabry-Perot interferometer, showing a spectrum narrowing, and a wavelength drift. A longitudinal feedback system developed after the first user experiment, allowed to reduce significantly the longitudinal jitter, the intensity fluctuation and the spectral drift. Nevertheless, the stability of the FEL is very dependent on any perturbation, and the observed phenomena can not be described by former models like super-mode assuming a stationary regime. A new theoretical model has then been developed, in order to simulate dynamic behaviors. A simple iterative method is employed to obtain the laser spectrum. The access to the temporal distribution requires additional complexity, because the Fourier transformation has to be performed for each pass. The comparison between the experimental data and the simulation results will be given.
NASA Astrophysics Data System (ADS)
Wöhling, Thomas; Barkle, Greg; Stenger, Roland; Moorhead, Brian; Wall, Aaron; Clague, Juliet
2014-05-01
Automated equilibrium tension plate lysimeters (AETLs) are arguably the most accurate method to measure unsaturated water and contaminant fluxes below the root zone at the scale of up to 1 m². The AETL technique utilizes a porous sintered stainless-steel plate to provide a comparatively large sampling area with a continuously controlled vacuum that is in "equilibrium" with the surrounding vadose zone matric pressure to ensure measured fluxes represent those under undisturbed conditions. This novel lysimeter technique was used at an intensive research site for investigations of contaminant pathways from the land surface to the groundwater on a sheep and beef farm under pastoral land use in the Tutaeuaua subcatchment, New Zealand. The Spydia research facility was constructed in 2005 and was fully operational between 2006 and 2011. Extending from a central access caisson, 15 separately controlled AETLs with 0.2 m² surface area were installed at five depths between 0.4 m and 5.1 m into the undisturbed volcanic vadose zone materials. The unique setup of the facility ensured minimum interference of the experimental equipment and external factors with the measurements. Over the period of more than five years, a comprehensive data set was collected at each of the 15 AETL locations which comprises of time series of soil water flux, pressure head, volumetric water contents, and soil temperature. The soil water was regularly analysed for EC, pH, dissolved carbon, various nitrogen compounds (including nitrate, ammonia, and organic N), phosphorus, bromide, chloride, sulphate, silica, and a range of other major ions, as well as for various metals. Climate data was measured directly at the site (rainfall) and a climate station at 500m distance. The shallow groundwater was sampled at three different depths directly from the Spydia caisson and at various observation wells surrounding the facility. Two tracer experiments were conducted at the site in 2009 and 2010. In the 2009
NASA Astrophysics Data System (ADS)
Hoang, Trinh Xuan; Ky, Nguyen Anh; Lan, Nguyen Tri; Viet, Nguyen Ai
2015-06-01
This volume contains selected papers presented at the 2nd International Workshop on Theoretical and Computational Physics (IWTCP-2): Modern Methods and Latest Results in Particle Physics, Nuclear Physics and Astrophysics and the 39th National Conference on Theoretical Physics (NCTP-39). Both the workshop and the conference were held from 28th - 31st July 2014 in Dakruco Hotel, Buon Ma Thuot, Dak Lak, Vietnam. The NCTP-39 and the IWTCP-2 were organized under the support of the Vietnamese Theoretical Physics Society, with a motivation to foster scientific exchanges between the theoretical and computational physicists in Vietnam and worldwide, as well as to promote high-standard level of research and education activities for young physicists in the country. The IWTCP-2 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). About 100 participants coming from nine countries participated in the workshop and the conference. At the IWTCP-2 workshop, we had 16 invited talks presented by international experts, together with eight oral and ten poster contributions. At the NCTP-39, three invited talks, 15 oral contributions and 39 posters were presented. We would like to thank all invited speakers, participants and sponsors for making the workshop and the conference successful. Trinh Xuan Hoang, Nguyen Anh Ky, Nguyen Tri Lan and Nguyen Ai Viet
NASA Astrophysics Data System (ADS)
Aditya, Piali Mitil
The adsorption of fluorine changes the electronic, mechanical, and magnetic properties of graphene. While graphene is an excellent conductor and a semimetal, fully fluorinated graphene is an insulating wide bandgap semiconductor. The electronic properties of graphene can be modified by controlling the adsorbate concentration to produce conducting, semiconducting or insulating components for nanoscale electronic devices. The high electronegativity of fluorine makes it very reactive to the graphene sheet resulting in structures that are stable under ambient conditions. Moreover, recent reports of spin 1/2 paramagnetism in graphene has invigorated research efforts in this field due the possibility of spin transport devices. While there is a lot of speculation about the origin of the spin, no clear theoretical explanation exists in the literature. Semi local DFT functionals predict that the fluorine adatom is non-magnetic, whereas calculations with hybrid functionals indicate a local moment of 1muB. However, neither approaches can explain the trends in the experimentally observed spin concentration as a function of fluorination percentage. After an introduction in Chapter 1 and an overview of our methods in Chapter 2, in Chapter 3, using density functional theory (DFT) we show that in highly fluorinated graphene, small regions of unfluorinated carbon atoms produce localized magnetic states at the fermi-level. We study the shape and size dependence of these regions on the net spin and find that most odd clusters have a net spin of 1/2 while most even clusters have zero spin. We construct a minimal tight binding model that captures the low energy response of DFT and describes the localized magnetic states produced by the unfluorinated carbon atoms. This model is then solved exactly to include the effect of excited states in the magnetic response and go beyond the mean field predictions of DFT. The model for magnetic carbon regions, when combined with large scale
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Asencor, F J; Santamaría, C; Iglesias, F J; Domínguez, A
1993-01-01
Using the experimental data obtained with killed cells of Schizosaccharomyces pombe (1), we have formulated a theoretical model that is able to predict cell orientation for microorganisms with ellipsoidal or cylindrical shapes as a function of the frequency of the electric field and of the conductivity of the external medium. In this model, comparison of the difference in potential energy for both orientations parallel-perpendicular with the thermal agitation energy allows one to interpret the intervals where these orientations occur. The model implies that the conductivity of the cytoplasm is slightly higher than that of the external medium. This assumption is easy to understand taking into account that not all the intracytoplasmic material is released to the exterior during cell death. PMID:8324197
Mikheev, Vladimir B.; Laulainen, Nels S.; Barlow, Stephan E.; Knott, Michael; Ford, Ian J.
2000-09-01
A laminar flow tube reactor was designed and constructed to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 to +19.1 degree sign C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) is given. Both isothermal and the isobaric nucleation rates were measured. The experimental data obtained were compared with the measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis, based on the first and the second nucleation theorems, is also presented. The critical cluster size and the excess of internal energy of the critical cluster are obtained. (c) 2000 American Institute of Physics.
Mikheev, Vladimir B.; Laulainen, Nels S. ); Barlow, Stephan E. ); Knott, Michael; Ford, Ian J.
1999-12-01
A Laminar Flow Tube Reactor has been designed and constructed in order to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 C to+19.1 C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) has been provided. Both isothermal and the isobaric nucleation rates have been measured. The experimental data obtained have been compared with measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis based on the first and the second nucleation theorems has been made. The critical cluster size and the excess of internal energy of the critical cluster have been obtained.
Daigle, Hugh; Rice, Mary Anna; Daigle, Hugh
2015-12-14
Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.
NASA Astrophysics Data System (ADS)
Daigle, H.; Rice, M. A.
2015-12-01
Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.
Saraswathi, Saras; Sundaram, Suresh; Sundararajan, Narasimhan; Zimmermann, Michael; Nilsen-Hamilton, Marit
2011-01-01
A combination of Integer-Coded Genetic Algorithm (ICGA) and Particle Swarm Optimization (PSO), coupled with the neural-network-based Extreme Learning Machine (ELM), is used for gene selection and cancer classification. ICGA is used with PSO-ELM to select an optimal set of genes, which is then used to build a classifier to develop an algorithm (ICGA_PSO_ELM) that can handle sparse data and sample imbalance. We evaluate the performance of ICGA-PSO-ELM and compare our results with existing methods in the literature. An investigation into the functions of the selected genes, using a systems biology approach, revealed that many of the identified genes are involved in cell signaling and proliferation. An analysis of these gene sets shows a larger representation of genes that encode secreted proteins than found in randomly selected gene sets. Secreted proteins constitute a major means by which cells interact with their surroundings. Mounting biological evidence has identified the tumor microenvironment as a critical factor that determines tumor survival and growth. Thus, the genes identified by this study that encode secreted proteins might provide important insights to the nature of the critical biological features in the microenvironment of each tumor type that allow these cells to thrive and proliferate.
1998-04-01
LOADING In classical plate theory, deformations are defined entirely by midsurface strains and curvatures. For the uncracked portion of the element, the...equations relating these midsurface strains and curvatures to the load and moment resultants are given by N = Ae°+Bfc M = BS°+DK (1) Or, in their...the region above the crack plane (plate 1) or below the crack plane (plate 2), the midsurface strains and curvatures are related to the load and
Spyratou, E; Makropoulou, M; Serafetinides, A A
2008-04-01
Laser-polymer interactions have attracted extensive attention both for understanding the inherent basic ablation mechanism and for development of tissue simulators in several biomedical laser applications such as in human ophthalmology. Ablation experiments were performed on polymethylmethacrylate used as cornea tissue simulator and PMMA intraocular lenses. The polymer-ablation mechanism was examined with two different wavelengths and pulse durations. The experiments were conducted with Nd:YAG and Er:YAG solid-state lasers, and the ablation rates were simulated by a mathematical model in each case. Furthermore, to investigate the role of tissue hydration during laser ablation, we performed a set of experiments in which Er:YAG laser ablation of hydrophilic acrylic intraocular lenses, with different H(2)O and D(2)O concentrations, was studied. The hydrophilic acrylic lenses with the higher concentration of H(2)O gave the most satisfactory results regarding both the ablation efficiency and the quality of the ablated craters.
Accurate quantum chemical calculations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Accurate Evaluation of Quantum Integrals
NASA Technical Reports Server (NTRS)
Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)
1995-01-01
Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.
Marc Vanderhaeghen
2007-04-01
The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.
Carniato, S. Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.
2015-01-07
We present in detail a theoretical model that provides absolute cross sections for simultaneous core-ionization core-excitation (K{sup −2}V ) and compare its predictions with experimental results obtained on the water molecule after photoionization by synchrotron radiation. Two resonances of different symmetries are assigned in the main K{sup −2}V peak and comparable contributions from monopolar (direct shake-up) and dipolar (conjugate shake-up) core-valence excitations are identified. The main peak is observed with a much greater width than the total experimental resolution. This broadening is the signature of nuclear dynamics.
Accurate spectral color measurements
NASA Astrophysics Data System (ADS)
Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.
1999-08-01
Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.
Coletti, Cecilia; Re, Nazzareno
2006-05-25
High level ab initio quantum chemical calculations have been carried out on the binding of alkali metal to benzene with special attention to heavier metals for which the agreement between the most recent theoretical investigations and the experimental bond dissociation energies (BDEs) is not very good. We performed BSSE-corrected geometry optimizations employing the MP2 level of theory with large basis sets and a modified Stuttgart RSC 1997 basis set for rubidium and cesium and carried out single point energy calculations at the MP4 level, obtaining, also for the latter metals, BDE values in good agreement with the experimental results. Furthermore, in view of the development of empirical correction terms to force fields to describe cation-pi interactions, we evaluated the potential energy surface along the benzene symmetry axis and discussed the role of the BSSE correction on the accuracy of our results.
Accurate Theoretical Predictions of the Properties of Energetic Materials
2008-09-18
collisionally induce a decomposition reaction at a liquid surface. (Given the paucity of full reactive potential functions that describe dissociation to...the correct structurally relaxed products, we believe that the diatomic model system at least provides a test of whether dissociation might be...and that the probability that the surface species will undergo a collision that leads to direct excitation of the diatomic above its bond dissociation
Accurate Theoretical Prediction of the Properties of Energetic Materials
2007-11-02
calculations (e.g. Cheetah ). 8. Sensitivity. The structure prediction and lattice potential work will serve as a platform to examine impact/shock...nitromethane molecules. (In an extension of the present work, we will freeze the internal coordinates of the molecules and assess the extent to which the
NASA Astrophysics Data System (ADS)
Stöltzner, Michael
Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.
Meganck, Jeffrey A; Kozloff, Kenneth M; Thornton, Michael M; Broski, Stephen M; Goldstein, Steven A
2009-12-01
Bone mineral density (BMD) measurements are critical in many research studies investigating skeletal integrity. For pre-clinical research, micro-computed tomography (microCT) has become an essential tool in these studies. However, the ability to measure the BMD directly from microCT images can be biased by artifacts, such as beam hardening, in the image. This three-part study was designed to understand how the image acquisition process can affect the resulting BMD measurements and to verify that the BMD measurements are accurate. In the first part of this study, the effect of beam hardening-induced cupping artifacts on BMD measurements was examined. In the second part of this study, the number of bones in the X-ray path and the sampling process during scanning was examined. In the third part of this study, microCT-based BMD measurements were compared with ash weights to verify the accuracy of the measurements. The results indicate that beam hardening artifacts of up to 32.6% can occur in sample sizes of interest in studies investigating mineralized tissue and affect mineral density measurements. Beam filtration can be used to minimize these artifacts. The results also indicate that, for murine femora, the scan setup can impact densitometry measurements for both cortical and trabecular bone and morphologic measurements of trabecular bone. Last, when a scan setup that minimized all of these artifacts was used, the microCT-based measurements correlated well with ash weight measurements (R(2)=0.983 when air was excluded), indicating that microCT can be an accurate tool for murine bone densitometry.
NASA Astrophysics Data System (ADS)
Yokoyama, M.; Itoh, K.; Nagasaki, K.; Besshou, S.; Okada, H.; Wakatani, M.
2000-11-01
Equilibrium current (EC) suppression or even reversal was experimentally demonstrated in Heliotron E (HE) [Besshou, S., et al., Nucl. Fusion 35 (1995) 173] when the initial magnetic configuration is shifted inwards by vertical field control. The EC properties are systematically investigated on the basis of the Boozer magnetic spectrum, which gives rather good agreement with the experimental results. This agreement provides the experimental evidence for the basis of the theoretical optimization study of stellarator configurations for EC. Equilibrium current suppression seems rather difficult in present experimental conditions for LHD due to its lower aspect ratio with a larger poloidal inhomogeneity of the magnetic field strength than that of HE. For comparison, the EC property in Wendelstein 7-X is also examined on the basis of the same approach, which demonstrates the successful reduction of EC.
NASA Technical Reports Server (NTRS)
Tulinius, J. R.
1974-01-01
The theoretical development and the comparison of results with data of a thick wing and pylon-fuselage-fanpod-nacelle analysis are presented. The analysis utilizes potential flow theory to compute the surface velocities and pressures, section lift and center of pressure, and the total configuration lift, moment, and vortex drag. The skin friction drag is also estimated in the analysis. The perturbation velocities induced by the wing and pylon, fuselage and fanpod, and nacelle are represented by source and vortex lattices, quadrilateral vortices, and source frustums, respectively. The strengths of these singularities are solved for simultaneously including all interference effects. The wing and pylon planforms, twists, cambers, and thickness distributions, and the fuselage and fanpod geometries can be arbitrary in shape, provided the surface gradients are smooth. The flow through nacelle is assumed to be axisymmetric. An axisymmetric center engine hub can also be included. The pylon and nacelle can be attached to the wing, fuselage, or fanpod.
NASA Astrophysics Data System (ADS)
Mikeš, Daniel
2010-05-01
Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same
ERIC Educational Resources Information Center
Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.
2001-01-01
Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)
Accurate monotone cubic interpolation
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1991-01-01
Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.
The, B.; Diercks, R.L.; Stewart, R.E.; Ooijen, P.M.A. van; Horn, J.R. van
2005-08-15
The introduction of digital radiological facilities leads to the necessity of digital preoperative planning, which is an essential part of joint replacement surgery. To avoid errors in the preparation and execution of hip surgery, reliable correction of the magnification of the projected hip is a prerequisite. So far, no validated method exists to accomplish this. We present validated geometrical models of the x-ray projection of spheres, relevant for the calibration procedure to correct for the radiographic magnification. With help of these models a new calibration protocol was developed. The validity and precision of this procedure was determined in clinical practice. Magnification factors could be predicted with a maximal margin of error of 1.5%. The new calibration protocol is valid and reliable. The clinical tests revealed that correction of magnification has a 95% margin of error of -3% to +3%. Future research might clarify if a strict calibration protocol, as presented in this study, results in more accurate preoperative planning of hip joint replacements.
NASA Astrophysics Data System (ADS)
Gliese, U.; Gershman, D. J.; Dorelli, J.; Avanov, L. A.; Barrie, A. C.; Clark, G. B.; Kujawski, J. T.; Mariano, A. J.; Coffey, V. N.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M. A.; Dickson, C.; Smith, D. L.; Salo, C.; MacDonald, E.; Kreisler, S.; Jacques, A. D.; Giles, B. L.; Pollock, C. J.
2015-12-01
The Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers and 16 Dual Ion Spectrometers with 4 of each type on each of 4 spacecraft to enable fast (30 ms for electrons; 150 ms for ions) and spatially differentiated measurements of the full 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity, the reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions of magnetically reconnecting plasmas. We have developed a detailed model of the spectrometer detection system, its behavior and its signal, crosstalk and noise sources. Based on this, we have devised a new calibration method that enables accurate and repeatable measurement of micro-channel plate (MCP) gain, signal loss due to variation in MCP gain and crosstalk effects in one single measurement. The foundational concepts of this new calibration method, named threshold scan, are presented. It is shown how this method has been successfully applied both on ground and in-flight to achieve highly accurate and precise calibration of all 64 spectrometers. Calibration parameters that will evolve in flight are determined daily providing a robust characterization of sensor suite performance, as a basis for both in-situ hardware adjustment and data processing to scientific units, throughout mission lifetime. This is shown to be very desirable as the instruments will produce higher quality raw science data that will require smaller post-acquisition data-corrections using results from in-flight derived pitch angle distribution measurements and ground calibration measurements. The practical application
NASA Technical Reports Server (NTRS)
Stuhlmann, R.; Smith, G. L.
1988-01-01
The effect of radiative heating and cooling by clouds on the available potential energy (APE) is theoretically discussed. It is shown that the cloud radiative contribution to the generation of APE is determined by the net cloud radiative heating and the efficiency factor, which is a function of the temperature distribution of the atmosphere. Results are presented for low and middle cloud effects for three atmospheric layers. Cloud radiative heating is found to be a single function of cloud optical thickness for all classes designed in terms of cloud top heights and optical thickness. Low clouds at low latitudes destroy APE an midclouds generate APE. A concept is developed to relate the cloud radiative heating to cloud heights and optical depths. Cloud-generated radiative heating is computed for January zonal mean conditions for low and midclouds. For both cases, the strongest influence is found in the low troposphere, with marked differences in signs and magnitudes. At extratropical latitudes, both cloud classes generate net radiative cooling. In the tropics, the effect of low cloud changes from net cooling to the net heating as the optical thickness increases, and midclouds cause net heating. A mechanism is described whereby this dependence produces a strong positive feedback effect on the development of SST anomalies in the tropical oceans.
Calibration Techniques for Accurate Measurements by Underwater Camera Systems
Shortis, Mark
2015-01-01
Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172
Calibration Techniques for Accurate Measurements by Underwater Camera Systems.
Shortis, Mark
2015-12-07
Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.
Active disturbance rejection control: methodology and theoretical analysis.
Huang, Yi; Xue, Wenchao
2014-07-01
The methodology of ADRC and the progress of its theoretical analysis are reviewed in the paper. Several breakthroughs for control of nonlinear uncertain systems, made possible by ADRC, are discussed. The key in employing ADRC, which is to accurately determine the "total disturbance" that affects the output of the system, is illuminated. The latest results in theoretical analysis of the ADRC-based control systems are introduced.
NASA Astrophysics Data System (ADS)
Borkowski, Andrzej; Kosek, Wiesław
2015-12-01
The paper presents a summary of research activities concerning theoretical geodesy performed in Poland in the period of 2011-2014. It contains the results of research on new methods of the parameter estimation, a study on robustness properties of the M-estimation, control network and deformation analysis, and geodetic time series analysis. The main achievements in the geodetic parameter estimation involve a new model of the M-estimation with probabilistic models of geodetic observations, a new Shift-Msplit estimation, which allows to estimate a vector of parameter differences and the Shift-Msplit(+) that is a generalisation of Shift-Msplit estimation if the design matrix A of a functional model has not a full column rank. The new algorithms of the coordinates conversion between the Cartesian and geodetic coordinates, both on the rotational and triaxial ellipsoid can be mentioned as a highlights of the research of the last four years. New parameter estimation models developed have been adopted and successfully applied to the control network and deformation analysis. New algorithms based on the wavelet, Fourier and Hilbert transforms were applied to find time-frequency characteristics of geodetic and geophysical time series as well as time-frequency relations between them. Statistical properties of these time series are also presented using different statistical tests as well as 2nd, 3rd and 4th moments about the mean. The new forecasts methods are presented which enable prediction of the considered time series in different frequency bands.
BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...
Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad
NASA Astrophysics Data System (ADS)
Simoniello, R.; Garrido, R.; Jiménez, A.
2008-06-01
The helioseismic instruments aboard the SOHO satellite make it possible to measure solar oscillations as variations of the irradiance (VIRGO) or as variations of the photospheric velocity (GOLF). Theoretically, phase differences between different photometric bands are expected to be around 0 degrees over the p-mode frequency range. By using VIRGO (red) and VIRGO (blue) data, we find a mean phase shift of 8.05±1.81°, whereas by using VIRGO (green) and VIRGO (blue) data, we got a mean value of -1.04±0.19°. Hence, when the analysis includes the VIRGO infrared range, the Sun's atmosphere does not follow an exact adiabatic behavior. In this study, we use the phase shifts obtained by VIRGO (green) and VIRGO (blue) to determine the non-adiabatic parameter phase lag (ψT) as a function of frequency. To this aim, we applied the non radial linearized formula put in the complex form by Garrido: we found a mean value of ψT = 179.95°. The lowest value being ψT = 179.90°, the departure from theoretical predictions is less then a tenth of a degree over the entire p mode frequency range. We can state that the solar atmosphere has a behavior close to the adiabatic case, when the phase shifts and amplitude ratios are computed using VIRGO (green) and VIRGO (blue) data. Nevertheless this small deviation is significant.
Accurate paleointensities - the multi-method approach
NASA Astrophysics Data System (ADS)
de Groot, Lennart
2016-04-01
The accuracy of models describing rapid changes in the geomagnetic field over the past millennia critically depends on the availability of reliable paleointensity estimates. Over the past decade methods to derive paleointensities from lavas (the only recorder of the geomagnetic field that is available all over the globe and through geologic times) have seen significant improvements and various alternative techniques were proposed. The 'classical' Thellier-style approach was optimized and selection criteria were defined in the 'Standard Paleointensity Definitions' (Paterson et al, 2014). The Multispecimen approach was validated and the importance of additional tests and criteria to assess Multispecimen results must be emphasized. Recently, a non-heating, relative paleointensity technique was proposed -the pseudo-Thellier protocol- which shows great potential in both accuracy and efficiency, but currently lacks a solid theoretical underpinning. Here I present work using all three of the aforementioned paleointensity methods on suites of young lavas taken from the volcanic islands of Hawaii, La Palma, Gran Canaria, Tenerife, and Terceira. Many of the sampled cooling units are <100 years old, the actual field strength at the time of cooling is therefore reasonably well known. Rather intuitively, flows that produce coherent results from two or more different paleointensity methods yield the most accurate estimates of the paleofield. Furthermore, the results for some flows pass the selection criteria for one method, but fail in other techniques. Scrutinizing and combing all acceptable results yielded reliable paleointensity estimates for 60-70% of all sampled cooling units - an exceptionally high success rate. This 'multi-method paleointensity approach' therefore has high potential to provide the much-needed paleointensities to improve geomagnetic field models for the Holocene.
Accurate thermoelastic tensor and acoustic velocities of NaCl
NASA Astrophysics Data System (ADS)
Marcondes, Michel L.; Shukla, Gaurav; da Silveira, Pedro; Wentzcovitch, Renata M.
2015-12-01
Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.
Accurate thermoelastic tensor and acoustic velocities of NaCl
Marcondes, Michel L.; Shukla, Gaurav; Silveira, Pedro da; Wentzcovitch, Renata M.
2015-12-15
Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.
On numerically accurate finite element
NASA Technical Reports Server (NTRS)
Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
1974-01-01
A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.
NASA Astrophysics Data System (ADS)
Nishio, Yui; Tange, Takahiro; Hirayama, Naomi; Iida, Tsutomu; Takanashi, Yoshifumi
2014-01-01
The energy states of a two-dimensional electron gas (2DEG) in high-electron-mobility transistors with a pseudomorphically strained InAs channel (PHEMTs) were analyzed rigorously using a recently established theory that takes into account the nonparabolicity of the conduction band of the channel layer. The sheet density of the 2DEG in InxGa1-xAs-PHEMTs and the drain I-V characteristics of those devices were calculated theoretically and compared with the density and characteristics obtained experimentally. Not only the calculated threshold voltage (VTH) but also the calculated transconductance agreed fairly well with the corresponding values obtained experimentally. When the effects of the compositions of the InxGa1-xAs subchannel layer in the composite channel and the channel layer on energy states of 2DEG were investigated in order to establish a guiding principle for a design of the channel structure in PHEMTs, it was found that VTH is determined by the effective conduction-band offset energy ΔEC between the InAlAs barrier and the channel layers.
NASA Astrophysics Data System (ADS)
Bakulev, A. P.; Mikhailov, S. V.; Pimikov, A. V.; Stefanis, N. G.
2011-10-01
A global fit to the data from different collaborations (CELLO, CLEO, BaBar) on the pion-photon transition form factor is carried out using light-cone sum rules. The analysis includes the next-to-leading QCD radiative corrections and the twist-four contributions, while the main next-to-next-to-leading term and the twist-six contribution are taken into account in the form of theoretical uncertainties. We use the information extracted from the data to investigate the pivotal characteristics of the pion distribution amplitude. This is done by dividing the data into two sets: one containing all data up to 9 GeV 2, whereas the other incorporates also the high- Q tail of the BaBar data. We find that it is not possible to accommodate into the fit these BaBar data points with the same accuracy and conclude that it is difficult to explain these data in the standard scheme of OCD.
Accurate Cross Sections for Microanalysis
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747
TAD- THEORETICAL AERODYNAMICS PROGRAM
NASA Technical Reports Server (NTRS)
Barrowman, J.
1994-01-01
This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.
Fontaine, Johannes; Schirmer, Barbara; Hörr, Jutta
2002-07-03
Further NIRS calibrations were developed for the accurate and fast prediction of the total contents of methionine, cystine, lysine, threonine, tryptophan, and other essential amino acids, protein, and moisture in the most important cereals and brans or middlings for animal feed production. More than 1100 samples of global origin collected over five years were analyzed for amino acids following the Official Methods of the United States and European Union. Detailed data and graphics are given to characterize the obtained calibration equations. NIRS was validated with 98 independent samples for wheat and 78 samples for corn and compared to amino acid predictions using linear crude protein regression equations. With a few exceptions, validation showed that 70-98% of the amino acid variance in the samples could be explained using NIRS. Especially for lysine and methionine, the most limiting amino acids for farm animals, NIRS can predict contents in cereals much better than crude protein regressions. Through low cost and high speed of analysis NIRS enables the amino acid analysis of many samples in order to improve the accuracy of feed formulation and obtain better quality and lower production costs.
Accurate oscillator strengths for interstellar ultraviolet lines of Cl I
NASA Technical Reports Server (NTRS)
Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.
1993-01-01
Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.
Theoretical Modeling for Hepatic Microwave Ablation
Prakash, Punit
2010-01-01
Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393
A new approach to compute accurate velocity of meteors
NASA Astrophysics Data System (ADS)
Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William
2016-10-01
The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the meteors' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of meteors, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the meteors. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic meteors ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of meteors with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a meteor, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy
NASA Astrophysics Data System (ADS)
Predoi-Cross, Adriana; Bouanich, J. P.; Benner, D. Chris; May, A. D.; Drummond, J. R.
2000-07-01
We have measured the room temperature, widths, pressure shifts, and line asymmetry coefficients for many transitions of the first overtone band of CO and CO perturbed by N2. The broadening coefficients were obtained with an accuracy of about 1%. The pure CO profiles have been fitted by a Voigt profile while the CO-N2 spectral profiles have been fitted with a Lorentz and an empirical line shape model (HCv) that blends together a hard collision model and a speed-dependent Lorentz profile. In addition to the Voigt, Lorentz, and HCv models, we have added a dispersion profile to account for weak line mixing. The line broadening and shift coefficients are compared to semiclassical calculations employing a variety of intermolecular interactions. The line asymmetry results are compared to line mixing calculations based on the energy corrected sudden (ECS) model. The results indicate that effects other than line mixing also contribute to the measured line asymmetry.
NASA Technical Reports Server (NTRS)
Carta, F. O.
1982-01-01
Tests were conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and, particularly, the aerodynamic damping coefficient. Results from the unsteady Verdon/Caspar theory for cascaded blades with nonzero thickness and camber were compared with the experimental measurements. The three primary results are: (1) from the leading edge plane blade data, the cascade was judged to be periodic in unsteady flow over the range of parameters tested; (2) the interblade phase angle was found to be the single most important parameter affecting the stability of the oscillating cascade blades; and (3) the real blade theory and the experiment were in excellent agreement for the several cases chosen for comparison.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Redd, L. T.
1977-01-01
Dynamic wind tunnel tests have been conducted on a 1/6-scale model of a general aviation airplane equipped with an all-mechanical gust alleviation system which uses auxiliary aerodynamic surfaces to drive the flaps. The longitudinal short period motions were studied under simulated gust conditions in order to verify the mathematical model used in a previous study to predict the performance of the full scale system and determine the amount of normal acceleration alleviation which could be attained. The model responses were measured for different configurations with the system active and without the system active for comparison. The tests confirmed the general relationships between the experimental variables and the model responses predicted by the mathematical model, but there were significant differences in the magnitudes of the responses. The experimental results for the model were used to estimate a reduction of 30 percent in the rms normal acceleration response of a similar full scale airplane in atmospheric turbulence.
SIMOS,N.; KIRK,H.; FINFROCK,C.; PRIGL,R.; BROWN,K.; KAHN,S.; LUDEWIG,H.; MCDONALDK.; CATES,M.; TSAI,J.; BESHEARS,D.; RIEMER,B.
2001-11-11
The need for intense muon beams for muon colliders and neutrino factories has lead to a concept of a high performance target station in which a 1-4 MW proton beam of 6-24 GeV impinges on a target inside a high field solenoid channel. While novel technical issues exist regarding the survivability of the target itself, the need to pass the tightly focused proton beam through beam windows poses additional concerns. In this paper, issues associated with the interaction of a proton beam with window structures designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 x 10{sup 12} per pulse and a pulse length of approximately 100 ns is expected to be tightly focused (to 0.5 mm rms one sigma radius) on an experimental target. Such beam will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed assessment of the thermal/shock response of beam windows is attempted with a goal of identifying the best window material candidate. Further, experimental strain results and comparison with the predicted values are presented and discussed.
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Gunter, Edgar J.
2007-01-01
A case study of a high-speed seal test rotor shows how rotor dynamic analysis can be used to diagnose the source of high vibrations and evaluate a proposed remedy. Experimental results are compared with the synchronous and non-synchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers. Test performance with the original damper of length 5.84 mm was marginal. Non-synchronous whirling occurred at the overhung seal test disk and there was a high amplitude synchronous response near the drive spline above 32,000 rpm. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. Seal test rotor orbits and vibration levels with the extended squeeze film dampers showed smooth operation to 40,444 rpm.
NASA Astrophysics Data System (ADS)
Wu, Su-Yong; Long, Xing-Wu; Yang, Kai-Yong
2009-09-01
To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function’s gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit function. It has outstanding performance in multilayer optical coating design with a large layer number.
Manyazewal, Tsegahun; Paterniti, Antonio D; Redfield, Robert R; Marinucci, Francesco
2013-01-01
Providing regular external quality assessment of primary level laboratories and timely feedback is crucial to ensure the reliability of testing capacity of the whole laboratory network. This study was aimed to assess the diagnostic performances of primary level laboratories in Southwest Showa Zone in Ethiopia. An external quality assessment protocol was devised whereby from among all the samples collected on-site at 4 health centers (HCs), each HC sent to a district hospital (DH) on a weekly basis 2 TB slides (1 Ziehl-Neelsen stained and another unstained), 2 malaria slides (1 Giemsa stained and another unstained), and 2 blood samples for HIV testing (1 whole blood and another plasma) for a comparative analysis. Similarly, the DH preserved the same amount and type of specimens to send to each HC for retesting. From October to November 2011, 192 single-blinded specimens were rechecked: 64 TB slides, 64 malaria slides, and 64 blood specimens for HIV testing. The analyses demonstrated an overall agreement of 95.3% (183/192) between the test and the retest, and 98.4% (63/64), 92.2% (59/64,) and 95.3% (61/64) for TB microscopy, malaria microscopy, and HIV rapid testing, respectively. Of the total TB slides tested positive, 20/23 (87%) were quantified similar in both laboratories. The agreement on HIV rapid testing was 100% (32/32) when plasma samples were tested either at HC (16/16) or at DH (16/16), while when whole blood specimens were tested, the agreement was 87.5% (14/16) and 93.8% (15/16) for samples prepared by HCs and DH, respectively. Results of this new approach proved that secondary laboratories could play a vital role in assuring laboratory qualities at primary level HCs, without depending on remotely located national and regional laboratories to provide this support.
Knight L.B. Jr.; Cobranchi, S.T.; Petty, J.T.; Earl, E.; Feller, D.; Davidson, E.R.
1989-01-15
The first spectroscopic study of the diatomic radical BC is reported which confirms previous theoretical predictions of a /sup 4/summation/sup -/ electronic ground state. The nuclear hyperfine interactions (A tensors) obtained for /sup 11/B, /sup 10/B, and /sup 13/C from the electron spin resonance (ESR) measurements are compared with extensive ab initio CI calculations. The BC molecule is one of the first examples of a small high spin radical for such an in-depth experimental--theoretical comparison. The electronic structure of BC obtained from an analysis of the nuclear hyperfine interaction (hfi) is compared to that obtained from a Mulliken-type population analysis conducted on a CI wave function which yields A/sub iso/ and A/sub dip/ results in good agreement with the observed values. The BC radical was generated by the laser vaporization of a boron--carbon mixture and trapped in neon, argon, and krypton matrices at 4 K for a complete ESR characterization. The magnetic parameters (MHz) obtained for /sup 11/B/sup 13/C in solid neon are: g/sub parallel/ = 2.0015(3); g/sub perpendicular/ = 2.0020(3); D(zfs) = 1701(2); /sup 11/B: chemically bondA/sub parallel/chemically bond = 100(1); chemically bondA/sub perpendicular/chemically bond = 79(1); /sup 13/C: chemically bondA/sub parallel/chemically bond = 5(2) and chemically bondA/sub perpendicular/chemically bond = 15(1). Based on comparison with the theoretical results, the most likely choice of signs is that all A values are positive.
Theoretical Delay Time Distributions
NASA Astrophysics Data System (ADS)
Nelemans, Gijs; Toonen, Silvia; Bours, Madelon
2013-01-01
We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of Type Ia supernova progenitors. We also compare the results of different research groups and conclude that, although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this alone cannot explain all the differences.
An Accurate, Simplified Model Intrabeam Scattering
Bane, Karl LF
2002-05-23
Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.
On accurate determination of contact angle
NASA Technical Reports Server (NTRS)
Concus, P.; Finn, R.
1992-01-01
Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.
Accurate Evaluation of Microwave-Leakage-Induced Frequency Shifts in Fountain Clocks
NASA Astrophysics Data System (ADS)
Fang, Fang; Liu, Kun; Chen, Wei-Liang; Liu, Nian-Feng; Suo, Rui; Li, Tian-Chun
2014-10-01
We report theoretical calculations of the transition probability errors introduced by microwave leakage in Cs fountain clocks, which will shift the clock frequency. The results show that the transition probability errors are affected by the Ramsey pulse amplitude, the relative phase between the Ramsey field and the leakage field, and the asymmetry of the leakage fields for the upward and downward passages. This effect is quite different for the leakage fields presenting below the Ramsey cavity and above the Ramsey cavity. The leakage-field-induced frequency shifts of the NIM5 fountain clock in different cases are measured. The results are consistent with the theoretical calculations, and give an accurate evaluation of the leakage-field-induced frequency shifts, as distinguished from other microwave-power-related effects for the first time.
An effective method for accurate prediction of the first hyperpolarizability of alkalides.
Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min
2012-01-15
The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (β(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict β(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.
Accurate Guitar Tuning by Cochlear Implant Musicians
Lu, Thomas; Huang, Juan; Zeng, Fan-Gang
2014-01-01
Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081
Accurate guitar tuning by cochlear implant musicians.
Lu, Thomas; Huang, Juan; Zeng, Fan-Gang
2014-01-01
Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.
Information Theoretic Shape Matching.
Hasanbelliu, Erion; Giraldo, Luis Sanchez; Príncipe, José C
2014-12-01
In this paper, we describe two related algorithms that provide both rigid and non-rigid point set registration with different computational complexity and accuracy. The first algorithm utilizes a nonlinear similarity measure known as correntropy. The measure combines second and high order moments in its decision statistic showing improvements especially in the presence of impulsive noise. The algorithm assumes that the correspondence between the point sets is known, which is determined with the surprise metric. The second algorithm mitigates the need to establish a correspondence by representing the point sets as probability density functions (PDF). The registration problem is then treated as a distribution alignment. The method utilizes the Cauchy-Schwarz divergence to measure the similarity/distance between the point sets and recover the spatial transformation function needed to register them. Both algorithms utilize information theoretic descriptors; however, correntropy works at the realizations level, whereas Cauchy-Schwarz divergence works at the PDF level. This allows correntropy to be less computationally expensive, and for correct correspondence, more accurate. The two algorithms are robust against noise and outliers and perform well under varying levels of distortion. They outperform several well-known and state-of-the-art methods for point set registration.
Accurate spectral modeling for infrared radiation
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Gupta, S. K.
1977-01-01
Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.
Madebene, Bruno; Ulusoy, Inga; Mancera, Luis; Scribano, Yohann; Chulkov, Sergey
2011-01-01
Summary We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters. PMID:22003450
Accurate formula for conversion of tunneling current in dynamic atomic force spectroscopy
NASA Astrophysics Data System (ADS)
Sader, John E.; Sugimoto, Yoshiaki
2010-07-01
Recent developments in frequency modulation atomic force microscopy enable simultaneous measurement of frequency shift and time-averaged tunneling current. Determination of the interaction force is facilitated using an analytical formula, valid for arbitrary oscillation amplitudes [Sader and Jarvis, Appl. Phys. Lett. 84, 1801 (2004)]. Here we present the complementary formula for evaluation of the instantaneous tunneling current from the time-averaged tunneling current. This simple and accurate formula is valid for any oscillation amplitude and current law. The resulting theoretical framework allows for simultaneous measurement of the instantaneous tunneling current and interaction force in dynamic atomic force microscopy.
Accurate thermoplasmonic simulation of metallic nanoparticles
NASA Astrophysics Data System (ADS)
Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing
2017-01-01
Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.
Accurate lineshape spectroscopy and the Boltzmann constant
Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.
2015-01-01
Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085
Accurate ab Initio Spin Densities.
Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus
2012-06-12
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].
Accurate microfour-point probe sheet resistance measurements on small samples.
Thorsteinsson, Sune; Wang, Fei; Petersen, Dirch H; Hansen, Torben Mikael; Kjaer, Daniel; Lin, Rong; Kim, Jang-Yong; Nielsen, Peter F; Hansen, Ole
2009-05-01
We show that accurate sheet resistance measurements on small samples may be performed using microfour-point probes without applying correction factors. Using dual configuration measurements, the sheet resistance may be extracted with high accuracy when the microfour-point probes are in proximity of a mirror plane on small samples with dimensions of a few times the probe pitch. We calculate theoretically the size of the "sweet spot," where sufficiently accurate sheet resistances result and show that even for very small samples it is feasible to do correction free extraction of the sheet resistance with sufficient accuracy. As an example, the sheet resistance of a 40 microm (50 microm) square sample may be characterized with an accuracy of 0.3% (0.1%) using a 10 microm pitch microfour-point probe and assuming a probe alignment accuracy of +/-2.5 microm.
Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter
Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.
2016-01-01
Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887
Accurate measurement of liquid transport through nanoscale conduits
Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua
2016-01-01
Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.
1975-01-01
The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.
NASA Astrophysics Data System (ADS)
Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi
2015-02-01
With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.
Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao
2015-10-20
Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.
Bayne, C.K.; Angelini, P.
1981-08-01
Theoretical and experimental studies compared the abilities of volumetric and gravimetric dispensers to dispense accurately fissile and fertile fuel particles. Such devices are being developed for the fabrication of sphere-pac fuel rods for high-temperature gas-cooled light water and fast breeder reactors. The theoretical examination suggests that, although the fuel particles are dispensed more accurately by the gravimetric dispenser, the amount of nuclear material in the fuel particles dispensed by the two methods is not significantly different. The experimental results demonstrated that the volumetric dispenser can dispense both fuel particles and nuclear materials that meet standards for fabricating fuel rods. Performance of the more complex gravimetric dispenser was not significantly better than that of the simple yet accurate volumetric dispenser.
Theoretical approximations and experimental extinction coefficients of biopharmaceuticals.
Miranda-Hernández, Mariana P; Valle-González, Elba R; Ferreira-Gómez, David; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio
2016-02-01
UV spectrophotometric measurement is a widely accepted and standardized routine analysis for quantitation of highly purified proteins; however, the reliability of the results strictly depends on the accuracy of the employed extinction coefficients. In this work, an experimental estimation of the differential refractive index (dn/dc), based on dry weight measurements, was performed in order to determine accurate extinction coefficients for four biotherapeutic proteins and one synthetic copolymer after separation in a size-exclusion ultra-performance liquid chromatograph coupled to an ultraviolet, multiangle light scattering and refractive index (SE-UPLC-UV-MALS-RI) multidetection system. The results showed small deviations with respect to theoretical values, calculated from the specific amino acid sequences, for all the studied immunoglobulins. Nevertheless, for proteins like etanercept and glatiramer acetate, several considerations, such as glycan content, partial specific volume, polarizability, and higher order structure, should be considered to properly calculate theoretical extinction coefficient values. Herein, these values were assessed with simple approximations. The precision of the experimentally obtained extinction coefficients, and its convergence towards the theoretical values, makes them useful for characterization and comparability exercises. Also, these values provide insight into the absorbance and scattering properties of the evaluated proteins. Overall, this methodology is capable of providing accurate extinction coefficients useful for development studies.
NASA Technical Reports Server (NTRS)
Mullan, Dermott J.
1987-01-01
Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.
Accurate ab initio vibrational energies of methyl chloride
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Raman Spectroscopy as an Accurate Probe of Defects in Graphene
NASA Astrophysics Data System (ADS)
Rodriguez-Nieva, Joaquin; Barros, Eduardo; Saito, Riichiro; Dresselhaus, Mildred
2014-03-01
Raman Spectroscopy has proved to be an invaluable non-destructive technique that allows us to obtain intrinsic information about graphene. Furthermore, defect-induced Raman features, namely the D and D' bands, have previously been used to assess the purity of graphitic samples. However, quantitative studies of the signatures of the different types of defects on the Raman spectra is still an open problem. Experimental results already suggest that the Raman intensity ratio ID /ID' may allow us to identify the nature of the defects. We study from a theoretical point of view the power and limitations of Raman spectroscopy in the study of defects in graphene. We derive an analytic model that describes the Double Resonance Raman process of disordered graphene samples, and which explicitly shows the role played by both the defect-dependent parameters as well as the experimentally-controlled variables. We compare our model with previous Raman experiments, and use it to guide new ways in which defects in graphene can be accurately probed with Raman spectroscopy. We acknowledge support from NSF grant DMR1004147.
Accurate measurement of unsteady state fluid temperature
NASA Astrophysics Data System (ADS)
Jaremkiewicz, Magdalena
2017-03-01
In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
38 CFR 4.46 - Accurate measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...
High-accuracy theoretical thermochemistry of fluoroethanes.
Nagy, Balázs; Csontos, Botond; Csontos, József; Szakács, Péter; Kállay, Mihály
2014-07-03
A highly accurate coupled-cluster-based ab initio model chemistry has been applied to calculate the thermodynamic functions including enthalpies of formation and standard entropies for fluorinated ethane derivatives, C2HxF6-x (x = 0-5), as well as ethane, C2H6. The invoked composite protocol includes contributions up to quadruple excitations in coupled-cluster (CC) theory as well as corrections beyond the nonrelativistic and Born-Oppenheimer approximations. For species CH2F-CH2F, CH2F-CHF2, and CHF2-CHF2, where anti/gauche isomerism occurs due to the hindered rotation around the C-C bond, conformationally averaged enthalpies and entropies at 298.15 K are also calculated. The results obtained here are in reasonable agreement with previous experimental and theoretical findings, and for all fluorinated ethanes except CH2FCH3 and C2F6 this study delivers the best available theoretical enthalpy and entropy estimates.
Accurate upwind methods for the Euler equations
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1993-01-01
A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.
Theoretical molecular studies of astrophysical interest
NASA Technical Reports Server (NTRS)
Flynn, George
1991-01-01
When work under this grant began in 1974 there was a great need for state-to-state collisional excitation rates for interstellar molecules observed by radio astronomers. These were required to interpret observed line intensities in terms of local temperatures and densities, but, owing to lack of experimental or theoretical values, estimates then being used for this purpose ranged over several orders of magnitude. A problem of particular interest was collisional excitation of formaldehyde; Townes and Cheung had suggested that the relative size of different state-to-state rates (propensity rules) was responsible for the anomalous absorption observed for this species. We believed that numerical molecular scattering techniques (in particular the close coupling or coupled channel method) could be used to obtain accurate results, and that these would be computationally feasible since only a few molecular rotational levels are populated at the low temperatures thought to prevail in the observed regions. Such calculations also require detailed knowledge of the intermolecular forces, but we thought that those could also be obtained with sufficient accuracy by theoretical (quantum chemical) techniques. Others, notably Roy Gordon at Harvard, had made progress in solving the molecular scattering equations, generally using semi-empirical intermolecular potentials. Work done under this grant generalized Gordon's scattering code, and introduced the use of theoretical interaction potentials obtained by solving the molecular Schroedinger equation. Earlier work had considered only the excitation of a diatomic molecule by collisions with an atom, and we extended the formalism to include excitation of more general molecular rotors (e.g., H2CO, NH2, and H2O) and also collisions of two rotors (e.g., H2-H2).
NASA Astrophysics Data System (ADS)
Soltani, Peyman; Darudi, Ahmad; Moradi, Ali Reza; Amiri, Javad; Nehmetallah, Georges
2016-05-01
In this paper, the Transport of Intensity Equation (TIE) for testing of an aspheric surface is verified experimentally. Using simulation, a proper defocus distance Δ𝑧 that leads to an accurate solution of TIE is estimated whenever the conic constant and configuration of the experiment are known. To verify this procedure a non-nulled experiment for testing an aspheric is used. For verification of the solution, the results are compared with the Shack-Hartmann sensor. The theoretical method and experimental results are compared to validate the results.
Theoretical calculation of Joule-Thomson coefficient by using third virial coefficient
NASA Astrophysics Data System (ADS)
Mamedov, Bahtiyar Akber; Somuncu, Elif; Askerov, Iskender M.
2017-02-01
The Joule-Thomson coefficient has been theoretical investigated by using third virial coefficient. Established expressions enable us accurate and rapid calculations of Joule-Thomson coefficient. As seen from numerical results the analytical expressions for third virial coefficients are a very useful, giving a very fast method to calculate other thermodynamics properties of gasses. As an example, the calculation results have been successfully tested by using various literature data.
Fraccarollo, Alberto; Canti, Lorenzo; Marchese, Leonardo; Cossi, Maurizio
2017-03-07
The force fields used to simulate the gas adsorption in porous materials are strongly dominated by the van der Waals (vdW) terms. Here we discuss the delicate problem to estimate these terms accurately, analyzing the effect of different models. To this end, we simulated the physisorption of CH4, CO2, and Ar into various Al-free microporous zeolites (ITQ-29, SSZ-13, and silicalite-1), comparing the theoretical results with accurate experimental isotherms. The vdW terms in the force fields were parametrized against the free gas densities and high-level quantum mechanical (QM) calculations, comparing different methods to evaluate the dispersion energies. In particular, MP2 and DFT with semiempirical corrections, with suitable basis sets, were chosen to approximate the best QM calculations; either Lennard-Jones or Morse expressions were used to include the vdW terms in the force fields. The comparison of the simulated and experimental isotherms revealed that a strong interplay exists between the definition of the dispersion energies and the functional form used in the force field; these results are fairly general and reproducible, at least for the systems considered here. On this basis, the reliability of different models can be discussed, and a recipe can be provided to obtain accurate simulated adsorption isotherms.
Accurate Development of Thermal Neutron Scattering Cross Section Libraries
Hawari, Ayman; Dunn, Michael
2014-06-10
The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.
Accurate free and forced rotational motions of rigid Venus
NASA Astrophysics Data System (ADS)
Cottereau, L.; Souchay, J.; Aljbaae, S.
2010-06-01
Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.
Soltani, Peyman; Darudi, Ahmad; Nehmetallah, George; Moradi, Ali Reza; Amiri, Javad
2016-12-10
In the last decade, the transport of intensity has been increasingly used in microscopy, wavefront sensing, and metrology. In this study, we verify by simulation and experiment the use of the transport of intensity equation (TIE) in the accurate testing of optical aspheric surfaces. Guided by simulation results and assuming that the experimental setup parameters and the conic constants are known, one can estimate an appropriate defocusing distance Δz that leads to an accurate solution of the TIE. In this paper, this method is verified through the construction of a non-nulled experiment for testing the 2D profile of an aspheric surface. The theoretical method and experimental results are compared to validate the results. Finally, to validate the TIE methodology, the phase distribution obtained by TIE is compared with the phase distribution obtained by a Shack-Hartmann sensor.
LSM: perceptually accurate line segment merging
NASA Astrophysics Data System (ADS)
Hamid, Naila; Khan, Nazar
2016-11-01
Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.
Micron Accurate Absolute Ranging System: Range Extension
NASA Technical Reports Server (NTRS)
Smalley, Larry L.; Smith, Kely L.
1999-01-01
The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.
Problems in publishing accurate color in IEEE journals.
Vrhel, Michael J; Trussell, H J
2002-01-01
To demonstrate the performance of color image processing algorithms, it is desirable to be able to accurately display color images in archival publications. In poster presentations, the authors have substantial control of the printing process, although little control of the illumination. For journal publication, the authors must rely on professional intermediaries (printers) to accurately reproduce their results. Our previous work describes requirements for accurately rendering images using your own equipment. This paper discusses the problems of dealing with intermediaries and offers suggestions for improved communication and rendering.
The utility of accurate mass and LC elution time information in the analysis of complex proteomes
Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Anderson, Kevin K.; Daly, Don S.; Smith, Richard D.
2005-08-01
Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/- 5 ppm and 1 ppm) and NET value (no constraint, +/- 0.05 and 0.01 on a 0-1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LCMS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate easurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/- 1 ppm and elution time easurements within +/- 0.01 NET.
Robust air refractometer for accurate compensation of the refractive index of air in everyday use.
Kruger, O; Chetty, N
2016-11-10
The definition of the meter is based on the speed of light in a vacuum; however, most dimensional measurements, when performed using laser interferometry, are performed in air. A velocity of light compensation needs to be applied to the velocity of the laser light for accurate measurements of the speed of light to be approximated in a vacuum. Most practices use a weather-station method, whereby the ambient conditions are measured. Thereafter, the modified Edlén's equation is used, and corrections are calculated for the wavelength of the laser. The theoretical calculation is, however, only accurate to 3*10^{-8} without taking into account the accuracy of the sensors. Thus, this work focuses on investigations into the velocity of light compensations, both to improve upon the accuracy of the Edlén equation method in everyday use, and to verify the accuracy of the current weather-station systems in use through comparison with the refractometer. A refractometer that allows for velocity of light compensation measurements was developed, tested, and verified. The system was designed to be simple and cost-effective for use in everyday dimensional measurements, but with high accuracy. Achieved results show that although simple in design, the refractometer is accurate to at least 1*10^{-8}, which meets our initial condition for design.
Theoretical design of lightning panel
NASA Astrophysics Data System (ADS)
Emetere, M. E.; Olawole, O. F.; Sanni, S. E.
2016-02-01
The light trapping device (LTD) was theoretically designed to suggests the best way of harvesting the energy derived from natural lightning. The Maxwell's equation was expanded using a virtual experimentation via a MATLAB environment. Several parameters like lightning flash and temperature distribution were consider to investigate the ability of the theoretical lightning panel to convert electricity efficiently. The results of the lighting strike angle on the surface of the LTD shows the maximum power expected per time. The results of the microscopic thermal distribution shows that if the LTD casing controls the transmission of the heat energy, then the thermal energy storage (TES) can be introduced to the lightning farm.
Balucani, Nadia; Capozza, Giovanni; Segoloni, Enrico; Russo, Andrea; Bobbenkamp, Rolf; Casavecchia, Piergiorgio; Gonzalez-Lezana, Tomas; Rackham, Edward J; Bañares, Luis; Aoiz, F Javier
2005-06-15
In this paper we report a combined experimental and theoretical study on the dynamics of the insertion reaction C((1)D)+D(2) at 15.5 kJ mol(-1) collision energy. Product angular and velocity distributions have been obtained in crossed beam experiments and quasiclassical trajectory (QCT) and rigorous statistical calculations have been performed on the recent and accurate ab initio potential energy surface of Bussery-Honvault, Honvault, and Launay at the energy of the experiment. The molecular-beam results have been simulated using the theoretical calculations. Good agreement between experiment and both QCT and statistical predictions is found.
Estimation of bone permeability using accurate microstructural measurements.
Beno, Thoma; Yoon, Young-June; Cowin, Stephen C; Fritton, Susannah P
2006-01-01
While interstitial fluid flow is necessary for the viability of osteocytes, it is also believed to play a role in bone's mechanosensory system by shearing bone cell membranes or causing cytoskeleton deformation and thus activating biochemical responses that lead to the process of bone adaptation. However, the fluid flow properties that regulate bone's adaptive response are poorly understood. In this paper, we present an analytical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity in bone. First, we estimate the total number of canaliculi emanating from each osteocyte lacuna based on published measurements from parallel-fibered shaft bones of several species (chick, rabbit, bovine, horse, dog, and human). Next, we determine the local three-dimensional permeability of the lacunar-canalicular porosity for these species using recent microstructural measurements and adapting a previously developed model. Results demonstrated that the number of canaliculi per osteocyte lacuna ranged from 41 for human to 115 for horse. Permeability coefficients were found to be different in three local principal directions, indicating local orthotropic symmetry of bone permeability in parallel-fibered cortical bone for all species examined. For the range of parameters investigated, the local lacunar-canalicular permeability varied more than three orders of magnitude, with the osteocyte lacunar shape and size along with the 3-D canalicular distribution determining the degree of anisotropy of the local permeability. This two-step theoretical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity will be useful for accurate quantification of interstitial fluid movement in bone.
NASA Astrophysics Data System (ADS)
Lasemi, Ali; Xue, Deyi; Gu, Peihua
2016-05-01
Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.
Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry
NASA Astrophysics Data System (ADS)
Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.
2013-09-01
Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable
An Accurate Temperature Correction Model for Thermocouple Hygrometers 1
Savage, Michael J.; Cass, Alfred; de Jager, James M.
1982-01-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241
An accurate temperature correction model for thermocouple hygrometers.
Savage, M J; Cass, A; de Jager, J M
1982-02-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature.
Fast and accurate exhaled breath ammonia measurement.
Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H
2014-06-11
This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.
Topics in theoretical astrophysics
NASA Astrophysics Data System (ADS)
Li, Chao
This thesis presents a study of various interesting problems in theoretical astrophysics, including gravitational wave astronomy, gamma ray bursts and cosmology. Chapters 2, 3 and 4 explore prospects for detecting gravitational waves from stellar-mass compact objects spiraling into intermediate-mass black holes with ground-based observatories. It is shown in chapter 2 that if the central body is not a BH but its metric is stationary, axisymmetric, reflection symmetric and asymptotically flat, then the waves will likely be triperiodic, as for a BH. Chapters 3 and 4 show that the evolutions of the waves' three fundamental frequencies and of the complex amplitudes of their spectral components encode (in principle) details of the central body's metric, the energy and angular momentum exchange between the central body and the orbit, and the time-evolving orbital elements. Chapter 5 studies a local readout method to enhance the low frequency sensitivity of detuned signal-recycling interferometers. We provide both the results of improvement in quantum noise and the implementation details in Advanced LIGO. Chapter 6 applies and generalizes causal Wiener filter to data analysis in macroscopic quantum mechanical experiments. With the causal Wiener filter method, we demonstrate that in theory we can put the test masses in the interferometer to its quantum mechanical ground states. Chapter 7 presents some analytical solutions for expanding fireballs, the common theoretical model for gamma ray bursts and soft gamma ray repeaters. We apply our results to SGR 1806-20 and rediscover the mismatch between the model and the afterglow observations. Chapter 8 discusses the reconstruction of the scalar-field potential of the dark energy. We advocate direct reconstruction of the scalar field potential as a way to minimize prior assumptions on the shape, and thus minimize the introduction of bias in the derived potential. Chapter 9 discusses gravitational lensing modifications to cosmic
Mill profiler machines soft materials accurately
NASA Technical Reports Server (NTRS)
Rauschl, J. A.
1966-01-01
Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.
On the Accurate Prediction of CME Arrival At the Earth
NASA Astrophysics Data System (ADS)
Zhang, Jie; Hess, Phillip
2016-07-01
We will discuss relevant issues regarding the accurate prediction of CME arrival at the Earth, from both observational and theoretical points of view. In particular, we clarify the importance of separating the study of CME ejecta from the ejecta-driven shock in interplanetary CMEs (ICMEs). For a number of CME-ICME events well observed by SOHO/LASCO, STEREO-A and STEREO-B, we carry out the 3-D measurements by superimposing geometries onto both the ejecta and sheath separately. These measurements are then used to constrain a Drag-Based Model, which is improved through a modification of including height dependence of the drag coefficient into the model. Combining all these factors allows us to create predictions for both fronts at 1 AU and compare with actual in-situ observations. We show an ability to predict the sheath arrival with an average error of under 4 hours, with an RMS error of about 1.5 hours. For the CME ejecta, the error is less than two hours with an RMS error within an hour. Through using the best observations of CMEs, we show the power of our method in accurately predicting CME arrival times. The limitation and implications of our accurate prediction method will be discussed.
Information Theoretic Causal Coordination
2013-09-12
his 1969 paper, Clive Granger , British economist and Nobel laureate, proposed a statistical def- inition of causality between stochastic processes. It...showed that the directed infor- mation, an information theoretic quantity, quantifies Granger causality . We also explored a more pessimistic setup...Final Technical Report Project Title: Information Theoretic Causal Coordination AFOSR Award Number: AF FA9550-10-1-0345 Reporting Period: July 15
Theoretical and computational chemistry.
Meuwly, Markus
2010-01-01
Computer-based and theoretical approaches to chemical problems can provide atomistic understanding of complex processes at the molecular level. Examples ranging from rates of ligand-binding reactions in proteins to structural and energetic investigations of diastereomers relevant to organo-catalysis are discussed in the following. They highlight the range of application of theoretical and computational methods to current questions in chemical research.
Accurate equilibrium structures for piperidine and cyclohexane.
Demaison, Jean; Craig, Norman C; Groner, Peter; Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Rudolph, Heinz Dieter
2015-03-05
Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.
Accurate upper body rehabilitation system using kinect.
Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit
2016-08-01
The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.
Theoretical dissociation energies for ionic molecules
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.
Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti
2016-01-07
The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.
Important Nearby Galaxies without Accurate Distances
NASA Astrophysics Data System (ADS)
McQuinn, Kristen
2014-10-01
The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.
Theoretical Thermodynamics of Mixtures at High Pressures
NASA Technical Reports Server (NTRS)
Hubbard, W. B.
1985-01-01
The development of an understanding of the chemistry of mixtures of metallic hydrogen and abundant, higher-z material such as oxygen, carbon, etc., is important for understanding of fundamental processes of energy release, differentiation, and development of atmospheric abundances in the Jovian planets. It provides a significant theoretical base for the interpretation of atmospheric elemental abundances to be provided by atmospheric entry probes in coming years. Significant differences are found when non-perturbative approaches such as Thomas-Fermi-Dirac (TFD) theory are used. Mapping of the phase diagrams of such binary mixtures in the pressure range from approx. 10 Mbar to approx. 1000 Mbar, using results from three-dimensional TFD calculations is undertaken. Derivation of a general and flexible thermodynamic model for such binary mixtures in the relevant pressure range was facilitated by the following breakthrough: there exists an accurate nd fairly simple thermodynamic representation of a liquid two-component plasma (TCP) in which the Helmholtz free energy is represented as a suitable linear combination of terms dependent only on density and terms which depend only on the ion coupling parameter. It is found that the crystal energies of mixtures of H-He, H-C, and H-O can be satisfactorily reproduced by the same type of model, except that an effective, density-dependent ionic charge must be used in place of the actual total ionic charge.
Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V
2007-07-19
The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.
NASA Astrophysics Data System (ADS)
Saritas, Kayahan; Grossman, Jeffrey C.
2015-03-01
Molecules that undergo pericyclic isomerization reactions find interesting optical and energy storage applications, because of their usually high quantum yields, large spectral shifts and small structural changes upon light absorption. These reactions induce a drastic change in the conjugated structure such that substituents that become a part of the conjugated system upon isomerization can play an important role in determining properties such as enthalpy of isomerization and HOMO-LUMO gap. Therefore, theoretical investigations dealing with such systems should be capable of accurately capturing the interplay between electron correlation and exchange effects. In this work, we examine the dihydroazulene isomerization as an example conjugated system. We employ the highly accurate quantum Monte Carlo (QMC) method to predict thermochemical properties and to benchmark results from density functional theory (DFT) methods. Although DFT provides sufficient accuracy for similar systems, in this particular system, DFT predictions of ground state and reaction paths are inconsistent and non-systematic errors arise. We present a comparison between QMC and DFT results for enthalpy of isomerization, HOMO-LUMO gap and charge densities with a range of DFT functionals.
Adventures in theoretical astrophysics
NASA Astrophysics Data System (ADS)
Farmer, Alison Jane
This thesis is a tour of topics in theoretical astrophysics, unified by their diversity and their pursuit of physical understanding of astrophysical phenomena. In the first chapter, we raise the possibility of the detection of white dwarfs in transit surveys for extrasolar Earths, and discuss the peculiarities of detecting these more massive objects. A population synthesis calculation of the gravitational wave background from extragalactic binary stars is then presented. In this study, we establish a firm understanding of the uncertainties in such a calculation and provide a valuable reference for planning the Laser Interferometer Space Antenna mission. The long-established problem of cosmic ray confinement to the Galaxy is addressed in another chapter. We introduce a new wave damping mechanism, due to the presence of background turbulence, that prevents the confinement of cosmic rays by the resonant streaming instability. We also investigate the spokes in Saturn's B ring, an electrodynamic mystery that is being illuminated by new data sent back from the Cassini spacecraft. In particular, we present assessments of the presence of charged dust near the rings, and the size of currents and electric fields in the ring system. We make inferences from the Cassini discovery of oxygen ions above the rings. In addition, the previous leading theory for spoke formation is demonstrated to be unphysical. In the final chapter, we explain the wayward motions of Prometheus and Pandora, two small moons of Saturn. Previously found to be chaotic as a result of mutual interactions, we account for their behavior by analogy with a parametric pendulum. We caution that this behavior may soon enter a new regime.
[Once again: theoretical pathology].
Bleyl, U
2010-07-01
Theoretical pathology refers to the attempt to reintroduce methodical approaches from the humanities, philosophical logic and "gestalt philosophy" into medical research and pathology. Diseases, in particular disease entities and more complex polypathogenetic mechanisms of disease, have a "gestalt quality" due to the significance of their pathophysiologic coherence: they have a "gestalt". The Research group Theoretical Pathology at the Academy of Science in Heidelberg are credited with having revitalized the philosophical notion of "gestalt" for morphological and pathological diagnostics. Gestalt means interrelated schemes of pathophysiological significance in the mind of the diagnostician. In pathology, additive and associative diagnostic are simply not possible without considering the notion of synthetic entities in Kant's logic.
Using Scaling for accurate stochastic macroweather forecasts (including the "pause")
NASA Astrophysics Data System (ADS)
Lovejoy, Shaun; del Rio Amador, Lenin
2015-04-01
At scales corresponding to the lifetimes of structures of planetary extent (about 5 - 10 days), atmospheric processes undergo a drastic "dimensional transition" from high frequency weather to lower frequency macroweather processes. While conventional GCM's generally well reproduce both the transition and the corresponding (scaling) statistics, due to their sensitive dependence on initial conditions, the role of the weather scale processes is to provide random perturbations to the macroweather processes. The main problem with GCM's is thus that their long term (control run, unforced) statistics converge to the GCM climate and this is somewhat different from the real climate. This is the motivation for using a stochastic model and exploiting the empirical scaling properties and past data to make a stochastic model. It turns out that macroweather intermittency is typically low (the multifractal corrections are small) so that they can be approximated by fractional Gaussian Noise (fGN) processes whose memory can be enormous. For example for annual forecasts, and using the observed global temperature exponent, even 50 years of global temperature data would only allow us to exploit 90% of the available memory (for ocean regions, the figure increases to 600 years). The only complication is that anthropogenic effects dominate the global statistics at time scales beyond about 20 years. However, these are easy to remove using the CO2 forcing as a linear surrogate for all the anthropogenic effects. Using this theoretical framework, we show how to make accurate stochastic macroweather forecasts. We illustrate this on monthly and annual scale series of global and northern hemisphere surface temperatures (including nearly perfect hindcasts of the "pause" in the warming since 1998). We obtain forecast skill nearly as high as the theoretical (scaling) predictability limits allow. These scaling hindcasts - using a single effective climate sensitivity and single scaling exponent are
Accurate orbit propagation with planetary close encounters
NASA Astrophysics Data System (ADS)
Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca
2015-08-01
We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).
ERIC Educational Resources Information Center
LoPresto, Michael C.
2014-01-01
What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that…
Mechanical properties of jennite: A theoretical and experimental study
Moon, Juhyuk; Yoon, Seyoon; Monteiro, Paulo J.M.
2015-05-15
The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.
Potential theoretic methods for far field sound radiation calculations
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.
1995-01-01
In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.
Accurate superimposition of perimetry data onto fundus photographs.
Bek, T; Lund-Andersen, H
1990-02-01
A technique for accurate superimposition of computerized perimetry data onto the corresponding retinal locations seen on fundus photographs was developed. The technique was designed to take into account: 1) that the photographic field of view of the fundus camera varies with ametropia-dependent camera focusing 2) possible distortion by the fundus camera, and 3) that corrective lenses employed during perimetry magnify or minify the visual field. The technique allowed an overlay of perimetry data of the central 60 degrees of the visual field onto fundus photographs with an accuracy of 0.5 degree. The correlation of localized retinal morphology to localized retinal function was therefore limited by the spatial resolution of the computerized perimetry, which was 2.5 degrees in the Dicon AP-2500 perimeter employed for this study. The theoretical assumptions of the technique were confirmed by comparing visual field records to fundus photographs from patients with morphologically well-defined non-functioning lesions in the retina.
Accurate pointing of tungsten welding electrodes
NASA Technical Reports Server (NTRS)
Ziegelmeier, P.
1971-01-01
Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.
Nonexposure Accurate Location K-Anonymity Algorithm in LBS
2014-01-01
This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060
Nonexposure accurate location K-anonymity algorithm in LBS.
Jia, Jinying; Zhang, Fengli
2014-01-01
This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.
Accurate torque-speed performance prediction for brushless dc motors
NASA Astrophysics Data System (ADS)
Gipper, Patrick D.
Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.
Accurate upwind-monotone (nonoscillatory) methods for conservation laws
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1992-01-01
The well known MUSCL scheme of Van Leer is constructed using a piecewise linear approximation. The MUSCL scheme is second order accurate at the smooth part of the solution except at extrema where the accuracy degenerates to first order due to the monotonicity constraint. To construct accurate schemes which are free from oscillations, the author introduces the concept of upwind monotonicity. Several classes of schemes, which are upwind monotone and of uniform second or third order accuracy are then presented. Results for advection with constant speed are shown. It is also shown that the new scheme compares favorably with state of the art methods.
Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air
NASA Technical Reports Server (NTRS)
Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.
2007-01-01
The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.
Development and application of accurate analytical models for single active electron potentials
NASA Astrophysics Data System (ADS)
Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas
2015-05-01
The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).
Accurate model of electron beam profiles with emittance effects for pierce guns
NASA Astrophysics Data System (ADS)
Zeng, Peng; Wang, Guangqiang; Wang, Jianguo; Wang, Dongyang; Li, Shuang
2016-09-01
Accurate prediction of electron beam profile is one of the key objectives of electron optics, and the basis for design of the practical electron gun. In this paper, an improved model describing electron beam in Pierce gun with both space charge effects and emittance effects is proposed. The theory developed by Cutler and Hines is still applied for the accelerating region of the Pierce gun, while the motion equations of the electron beams in the anode aperture and drift tunnel are improved by modifying electron optics theory with emittance. As a result, a more universal and accurate formula of the focal length of the lens for the electron beam with both effects is derived for the anode aperture with finite dimension, and a modified universal spread curve considering beam emittance is introduced in drift tunnel region. Based on these improved motion equations of the electron beam, beam profiles with space charge effects and emittance effects can be theoretically predicted, which are subsequently approved to agree well with the experimentally measured ones. The developed model here is helpful to design more applicable Pierce guns at high frequencies.
Anchoring the Population II Distance Scale: Accurate Ages for Globular Clusters
NASA Technical Reports Server (NTRS)
Chaboyer, Brian C.; Chaboyer, Brian C.; Carney, Bruce W.; Latham, David W.; Dunca, Douglas; Grand, Terry; Layden, Andy; Sarajedini, Ataollah; McWilliam, Andrew; Shao, Michael
2004-01-01
The metal-poor stars in the halo of the Milky Way galaxy were among the first objects formed in our Galaxy. These Population II stars are the oldest objects in the universe whose ages can be accurately determined. Age determinations for these stars allow us to set a firm lower limit, to the age of the universe and to probe the early formation history of the Milky Way. The age of the universe determined from studies of Population II stars may be compared to the expansion age of the universe and used to constrain cosmological models. The largest uncertainty in estimates for the ages of stars in our halo is due to the uncertainty in the distance scale to Population II objects. We propose to obtain accurate parallaxes to a number of Population II objects (globular clusters and field stars in the halo) resulting in a significant improvement in the Population II distance scale and greatly reducing the uncertainty in the estimated ages of the oldest stars in our galaxy. At the present time, the oldest stars are estimated to be 12.8 Gyr old, with an uncertainty of approx. 15%. The SIM observations obtained by this key project, combined with the supporting theoretical research and ground based observations outlined in this proposal will reduce the estimated uncertainty in the age estimates to 5%).
Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach.
Boulanger, Paul; Jacquemin, Denis; Duchemin, Ivan; Blase, Xavier
2014-03-11
The accurate prediction of the optical signatures of cyanine derivatives remains an important challenge in theoretical chemistry. Indeed, up to now, only the most expensive quantum chemical methods (CAS-PT2, CC, DMC, etc.) yield consistent and accurate data, impeding the applications on real-life molecules. Here, we investigate the lowest lying singlet excitation energies of increasingly long cyanine dyes within the GW and Bethe-Salpeter Green's function many-body perturbation theory. Our results are in remarkable agreement with available coupled-cluster (exCC3) data, bringing these two single-reference perturbation techniques within a 0.05 eV maximum discrepancy. By comparison, available TD-DFT calculations with various semilocal, global, or range-separated hybrid functionals, overshoot the transition energies by a typical error of 0.3-0.6 eV. The obtained accuracy is achieved with a parameter-free formalism that offers similar accuracy for metallic or insulating, finite size or extended systems.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.
A Simple and Accurate Method for Measuring Enzyme Activity.
ERIC Educational Resources Information Center
Yip, Din-Yan
1997-01-01
Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…
Unification of theoretical approaches for epidemic spreading on complex networks.
Wang, Wei; Tang, Ming; Eugene Stanley, H; Braunstein, Lidia A
2017-03-01
Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.
Unification of theoretical approaches for epidemic spreading on complex networks
NASA Astrophysics Data System (ADS)
Wang, Wei; Tang, Ming; Stanley, H. Eugene; Braunstein, Lidia A.
2017-03-01
Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.
Cohen, Andrew; Schmaltz, Martin; Katz, Emmanuel; Rebbi, Claudio; Glashow, Sheldon; Brower, Richard; Pi, So-Young
2016-09-30
This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of
ERIC Educational Resources Information Center
Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi
2012-01-01
One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…
The utility of accurate mass and LC elution time information in the analysis of complex proteomes
Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Smith, Richard D.
2007-01-01
Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/− 5 ppm and 1 ppm) and NET value (no constraint, +/− 0.05 and 0.01 on a 0–1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LC-MS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate measurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/− 1 ppm and elution time measurements within +/− 0.01 NET. PMID:15979333
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-01-01
The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS.
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-01-01
The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2014-09-01
What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that compare well to both the desired frequencies of the musical pitches and those actually played on a real trombone.
Theoretical Approaches to Nanoparticles
NASA Astrophysics Data System (ADS)
Kempa, Krzysztof
Nanoparticles can be viewed as wave resonators. Involved waves are, for example, carrier waves, plasmon waves, polariton waves, etc. A few examples of successful theoretical treatments that follow this approach are given. In one, an effective medium theory of a nanoparticle composite is presented. In another, plasmon polaritonic solutions allow to extend concepts of radio technology, such as an antenna and a coaxial transmission line, to the visible frequency range.
Kinney, J.H.
1981-07-20
The results of an accurate determination of the recoil spectrum from (n, ..gamma..) reactions in molybdenum are presented. The recoil spectrum has been calculated from nuclear level structure data and measured branching ratios. Angular correlations between successive gammas have been accounted for using the standard theoretical techniques of Racah algebra and the density matrix formalism.
New model accurately predicts reformate composition
Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )
1994-01-31
Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.
Accurate colorimetric feedback for RGB LED clusters
NASA Astrophysics Data System (ADS)
Man, Kwong; Ashdown, Ian
2006-08-01
We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.
Panorama of theoretical physics
NASA Astrophysics Data System (ADS)
Mimouni, J.
2012-06-01
We shall start this panorama of theoretical physics by giving an overview of physics in general, this branch of knowledge that has been taken since the scientific revolution as the archetype of the scientific discipline. We shall then proceed in showing in what way theoretical physics from Newton to Maxwell, Einstein, Feynman and the like, in all modesty, could be considered as the ticking heart of physics. By its special mode of inquiry and its tantalizing successes, it has capturing the very spirit of the scientific method, and indeed it has been taken as a role model by other disciplines all the way from the "hard" ones to the social sciences. We shall then review how much we know today of the world of matter, both in term of its basic content and in the way it is structured. We will then present the dreams of today's theoretical physics as a way of penetrating into its psyche, discovering in this way its aspirations and longing in much the same way that a child's dreams tell us about his yearning and craving. Yet our understanding of matter has been going in the past decades through a crisis of sort. As a necessary antidote, we shall thus discuss the pitfalls of dreams pushed too far….
Theoretical Developments in SUSY
NASA Astrophysics Data System (ADS)
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.
An accurate registration technique for distorted images
NASA Technical Reports Server (NTRS)
Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis
1990-01-01
Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.
Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.
Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian
2015-09-01
Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to
High Frequency QRS ECG Accurately Detects Cardiomyopathy
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds
2005-01-01
High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing
Theoretical Astrophysics at Fermilab
NASA Technical Reports Server (NTRS)
2004-01-01
The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:
Theoretical models for trace gas preconcentrators
NASA Astrophysics Data System (ADS)
Kim, Jihyun
2013-11-01
Muntz et al., in 2004 and 2011, had attempted to describe theoretical models about the shape of a main flow channel and the concentration ratio of trace gas for a Continuous Flow-Through Trace Gas Preconcentrator by concepts of net flux and mass flow rate respectively. The possibilities were suggested to obtain theoretical models for the preconcentrator even through they were not satisfied with experimental results, because the theoretical models were only considered for free molecular flow. In this study, new theoretical models based on net flux and mass flow rate have been applied for each regime; free molecular flow, transition flow, and hydrodynamic flow. There are comprehensive numerical models to describe entire regimes with the new theoretical models induced by mass flow rate, but the new theoretical models induced by net flux can be only obtained for the hydrodynamic flow. The numerical predictions were compared with existing experimental results of the prototype of the preconcentrator. The numerical predictions of hydrodynamic and transition flows by mass flow rate were close to the experimental results, but other cases were different to the experimental data. Nevertheless, the theoretical models can provide the possibility to develop the theory of preconcentrator.
Institute for Theoretical Physics
Giddings, S.B.; Ooguri, H.; Peet, A.W.; Schwarz, J.H.
1998-06-01
String theory is the only serious candidate for a unified description of all known fundamental particles and interactions, including gravity, in a single theoretical framework. Over the past two years, activity in this subject has grown rapidly, thanks to dramatic advances in understanding the dynamics of supersymmetric field theories and string theories. The cornerstone of these new developments is the discovery of duality which relates apparently different string theories and transforms difficult strongly coupled problems of one theory into weakly coupled problems of another theory.
Theoretical Optics: An Introduction
NASA Astrophysics Data System (ADS)
Römer, Hartmann
2005-02-01
Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researchers.
Theoretical Aspects of Dromedaryfoil.
1977-11-01
Seginer were taken on a Yoshihara "A" supercritical airfoil. Steinle and Gross used a 64A010 airfoil. All the data points lie within the theoretical...experimental data that for the same airfoil, either 64A410 or 64A010 , the higher the angle of attack, the sooner the limiting pressure is reached. The...shock 13 Stivers, L.S., Jr., "Effects of Subsonic Mach Numbers on the Forces and Pressure Distributions on Four NACA 64A-Series Airfoil Sections at
Theoretical Studies of Atomic Transitions
Charlotte Froese Fischer
2005-07-08
Atomic structure calculations were performed for properties such as energy levels, binding energies, transition probabilities, lifetimes, hyperfine structure, and isotope shifts. Accurate computational procedures were devised so that properties could be predicted even when they could not be obtained from experiment, and to assist in the identification of observed data. The method used was the multiconfiguration Hartree-Fock (MCHF) method, optionally corrected for relativistic effects in the Breit-Pauli approximation. Fully relativistic Dirac-Fock calculations also were performed using the GRASP code A database of energy levels, lifetimes, and transition probabilities was designed and implemented and, at present, includes many results for Be-like to Ar-like.
The first accurate description of an aurora
NASA Astrophysics Data System (ADS)
Schröder, Wilfried
2006-12-01
As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.
Determining accurate distances to nearby galaxies
NASA Astrophysics Data System (ADS)
Bonanos, Alceste Zoe
2005-11-01
Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a
New law requires 'medically accurate' lesson plans.
1999-09-17
The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.
Theoretical ecology without species
NASA Astrophysics Data System (ADS)
Tikhonov, Mikhail
The sequencing-driven revolution in microbial ecology demonstrated that discrete ``species'' are an inadequate description of the vast majority of life on our planet. Developing a novel theoretical language that, unlike classical ecology, would not require postulating the existence of species, is a challenge of tremendous medical and environmental significance, and an exciting direction for theoretical physics. Here, it is proposed that community dynamics can be described in a naturally hierarchical way in terms of population fluctuation eigenmodes. The approach is applied to a simple model of division of labor in a multi-species community. In one regime, effective species with a core and accessory genome are shown to naturally appear as emergent concepts. However, the same model allows a transition into a regime where the species formalism becomes inadequate, but the eigenmode description remains well-defined. Treating a community as a black box that expresses enzymes in response to resources reveals mathematically exact parallels between a community and a single coherent organism with its own fitness function. This coherence is a generic consequence of division of labor, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems. Harvard Center of Mathematical Sciences and Applications;John A. Paulson School of Engineering and Applied Sciences.
Dark matter: Theoretical perspectives
Turner, M.S. Fermi National Accelerator Lab., Batavia, IL )
1993-06-01
The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the [open quotes]standard model[close quotes] of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for [open quotes]new physics.[close quotes] The compelling candidates are a very light axion (10[sup [minus]6]--10[sup [minus]4] eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs.
Dark matter: theoretical perspectives.
Turner, M S
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395
Dark matter: Theoretical perspectives
Turner, M.S. |
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.
Dark matter: Theoretical perspectives
Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )
1993-01-01
I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.
Some thoughts on theoretical physics
NASA Astrophysics Data System (ADS)
Tsallis, Constantino
2004-12-01
Some thoughts are presented on the inter-relation between beauty and truth in science in general and theoretical physics in particular. Some conjectural procedures that can be used to create new ideas, concepts and results are illustrated in both Boltzmann-Gibbs and nonextensive statistical mechanics. The sociological components of scientific progress and its unavoidable and benefic controversies are, mainly through existing literary texts, briefly addressed as well. Short essay based on the plenary talk given at the International Workshop on Trends and Perspectives in Extensive and Non-Extensive Statistical Mechanics, held in November 19-21, 2003, in Angra dos Reis, Brazil.
NASA Astrophysics Data System (ADS)
Pascual, José Luis; Barandiarán, Zoila; Seijo, Luis
2007-09-01
In this paper, we present the results of ab initio model potential embedded-cluster calculations of Sm2+ impurities in SrF2 in order to study the behavior of the electronic transitions of the dopant ion under high hydrostatic pressure. We find that the impurity-ligand bond length shortens upon f→d(eg) excitation and, as a consequence, the f→d(eg) transition energy decreases with increasing applied pressure. On the other hand, the bond lengths do not appreciably change upon f→f excitation and the energies of the f→f transitions are almost constant with pressure. These trends are in agreement with spectroscopic measurements under pressure in the title material, which gives credit to the computed bond length changes upon excitation, in contradiction with the widespread assumption of bond length lengthening upon f→d excitations. Spectroscopic experiments under high pressure are shown to be able to provide the sign of bond length changes in electronic transitions, constituting a simpler alternative to difficult excited-state x-ray absorption fine structure experiments.
Gas-Phase Theoretical Kinetics for Astrochemistry
NASA Astrophysics Data System (ADS)
Klippenstein, Stephen
2013-05-01
We will survey a number of our applications of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. For low temperature interstellar chemistry, careful consideration of the long-range expansion of the potential allows for quantitative predictions of the kinetics. Our recent calculations for the reactions of H3+ with O(3P) and with CO suggest an increase of the predicted destruction rate of H3+ by a factor of 2.5 to 3.0 for temperatures that are typical of dense clouds. Further consideration of the interplay between spin-orbit and multipole terms for open-shell atomic fragments allows us to predict the kinetics for a number of the reactions that have been listed as important reactions for interstellar chemical modeling [V. Wakelam, I. W. M. Smith, E. Herbst, J. Troe, W. Geppert, et al. Space Science Rev., 156, 13-72, 2010]. Our calculations for Titan's atmosphere demonstrate the importance of radiative emission as a stabilization process in the low-pressure environment of Titan's upper atmosphere. Theory has also helped to illuminate the role of various reactions in both Titan's atmosphere and in extrasolar planetary atmospheres. Comparisons between theory and experiment have provided a more detail understanding of the kinetics of PAH dimerization. High level predictions of thermochemical properties are remarkably accurate, and allow us to provide important data for studying P chemistry in planetary atmospheres. Finally, our study of O(3P) + C3 provides an example of a case where theory provides suggestive but not definitive results, and further experiments are clearly needed.
Gas Phase Theoretical Kinetics for Astrochemistry
NASA Astrophysics Data System (ADS)
Klippenstein, Stephen J.; Georgievskii, Y.; Harding, L. B.
2012-05-01
We will survey a number of our applications of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan’s atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. For low temperature interstellar chemistry, careful consideration of the long-range expansion of the potential allows for quantitative predictions of the kinetics. Our recent calculations for the reactions of H3+ with O(3P) and with CO suggest an increase of the predicted destruction rate of H3+ by a factor of 2.5 to 3.0 for temperatures that are typical of dense clouds. Further consideration of the interplay between spin-orbit and multipole terms for open-shell atomic fragments allows us to predict the kinetics for a number of the reactions that have been listed as important reactions for interstellar chemical modeling [V. Wakelam, I. W. M. Smith, E. Herbst, J. Troe, W. Geppert, et al. Space Science Rev., 156, 13-72, 2010]. Our calculations for Titan’s atmosphere demonstrate the importance of radiative emission as a stabilization process in the low-pressure environment of Titan’s upper atmosphere. Theory has also helped to illuminate the role of various reactions in both Titan’s atmosphere and in extrasolar planetary atmospheres. Comparisons between theory and experiment have provided a more detail understanding of the kinetics of PAH dimerization. High level predictions of thermochemical properties are remarkably accurate, and allow us to provide important data for studying P chemistry in planetary atmospheres. Finally, our study of O(3P) + C3 provides an example of a case where theory provides suggestive but not definitive results, and further experiments are clearly needed.
Accurate taxonomic assignment of short pyrosequencing reads.
Clemente, José C; Jansson, Jesper; Valiente, Gabriel
2010-01-01
Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.
Accurate shear measurement with faint sources
Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn
2015-01-01
For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.
Accurate pose estimation for forensic identification
NASA Astrophysics Data System (ADS)
Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk
2010-04-01
In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.
Sparse and accurate high resolution SAR imaging
NASA Astrophysics Data System (ADS)
Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian
2012-05-01
We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.
Accurate basis set truncation for wavefunction embedding
NASA Astrophysics Data System (ADS)
Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.
2013-07-01
Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.
Accurate genome relative abundance estimation based on shotgun metagenomic reads.
Xia, Li C; Cram, Jacob A; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu
2011-01-01
Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.
Multimodal spatial calibration for accurately registering EEG sensor positions.
Zhang, Jianhua; Chen, Jian; Chen, Shengyong; Xiao, Gang; Li, Xiaoli
2014-01-01
This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain.
Uniformly high order accurate essentially non-oscillatory schemes 3
NASA Technical Reports Server (NTRS)
Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R.
1986-01-01
In this paper (a third in a series) the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws are presented. Also presented is a hierarchy of high order accurate schemes which generalizes Godunov's scheme and its second order accurate MUSCL extension to arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and consequently the resulting schemes are highly nonlinear.
Groundtruth approach to accurate quantitation of fluorescence microarrays
Mascio-Kegelmeyer, L; Tomascik-Cheeseman, L; Burnett, M S; van Hummelen, P; Wyrobek, A J
2000-12-01
To more accurately measure fluorescent signals from microarrays, we calibrated our acquisition and analysis systems by using groundtruth samples comprised of known quantities of red and green gene-specific DNA probes hybridized to cDNA targets. We imaged the slides with a full-field, white light CCD imager and analyzed them with our custom analysis software. Here we compare, for multiple genes, results obtained with and without preprocessing (alignment, color crosstalk compensation, dark field subtraction, and integration time). We also evaluate the accuracy of various image processing and analysis techniques (background subtraction, segmentation, quantitation and normalization). This methodology calibrates and validates our system for accurate quantitative measurement of microarrays. Specifically, we show that preprocessing the images produces results significantly closer to the known ground-truth for these samples.
Computational Time-Accurate Body Movement: Methodology, Validation, and Application
1995-10-01
used that had a leading-edge sweep angle of 45 deg and a NACA 64A010 symmetrical airfoil section. A cross section of the pylon is a symmetrical...25 2. Information Flow for the Time-Accurate Store Trajectory Prediction Process . . . . . . . . . 26 3. Pitch Rates for NACA -0012 Airfoil...section are comparisons of the computational results to data for a NACA -0012 airfoil following a predefined pitching motion. Validation of the
Song, Yu-Zhi; Zhang, Lu-Lu; Gao, Shou-Bao; Meng, Qing-Tian
2016-01-01
A globally accurate many-body expansion potential energy surface is reported for HCS(X2A′) by fitting a wealth of accurate ab initio energies calculated at the multireference configuration interaction level using aug-cc-pVQZ and aug-cc-pV5Z basis sets via extrapolation to the complete basis set limit. The topographical features of the present potential energy surface are examined in detail and is in good agreement with the raw ab initio results, as well as other theoretical results available in literatures. By utilizing the potential energy surface of HCS(X2A′), the dynamic studies of the C(3P) + SH(X2Π) → H(2S) + CS(X1∑+) reaction has been carried out using quasi-classical trajectory method. PMID:27898106
Theoretical investigation of the dielectric-filled relativistic magnetron
Wang, Xiaoyu; Fan, Yuwei; Shu, Ting; Shi, Difu
2016-01-15
The fundamental mode frequency of a dielectric-filled relativistic magnetron is studied theoretically by the method of the equivalent circuit, and an exact fundamental mode frequency formula is derived. To prove the validity of the theoretical formula, simulation investigation is performed. The simulation results agree well with the theoretical formula, and the relative error does not exceed 3%. The comparative results verify the creditability of the theoretical formula.
Theoretical Particle Astrophysics
Kamionkowski, Marc
2013-08-07
Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.
Theoretical models for the dynamics of liquid crystalline polymers
NASA Astrophysics Data System (ADS)
Chaubal, Charu Vaman
The research encompassed by this work aims to improve the understanding of the physical behavior embodied by the Doi theory of Liquid Crystalline Polymers (LCPs), to develop more accurate, efficient, and robust numerical and computational schemes to obtain theoretical predictions, and to extend the model to describe industrially relevant LCP systems more closely. The mechanisms behind the unusual phenomena exhibited by the Doi theory in simple shear flow is examined by performing nonlinear systems analysis of an approximated version of the theory. A more accurate approximation to the theory is developed and is shown to faithfully reproduce results from the unapproximated theory over a wide range of parameters. A novel solution algorithm for general polymer kinetic theory problems, based on particle methods, is presented and analyzed in the context of application to the Doi theory. This technique is used to study the behavior of LCPs in shear flow and to determine how slight perturbations of simple shear can lead to dramatic changes in dynamical and rheological properties. Finally, the nematic broken rod model for flexible LCPs is developed and the behavior of the model in simple shear flow is explored for both highly flexible and nearly rigid rods.
Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup
NASA Astrophysics Data System (ADS)
Natividad, Eva; Castro, Miguel; Mediano, Arturo
2008-03-01
Accurate measurements of the specific absorption rate (SAR) of solids and fluids were obtained by a calorimetric method, using a special-purpose setup working under adiabatic conditions. Unlike in current nonadiabatic setups, the weak heat exchange with the surroundings allowed a straightforward determination of temperature increments, avoiding the usual initial-time approximations. The measurements performed on a commercial magnetite aqueous ferrofluid revealed a good reproducibility (4%). Also, the measurements on a copper sample allowed comparison between experimental and theoretical values: adiabatic conditions gave SAR values only 3% higher than the theoretical ones, while the typical nonadiabatic method underestimated SAR by 21%.
Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
Wang, Lingle; Deng, Yuqing; Wu, Yujie; Kim, Byungchan; LeBard, David N; Wandschneider, Dan; Beachy, Mike; Friesner, Richard A; Abel, Robert
2017-01-10
The accurate prediction of protein-ligand binding free energies remains a significant challenge of central importance in computational biophysics and structure-based drug design. Multiple recent advances including the development of greatly improved protein and ligand molecular mechanics force fields, more efficient enhanced sampling methods, and low-cost powerful GPU computing clusters have enabled accurate and reliable predictions of relative protein-ligand binding free energies through the free energy perturbation (FEP) methods. However, the existing FEP methods can only be used to calculate the relative binding free energies for R-group modifications or single-atom modifications and cannot be used to efficiently evaluate scaffold hopping modifications to a lead molecule. Scaffold hopping or core hopping, a very common design strategy in drug discovery projects, is critical not only in the early stages of a discovery campaign where novel active matter must be identified but also in lead optimization where the resolution of a variety of ADME/Tox problems may require identification of a novel core structure. In this paper, we introduce a method that enables theoretically rigorous, yet computationally tractable, relative protein-ligand binding free energy calculations to be pursued for scaffold hopping modifications. We apply the method to six pharmaceutically interesting cases where diverse types of scaffold hopping modifications were required to identify the drug molecules ultimately sent into the clinic. For these six diverse cases, the predicted binding affinities were in close agreement with experiment, demonstrating the wide applicability and the significant impact Core Hopping FEP may provide in drug discovery projects.
Apparatus for accurately measuring high temperatures
Smith, D.D.
The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.
Apparatus for accurately measuring high temperatures
Smith, Douglas D.
1985-01-01
The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.
Highly accurate articulated coordinate measuring machine
Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.
2003-12-30
Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.
Practical aspects of spatially high accurate methods
NASA Technical Reports Server (NTRS)
Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.
1992-01-01
The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.
Toward Accurate and Quantitative Comparative Metagenomics
Nayfach, Stephen; Pollard, Katherine S.
2016-01-01
Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341
Obtaining accurate translations from expressed sequence tags.
Wasmuth, James; Blaxter, Mark
2009-01-01
The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.
Accurate radio positions with the Tidbinbilla interferometer
NASA Technical Reports Server (NTRS)
Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.
1979-01-01
The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.
Magnetic ranging tool accurately guides replacement well
Lane, J.B.; Wesson, J.P. )
1992-12-21
This paper reports on magnetic ranging surveys and directional drilling technology which accurately guided a replacement well bore to intersect a leaking gas storage well with casing damage. The second well bore was then used to pump cement into the original leaking casing shoe. The repair well bore kicked off from the surface hole, bypassed casing damage in the middle of the well, and intersected the damaged well near the casing shoe. The repair well was subsequently completed in the gas storage zone near the original well bore, salvaging the valuable bottom hole location in the reservoir. This method would prevent the loss of storage gas, and it would prevent a potential underground blowout that could permanently damage the integrity of the storage field.
The high cost of accurate knowledge.
Sutcliffe, Kathleen M; Weber, Klaus
2003-05-01
Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.
Accurate vessel segmentation with constrained B-snake.
Yuanzhi Cheng; Xin Hu; Ji Wang; Yadong Wang; Tamura, Shinichi
2015-08-01
We describe an active contour framework with accurate shape and size constraints on the vessel cross-sectional planes to produce the vessel segmentation. It starts with a multiscale vessel axis tracing in a 3D computed tomography (CT) data, followed by vessel boundary delineation on the cross-sectional planes derived from the extracted axis. The vessel boundary surface is deformed under constrained movements on the cross sections and is voxelized to produce the final vascular segmentation. The novelty of this paper lies in the accurate contour point detection of thin vessels based on the CT scanning model, in the efficient implementation of missing contour points in the problematic regions and in the active contour model with accurate shape and size constraints. The main advantage of our framework is that it avoids disconnected and incomplete segmentation of the vessels in the problematic regions that contain touching vessels (vessels in close proximity to each other), diseased portions (pathologic structure attached to a vessel), and thin vessels. It is particularly suitable for accurate segmentation of thin and low contrast vessels. Our method is evaluated and demonstrated on CT data sets from our partner site, and its results are compared with three related methods. Our method is also tested on two publicly available databases and its results are compared with the recently published method. The applicability of the proposed method to some challenging clinical problems, the segmentation of the vessels in the problematic regions, is demonstrated with good results on both quantitative and qualitative experimentations; our segmentation algorithm can delineate vessel boundaries that have level of variability similar to those obtained manually.
Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui
2014-01-01
The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.
NASA Astrophysics Data System (ADS)
Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.
2016-06-01
We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.
Li, Dandan; Hu, Bo; Wang, Qing; Liu, Hongchang; Pan, Feng; Wu, Wei
2015-01-01
Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower. PMID:26457898
Metabolic scaling in animals: methods, empirical results, and theoretical explanations.
White, Craig R; Kearney, Michael R
2014-01-01
Life on earth spans a size range of around 21 orders of magnitude across species and can span a range of more than 6 orders of magnitude within species of animal. The effect of size on physiology is, therefore, enormous and is typically expressed by how physiological phenomena scale with mass(b). When b ≠ 1 a trait does not vary in direct proportion to mass and is said to scale allometrically. The study of allometric scaling goes back to at least the time of Galileo Galilei, and published scaling relationships are now available for hundreds of traits. Here, the methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals. Where necessary, new relationships have been generated from published data using modern phylogenetically informed techniques. During recent decades one of the most controversial scaling relationships has been that between metabolic rate and body mass and a number of explanations have been proposed for the scaling of this trait. Examples of these mechanistic explanations for metabolic scaling are reviewed, and suggestions made for comparing between them. Finally, the conceptual links between metabolic scaling and ecological patterns are examined, emphasizing the distinction between (1) the hypothesis that size- and temperature-dependent variation among species and individuals in metabolic rate influences ecological processes at levels of organization from individuals to the biosphere and (2) mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait.
Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results.
1986-01-01
time: T = t/T o To period of a cycle s t time s v velocity m/s Vre f reference velocity for reduced frequency m/s Vref Y for compresor cascade Vref...or quasi- three-dimensional cascades. Such interesting phenomena as rotor-stator interactions, stalled flutter and fully three-dimensional effects... stall , choke, shockwaves, coupling effects between the steady and unsteady flow fields...). The distribution of the blade surface pressure difference
Relative Wage Determination Among Industries: Some Theoretical and Empirical Results.
ERIC Educational Resources Information Center
Wachter, Michael L.
This report is concerned with cyclical variation in the relative wages of industries. The determination of relative wages is investigated in three different contexts. The first area deals with a broad overview of the relative wage model where the basic elements are introduced. Second, a more complete relative wage model is developed in the context…
Coherent Change Detection: Theoretical Description and Experimental Results
2006-08-01
multilook polarimetric and interferometric SAR imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 5, pp. 1017–1027, 1994. 50. J. W...scene changes using repeat pass Synthetic Aperture Radar ( SAR ) imagery. As SAR is a coherent imaging system two forms of change detection may be...changes to the sub-resolution cell scattering structure that may be undetectable using inco- herent techniques. The repeat pass SAR imagery however, must
Coherent Change Detection: Theoretical Description and Experimental Results
2006-08-01
primary and repeat pass intensity images obtained over one of the tracks. It can be seen that the speckle pattern of the pair of intensity images is...that manifests in the transduced imagery as speckle noise. In a single SAR image the noise term does not contribute any useful information to the...pixel intensity I = |f |2. This estimate however is cor- rupted by the speckle noise component, see (71), and in general some form of averaging is
Theoretical results on the effect of `shortcut' actions in MDPs
NASA Astrophysics Data System (ADS)
McCarthy, Sara M.; Precup, Doina
2014-04-01
Temporally extended actions have been used extensively in reinforcement learning in order to speed up the process of learning good behaviours. While such actions are intuitively appealing, very little work has provided a formal analysis of the advantage that can be obtained by using such actions. In this paper, we tackle this problem using the methodology of stochastic processes. We present case studies of Markov decision processes with actions that allow 'shortcuts' between different parts of the environment, and show how such actions affect the travel time between states. Our main finding is that such actions allow for provably quicker travel around the environment, and the benefit increases with the dimensionality of the state space. Hence, extended actions help in efficiently exploring large, high-dimensional domains.
Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results.
Langner, M; Cafiso, D; Marcelja, S; McLaughlin, S
1990-01-01
We made fluorescence, electron paramagnetic resonance (EPR), electrophoretic mobility, and ionizing electrode measurements to study the effect of the monovalent lipid phosphatidylinositol (PI) and the trivalent lipid phosphatidylinositol 4,5-bisphosphate (PIP2) on the electrostatic potential adjacent to bilayer membranes. When the membranes were formed from mixtures of PI and the zwitterionic lipid phosphatidylcholine (PC), the Gouy-Chapman-Stern (GCS) theory described adequately the dependence of potential on distance (0, 1, 2 nm) from the membrane, mole % negative lipid, and [KCI]. Furthermore, all EPR and fluorescence probes reported identical surface potentials with a PC/PI membrane. With PC/PIP2 membranes, however, the anionic (coion) probes reported less negative potentials than the cationic (counterion) probes; the deviations from the GCS theory were greater for the coions than the counterions. Discreteness-of-charge theories based on the Poisson-Boltzmann equation incorrectly predict that deviations from the GCS theory should be greater for counterions than for coions. We discuss a consistent statistical mechanical theory that takes into account three effects ignored in the GCS theory: the finite size of the ions in the double layer, the electrical interaction between pairs of ions (correlation effects), and the mobile discrete nature of the surface charges. This theory correctly predicts that deviations from GCS theory should be negligible for monovalent lipids, significant for trivalent lipids, and greater for coions than for counterions. PMID:2156577
An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance
Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun
2015-01-01
Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314
Accurate determination of the sedimentation flux of concentrated suspensions
NASA Astrophysics Data System (ADS)
Martin, J.; Rakotomalala, N.; Salin, D.
1995-10-01
Flow rate jumps are used to generate propagating concentration variations in a counterflow stabilized suspension (a liquid fluidized bed). An acoustic technique is used to measure accurately the resulting concentration profiles through the bed. Depending on the experimental conditions, we have observed self-sharpening, or/and self-spreading concentration fronts. Our data are analyzed in the framework of Kynch's theory, providing an accurate determination of the sedimentation flux [CU(C); U(C) is the hindered sedimentation velocity of the suspension] and its derivatives in the concentration range 30%-60%. In the vicinity of the packing concentration, controlling the flow rate has allowed us to increase the maximum packing up to 60%.
Selecting MODFLOW cell sizes for accurate flow fields.
Haitjema, H; Kelson, V; de Lange, W
2001-01-01
Contaminant transport models often use a velocity field derived from a MODFLOW flow field. Consequently, the accuracy of MODFLOW in representing a ground water flow field determines in part the accuracy of the transport predictions, particularly when advective transport is dominant. We compared MODFLOW ground water flow rates and MODPATH particle traces (advective transport) for a variety of conceptual models and different grid spacings to exact or approximate analytic solutions. All of our numerical experiments concerned flow in a single confined or semiconfined aquifer. While MODFLOW appeared robust in terms of both local and global water balance, we found that ground water flow rates, particle traces, and associated ground water travel times are accurate only when sufficiently small cells are used. For instance, a minimum of four or five cells are required to accurately model total ground water inflow in tributaries or other narrow surface water bodies that end inside the model domain. Also, about 50 cells are needed to represent zones of differing transmissivities or an incorrect flow field and (locally) inaccurate ground water travel times may result. Finally, to adequately represent leakage through aquitards or through the bottom of surface water bodies it was found that the maximum allowable cell dimensions should not exceed a characteristic leakage length lambda, which is defined as the square root of the aquifer transmissivity times the resistance of the aquitard or stream bottom. In some cases a cell size of one-tenth of lambda is necessary to obtain accurate results.
Theoretical spectra of floppy molecules
NASA Astrophysics Data System (ADS)
Chen, Hua
2000-09-01
Detailed studies of the vibrational dynamics of floppy molecules are presented. Six-D bound-state calculations of the vibrations of rigid water dimer based on several anisotropic site potentials (ASP) are presented. A new sequential diagonalization truncation approach was used to diagonalize the angular part of the Hamiltonian. Symmetrized angular basis and a potential optimized discrete variable representation for intermonomer distance coordinate were used in the calculations. The converged results differ significantly from the results presented by Leforestier et al. [J. Chem. Phys. 106 , 8527 (1997)]. It was demonstrated that ASP-S potential yields more accurate tunneling splittings than other ASP potentials used. Fully coupled 4D quantum mechanical calculations were performed for carbon dioxide dimer using the potential energy surface given by Bukowski et al [J. Chem. Phys., 110, 3785 (1999)]. The intermolecular vibrational frequencies and symmetry adapted force constants were estimated and compared with experiments. The inter-conversion tunneling dynamics was studied using the calculated virtual tunneling splittings. Symmetrized Radau coordinates and the sequential diagonalization truncation approach were formulated for acetylene. A 6D calculation was performed with 5 DVR points for each stretch coordinate, and an angular basis that is capable of converging the angular part of the Hamiltonian to 30 cm-1 for internal energies up to 14000 cm-1. The probability at vinylidene configuration were evaluated. It was found that the eigenstates begin to extend to vinylidene configuration from about 10000 cm-1, and the ra, coordinate is closely related to the vibrational dynamics at high energy. Finally, a direct product DVR was defined for coupled angular momentum operators, and the SDT approach were formulated. They were applied in solving the angular part of the Hamiltonian for carbon dioxide dimer problem. The results show the method is capable of giving very accurate
DNA barcode data accurately assign higher spider taxa.
Coddington, Jonathan A; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina; Kuntner, Matjaž
2016-01-01
underlying database impacts accuracy of results; many outliers in our dataset could be attributed to taxonomic and/or sequencing errors in BOLD and GenBank. It seems that an accurate and complete reference library of families and genera of life could provide accurate higher level taxonomic identifications cheaply and accessibly, within years rather than decades.
DNA barcode data accurately assign higher spider taxa
Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina
2016-01-01
the underlying database impacts accuracy of results; many outliers in our dataset could be attributed to taxonomic and/or sequencing errors in BOLD and GenBank. It seems that an accurate and complete reference library of families and genera of life could provide accurate higher level taxonomic identifications cheaply and accessibly, within years rather than decades. PMID:27547527
NASA Technical Reports Server (NTRS)
Mohn, L. W.
1975-01-01
The use of the Boeing TEA-230 Subsonic Flow Analysis method as a primary design tool in the development of cruise overwing nacelle configurations is presented. Surface pressure characteristics at 0.7 Mach number were determined by the TEA-230 method for a selected overwing flow-through nacelle configuration. Results of this analysis show excellent overall agreement with corresponding wind tunnel data. Effects of the presence of the nacelle on the wing pressure field were predicted accurately by the theoretical method. Evidence is provided that differences between theoretical and experimental pressure distributions in the present study would not result in significant discrepancies in the nacelle lines or nacelle drag estimates.
Theoretical analysis of ARC constriction
Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.
1980-12-01
The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)
Accurate Completion of Medical Report on Diagnosing Death.
Savić, Slobodan; Alempijević, Djordje; Andjelić, Sladjana
2015-01-01
Diagnosing death and issuing a Death Diagnosing Form (DDF) represents an activity that carries a great deal of public responsibility for medical professionals of the Emergency Medical Services (EMS) and is perpetually exposed to the control of the general public. Diagnosing death is necessary so as to confirm true, to exclude apparent death and consequentially to avoid burying a person alive, i.e. apparently dead. These expert-methodological guidelines based on the most up-to-date and medically based evidence have the goal of helping the physicians of the EMS in accurately filling out a medical report on diagnosing death. If the outcome of applied cardiopulmonary resuscitation measures is negative or when the person is found dead, the physician is under obligation to diagnose death and correctly fill out the DDF. It is also recommended to perform electrocardiography (EKG) and record asystole in at least two leads. In the process of diagnostics and treatment, it is a moral obligation of each Belgrade EMS physician to apply all available achievements and knowledge of modern medicine acquired from extensive international studies, which have been indeed the major theoretical basis for the creation of these expert-methodological guidelines. Those acting differently do so in accordance with their conscience and risk professional, and even criminal sanctions.
Theoretical study of the unimolecular dissociation of HCO
NASA Astrophysics Data System (ADS)
Whittier, Gregory Scott
This thesis offers a detailed theoretical study of the unimolecular dissociation of formyl radical, HCO, which is an important intermediate in combustion chemistry. A quantum mechanical treatment of the dissociation of isolated HCO is presented along with a mixed quantum/classical study of the excitation and deexcitation of HCO in collisions of HCO with the bath gas Ar. The results are then used to model the kinetics of the collision-induced dissociation of HCO by Ar. Resonance states of HCO are calculated for total angular momentum J = 0, 1, and 3 using the artificial boundary inhomogeneity (ABI) method of Jang and Light [J. Chem. Phys. 102, 3262 (1995)]. Resonance energies and widths are determined by analyzing the Smith lifetime matrix. A resonance search algorithm and a method for resolving overlapping resonances are described. The accurate prediction of J = 3 resonances from J = 0 and 1 data is tested with good results for excited stretch resonance and less accurate results for bending resonances, demonstrating the degree of separability of vibration from overall rotation for these quasi-bound states. A quantum/classical time-dependent self-consistent field (Q/C TDSCF) approach is used to simulate the dynamics of collisions of Ar with HCO. State-to-state cross sections and thermal rate constants for vibrational transitions are presented. Using this model together with assumptions about the rotational energy transfer and a master equation treatment of the kinetics, the low-pressure thermal rate of collision-induced dissociation was calculated over the 300-4000 K temperature range. Comparison with experiment shows good agreement at high temperatures and poor agreement at low temperatures. The high temperature results were sufficient to obtain an Arrhenius expression for the rate that agrees with all experimental results of which we are aware.
Does a pneumotach accurately characterize voice function?
NASA Astrophysics Data System (ADS)
Walters, Gage; Krane, Michael
2016-11-01
A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.
Accurate method for computing correlated color temperature.
Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier
2016-06-27
For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 10^{6} K.
Accurate, reliable prototype earth horizon sensor head
NASA Technical Reports Server (NTRS)
Schwarz, F.; Cohen, H.
1973-01-01
The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.
Accurate methods for large molecular systems.
Gordon, Mark S; Mullin, Jonathan M; Pruitt, Spencer R; Roskop, Luke B; Slipchenko, Lyudmila V; Boatz, Jerry A
2009-07-23
Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.
Noninvasive hemoglobin monitoring: how accurate is enough?
Rice, Mark J; Gravenstein, Nikolaus; Morey, Timothy E
2013-10-01
Evaluating the accuracy of medical devices has traditionally been a blend of statistical analyses, at times without contextualizing the clinical application. There have been a number of recent publications on the accuracy of a continuous noninvasive hemoglobin measurement device, the Masimo Radical-7 Pulse Co-oximeter, focusing on the traditional statistical metrics of bias and precision. In this review, which contains material presented at the Innovations and Applications of Monitoring Perfusion, Oxygenation, and Ventilation (IAMPOV) Symposium at Yale University in 2012, we critically investigated these metrics as applied to the new technology, exploring what is required of a noninvasive hemoglobin monitor and whether the conventional statistics adequately answer our questions about clinical accuracy. We discuss the glucose error grid, well known in the glucose monitoring literature, and describe an analogous version for hemoglobin monitoring. This hemoglobin error grid can be used to evaluate the required clinical accuracy (±g/dL) of a hemoglobin measurement device to provide more conclusive evidence on whether to transfuse an individual patient. The important decision to transfuse a patient usually requires both an accurate hemoglobin measurement and a physiologic reason to elect transfusion. It is our opinion that the published accuracy data of the Masimo Radical-7 is not good enough to make the transfusion decision.
Accurate, reproducible measurement of blood pressure.
Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W
1990-01-01
The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791
Accurate Fission Data for Nuclear Safety
NASA Astrophysics Data System (ADS)
Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.
2014-05-01
The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.
Theoretical development and first-principles analysis of strongly correlated systems
NASA Astrophysics Data System (ADS)
Liu, Chen
A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method to address the challenges. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated an alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy of ferromagnetic materials. In addition, another theoretical tool, dynamical mean-field theory on top of the density functional theory, has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.
Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.
2015-02-17
We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. As a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.
Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.
2015-02-17
We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. Asmore » a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.« less
Accurate Serodetection of Asymptomatic Leishmania donovani Infection by Use of Defined Antigens.
Vallur, Aarthy C; Reinhart, Caroline; Mohamath, Raodoh; Goto, Yasuyuki; Ghosh, Prakash; Mondal, Dinesh; Duthie, Malcolm S; Reed, Steven G
2016-04-01
Infection with Leishmania donovaniis typically asymptomatic, but a significant number of individuals may progress to visceral leishmaniasis (VL), a deadly disease that threatens 200 million people in areas where it is endemic. While diagnosis of acute VL has been simplified by the use of cost-effective confirmatory serological tests, similar standardized tools are not widely available for detecting asymptomatic infection, which can be 4 to 20 times more prevalent than active disease. A simple and accurate serological test that is capable of detecting asymptomaticL. donovaniinfection will be useful for surveillance programs targeting VL control and elimination. To address this unmet need, we evaluated recombinant antigens for their ability to detect serum antibodies in 104 asymptomaticL. donovani-infected individuals (qualified as positive forL. donovani-specific antibodies by direct agglutination test [DAT]) from the Mymensingh district of Bangladesh where VL is hyperendemic. The novel proteins rKR95 and rTR18 possessed the greatest potential and detected 69% of DAT-positive individuals, with rKR95 being more robust in reactivity. Agreement in results for individuals with high DAT responses, who are more likely to progress to VL disease, was 74%. When considered along with rK39, a gold standard antigen that is used to confirm clinical diagnosis of VL but that is now becoming widely used for surveillance, rKR95 and rTR18 conferred a sensitivity of 84% based on a theoretical combined estimate. Our data indicate that incorporating rKR95 and rTR18 with rK39 in serological tests amenable to rapid or high-throughput screening may enable simple and accurate detection of asymptomatic infection. Such tests will be important tools to measureL. donovaniinfection rates, a primary goal in surveillance and a critical measurement with which to assess elimination programs.
Montoya-Castillo, Andrés; Reichman, David R
2017-02-28
The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Czz(t)=Re⟨σz(0)σz(t)⟩, we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.
Discrete sensors distribution for accurate plantar pressure analyses.
Claverie, Laetitia; Ille, Anne; Moretto, Pierre
2016-12-01
The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system.
Interacting with image hierarchies for fast and accurate object segmentation
NASA Astrophysics Data System (ADS)
Beard, David V.; Eberly, David H.; Hemminger, Bradley M.; Pizer, Stephen M.; Faith, R. E.; Kurak, Charles; Livingston, Mark
1994-05-01
Object definition is an increasingly important area of medical image research. Accurate and fairly rapid object definition is essential for measuring the size and, perhaps more importantly, the change in size of anatomical objects such as kidneys and tumors. Rapid and fairly accurate object definition is essential for 3D real-time visualization including both surgery planning and Radiation oncology treatment planning. One approach to object definition involves the use of 3D image hierarchies, such as Eberly's Ridge Flow. However, the image hierarchy segmentation approach requires user interaction in selecting regions and subtrees. Further, visualizing and comprehending the anatomy and the selected portions of the hierarchy can be problematic. In this paper we will describe the Magic Crayon tool which allows a user to define rapidly and accurately various anatomical objects by interacting with image hierarchies such as those generated with Eberly's Ridge Flow algorithm as well as other 3D image hierarchies. Preliminary results suggest that fairly complex anatomical objects can be segmented in under a minute with sufficient accuracy for 3D surgery planning, 3D radiation oncology treatment planning, and similar applications. Potential modifications to the approach for improved accuracy are summarized.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.
Dynamical correction of control laws for marine ships' accurate steering
NASA Astrophysics Data System (ADS)
Veremey, Evgeny I.
2014-06-01
The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing; its corresponding turning can be realized in real time onboard.
Accurate modelling of unsteady flows in collapsible tubes.
Marchandise, Emilie; Flaud, Patrice
2010-01-01
The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.
Accurate Variational Description of Adiabatic Quantum Optimization
NASA Astrophysics Data System (ADS)
Carleo, Giuseppe; Bauer, Bela; Troyer, Matthias
Adiabatic quantum optimization (AQO) is a quantum computing protocol where a system is driven by a time-dependent Hamiltonian. The initial Hamiltonian has an easily prepared ground-state and the final Hamiltonian encodes some desired optimization problem. An adiabatic time evolution then yields a solution to the optimization problem. Several challenges emerge in the theoretical description of this protocol: on one hand, the exact simulation of quantum dynamics is exponentially complex in the size of the optimization problem. On the other hand, approximate approaches such as tensor network states (TNS) are limited to small instances by the amount of entanglement that can be encoded. I will present here an extension of the time-dependent Variational Monte Carlo approach to problems in AQO. This approach is based on a general class of (Jastrow-Feenberg) entangled states, whose parameters are evolved in time according to a stochastic variational principle. We demonstrate this approach for optimization problems of the Ising spin-glass type. A very good accuracy is achieved when compared to exact time-dependent TNS on small instances. We then apply this approach to larger problems, and discuss the efficiency of the quantum annealing scheme in comparison with its classical counterpart.
Accurate simulation of optical properties in dyes.
Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo
2009-02-17
Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.
A robust and accurate formulation of molecular and colloidal electrostatics.
Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C
2016-08-07
This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.
A robust and accurate formulation of molecular and colloidal electrostatics
NASA Astrophysics Data System (ADS)
Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.
2016-08-01
This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.
Sampling designs matching species biology produce accurate and affordable abundance indices
Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff
2013-01-01
Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which
Accurate glucose detection in a small etalon
NASA Astrophysics Data System (ADS)
Martini, Joerg; Kuebler, Sebastian; Recht, Michael; Torres, Francisco; Roe, Jeffrey; Kiesel, Peter; Bruce, Richard
2010-02-01
We are developing a continuous glucose monitor for subcutaneous long-term implantation. This detector contains a double chamber Fabry-Perot-etalon that measures the differential refractive index (RI) between a reference and a measurement chamber at 850 nm. The etalon chambers have wavelength dependent transmission maxima which dependent linearly on the RI of their contents. An RI difference of ▵n=1.5.10-6 changes the spectral position of a transmission maximum by 1pm in our measurement. By sweeping the wavelength of a single-mode Vertical-Cavity-Surface-Emitting-Laser (VCSEL) linearly in time and detecting the maximum transmission peaks of the etalon we are able to measure the RI of a liquid. We have demonstrated accuracy of ▵n=+/-3.5.10-6 over a ▵n-range of 0 to 1.75.10-4 and an accuracy of 2% over a ▵nrange of 1.75.10-4 to 9.8.10-4. The accuracy is primarily limited by the reference measurement. The RI difference between the etalon chambers is made specific to glucose by the competitive, reversible release of Concanavalin A (ConA) from an immobilized dextran matrix. The matrix and ConA bound to it, is positioned outside the optical detection path. ConA is released from the matrix by reacting with glucose and diffuses into the optical path to change the RI in the etalon. Factors such as temperature affect the RI in measurement and detection chamber equally but do not affect the differential measurement. A typical standard deviation in RI is +/-1.4.10-6 over the range 32°C to 42°C. The detector enables an accurate glucose specific concentration measurement.
Accurate Biomass Estimation via Bayesian Adaptive Sampling
NASA Astrophysics Data System (ADS)
Wheeler, K.; Knuth, K.; Castle, P.
2005-12-01
and IKONOS imagery and the 3-D volume estimates. The combination of these then allow for a rapid and hopefully very accurate estimation of biomass.
How flatbed scanners upset accurate film dosimetry
NASA Astrophysics Data System (ADS)
van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.
2016-01-01
Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.
Towards Accurate Application Characterization for Exascale (APEX)
Hammond, Simon David
2015-09-01
Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.
Theoretical motions of hydrofoil systems
NASA Technical Reports Server (NTRS)
Imlay, Frederick H
1948-01-01
Results are presented of an investigation that has been undertaken to develop theoretical methods of treating the motions of hydrofoil systems and to determine some of the important parameters. Variations of parameters include three distributions of area between the hydrofoils, two rates of change of downwash angle with angle of attack, three depths of immersion, two dihedral angles, two rates of change of lift with immersion, three longitudinal hydrofoil spacings, two radii of gyration in pitching, and various horizontal and vertical locations of the center of gravity. Graphs are presented to show locations of the center of gravity for stable motion, values of the stability roots, and motions following the sudden application of a vertical force or a pitching moment to the hydrofoil system for numerous sets of values of the parameters.
Lanzarotta, Adam
2015-01-01
Theoretical and empirical detection limits have been estimated for aripiprazole (analyte) in alpha lactose monohydrate (matrix model pharmaceutical formulation) using a micro-attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic imaging instrument equipped with a linear array detector and a 1.5 mm germanium hemisphere internal reflection element (IRE). The instrument yielded a theoretical detection limit of 0.0035% (35 parts per million (ppm)) when operating under diffraction-limited conditions, which was 49 times lower than what was achieved with a traditional macro-ATR instrument operating under practical conditions (0.17%, 1700 ppm). However, these results may not be achievable for most analyses because the detection limits will be particle size limited, rather than diffraction limited, for mixtures with average particle diameters greater than 8.3 μm (most pharmaceutical samples). For example, a theoretical detection limit of 0.028% (280 ppm) was calculated for an experiment operating under particle size-limited conditions where the average particle size was 23.4 μm. These conditions yielded a detection limit of 0.022% (220 ppm) when measured empirically, which was close to the theoretical value and only eight times lower than that of a faster, more simplistic macro-ATR instrument. Considering the longer data acquisition and processing times characteristic of the micro-ATR imaging approach (minutes or even hours versus seconds), the cost-benefit ratio may not often be favorable for the analysis of analytes in matrices that exhibit only a few overlapping absorptions (low-interfering matrices such as alpha lactose monohydrate) using this technique compared to what can be achieved using macro-ATR. However, the advantage was significant for detecting analytes in more complex matrices (those that exhibited several overlapping absorptions with the analyte) because the detection limit of the macro-ATR approach was highly formulation
The Basic Theoretical Framework
NASA Astrophysics Data System (ADS)
Loeb, Abraham
Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 m in diameter, and NASA's successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. These arrays are aiming to detect the long-wavelength (redshifted 21-cm) radio emission from hydrogen atoms. The images from these antenna arrays will reveal how the non-uniform distribution of neutral hydrogen evolved with cosmic time and eventually was extinguished by the ultra-violet radiation from the first galaxies. Theoretical research has focused in recent years on predicting the expected signals for the above instruments and motivating these ambitious
NASA Astrophysics Data System (ADS)
Nishino, H.; Taniguchi, Y.; Yoshida, K.
2012-05-01
A noncontact method of an accurate estimation of a pipe wall thickness using a circumferential (C-) Lamb wave is presented. The C-Lamb waves circling along the circumference of pipes are transmitted and received by the critical angle method using a pair of noncontact air-coupled ultrasonic transducers. For the accurate estimation of a pipe wall thickness, the accurate measurement of the angular wave number that changes minutely owing to the thickness must be achieved. To achieve the accurate measurement, a large number of tone-burst cycles are used so as to superpose the C-Lamb wave on itself along its circumferential orbit. In this setting, the amplitude of the superposed region changes considerably with the angular wave number, from which the wall thickness can be estimated. This paper presents the principle of the method and experimental verifications. As results of the experimental verifications, it was confirmed that the maximum error between the estimates and the theoretical model was less than 10 micrometers.
Biesanz, Jeremy C; Human, Lauren J
2010-04-01
Does the motivation to form accurate impressions actually improve accuracy? The present work extended Kenny's (1991, 1994) weighted-average model (WAM)--a theoretical model of the factors that influence agreement among personality judgments--to examine two components of interpersonal perception: distinctive and normative accuracy. WAM predicts that an accuracy motivation should enhance distinctive accuracy but decrease normative accuracy. In other words, the impressions of a perceiver with an accuracy motivation will correspond more with the target person's unique characteristics and less with the characteristics of the average person. Perceivers randomly assigned to receive the social goal of forming accurate impressions, which was communicated through a single-sentence instruction, achieved higher levels of distinctive self-other agreement but lower levels of normative agreement compared with perceivers not given an explicit impression-formation goal. The results suggest that people motivated to form accurate impressions do indeed become more accurate, but at the cost of seeing others less normatively and, in particular, less positively.
Wilcox, Jennifer; Robles, Joe; Marsden, David C J; Blowers, Paul
2003-09-15
In this work, theoretical rate constants are estimated for mercury oxidation reactions by hydrogen chloride that may occur in the flue gases of coal combustion. Rate constants are calculated using transition state theory at the quadratic configuration interaction (QCI) level of theory with single and double excitations, and are compared to results obtained from density functional theory, both including high level pseudopotentials for mercury. Thermodynamic and kinetic data from the literature are used to assess the accuracy of the theoretical calculations when possible. Validation of the chosen methods and basis sets is based upon previous and current research on mercury reactions involving chlorine. The present research shows that the QCISD method with the 1992 Stevens et al. basis set leads to the most accurate kinetic and thermodynamic results for the oxidation of mercury via chlorine containing molecules. Also, a comparison of the heats of reaction data for a series of mercury oxidation reactions reveals that the density functional method, B3LYP, with the 1997 Stuttgart basis set provides reasonably accurate results for these large systems.
Marchewka, M K; Drozd, M
2012-12-01
Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).
Mapping methods for computationally efficient and accurate structural reliability
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1992-01-01
Mapping methods are developed to improve the accuracy and efficiency of probabilistic structural analyses with coarse finite element meshes. The mapping methods consist of: (1) deterministic structural analyses with fine (convergent) finite element meshes, (2) probabilistic structural analyses with coarse finite element meshes, (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes, and (4) a probabilistic mapping. The results show that the scatter of the probabilistic structural responses and structural reliability can be accurately predicted using a coarse finite element model with proper mapping methods. Therefore, large structures can be analyzed probabilistically using finite element methods.
Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles
Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN
2005-12-26
A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.
Adaptive and accurate color edge extraction method for one-shot shape acquisition
NASA Astrophysics Data System (ADS)
Yin, Wei; Cheng, Xiaosheng; Cui, Haihua; Li, Dawei; Zhou, Lei
2016-09-01
This paper presents an approach to extract accurate color edge information using encoded patterns in hue, saturation, and intensity (HSI) color space. This method is applied to one-shot shape acquisition. Theoretical analysis shows that the hue transition between primary and secondary colors in a color edge is based on light interference and diffraction. We set up a color transition model to illustrate the hue transition on an edge and then define the segmenting position of two stripes. By setting up an adaptive HSI color space, the colors of the stripes and subpixel edges are obtained precisely without a dark laboratory environment, in a low-cost processing algorithm. Since this method does not have any constraints for colors of neighboring stripes, the encoding is an easy procedure. The experimental results show that the edges of dense modulation patterns can be obtained under a complicated environment illumination, and the precision can ensure that the three-dimensional shape of the object is obtained reliably with only one image.
Accurate B-spline-based 3-D interpolation scheme for digital volume correlation.
Ren, Maodong; Liang, Jin; Wei, Bin
2016-12-01
An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.
Accurate prediction of band gaps and optical properties of HfO2
NASA Astrophysics Data System (ADS)
Ondračka, Pavel; Holec, David; Nečas, David; Zajíčková, Lenka
2016-10-01
We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran-Blaha modified Becke-Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe-Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO2 was obtained only in the latter case.
Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations
2015-01-01
We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules. PMID:26146493
Machine learning of parameters for accurate semiempirical quantum chemical calculations
Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter
2015-04-14
We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less
Machine learning of parameters for accurate semiempirical quantum chemical calculations
Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter
2015-04-14
We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C_{7}H_{10}O_{2}, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.
Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.
Dral, Pavlo O; von Lilienfeld, O Anatole; Thiel, Walter
2015-05-12
We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.
Theoretical study of the bond dissociation energies of methanol
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.
1992-01-01
A theoretical study of the bond dissociation energies for H2O and CH3OH is presented. The C-H and O-H bond energies are computed accurately with the modified coupled-pair functional method using a large basis set. For these bonds, an accuracy of +/- 2 kcal/mol is achieved, which is consistent with the C-H and C-C single bond energies of other molecules. The C-O bond is much more difficult to compute accurately because it requires higher levels of correlation treatment and more extensive one-particle basis sets.
Sibutramine characterization and solubility, a theoretical study
NASA Astrophysics Data System (ADS)
Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René
2013-04-01
Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.
Analysis of a theoretically optimized transonic airfoil
NASA Technical Reports Server (NTRS)
Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.
1978-01-01
Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.
77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... COMMISSION Accurate NDE & Inspection, LLC; Confirmatory Order In the Matter of Accurate NDE & Docket: 150... request ADR with the NRC in an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28,...
Quantum Monte Carlo: Faster, More Reliable, And More Accurate
NASA Astrophysics Data System (ADS)
Anderson, Amos Gerald
2010-06-01
The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our
Ultra-accurate collaborative information filtering via directed user similarity
NASA Astrophysics Data System (ADS)
Guo, Q.; Song, W.-J.; Liu, J.-G.
2014-07-01
A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers' recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones in opposite direction, the large-degree users' selections are recommended extensively by the traditional second-order CF algorithms. By considering the users' similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random walks proposed by Liu et al. (Int. J. Mod. Phys. C, 20 (2009) 285) the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix, respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.
Accurate estimation of sigma(exp 0) using AIRSAR data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Rignot, Eric
1995-01-01
During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.
An Accurate and Efficient Method of Computing Differential Seismograms
NASA Astrophysics Data System (ADS)
Hu, S.; Zhu, L.
2013-12-01
Inversion of seismic waveforms for Earth structure usually requires computing partial derivatives of seismograms with respect to velocity model parameters. We developed an accurate and efficient method to calculate differential seismograms for multi-layered elastic media, based on the Thompson-Haskell propagator matrix technique. We first derived the partial derivatives of the Haskell matrix and its compound matrix respect to the layer parameters (P wave velocity, shear wave velocity and density). We then derived the partial derivatives of surface displacement kernels in the frequency-wavenumber domain. The differential seismograms are obtained by using the frequency-wavenumber double integration method. The implementation is computationally efficient and the total computing time is proportional to the time of computing the seismogram itself, i.e., independent of the number of layers in the model. We verified the correctness of results by comparing with differential seismograms computed using the finite differences method. Our results are more accurate because of the analytical nature of the derived partial derivatives.
Accurate stone analysis: the impact on disease diagnosis and treatment.
Mandel, Neil S; Mandel, Ian C; Kolbach-Mandel, Ann M
2017-02-01
This manuscript reviews the requirements for acceptable compositional analysis of kidney stones using various biophysical methods. High-resolution X-ray powder diffraction crystallography and Fourier transform infrared spectroscopy (FTIR) are the only acceptable methods in our labs for kidney stone analysis. The use of well-constructed spectral reference libraries is the basis for accurate and complete stone analysis. The literature included in this manuscript identify errors in most commercial laboratories and in some academic centers. We provide personal comments on why such errors are occurring at such high rates, and although the work load is rather large, it is very worthwhile in providing accurate stone compositions. We also provide the results of our almost 90,000 stone analyses and a breakdown of the number of components we have observed in the various stones. We also offer advice on determining the method used by the various FTIR equipment manufacturers who also provide a stone analysis library so that the FTIR users can feel comfortable in the accuracy of their reported results. Such an analysis on the accuracy of the individual reference libraries could positively influence the reduction in their respective error rates.
A fast and accurate decoder for underwater acoustic telemetry.
Ingraham, J M; Deng, Z D; Li, X; Fu, T; McMichael, G A; Trumbo, B A
2014-07-01
The Juvenile Salmon Acoustic Telemetry System, developed by the U.S. Army Corps of Engineers, Portland District, has been used to monitor the survival of juvenile salmonids passing through hydroelectric facilities in the Federal Columbia River Power System. Cabled hydrophone arrays deployed at dams receive coded transmissions sent from acoustic transmitters implanted in fish. The signals' time of arrival on different hydrophones is used to track fish in 3D. In this article, a new algorithm that decodes the received transmissions is described and the results are compared to results for the previous decoding algorithm. In a laboratory environment, the new decoder was able to decode signals with lower signal strength than the previous decoder, effectively increasing decoding efficiency and range. In field testing, the new algorithm decoded significantly more signals than the previous decoder and three-dimensional tracking experiments showed that the new decoder's time-of-arrival estimates were accurate. At multiple distances from hydrophones, the new algorithm tracked more points more accurately than the previous decoder. The new algorithm was also more than 10 times faster, which is critical for real-time applications on an embedded system.
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay
2014-03-01
Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.
Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.
Fuchs, Franz G; Hjelmervik, Jon M
2016-02-01
A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results.
Can Selforganizing Maps Accurately Predict Photometric Redshifts?
NASA Technical Reports Server (NTRS)
Way, Michael J.; Klose, Christian
2012-01-01
We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods
A Universal Operator Theoretic Framework for Quantum Fault Tolerance.
NASA Astrophysics Data System (ADS)
Gilbert, Gerald; Calderbank, Robert; Aggarwal, Vaneet; Hamrick, Michael; Weinstein, Yaakov
2008-03-01
We introduce a universal operator theoretic framework for quantum fault tolerance. This incorporates a top-down approach that implements a system-level criterion based on specification of the full system dynamics, applied at every level of error correction concatenation. This leads to more accurate determinations of error thresholds than could previously be obtained. The basis for the approach is the Quantum Computer Condition (QCC), an inequality governing the evolution of a quantum computer. In addition to more accurate determination of error threshold values, we show that the QCC provides a means to systematically determine optimality (or non-optimality) of different choices of error correction coding and error avoidance strategies. This is possible because, as we show, all known coding schemes are actually special cases of the QCC. We demonstrate this by introducing a new, operator theoretic form of entanglement assisted quantum error correction.
Using SEQUEST with Theoretically Complete Sequence Databases
NASA Astrophysics Data System (ADS)
Sadygov, Rovshan G.
2015-11-01
SEQUEST has long been used to identify peptides/proteins from their tandem mass spectra and protein sequence databases. The algorithm has proven to be hugely successful for its sensitivity and specificity in identifying peptides/proteins, the sequences of which are present in the protein sequence databases. In this work, we report on work that attempts a new use for the algorithm by applying it to search a complete list of theoretically possible peptides, a de novo-like sequencing. We used freely available mass spectral data and determined a number of unique peptides as identified by SEQUEST. Using masses of these peptides and the mass accuracy of 0.001 Da, we have created a database of all theoretically possible peptide sequences corresponding to the precursor masses. We used our recently developed algorithm for determining all amino acid compositions corresponding to a mass interval, and used a lexicographic ordering to generate theoretical sequences from the compositions. The newly generated theoretical database was many-fold more complex than the original protein sequence database. We used SEQUEST to search and identify the best matches to the spectra from all theoretically possible peptide sequences. We found that SEQUEST cross-correlation score ranked the correct peptide match among the top sequence matches. The results testify to the high specificity of SEQUEST when combined with the high mass accuracy for intact peptides.
Helium at White Dwarf Photospheric Conditions: Preliminary Laboratory Results
NASA Astrophysics Data System (ADS)
Schaeuble, M.; Falcon, R. E.; Gomez, T. A.; Winget, D. E.; Montgomery, M. H.; Bailey, J. E.
2017-03-01
We present preliminary results of an experimental study exploring helium at photospheric conditions of white dwarf stars. These data were collected at Sandia National Laboratories' Z-machine, the largest x-ray source on earth. Our helium results could have many applications ranging from validating current DB white dwarf model atmospheres to providing accurate He pressure shifts at varying temperatures and densities. In a much broader context, these helium data can be used to guide theoretical developments in new continuum-lowering models for two-electron atoms. We also discuss future applications of our updated experimental design, which enables us to sample a greater range of densities, temperatures, and gas compositions.
Fair & Accurate Grading for Exceptional Learners
ERIC Educational Resources Information Center
Jung, Lee Ann; Guskey, Thomas R.
2011-01-01
Despite the many changes in education over the past century, grading and reporting practices have essentially remained the same. In part, this is because few teacher preparation programs offer any guidance on sound grading practices. As a result, most current grading practices are grounded in tradition, rather than research on best practice. In an…
Diborane, dialane, and digallane: Accurate geometries and vibrational frequencies
Magers, D.H.; Hood, R.B.; Leszczynski, J.
1994-12-31
Optimum equilibrium geometries, harmonic vibrational frequencies, and infrared intensities within the double harmonic approximation are computed for diborane, B{sub 2}H{sub 6}, dialane, Al{sub 2}H{sub 6}, and digallane, Ga{sub 2}H{sub 6}, at both the SCF level of theory and the second-order perturbation theory [E(2)] using three large basis sets: 6-311G(d,p), 6-311G(2d,2p), and 6-311G(2df,2p). In particular, the results obtained with the latter basis set make this present work the first study to include f-type polarization functions in a systematic investigation of the molecular structure and properties of all three molecules in the series. Because of the good agreement of the present theoretical results with experimental data and with previous theoretical studies which employed a higher treatment of electron correlation, this study serves to show that large basis sets can in part compensate for the lack of a more advanced treatment of electron correlation in these electron-deficient systems. In addition, this study establishes the level of basis set needed for future work on these systems including a thorough description of the total electronic density at a correlated level.
Accurate and stable time stepping in ice sheet modeling
NASA Astrophysics Data System (ADS)
Cheng, Gong; Lötstedt, Per; von Sydow, Lina
2017-01-01
In this paper we introduce adaptive time step control for simulation of the evolution of ice sheets. The discretization error in the approximations is estimated using "Milne's device" by comparing the result from two different methods in a predictor-corrector pair. Using a predictor-corrector pair the expensive part of the procedure, the solution of the velocity and pressure equations, is performed only once per time step and an estimate of the local error is easily obtained. The stability of the numerical solution is maintained and the accuracy is controlled by keeping the local error below a given threshold using PI-control. Depending on the threshold, the time step Δt is bound by stability requirements or accuracy requirements. Our method takes a shorter Δt than an implicit method but with less work in each time step and the solver is simpler. The method is analyzed theoretically with respect to stability and applied to the simulation of a 2D ice slab and a 3D circular ice sheet. The stability bounds in the experiments are explained by and agree well with the theoretical results.
Theoretical models of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Hawkings, D. L.
1978-01-01
For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.
Theoretical Studies in Elementary Particle Physics
Collins, John C.; Roiban, Radu S
2013-04-01
This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.
[Separation anxiety. Theoretical considerations].
Blandin, N; Parquet, P J; Bailly, D
1994-01-01
The interest in separation anxiety is nowadays increasing: this disorder appearing during childhood may predispose to the occurrence of anxiety disorders (such as panic disorder and agoraphobia) and major depression into adulthood. Psychoanalytic theories differ on the nature of separation anxiety and its place in child development. For some authors, separation anxiety must be understood as resulting from the unconscious internal conflicts inherent in the individuation process and gradual attainment of autonomy. From this point of view, the fear of loss of mother by separation is not regarded as resulting from a real danger. However, Freud considers the primary experience of separation from protecting mother as the prototype situation of anxiety and compares the situations generating fear to separation experiences. For him, anxiety originates from two factors: the physiological fact is initiated at the time of birth but the primary traumatic situation is the separation from mother. This point of view may be compared with behavioral theories. Behavioral theories suggest that separation anxiety may be conditioned or learned from innate fears. In Freud's theory, the primary situation of anxiety resulting from the separation from mother plays a role comparable to innate fears. Grappling with the problem of separation anxiety, Bowlby emphasizes then the importance of the child's attachment to one person (mother or primary caregiver) and the fact that this attachment is instinctive. This point of view, based on the watch of infants, is akin to ethological theories on behaviour of non human primates. Bowlby especially shows that the reactions of infant separated from mother evolve on three stages: the phase of protestation which may constitute the prototype of adulthood anxiety, the phase of desperation which may be the prototype of depression, and the phase of detachment. He emphasizes so the role of early separations in the development of vulnerability to depression
Theoretical High Energy Physics
Christ, Norman H.; Weinberg, Erick J.
2014-07-14
we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.
Theoretical Dipole Moment for the X211 State of NO
NASA Technical Reports Server (NTRS)
Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1994-01-01
The dipole moment function for the X(sup 2)II state of NO is studied as a function of the completeness in both the one- and n-particle spaces. Einstein coefficients are presented that are significantly more accurate than previous tabulations for the higher vibrational levels. The theoretical values give considerable insight into the limitations of recently published ratios of Einstein coefficients measured by spectrally resolved infrared chemiluminescence.
Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.
Accurate Methods for Large Molecular Systems (Preprint)
2009-01-06
Gaussian functions. These basis sets can be used in a systematic way to obtain results approaching the complete basis set ( CBS ) limit. However...convergence to the CBS limit. The high accuracy of these basis sets still comes at a significant computational cost, only feasible on relatively small...J. Chem. Phys. 2006, 124, 114103. (b) ccCA: DeYonker, N. J.; Grimes , T.; Yockel, S.; Dinescu, A.; Mintz, B.; Cundari, T. R.; Wilson, A. K. J. Chem
Towards more accurate vegetation mortality predictions
Sevanto, Sanna Annika; Xu, Chonggang
2016-09-26
Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.
Obtaining Accurate Change Detection Results from High-Resolution Satellite Sensors
NASA Technical Reports Server (NTRS)
Bryant, N.; Bunch, W.; Fretz, R.; Kim, P.; Logan, T.; Smyth, M.; Zobrist, A.
2012-01-01
Multi-date acquisitions of high-resolution imaging satellites (e.g. GeoEye and WorldView), can display local changes of current economic interest. However, their large data volume precludes effective manual analysis, requiring image co-registration followed by image-to-image change detection, preferably with minimal analyst attention. We have recently developed an automatic change detection procedure that minimizes false-positives. The processing steps include: (a) Conversion of both the pre- and post- images to reflectance values (this step is of critical importance when different sensors are involved); reflectance values can be either top-of-atmosphere units or have full aerosol optical depth calibration applied using bi-directional reflectance knowledge. (b) Panchromatic band image-to-image co-registration, using an orthorectified base reference image (e.g. Digital Orthophoto Quadrangle) and a digital elevation model; this step can be improved if a stereo-pair of images have been acquired on one of the image dates. (c) Pan-sharpening of the multispectral data to assure recognition of change objects at the highest resolution. (d) Characterization of multispectral data in the post-image ( i.e. the background) using unsupervised cluster analysis. (e) Band ratio selection in the post-image to separate surface materials of interest from the background. (f) Preparing a pre-to-post change image. (g) Identifying locations where change has occurred involving materials of interest.
Quality metric for accurate overlay control in <20nm nodes
NASA Astrophysics Data System (ADS)
Klein, Dana; Amit, Eran; Cohen, Guy; Amir, Nuriel; Har-Zvi, Michael; Huang, Chin-Chou Kevin; Karur-Shanmugam, Ramkumar; Pierson, Bill; Kato, Cindy; Kurita, Hiroyuki
2013-04-01
The semiconductor industry is moving toward 20nm nodes and below. As the Overlay (OVL) budget is getting tighter at these advanced nodes, the importance in the accuracy in each nanometer of OVL error is critical. When process owners select OVL targets and methods for their process, they must do it wisely; otherwise the reported OVL could be inaccurate, resulting in yield loss. The same problem can occur when the target sampling map is chosen incorrectly, consisting of asymmetric targets that will cause biased correctable terms and a corrupted wafer. Total measurement uncertainty (TMU) is the main parameter that process owners use when choosing an OVL target per layer. Going towards the 20nm nodes and below, TMU will not be enough for accurate OVL control. KLA-Tencor has introduced a quality score named `Qmerit' for its imaging based OVL (IBO) targets, which is obtained on the-fly for each OVL measurement point in X & Y. This Qmerit score will enable the process owners to select compatible targets which provide accurate OVL values for their process and thereby improve their yield. Together with K-T Analyzer's ability to detect the symmetric targets across the wafer and within the field, the Archer tools will continue to provide an independent, reliable measurement of OVL error into the next advanced nodes, enabling fabs to manufacture devices that meet their tight OVL error budgets.
Accurate Anharmonic IR Spectra from Integrated Cc/dft Approach
NASA Astrophysics Data System (ADS)
Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Carnimeo, Ivan; Puzzarini, Cristina
2014-06-01
The recent implementation of the computation of infrared (IR) intensities beyond the double harmonic approximation [1] paved the route to routine calculations of infrared spectra for a wide set of molecular systems. Contrary to common beliefs, second-order perturbation theory is able to deliver results of high accuracy provided that anharmonic resonances are properly managed [1,2]. It has been already shown for several small closed- and open shell molecular systems that the differences between coupled cluster (CC) and DFT anharmonic wavenumbers are mainly due to the harmonic terms, paving the route to introduce effective yet accurate hybrid CC/DFT schemes [2]. In this work we present that hybrid CC/DFT models can be applied also to the IR intensities leading to the simulation of highly accurate fully anharmonic IR spectra for medium-size molecules, including ones of atmospheric interest, showing in all cases good agreement with experiment even in the spectral ranges where non-fundamental transitions are predominant[3]. [1] J. Bloino and V. Barone, J. Chem. Phys. 136, 124108 (2012) [2] V. Barone, M. Biczysko, J. Bloino, Phys. Chem. Chem. Phys., 16, 1759-1787 (2014) [3] I. Carnimeo, C. Puzzarini, N. Tasinato, P. Stoppa, A. P. Charmet, M. Biczysko, C. Cappelli and V. Barone, J. Chem. Phys., 139, 074310 (2013)
Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.
Huynh, Linh; Tagkopoulos, Ilias
2015-08-21
In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.
Accurate colon residue detection algorithm with partial volume segmentation
NASA Astrophysics Data System (ADS)
Li, Xiang; Liang, Zhengrong; Zhang, PengPeng; Kutcher, Gerald J.
2004-05-01
Colon cancer is the second leading cause of cancer-related death in the United States. Earlier detection and removal of polyps can dramatically reduce the chance of developing malignant tumor. Due to some limitations of optical colonoscopy used in clinic, many researchers have developed virtual colonoscopy as an alternative technique, in which accurate colon segmentation is crucial. However, partial volume effect and existence of residue make it very challenging. The electronic colon cleaning technique proposed by Chen et al is a very attractive method, which is also kind of hard segmentation method. As mentioned in their paper, some artifacts were produced, which might affect the accurate colon reconstruction. In our paper, instead of labeling each voxel with a unique label or tissue type, the percentage of different tissues within each voxel, which we call a mixture, was considered in establishing a maximum a posterior probability (MAP) image-segmentation framework. A Markov random field (MRF) model was developed to reflect the spatial information for the tissue mixtures. The spatial information based on hard segmentation was used to determine which tissue types are in the specific voxel. Parameters of each tissue class were estimated by the expectation-maximization (EM) algorithm during the MAP tissue-mixture segmentation. Real CT experimental results demonstrated that the partial volume effects between four tissue types have been precisely detected. Meanwhile, the residue has been electronically removed and very smooth and clean interface along the colon wall has been obtained.
Strategy for accurate liver intervention by an optical tracking system
Lin, Qinyong; Yang, Rongqian; Cai, Ken; Guan, Peifeng; Xiao, Weihu; Wu, Xiaoming
2015-01-01
Image-guided navigation for radiofrequency ablation of liver tumors requires the accurate guidance of needle insertion into a tumor target. The main challenge of image-guided navigation for radiofrequency ablation of liver tumors is the occurrence of liver deformations caused by respiratory motion. This study reports a strategy of real-time automatic registration to track custom fiducial markers glued onto the surface of a patient’s abdomen to find the respiratory phase, in which the static preoperative CT is performed. Custom fiducial markers are designed. Real-time automatic registration method consists of the automatic localization of custom fiducial markers in the patient and image spaces. The fiducial registration error is calculated in real time and indicates if the current respiratory phase corresponds to the phase of the static preoperative CT. To demonstrate the feasibility of the proposed strategy, a liver simulator is constructed and two volunteers are involved in the preliminary experiments. An ex-vivo porcine liver model is employed to further verify the strategy for liver intervention. Experimental results demonstrate that real-time automatic registration method is rapid, accurate, and feasible for capturing the respiratory phase from which the static preoperative CT anatomical model is generated by tracking the movement of the skin-adhered custom fiducial markers. PMID:26417501
Accurate interlaminar stress recovery from finite element analysis
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Riggs, H. Ronald
1994-01-01
The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.
Accurate three-dimensional documentation of distinct sites
NASA Astrophysics Data System (ADS)
Singh, Mahesh K.; Dutta, Ashish; Subramanian, Venkatesh K.
2017-01-01
One of the most critical aspects of documenting distinct sites is acquiring detailed and accurate range information. Several three-dimensional (3-D) acquisition techniques are available, but each has its own limitations. This paper presents a range data fusion method with the aim to enhance the descriptive contents of the entire 3-D reconstructed model. A kernel function is introduced for supervised classification of the range data using a kernelized support vector machine. The classification method is based on the local saliency features of the acquired range data. The range data acquired from heterogeneous range sensors are transformed into a defined common reference frame. Based on the segmentation criterion, the fusion of range data is performed by integrating finer regions of range data acquired from a laser range scanner with the coarser region of Kinect's range data. After fusion, the Delaunay triangulation algorithm is applied to generate the highly accurate, realistic 3-D model of the scene. Finally, experimental results show the robustness of the proposed approach.
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Theoretical Principles of Distance Education.
ERIC Educational Resources Information Center
Keegan, Desmond, Ed.
This book contains the following papers examining the didactic, academic, analytic, philosophical, and technological underpinnings of distance education: "Introduction"; "Quality and Access in Distance Education: Theoretical Considerations" (D. Randy Garrison); "Theory of Transactional Distance" (Michael G. Moore);…
Theoretical Foundations of Learning Communities
ERIC Educational Resources Information Center
Jessup-Anger, Jody E.
2015-01-01
This chapter describes the historical and contemporary theoretical underpinnings of learning communities and argues that there is a need for more complex models in conceptualizing and assessing their effectiveness.
An integrative nursing theoretical framework.
Schmieding, N J
1990-04-01
The use of an integrative nursing theoretical framework for both clinical and administrative practice has recently been suggested. The author developed a theoretical framework which incorporates key concepts from the writings of Ida J. Orlando and Virginia Henderson and proposes it to be used as an integrative framework. The rationale for using a framework is discussed along with clinical and administrative examples of how to integrate concepts from the proposed framework. The reasons for using an integrative theoretical framework are that it: serves as a guide for both clinical and administrative decisions; forms the basis of the nursing philosophy; facilitates communication with patients and colleagues; helps identify congruent supporting theories and concepts; provides a basis for educational programmes; helps to differentiate nursing from non-nursing activities; and enhances nurse unity and self-esteem. The premise of the article is that benefits are derived from the use of a nursing theoretical framework because it provides a specific vision of nursing.
Theoretical models for supernovae
Woosley, S.E.; Weaver, T.A.
1981-09-21
The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.
Theoretical Studies of Nanocluster Formation
2016-05-26
Briefing Charts 3. DATES COVERED (From - To) 22 April 2016 - 25 May 2016 4. TITLE AND SUBTITLE Theoretical Studies of nanocluster formation 5a. CONTRACT...Date: 5/5/2016 14. ABSTRACT Viewgraph/Briefing Charts 15. SUBJECT TERMS N/A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...SAR 17 19b. TELEPHONE NO (include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Theoretical studies of
Assessment of linear sprinting performance: a theoretical paradigm.
Brown, Todd D; Vescovi, Jason D; Vanheest, Jaci L
2004-12-01
The purpose of this manuscript is to describe a theoretical paradigm from which to more accurately assess linear sprinting performance. More importantly, the model describes how to interpret test results in order to pinpoint weaknesses in linear sprinting performance and design subsequent training programs. A retrospective, quasi-experimental cross sectional analysis was performed using 86 Division I female soccer and lacrosse players. Linear sprinting performance was assessed using infrared sensors at 9.14, 18.28, 27.42, and 36.58 meter distances. Cumulative (9.14, 18.28, 27.42, and 36.58 meter) and individual (1(st), 2(nd), 3(rd), and 4(th) 9.14 meter) split times were used to illustrate the theoretical paradigm. Sub-groups were identified from the sample and labelled as above average (faster), average, and below average (slower). Statistical analysis showed each sub-group was significantly different from each other (fast < average < slow). From each sub-group select individuals were identified by having a 36.58 meter time within 0.05 seconds of each other (n = 11, 13, and 7, respectively). Three phases of the sprint test were suggested to exist and called initial acceleration (0-9.14 m), middle acceleration (9.14-27.42 m), and metabolic-stiffness transition (27.42-36.58 m). A new model for assessing and interpreting linear sprinting performance was developed. Implementation of this paradigm should assist sport performance professionals identify weaknesses, minimize training errors, and maximize training adaptations. Key PointsAssessment of linear sprinting should include splits for a greater understanding of performance.Individual split times can be used to identify specific areas of weakness.Appropriate training strategies can be developed and used to improve the identified weaknesses.
Assessment of Linear Sprinting Performance: A Theoretical Paradigm
Brown, Todd D.; Vescovi, Jason D.; VanHeest, Jaci L.
2004-01-01
The purpose of this manuscript is to describe a theoretical paradigm from which to more accurately assess linear sprinting performance. More importantly, the model describes how to interpret test results in order to pinpoint weaknesses in linear sprinting performance and design subsequent training programs. A retrospective, quasi-experimental cross sectional analysis was performed using 86 Division I female soccer and lacrosse players. Linear sprinting performance was assessed using infrared sensors at 9.14, 18.28, 27.42, and 36.58 meter distances. Cumulative (9.14, 18.28, 27.42, and 36.58 meter) and individual (1st, 2nd, 3rd, and 4th 9.14 meter) split times were used to illustrate the theoretical paradigm. Sub-groups were identified from the sample and labelled as above average (faster), average, and below average (slower). Statistical analysis showed each sub-group was significantly different from each other (fast < average < slow). From each sub-group select individuals were identified by having a 36.58 meter time within 0.05 seconds of each other (n = 11, 13, and 7, respectively). Three phases of the sprint test were suggested to exist and called initial acceleration (0-9.14 m), middle acceleration (9.14-27.42 m), and metabolic-stiffness transition (27.42-36.58 m). A new model for assessing and interpreting linear sprinting performance was developed. Implementation of this paradigm should assist sport performance professionals identify weaknesses, minimize training errors, and maximize training adaptations. Key Points Assessment of linear sprinting should include splits for a greater understanding of performance. Individual split times can be used to identify specific areas of weakness. Appropriate training strategies can be developed and used to improve the identified weaknesses. PMID:24624004
Theoretical Studies of the Relaxation Matrix for Molecular Systems
NASA Astrophysics Data System (ADS)
Ma, Qiancheng; Boulet, C.
2016-06-01
The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements resulting from applying the isolated line approximation. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the energy corrected sudden (ECS) and the infinite order sudden (IOS) models are commonly used. Recently, we have found that in developing this semi-classical line shape theory, to rely on the isolated line approximation is not necessary. By eliminating this unjustified assumption, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism that enables one not only to reduce uncertainties for calculated half-widths and shifts, but also to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism for Raman and infrared spectra of linear and asymmetric-top molecules. Recently, the method has been extended into symmetric-tops with inverse symmetry such as the NH3 molecule. Our calculated half-widths of NH3 lines in the νb{1} and the pure
Research in Theoretical Particle Physics
Feldman, Hume A; Marfatia, Danny
2014-09-24
This document is the final report on activity supported under DOE Grant Number DE-FG02-13ER42024. The report covers the period July 15, 2013 – March 31, 2014. Faculty supported by the grant during the period were Danny Marfatia (1.0 FTE) and Hume Feldman (1% FTE). The grant partly supported University of Hawaii students, David Yaylali and Keita Fukushima, who are supervised by Jason Kumar. Both students are expected to graduate with Ph.D. degrees in 2014. Yaylali will be joining the University of Arizona theory group in Fall 2014 with a 3-year postdoctoral appointment under Keith Dienes. The group’s research covered topics subsumed under the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Many theoretical results related to the Standard Model and models of new physics were published during the reporting period. The report contains brief project descriptions in Section 1. Sections 2 and 3 lists published and submitted work, respectively. Sections 4 and 5 summarize group activity including conferences, workshops and professional presentations.
Theoretical investigations of plasma processes
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Hong, S. H.
1976-01-01
System analyses are presented for electrically sustained, collision dominated plasma centrifuges, in which the plasma rotates under the influence of the Lorentz forces resulting from the interaction of the current density fields with an external magnetic field. It is shown that gas discharge centrifuges are technically feasible in which the plasma rotates at speeds up to 1 million cm/sec. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat perturbed in the viscous boundary layers at the centrifuge walls. The isotope separation effect is the more pronounced. The induced magnetic fields have negligible influence on the plasma rotation if the Hall coefficient is small. In the technical realization of collision dominated plasma centrifuges, a trade-off has to be made between power density and speeds of rotation. The diffusion of sputtered atoms to system surfaces of ion propulsion systems and the deposition of the atoms are treated theoretically by means of a simple model which permits an analytical solution. The problem leads to an inhomogeneous integral equation.
Rethinking Theoretical Approaches to Stigma
Martin, Jack K; Lang, Annie; Olafsdottir, Sigrun
2008-01-01
A resurgence of research and policy efforts on stigma both facilitates and forces a reconsideration of the levels and types of factors that shape reactions to persons with conditions that engender prejudice and discrimination. Focusing on the case of mental illness but drawing from theories and studies of stigma across the social sciences, we propose a framework that brings together theoretical insights from micro, meso and macro level research: Framework Integrating Normative Influences on Stigma (FINIS) starts with Goffman’s notion that understanding stigma requires a language of social relationships, but acknowledges that individuals do not come to social interaction devoid of affect and motivation. Further, all social interactions take place in a context in which organizations, media and larger cultures structure normative expectations which create the possibility of marking “difference”. Labelling theory, social network theory, the limited capacity model of media influence, the social psychology of prejudice and discrimination, and theories of the welfare state all contribute to an understanding of the complex web of expectations shaping stigma. FINIS offers the potential to build a broad-based scientific foundation based on understanding the effects of stigma on the lives of persons with mental illness, the resources devoted to the organizations and families who care for them, and policies and programs designed to combat stigma. We end by discussing the clear implications this framework holds for stigma reduction, even in the face of conflicting results. PMID:18436358
Theoretical Transport Model for Tokamaks
NASA Astrophysics Data System (ADS)
Ghanem, Elsayed Mohammad
In the present thesis work a theoretical transport model is suggested to study the anomalous transport of plasma particles and energy across the axisymmetric equilibrium toroidal magnetic flux surfaces in tokamaks. The model suggests a linear combination of two transport mechanisms; drift waves, which dominate the transport in the core region, and resistive ballooning modes, which dominate the transport in the edge region. The resulting unified model has been used in a predictive transport code to simulate the plasma transport in different tokamak experiments operating in both the ohmic heating phase and the low confinement mode (L-mode). For ohmic plasma, the model was used to study the saturation of energy confinement time at high plasma density. The effect of the resistive ballooning mode as a possible cause of the saturation phenomena has been investigated together with the effect of the ion temperature gradient mode. For the low confinement mode plasmas, the study has emphasized on using the model to obtain a scaling law for the energy confinement time with the various plasma parameters compared to the scaling laws that are derived based on fitting the experimental data.
An Accurate Potential Energy Surface for H2O
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF
Mariappan, G; Sundaraganesan, N
2014-01-03
A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.
NASA Astrophysics Data System (ADS)
Mariappan, G.; Sundaraganesan, N.
2014-01-01
A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.
NASA Astrophysics Data System (ADS)
Fu, Yuhang; Bai, Lin; Jin, Yong; Cheng, Yi
2017-03-01
Asymmetric droplet breakup under a pressure difference at two outlets of a T-junction is investigated theoretically and numerically in this study. An accurate analysis of the evolution of droplet dynamics during the obstructed breakup process has been conducted. Meanwhile, the lattice Boltzmann method based on color gradient model is employed to simulate the system with the verification of the theoretical results. It is demonstrated that the Zou-He boundary setting at each outlet is advantageous for modifying the pressure drop of the two branches of T-junction. The results reveal that asymmetric breakup of the unequally sized droplets follows two steps, namely, the filling stage and the breakup stage. Then a universal parameter is proposed to describe the asymmetric condition of droplet breakup in T-junction, which plays a key role to characterize the temporal evolution of volume ratio and the droplet length of formed smaller droplets.
A unique, accurate LWIR optics measurement system
NASA Astrophysics Data System (ADS)
Fantone, Stephen D.; Orband, Daniel G.
2011-05-01
A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.
Accurate Measurement of Bone Density with QCT
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.
Accurate Automated Apnea Analysis in Preterm Infants
Vergales, Brooke D.; Paget-Brown, Alix O.; Lee, Hoshik; Guin, Lauren E.; Smoot, Terri J.; Rusin, Craig G.; Clark, Matthew T.; Delos, John B.; Fairchild, Karen D.; Lake, Douglas E.; Moorman, Randall; Kattwinkel, John
2017-01-01
Objective In 2006 the apnea of prematurity (AOP) consensus group identified inaccurate counting of apnea episodes as a major barrier to progress in AOP research. We compare nursing records of AOP to events detected by a clinically validated computer algorithm that detects apnea from standard bedside monitors. Study Design Waveform, vital sign, and alarm data were collected continuously from all very low-birth-weight infants admitted over a 25-month period, analyzed for central apnea, bradycardia, and desaturation (ABD) events, and compared with nursing documentation collected from charts. Our algorithm defined apnea as > 10 seconds if accompanied by bradycardia and desaturation. Results Of the 3,019 nurse-recorded events, only 68% had any algorithm-detected ABD event. Of the 5,275 algorithm-detected prolonged apnea events > 30 seconds, only 26% had nurse-recorded documentation within 1 hour. Monitor alarms sounded in only 74% of events of algorithm-detected prolonged apnea events > 10 seconds. There were 8,190,418 monitor alarms of any description throughout the neonatal intensive care unit during the 747 days analyzed, or one alarm every 2 to 3 minutes per nurse. Conclusion An automated computer algorithm for continuous ABD quantitation is a far more reliable tool than the medical record to address the important research questions identified by the 2006 AOP consensus group. PMID:23592319
The Theoretical Highest Frame Rate of Silicon Image Sensors
Etoh, Takeharu Goji; Nguyen, Anh Quang; Kamakura, Yoshinari; Shimonomura, Kazuhiro; Le, Thi Yen; Mori, Nobuya
2017-01-01
The frame rate of the digital high-speed video camera was 2000 frames per second (fps) in 1989, and has been exponentially increasing. A simulation study showed that a silicon image sensor made with a 130 nm process technology can achieve about 1010 fps. The frame rate seems to approach the upper bound. Rayleigh proposed an expression on the theoretical spatial resolution limit when the resolution of lenses approached the limit. In this paper, the temporal resolution limit of silicon image sensors was theoretically analyzed. It is revealed that the limit is mainly governed by mixing of charges with different travel times caused by the distribution of penetration depth of light. The derived expression of the limit is extremely simple, yet accurate. For example, the limit for green light of 550 nm incident to silicon image sensors at 300 K is 11.1 picoseconds. Therefore, the theoretical highest frame rate is 90.1 Gfps (about 1011 fps). PMID:28264527
Robust Accurate Non-Invasive Analyte Monitor
Robinson, Mark R.
1998-11-03
An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.
Toward Accurate Adsorption Energetics on Clay Surfaces
2016-01-01
Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields a very broad range of adsorption energies, and it is unclear a priori which evaluation is better. QMC reveals that in the systems considered here it is essential to account for van der Waals (vdW) dispersion forces since this alters both the absolute and relative adsorption energies of water and methanol. We show, via FF simulations, that incorrect relative energies can lead to significant changes in the interfacial densities of water and methanol solutions at the kaolinite interface. Despite the clear improvements offered by the vdW-corrected and the vdW-inclusive functionals, absolute adsorption energies are often overestimated, suggesting that the treatment of vdW forces in DFT is not yet a solved problem. PMID:27917256
Diagnostic limitations to accurate diagnosis of cholera.
Alam, Munirul; Hasan, Nur A; Sultana, Marzia; Nair, G Balakrish; Sadique, A; Faruque, A S G; Endtz, Hubert P; Sack, R B; Huq, A; Colwell, R R; Izumiya, Hidemasa; Morita, Masatomo; Watanabe, Haruo; Cravioto, Alejandro
2010-11-01
The treatment regimen for diarrhea depends greatly on correct diagnosis of its etiology. Recent diarrhea outbreaks in Bangladesh showed Vibrio cholerae to be the predominant cause, although more than 40% of the suspected cases failed to show cholera etiology by conventional culture methods (CMs). In the present study, suspected cholera stools collected from every 50th patient during an acute diarrheal outbreak were analyzed extensively using different microbiological and molecular tools to determine their etiology. Of 135 stools tested, 86 (64%) produced V. cholerae O1 by CMs, while 119 (88%) tested positive for V. cholerae O1 by rapid cholera dipstick (DS) assay; all but three samples positive for V. cholerae O1 by CMs were also positive for V. cholerae O1 by DS assay. Of 49 stools that lacked CM-based cholera etiology despite most being positive for V. cholerae O1 by DS assay, 25 (51%) had coccoid V. cholerae O1 cells as confirmed by direct fluorescent antibody (DFA) assay, 36 (73%) amplified primers for the genes wbe O1 and ctxA by multiplex-PCR (M-PCR), and 31 (63%) showed El Tor-specific lytic phage on plaque assay (PA). Each of these methods allowed the cholera etiology to be confirmed for 97% of the stool samples. The results suggest that suspected cholera stools that fail to show etiology by CMs during acute diarrhea outbreaks may be due to the inactivation of V. cholerae by in vivo vibriolytic action of the phage and/or nonculturability induced as a host response.
Theoretical and experimental spectroscopic analysis of cyano-substituted styrylpyridine compounds.
Castro, Maria Eugenia; Percino, Maria Judith; Chapela, Victor M; Ceron, Margarita; Soriano-Moro, Guillermo; Lopez-Cruz, Jorge; Melendez, Francisco J
2013-02-18
A combined theoretical and experimental study on the structure, infrared, UV-Vis and 1H NMR data of trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)]pyridine and trans-4-(m-cyanostyryl)pyridine is presented. The synthesis was carried out with an efficient Knoevenagel condensation using green chemistry conditions. Theoretical geometry optimizations and their IR spectra were carried out using the Density Functional Theory (DFT) in both gas and solution phases. For theoretical UV-Vis and 1H NMR spectra, the Time-Dependent DFT (TD-DFT) and the Gauge-Including Atomic Orbital (GIAO) methods were used, respectively. The theoretical characterization matched the experimental measurements, showing a good correlation. The effect of cyano- and methyl- substituents, as well as of the N-atom position in the pyridine ring on the UV-Vis, IR and NMR spectra, was evaluated. The UV-Vis results showed no significant effect due to electron-withdrawing cyano- and electron-donating methyl-substituents. The N-atom position, however, caused a slight change in the maximum absorption wavelengths. The IR normal modes were assigned for the cyano- and methyl-groups. 1H NMR spectra showed the typical doublet signals due to protons in the trans position of a double bond. The theoretical characterization was visibly useful to assign accurately the signals in IR and 1H NMR spectra, as well as to identify the most probable conformation that could be present in the formation of the styrylpyridine-like compounds.
Theoretical and Experimental Spectroscopic Analysis of Cyano-Substituted Styrylpyridine Compounds
Castro, Maria Eugenia; Percino, Maria Judith; Chapela, Victor M.; Ceron, Margarita; Soriano-Moro, Guillermo; Lopez-Cruz, Jorge; Melendez, Francisco J.
2013-01-01
A combined theoretical and experimental study on the structure, infrared, UV-Vis and 1H NMR data of trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)] pyridine and trans-4-(m-cyanostyryl)pyridine is presented. The synthesis was carried out with an efficient Knoevenagel condensation using green chemistry conditions. Theoretical geometry optimizations and their IR spectra were carried out using the Density Functional Theory (DFT) in both gas and solution phases. For theoretical UV-Vis and 1H NMR spectra, the Time-Dependent DFT (TD-DFT) and the Gauge-Including Atomic Orbital (GIAO) methods were used, respectively. The theoretical characterization matched the experimental measurements, showing a good correlation. The effect of cyano- and methyl-substituents, as well as of the N-atom position in the pyridine ring on the UV-Vis, IR and NMR spectra, was evaluated. The UV-Vis results showed no significant effect due to electron-withdrawing cyano- and electron-donating methyl-substituents. The N-atom position, however, caused a slight change in the maximum absorption wavelengths. The IR normal modes were assigned for the cyano- and methyl-groups. 1H NMR spectra showed the typical doublet signals due to protons in the trans position of a double bond. The theoretical characterization was visibly useful to assign accurately the signals in IR and 1H NMR spectra, as well as to identify the most probable conformation that could be present in the formation of the styrylpyridine-like compounds. PMID:23429190
NASA Technical Reports Server (NTRS)
Oliver, B. M.; Gower, J. F. R.
1977-01-01
A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.
Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology
NASA Astrophysics Data System (ADS)
Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan
2016-05-01
This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.
Efficient and Accurate Indoor Localization Using Landmark Graphs
NASA Astrophysics Data System (ADS)
Gu, F.; Kealy, A.; Khoshelham, K.; Shang, J.
2016-06-01
Indoor localization is important for a variety of applications such as location-based services, mobile social networks, and emergency response. Fusing spatial information is an effective way to achieve accurate indoor localization with little or with no need for extra hardware. However, existing indoor localization methods that make use of spatial information are either too computationally expensive or too sensitive to the completeness of landmark detection. In this paper, we solve this problem by using the proposed landmark graph. The landmark graph is a directed graph where nodes are landmarks (e.g., doors, staircases, and turns) and edges are accessible paths with heading information. We compared the proposed method with two common Dead Reckoning (DR)-based methods (namely, Compass + Accelerometer + Landmarks and Gyroscope + Accelerometer + Landmarks) by a series of experiments. Experimental results show that the proposed method can achieve 73% accuracy with a positioning error less than 2.5 meters, which outperforms the other two DR-based methods.
Accurate reactions open up the way for more cooperative societies
NASA Astrophysics Data System (ADS)
Vukov, Jeromos
2014-09-01
We consider a prisoner's dilemma model where the interaction neighborhood is defined by a square lattice. Players are equipped with basic cognitive abilities such as being able to distinguish their partners, remember their actions, and react to their strategy. By means of their short-term memory, they can remember not only the last action of their partner but the way they reacted to it themselves. This additional accuracy in the memory enables the handling of different interaction patterns in a more appropriate way and this results in a cooperative community with a strikingly high cooperation level for any temptation value. However, the more developed cognitive abilities can only be effective if the copying process of the strategies is accurate enough. The excessive extent of faulty decisions can deal a fatal blow to the possibility of stable cooperative relations.
Accurate finite difference methods for time-harmonic wave propagation
NASA Technical Reports Server (NTRS)
Harari, Isaac; Turkel, Eli
1994-01-01
Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.
Second-Order Accurate Projective Integrators for Multiscale Problems
Lee, S L; Gear, C W
2005-05-27
We introduce new projective versions of second-order accurate Runge-Kutta and Adams-Bashforth methods, and demonstrate their use as outer integrators in solving stiff differential systems. An important outcome is that the new outer integrators, when combined with an inner telescopic projective integrator, can result in fully explicit methods with adaptive outer step size selection and solution accuracy comparable to those obtained by implicit integrators. If the stiff differential equations are not directly available, our formulations and stability analysis are general enough to allow the combined outer-inner projective integrators to be applied to black-box legacy codes or perform a coarse-grained time integration of microscopic systems to evolve macroscopic behavior, for example.
Accurate reactions open up the way for more cooperative societies.
Vukov, Jeromos
2014-09-01
We consider a prisoner's dilemma model where the interaction neighborhood is defined by a square lattice. Players are equipped with basic cognitive abilities such as being able to distinguish their partners, remember their actions, and react to their strategy. By means of their short-term memory, they can remember not only the last action of their partner but the way they reacted to it themselves. This additional accuracy in the memory enables the handling of different interaction patterns in a more appropriate way and this results in a cooperative community with a strikingly high cooperation level for any temptation value. However, the more developed cognitive abilities can only be effective if the copying process of the strategies is accurate enough. The excessive extent of faulty decisions can deal a fatal blow to the possibility of stable cooperative relations.
An Inexpensive and Accurate Tensiometer Using an Electronic Balance
NASA Astrophysics Data System (ADS)
Dolz, Manuel; Delegido, Jesús; Hernández, María-Jesús; Pellicer, Julio
2001-09-01
A method for measuring surface tension of liquid-air interfaces that consists of a modification of the du Noüy tensiometer is proposed. An electronic balance is used to determine the detachment force with high resolution and the relative displacement ring/plate-liquid surface is carried out by the descent of the liquid-free surface. The procedure familiarizes undergraduate students in applied science and technology with the experimental study of surface tension by means of a simple and accurate method that offers the advantages of sophisticated devices at considerably less cost. The operational aspects that must be taken into account are analyzed: the measuring system and determination of its effective length, measurement of the detachment force, and the relative system-liquid interface displacement rate. To check the accuracy of the proposed tensiometer, measurements of the surface tension of different known liquids have been performed, and good agreement with results reported in the literature was obtained.
Miller, J.A.; Parrish, C.; Brown, N.J.
1986-07-17
Using the BAC-MP4 potential surface parameters of Melius and Binkley, we have predicted the thermal rate coefficients for the two reactions: O + HCN ..-->.. NCO + H (a) and O + HCN ..-->.. NH + CO (b). Several levels of approximation are used in the theoretical treatment: a, canonical theory; b, canonical theory with Wigner tunneling correction; c, microcanonical theory (energy conserving); d, microcanonical/J-conservative theory (conserves both energy and angular momentum); e, microcanonical/J-conservative theory with one-dimensional tunneling. At high temperature the available experimental results are predicted accurately by even the crudest theoretical treatment (canonical theory). At lower temperature the theoretical predictions using the basic BAC-MP4 parameters are too low. However, adjustments to the BAC-MP4 energy barriers within their stated error limits lead to satisfactory agreement with experiment over the entire temperature range where experimental results are available (500 to 2500 K). The most important results of the investigation concern the dependence of the predictions on the level of approximation. Each successive refinement in the theory produces larger values of k/sub b/. The details of the theoretical treatment and comparisons with experiment are described in detail.
An, Hyun-Sung; Dinkel, Danae M; Noble, John M; Lee, Jung-Min
2016-01-01
Background Heart rate (HR) monitors are valuable devices for fitness-orientated individuals. There has been a vast influx of optical sensing blood flow monitors claiming to provide accurate HR during physical activities. These monitors are worn on the arm and wrist to detect HR with photoplethysmography (PPG) techniques. Little is known about the validity of these wearable activity trackers. Aim Validate the Scosche Rhythm (SR), Mio Alpha (MA), Fitbit Charge HR (FH), Basis Peak (BP), Microsoft Band (MB), and TomTom Runner Cardio (TT) wireless HR monitors. Methods 50 volunteers (males: n=32, age 19–43 years; females: n=18, age 19–38 years) participated. All monitors were worn simultaneously in a randomised configuration. The Polar RS400 HR chest strap was the criterion measure. A treadmill protocol of one 30 min bout of continuous walking and running at 3.2, 4.8, 6.4, 8.0, and 9.6 km/h (5 min at each protocol speed) with HR manually recorded every minute was completed. Results For group comparisons, the mean absolute percentage error values were: 3.3%, 3.6%, 4.0%, 4.6%, 4.8% and 6.2% for TT, BP, RH, MA, MB and FH, respectively. Pearson product-moment correlation coefficient (r) was observed: r=0.959 (TT), r=0.956 (MB), r=0.954 (BP), r=0.933 (FH), r=0.930 (RH) and r=0.929 (MA). Results from 95% equivalency testing showed monitors were found to be equivalent to those of the criterion HR (±10% equivalence zone: 98.15–119.96). Conclusions The results demonstrate that the wearable activity trackers provide an accurate measurement of HR during walking and running activities. PMID:27900173
AMS results on positrons and antiprotons in cosmic rays
NASA Astrophysics Data System (ADS)
Kounine, Andrei; AMS Collaboration
2017-01-01
AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the cosmic ray particles are presented with the emphasis on the measurements of positrons and antiprotons. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of AMS.
Latest AMS Results on elementary particles in cosmic rays
NASA Astrophysics Data System (ADS)
Kounine, Andrei; AMS Collaboration
2017-01-01
AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.
Theoretical and material studies on thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.; Brennan, K. F.
1986-01-01
A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.
A Theoretical and Experimental Examination of Fluorescence in Enclosed Cavities
Lambson, Kara; Liang, Xing; Sharikova, Anna V.; Zhu, Timothy C.; Finlay, Jarod C.
2015-01-01
Photosensitizer fluorescence emitted during photodynamic therapy (PDT) is of interest for monitoring the local concentration of the photosensitizer and its photobleaching. In this study, we use Monte Carlo (MC) simulations to evaluate the relationship between treatment light and fluorescence, both collected by an isotropic detector placed on the surface of the tissue. In treatment of the thoracic and peritoneal cavities, the light source position changes continually. The MC program is designed to simulate an infinitely broad photon beam incident on the tissue at various angles to determine the effect of angle. For each of the absorbed photons, a fixed number of fluorescence photons are generated and traced. The theoretical results from the MC simulation show that the angle theta has little effect on both the measured fluorescence and the ratio of fluorescence to diffuse reflectance. However, changes in the absorption and scattering coefficients, μa and μs′, do cause the fluorescence and ratio to change, indicating that a correction for optical properties will be needed for absolute fluorescence quantification. Experiments in tissue-simulating phantoms confirm that an empirical correction can accurately recover the sensitizer concentration over a physiologically relevant range of optical properties. PMID:25999641
Halogen bond involving hypervalent halogen: CSD search and theoretical study.
Wang, Weizhou
2011-08-25
The Cambridge Structure Database search shows that there are over seventy crystal structures containing halogen bonds in which hypervalent halogens, not monovalent halogens as usual, behave as acceptors of electron density. The nature of the halogen bond involving hypervalent halogen has been investigated by using several theoretical methods with different basis sets. The HF calculations for the complexes studied cover most of their binding energies, which indicates the electrostatic nature of the halogen bond involving hypervalent halogen. The MP2 methods with medium basis sets fail to predict the relative strength of the halogen bond involving hypervalent halogen and the corresponding halogen bond involving monovalent halogen. Accurate computational results show that the halogen bond involving hypervalent halogen may be weaker than the corresponding halogen bond involving monovalent halogen even in the case that the hypervalent halogen is more positively charged than the monovalent halogen, the reasons of which were discussed in some detail. In comparison with the halogen bond involving monovalent halogen, the bonding characteristic and electron-density transfer of the halogen bond involving hypervalent halogen were also analyzed with the "atoms in molecules" theory and the natural bond orbital theory.
Accurate quantification of supercoiled DNA by digital PCR.
Dong, Lianhua; Yoo, Hee-Bong; Wang, Jing; Park, Sang-Ryoul
2016-04-11
Digital PCR (dPCR) as an enumeration-based quantification method is capable of quantifying the DNA copy number without the help of standards. However, it can generate false results when the PCR conditions are not optimized. A recent international comparison (CCQM P154) showed that most laboratories significantly underestimated the concentration of supercoiled plasmid DNA by dPCR. Mostly, supercoiled DNAs are linearized before dPCR to avoid such underestimations. The present study was conducted to overcome this problem. In the bilateral comparison, the National Institute of Metrology, China (NIM) optimized and applied dPCR for supercoiled DNA determination, whereas Korea Research Institute of Standards and Science (KRISS) prepared the unknown samples and quantified them by flow cytometry. In this study, several factors like selection of the PCR master mix, the fluorescent label, and the position of the primers were evaluated for quantifying supercoiled DNA by dPCR. This work confirmed that a 16S PCR master mix avoided poor amplification of the supercoiled DNA, whereas HEX labels on dPCR probe resulted in robust amplification curves. Optimizing the dPCR assay based on these two observations resulted in accurate quantification of supercoiled DNA without preanalytical linearization. This result was validated in close agreement (101~113%) with the result from flow cytometry.
Accurate quantification of supercoiled DNA by digital PCR
Dong, Lianhua; Yoo, Hee-Bong; Wang, Jing; Park, Sang-Ryoul
2016-01-01
Digital PCR (dPCR) as an enumeration-based quantification method is capable of quantifying the DNA copy number without the help of standards. However, it can generate false results when the PCR conditions are not optimized. A recent international comparison (CCQM P154) showed that most laboratories significantly underestimated the concentration of supercoiled plasmid DNA by dPCR. Mostly, supercoiled DNAs are linearized before dPCR to avoid such underestimations. The present study was conducted to overcome this problem. In the bilateral comparison, the National Institute of Metrology, China (NIM) optimized and applied dPCR for supercoiled DNA determination, whereas Korea Research Institute of Standards and Science (KRISS) prepared the unknown samples and quantified them by flow cytometry. In this study, several factors like selection of the PCR master mix, the fluorescent label, and the position of the primers were evaluated for quantifying supercoiled DNA by dPCR. This work confirmed that a 16S PCR master mix avoided poor amplification of the supercoiled DNA, whereas HEX labels on dPCR probe resulted in robust amplification curves. Optimizing the dPCR assay based on these two observations resulted in accurate quantification of supercoiled DNA without preanalytical linearization. This result was validated in close agreement (101~113%) with the result from flow cytometry. PMID:27063649
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry
1989-01-01
The molecular structure of both the neutral and negatively charged diatomic and triatomic systems containing the Cu, Ag, and Au metals are determined from ab initio calculations. For the neutral triatomic systems, the lowest energy structure is found to be triangular. The relative stability of the 2A1 and 2B2 structures can be predicted simply by knowing the constituent diatomic bond distances and atomic electron affinities (EAs). The lowest energy structure is linear for all of the negative ions. For anionic clusters containing Au, the Au atom(s) preferentially occupy the terminal position(s). The EAs of the heteronuclear systems can be predicted relatively accurately from a weighted average of the corresponding homonuclear systems. Although the theoretical EAs are systematically too small, accurate predictions for the EAs of the triatomics are obtained by uniformly scaling the ab initio results using the accurate experimental EA values available for the atoms and homonuclear diatomics.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Martin, Jan M. L.; Dateo, Christopher E.; Taylor, Peter R.
1995-01-01
The XCN and XNC (X = F, Cl) isomers have been investigated using the CCSD(T) method in conjunction with correlation consistent basis sets. Equilibrium geometries, harmonic frequencies, anharmonic constants, fundamental frequencies, and heats of formation have been evaluated. Agreement with experiment for the fundamental frequencies is very good, even for nu(sub 2), for CICN, which is subject to a strong Fermi resonance with 2nu(sub 3). It is also shown that a second-order perturbation theory approach to solving the nuclear Schroedinger equation gives results in excellent agreement with essentially exact variational calculations. This is true even for nu(sub 2) of ClCN, provided that near-singular terms are eliminated from the perturbation theory formulas and the appropriate Fermi interaction energy matrix is then diagonalized. A band at 615/cm, tentatively assigned as the Cl-N stretch in ClNC in matrix isolation experiments, is shown not to be due to ClNC. Accurate atomization energies are determined and are used to evaluate accurate heats of formation (3.1 +/- 1.5, 33.2 +/- 1.5, 72.6 +/- 1.5, and 75.9 +/- 1.5 kcal/mol for FCN, ClCN, FNC, and ClNC, respectively). It is expected that the theoretical heats of formation for FCN, FNC, and ClNC are the most accurate available.
A game-theoretic framework for landmark-based image segmentation.
Ibragimov, Bulat; Likar, Boštjan; Pernus, Franjo; Vrtovec, Tomaz
2012-09-01
A novel game-theoretic framework for landmark-based image segmentation is presented. Landmark detection is formulated as a game, in which landmarks are players, landmark candidate points are strategies, and likelihoods that candidate points represent landmarks are payoffs, determined according to the similarity of image intensities and spatial relationships between the candidate points in the target image and their corresponding landmarks in images from the training set. The solution of the formulated game-theoretic problem is the equilibrium of candidate points that represent landmarks in the target image and is obtained by a novel iterative scheme that solves the segmentation problem in polynomial time. The object boundaries are finally extracted by applying dynamic programming to the optimal path searching problem between the obtained adjacent landmarks. The performance of the proposed framework was evaluated for segmentation of lung fields from chest radiographs and heart ventricles from cardiac magnetic resonance cross sections. The comparison to other landmark-based segmentation techniques shows that the results obtained by the proposed game-theoretic framework are highly accurate and precise in terms of mean boundary distance and area overlap. Moreover, the framework overcomes several shortcomings of the existing techniques, such as sensitivity to initialization and convergence to local optima.
Connecting single cell to collective cell behavior in a unified theoretical framework
NASA Astrophysics Data System (ADS)
George, Mishel; Bullo, Francesco; Campàs, Otger
Collective cell behavior is an essential part of tissue and organ morphogenesis during embryonic development, as well as of various disease processes, such as cancer. In contrast to many in vitro studies of collective cell migration, most cases of in vivo collective cell migration involve rather small groups of cells, with large sheets of migrating cells being less common. The vast majority of theoretical descriptions of collective cell behavior focus on large numbers of cells, but fail to accurately capture the dynamics of small groups of cells. Here we introduce a low-dimensional theoretical description that successfully captures single cell migration, cell collisions, collective dynamics in small groups of cells, and force propagation during sheet expansion, all within a common theoretical framework. Our description is derived from first principles and also includes key phenomenological aspects of cell migration that control the dynamics of traction forces. Among other results, we explain the counter-intuitive observations that pairs of cells repel each other upon collision while they behave in a coordinated manner within larger clusters.
Theoretical Biology: Organisms and Mechanisms
NASA Astrophysics Data System (ADS)
Landauer, Christopher; Bellman, Kirstie L.
2002-09-01
The Theoretical Biology Program initiated by Robert Rosen is intended to identify the key theoretical characteristics of organisms, especially those that distinguish organisms from mechanisms, by looking for the proper abstractions and defining the appropriate relationships. There are strong claims about the distinctions in Rosen's book "Life Itself", along with some purported proofs of these assertions. Unfortunately, the Mathematics is incorrect, and the assertions remain unproven (and some of them are simply false). In this paper, we present the ideas of Rosen's approach, demonstrate that his Mathematical formulations and proofs are wrong, and then show how they might be made more successful.
Aglyamov, Salavat R; Karpiouk, Andrei B; Ilinskii, Yurii A; Zabolotskaya, Evgenia A; Emelianov, Stanislav Y
2007-10-01
The motion of a rigid sphere in a viscoelastic medium in response to an acoustic radiation force of short duration was investigated. Theoretical and numerical studies were carried out first. To verify the developed model, experiments were performed using rigid spheres of various diameters and densities embedded into tissue-like, gel-based phantoms of varying mechanical properties. A 1.5 MHz, single-element, focused transducer was used to apply the desired radiation force. Another single-element, focused transducer operating at 25 MHz was used to track the displacements of the sphere. The results of this study demonstrate good agreement between theoretical predictions and experimental measurements. The developed theoretical model accurately describes the displacement of the solid spheres in a viscoelastic medium in response to the acoustic radiation force.
Ri, Shien; Muramatsu, Takashi
2012-06-01
Recently, a rapid and accurate single-shot phase measurement technique called the sampling moiré method has been developed for small-displacement distribution measurements. In this study, the theoretical phase error of the sampling moiré method caused by linear intensity interpolation in the case of a mismatch between the sampling pitch and the original grating pitch is analyzed. The periodic phase error is proportional to the square of the spatial angular frequency of the moiré fringe. Moreover, an effective phase compensation methodology is developed to reduce the periodic phase error. Single-shot phase analysis can perform accurately even when the sampling pitch is not matched to the original grating pitch exactly. The primary simulation results demonstrate the effectiveness of the proposed phase compensation methodology.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
NASA Astrophysics Data System (ADS)
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
Motor equivalence during multi-finger accurate force production
Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.
2014-01-01
We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311
Accurate spectral numerical schemes for kinetic equations with energy diffusion
NASA Astrophysics Data System (ADS)
Wilkening, Jon; Cerfon, Antoine J.; Landreman, Matt
2015-08-01
We examine the merits of using a family of polynomials that are orthogonal with respect to a non-classical weight function to discretize the speed variable in continuum kinetic calculations. We consider a model one-dimensional partial differential equation describing energy diffusion in velocity space due to Fokker-Planck collisions. This relatively simple case allows us to compare the results of the projected dynamics with an expensive but highly accurate spectral transform approach. It also allows us to integrate in time exactly, and to focus entirely on the effectiveness of the discretization of the speed variable. We show that for a fixed number of modes or grid points, the non-classical polynomials can be many orders of magnitude more accurate than classical Hermite polynomials or finite-difference solvers for kinetic equations in plasma physics. We provide a detailed analysis of the difference in behavior and accuracy of the two families of polynomials. For the non-classical polynomials, if the initial condition is not smooth at the origin when interpreted as a three-dimensional radial function, the exact solution leaves the polynomial subspace for a time, but returns (up to roundoff accuracy) to the same point evolved to by the projected dynamics in that time. By contrast, using classical polynomials, the exact solution differs significantly from the projected dynamics solution when it returns to the subspace. We also explore the connection between eigenfunctions of the projected evolution operator and (non-normalizable) eigenfunctions of the full evolution operator, as well as the effect of truncating the computational domain.
Braking of fast and accurate elbow flexions in the monkey.
Flament, D; Hore, J; Vilis, T
1984-01-01
The processes responsible for braking fast and accurate elbow movements were studied in the monkey. The movements studied were made over different amplitudes and against different inertias . All were made to the same end position. Only fast movements that showed the typical biphasic or triphasic pattern of activity in agonists and antagonists were analysed in detail. For movements made over different amplitudes and at different velocities there was symmetry between the acceleration and deceleration phases of the movements. For movements of the same amplitude performed at different velocities there was a direct linear relation between peak velocity and both the peak acceleration (and integrated agonist burst) and peak deceleration (and integrated antagonist burst). The slopes of these relations and their intercept with the peak velocity axis were a function of movement amplitude. This was such that for large and small movements of the same peak velocity and the same end position (i) peak acceleration and phasic agonist activity were larger for the small movements and (ii) peak deceleration and phasic antagonist activity were larger for the small movements. The slope of these relations and the symmetry between acceleration and deceleration were not affected by the addition of an inertial load to the handle held by the monkey. The results indicate that fast and accurate elbow movements in the monkey are braked by antagonist activity that is centrally programmed. As all movements were made to the same end position, the larger antagonist burst in small movements, made at the same peak velocity as large movements, cannot be due to differences in the viscoelastic contribution to braking (cf. Marsden, Obeso & Rothwell , 1983).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6737291
Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite
NASA Astrophysics Data System (ADS)
Goldoff, B. A.; Webster, J. D.; Harlov, D. E.
2010-12-01
Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.
Does the Taylor Spatial Frame Accurately Correct Tibial Deformities?
Segal, Kira; Ilizarov, Svetlana; Fragomen, Austin T.; Ilizarov, Gabriel
2009-01-01
Background Optimal leg alignment is the goal of tibial osteotomy. The Taylor Spatial Frame (TSF) and the Ilizarov method enable gradual realignment of angulation and translation in the coronal, sagittal, and axial planes, therefore, the term six-axis correction. Questions/purposes We asked whether this approach would allow precise correction of tibial deformities. Methods We retrospectively reviewed 102 patients (122 tibiae) with tibial deformities treated with percutaneous osteotomy and gradual correction with the TSF. The proximal osteotomy group was subdivided into two subgroups to distinguish those with an intentional overcorrection of the mechanical axis deviation (MAD). The minimum followup after frame removal was 10 months (average, 48 months; range, 10–98 months). Results In the proximal osteotomy group, patients with varus and valgus deformities for whom the goal of alignment was neutral or overcorrection experienced accurate correction of MAD. In the proximal tibia, the medial proximal tibial angle improved from 80° to 89° in patients with a varus deformity and from 96° to 85° in patients with a valgus deformity. In the middle osteotomy group, all patients had less than 5° coronal plane deformity and 15 of 17 patients had less that 5° sagittal plane deformity. In the distal osteotomy group, the lateral distal tibial angle improved from 77° to 86° in patients with a valgus deformity and from 101° to 90° for patients with a varus deformity. Conclusions Gradual correction of all tibial deformities with the TSF was accurate and with few complications. Level of Evidence Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:19911244
Can a surgeon drill accurately at a specified angle?
Brioschi, Valentina; Cook, Jodie; Arthurs, Gareth I
2016-01-01
Objectives To investigate whether a surgeon can drill accurately a specified angle and whether surgeon experience, task repetition, drill bit size and perceived difficulty influence drilling angle accuracy. Methods The sample population consisted of final-year students (n=25), non-specialist veterinarians (n=22) and board-certified orthopaedic surgeons (n=8). Each participant drilled a hole twice in a horizontal oak plank at 30°, 45°, 60°, 80°, 85° and 90° angles with either a 2.5 or a 3.5 mm drill bit. Participants then rated the perceived difficulty to drill each angle. The true angle of each hole was measured using a digital goniometer. Results Greater drilling accuracy was achieved at angles closer to 90°. An error of ≤±4° was achieved by 84.5 per cent of participants drilling a 90° angle compared with approximately 20 per cent of participants drilling a 30–45° angle. There was no effect of surgeon experience, task repetition or drill bit size on the mean error for intended versus achieved angle. Increased perception of difficulty was associated with the more acute angles and decreased accuracy, but not experience level. Clinical significance This study shows that surgeon ability to drill accurately (within ±4° error) is limited, particularly at angles ≤60°. In situations where drill angle is critical, use of computer-assisted navigation or custom-made drill guides may be preferable. PMID:27547423
Maternal recall of infant feeding events is accurate.
Launer, L J; Forman, M R; Hundt, G L; Sarov, B; Chang, D; Berendes, H W; Naggan, L
1992-01-01
STUDY OBJECTIVE--Retrospective infant feeding data are important to the study of child and adult health patterns. The accuracy of maternal recall of past infant feeding events was examined and specifically the infant's age when breast feeding was stopped and formula feeding and solid foods were introduced. DESIGN AND SETTING--The sample consisted of Bedouin Arab women (n = 318) living in the Negev in Israel who were a part of a larger cohort participating in a prospective study of infant health and who were delivered of their infants between July 1 and December 15, 1981. Data from interviews conducted 12 and 18 months postpartum were compared to the standard data collected six months postpartum. MAIN RESULTS--As length of recall increased there was a small increase in the mean difference, and its standard deviation, between the standard and recalled age when breast feeding was stopped and formula feeding and solid foods were started. Recall on formula feeding was less accurate than recall on solid foods and breast feeding. In particular, among those 61% reporting formula use at the six month interview, 51% did not recall introducing formula when interviewed at 18 months. The odds ratio (95% CI) of stunting versus normal length for age for formula fed versus breast fed infants based on recall data (OR = 2.07; 95% CI 0.82-5.22) differed only slightly from those based on the standard data (OR = 2.21; 95% CI 0.77-6.37). The accuracy of a mother's recall varied with her child's nutritional status at the time of the interview, but not with other sociodemographic, infant, or interviewer characteristics. CONCLUSIONS--Retrospective infant feeding data based on maternal recall of events up to 18 months in the past can be used with confidence in epidemiological studies. However, data on formula feeding may not be as accurate as data on breast feeding and solid food feeding, and accuracy may decrease as length of recall increases. PMID:1645071
Goulianos, Konstantin
2012-04-01
We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.
A predictable and accurate technique with elastomeric impression materials.
Barghi, N; Ontiveros, J C
1999-08-01
A method for obtaining more predictable and accurate final impressions with polyvinylsiloxane impression materials in conjunction with stock trays is proposed and tested. Heavy impression material is used in advance for construction of a modified custom tray, while extra-light material is used for obtaining a more accurate final impression.
Tube dimpling tool assures accurate dip-brazed joints
NASA Technical Reports Server (NTRS)
Beuyukian, C. S.; Heisman, R. M.
1968-01-01
Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.
Theoretical study on a water muffler
NASA Astrophysics Data System (ADS)
Du, T.; Chen, Y. W.; Miao, T. C.; Wu, D. Z.
2016-05-01
Theoretical computation on a previously studied water muffler is carried out in this article. Structure of the water muffler is composed of two main parts, namely, the Kevlar- reinforced rubber tube and the inner-noise-reduction structure. Rubber wall of the rubber tube is assumed to function as rigid wall lined with sound absorption material and is described by a complex radial wave number. Comparison among the results obtained from theoretical computation, FEM (finite element method) simulation and experiment of the rubber tube and that of the water muffler has been made. The theoretical results show a good accordance in general tendency with the FEM simulated and the measured results. After that, parametric study on the diameter of the inner structure and that of the rubber tube is conducted. Results show that the diameter of the left inner structure has the most significant effect on the SPL of the water muffler due to its location and its effect on the diameter ratio D2/D1.
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie
2008-03-28
Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html.
Armas-Pérez, Julio C; Hernández-Ortiz, Juan P; de Pablo, Juan J
2015-12-28
A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions.
Approaching nanoscale oxides: models and theoretical methods.
Bromley, Stefan T; Moreira, Ibério de P R; Neyman, Konstantin M; Illas, Francesc
2009-09-01
This tutorial review deals with the rapidly developing area of modelling oxide materials at the nanoscale. Top-down and bottom-up modelling approaches and currently used theoretical methods are discussed with the help of a selection of case studies. We show that the critical oxide nanoparticle size required to be beyond the scale where every atom counts to where structural and chemical properties are essentially bulk-like (the scalable regime) strongly depends on the structural and chemical parameters of the material under consideration. This oxide-dependent behaviour with respect to size has fundamental implications with respect to their modelling. Strongly ionic materials such as MgO and CeO(2), for example, start to exhibit scalable-to-bulk crystallite-like characteristics for nanoparticles consisting of about 100 ions. For such systems there exists an overlap in nanoparticle size where both top-down and bottom-up theoretical techniques can be applied and the main problem is the choice of the most suitable computational method. However, for more covalent systems such TiO(2) or SiO(2) the onset of the scalable regime is still unclear and for intermediate sized nanoparticles there exists a gap where neither bottom-up nor top-down modelling are fully adequate. In such difficult cases new efforts to design adequate models are required. Further exacerbating these fundamental methodological concerns are oxide nanosystems exhibiting complex electronic and magnetic behaviour. Due to the need for a simultaneous accurate treatment of the atomistic, electronic and spin degrees of freedom for such systems, the top-down vs. bottom-up separation is still large, and only few studies currently exist.
Space Service Market (Theoretical Aspect)
NASA Astrophysics Data System (ADS)
Prisniakov, V. F.; Prisniakova, L. M.
The authors propose a mathematical model of the demand and supply in the market economics and in the market of space services, in particular. A theoretical demand formula and a real curve demand are compared. The market equilibrium price is defined. The space market dynamics is studied. The calculations are carried out for the parameters which are close to the market of space services.
Theoretical Perspectives for Developmental Education.
ERIC Educational Resources Information Center
Lundell, Dana Britt, Ed.; Higbee, Jeanne L., Ed.
This monograph from the University of Minnesota General College (GC) discusses theoretical perspectives on developmental education from both new and established standpoints. GC voluntarily eliminated its degree programs in order to focus on preparing under-prepared students for transfer to the university system. GC's curricular model includes a…
Theoretical understanding of charm decays
Bigi, I.I.
1986-08-01
A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.
Theoretical Foundations of Learning Environments
ERIC Educational Resources Information Center
Jonassen, David H., Ed.; Land, Susan M., Ed.
1999-01-01
"Theoretical Foundations of Learning Environments" describes the most contemporary psychological and pedagogical theories that are foundations for the conception and design of open-ended learning environments and new applications of educational technologies. In the past decade, the cognitive revolution of the 60s and 70s has been…
Lightning Talks 2015: Theoretical Division
Shlachter, Jack S.
2015-11-25
This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.
Asking Research Questions: Theoretical Presuppositions
ERIC Educational Resources Information Center
Tenenberg, Josh
2014-01-01
Asking significant research questions is a crucial aspect of building a research foundation in computer science (CS) education. In this article, I argue that the questions that we ask are shaped by internalized theoretical presuppositions about how the social and behavioral worlds operate. And although such presuppositions are essential in making…
Data, Methods, and Theoretical Implications
ERIC Educational Resources Information Center
Hannagan, Rebecca J.; Schneider, Monica C.; Greenlee, Jill S.
2012-01-01
Within the subfields of political psychology and the study of gender, the introduction of new data collection efforts, methodologies, and theoretical approaches are transforming our understandings of these two fields and the places at which they intersect. In this article we present an overview of the research that was presented at a National…
Theoretical maximum concentration factors for solar concentrators
Nicolas, R.O.; Duran, J.C.
1984-11-01
The theoretical maximum concentration factors are determined for different definitions of the factor for two-dimensional and three-dimensional solar concentrators that are valid for any source with nonuniform intensity distribution. Results are obtained starting from those derived by Winston (1970) for Lambertian sources. In particular, maximum concentration factors for three models of the solar-disk intensity distribution are calculated. 12 references.
Theoretical investigation of gas-surface interactions
NASA Technical Reports Server (NTRS)
Lee, Timothy J.
1989-01-01
Four reprints are presented from four projects which are to be published in a refereed journal. Two are of interest to us and are presented herein. One is a description of a very detailed theoretical study of four anionic hydrogen bonded complexes. The other is a detailed study of the first generally reliable diagnostic for determining the quality of results that may be expected from single reference based electron correlation methods.
Accurate estimators of correlation functions in Fourier space
NASA Astrophysics Data System (ADS)
Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.
2016-08-01
Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.
A theoretical and experimental study of wood planer noise and its control
NASA Technical Reports Server (NTRS)
Stewart, J. S.
1972-01-01
A combined analytical and experimental study of wood planer noise is made and the results applied to the development of practical noise control techniques. The dominant mechanisms of sound generation are identified and an analysis is presented which accurately predicts the governing levels of noise emission. Planing operations in which the length of the board is much greater than the width are considered. The dominant source of planer noise is identified as the board being surfaced, which is set into vibration by the impact of cutterhead knives. This is determined from studies made both in the laboratory and in the field concerning the effect of board width on the resulting noise, which indicate a six decibel increase in noise level for each doubling of board width. The theoretical development of a model for board vibration defines the vibrational field set up in the board and serves as a guide for cutterhead redesign.
Accurate fundamental parameters for 23 bright solar-type stars
NASA Astrophysics Data System (ADS)
Bruntt, H.; Bedding, T. R.; Quirion, P.-O.; Lo Curto, G.; Carrier, F.; Smalley, B.; Dall, T. H.; Arentoft, T.; Bazot, M.; Butler, R. P.
2010-07-01
We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar-type stars, from spectral type F5 to K2 and luminosity classes III-V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4-15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (~ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of -40 +/- 20K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H] = -1.7 to +0.4, and there is clear evidence for α-element enhancement in the metal-poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v sin i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log g and [Fe/H] with absolute accuracies of 80K, 0.08 and 0.07dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry
Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics
Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.
2015-01-01
Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results
NASA Astrophysics Data System (ADS)
Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng
2016-05-01
A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).
Reaction dynamics of the D+ + H2 system. A comparison of theoretical approaches.
Jambrina, P G; Alvariño, J M; Aoiz, F J; Herrero, Víctor J; Sáez-Rábanos, Vicente
2010-10-21
The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2
Accurate calculation of field and carrier distributions in doped semiconductors
NASA Astrophysics Data System (ADS)
Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo
2012-06-01
We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.
Accurate multiple network alignment through context-sensitive random walk
2015-01-01
Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987
Accurate absolute GPS positioning through satellite clock error estimation
NASA Astrophysics Data System (ADS)
Han, S.-C.; Kwon, J. H.; Jekeli, C.
2001-05-01
An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.
Towards Accurate Molecular Modeling of Plastic Bonded Explosives
NASA Astrophysics Data System (ADS)
Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.
2010-03-01
There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.
How accurate are our assumptions about our students' background knowledge?
Rovick, A A; Michael, J A; Modell, H I; Bruce, D S; Horwitz, B; Adamson, T; Richardson, D R; Silverthorn, D U; Whitescarver, S A
1999-06-01
Teachers establish prerequisites that students must meet before they are permitted to enter their courses. It is expected that having these prerequisites will provide students with the knowledge and skills they will need to successfully learn the course content. Also, the material that the students are expected to have previously learned need not be included in a course. We wanted to determine how accurate instructors' understanding of their students background knowledge actually was. To do this, we wrote a set of multiple-choice questions that could be used to test students' knowledge of concepts deemed to be essential for learning respiratory physiology. Instructors then selected 10 of these questions to be used as a prerequisite knowledge test. The instructors also predicted the performance they expected from the students on each of the questions they had selected. The resulting tests were administered in the first week of each of seven courses. The results of this study demonstrate that instructors are poor judges of what beginning students know. Instructors tended to both underestimate and overestimate students' knowledge by large margins on individual questions. Although on the average they tended to underestimate students' factual knowledge, they overestimated the students' abilities to apply this knowledge. Hence, the validity of decisions that instructors make, predicated on the basis of their students having the prerequisite knowledge that they expect, is open to question.
Fabricating an Accurate Implant Master Cast: A Technique Report.
Balshi, Thomas J; Wolfinger, Glenn J; Alfano, Stephen G; Cacovean, Jeannine N; Balshi, Stephen F
2015-12-01
The technique for fabricating an accurate implant master cast following the 12-week healing period after Teeth in a Day® dental implant surgery is detailed. The clinical, functional, and esthetic details captured during the final master impression are vital to creating an accurate master cast. This technique uses the properties of the all-acrylic resin interim prosthesis to capture these details. This impression captures the relationship between the remodeled soft tissue and the interim prosthesis. This provides the laboratory technician with an accurate orientation of the implant replicas in the master cast with which a passive fitting restoration can be fabricated.
Automatic classification and accurate size measurement of blank mask defects
NASA Astrophysics Data System (ADS)
Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter
2015-07-01
complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.
A spectroscopic transfer standard for accurate atmospheric CO measurements
NASA Astrophysics Data System (ADS)
Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker
2016-04-01
Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been
Evolution of Theoretical Perspectives in My Research
NASA Astrophysics Data System (ADS)
Otero, Valerie K.
2009-11-01
Over the past 10 years I have been using socio-cultural theoretical perspectives to understand how people learn physics in a highly interactive, inquiry-based physics course such as Physics and Everyday Thinking [1]. As a result of using various perspectives (e.g. Distributed Cognition and Vygotsky's Theory of Concept Formation), my understanding of how these perspectives can be useful for investigating students' learning processes has changed. In this paper, I illustrate changes in my thinking about the role of socio-cultural perspectives in understanding physics learning and describe elements of my thinking that have remained fairly stable. Finally, I will discuss pitfalls in the use of certain perspectives and discuss areas that need attention in theoretical development for PER.
Center of Excellence in Theoretical Geoplasma Research
NASA Astrophysics Data System (ADS)
Chang, Tom
1993-08-01
The Center for Theoretical Geoplasma Physics was established at MIT in 1986 through an AFOSR University Research Initiative grant. The goal of the Center since its inception has been to develop and maintain a program of excellence in interdisciplinary geoplasma research involving the mutual interaction of ionospheric scientists, aeronomists, plasma physicists, and numerical analysts. During the past six years, members of the center have made germinal contributions to a number of definitive research findings in the fundamental understanding of ionospheric turbulence, particle acceleration, and the phenomenon of coupling between the ionosphere and magnetosphere. Some of the results of these research activities have already found practical applications toward the mission of the Air Force by scientists at the Geophysics Directorate of the Phillips Laboratory, particularly those affiliated with the research group headed by Dr. J.R. Jasperse of the Ionospheric Effects Branch. Theoretical geoplasma physics, URI Program.
Theoretical considerations for oocyte cryopreservation by freezing.
Fahy, Gregory M
2007-06-01
Attempts to cryopreserve oocytes by freezing have, to date, been based mostly on empirical approaches rather than on basic principles, and perhaps in part for this reason have not been very successful. Theoretical considerations suggest some fairly 'heretical' conclusions. The concentrations of permeating cryoprotectants employed in past studies have probably been inadequate, and the choice of propylene glycol (PG) as a protective agent is questionable. The use of non-penetrating agents, such as sucrose to preshrink oocytes prior to freezing and which, therefore, exacerbate osmotic stress during freezing, may be inappropriate, yet may protect in part by reducing the concentration of PG during freezing. The methods used to add and remove cryoprotectant may be suboptimal, and may be based on an inadequate understanding of the cryobiological constraints for oocyte survival. Given these concerns, it is not surprising that fully satisfactory results have been elusive, but there is every reason to believe that greater success is possible using a more theoretically appropriate approach.
Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme
NASA Astrophysics Data System (ADS)
Cuntz, M.; Haverd, V.
2013-12-01
Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture
Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Haverd, Vanessa
2014-05-01
Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture
General Solution for Theoretical Packet Data Loss Rate
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin; Schlesinger, Adam
2006-01-01
Communications systems which transfer blocks ("frames") of data must use a marker ("frame synchronization pattern") for identifying where a block begins. A technique ("frame synchronization strategy") is used to locate the start of each frame and maintain synchronization as additional blocks are processed. A device which strips out the frame synchronization pattern [FSP] and provides an "end of frame" pulse is called a frame synchronizer. As clock and data errors are introduced into the system, the start-of-block marker becomes displaced and/or corrupted. The capability of the frame synchronizer to stay locked to the pattern under these conditions is a figure of merit for the frame synchronization strategy. It is important to select a strategy which will stay locked nearly all the time at bit error rates where the data is usable. ("Bit error rate" [BER] is the fraction of binary bits which are inverted by passage through a communication system.) The fraction of frames that are discarded because the frame synchronizer is not locked is called "Percent Data Loss" or "Packet Data Loss rate" [PDL]. A general approach for accurately predicting PDL given BER was developed in Theoretical Percent Data Loss Calculation and Measurement Accuracy, T. P. Kelly, LESC-30554, December 1992. Kelly gave a solution in terms of matrix equations, and only addressed "level" channel encoding. This paper goes on to give a closed-form polynomial solution for the most common class of frame synchronizer strategies, and will also address "mark" and "space" (differential) channel encoding, and burst error environments. The paper is divided into four sections and follows a logically ordered presentation, with results developed before they are evaluated. However, most readers will derive the greatest benefit from this paper by treating the results as reference material. The result developed for differential encoding can be extended to other applications (like block codes) where the probability is
Approaches for the accurate definition of geological time boundaries
NASA Astrophysics Data System (ADS)
Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo
2015-04-01
Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age
Fast processing techniques for accurate ultrasonic range measurements
NASA Astrophysics Data System (ADS)
Barshan, Billur
2000-01-01
Four methods of range measurement for airborne ultrasonic systems - namely simple thresholding, curve-fitting, sliding-window, and correlation detection - are compared on the basis of bias error, standard deviation, total error, robustness to noise, and the difficulty/complexity of implementation. Whereas correlation detection is theoretically optimal, the other three methods can offer acceptable performance at much lower cost. Performances of all methods have been investigated as a function of target range, azimuth, and signal-to-noise ratio. Curve fitting, sliding window, and thresholding follow correlation detection in the order of decreasing complexity. Apart from correlation detection, minimum bias and total error is most consistently obtained with the curve-fitting method. On the other hand, the sliding-window method is always better than the thresholding and curve-fitting methods in terms of minimizing the standard deviation. The experimental results are in close agreement with the corresponding simulation results. Overall, the three simple and fast processing methods provide a variety of attractive compromises between measurement accuracy and system complexity. Although this paper concentrates on ultrasonic range measurement in air, the techniques described may also find application in underwater acoustics.
Theoretical issues in Spheromak research
Cohen, R. H.; Hooper, E. B.; LoDestro, L. L.; Mattor, N.; Pearlstein, L. D.; Ryutov, D. D.
1997-04-01
This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (``flux conserver``) to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks.
Theoretical Problems in Materials Science
NASA Technical Reports Server (NTRS)
Langer, J. S.; Glicksman, M. E.
1985-01-01
Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.
Theoretical Advanced Study Institute: 2014
DeGrand, Thomas
2016-08-17
The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context and on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.
Controlling Hay Fever Symptoms with Accurate Pollen Counts
... Library ▸ Hay fever and pollen counts Share | Controlling Hay Fever Symptoms with Accurate Pollen Counts This article has ... Pongdee, MD, FAAAAI Seasonal allergic rhinitis known as hay fever is caused by pollen carried in the air ...
Digital system accurately controls velocity of electromechanical drive
NASA Technical Reports Server (NTRS)
Nichols, G. B.
1965-01-01
Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.
Theoretical Issues in Software Engineering.
1982-09-01
large software projects. It has been less successful in acquiring a solid theoretical foundation for these methods. The software development process...justification save practice that has evolved for large , concur- rently processed programs. Furthermore, each phase needs formal description and analysis. The...Abstract B Me discipline of software engineering has transferred the common-sense methods of good programing and management to large software projects. It
Migration, crisis and theoretical conflict.
Bach, R L; Schraml, L A
1982-01-01
The nature of the distinction between the equilibrium and historical-structuralist positions on migration is examined. Theoretical and political differences in the two positions are considered both historically and in the context of the current global economic crisis. The proposal of Wood to focus on households as a strategy for integrating the two perspectives and for achieving a better understanding of migration and social change is discussed.
Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions
Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang
2016-01-01
Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm−1 accuracy. PMID:27138292
Winters, Taylor M; Takahashi, Mitsuhiko; Lieber, Richard L; Ward, Samuel R
2011-01-04
An a priori model of the whole active muscle length-tension relationship was constructed utilizing only myofilament length and serial sarcomere number for rabbit tibialis anterior (TA), extensor digitorum longus (EDL), and extensor digitorum II (EDII) muscles. Passive tension was modeled with a two-element Hill-type model. Experimental length-tension relations were then measured for each of these muscles and compared to predictions. The model was able to accurately capture the active-tension characteristics of experimentally-measured data for all muscles (ICC=0.88 ± 0.03). Despite their varied architecture, no differences in predicted versus experimental correlations were observed among muscles. In addition, the model demonstrated that excursion, quantified by full-width-at-half-maximum (FWHM) of the active length-tension relationship, scaled linearly (slope=0.68) with normalized muscle fiber length. Experimental and theoretical FWHM values agreed well with an intraclass correlation coefficient of 0.99 (p<0.001). In contrast to active tension, the passive tension model deviated from experimentally-measured values and thus, was not an accurate predictor of passive tension (ICC=0.70 ± 0.07). These data demonstrate that modeling muscle as a scaled sarcomere provides accurate active functional but not passive functional predictions for rabbit TA, EDL, and EDII muscles and call into question the need for more complex modeling assumptions often proposed.
Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions.
Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang
2016-05-03
Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe(-) using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm(-1) or 153.236(34) meV. The fine structures of Fe(-) were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm(-1) accuracy.
Accurate tracking of high dynamic vehicles with translated GPS
NASA Astrophysics Data System (ADS)
Blankshain, Kenneth M.
The GPS concept and the translator processing system (TPS) which were developed for accurate and cost-effective tracking of various types of high dynamic expendable vehicles are described. A technique used by the translator processing system (TPS) to accomplish very accurate high dynamic tracking is presented. Automatic frequency control and fast Fourier transform processes are combined to track 100 g acceleration and 100 g/s jerk with 1-sigma velocity measurement error less than 1 ft/sec.
Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations
Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim
2011-03-23
A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.